Галилео Галилей родился в Пизе, в дворянской семье. Его отец Винченцо преподавал музыку (и разрабатывал ее математическую теорию), а также помогал семье жены в их небольшом бизнесе. Он желал своему сыну лучшей, чем их скромная, если не сказать бедная, жизни. Но вместо того, чтобы делать карьеру в бизнесе, как советовал ему отец, 17-летний Галилео поступил в Пизанский университет, собираясь изучать медицину. Спустя четыре года он покинул университет без диплома, но с багажом знаний по математике и физике Аристотеля. Возвратившись домой к родителям, которые в то время жили во Флоренции, Галилео начал писать работы по математике, давать частные уроки и читать публичные лекции. Он помогал своему отцу в музыкальных опытах со струнами различной длины, толщины и натяжения. Интересно, что основатель экспериментальной физики занимался опытами, похожими на первые известные количественные опыты ранних пифагорейцев, обнаруживших, что при целочисленном отношении длин струн у лиры повышается ее благозвучие.
Галилей познакомился с трудами Архимеда, переведенными на латинский язык в XVI веке. Это побудило его к изучению разделов статистической механики, например вопроса о центре тяжести тела. Благодаря небольшой работе, написанной на эту тему, он был временно назначен на должность профессора математики в Пизанском университете. Через три года в возрасте 28 лет он переехал в Падую для преподавания математики и астрономии. Галилей прожил там 18 лет, проделав большинство своих знаменитых работ по изучению движения тел (рис. 7.1).
Рис. 7.1. Галилео Галилей (1564–1642), основатель экспериментальной физики и первый наблюдатель небесных объектов с помощью телескопа.
Книги Галилея демонстрируют современный подход к изучению природы. В древности очень ценились наблюдения, но не возникало идеи проведения эксперимента с определенной целью. Вспомним главу 2: Аристотель утверждал, что мы понимаем явление только в том случае, если знаем его особую причину, окончательную цель. Только зная «мотивацию», мы можем сказать, почему это случилось. Например, камень падает, потому что его цель — приблизиться к своему естественному положению, к центру Вселенной. По мнению Аристотеля, наблюдение случайных, а не специально созданных процессов важно для их понимания.
Современная наука, напротив, считает, что если известно начальное состояние системы и все действующие силы, то можно понять, каким будет последующее состояние, не предполагая какого-либо естественного конца. Эта причинная связь делает эксперимент эффективным средством изучения природы. Изменяя в эксперименте начальное состояние, можно изучить законы, связывающие причину с результатом. Важнейшей задачей эксперимента является проверка теории, пытающейся объяснить явление. Эксперимент и теория идут рука об руку в том смысле, что хорошая теория имеет практическое значение, поскольку способна предсказывать ход природных явлений в разных ситуациях. Если говорить о прикладном значении, то взять хотя бы телевизор: мы подтверждаем лежащую в его основе теорию каждый раз, когда нажимаем кнопку «Вкл.».
Основные результаты опытов Галилея в области динамики можно сформулировать в виде нескольких законов.
1. Свободное горизонтальное движение происходит с постоянной скоростью, без изменения направления.
В нашей повседневной жизни на Земле трение всегда останавливает движение любого тела, например катящегося по ровной поверхности шара. Но благодаря своим экспериментам и интуиции Галилей пришел к заключению, что шар никогда бы не остановился, если бы трение можно было полностью устранить, то есть если бы движение было «свободным».
2. Свободно падающее тело испытывает постоянное ускорение.
Ускорением называют изменение скорости тела за единицу времени. У равномерно ускоряющегося тела, которое вначале было неподвижным, через некоторое время скорость и становится равной ускорению а, умноженному на время t (v = at). Для тела, падающего у поверхности Земли, ускорение равно 9,8 м/с2. Через 1 секунду скорость тела будет равна 9,8 м/с, через 2 секунды — 19,6 м/с, и т. д. В результате исследований в колледже Мертон (Оксфорд) еще в XIV веке возникло предположение, что расстояние s, пройденное равномерно ускоренным телом за время t равно половине произведения ускорения на квадрат времени (s = 1/2 at2). Галилео показал, что эта формула верна, изучая движение шара, катящегося с малым ускорением вниз по наклонной плоскости. Экстраполируя этот опыт на случай вертикального движения, он пришел к выводу, что свободно падающее тело подчиняется этому же закону, то есть имеет постоянное (но большее) ускорение. Вернемся к ускорению 9,8 м/с2. Через 1 секунду тело упадет на 4,4 м. Через 2 секунды оно уже пройдет расстояние 17,6 м, вчетверо большее, чем за первую секунду, и т. д.
3. Все тела падают одинаково быстро.
Результат, обычно приписываемый опыту Галилея, бросавшего предметы с наклонной Пизанской башни, в действительности был получен раньше датско-бельгийским математиком Симоном Стевином. В 1586 году он заявил, что тела с различными массами падают с одинаковым ускорением. Галилей был согласен с этим мнением и мог попытаться провести подобный эксперимент с двумя плотны-ми телами различной массы. Конечно, если бы можно было убрать воздух, то молоток и перо падали бы с одинаковой скоростью и одновременно упали бы на землю. Астронавты из экспедиции «Аполлон» на безвоздушной поверхности Луны доказали, что это действительно так.
4. Принцип относительности Галилея. Траектория и скорость движения тела зависят от системы отсчета, в которой они наблюдаются.
Одним из аргументов, которые приводились против вращения Земли, было утверждение, что если бы Земля вращалась, то тело, брошенное с вершины башни, не должно было бы упасть прямо к подножию, поскольку поверхность вращающейся Земли должна немного передвинуться за время падения. Обоснованность этого аргумента можно проверить в аналогичной ситуации, бросив камень с верхушки мачты плывущего корабля. Отклонится ли траектория камня к корме корабля? Французский философ Пьер Гассенди (1592–1655) проделал такой опыт и обнаружил, что камень всегда падает на палубу рядом с основанием мачты и никакого отклонения нет! Даже падая, объект перемещается вместе с кораблем. Галилей заключил, что наблюдатель, участвующий в равномерном движении, не может обнаружить это движение в эксперименте со свободным падением. Интересно, что, с точки зрения наблюдателя, стоящего на берегу, падающий камень движется по параболической траектории. Какая же из этих траекторий «настоящая» — прямая вертикальная линия или кривая парабола? Галилей говорил, что обе траектории правильные, так как они зависят от системы отчета, которую можно связать либо с берегом, либо с равномерно движущимся кораблем, в зависимости от положения наблюдателя.
Во времена Галилея важность этих законов движения определялась двумя обстоятельствами. Во-первых, они четко отрицали старые взгляды, основанные на физике Аристотеля. Во-вторых, они помогали понять, что Земля может быть подвижной без каких-либо драматических последствий кроме ежедневных восходов и заходов Солнца и других небесных светил. Атмосфера может двигаться вместе с Землей, не производя сильного ветра и не улетая в космос.
Уже то было замечательно, что Галилей показал, как можно использовать эксперименты для проверки философских идей о материи и движении и как они могут открывать новые законы природы на Земле. Но это было еще не все. Он смог взглянуть на небо с помощью нового инструмента, возможности которого намного превысили способность невооруженного глаза и позволили обнаружить новые явления во Вселенной.
Галилео услышал, что в Нидерландах шлифовщик линз построил прибор, приближающий далекие объекты. Летом 1609 года он сам сделал такой же инструмент, который мы теперь называем телескопом. В первую очередь Галилей думал о том, что прибор может быть использован моряками и что продажа телескопов могла бы улучшить его материальное положение. Он показал свой инструмент правителям Венеции, которые с удивлением обнаружили, что можно увидеть далекий корабль в Венецианском заливе и еще до его приближения распознать, друг это или враг. Галилео представил свой телескоп верховному правителю Венеции — дожу. Тот был настолько впечатлен, что продажи Галилея увеличились вдвое, а его временная должность профессора стала пожизненной. Два телескопа, изготовленные Галилеем, демонстрируются в Музее истории науки (Institute е Museo di Storia della Scienza) во Флоренции. Линзы их объективов имеют диаметры 16 и 26 мм. По современным стандартам телескоп Галилея был, конечно, не самым лучшим. Но он радикально усилил возможности человеческого глаза при наблюдении небольших, тусклых и далеких объектов. Направив телескоп в небо, Галилей сделал неожиданные открытия. В книге «Звездный вестник», опубликованной в 1610 году, Галилей рассказал о своих новых космических открытиях.
• Луна, которая кажется ровной сферой, в действительности имеет неровную поверхность с горами, ямами и долинами, наряду с большими плоскими районами.
• Многие новые звезды, невидимые невооруженным глазом, появляются на небе при наблюдении в телескоп, особенно Млечный Путь — огромное облако тусклых звезд.
• У Юпитера четыре обращающихся вокруг него спутника.
Позднее, в 1610 году, Галилей совершил новые открытия.
• Венера имеет фазы наподобие Луны.
• На Солнце есть пятна, движение которых по диску отражает его вращение с периодом около месяца (возможно, это открытие независимо сделали и другие астрономы).
Все это было настолько ново и радикально, что многие не смогли сразу принять и согласиться, тем более что кроме слов самого Галилея никаких других доказательств не было. А наблюдение в телескоп не очень-то помогало: размазанное дрожащее изображение первых телескопов не пользовалось доверием. Современный маленький бинокль дает гораздо лучшее изображение. Быть может, вам захочется с помощью бинокля найти на небе Юпитер и заметить один из его четырех крупных спутников. В конце концов вам, вероятно, удастся увидеть один или даже несколько спутников, но для этого понадобится прочный и устойчивый современный штатив, вроде тех, что у фотоаппаратов.
Открытия Галилео стали сенсацией, а его книга — бестселлером. Бе первые 550 экземпляров оказались быстро распроданы. Слава автора не ограничилась Европой: через четыре года книга была издана в Китае священником-иезуитом, описывающим новые небесные явления, открытые в далекой экзотической Италии.
Рис. 7.2. Фазы Венеры ясно показывают, что она действительно обращается вокруг Солнца, а не бродит туда-сюда между Землей и Солнцем, как утверждалось в древней системе мира. Рисунок: NASA.
Открытия Галилея, сделанные при помощи телескопа, поддержали идею Коперника. Ее оппоненты утверждали, что если бы Земля обращалась вокруг Солнца, то Луна должна была бы отстать. Теперь же стало видно, что спутники Юпитера обращаются вокруг него и не отстают при движении Юпитера по орбите. Венера, как и Луна, меняет фазы, и это означает, что она при движении вокруг Солнца выходит из-за Солнца и оказывается между Землей и Солнцем (рис. 7.2). Наконец, кратеры на Луне и солнечные пятна указывают, что эти тела состоят из вещества, похожего на вещество «несовершенной» Земли (рис. 7.3).
Рис. 7.3. Галилей был одним из первых, кто заметил пятна на Солнце. Это современное фото показывает группу огромных пятен, наблюдавшихся на Солнце в 2001 году. Солнечные пятна — это временные образования: одни пятна со временем исчезают, другие появляются. Теперь мы знаем, что причиной появления пятен служат сильные магнитные поля, выходящие из внутренних областей Солнца. Пятна кажутся темными, потому что они немного холоднее окружающей поверхности.
Кеплер и Галилей были совершенно разными людьми, и это отразилось в их подходе к науке. Кеплер был тихим, глубоким теоретиком, с хрупким здоровьем и слабым телом. Галилей, крупный и здоровый, имел горячий нрав, ясный ум и острый язык. Поэтому он часто конфликтовал с другими учеными. Хотя Галилей не принял кеплеровскую теорию движения планет (он рассматривал круговые движения как естественные), их работы дополняли друг друга на протяжении всего времени, пока мостилась дорога к новой физике Земли и небесных объектов.
В 1616 году католическая церковь объявила учение о движении Земли абсурдным и еретическим. Этому предшествовала сложная цепь событий. Определенную роль сыграли зависть малограмотных профессоров, споры между вспыльчивым Галилеем и начальством университета, а также желание втянуть Галилея в спор о системе мира и положениях Библии. В результате книга Коперника и ряд других книг были «задержаны, пока не будут исправлены». Ну а, к примеру, книга Фоскарини была вообще запрещена — монах ордена кармелитов пытался доказать, что движение Земли не противоречит Библии. В 1620 году были запрещены и «все другие книги, утверждающие то же самое». И так было вплоть до издания «Индекса запрещенных книг» 1835 года, после которого идеи Коперника более не преследовались.
Один из веских аргументов в пользу запрета — как со стороны религии, так и со стороны науки — состоял в том, что движение Земли все еще не было доказано. Эта чрезвычайно смелая теория вынуждена была вести борьбу на двух взаимосвязанных фронтах — в науке и в обществе. В 1632–1633 годах перед трибуналом инквизиции в Риме состоялся суд над Галилеем. Причиной судебного разбирательства послужила книга «Диалог о двух главнейших системах мира». Папа Урбан VIII, который проявлял интерес к космологии, уговорил своего друга Галилея написать новую книгу. Но он сказал Галилею, что система Коперника должна быть представлена только как гипотеза (это позволял Декрет 1616 года), и Галилей согласился. Но когда книга была издана, оказалось, что в ней Галилей пытается доказать, что Земля движется. Положение усугубилось еще и тем, что не очень умный персонаж книги — Симпличио, приверженец геоцентрической картины мира, был явной карикатурой на папу. Вердикт суда принудил Галилея публично объявить, что Земля неподвижна. К счастью, во время суда с 70-летним ученым обращались хорошо, его не поместили в камеру и не пытали.
Злоключения Галилея, подобно казням Сократа и Бруно, стали символом борьбы за свободу мысли. Но было бы слишком просто считать это столкновением науки и религии. Революционеры в науке — Коперник, Кеплер и Галилей, а затем и Ньютон — верили в Бога, как и большинство их современников в Европе, и не утверждали, что Библия противоречит науке. Новые идеи были враждебно встречены религиозными лидерами, которые приспособили систему Птолемея для своих догм, что позже назвали «незаконным браком науки и религии».
Суд над Галилеем стал частью коперниканской революции и вынудил учен. ых искать дополнительные доказательства в пользу новой системы мира. Однако история с Галилеем заставила на некоторое время прекратить открытые дискуссии на эту тему. Одним из тех, кого в 1633 году встревожили новости из Рима, был Рене Декарт (1596–1650), французский философ и математик, только что закончивший работу «Мир». В этой книге он представил свою физическую систему мира, включающую гелиоцентризм. Декарт решил отложить рукопись, и она была опубликована лишь после его смерти.
Впрочем, Декарт сделал и многое другое, что повлияло на философию, физику и математику еще при его жизни. Отправной точкой «картезианской физики» был закон инерции. Он обсуждался Галилеем, но только Декарт сформулировал его для идеальной частицы в бесконечном пространстве. Если частица не соприкасается с другой частицей, то она будет либо сохранять начальное состояние покоя, либо двигаться с постоянной скоростью по прямой. Закон Декарта о движении свободной частицы по инерции очень похож на первый закон движения Ньютона, который мы обсудим позднее. Однако, в отличие от гравитационного притяжения сквозь пустое пространство, в физике Декарта ничего не происходит, пока частица не отклонится при столкновении с другой частицей; иными словами — изменения в нашем мире вызываются столкновениями. Нет загадочного взаимодействия на расстоянии; все тела постоянно находятся в контакте с другими телами. Даже пространство между звездами не пустое, а заполнено частицами эфира.
Исходя из этих предположений, Декарт объяснял различные явления, включая движение планет: вместо гравитации их движение вызвано частицами эфира, роящимися вокруг Солнца. Подобные же вихри существуют и вокруг других звезд. Солнечный вихрь смог захватить оказавшиеся поблизости мертвые звезды, так появились планеты, в том числе и Земля.
Описывая движение планет, картезианская физика смогла предложить только качественное, туманное объяснение этого явления. Ньютон же с помощью своих новых законов движения, включая гравитационное притяжение сквозь пустое пространство, смог построить количественную математическую физику, которая заменила декартовскую физику. Тем не менее исследовательская позиция Декарта влияла на научное мышление в течение всего периода коперниканской революции. Декарта часто называют отцом современной математики. Он объединил геометрию с алгеброй, создав аналитическую геометрию, в которой положение точки на математической плоскости определяется двумя координатами — x и у. Говорили, что корни этой идеи уходят в его детство, когда он наблюдал за мухой, ползавшей по потолку над его кроватью. Как описать путь мухи? Это можно сделать, если каждую точку потолка описать парой чисел (x:, у). В качестве примера можно привести прямоугольную систему координат. В ней расстояние между любыми двумя точками можно определить просто из разности координат: (расстояние)2 = (расстояние по x)2 + (расстояние по y)2.
Время в современном смысле ввел в науку Галилей. В своих опытах с шаром, катящимся вниз по наклонной плоскости, он вместо часов использовал биение собственного сердца. Кроме того, он измерял время, взвешивая воду, вытекшую через отверстие в сосуде, но затем он понял, что для этой цели можно использовать маятник. Рассказывают, что в возрасте 20 лет, когда он оказался на мессе в кафедральном соборе, его внимание привлекли люстры, свисающие с потолка на длинных цепях. От сквозняка они величественно раскачивались. Люстры были подвешены на цепях одинаковой длины, но имели разный вес. Однако раскачивались они при этом с одинаковой частотой. Это подтолкнуло Галилея к опыту, показавшему, что в действительности период качания зависит не от веса груза у маятника, а от его длины. Галилею пришла идея, что можно собрать часовой механизм, используя постоянные колебания маятника, если умудриться поддерживать эти колебания и механически считать их количество. С уменьшением длины маятника период становится короче, поэтому можно точно измерять короткие интервалы времени.
Идею маятниковых часов реализовал голландский физик Христиан Гюйгенс (1625–1695). В его маятниковых часах была решена проблема поддержания колебаний, а измерение времени происходило с ошибкой около 10 секунд в сутки, в отличие от существовавших до этого механических часов, дававших ошибку около 15 минут в сутки.
Возвращаясь к вопросу о движении Земли и имея в виду более поздние работы Ньютона по гравитации, укажем, что именно Гюйгенс в 1659 году определил, каким должно быть ускорение к центру, чтобы тело двигалось по круговой орбите. Он показал, как вычислить ускорение к центру: нужно разделить квадрат круговой скорости на радиус окружности. Например, на экваторе Земли скорость равна 464 м/с, а радиус Земли равен 6,380 x 106 м. Таким образом, центростремительное ускорение, необходимое для того, чтобы удержать воздух у поверхности Земли, равно (464 х 464)/6 380 000 = 0,0337 м/с2. С другой стороны, притяжение Земли придает телу центростремительное ускорение 9,8 м/с2, что гораздо больше необходимого значения. Прежде боялись, что вращение Земли может стать причиной ветра и сдуть воздух в космическое пространство. Приведенные выше вычисления показывают, что ускорение, вызванное гравитацией, гораздо больше, чем требуется для удержания воздуха у поверхности вращающейся Земли. Поэтому нет никакого риска, что воздух улетит в космос.
Первые астрономические наблюдения Галилея показали, насколько сильно даже маленький телескоп увеличивает возможности человеческого глаза. Телескоп собирает намного больше света, чем глаз. Это дает возможность увидеть гораздо более тусклые объекты, чем доступные невооруженному глазу. Например, в области Плеяд Галилей увидел 36 звезд вместо обычных 6. На фотографиях, полученных с помощью современных телескопов, в этой группе видны сотни звезд. Большой объектив значительно улучшает и разрешение. Это означает, что две близкие звезды, сливающиеся для невооруженного глаза в одно пятнышко, можно увидеть по отдельности в телескоп. Способность собирать больше света, чем глаз, и высокое разрешение дают возможность увидеть больше структур и тусклых объектов на звездном небе. Высокое разрешение позволяет более точно определять положения (координаты) звезд. А это очень важно при измерении расстояний до звезд, о чем мы расскажем в следующей главе.
Конструкцию телескопа Галилея вскоре улучшил Кеплер, предложив оптическую схему, используемую по сей день. В «кеплеровском» телескопе большая объективная линза дает изображение небесного объекта на большом расстоянии от объектива. Детали этого изображения рассматривают с помощью увеличивающей выпуклой окулярной линзы.
Качество изображения первых телескопов было плохим. Простые линзы отягощены цветовыми ошибками (хроматическая аберрация), вызванными тем, что световые лучи разного цвета не фокусируются в одной точке, поэтому изображение звезды получается размытым пятнышком, окруженным цветными разводами. В определенной степени линза действует как призма. Изобретение ахроматических объективов в XVIII веке намного улучшило изображения. Прежде для этого были вынуждены сооружать очень длинные телескопы. Когда отношение диаметра объективной линзы и ее фокусного расстояния мало, лучи света лишь слегка преломляются, цветовая погрешность меньше, а изображение резче. На рис. 7.4 показаны такие длинные телескопы Парижской обсерватории.
Рис. 7.4. «Воздушные телескопы» Парижской обсерватории XVII века. Даже при том, что они были очень неудобными в работе, с их помощью были сделаны открытия.
Христиан Гюйгенс тоже строил телескопы, самый большой из которых имел в длину 37 м. Невозможно было сделать такую гигантскую сплошную трубу, поэтому объективная линза устанавливалась на верхушке шеста или на коньке кровли, а управляли ее положением с помощью длинной веревки, стоя на земле и удерживая окуляр перед глазом. Судя по всему, очень неудобно было работать с таким инструментом, следя за вращающимся звездным небом. Тем не менее при помощи этих инструментов получали интересные наблюдательные данные. Например, Гюйгенс обнаружил, что странные отростки у Сатурна, замеченные Галилеем, в действительности являются тонким плоским диском вокруг планеты в ее экваториальной плоскости.
Другим знаменитым наблюдателем эпохи длинных телескопов был поляк Ян Гевелий (1611–1687), имевший собственную обсерваторию в Гданьске. Это была первая в мире обсерватория, оснащенная телескопом. Наблюдениями занималась и его жена Елизавета. Инструмент Гевелия имел 45 м в длину! Его сложная система канатов и реек напоминала оснащение парусного судна и для управления определенно нуждалась в сноровке моряка. С помощью этого телескопа Гевелий исследовал поверхность Луны и составил ее хорошие карты. Когда мы говорим о лунных «морях», следует помнить, что так их назвал Гевелий. Теперь мы знаем, что это низины, наполненные застывшей лавой.
После изобретения в XVIII веке ахроматических линзовых телескопов, в изображении которых цветные разводы сильно ослаблены, эра длинных линзовых телескопов завершилась. До конца XIX века еще строили крупные линзовые телескопы с объективами диаметром вплоть до 1 метра, но уже были разработаны телескопы другого типа, которые постепенно стали основными инструментами современных исследований. В 1671 году Исаак Ньютон построил первый рефлектор, где не линза, как в рефракторе, а вогнутое зеркало собирало свет. Опыты с преломлением лучей в стеклянной призме привели Ньютона к выводу, что цветовые ошибки телескопов-рефракторов полностью устранить невозможно. Это заставило его обратиться к альтернативному способу фокусировки световых лучей путем отражения, угол которого не зависит от цвета. Изображение, сформированное в фокусе зеркала, не имеет цветных разводов. Если поверхность вогнутого зеркала параболическая, то все лучи, отраженные как от центральной части зеркала, так и от его краев, будут собираться в один фокус. Сохранился телескоп, собственноручно изготовленный Ньютоном. Его металлическое зеркало имеет диаметр 3,5 см. Ньютон использовал маленькое плоское зеркало для отклонения лучей вбок, в дырочку на трубе телескопа, где расположен увеличивающий окуляр.
Большие современные телескопы-рефлекторы часто имеют отверстие в центре главного зеркала, сквозь которое лучи, отраженные от вторичного зеркала, попадают на детектор излучения. Сегодня изображение регистрируют уже не глазом или фотопластинкой, а высокочувствительной ПЗС-камерой или спектрографом. Телескоп описанного типа называется кассегреновским рефлектором, поскольку его изобрел француз Г. Кассегрен (о котором очень мало известно) вскоре после создания рефлектора Ньютона. Впрочем, телескоп Кассегрена, на самом деле, был усовершенствованной версией телескопа, предложенного Джеймсом Грегори еще до Ньютона. Но Грегори не построил свой телескоп. В телескопе Кассегрена в качестве вторичного используют выпуклое зеркало; это приводит к уменьшению длины телескопа.
Важное преимущество телескопа-рефлектора состоит в том, что размер главного зеркала можно сделать гораздо больше, чем у линзы рефрактора. При этом собирается больше света и можно наблюдать более тусклые и далекие объекты. Зеркало можно поддерживать сзади по всей поверхности, в то время как линзу можно держать только по краям. После разработки методов нанесения серебра, а затем и алюминирования, вместо использовавшегося Ньютоном металла, стали применять стекло, которому даже не нужно быть прозрачным. Вообще свободный от хроматической аберрации рефлектор большого диаметра можно построить за те же деньги, что и рефрактор меньшего размера.
Хотя рефлекторы в астрономии начали успешно конкурировать с рефракторами еще в XIX веке, оставалось много задач, при решении которых предпочтение отдавалось рефракторам. Например, их использовали для точного определения положений звезд. Большие проблемы создавало наличие хроматической аберрации, но в конце концов ее удалось устранить. Это позволило осуществить мечту об измерениях расстояний до звезд.
Сегодня телескопы усложнились еще больше. Наряду с работой в визуальной области, они могут работать в рентгеновском, ультрафиолетовом, радио- и инфракрасном диапазонах, недоступных человеческому глазу. Некоторые телескопы работают в космосе, и им не мешает атмосфера, размывающая оптическое изображение и поглощающая излучение на многих длинах волн (исключая визуальный свет и радиоволны). На рис. 7.5 представлено большое зеркало, предназначенное для космического телескопа. Для радиотелескопов вместо зеркала используют вогнутую тарелку, а радиоприемник устанавливают в фокусе этой тарелки. Большая длина радиоволн делает их разрешение ниже, чем у оптического телескопа того же размера, поэтому тарелка радиотелескопа очень крупная. Бывают тарелки диаметром 100 м и даже больше, тогда как диаметр зеркала современного оптического телескопа не превышает 10 м. Радиоастрономы научились объединять сигналы с разных тарелок, имитируя одну тарелку, сравнимую с размером Земли. Это называется интерферометрией. Уровень современной электроники позволяет сделать то же самое и в оптическом диапазоне, используя несколько телескопов одной обсерватории.
Рис. 7.5. Зеркало диаметром 3,5 м, созданное финской оптической фирмой Opteon для европейского космического телескопа «Гершель». Сейчас это самый большой космический телескоп. Поверхность зеркала так отполирована, что неровности на ней не превышают нескольких тысячных долей миллиметра. Фото: Opteon.
Наконец, некоторые современные телескопы стали трудноузнаваемыми. Разработаны приборы, способные регистрировать субатомное нейтринное излучение Солнца и сверхновых звезд. Созданы детекторы гравитационных волн для обнаружения изменений полей при орбитальном движении черных дыр или их рождений в сверхновых.
Исследовательский дух очень силен в астрономии. Велико желание продвигаться все глубже и глубже в бездну Вселенной, чтобы увидеть то, чего никто никогда ранее не видел. Для обнаружения и дальнейшего исследования всех этих неожиданных небесных тел и явлений требуются телескопы все большего и большего размера.