Глава 5 Корни коперниканской революции

Ренессанс ворвался в научную жизнь вместе с работой Николая Коперника. Он родился в 1473 году в городе Торунь, в центре Польши, и был младшим среди четырех детей купеческой семьи. Когда Копернику исполнилось 9 лет, его отец умер, и мальчика взял к себе дядя со стороны матери — Лука Ватцельроде, священнослужитель, ставший впоследствии епископом Вармийской епархии.

Знаменитый Краковский университет был основан в 1365 году, а в 1491 году в нем стал учиться юный Коперник. Университет принимал студентов со всей Европы, где латинский язык был языком преподавания и науки. Учебный план был составлен по средневековому образцу семи гуманитарных наук. Тривиум состоял из латыни, риторики и диалектики, тогда как следующий за ним квадривиум содержал арифметику, геометрию, астрономию и музыку.

Годы, проведенные под солнцем Италии.

После трех лет обучения в Кракове Коперник продолжил свое образование в Италии, где в течение нескольких лет в Болонском университете изучал церковное право, а также греческий язык и астрономию. В 1501 году он вернулся к своей работе церковного администратора во Фрауенбурге (ныне Фромборк в Польше). Но вскоре он опять направился в Италию и на этот раз занялся изучением медицины в университете Падуи. Степень доктора права он получил в университете Феррары. Когда в 1506 году Коперник вернулся на родину, ему было уже 33 года, он провел в Италии 9 лет и стал «человеком Возрождения» со знаниями во многих областях науки.

Этот тихий и застенчивый служитель католической церкви был также решительным и трудолюбивым, пишущим на разные темы, включая денежную реформу. Кроме того, до конца своей жизни он давал медицинские консультации. Но за этой публичной личностью скрывалась тикающая бомба, взорвавшая науку того времени. Постепенно даже за пределами Фрауенбурга и даже в кругах, никак не связанных с астрономией, стали распространяться слухи, что священник из Фрауенбурга выдвигает странную идею о том, что Земля движется, в то время как Солнце и звезды остаются неподвижными.

Коперник умалчивал об источнике его мыслей о Вселенной, в центре которой Солнце. Неизвестно, насколько сильно повлияли на него более ранние астрономические идеи о центральном положении Солнца. «И хотя это мнение казалось нелепым, — писал Коперник, — однако, зная, что и до меня другим была предоставлена свобода изобретать какие угодно круги для объяснения явлений звездного мира, я полагал, что и мне можно попробовать (предположив какое-нибудь движение Земли) найти более надежное объяснение для вращения небесных сфер». Эти нелепые идеи наделе оказались астрономическим кладом (рис. 5.1).

Рис. 5.1. Коперник и его вселенная. Она ограничена снаружи сферой неподвижных звезд, которая сама «immobilis», неподвижна. Это рисунок из книги «De Revolutionibus».

Мысли Коперника о космосе, в центре которого неподвижно располагается Солнце, могли возникнуть еще в Италии. Но начал он писать свою великую книгу «De Revolutionibus Orbitum Coelestium» (О вращениях небесных сфер), видимо, уже после возвращения из Италии в 1506 году. Рукопись могла быть завершена в 1530 году. До этого Коперник написал конспект, который стал циркулировать среди астрономов, одним из них был юный математик Ретик (1514–1576) из университета в Виттенберге. Он приехал к Копернику, желая убедить его опубликовать работу целиком. Этот визит затянулся почти на два года! Благодаря стараниям Ретика и еще одного друга Коперника — епископа Тидемана Гизе, Коперник согласился опубликовать свою работу. Другим представителем католической церкви, который несколькими годами ранее просил Коперника сделать это, был Николас Шёнберг, кардинал Капуи. Есть мнение, что Шёнберг действовал по настоянию самого папы Клемента VII, большого поклонника астрономии.

De Revolutionibus опубликована: миссия завершена.

Рассказывают, что, когда 70-летнему Копернику доставили только что напечатанный экземпляр его книги, он был уже смертельно болен и не смог ее прочитать. Это уберегло его от знакомства с предисловием «К читателю, о гипотезе, представленной в этой книге», которое добавили без его ведома. Неподписанное, оно было сочинено другом Ретика, теологом Озиандером, который следил за печатанием книги, пока Ретик был занят другими делами. Озиандер, видимо, боялся, что противники книги попытаются исказить идеи Коперника. Поэтому он подчеркивал, что теория Коперника — не что иное, как новый метод вычисления положений планет на небе, и что его теория не утверждает, будто Солнце находится в центре космоса. Прежде чем сурово осудить Озиандера, мы должны вспомнить, что его можно рассматривать как приверженца традиции, о которой мы упоминали в конце главы 3. Согласно этой традиции, математическая астрономия отделялась от реальных физических движений небесных тел. Средневековые последователи Аристотеля не придавали настоящего значения эпициклам. Ретик был зол на Озиандера за навязанное им предисловие, но собственное предисловие Коперника к «De Revolutionibus» однозначно показывало, что он предлагает новую физическую модель мира, в которой Земля действительно движется в пространстве.

Почему отказались от Старого доброго мира? Почему Коперник и почему в XVI веке?

Новая система в некотором отношении была не намного проще старой. Она все еще базировалась на многочисленных кругах и эпициклах и, в принципе, предсказывала положения планет на небе ненамного точнее старого геоцентрического механизма. Но, с точки зрения математического мышления, такого как у Ретика, она была очень привлекательна, поскольку могла объяснить просто и естественно основные движения на небе. Даже Птолемей писал «хорошая идея объяснить явления наиболее простой гипотезой, поскольку ничего в наблюдениях не обещает серьезных препятствий этой процедуре». Коперник придавал главное значение тому, что если в центр системы помещено Солнце, то «одного движения достаточно для объяснения большого число видимых изменений». Теперь перечислим основные небесные движения и их отношение к тому, как, когда и почему возникла теория Коперника.

• Суточное движение звездного неба.

• Ежегодное движение Солнца по небу и наличие сезонов года (рис. 5.2).

• Наиболее важные, регулярно повторяющиеся обратные петли планет без эпициклов (рис. 5.4).

Рис. 5.2. Сезоны и изменение высоты Солнца в течение года стали понятны как результат наклона оси вращения Земли, притом что направление оси в пространстве не изменяется. Об этом простом, но глубоком объяснении не всегда помнят. Часто ошибочно считают, что летом Земля ближе к горячему Солнцу (на самом деле летом Северное полушарие гораздо дальше от Солнца!)

Что касается суточного вращения всех небесных объектов, то Коперник подчеркивал, что легче представить вращение маленькой Земли вокруг своей оси с периодом в сутки, чем вращение огромной небесной сферы с ошеломляющей скоростью: 9000 км/с для звезд на экваторе, если радиус небесной сферы равен 20 000 радиусов Земли по предположению Птолемея. Такое быстрое движение могло бы стать причиной разлета сферы на части! Это сильный физический аргумент, если отвлечься от вопроса о точности гелиоцентрической системы по сравнению с геоцентрической. Годичное движение Земли вокруг Солнца очень просто объясняет годичное перемещению Солнца по небу вдоль эклиптики. И не нужно заставлять Солнце крутиться вокруг Земли.

Историк науки Томас Кун (1922–1996) считает коперниканскую революцию важнейшим примером своей концепции «смены парадигм», утверждающей, что развитие науки в спокойные длительные периоды «нормальной науки» разделено научными революциями. В период революции рушится парадигма, грубо говоря, основание науки своего времени. В астрономии Птолемея основанием служило центральное положение Земли и принцип равномерного кругового движения, ведущий к увеличению числа эпициклов. Кун считал, что к XVI веку старая система пришла к кризису. Получился чудовищно сложный «монстр», слишком неуклюжий, чтобы оставаться жизнеспособным. Как раз в это время для развития религии и философии перенос Солнца в центр мира мог быть только на пользу.

Рисунок 5.3 показывает, в какую эпоху творил Коперник, рядом с какими выдающимися фигурами Возрождения.

Рис. 5.3. Время жизни знаменитых личностей Возрождения.

Однако финский математик и историк науки Раймо Лехти считает, что в XVI веке не было никакого кризиса в космологии. Систему Птолемея не считали такой сложной конструкцией, какой мы видим ее сегодня. Признание идей Коперника скорее было вызвано интересными особенностями модели, которая обещала новое объяснение раздражающих обратных движений планет. Как утверждалось в «Альмагесте» Птолемея, планеты, в отличие от Солнца и Луны, временами имеют обратное (с востока на запад) движение. Меркурий и Венера показывают обратное движение, когда они видны в том же направлении, что и Солнце, а Марс и другие планеты — когда Солнце в противоположной стороне неба. Хотя система геоцентрическая, создается впечатление, что Солнце управляет танцем планет. Вполне вероятно, что Коперник начал думать о центральном положении Солнца, исходя из этих явлений, которые традиционно рассматривались как чудо, сотворенное Господом. В старой геоцентрической системе каждому обратному Движению требовался индивидуально подобранный небольшой эпицикл, прикрепленный к большому деференту каждой планеты. В гелиоцентрической модели они стали простым следствием движения Земли (см. рис. 5.4).

Рис. 5.4. Через регулярные интервалы времени планета демонстрирует петли на фоне неподвижных звезд. В модели мира Птолемея этот танец планет описывается подходящими эпициклами, тогда как в модели Коперника это ключевое явление естественно вытекает из движения Земли и других планет вокруг Солнца.


Обратное движение получается, когда Меркурий и Венера проходят между Солнцем и Землей. Оно возникает также и в том случае, когда Земля проходит между Солнцем и остальными планетами. Таким образом, гелиоцентрическая модель ликвидировала эпицикл и специальную «настройку» у каждой планеты — а это большое упрощение.

Старое и новое.

Модель мира Коперника все еще основывалась на старом принципе равномерного кругового движения и сохраняла сложный механизм деферентов и эпициклов для объяснения нерегулярностей, накладывающихся на основные попятные движения. Она содержала и внешнюю сферу с прикрепленными к ней звездами. Но теперь эта сфера была неподвижной и образовывала гигантский «экран», на фоне которого становились заметными любые движения.

Как уже говорилось, Коперник ввел два вида движения Земли: орбитальное движение вокруг Солнца и вращение Земли вокруг оси. Сезоны года объясняются отклонением земной оси на 23° от перпендикуляра к плоскости земной орбиты. Подобно острию детской юлы, земная ось в процессе годичного движения постоянно направлена в одну сторону. Тот факт, что ось вращения Земли сохраняет свое направление в пространстве, следует из закона сохранения момента импульса в рамках механики Ньютона. Но Коперник не знал законов движения Ньютона. По его мнению, было бы нормально, если бы в ходе орбитального движения земная ось сохраняла свое направление относительно Солнца (то есть была бы всегда направлена к Солнцу либо от Солнца), но тогда не было бы сезонов. Поэтому Коперник ввел третье движение Земли, заставляющее ее сохранять ориентацию относительно плоскости орбиты в течение года. После этого оставался лишь маленький шаг до того, чтобы включить в это движение и смещение точки весеннего равноденствия, сделав это третье движение чуть более медленным, чем требуется для поддержания неизменной ориентации земной оси в пространстве. Заметим: до Коперника считалось, что сдвиг точки весеннего равноденствия вызван медленным движением небесной сферы. В Средние века была добавлена еще одна внешняя сфера для управления этим дополнительным движением.

Таким образом, Коперник был вынужден ввести в свою модель весьма сложное «очень медленное» третье движение. Разумеется, это заметили и даже высмеяли противники новой системы: раньше Земля была неподвижной, а теперь ей требуется целых три движения — одно суточное и два годичных. В популярном тогда стишке говорилось о «тех клириках, которые думают (думают — какая нелепая шутка), что небеса и звезды вообще не вращаются […], и о том [Коперник], который, чтобы объяснить видимую картину звезд, придал Земле тройное движение».

Последователи Коперника, Кеплер и Галилей, указывали, что годичная часть третьего движения совершенно не нужна. В своем Диалоге (1632) Галилей сравнивает Землю с шаром, плавающим в сосуде с водой. Когда вы начинаете вращаться «на цыпочках», держа в руках сосуд, кажется, что шар вращается в обратную сторону относительно сосуда. Но что же происходит на самом деле? Галилео отмечал, что шар без всяких усилий со своей стороны остается неподвижным относительно своего окружения. Галилео видел в поведении Земли инерцию — понятие, введенное Ньютоном и неизвестное Копернику.

Орбита Земли иллюстрирует, насколько сложно в модели Коперника учесть наблюдаемые вариации в движении Солнца по эклиптике. Центральная точка этой круговой орбиты вращается с постоянной скоростью по маленькому кругу, центр которого вращается вокруг Солнца. Эти три круговых движения необходимы для учета изменений в годичном движении Солнца. Для объяснения всех наблюдаемых движений в Солнечной системе Копернику понадобилось более 30 окружностей, что сделало его систему такой же сложной, как и система Птолемея. Как бы то ни было, эти математические сложности, вызванные использованием равномерных круговых движений, не смогли изменить того факта, что эта модель стала прорывом к правильным законам движения планет, которые Кеплер открыл через семьдесят лет.

Масштаб и строение Солнечной системы.

Астрономия в значительной степени — наука о космических расстояниях; с этой точки зрения модель Коперника в сравнении со старой моделью имела большие преимущества. Стало возможным из наблюдений установить порядок планет и определить их относительные расстояния от Солнца. Эти расстояния можно было определить в единицах расстояния от Земли до Солнца и этой новой естественной единицей (астрономическая единица) заменить радиус Земли.

В системе Птолемея расстояние до планеты определяется довольно произвольно: важно только установить размер эпицикла относительно деферента, так чтобы видимое движение планеты соответствовало наблюдаемому. Но в гелиоцентрической модели, напротив, порядок планет и их расстояния до Солнца становятся четко определенными. Не вдаваясь в детали, заметим, что расстояние Солнце-планета можно определить в момент, когда треугольник, образованный Землей, Солнцем и планетой, становится прямоугольным.

Коперник выделил Луну из группы планет и сделал ее спутником Земли. Он определил порядок и расстояния планет, как показано в табл. 5.1 (единицей служит среднее расстояние Солнце-Земля, астрономическая единица, или а. е,). Следует подчеркнуть, что, после того как круги и эпициклы совпали с наблюдениями, Коперник не обнаружил, что планеты имеют круговые орбиты. Он вычислил минимальное, среднее и максимальное расстояние каждой планеты от Солнца. Таблица показывает, что теперь максимальное расстояние «нижележащей» планеты не равно минимальному расстоянию следующей за ней «вышележащей» планеты. В отличие от того, что предполагал Птолемей, теперь между планетными орбитами было много пустого места. В системе Коперника сфера неподвижных звезд оказалась просто гигантской, поэтому годичное движение Земли никак не могло стать причиной смещения положений звезд на небе. И так оставалось вплоть до XIX века, пока эти смещения не были наконец открыты. В табл. 5.1 следует также подчеркнуть большие значения отношений максимального к минимальному расстояний для Меркурия и Марса. Это отражает сильную вытянутость их орбит, которая позднее позволит Кеплеру сделать вывод о том, что в действительности Марс движется по эллипсу. В противоположность этому, расстояния Венеры и Земли от Солнца меняются очень мало.

Мы, как и Коперник, можем заметить, что его система была менее произвольной, чем система Птолемея. Уже только это делало гелиоцентрическую систему более привлекательной. Но еще важнее, что будущие наблюдения могли проверить предсказанный порядок планет и их расстояния.

Таблица 5.1. Значения Коперника для минимального, среднего и максимального расстояния между Солнцем и планетами.

Принцип Коперника.

Имя Коперника связано с двумя идеями. Говоря о коперниканской революции, мы обычно имеем в виду рождение гелиоцентрической модели в 1543 году. Естественно, что процесс окончательного установления этой новой астрономической картины Солнечной системы длился в течение двух столетий. Потребовалось много наблюдений и теоретических работ, пока движение Земли не стало восприниматься столь же естественно, как ее неподвижность — в древние времена.

Но коперниканская революция породила еще и космологический принцип Коперника, утверждающий, что мы не находимся в особом или предпочтительном положении во Вселенной. Правда, сам Коперник думал, что Солнце расположено в центре Вселенной или рядом с ним, что никак не соответствует Принципу Отсутствия Центра, провозглашенному Бруно. Тем не менее изгнание из центрального неподвижного положения Земли, получившей статус обычной планеты, стало настолько крутым изменением, что оно оправдывает название «Принцип Коперника». Космолог из родного Копернику Краковского университета Кондрад Рудницки сформулировал это более современным языком: «Вселенная, наблюдаемая с любой планеты, выглядит одинаково». Сегодня мы можем заменить слова «с любой планеты» словами «из любой галактики».

Коперник не рассуждал о мире, лежащем позади далекой материальной сферы звезд. Но он придал мощный импульс новому взгляду на звезды. Диггес родился через несколько лет после смерти Коперника, а Бруно еще позже. И они поняли, что звезды не прикреплены к сфере, а распределены в бесконечном пространстве.

Книга Коперника «De Revolutionibus» не шла нарасхват и сразу не обратила на себя большое внимание. Некоторый энтузиазм проявили те математики, кто смог продраться сквозь трудный текст. Вначале католическая церковь оставалась довольно равнодушна; возможно, это в какой то мере было обусловлено предисловием Озиан-дера, и, как мы уже упоминали, некоторые должностные лица даже поддерживали опубликование новой теории. Православная церковь считала, что движение Земли как планеты не имеет никакого значения. Первые протесты были выражены лютеранами. Только через 70 лет после публикации книги Коперника, в 1616 году, Святая палата начала действовать. В течение этого времени произошло многое. Прожили свою жизнь и уже умерли Томас Диггес и Джордано Бруно. Тихо Браге, Иоганн Кеплер и Галилео Галилей создали новую астрономию и экспериментальную физику. Был изобретен телескоп. Даже само небо, похоже, отметило коперниканскую революцию. Заметная комета 1557 года и две сверхновых звезды (последние сверхновые, наблюдавшиеся в нашей Галактике в историческое время) продемонстрировали, что небо не остается неизменным. И в середине этих событий Шекспир написал: «Есть многое на свете, друг Гораций, что и не снилось нашим мудрецам».

Вселенная Коперника все еще оставалась королевством кругов и эпициклов. Следующим шагом коперниканской революции стала замена наивного предположения о круговом движении представлением о более реалистических замкнутых орбитах. Этот решающий шаг сделал Иоганн Кеплер, для чего ему понадобились очень точные наблюдения Тихо Браге. Следующая глава посвящена их работе.

Загрузка...