ГЛАВА 4 Аналитическая геометрия

Научная деятельность Ферма не ограничивалась теорией чисел. В XVII веке начинали развиваться аналитическая геометрия и математический анализ, и ученый стал одним из их основоположников. И теперь, в отличие от истории с теорией чисел, французский математик действовал как часть научного сообщества, что способствовало полному признанию его открытий еще при жизни.

И вновь для того чтобы понять вклад Ферма в науку, обратим свой взгляд назад, к самому рождению алгебры. После огромной эллинской славы в течение Средних веков западная математика пережила период угасания: в Европе сложно найти оригинальную работу по математике до Фибоначчи, который жил на рубеже XII и XIII веков. В мусульманском мире, наоборот, греческое наследие было изучено и развито дальше. Мусульмане, среди многих других греческих авторов, перевели Аристотеля, Евклида, Птолемея, Аполлония и Диофанта. Кроме того, они также сделали две важнейшие вещи: развили алгебру и ввели в обиход арабские цифры, распространив их вместе с использованием десятичных дробей.

Невозможно представить себе развитие западной математики без языка арабских чисел. Греки не умели выражать иррациональные числа, а неспособность выразить что-то является препятствием для развития научной мысли. Только представляя себе некий объект, человек способен рассуждать о нем. По этой причине введение арабских чисел стало одной из великих научных революций. Мы получили, в первую очередь, понятие "ноль". Наконец-то стало ясно, что "ничто" можно выразить. Также появилась форма записи десятичных дробей, приближенная к записи иррациональных чисел. Кроме того, арабская система дала нам возможность осуществлять алгоритмически (то есть на основе правил) самые основные операции: сложение, вычитание, умножение, деление. Вместо того чтобы работать со счетами, которые необходимы при использовании римских цифр, впервые стало возможным осуществлять операции в уме в соответствии с простыми правилами, которые может выучить любой школьник.

Другим большим новшеством исламской культуры была систематизация алгебры. Выдающийся исламский математик Мухаммед ибн Муса аль-Хорезми (780-850) написал трактат по алгебре, в котором классифицировал различные типы уравнений и высказал мысль, что две части уравнения подобны чашам уравновешенных весов: то, что вычитается или прибавляется в одной части, должно быть вычтено или прибавлено в другой.

Благодаря проникновению арабской культуры в Европу стало возможным появление и развитие одной из школ математики XVI и XVII веков — ренетов, которые просто занимались вычислениями, основываясь на арабской традиции и собственных первых открытиях. Они были прежде всего прагматиками, не желавшими тратить время на строгость греческого доказательства. В этой смеси традиций и развивалась деятельность Ферма. С одной стороны, реистский прагматичный подход к решению задач, с другой — геометры и их страсть к систематизированным и выверенным результатам. Но самое большое влияние на героя этой книги оказал математик Франсуа Виет; его работы являются связующим звеном, объединяющим разные направления научной деятельности Ферма. В первую очередь речь идет о созданной Виетом символической алгебре и его методах работы с уравнениями.

Уже Диофант в эллинскую эпоху иногда пользовался символами для обозначения числовых величин, но именно Виет создал новый язык, который, как и индо-арабская запись, позволял выражать до тех пор невыразимые вещи. Виет был первым, кто систематично использовал буквы, чтобы обозначать константы и неизвестные.

Символическая алгебра позволяет представить неизвестное нам число: оно уже не "вещь", а х. Действительно, как в случае с Великой теоремой можно выразить числа, "которых, возможно, даже не существует", — х, у и z из уравнения Ферма. Символическая алгебра позволяет рассуждать о целых классах задач и делать утверждения о бесконечном количестве похожих проблем, зная только их алгебраическую структуру, связь между переменными посредством уравнения. То есть можно говорить об уравнениях в общем виде. Например, можно быстро и просто сказать, что a2 - b2 = (a + b) (a - b) и что это выполняется при любых a и b. Символическая алгебра освобождает наш ум от тяжелых словесных описаний и позволяет рассуждать на другом уровне, точно так же, как арабские цифры помогают нам считать. Революция в данной области стала возможной благодаря Виету, а затем и Декарту.

Теперь необходимо остановиться на некоторых понятиях. Древнегреческие математики стремились к строгим безукоризненным доказательствам: они назывались "синтетическими" и шли от гипотезы теоремы до ее заключения, с использованием логических правил, шаг за шагом. Но редко ученый следует по такому прямому пути, когда делает свои открытия. Математик пользуется (и греки не были исключением) эвристическими, неформальными методами для проверки своей правоты, прежде чем попытаться составить доказательство. В Древней Греции пробные пути, по которым пытались исследовать доказательство, можно сравнить со строительными лесами, убранными из окончательной редакции доказательства. Они назывались анализом (следует заметить, что это слово имеет абсолютно другое значение в современной математике), в то время как доказательство было синтезом. Анализ ведется от заключения к гипотезе, в то время как обычное, строгое и синтетическое доказательство всегда следует в противоположном направлении. К разочарованию своих читателей XVI и XVII веков, греки не оставили следов используемого ими аналитического метода, полностью стирая их и демонстрируя только строгость и красоту синтетического доказательства. Папп, несколько веков спустя писавший о вершинах эллинской математики, был одним из немногих авторов, который оставил какие-то свидетельства анализа.

На первый взгляд использование такого приема кажется странным. Обратные теоремы необязательно верны (см., например, малую теорему Ферма). Следовательно, перевод анализа (движения в обратном направлении) в синтетическое доказательство (скажем так, в правильном направлении, от гипотезы к заключению) не является автоматическим. Но греки прибегали к искусным методам, позволяющим инвертировать анализ и превращать его в доказательство по правилам. В частности, они заметили, что в геометрии во многих случаях шаги действительно можно инвертировать. В других случаях они с той же целью использовали вспомогательные гипотезы.

Анализ в том виде, в каком им занимались греки, также прижился у арабских алгебраистов и ренетов. В алгебре уравнения в основном инвертируются. Если согласно неким правилам преобразовать уравнение, то всегда можно осуществить и обратную процедуру. Например, мы можем перейти от записи a2 - b2 к записи (a + b)(a - b), равно как и совершить обратный переход. Так происходит потому, что два равных между собой выражения свободно взаимозаменяемы. Виет осознал это и открыл, что если основывать анализ на алгебре, пользуясь только действиями с уравнениями и тождествами, то доказательства автоматически будут истинными. Вышесказанное привело его к революционному утверждению о том, что анализ и алгебра — это одно и то же; он назвал это аналитическим искусствам.

Теперь имелись общие методы работы с уравнениями, и задачи можно было решать в два этапа: постановка, то есть перевод задачи в область символической алгебры в виде уравнения, и алгебраические действия для нахождения решения. Этим занимаются на уроках математики в школе. Таким образом, вместо того чтобы делать акцент на решении частного уравнения, как поступали реисты, Виет сосредоточился на правилах действий, совершаемых над уравнением: сложении членов в обеих частях, вычитании членов, возведении в степень, извлечении корней, умножении или делении. Кроме того, он искал общие виды операций, которые зависели бы только от структуры уравнения. Значительная часть трактата Виета посвящена классификации тождеств, помогающих осуществлять такие действия.

Если мы видим выражение 3 + 2, то наша естественная реакция состоит в том, чтобы, как делали реисты, осуществить сложение и поставить 5. Но при этом мы теряем структуру исходного выражения, сам факт того, что это сложение. Следовательно, мы не можем рассуждать в общем виде о сложении. Символическая алгебра позволяет нам рассуждать о структурах. Можно сказать, что символическая алгебра сосредотачивается на синтаксисе уравнения, забывая о его содержании и значении до получения конечного решения. В то же время алгебра Виета предполагала, что объекты, с которыми мы работаем (константы и неизвестные), необязательно должны быть числами. Они могут быть чем угодно — углами в тригонометрии, геометрическими элементами, — всем, к чему применимы сложение, умножение, возведение в степень и так далее. Алгебра, которая ранее была только ответвлением арифметики, где акцент делался на решении числовых задач, теперь превращается в универсальный язык математики.


Математика — это наука о порядке и мере, о красивых и простых цепочках рассуждений.

Рене Декарт


В данном месте нашего повествования должно стать очевидным, какое значение имела для нашего героя работа Виета, с которой Ферма познакомился в Бордо. Действительно, мы уже наблюдали у Ферма тенденцию идти от частного к общему, анализировать структуру уравнений, решающих целый класс задач, — преимущество, которое он отдавал общему методу перед конкретным решением локальной задачи. Виет не только предлагал методы и решения, он создал математическую программу, доведенную Ферма до последних выводов. Но он был не один. Другой великий мыслитель, Рене Декарт, пришел к таким же заключениям. Они втроем — Виет, Декарт и Ферма — создали методы современной математики, навсегда разорвав их связь с элегантными построениями Евклида и древнегреческих геометров. Туда, где раньше царствовали чертежи, построенные с помощью линейки и циркуля, теперь пришли алгебраические действия, совершаемые каждый раз над все более необычными объектами. Алгебра действительно превратилась в их руках в преимущественный способ математических рассуждений.

Очевидно, что Ферма многим обязан в математике Виету, однако остается спорным, до какой степени последний повлиял на Декарта. Некоторые историки, например Богран, предполагают знакомство Декарта с работами Виета, другие считают, что Декарт, по его же собственным словам, пришел к своим результатам независимо. Но так как он систематизировал лучше Виета, его запись оказалась намного более ясной (вспомним, что понятная запись в математике может озарить, в то время как неясная способна сбить с мысли). Также его теория уравнений была настолько выше теории Виета, что через одно поколение она полностью победила, оставив последнего в забвении. Там, где Виет пользовался изнурительными казуистиками, очень соответствующими образу мысли адвоката, Декарт рассуждал как философ.

Несмотря на свои революционные догадки, Виет в каких- то аспектах оставался привязанным к прошлому. Для него неизвестная, возведенная в квадрат, имела очень специфическое значение: это настоящий, геометрический квадрат, площадь. То же самое для неизвестной, возведенной в куб: это куб, объем. И, несмотря на то что он был способен представить себе большие степени (четвертые, пятые), не имеющие очевидного геометрического значения, ему не удалось сделать основополагающего шага: подумать о том, что многочлен может быть неоднородным, то есть его члены могут иметь различные степени: ax3 + bx2 + cx = d. Для него подобное было как сложение груш с яблоками, линии с кубом, квадрата с точкой. Это не имеет геометрического смысла. Таким образом он сформулировал закон однородности: многочлены должны быть суммами одночленов одной и той же степени (квадраты с квадратами, кубы с кубами).

Очевидно, что на плечах Виета еще держалась вся тяжесть греческого наследия, в котором числа не имеют измерения, а геометрические фигуры — имеют. Комбинировать их нет смысла. Для греков понятие измерения неизбежно связано с умножением геометрических элементов: две перемноженные линии дают прямоугольник, а прямоугольник, умноженный на третью линию, дает параллелепипед.


РЕНЕ ДЕКАРТ

Без сомнения, Рене Декарт (1596- 1650) — самая значительная фигура в философии XVII века, и больше всего примечателен отказ этого ученого верить во что-то, что невозможно доказать. Он родился в Лаз, в провинции Франции Турень, окончил университет Пуатье в области права, но вскоре поступил на военную службу в армию Морица Нассауского в войне Фландрии против Испании. Он также участвовал в Тридцатилетней войне под командованием герцога Максимилиана I Баварского, а также в осаде Ла- Рошели, которую Александр Дюма описал в своем романе о мушкетерах.

Когда Декарт служил в армии, у него случилось озарение: все истины должны быть связаны и основаны на первичной истине, то есть "я мыслю, следовательно, я существую". Декарт уверился в том, что разум — это путь к знанию. Большую часть своей жизни после увольнения из армии он провел в Голландской Республике, переезжая из университета в университет. В 1637 году ученый опубликовал "Рассуждение о методе" с приложениями. Через четыре года также увидели свет "Размышления о первой философии". Когда Декарта начал преследовать католический мир, его пригласила королева Швеции Кристина стать ее наставником. Говорят, что привычка королевы вставать рано и держать окна открытыми пошатнула здоровье мыслителя, который умер от воспаления легких 11 февраля 1650 года. Через 13 лет папа Александр VII включил работы Декарта в список запрещенных книг.


Ферма было не так-то просто освободиться от этого греческого наследия, которое мешало работе с более общими многочленами. Он достиг цели, но в своем привычном стиле, не подводя твердой теоретической базы к отказу применять вышеуказанный закон. Декарт, наоборот, обосновал свой отказ от закона однородности. Он был первым, кто использовал верхние индексы (к которым мы так привыкли) для обозначения операции возведения в степень, и он сделал это частично ради того, чтобы освободиться от недостатков предыдущей записи. Вот пример алгебраической записи Виета: В · A quad + + G planum А - Z solido. Quad, planum и solido — это степени, в которые возводятся A, G и Z соответственно для сохранения однородности, с явной геометрической интерпретацией. Декарт отказался от такой интерпретации, говоря:

"Я сам долго был обманут этими названиями [квадрат, куб]... В конце концов после многочисленных экспериментов я заметил: нет ничего, что можно было бы решить с этой интерпретацией, чего нельзя было бы решить без нее проще и яснее и что от таких названий следует отказаться, чтобы они не путали мысли".

Декарт утверждает, что если, например, треугольник с неким углом и сторонами а и 1 подобен треугольнику с тем же углом и сторонами ab и b, то все геометрические пропорции соотносятся друг с другом по масштабу и выбранная единица измерения произвольна. Другими словами, произведение ab, имеющее степень 2 и являющееся, следовательно, квадратом, совсем не отличается от линейного числа b. Так, не стоит думать, что представлены различные математические объекты. С точки зрения измерений они равны.

В итоге метод Виета забыли, и победил Декарт, что немаловажно: абсолютная верность Ферма своему, условно говоря, учителю Виету затмила собственный вклад тулузца, часто казавшийся тусклым его современникам и последователям, которые переняли запись и идеи Декарта. Это еще одна из причин, по которым Ферма оказался непонятым современниками.

Существует и еще одна грань работы Виета, которая повлияла на деятельность Ферма. Уже было сказано, что Виет верил (в основном оправданно) в свое аналитическое искусство, и эта вера шла рука об руку с некоторым презрением к синтетической форме доказательств, используемой греками. В работе "Введение в аналитическое искусство" (1571) Виет утверждал: поскольку в его анализе предполагалось, что все этапы доказательства обратимы, синтез в его греческой форме уже не нужен.

Ферма сделал данный принцип Виета одной из основ своего математического исследования. Наряду с его обычным нежеланием писать полные трактаты этот подход проясняет, почему он столкнулся с таким непониманием со стороны современников. Действительно, при нескольких аналитических этапах, которые позволяли ему (как он думал) разглядеть доказательство, для Ферма (как и для Виета) строить доказательство как у греков уже не имело смысла. Это было излишне. Проблема, конечно же, в том, что его современники не находились под таким влиянием аналитического метода Виета, как он. Ферма не смог увидеть данного несоответствия, что привело ко многим размолвкам и разочарованиям. Наконец, любопытно заметить, как уже было показано на некоторых примерах, что Ферма использовал символическую алгебру для своих изысканий, но почти всегда представлял результат в словесном виде. Таким образом, Ферма находился на рубеже двух традиций: между одним, древним, умирающим миром математики и другим, который только зарождался.


АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Настало время немного задержаться на хронологии. В этой книге в хронологическом порядке уже было рассказано почти о всей математической жизни Ферма. Но "другая жизнь" ученого, о которой сейчас пойдет речь, протекала параллельно и в некоторых случаях даже предваряла описанную нами, поэтому стоит вернуться назад во времени, в Бордо.

Ферма жил в Бордо во второй половине 1620-х годов. К тому времени он уже усовершенствовал свой метод максимумов и минимумов и начал восстанавливать работу Аполлония Пергского о плоских геометрических местах, прямой линии и круге. Это сочинение было утеряно, но тот факт, что Папп оставил описания многих античных работ, позволил математикам XV и XVI веков, которые превратились в настоящих археологов знания, попробовать восстановить утраченное. Деятельность Виета включала в себя, во-первых, такое восстановление, а во-вторых, перевод результатов классиков на новый язык аналитического искусства.

Ферма удалось в значительной степени восстановить работу Аполлония согласно тому, как ее резюмировал Папп, который обобщил 147 теорем и 8 лемм, но одна теорема мешала ему двигаться дальше. Частичное доказательство, которое он привел, его не удовлетворяло. По возвращении в Тулузу в 1631 году Ферма начал анализировать данную проблему в свете новых методов. Уже в 1635 году появляются явные признаки того, что он использовал эти методы для решения классических проблем. В конце концов он изложил свою теорию в маленьком трактате под названием "Введение к теории плоских и пространственных мест" (на латыни Ad locos pianos et solidos isagoge, далее — Isagoge), который послал в Париж Мерсенну и Робервалю в конце 1636-го — начале 1637 года. Именно тогда Ферма начал свою переписку с Мерсенном, наводняя Париж удивительными результатами, не только по теории чисел, но и по геометрии и тому, что с течением времени было названо анализом. Его работы привлекли внимание французского математика Жиля де Роберваля (1602-1675), который работал с похожими проблемами и стал преданным поклонником судьи из Тулузы.

Isagoge было первым этапом великой революции. Виет уже предлагал решения геометрических задач алгебраическими методами, но его задачи сводились к нахождению неких точек (выполнявших бы некое условие) или пересечений между простыми геометрическими фигурами, такими как прямая и круг, в которых решением неизменно была точка. Ферма пошел еще дальше, ему удалось достичь революционного результата: ни больше ни меньше — свести всю геометрию (царицу наук, согласно Платону) к скромной алгебре, служившей еще поколение назад только для решения числовых задач, не имеющих видимого математического значения. Тулузский математик изобрел аналитическую геометрию. Поспешим заметить, что другой великий мыслитель сделал то же самое почти одновременно и независимо. Это Рене Декарт, которому обычно приписывают первенство до такой степени, что координаты, которыми мы пользуемся, получили название "декартовых". Однако, хотя нет сомнений в том, что идеи у Декарта созрели раньше, чем у Ферма, именно тулузский ученый был первым, кто их опубликовал.

В главе 2 этой книги говорится о том, как математики ищут мосты между областями, которые на первый взгляд различны и не имеют никакой связи. Один из первых примеров подобной деятельности по построению мостов — это аналитическая геометрия, которая так называется, поскольку в ней используется аналитическое искусство (алгебра) для описания всей геометрии. Внезапно оказывается, что все геометрические проблемы могут быть решены с помощью алгебры на основе определения кривых как геометрических мест точек.

График кривой в двумерном пространстве, общее уравнение которой у = ax2 + bx2 +cx + d.


Геометрическое место точек — это множество точек, обычно бесконечное: то, что мы называем кривой, несмотря на то что не все эти множества — кривые в обыденном понимании. Данное множество должно обладать неким свойством. Например, все точки, равноудаленные от одной неподвижной, определяют геометрическое место точек под названием 4окружность", а все точки, расстояние от которых до заданной точки равно расстоянию до заданной прямой, определяют геометрическое место точек под названием "парабола".

Таким образом, каждый раз можно определять все более сложные кривые.

Во время изучения геометрических мест точек, определенных Аполлонием, у Ферма, так же как и у Декарта, случилось озарение: эти множества, находясь на плоскости, могут быть полностью определены уравнением с двумя неизвестными.

Оказалось, что размерность не зависит, как считалось до того времени, от степени уравнения — от того, квадратное оно или кубическое. Она зависит от чист неизвестных. Так, если у нас есть две неизвестные, то получатся две кривые на плоскости (два измерения). Если переменная только одна, получаются точки на линии (одно измерение), которые анализировал Виет. Если их три, получаются поверхности в трех пространственных измерениях.

Не важно, что уравнение — это многочлен третьей степени; оно определяет не трехмерную поверхность, а, если в нем две неизвестные, всего лишь двумерную кривую (см. рисунок).

Теперь ничто не мешало анализировать многочлены большей степени. Это изменение понятия размерности стало шагом на пути к аналитической геометрии. К тому же эти переменные были связаны друг с другом посредством неопределенного уравнения, то есть уравнения с бесконечным числом точек — геометрического места точек.

До аналитической геометрии геометрические места точек описывались в соответствии с их свойствами, например в случае с коническими сечениями — пересечениями объема и плоскости. Аналитическая геометрия полностью изменила парадигму, позволив, чтобы ограниченное число кривых, которые изучали греки и которые должны были строиться по одной, умножилось до бесконечности. Это не преувеличение. Действительно, число уравнений с двумя неизвестными бесконечно, и так как каждому из них соответствует кривая, количество возможных кривых также бесконечно.

Кроме того, алгебраизация геометрии позволяла ввести в последнюю гибкость алгебраических операций — сложения, вычитания, умножения, деления, возведения в степень и извлечения корня, — что вместе с теорией уравнений позволяло решать многие задачи почти механически.


АПОЛЛОНИЙ И КОНИЧЕСКИЕ СЕЧЕНИЯ

Аполлоний Пергский (ок. 262 — ок. 190 до н.э.) систематизировал изучение кривых, называемых коническими сечениями, которым он дал их сегодняшнее название. Конические сечения определяются пересечением плоскостью конуса под разными углами. Можно доказать, что, кроме случаев вырожденных сечений, все виды конических сечений можно свести к следующим случаям. Если пересечь конус параллельно образующей, результатом сечения будет парабола; если угол между плоскостью и осью конуса больше, чем угол при образующей, получается эллипс; когда секущая плоскость перпендикулярна оси — окружность; наконец, если плоскость пересекает обе полости конуса, мы видим гиперболу. Свойства, сформулированные математиком из Перге, позволили каждой из них иметь определяющую характеристику, которая отличает ее от всех остальных конических сечений и выражена в виде пропорции. Именно на основе этих характеристик Декарт и Ферма строили свое изучение соответствующих уравнений.

Окружность

Эллипс

Парабола

Гипербола


В сравнении с трудоемким начертательным методом греческих геометров аналитическая геометрия была чрезвычайно мощным методом решения задач. Это как раз доказал Ферма, взявшись за некоторые теоремы Паппа, которые до этого никто не мог доказать, а также занявшись задачей Галилея и поправив самого тосканского ученого. В то время как Галилей думал, что пушечное ядро, падающее к центру Земли, движется по круговой траектории, Ферма выяснил, что данная траектория является спиралью. Галилей в переписке с Ферма согласился с его поправкой.

Между тем работа Декарта в этой области хотя и привела к крайне богатым результатам, была им заброшена. Он хотел показать новый образ мысли, а не находить новые математические результаты. Парадоксально, что в 1637 году, когда математическая карьера Ферма едва только начиналась, Декарт по собственной воле заканчивал свою. Опубликованная им "Геометрия" была частью книги, содержащей три научных трактата, которым предшествовало знаменитое "Рассуждение о методе". Она в глазах самого Декарта была только иллюстрацией того метода, что он открыл, неоспоримым доказательством силы его философии. Эта работа, опубликованная в 1637 году, стала лебединой песней математики Декарта, а именно в то время Ферма начал работать с наибольшим пылом. Эти два гения имели между собой мало общего. Декарт внес огромный вклад в науку, однако просто как факт следует отметить, что его математический гений блистал лишь в течение нескольких чудесных лет. Декарт был прежде всего философом, а Ферма — математиком в чистом виде. Они использовали разные подходы к решению задач. Для Декарта было достаточно разработать метод, а Ферма было необходимо применять его к решению математических задач.

Иллюстрация метода координат Фарма и того, как определяется геометрическое место точек.


Как уже упоминалось, интерес Ферма к аналитической геометрии возник из его попыток восстановить сочинение Аполлония. В процессе этой работы он пришел к мыслям, которые отразил в своем Isagoge, где можно прочитать следующее:

"Каждый раз, когда две величины [две неизвестные) находятся в равенстве..., существует такое геометрическое место..., что конечная точка [этих величин] описывает прямую или кривую линию".

Согласно историку Карлу Бойеру, данное утверждение составляет одну из самых больших революций в истории математики. Его нельзя доказать напрямую; это постулат. Но Ферма посвящает остаток своего маленького трактата иллюстрации его пользы, анализируя частный случай кривых: конические сечения, прямую линию и окружность (которую в древности не считали коническим сечением).

Ферма не создавал прямоугольную систему координат, которая так хорошо знакома нам сегодня. Его аналитическая геометрия одноосная: определяется только ось абсцисс. Однако очевидно, что он скрыто использует ось ординат при определении расстояний.

На рисунке показаны элементы аналитической геометрии Ферма. У нас есть уравнение с двумя неизвестными x и y и константой c, ƒ(x, y) = c. Расстояние х0 — это явно значение абсциссы, в то время как ордината задана значением длины отрезка у0. Заметьте, что угол α необязательно прямой, как это было бы в современной системе декартовых координат. На самом деле угол произволен (более поздние авторы поняли, что намного проще сделать угол α прямым). Точка, которая движется по геометрическому месту точек, — А. Мы можем видеть, как она движется к положению А' которое соответствует абсциссе х1 и ординате у1. Следует заметить, что ƒ(x0, у0) - ƒ(x1, у1) = c, то есть уравнение выполняется для всех точек А геометрического места точек, и наоборот, точки А полностью определяются уравнением. Это ключевое соответствие между геометрией и алгеброй, предоставляемое аналитической геометрией (запись современная — Ферма не использовал запись функции ƒ(x, у)).

В этом изложении есть скрытое понятие, которое было основополагающим для развития анализа: непрерывное изменение. Используя единственную ось, Ферма сосредоточился на том, как движется точка по кривой, определяющей геометрическое место. Это концептуально отличается от процесса графического представления точек на плоскости с двумя координатными осями и помещения между ними кривой, как большинство из нас научилось делать при составлении графика. Видение Ферма динамично: оно соответствует точке, двигающейся по некоей траектории, и, следовательно, почти случайно Ферма придал физическую реальность аналитической геометрии, которая оказалась основополагающей в последующих работах Ньютона, Лейбница и семьи Бернулли. Другая отличительная характеристика системы Ферма в том, что она включает в себя только положительные величины в области и абсцисс, и ординат, поэтому его кривые всегда находятся в первой четверти плоскости и, следовательно, иногда теряется от половины до трех четвертей их протяженности. Парабола с вершиной в начале координат и фокусом на оси х, например, была бы только половиной параболы.


ГРАФИЧЕСКИЕ РЕШЕНИЯ УРАВНЕНИЯ ВЫСШЕЙ СТЕПЕНИ

В приложении, которое вышло через некоторое время после Isagoge, Ферма представил общий метод превращения уравнения третьей или четвертой степени в систему уравнений второй степени. Речь идет о поиске точки пересечения между двумя кривыми. Так, уравнение х3 + bx2 = bс с помощью введения новой переменной у превращается в два неопределенных уравнения: х2 + bx = by, с = ху. Речь явно идет о пересечении между параболой и гиперболой. К сожалению, геометрический "дух· метода помешал Ферма найти больше одного корня (пересечения), поскольку под влиянием греков он довольствовался только одним положительным корнем. Математик пользовался этими результатами для выступления против классификации кривых Декарта в полемике, которая на сегодняшний день оказалась бесплодной, поскольку данные классификации, как выяснилось, не имеют значения.


Центральная теорема, которую Ферма доказывает в своем Isagoge, состоит в том, что все конические сечения, помимо прямой линии и окружности, могут быть выражены общими уравнениями второй степени или первой степени (в случае с прямой). Ферма делит все возможные уравнения первой или второй степени на семь "канонических" случаев, доказывая, что любое уравнение первой или второй степени можно свести к одному из них: они относятся, соответственно, к окружности, эллипсу, параболе, двум видам гиперболы и двум видам прямой линии. Доказательства для каждого случая намного более подробные, чем те, что обычно давал Ферма, но даже здесь было опущено несколько шагов, которые казались математику очевидными, поскольку они вытекали из классических сочинений, таких как "Данные" Евклида, трактат "Конические сечения" Аполлония или работа Виета.

Как и Виет, Ферма неизменно опускает синтетическое доказательство, считая его тривиальным и пользуясь только аналитическим методом, чтобы дойти от уравнения до геометрического места точек. Однако ясно: ученый считает, что его теоремы обратимы (и это соответствует действительности), то есть для любого геометрического места точек также есть уравнение. Кроме того, в своих доказательствах Ферма использовал, чрезмерно не выделяя их, ряд преобразований, типичных для аналитической геометрии, таких как перемещение круга (чтобы его центр совпадал с началом координат), вращение параболы или изменение переменной. Ученый уже знал, что он может осуществить эти преобразования, и его результат все равно не потеряет обобщенности.

Заложив основы аналитической геометрии на плоскости, Ферма затем принялся за попытки распространить свои результаты на трехмерное пространство. Однако его математические методы не справились с такой задачей. Отсутствие системы координат оказалось роковым; визуализация геометрических результатов в трех измерениях без соответствующих координат слишком сложна, и Ферма так и не добился своей цели.

Декарт был первым, кто рассуждал об алгебре как о виде мыслительного процесса, но ясно, что Ферма, менее склонный к философии, был твердым сторонником данного подхода. Им вдвоем удалось создать новое математическое мышление, актуальное и сегодня. Очевидно, что Ферма не знал этого, но, вероятно, он был одним из последних математиков, которые так глубоко интересовались классиками. Герой нашей книги хотел возродить классическую традицию, восстановив самые значимые работы, однако на самом деле похоронил ее. Инструменты, которыми он пользовался для того, чтобы раскрыть забытые секреты Древней Греции, открыли новый мир, и из-за этого многие классические греческие методы потеряли свое значение.


Загрузка...