Вернемся теперь к нашим рассуждениям о качестве энергии. В свое время мы говорили, что разные виды энергии обладают различным качеством, причем наинизшее качество — у энергии тепловой, затем следует механическая энергия и т. д. Однако сегодня каждый школьник знает, что никакой тепловой энергии на самом деле в природе не существует. Тепловая энергия есть не что иное, как суммарная кинетическая (механическая) энергия движущихся молекул. Процесс преобразования тепловой энергии в механическую, скажем, в паровой машине, есть не что иное, как процесс преобразования механической энергии беспорядочного движения молекул в механическую энергию (работу) упорядоченного движения поршня. Секрет качества кроется именно в том, что в газе молекулы занимают любые области объема и двигаются с любыми скоростями в любых направлениях. Энтропия такой системы высока, а способность совершить работу мала.Чтобы сказанное стало более ясным, рассмотрим для примера цилиндр с поршнем, находящимся в одном из крайних положений, причем пространство перед поршнем заполнено газом (паром) под давлением, значительно большим атмосферного. Если по какой-либо причине поршень остается неподвижным, газ можно рассматривать как изолированную систему (теплообменом со стенками цилиндра пренебрегаем), находящуюся в состоянии с максимальным значением энтропии. Никакой механической работы в такой системе не совершается. Если же поршень имеет возможность двигаться, мы обязаны рассматривать в качестве физической системы систему, состоящую из газа, занимающего рабочий объем цилиндра, самого поршня и пространства по другую сторону поршня. Энтропия такой системы много меньше максимально возможной, поскольку все молекулы собраны лишь в малой части общего объема системы (вспомните бильярдный стол!). Поршень начинает двигаться, газ расширяется вслед за поршнем, и в нем начинают преобладать молекулы, упорядочение движущиеся вслед за поршнем. Образуется как бы газовая струя.Теперь можно окончательно сформулировать наши выводы. В системе с неподвижным поршнем мы имеем только беспорядочное движение молекул. Энтропия такой системы максимальна, и механическая работа в ней не совершается. В системе с движущимся поршнем осуществляется преобразование энергии беспорядочного движения молекул (тепловой) в энергию упорядоченного движения молекул (энергию газовой струи). Энергия газовой струи уже есть механическая энергия, и в дальнейшем происходит лишь обмен механической энергии газовой струи и механической энергии поршня. Возникает вопрос, ради которого и велось все это несколько затянувшееся обсуждение. Что же является причиной того, что в одном случае тепловая энергия остается тепловой, а в другом случае преобразуется в механическую? Единственная причина, которую пока мы можем назвать, — это движение поршня. Сейчас мы перейдем к обсуждению этой причины, однако предварительно сделаем несколько замечаний. Не будет преувеличением сказать, что классическая физика базируется на двух основных законах, получивших название начал термодинамики. Первое начало термодинамики — это закон сохранения энергии. Второе начало термодинамики, как мы только что установили,— это закон неубывания энтропии. Оба начала термодинамики в одинаковой степени универсальны, но (и этот вывод принадлежит нам с вами) они имеют совершенно различную природу. Закон сохранения энергии есть не что иное, как обобщение человеческого опыта. Он просто постулируется. Постулируется по той единственной причине, что до сих пор физикам не удалось поставить ни одного эксперимента, в котором опровергался бы закон сохранения энергии. Закон сохранения энергии нельзя ни из чего вывести, в него можно просто верить до тех пор, пока он не окажется опровергнутым экспериментом. Есть, правда, все основания полагать, что такого эксперимента не существует.Иное дело закон неубывания энтропии. Как мы только что имели возможность убедиться, закон неубывания энтропии представляет собой следствие самого способа определения понятия энтропии. Физическая реальность состоит в том, что, например, для такой системы, как объем с газом, в силу одинаковости молекул газа и изотропности (то есть неизменяемости свойств при переходе из одной области в другую) физического пространства ни одно из состояний молекул не оказывается предпочтительным. Отсюда следует, что состояние всего объема, в котором молекулы равномерно распределены по всему пространству и движутся во всех направлениях со всеми возможными скоростями, имеет наибольший статистический вес, то есть может быть реализовано наибольшим количеством способов.Здесь небезынтересно сделать следующее замечание. Если разделить статистический вес данного состояния на полное количество способов, которым реализуются все возможные состояния, то получится величина, близкая к вероятности этого состояния, причем приближение тем лучше, чем больше число молекул. Поэтому довольно часто энтропию состояния определяют не как логарифм статистического веса, а как логарифм вероятности этого состояния. Сам закон неубывания энтропии при этом формулируется так: всякая физическая система стремится принять наиболее вероятное состояние. Однако подобная формулировка есть не что иное, как тавтология, ибо наиболее вероятное состояние — это и есть то состояние, в котором система проводит наибольшее количество времени. Сказанное заставляет нас поставить еще один вопрос: можно ли уподоблять друг другу понятия статистического веса и вероятности? Обсуждением этого вопроса мы тоже займемся в свое время.