А что, если в попытках ответить на вопрос, почему отдельные процессы в природе необратимы, мы привлечем понятие случайности? Ведь любой процесс в больших физических системах, таких, как множество бильярдных шаров или молекул, сводится к последовательности элементарных актов. На бильярдном столе эти акты суть столкновения шаров между собой. Рассмотрим подробнее столкновение шаров, предположив сначала, что оно происходит в строгом соответствии со всеми законами механики.Вот шары движутся по двум сближающимся прямолинейным траекториям, вот они пришли в соприкосновение, разошлись и продолжают двигаться по двум, теперь расходящимся, траекториям. Стоп! Остановили время и пустили его наоборот. Теперь шары сходятся, двигаясь в обратном направлении по траекториям, по которым они расходились, входят в соприкосновение и, если все законы механики выполняются, теперь расходятся именно по тем траекториям, по которым они ранее сходились. В классической механике процесс столкновения шаров обратим. Следовательно, должен быть обратим и любой более сложный процесс, состоящий из отдельных элементарных столкновений.Представим себе теперь, что акт столкновения хотя бы в малой своей части содержит элемент случайности. Тогда, точно зная траектории, по которым шары сближаются, мы сможем лишь приближенно предсказать траектории, по которым они будут расходиться после столкновения.Если акт столкновения шаров содержит элемент случайности, то оно, столкновение, может быть строго описано в терминах теории вероятностей (теория вероятностей представляет собой строгую, а не приближенную теорию именно для случайных событий). В частности, теория вероятностей позволит предсказать величину угла, в пределах которого будут расположены траектории каждого шара после столкновения.Итак, если элементарный акт столкновения двух шаров содержит элемент случайности, то мы наблюдаем такую картину. Два шара движутся по строго определенным сближающимся траекториям, приходят в соприкосновение, и после этого каждый шар произвольно выбирает себе одну из траекторий в пределах данного угла. Как говорил А. Эйнштейн, бог, перед тем как задать тару определенную траекторию, каждый раз бросает кости.Ясно, что такой процесс необратим. ЕСЛИ после столкновения шаров мы поменяем знак у переменной времени, получится следующее. Расходившиеся шары начнут сближаться в точности по тем же траекториям, по которым они до этого расходились, а придя в соприкосновение, они уже не станут двигаться по своим прежним траекториям. Вместо этого каждый шар опять-таки выберет себе одну из траекторий в пределах данного угла. Но необратимость одного элементарного акта, конечно, означает необратимость и всего процесса, состоящего из таких элементарных актов. Более того, после каждого очередного столкновения неопределенность траектории, а следовательно, и положение шаров будут возрастать, И очень скоро наступит такое положение, когда определенно нельзя будет ничего сказать о положении шаров. Любые утверждения могут делаться только применительно к вероятностям положений и состояний.