Покажем теперь, что все это длинное отступление имеет самое прямое отношение к информации. Для этого нужно вернуться назад, к материалу второй главы, и вспомнить, что в основу всех рассуждений, приведших нас сейчас к открытию М. Планка, было положено понятие статистического веса. Статистический вес, напомним, — это количество способов, которым может быть реализовано данное состояние данной физической системы. Применительно к бильярду мы понимали под состоянием лишь чисто геометрическое положение шаров в пределах правой или левой половины бильярдного стола. Затем мы оговорились, что, для того чтобы понятие состояния приобрело физический смысл, необходимо учитывать не только положение шаров (молекул), но и значение их энергии.И вот тут-то возникает трудность, о которой мы сознательно умолчали в предыдущих главах.Рассмотрим, например, состояние, характеризуемое тем, что в пределах левой половины бильярда расположены три шара и их суммарная энергия равна, скажем, 10 джоулям. Сколькими различными способами может быть реализовано такое состояние? Во второй главе было показано, что состояние «3 шара слева» может быть реализовано 560 различными способами. Но к этому следует добавить еще число способов, которыми можно разделить 10 джоулей между тремя шарами. Один такой способ, например, может быть: 3, 3,5 и 3,5. Другой способ: 3, 3,45 и 3,55. Наконец, еще способ: 3, 3,455 и 3,545 и т. д. Рассматривать энергию как непрерывно изменяющуюся величину — это все равно что считать возможными любые ее значения. Применительно к только что рассмотренному примеру это значит, что при подсчете числа способов необходимо учитывать числа с любым количеством десятичных цифр после запятой. Ясно, что полное количество способов оказывается при этом бесконечно большим. Энтропия, представляющая собой логарифм числа способов, также оказывается в этом случае бесконечно большой.Но мы знаем, что энтропия физической системы конечных размеров есть конечная величина, которая может быть выражена через другие физические величины, например, через энергию и температуру. Единственная возможность преодолеть подобное противоречие и сделать статистический вес конечной величиной — это предположить, что энергия изменяется не непрерывно, а скачками. То есть сделать то же самое, что сделал в свое время М. Планк.Пока еще мы считаем, что информация, содержащаяся в физической системе, представляет собой разность между максимально возможным и истинно существующим значениями энтропии. Следовательно, для информации должно быть справедливо все только что высказанное. Информация может переноситься лишь величинами, изменяющимися не непрерывно, а скачками.