СКОЛЬКО СПОСОБОВ!

Вопрос «Играет ли господь бог в кости?» имеет значение далеко не только для квантовой физики.В предыдущей главе мы пришли к выводу, что информация суть физическая величина и один из возможных способов измерения состоит в том, чтобы измерять .ее количественно через величину энтропии, взятую с обратным знаком. Это лишь один из возможных способов, и мы пока что уклонились от обсуждения вопроса о том, является ли такой способ наилучшим или даже вообще приемлемым. Тем не менее уже на данном уровне рассмотрения стало ясно, что энтропия и информация играют очень важную роль при описании процессов, происходящих в природе.Были высказаны гипотезы, что степень информированности физической системы определяет качество энергии, накопленной в этой системе, и, более того, что информация и есть та самая причина движения, которую философы и физики ищут с незапамятных времен. Действительно, чем дальше находится физическая система от своего состояния равновесия, тем меньше ее энтропия и, соответственно, ‘тем больше негэнтропия, то есть количество содержащейся в системе информации. С другой стороны, чем дальше находится физическая система от своего состояния равновесия, тем большее количество механической работы (движения) может быть совершено в процессе возврата системы в состояние равновесия. Все это не может не заставить нас более внимательно посмотреть, что же представляет собой энтропия.В начале книги мы определили энтропию как логарифм статистического веса. Статистический вес — это количество способов, которым может быть реализовано данное состояние системы. Логарифм берется, исходя из требования аддитивности (складываемости). Применительно к энтропии это означает, что энтропия системы, состоящей, скажем, из двух подсистем, должна быть равна сумме энтропии каждой из этих подсистем.Было показано, что среднее количество времени, в течение которого система пребывает в данном состоянии, пропорционально количеству способов, которым может быть реализовано это состояние, то есть его статистическому весу. Это справедливо в том случае, когда псе способы равнозначны и ни один из них не оказывается предпочтительным. Поэтому, если статистический вес некоторого состояния или некоторой группы состояний существенно больше статистического веса других состояний, то система большую часть времени в среднем проводит именно в этом состоянии или в этой группе состояний.Наиболее существенно здесь то, что подобное утверждение не исключает возможности для системы находиться в состоянии с малым статистическим весом. Более того, основной принцип отсутствия предпочтительных состояний требует, чтобы каким малым ни был бы статистический вес некоторого состояния, система обязательно, хоть, и весьма малое время, но все-таки пре бывала в этом состоянии. Однако, оказавшись в состоянии с малым статистическим весом, система в ближайшее время переходит в состояние с большим статистическим весом. Это обстоятельство составляет содержание второго начала термодинамики и формулируется каш закон неубывания энтропии. Мы уже отмечали, что закон неубывания энтропии отражает всего-навсего определенное свойство величины, которую мы назвали статистическим весом. В то же время закон неубывания энтропии является одним из наиболее универсальных законов физики. Возникает вопрос: чем же так замечателен статистический вес, что законы, описывающие его поведение, приобретают значение фундаментальных физических законов?

Загрузка...