ЛИКБЕЗ

Лекции по биологии

Янковский Н.К. с сотоварищами


Основные этапы развития биосферы на Земле

ЛЕКЦИЯ № 2

В курсе общей биологии мы уделим особое внимание молекулярно-биологическим процессам и человеку, тем аспектам молекулярной биологии, которые связаны со здоровьем человека. Сегодня мы рассмотрим основные этапы развития биосферы.



Земля появилась около 4,5 миллиардов лет назад, жизнь на ней возникла около 3,8 млрд. лет назад. Австралийскими учеными в древних породах были обнаружены минералы, изотопный возраст которых превышает 4 млрд. лет. Следовательно, возраст Земли — более 4 млрд. лет. В породах возрастом около 3,5 млрд лет были обнаружены отпечатки организмов, похожих на современных бактерий. Бактерии не имеют ядра в отличие от эукариотических (ядерных) клеток.

Первые эукариоты появились около 2 миллиардов лет назад. По этому поводу существует несколько гипотез, которые будут рассмотрены ниже. Многоклеточных появились, видимо, более 600 миллионов лет назад, данные об этом появились тоже благодаря ископаемым породам. Что же касается млекопитающих, то они появились в эволюционных масштабах недавно, всего 200 млн. лет назад.

Ближайшим родственником человека, имеющий общего с нами предка, считается шимпанзе. Шимпанзе и человек имели общего предка 5,4 миллиона лет назад, примерно в это время ветви, ведущие к человеку и шимпанзе, разделились. Около 2 миллионов лет назад у человека появились первые примитивные орудия труда. Предком человека современного типа был вид Homo erectus (человек прямоходящий). Человек современного анатомического типа появился примерно 100–150 тысяч лет назад. Представления о происхождении человека, его родстве с представителями живого мира были получены при сравнении строения тела человека и других животных, данных сравнительной эмбриологии, исследования костных останков вымерших видов — данных археологии и палеонтологии, а за последние десятилетия также и при сравнении ДНК разных организмов. На основе этих данных восстановлен общих ход развития жизни на Земле, но ответить на вопрос, почему жизнь появилась; почему она усложнялась; что способствовало ее усложнению; каким образом из аминокислот, нуклеотидов и другого материала получилась такая сложная функционирующая система, почему очень просто устроенные организмы в ходе эволюции все более и более усложняли свою структуру — полностью пока не удается. Эти вопросы обсуждаются в теории эволюции. Дарвин был не первый, кто выдвинул идею эволюции, но он сумел обобщить и преподнести те идеи, которые существовали до него, так, чтобы они были восприняты обществом, и сумел развить их в своей теории. Причем его работа попала в круг всеобщего внимания не только среди ученых, но и среди широкой публики. В то время, когда основной темой для диспутов в ученых кругах была теория естественного отбора (то есть эволюционируют ли виды под действием естественного отбора или по другой причине), общественность обсуждала вопрос о том, от кого все-таки произошел человек: от Бога или от обезьяны.

Со времен теории Дарвина было проведено много новых исследований, возникли новые теории эволюции. Основатель учения, называемого антропософией, Штайнер, считал, что эволюция идет не от простого к сложному, а наоборот. Объединение идей генетики и теории эволюции привели к появлению так называемой синтетической теории эволюции, которая ответила на многие вопросы. Но, тем не менее, есть вопросы, на которые и эта теория не может ответить. Есть направление, называемое креационизмом, последователи которого утверждают, что все виды созданы Богом. Они неизменны, не могут совершенствоваться. Существование палеонтологической летописи, то есть появление и исчезновение видов в истории Земли, с точки зрения креационистов следует объяснить тем, что Бог поместил эти виды на Землю, а потом изъял их. Креационисты проводят достаточно интересные расчеты, связанные, например, с тем, какие и сколько видов животных имел возможность Ной собрать в своем ковчеге, каких размеров должен быть этот ковчег. Рыб и растений, по их теории не надо было брать, так как они могли выжить в воде сами. С их точки зрения, Ной мог взять молодых животных, которые были более жизнеспособны, и занимали меньше места, таким образом, они высчитали определенный минимум видов животных, который обеспечил разнообразие жизни на Земле сегодня. Креационисты находят слабые места в дарвиновской теории эволюции, задают вопросы, ответы на которые эволюционистам приходится искать.

В нашем курсе мы рассмотрим все уровни жизни, от молекулярных структур до экологических систем, от биохимических процессов в клетке до процессов, происходящих на биосферном уровне

Метаболические циклы включают в себя процессы анаболизма (расщепление более сложных веществ на простые) и катаболизма (объединение простых веществ в более сложные). У нас с растениями и бактериями есть некоторые общие процессы, поэтому, в частности, растения и лечат. Некоторые отдельные циклы мы будем рассматривать на следующих лекциях. Все процессы идут согласовано друг с другом, так как продукты одних реакций являются субстратами следующих, и таким образом, скорость всех реакций сопряжена.

Ниже представлен цикл Кребса — основной энергетический цикл клеток. Этот цикл обеспечивает клетку энергией, в его ходе синтезируется АТФ.

Как могла возникнуть такая сложная система? Есть некоторые ученые, считающие, что жизнь на Землю была занесена из Космоса. Эта концепция называется теорией панспермии. Они считают, что на Земле было слишком мало времени, чтобы возникла такая сложная система, как живая клетка. И в качестве иллюстрации абсурдности подобных предположений проводят следующее сравнение. Дескать, у обезьяны, усаженной за пишущую машинку, больше шансов отпечатать сонет Шекспира, чем у жизни возникнуть на Земле из аминокислот, нуклеотидов и других веществ, из которых состоит клетка. Но у данного сравнения есть слабое место. Рассуждая по аналогии, приведем следующий пример. Шекспир, в отличие от обезьяны, складывал свои сонеты не из отдельных букв. В его распоряжении были готовые сюжеты, которые он заимствовал из других произведений, он пользовался английской грамматикой, знал правила драматургии. То есть он творил не из отдельных элементов, а из готовых блоков.



Концепция блочной эволюции как раз и утверждает, что эволюция происходит не из отдельных молекул, каждый раз создавая что-то новое практически с нуля, а из уже готовых блоков. Как же могла возникнуть жизнь? На самом деле, метаболические циклы возникли тоже не сразу. Можно выделить несколько уровней реакций. И вот самые простые циклы сопрягались с другими, и получались системы биохимических реакций, циклов. Существует интересная теория, описывающая возможный процесс возникновения самого первого такого цикла, ставящая под сомнение необходимость занесения готовых процессов из Космоса. Когда Земля еще только остывала, и не было еще никаких бактерий, но Земля вращалась вокруг своей оси, и на нее светило Солнце. Существовали уже ночь и день (возможно, также зима и лето). И «ночью» происходили процессы конденсации, а «днем» — возгонки и конвекции. Возможно, эти процессы, были не чисто физическими, но также и химическими. То есть происходили следующие процессы: на свету, «днем», синтезировались вещества, которые в тени, «ночью», распадались на более простые. И такие циклические реакции могли происходить в масштабах всей планеты. Если процесс днем "успевал" запасти столько энергии, что за ночь не "умирал", то есть преобразуемые в нем вещества не распадались за ночь, на следующий день этот же процесс мог восстановиться. Такие процессы могли представлять собой первые метаболические циклы. Согласно этой концепции жизнь (самовоспроизводящиеся процессы) возникла до появления живых организмов. Это только гипотеза, она не является общепринятым мнением. Существует журнал «Молекулярная эволюция», который в том числе рассматривает вопросы происхождения жизни. Наибольшее внимание в нем уделено происхождению объектов, вопросам о том, какая молекула из какой возникла. Вопросам возникновения процессов посвящена лишь маленькая толика всех исследований. Однако эволюция процессов не менее, а может, и более интересна, чем эволюция объектов. Возможно, не всегда нужно рассматривать какую-то конкретную молекулу, а более полезно разобраться в каких процессах она участвует. Это напоминают историю про курицу и яйцо (что было раньше: курица или яйцо?): понятно, что это процесс, а в отдельности курица и отдельно яйцо — это два разных состояния этого процесса, как бы две промежуточные стадии бесконечного процесса. Мы с вами будем говорить о таких процессах, о процессах эволюции, о процессах функционирования отдельных организмов, о жизненных циклах.

Например, жизненный цикл человека вы знаете из школьного курса биологии. У человека диплоидный набор хромосом (23 пары), в гаплоидной стадии образуются половые клетки (сперматозоиды и яйцеклетки), в которых только 23 хромосомы, эта стадия проходит недолго, после оплодотворения получается опять диплоидный организм.



А вот многие водоросли, папоротники и мхи большую часть своей жизни проводят в гаплоидной стадии, и лишь ненадолго переходят в диплоидную.

Есть организмы, проводящие часть своей жизни как одноклеточные, а часть — как многоклеточные. Примером может послужить почвенная амеба диктиостелиум.

В процессе эволюции меняется не только строение организмов, но и их жизненные циклы, и мы будем изучать, как это происходит.

Мы познакомимся также с многообразием форм живых существ — от бактерий и вирусов до человека.

Рассмотрим представителя прокариот — кишечную палочку.



У каждого из нас в кишечнике живет миллиарды кишечных палочек. Мечников утверждал, что микрофлора человека — такой же орган, как печень и сердце. Кишечная палочка — наш симбионт. Существует множество бактерий, наших симбионтов. В их отсутствие нарушаются функции кишечника. Размер кишечной палочки: 2 микрона в длину и полмикрона в ширину. Кроме того, естественно, в нашем организме могут оказаться и болезнетворные бактерии. У самих бактерий тоже могут быть паразиты — вирусы бактерий, они называются бактериофагами (то есть "пожирателями бактерий").

Ниже представлена фотография «нападение бактериофагов на кишечную палочку». Бактериофаг впрыскивает внутрь кишечной палочки свою ДНК, вследствие чего в бактерии синтезируются белки бактериофага и происходит сборка фаговых частиц. Сама бактерия при этом погибает.



В последнее время идет много дискуссий о том, являются ли вирусы живыми, поскольку они проявляют свойства живых организмов только внутри клетки, в свободном же виде вирусы могут быть кристаллизованы и при этом могут выглядеть как кристаллик соли. В качестве примера вируса человека можно привести вирус герпеса, который вызывает "лихорадку" на губах.



Мы будем изучать жизнь на уровне ДНК, строение организма, структуру клеток. В качестве примера разнообразия живого мира приведен вольвокс (колониальная водоросль) и амеба (см. рис.).



Мы будем говорить о процессе антропогенеза. Мы по большому счету будем заниматься тем же самым, что показано на рисунке с обезьяной.

Как показано на фотографии, обезьяна учит своего детеныша искусству разбивания орехов. У шимпанзе хорошо развита система обучения. Если раньше проводили четкую грань между человеком и животными в том, что у человека есть культура, а у обезьян нет, то на данном примере можно увидеть, что эта система обучения является как бы пракультурой.



Мы будем говорить о происхождении человека. Человек отделился от шимпанзе 5,4 миллиона лет назад, эти цифры установлены на основе данных палеонтологии и молекулярной генетики на основе сходства ДНК обезьяны и человека. Шимпанзе есть два вида: обыкновенный и бонобо, он же карликовый шимпанзе (карликовый не потому что маленького роста, а потому что он живет среди пигмеев). Последний, по поведению, очень похож на человека.



Меньше на человека похожа горилла; она отделилась от ветви общих предков 7,3 миллиона лет назад. Еще раньше отделился орангутан. С появлением человека пошло развитие культуры. На протяжении десятков тысяч лет человек жил в кочующей общине. Наиболее древние останки были найдены в Юго-Восточной Африке.

Более 100 000 лет назад человек современного типа появился на территории Африки, а затем расселился по всей Земле, позже всего он проник в Америку — около 15 тыс. лет назад. Родственные виды (неандерталец и другие виды), которые проживали в Африке, Европе и Азии, исчезли, видимо, не без участия человека.

4 тысяч лет назад в Месопотамии появились первые исторические записи, говорившие о представлениях живших в то время людей; 2–3 тысячи лет назад письменная культура распространилась в Древнем Китае и Египте, в Греко-романском мире.







Интересно заметить, что уникальность человеческого вида заключается в том, что ни один вид животных кроме человека (и сопровождающих его крыс и тараканов) не смог расселиться от экватора и до северных широт. Причем это произошло в основном не из-за биологической гибкости, а из-за того, что человек смог использовать свою культуру и был способен к созданию социальных структур, таким образом, адаптируясь к изменениям внешней среды. Удавалось это человеку непросто. Если посмотреть на рисунок, то видно, что население Земли неуклонно росло. На данный момент население Земли составляет около 7 млрд. человек.



Но на самом деле все было не так гладко. На примере Китая можно это проследить.



Дело в том, что за 200 лет до нашей эры в Китае перепись населения в связи с налогообложением. Поэтому довольно точно можно реконструировать колебания численности населения. Увеличение численности чередовалось с резким уменьшением. Обычно это было связано с неурожаями, что влекло за собой войну или эпидемию. Эти три фактора могли действовать в разном порядке, но почти всегда голод, война и эпидемии шли вместе. При этом вымирало до 80 % населения. Средняя продолжительность жизни ранних земледельцев составляла около 20–30 лет, уровень детской смертности составлял 60 %; и во все времена знать жила в среднем на 10 лет дольше, чем простые люди. По мере улучшения условий продолжительность жизни возрастала. И сегодня, благодаря возможностям современной медицины, в развитых странах люди живут до 70–80 лет.

На здоровье влияет очень многие факторы. Мы будем говорить о многих факторах влияющих на здоровье человека, о том, как современная наука старается это здоровье поддерживать.

В развитии биологии как науки можно выделить несколько этапов. Наиболее ранним и очень важным этапом было описание самого предмета изучения — многообразия живых существ, установление родства разных видов организмов, выявление их сходства и отличий. Этим занимаются такие разделы биологии как систематика (греч. "система" — целое, составленное из частей) и таксономия (от греч. слов "таксис" — порядок и "номос" — закон). Систематика занимается изучением взаимоотношений и родства различных групп живых организмов. Таксономия, которая раньше обозначала то же, что и систематика, сейчас считается ее разделом, классифицирующим на основе определенных признаков соподчиненные группы объектов — таксоны. То, по каким признакам следует объединять организмы в группы, также является предметом научного исследования в таксономии. Легко отличить человека от кактуса, но, например, два вида жучков или грызунов отличить бывает не так-то просто. В истории биологии есть множество примеров, когда одно животное или растение описывали под разными названиями, или разные стадии жизненного цикла одного животного, или самца и самку одного вида считали разными видами. Именование видов живых организмов также составляет предмет науки. Есть тривиальные названия (например, ромашка — этим именем неспециалисты называют несколько совершенно разных цветковых растений) и научные названия, например, ромашка аптечная (Matricaria chamomilla) и ромашка пахучая (Matricaria matricarioides).

Другой примеры: Betula alba — береза (название рода) белая (название вида); Viola tricolor — фиалка трехцветная; Homo sapiens — человек разумный; Homo erectus — человек прямоходящий.

Тривиальные названия на всех языках разные, и они не составляют особой системы. Для унификации научных названий 300 лет назад использовали латынь, и сейчас в научных работах обязательно даются латинские названия видов (для ромашек они указаны в скобках). Современная номенклатура, называемая биноминальной номенклатурой, была введена шведским врачом и естествоиспытателем Карлом Линнеем (1707–1778). До Линнея названия живых организмов были многословными, представляли длинные описания. Линней ввел названия, состоявшие из имени рода и вида.

Первым указывают родовое название, вторым — видовое. Родовое название всегда пишется с большой буквы, видовое — всегда с маленькой. Кроме того, латинское название дается курсивом. Соблюдение этих правил указывает на грамотность автора.

В научных статьях при первом упоминании организма в тексте обязательно указывают полное латинское название организма, при повторном упоминании родовое название указывают сокращенно, в виде первой буквы с точкой, например, М. matricarioides или Н. sapiens.

Научные латинские названия время от времени могут меняться из-за пересмотра классификации (например, введения нового рода или разделении ранее имевшегося рода на два отдельных) или по другим причинам.

Часто после латинского названия указывают фамилию исследователя, описавшего и назвавшего данный вид. Чаще всего встречается имя Линнея, которое — из-за его всемирной известности и потому, что он описал около десяти тысяч видов — сокращено до начальной буквы фамилии (Matricaria chamomilla L.)



Все живые организмы подразделяются на три больших группы, называемые доменами: археи, бактерии и эукариоты. Домены подразделяются на царства. Раньше, весь живой мир делился на растения и животные, потом были добавлены протисты (простейшие, или одноклеточные) Геккелем в девятнадцатом веке. Потом были выделены в отдельное царство бактерии. Это царство впоследствии было разделено, как мы уже говорили, на эубактерий (собственно бактекрий) и архебактерий (архей). Грибы ранее относили к растениям, но сейчас их считают отдельным царством.

Всего живых организмов существует несколько миллионов видов. Для того, чтобы как-то упорядоченно их описать, их классифицируют либо по степени родства, либо по каким-либо морфологическим признакам, и объединяют в группы — таксоны (от греч. «таксис» — расположение). Раздел биологии, занимающийся описанием многообразия живых существ, как ныне живущих, так и вымерших, называется таксономией, или, систематикой (от греч. «систематикос» — упорядоченный). Систематика — это не система живых организмов, а научная работа, исследование по созданию такой упорядоченной системы. Таких систем предложено несколько.



Итак, группа организмов, сходных по происхождению либо по каким-то другим признакам, называется таксоном. Таксон высшего порядка — это домен. Затем идет таксон, называемый царством, затем для животных идет тип, класс, отряд, семейство, род и вид. При классификации растений выделяют такие же таксоны, что и у животных, но с небольшими отличиями. Таксон того же ранга, что тип у животных, называется отделом, а отряду соответствует таксон, называемый порядком. Названия отличаются исключительно по историческим причинам, а не из-за наличия какого-либо глубокого смысла. Разные исследователи выделяют от 4 до 26 различных царств, типов — от 33 до 132, классов — от 100 до 200.



Ниже представлено полное таксономическое описание вида Homo sapiens (Человек разумный).

Для каждого таксономического уровня указан перечень основных таксонов. Человек относится к типу хордовые, подтипу позвоночные, классу млекопитающие, подклассу плацентарные, отряду приматы, подотряду высшие обезьяны, семейству человекообразные, роду люди.


ЦАРСТВО ∙ ЖИВОТНЫЕ

Типы: Кишечнополостные, Плоские черви, Круглые черви, Кольчатые черви, Моллюски, Членистоногие, Иглокожие, Хордовые

Подтипы: Оболочники, Бесчерепные, Круглоротые, Позвоночные (асцидия) (ланцетник) (миноги)

Классы: Костные рыбы, Хрящевые рыбы, Земноводные, Пресмыкающиеся, Птицы, Млекопитающие

Подклассы: Однопроходные (яйцекладующие), Сумчатые, Планцентарные

Отряды: Насекомоядны, Рукокрылые, Грызуны, Зайцеообразные, Хищные, Ластоногие, Китообразные, Парнокопытные, Непарнокопытные, Приматы

Подотряды: Низшие обезьяны, Высшие обезьяны

Семейства: Гиббонообразные, Понгиды, Человекообразные

Род: Гориллы, Шимпанзе, Люди (Homo)

Вид: Homo sapiens

Наследование групп крови, резус-фактор. Молекулярные машины

ЛЕКЦИЯ № 3

Данный курс для неспециалистов, курс общей биологии является экспериментальным. Может возникнуть вопрос, зачем ходить на лекции, если все можно прочитать в каких-нибудь учебниках. Стоит отметить, что на лекциях вы получаете определенную точку зрения специалиста в своей области. Существует легенда об Эйнштейне, что, начиная курс своих лекций, он предупреждал студентов, чтобы они не забывали, что то, что он преподает, — это его собственное мнение, его представление о явлениях природы. То есть не истина, как она есть, а то, как он ее себе представляет. То, что мы будем представлять в данном курсе, это также наше мнение, по разным вопросам биологии, касающихся разных аспектов живой природы. Оно основано на разных методах исследований, современных концепциях, определенных правилах получения знаний. Есть разные методы познания. Например, в древности на Востоке для получения истины люди медитировали, а затем, познав истину, рассказывали другим, что они узнали. Научный метод познания — другой, особенно, в таких науках как биология, физика. Он основан на экспериментах, на проверке различных гипотез. Мы будем говорить о том, каким именно образом были получены факты, на которых основаны современные биологические концепции. Мы будем рассказывать не об устройстве природы, а о моделях устройства природы, построенных в разное время, разными учеными, на основе различных экспериментов и гипотез, которые в этих экспериментах проверялись.


Наследование групп крови резус

После первой лекции был проведен опрос, с целью выявить интересы аудитории, определить общий уровень подготовки; в ходе его был задан вопрос о наследовании группы крови резус. Мы получили 56 анкет, 22 человека ответили на вопрос верно, 34 ответа были неверными либо просто отсутствовали. Следует отметить, что вопрос довольно простой, не выходящий за рамки школьной программы по биологии. Даже если не изучались конкретно группы крови резус, но в курсе общей биологии шла речь о доминантных и рецессивных признаках, и можно было догадаться, как ответить на этот вопрос. Так как половина аудитории на этот вопрос не могла ответить, сейчас мы этот вопрос разберем.

Группа крови человека определяется при смешении капли его крови с антителами к данному белку. В эритроцитах на мембране находятся белки. Они как бы пронизывают мембрану. Один из этих белков называется резус. На рисунке представлено положение резус белка резус в мембране эритроцитов.



Почему он так назван? В 30-40-х годах, когда довольно интенсивно проводились исследования групп крови, было обнаружено, что антитела к группе крови мартышки резус агглютинируют у некоторых людей их эритроциты.

Агглютинация — это процесс склеивания эритроцитов под действием антител к белам, расположенным на мембранах эритроцитов. На рисунке ниже представлен картина агглютинации. Здесь изображены капельки крови, к которым добавлена сыворотка, содержащая антитела к резус-белку. Синим обведены капли, в которых с кровью ничего не происходит. Если реакция при добавлении антител не идет, то значит у данного человека резус-белок отсутствует. Красным обведены образцы крови, в которых происходит агглютинация. Буквами помечены капли крови, которые реакцию дают, но очень слабую. Такое встречается у приблизительно 1 % людей, и это так и называемый слабый резус фенотип.



С чем это связано? На рисунке ниже буквами представлена последовательность резус-белка. Вы знаете, что белок состоит из 20 аминокислот, каждая из которых обозначается своей буквой. Ген (последовательность нуклеотидов, соответственно, в 3 раза более длинная последовательность, записанная только четыремя буквами, а не 20), который кодирует резус-белок, называется RHD.


АМИНОКИСЛОТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ РЕЗУС-БЕЛКА ЧЕЛОВЕКА

(каждая аминокислота обозначена одной буквой):

Информация из базы данных NCBI

Human RhD blood group antigen mRNA, complete cds

ORGANISM Homo sapiens

standard name="RhD"

MSSKYPRSVRRCLPLWALTLEAALILLFYFFTHYDASLEDQKGLVASYQV

GQDLTVMAAIGLGFLTSSFRRHSWSSVAFNLFMLALGVQWAILLDGFLSQ

FPSGKWITLFSIRLATMSALSVLISVDAVLGKVNLAQLWMVLVEVTA

LGNLRMVISNIFNTDYHMNMMHIYVFAAYFGLSVAWCLPKPLPEGTEDKD

QTATIPSLSAMLGALFLWMFWPSFNSALLRSPIERKNAVFNTYYAVAVSV

VTAISGSSLAHPQGKISKTYVHSAVLAGGVAVGTSCHLIPSPWLAMVLGL

VAGLISVGGAKYLPGCCNRVLGIPHSSIMGYNFSLLGLLGEIIYIVLLVL

DTVGAGNGMIGFQVLLSIGELSLAIVIALTSGLLTGLLLNLKIWKAPHEA

KYFDDQVFWKFPHLAVGF

У большинства людей (85 %) имеется ген резус-фактора, но у 15 % этот ген отсутствует, отсутствует соответствующий гену нуклеотидный "текст". Если этот ген присутствует, то он определяет у человека синтез резус-белка. Если же его нет, то резус-белок не синтезируется.

Такие разные "состояния" гена — вариации нуклеотидного "текста" называются альтернативными формами или коротко — аллелями. В данном случае вариация — это наличие или отсутствие всей нуклеотидной последовательности гена.

У человека может встречаться 3 варианта сочетания резус-аллелей. Человек, у которого 2 аллеля с присутствующим геном, имеет группу крови резус положительную (рис. 4 вверху). Если у человека на одной из хромосом ген отсутствует, то белок все равно синтезируется с гена на другой хромосоме; и резус-группа также положительная (рис. в середине). Белок не синтезируется только в том случае, когда ген отсутствует на обоих хромосомах. Только в этом случае группа крови резус-отрицательная (рис. 4 внизу).



Вопрос, который был задан, описывал ситуацию, когда оба родителя имеют два разных аллеля. То есть оба они резус-положительны, но второй аллель у них не содержит последовательность, кодирующую резус-белок. И оба их ребенка получили от каждого из родителей как раз этот аллель с отсутствующим геном. Несложно рассчитать вероятность рождения в такой семье ребенка с отрицательным резус-фактором. Она равна 25 % (1/2*1/2=1/4); вероятность же рождения обоих детей с резус-отрицательной группой крови — 1/16.

Стоит упомянуть о резус-конфликте. Его суть заключается в следующем. Если мать резус-отрицательна, ее муж резус-положительный, и ребенок наследует от отца Rh+, то в крови матери могут начать вырабатываться антитела против резус-фактора плода. При первой беременности этого обычно не происходит, но при родах возможен контакт с белками крови ребенка, и у матери могут появиться в крови антитела к резус-фактору. Тогда при следующей беременности резус-положительным плодом материнские антитела разрушат эритроциты ребенка. Это заболевание называется гемолитическая желтуха (ребенок рождается весь желтый и обычно вскоре умирает). Описано это заболевание впервые в 1609 году французской акушеркой. Когда была разработана процедура переливания крови, то таких детей научились спасать. Им делали заменное переливание крови, т. е. полностью сливали всю их кровь, и вводили новую. Теперь, когда установлены причины резус-конфликта, поступают следующим образом. Если во время беременности, у женщины кровь резус-отрицательна, а у мужа резус-положительна, следят за уровнем антител к резус-фактору и проводят необходимое лечение, если титр этих антител начинает возрастать. Стоит отметить, что если мать резус-положительна, а сам ребенок резус-отрицателен, то конфликта не происходит.

Я бы хотела отметить один из полученных ответов на этот вопрос. Когда мы составляли вопросы для лекций, мы получили реальный вопрос из газеты «АиФ» с просьбой разъяснить, в чем дело. Мы решили включить этот вопрос в опросник, с целью проверить, насколько наши слушателе знакомы с генетикой. Собственно, вопрос предполагался как чисто учебный. И вот один из ответов был следующим: «Я бы не рискнул отвечать на этот вопрос, так как я не специалист, а от моего ответа зависит семейное счастье человека». Хочется выразить уважение человеку, который так ответил на вопрос, потому что он воспринял контекст, в котором стояла чисто учебная задача. Он продемонстрировал понимание этических аспектов, связанных с наукой. Я думаю, вы понимаете, что существует ответственность ученого, и замечательно, что в вашей аудитории есть люди, которые уже сейчас настолько ясно понимают связь науки с реальной жизнью.


Молекулярные машины

Обычно курс биологии строится от изучения простого, составных частей, к все более сложному. Сначала изучают химический состав клеток; потом ДНК, РНК, белок; затем строение клетки.

Но начать мы решили с чего-то более близкого к человеку с физическим образованием. Честно говоря, когда я изучала биологию, эта тема меня просто поразила, она мне показалось одной из наиболее интересных. Поэтому я решила вас не томить, не откладывать такую интересную тему на потом, а начать наш курс с рассмотрения работы молекулярных машин. Сегодня мы рассмотрим некоторые молекулярные машины. Первая из них называется АТФ-синтаза. Она занимается в митохондриях синтезом аденозинтрифосфорной кислоты (АТФ). Напомню, что АТФ — это молекула, которая обеспечивает клетку энергией (рис. 5).



Для нас сейчас важно, зато молекула аденозинтрифосфорной кислоты содержит так называемую макроэргическую связь. Реакция синтеза представлена на схеме.

Из аденозиндифосфата и фосфата получается АТФ, при этом образуется так называемая макроэргическая связь, и на ее образование затрачивается 30,6 кДж/моль (7,3 ккал/моль). АТФ обеспечивает энергией большинство происходящих в клетке процессов, так как при гидролизе макроэргической связи запасенная в ней энергия освобождается.

Как же синтезируется эта молекула, то есть, как образуется макроэргическая связь между фосфатами? Это было одно время загадкой. Существовало предположение о том, что есть какое-то вещество X, химический посредник, осуществляет связь между процессами, дающими энергию, то есть окислением питательных веществ до СО2 и Н2О, и каким-то образом энергия окисления (в своем роде медленное "горение" внутри организма) переходит в энергию макроэргической связи в молекуле АТФ. Это предположение о наличии химического посредника, которого никто найти не мог, называлось гипотезой химического сопряжения (рис. 6).



Но в 1961 г. английский ученый Питер Митчелл предложил другое объяснение — хемиосмотическую гипотезу (подробнее мы о ней будем говорить позже), которая заключается в том, что вода, которая образуется в процессе окисления, образуется не в виде молекулы воды, а виде протона Н+ и иона гидроксила ОН-. Энергия, получаемая при окислении, идет на то, чтобы продукты реакции — протон и гидроксил — разделить в пространстве. Протон выбрасывается из митохондрий через внутреннюю мембрану в межмембранное пространство (сам по себе протон не может проникнуть через мембрану митохондрии, эта мембрана непроницаема для заряженных частиц), и гидроксогруппы, которая остается внутри митохондрии.



В результате возникает разница концентраций ионов водорода (ДрН — то есть кислотности среды) и разница потенциала: положительные заряды снаружи митохондриальной мембраны, а отрицательный внутри. Напомним, что у митохондрий 2 мембраны, причем внешняя в энергетических процессах такой важной роли, как внутренняя, не играет. То есть энергия, полученная при окислении, запасена в виде электрохимической энергии. Электрический потенциал на мембране митохондрий достигает 200 милливольт, а толщина мембраны не превышает 10 нм.

Питер Митчелл первый высказал предположение о том, что химические реакции в клетке пространственно упорядочены, и продукты реакции распределяются асимметрично: протон в одну сторону, гидроксил в другую. За счет этого появляется электрохимический потенциал на мембране (обозначается Лун). Он состоит из химической (ДрН — разница в концентрации протонов) и электрической (Дер — разница в величине заряда) компоненты ДрН = ДрН + Дер. Электрохимический потенциал на мембране митохондрий — универсальная форма запасания энергии клеткой.

Протоны могут перекачиваться через мембрану и при фотосинтезе в хлоропластах или в клетках фотосинтезирующих бактерий (Рис. 8).

На рисунке представлена довольно простая система бактериального фотосинтеза, сопряженного с синтезом АТФ на примере галобактерий. Галобактерии живут в Мертвом море. Море настолько соленое, что соль выпадает в осадок, но в таких экстремальных условиях галобактерии прекрасно себя чувствуют. Галобактерии используют фотосинтез для получения энергии. Белок бактериородопсин под действием света выкачивает протоны изнутри бактериальной клетки наружу, и на мембране снаружи избыток протонов, и, соответственно, образуется положительный заряд. То есть в данном случае электрохимический потенциал на мембране бактерии возникает не за счет окисления веществ в процессе дыхания, а за счет работы, связанной со световой энергией.

Если протон "падает" сквозь мембрану внутрь митохондрии, при этом его потенциальная энергия уменьшается, так как он "падает" в электрическом поле от положительного заряда к отрицательному, и вдобавок по градиенту концентрации. Эта энергия используется для синтеза АТФ. И далее пойдет речь о том, как это происходит.



Синтезом АТФ занимается молекулярная машина, которая называется АТФ-синтаза. Она состоит из двух частей. Первая погружена в мембрану называется F0 (см. рисунок). Она представляет собой протонный канал, то есть это дыра в мембране, по которой протон может попасть внутрь митохондрии, но попадает он внутрь с потерей энергии, которую улавливает вторая часть молекулярной машины, которая называется Fi. Эта часть АТФ-синтазы торчит внутрь митохондрии и использует энергию "падающих" через F0 протонов для того, чтобы аденозиндифосфат соединился с фосфатом посредством макроэргической связи и образовал молекулу АТФ.

Рассмотрим, как АТФ-синтаза синтезирует АТФ. Оказывается что, прежде всего, совершается работа механическая, так как для осуществления синтеза АТФ в АТФ-синтазе крутится белковая структура. Как устроена АТФ-синтаза?

Она состоит из двух частей — статора (на рисунке 9 помечено синим цветом), и ротора (обозначен красным). Статор состоит из трех альфа субъединиц и трех бета субъединиц — они занимаются химической частью работы: синтезом АТФ из АДФ и фосфата. В собранном состоянии все вместе эти субъединицы по форме напоминают слега приплюснутый шар 8 нм в высоту и 10 нм в диаметре.

К ним примыкает дельта субъединица, и все вместе эта система образует Fi субъединицу молекулярной машины. Здесь же есть опора, которая «якорит» всю систему в мембране. Как известно, мембрана сделана из фосфолипидов (на рисунке показаны желтым). Гидрофильные "головки" фосфолипидов обращены в водную поверхность, а гидрофобные "хвосты" погружены внутрь мембраны, и именно они препятствуют перемещению заряженных частиц через мембрану. Вращающаяся часть машины, ротор, состоит из гамма и эпсилон субъединиц. Эта конструкция погружена в структуру, сделанную из одинаковых белков, они обозначаются буквой с. Статор держится в мембране, а ротор крутится. И энергия протона используется на то, чтобы прокрутить ротор этой машины.



Молекулярная машина работает в обе стороны (так же как и катализаторы, которые проводят реакцию, как в прямую, так и в обратную стороны). Если течет протонный ток с наружной мембраны внутрь, то синтезируется АТФ; если же протонного потенциала нет, но подать с внутренней стороны АТФ, то машина начнет «выкачивать» протоны, создавая протонный потенциал. При этом ротор также вращается.

Для того, чтобы доказать, что в АТФ синтазе вращается часть машины, Fi фрагмент перевернули, «пришили» к неподвижной подложке, а к гамма-субъединице навесили искусственным образом нить актина (длинный белок, который можно было увидеть в микроскоп, так как он был мечен флуоресцентной меткой). Затем подали к этой системе энергию в виде АТФ, и оказалось, что при наличии АТФ гамма субъединица начала крутиться. Все это сняли на пленку. Было видно, как крутится флуоресцентная метка на актиновом хвостике, и было показано, что действительно происходит вращение во время работы этой молекулярной машины (рис. 10).



Теперь разберем, как же крутится этот ротор; как работает электромотор в мембране клеток, как у бактерий, так и у митохондрий высших организмов. Если вы вспомните временную ось возникновения жизни, то увидите, что возникнуть этот мотор должен был более трех миллиардов лет назад.

Как же используется протонный ток, чтобы крутить мотор? Оказалось, что в статоре имеется протонный канал, т. е. такой белок, который образует проход для протона. Но этот канал не сплошной. Если бы был канал, который пронизывал всю мембрану насквозь, то из-за разницы потенциалов все протоны потекли бы внутрь митохондрии, и произошла бы деэнергетизация мембраны, т. е. она бы разрядилась. Но канал устроен очень хитро. Он состоит из двух половинок (полуканалов), которые, к тому же, смещены одна относительно другой (рис. 11).



Структура этой машины такова, что протон проваливается через полуканал с наружной стороны митохондриальной мембраны, но попасть внутрь митохондрии он не может. Сваливается протон на подставленную ему аминокислоту ротора и эту аминокислоту протонирует, то есть на аминокислоте появляется дополнительный положительный заряд. Затем, когда протонированная аминокислота на вращающемся роторе доедет до следующей половинки канала, ведущей уже внутрь митохондрии (а внутри протонов мало и, кроме того, там протон поджидают отрицательно заряженные ионы), то протон наконец "падает" внутрь и аминокислота освобождается от положительного заряда. Заряды в роторе и статоре расположены таким образом, что протонирование-депротонирование приводит к повороту машины. Таким образом, протон в два приема проваливается внутрь митохондрии, и за счет этого мотор проворачивается.

За объяснение ферментативного механизма, лежащего в основе синтеза АТФ, два исследователя получили Нобелевскую премию: Пол Д. Бойер, США и Джон Э. Уолкер, Великобритания (Нобелевская премия 1997 года).

Было рассказано, как мотор крутится, но не было объяснено, почему синтезируется АТФ. Сейчас подробно мы на этом останавливаться не будем, но вкратце, объяснить это можно следующим образом. Представим АТФ в таком виде: АТФ=АДФ~Ф. Собственно, почему при разрыве этой связи выделяется большое количество энергии? При разрыве образуется отрицательно заряженный фосфат, который гидратируется (покрывается «шубой» из молекул воды). Как вы помните, вода — это диполь (кислород имеет частично отрицательный заряд, а два водорода — положительный). И за счет гидратирования эта энергия и получается. Но если синтез АТФ идет в той среде, где воды нет, т. е. в гидрофобной среде, то макроэргической эта реакция не является. Показано, что когда происходит образование ковалентной связи между фосфатными группами молекул АДФ и Ф, ферменту практически не требуется энергии. Реакции синтеза и гидролиза АТР в каталитическом центре фермента активно идут при отсутствии внешнего источника энергии. Условия, в которых находятся молекулы АДФ и Ф в каталитическом центре, существенно отличаются от условий протекания реакции в водной среде, благодаря чему образование молекулы АТФ в активном центре фермента может происходить энергетически "бесплатно". Энергия "падающих" протонов тратится потом на то, чтобы «выпихнуть» вон АТФ, отцепить его от каталитической субъединицы.

Таким образом, за счет электрохимического потенциала на внутренней мембране митохондрий внутри клетки или митохондрий совершается механическая работа, сопряженная с химическим синтезом.

На рисунке виден срез митохондрии (рис. 12). Внутри содержится матрикс и выросты (складки) — кристы, на которых и расположена АТФ-синтаза. Зачем нужны складки? Чтобы увеличить площадь поверхности. Количество складок внутри митохондрий зависит от того, насколько интенсивно ей приходится работать, сколько энергии нужно клетке. Митохондрии в клетках печени имеют гораздо меньше крист, чем, например, в клетках сердца.



В хлоропластах происходит точно такой же процесс синтеза АТФ, также работает АТФ-синтаза, как и в митохондриях, но источником протонного потенциала является уловленная энергия света. Там тоже есть складки, они называются тилакоидами. Только в хлоропластах все как бы вывернуто наизнанку. То есть протоны за счет энергии света накапливаются снаружи этих образований.


ДВИГАТЕЛЬ БАКТЕРИЙ

Перейдем к работе следующего молекулярного мотора — жгутика у бактерии.

Известно, что не все, но некоторые бактерии могут двигаться. Для того чтобы двигаться, они вертят хвостом, т. е. жгутиком. Если жгутиков несколько, то во время вращения они сплетаются в единый жгут, и вращаются, двигая бактерию, примерно как лопасти у катера (рис. 13).



Жгутик очень маленький, в световой микроскоп его трудно увидеть. Для того, чтобы проверить, действительно ли жгутик вращается при движении бактерии, бактериальную клетку за жгутик прикрепили к стеклу (рис. 14). В раствор добавили вещество, которое она любит, например, сахар, и она начала вертеться, потому что она явно хотела добраться до сахара, если не добавляли, то она вела себя более спокойно.



Для того, чтобы жгутик вращался, в его основании находится так называемое базальное тело, которое представляет собой электромотор (рис. 15). Его задача заключается в том, чтобы крутить жгутик. На рисунке изображена мембрана бактериальной клетки (желтая), и части мотора статор (синий) и ротор (зеленый). К ротору прикручен жгутик. Пока неизвестно, как именно передается движение, но в этой молекулярной машине есть свои подшипники, своя молекулярная смазка, и есть белок, в котором, также как и в АТФ-синтазе, имеются два протонных полуканала, смещенных друг относительно друга. И принцип вращения такой же: зарядка — перезарядка группы СООН в аминокислотах. Число протонов, которые должны «провалиться» в канал за время одной прокрутки жгутика — порядка тысячи; остальные параметры приведены ниже.

Движущая сила ∙ Электрохимический градиент (протонный Н+ или натриевый Na+)

Число протонов на оборот ~ 1000

Энергия, освобождаемая на ~ 25∙10-20 Дж

Максимальная скорость 300 Hz (протоны) 1700 Hz (ионы Na+)

Toraue at stall ~ 4∙10-18 Nm

Максимальная мощность ~ 10-15 W

К.П.Д. 50-100 % (stall) ~ 5 %(swimming cell)

Число шагов ротора на оборот ~50

Вот микрофотография жгутика и молекулярного мотора в основании этого жгутика.



В лекции использованы рисунки из Соросовского образовательного журнала[1].


ЛИТЕРАТУРА ПО ТЕМЕ ЛЕКЦИИ:

1. Соросовский образовательный журнал journal.issep.rssi.ru

2. Скулачев В.П. Законы биоэнергетики// СОЖ 1997, № 1, с. 9–14.

3. Скулачев В.П. Электродвигатель бактерий. // СОЖ 1998, № 9, с. 2–7.

4. Виноградов А.Д. Преобразование энергии в митохондриях // СОЖ 1999, № 9, с. 11–19.

5. Тихонов А.Н. Молекулярные преобразователи энергии.// СОЖ. 1997, № 7, с. 10–17.

6. Тихонов А.Н. Молекулярные моторы. Часть 1. Вращающиеся моторы живой клетки // СОЖ. 1999, № 6, с. 8–16

7. В.П.Скулачев Рассказы о биоэнергетике. Серия "Эврика". М. 1982.


Более подробно

1. Уайт А., Хендлер Ф., Смит Р. и др. Основы биохимии. М.: Мир, 1981.

2. Скулачев В.П. Аккумуляция энергии в клетке. М.: Наука, 1969.

3. Скулачев В. П. Мембранные преобразователи энергии. М.: Высш. шк., 1989.

4. Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989.

5. Алберте Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. 2-е изд. М.: Мир, 1994. Т. 1.

6. Николс Д. Д. Биоэнергетика: Введение в хемиосмотическую теорию. М.: Мир, 1985.

Строение биополимеров

ЛЕКЦИЯ № 4

Тема нашей сегодняшней лекции — биополимеры.

Для того чтобы выяснить, как устроены молекулы, образующие клетки, какова структура молекул, где они находятся в клетке, мы сначала вспомним строение клетки. Вспомнив, из чего состоит живая клетка, и какие функции выполняют те или иные органеллы, мы сможем заполнить следующую табличку. Оказывается, можно провести интересную аналогию с элементами, выполняющими схожие функции у живых организмов и государств. Выделим следующие функции:

* защиты (внешнюю и внутреннюю);

* транспортную (веществ и информации);

* обеспечение клетки энергией и веществами;

* хранение и передача информации.

За внешнюю защиту у клеток отвечает клеточная мембрана; у организмов — кожа, когти, перья, шерсть; у государств — погранвойска. Внутреннюю защиту клеткам обеспечивает система рестрикции-модификации. Для примера приведем бактериальную клетку. У нее есть специальные ферменты — рестриктазы (в пер. с англ. «ограничивать»), которые разрезают чужеродную ДНК. На собственных ДНК есть специальные химические метки, чтобы рестриктазы смогли их распознать. У организмов в качестве внутренней защиты существует иммунная система, а у государства — МВД, ФСК.


Структурные и функциональные аналогии в строении различных систем



Обеспечением энергией в животных клетках занимаются митохондрии, а в растительных — хлоропласты, в организмах — пищеварительная и дыхательная системы, в государстве же — организации типа Газпрома и АЭС. Обеспечение клетки веществами идет благодаря трансмембранным каналам, лизосомам, в организме — пищеварительной системе, а в государстве — сельскохозяйственной и др. промышленности.

Хранение и воспроизведение информации на клеточном уровне идет в ядре посредством ДНК, в организме эту функцию имеет мозг, центральная нервная система, в стране — школы, библиотеки, культура, искусство.

Транспортируются вещества в клетке благодаря эндоплазматической сети, в организме — желудочно-кишечному тракту, дыхательной системе, крови; в стране — нефте- и газопроводам, транспорту. Что же касается передачи информации, то в клетке этим занимается матричная РНК; в организме — нервы и гормоны (нервногуморальная система). Причем хочется отметить, что нервную систему можно сравнить с адресной доставкой (человек может получить письмо лично, и никто больше об этом не узнает), то есть по нервам можно доставить информацию очень точно к определенной мышце или определенному органу. А гормональную систему можно сравнить со СМИ, то есть она работает как система всеобщего оповещения. В государстве за информацию отвечают почта, телефонная сеть, Интернет и др.

Мы провели аналогию с хорошо известными вам системами (организм и государство), чтобы иметь более абстрактное представление о строении клетки.

В таблице добавлены индийские касты. Касты возникли, как структуры, фиксирующие функциональные особенности разных слоев населения. Кшатрии (воины) выполняют функции защиты; шудры (торговцы и ремесленники) — обеспечения питанием и энергией; брахманы (жрецы) — хранения и воспроизведения информации, вайшьи (торговцы) — транспорт вещества и информации.

Далее мы переходим к изучению веществ, из которых состоит клетка, и будем говорить о связи структур и функций этих веществ.

Этот раздел есть во всех учебниках биохимии. Он есть в нашем основном учебнике Макеева, а также в учебнике Грина, Стаута, Тейлора; для более фундаментального изучения структуры биомолекул, составляющих клетку можно использовать учебник биохимии Месслера.


Рекомендуемая литература:

1. А.В.Макеев. Основы биологии, лекция 1: Атомный и молекулярный состав живых организмов, стр. 5-30

Для более подробного изучения:

1. Н.Грин, У.Стаут, Д.Тейлор. Биология, том. 1, глава 5: Химические компоненты живого (стр. 151–194)

2. Д. Месслер. Биохимия, том. 1, глава 2: Молекулы, из которых мы состоим (стр. 67-199).


Основные атомы, составляющие живую клетку — это углерод, водород, кислород, азот и фосфор. Конечно, в полимерах присутствуют и другие вещества (например, сера), но сейчас мы рассмотрим комбинации этих пяти элементов. Как вы знаете, образование биополимеров возможно благодаря тому, что углерод четырехвалентен, способен образовывать 4 связи, и атомы углерода, связываясь друг с другом, могут образовывать длинные цепочки, состоящие из десятков атомов. Мы расскажем о четырех видах биополимеров: белках, нуклеиновых кислотах, липидах и углеводах; как они устроены и чем занимаются.


Белки

Начнем с белков. Белки состоят из мономеров — аминокислот. Каждая аминокислота имеет аминогруппу, связанную с атомом углерода, с этим же атомом связана карбоксильная группа, водород и аминокислотный остаток. Такая конфигурация присутствует во всех аминокислотах. Аминогруппа может быть присоединена к первому за карбоксильной группой атому углерода, или ко второму атому и т. д. Атомы нумеруются греческими буквами, и в зависимости от того, к какому по порядку атому присоединена аминокислота, ее называют альфа-аминокислота, или бета-аминокислота и т. д. В состав белков входят только альфа-аминокислоты.



Напомним, что карбоксильная группа имеет кислотный характер, она диссоциирует на ионы в водном растворе с образованием протона и отрицательно заряженной группы COO, a NH2-rpynna имеет основной характер, она способна присоединять протон водорода, становясь положительно заряженной. В молекуле аминокислоты протон от карбоксильной группы может переносится на аминогруппу — такие образования называются цвиттер-ионы. В растворе аминокислоты находятся в виде цвиттер-ионов.

Существенно, что молекулы аминокислот могут отличаться в своей пространственной конфигурации. Это явление называется стереизомерией. Эти молекулы называются D-изомерами и L-изомерами. Молекулы являются зеркальным отображением друг друга, и иначе, чем через четвертое измерение они одна в другую перейти не могут. На плоскости тот атом, который находится ближе, перед плоско о.



В живом организме все аминокислоты — L-изомеры. D-изомеры встречаются довольно редко и имеют определенные функции, например, могут входить в состав антибиотиков.

Всего живая клетка использует 20 аминокислот. Они отличаются строением боковой цепи, как видно из рисунка, могут быть разветвленные цепи, они могут содержать ароматические кольца. Например, у пролина второй углеродный атом израсходовал все свободные связи на ароматическую группу, и поэтому он не обладает такой подвижностью относительно группы С-С, и поэтому в белках, где есть пролин, вращение полипептидной цепи в этих участках ограниченно.

Аминокислоты делят на неполярные, то есть не имеющие заряда и не имеющие групп, которые можно было бы ионизировать, полярные не заряженные и пять кислот относятся к заряженным: это 2 кислоты, которые содержат вторую карбок сильную группу, которая может ионизироваться и нести на себе отрицательный заряд, и три аминокислоты имеющие дополнительные аминогруппы, которые несут в растворах с собой положительный заряд и используются в белках для того, чтобы зарядить необходимые части молекулы. Изменение заряда белковой молекулы может оказать большое влияние на структуру и функцию.

Последовательность аминокислот в белке составляет его первичную структуру.

Как же они соединяются? Аминокислоты способны взаимодействовать друг с другом, образуя пептидную связь. При этом молекула воды уходит, а углерод соединяется с азотом — собственно пептидная связь. Понятно, что следующая карбоксильная группа может прореагировать с аминогруппой другой кислоты и таким образом образуется полипептидная цепочка, что и называется первичной структурой белка. При записи первичной структуры аминокислоты обозначают либо трехбуквенным кодом, по первым трем буквам названия, либо используют однобуквенный код. В базах данных первичная структура белка записывается обычно однобуквенным кодом.



В зависимости от того, какие аминокислоты образовали цепочку, он может свернуться в пространстве и принять ту или иную пространственную структуру, которая называется вторичной структурой белка. Полипептидная цепочка сворачивается в пространстве в различные структуры, например спираль с определенными характеристиками, с определенным шагом (α-спираль), или вытянутую структуру (β-структура). β—спирали могут взаимодействовать между собой, образуя целые белковые листы, α-спирали образуют достаточно жесткие цилиндрические структуры. На рисунках альфа-спирали изображаются или как спиральные ленты или как цилиндры, а бета-структуру изображаются как плоские полосы.

Что же заставляет белки сворачиваться? В формировании вторичной структуры принимают участие гидрофобные взаимодействия, ионные взаимодействия, водородные связи и ковалентные связи.

Гидрофобные взаимодействия. Как уже было сказано выше, существуют полярные и неполярные аминокислоты. Если в полипептидной цепи рядом находятся гидрофобные аминокислоты (неполярные), то в водном растворе нерастворимые в воде гидрофобные участки постараются уйти от взаимодействия с водой, свернуться так, чтобы оказаться рядом и укрыться от воды, образовать структуру с минимальной потенциальной энергией. Если рядом находятся заряженные аминокислотные остатки, то они будут притягиваться в случае разноименных зарядов или отталкиваться в случае одноименных зарядов. Поэтому первичная структура белка, то есть, наличие гидрофобных или заряженных участков на полипептидной цепи, определяет то, как этот белок свернется. Или, если, к примеру, имеется пролин, то он будет держать соседние атомы под определенным углом, определяя тем самым их положение в пространстве.



Расположение элементов вторичной структуры (альфа-спиралей и других элементов) в пространстве относительно друг друга называется третичной структурой белка.



Но, кроме того, что сам белок при попадании в водный раствор примет ту конформацию, в которой он должен работать, в клетке еще есть белки, которые называются шапероны (от слова shape — форма), которые помогают другим белкам правильно сворачиваться. Если белки сворачиваются неправильно, то это может иметь катастрофические последствия. Несколько лет назад в Европе была эпидемия коровьего бешенства, и большое количество коров пришлось уничтожить. Коровье бешенство (губчатая энцефалопатия — мозг животного становится похож на губку) вызывается не вирусом и не бактерией, а особым клеточным агентом — неправильно свернутым белком. Этот белок приводит к образованию в клетке конгломератов, то есть, белки буквально выпадают в осадок, и жизнь клетки нарушается, прежде всего, влияя на нервную систему. Это происходит потому, что белки, которые в норме в клетке взаимодействовали бы с этим белком, не могут этого сделать, так как он свернут неправильно, и поэтому клетка начинает неправильно функционировать. Таким образом, это болезнь неправильно свернутых белков. Эта эпидемия разразилась после того, как стали применять новую технологию переработки костной муки. При более низких температурах белки из костей больных животных, которые после переработки шли в качестве добавки к корму, перестали уничтожаться, а стали попадать в корм, вызвав тем самым эпидемию. Каким же образом неправильно свернутые белки попадают из пищеварительного тракта в мозг? Оказывается, что клеточные механизмы (ферменты протеазы), которые уничтожают отработанные белки, этот белок «угрызть» не могут. И прионные белки, не меняясь, могут очень долго сохраняться в организме. К тому же, некоторые белки устойчивы к воздействию температур.

У людей есть аналог этой болезни. Это инфекционное заболевание называется куру. Оно описано у народов, имеющих привычку съедать мозги умерших предков (из уважения к последним). В них как раз и находились инфекционные белки. Это так называемая медленная инфекция (белок ведь, в отличие от вируса, не размножается, а постепенно высаживает на себя другие клеточные белки, распространяя вокруг себя плохую «привычку» неправильно сворачиваться). Есть схожая болезнь у овец скрейпи (характер такой же, просто дело в другом белке). И еще есть наследственное заболевание, которое называется синдром Крейтцфельда-Якоба. В одном из белков, который функционирует в мозгах, происходит мутация. В других клетках этот белок также есть, но просто, в первую очередь, нарушения сказываются на нервных тканях, так как они эволюционно самые молодые, и поэтому наиболее чувствительны к любым нарушениям в функционировании клетки. Эта мутация не позволяет белку правильно свернуться, и поэтому у человека развиваются все те же симптомы, что и при коровьем бешенстве у животных.

Сейчас по первичной структуре белка можно предсказать многие элементы его вторичной структуры, то есть, как белок свернется. Когда были разработаны алгоритмы такого предсказания, устраивались соревнования, кто лучше предскажет структуру белка. Например, структура была известна по данным кристаллографии, но ее никому не показывали, и группы ученых, используя свои алгоритмы, смотрели, чей алгоритм будет лучше.

На рисунке представлена первичная структура белка аполипопротеина Е, он занимается транспортом холестерина, это человеческий белок. На рисунке однобуквенным кодом записана последовательность аминокислот (первичная структура).

Под первичной структурой представлена вторичная структура белка, альфа-спиральные участки обозначены прямоугольниками. Над ними указаны номера аминокислот (белок состоит из 299 аминокислот). Пунктиром обозначен участок, которые во время функционирования белка то расплетается, то опять сворачивается.

Ниже показана третичная структура белка, то есть то, как спирали расположены в пространстве и взаимодействуют друг с другом. У белка есть N — конец, это та часть на которой находится аминогруппа. Та сторона, на которой находится карбоксильная группа, называется соответственно С-конец.



Есть мутация в этом белке, которая меняет заряд одной аминокислоты. В результате меняются ионные взаимодействия внутри молекулы белка. Это меняет сродство белка к липидам разных классов. В результате повышается вероятность развития старческого слабоумия, называемого болезнью Альцгеймера. На этом примере, хорошо видно, как изменение одной единственной аминокислоты может повлиять на функции белка.



На рисунке показано, как свернут белок. Arg-61, положительно заряженный, взаимодействует с отрицательно заряженной глутаминовой кислотой. Тут образуется своеобразный мостик. Слева на рисунке представлен белок, который отличается одной мутацией от белка, изображенного справа. В нем происходит одна аминокислотная замена. Вместо нейтрального, незаряженного цистеина появляется положительно заряженный аргинин (Arg-112), с которым начинает взаимодействовать с отрицательно заряженной глутаминовой кислотой (Glu-109), так как он расположен к глутаминовой кислоте ближе, чем аргинин-61. Исчезает солевой мостик. Меняются взаимодействия внутри белка. Это приводит к тому, что меняет сродство к липидам. Его функция заключается в переносе липидов. И он, вместо липопротеинов более высокой плотности, начинает иметь большее сродство полипротеинами меньшей плотности. У людей с такой мутацией более высокий уровень холестерина и выше уровень риска развития старческого слабоумия. Кстати, помимо физической нагрузки, профилактикой развития старческого слабоумия является умственная работа. Примерно 15 % европейцев имеют такую мутацию, у бушменов же это число достигает 40 %. Но им этот белок ничуть не мешает, а старческого слабоумия у них не бывает вообще, так как у них низко холестериновая диета и много физических нагрузок. Им этот белок даже полезен, так как холестерин им нужно запасать. У людей же с западной «диетой» большое содержание жиров, и «жадный» вариант белка, дающий высокий уровень холестерина, становиться вредным. Холестерин нужен, но его не должно быть ни слишком много, ни слишком мало. Таким образом, проявление изменений в первичной структуре белка зависит от образа жизни.


Углеводы

Перейдем к углеводам. Углеводы — как название уже говорит само за себя, состоит из углерода и воды. У них так же, как и у аминокислот, есть стереоизомеры, (L и D — молекулы), принцип определения такой же, как и в аминокислотах. Стоит заметить, что если в организме человека все аминокислоты — L-изомеры, то сахара-D-изомеры.



В зависимости от количества атомов углерода в основной цепи сахара делятся на тетрозы (4 атома углерода), пентозы (5 атомов), гексозы (6 атомов). В зависимости от того, в какую сторону повернуты водородные и гидроксильные группы, мы получаем набор изомеров, каждый из которых имеет собственное название.



Сахара имеют такую особенность, что они могут переходить из линейной формы в циклическую. Они называются пиранозы, если в основном кольце 5 атомов углерода, и фуранозы — если четыре атома углерода.



На рисунке изображена глюкоза. Это основной моносахарид. Все остальные клетка стремится перевести в глюкозу, а потом уже глюкозу использовать. Это гораздо более экономичный путь получения энергии, когда все переводится в один универсальный сахар, а потом на этом источнике энергии работают многие биохимические реакции. Рибозы, которые также изображены на рисунке, входит в состав нуклеиновых кислот.

Молекулы моносахаров способны соединяться друг с другом, образуя цепочки. Дисахариды состоят из двух звеньев. На рисунке представлены сахароза и мальтоза.



Здесь еще добавляются стереоизомеры за счет различия в расположении мономеров друг относительно друга и связях между соседними звеньями. В зависимости от этого, различают α- и β-сахариды. Цепочки могут быть очень длинными, состоящими из сотен и тысяч звеньев. На рисунке изображены компоненты крахмала.



Их два — амилоза (линейная молекула) и амилопектин (молекула разветвленной структуры). Крахмал — это запасной углевод растений. К углеводам относиться также целлюлоза (растительный углевод), гликоген (который накапливается в печени животных как запасное вещество), пектин (который является основой для скелета насекомых) и другие.

Углеводы могут присоединяться к белкам, образовывая смешанные структуры. Например, клеточная стенка (не путать с мембраной) у бактерий — это вещество, поверх мембраны защищающая бактерию. Она состоит из смеси углеводов и аминокислот, соединенных в такую регулярную структуру. Пептидогликан (вещество, которое составляет клеточную стенку) выглядит следующим образом:



Нуклеотиды

Остановимся подробнее на нуклеотидах. Известно, что нуклеотиды называются аденин, гуанин, тимин, цитозин и урацил — азотистые основания, они представ лены на рисунке ниже.



Нуклеотиды — это мономеры нуклеиновых кислот. Нуклеиновые кислоты в эукариотических клетках находятся в ядре. Они есть у всех живых организмов (у тех, у кого нет ядра, нуклеиновые кислоты все равно есть — они находятся в центре клетки у бактерий и образуют нуклеоиды). Мономеры, из которых потом строятся нуклеиновые кислоты, состоят из азотистого основания, остатка сахара (дезоксирибоза или рибоза) и фосфата. Сахара вместе с азотистым основанием называются нуклеозидами (аденозин, гуанозин, тимидин, цитидин). Если к ним присоединены 1-, 2-, или 3-фосфорных остатка, то вся эта структура называется соответственно, нуклеотизид монофосфатом, дифосфатом или трифосфатом или нуклеотидом (аденин, гуанин, тимин, цитозин).



Вот так модель АТФ выглядит в пространстве. Азотистое основание, входящее в состав ДНК делится на две группы — пиримидиновую и пуриновую. В состав ДНК входит аденин, тимин, цитозин и гуанин, в РНК вместо тимина урацил. Как известно, ДНК — это большой архив, в котором хранится информация, а РНК — это молекула, которая переносит информацию из ядра в цитоплазму для синтеза белков. С различием в функциях связаны различия в строении. РНК более химически активно из-за того, что ее сахар — рибоза — имеет в своем составе гидроксильную группу, а в дезоксирибозе кислорода нет. Из-за отсутствия кислорода ДНК более инертно, что важно для ее функции хранения информации, чтобы она не вступала ни в какие реакции.



Нуклеотиды способны взаимодействовать друг с другом, при этом «выбрасывается» два фосфора, и между соседними нуклеотидами образуется связь. В молекуле фуранозы молекулы углерода пронумерованы. С первым связано азотистое основание. Когда образуется цепочка нуклеотидов, связь осуществляется между пятым углеродом одной и третьим углеродом другой фосфорной кислоты. Поэтому в цепочке нуклеиновых кислот выделяют разные неравнозначные концы, относительно которых молекула не симметрична.



Комплементарные друг другу одноцепочечные молекулы нуклеиновой кислоты способны образовывать двуцепочечную структуру. Внутри этой спирали аденин образует пару с тимином, а гуанин — с цитозином. Встречается утверждение, что нуклеотиды подходят друг другу как осколки разбитого стекла, поэтому они и образуют пары. Но это утверждение неверно. Нуклеотиды способны образовывать пары как угодно. Единственная причина, по которой они соединяются так, и никак иначе, заключается в том, что угол между «хвостиками», которые идут к сахарам, совпадает только в этих парах, и, кроме того, совпадают их размеры. Никакая другая пара не образует такой конфигурации. А поскольку они совпадают, то их через сахаро-фосфатный остов можно связать друг с другом. Структуру двойной спирали открыли в 1953 году Джеймс Уотсон и Фрэнсис Крик.



При соединение друг с другом против 5'-конца одной нити находится 3'-конец другой нити. То есть нити идут в противоположных направлениях — говорят, что нити в ДНК антипараллельны.

На рисунке видна модель ДНК, видно, что аденин соединяется с тимином двумя водородными связями, а гуанин соединяется с цитозином тройной водородной связью. Если молекулу ДНК подогревать, то ясно, что две связи легче разорвать, чем три, это существенно для свойств ДНК.



В силу пространственного расположения сахаро-фосфатного остова и нуклеотидов, когда нуклеотиды накладывают один на другой и «сшивают» через сахаро-фосфатный остов, цепочка начинает заворачиваться, тем самым образуя знаменитую двойную спираль.

На рисунках представлены шариковые модели ДНК, где каждый атом обозначен шариком. Внутри спирали имеются бороздки: маленькая и большая. Через эти бороздки с ДНК взаимодействуют белки и распознают там последовательность нуклеотидов.




При нагревании ДНК водородные связи разрываются и нити в двойной спирали расплетаются. Процесс нагревания называется плавлением ДНК, при этом разрушаются связи между парами А-Т и Г-Ц.Чем больше в ДНК пар А-Т, тем менее прочно нити друг с другом связаны, тем легче ДНК расплавить. Переход из двухспиральной ДНК в одно-спиральную измеряется на спектрофотометрах по поглощению света при 260 нм. Температура плавления ДНК зависит от А-Т/Г-Ц состава и размера фрагмента молекулы. Ясно, что если фрагмент состоит из нескольких десятков нуклеотидов, то его гораздо легче расплавить, чем более длинные фрагменты.



У человека в гаплоидном геноме, то есть единичном наборе хромосом, 3 млрд. пар нуклеотидов, и их длина составляет 1,7 м, а клетка гораздо меньше, как вы догадываетесь. Для того, чтобы ДНК смогла в ней поместиться, она достаточно плотно свернута, и в эукариотической клетке свернуться ей помогают белки — гистоны. Гистоны имеют положительный заряд, а так как ДНК заряжена отрицательно, то гистоны обладают сродством к ДНК. Упакованная при помощи гистонов ДНК имеет вид бусин, называемых нуклеосомами. 200 пар нуклеотидов идет на одну нуклеосому, 146 пар накручиваются на гистоны, а остальные 54 висят в виде линкерных (связывающих нуклеосомы) ДНК. Это первый уровень компактизации ДНК. В хромосомах ДНК свернута еще несколько раз для того, чтобы образовались компактные структуры.



К нуклеиновым кислотам кроме ДНК относится также РНК. В клетке присутствуют разные типы РНК: рибосомные, матричные, транспортные. Существуют и другие виды РНК, о которых мы будем говорить позже. РНК синтезируется в виде одно-цепочечной молекулы, но отдельные ее участки входят в состав двуцепочечных спиралей. Для РНК также говорят о первичной структуре (последовательности нуклеотидов) и вторичной структуре (образование двуспиральных участков).


Липиды

В состав липидов входят жирные кислоты, имеющие длинные углероводородные цепи. Жирные кислоты гидрофобны, то есть не растворимы в воде.


ПРИРОДНЫЕ ЖИРНЫЕ КИСЛОТЫ

Число атомов углерода ∙ Название ∙ Строение

12 ∙ Лауриновая кислота ∙ СН3(СН2)10СООН

14∙ Мирнетиновая кислота ∙ СН3(СН2)12СООН

16 ∙ Пальмитиновая кислота ∙ СН3(СН2)14СООН

18 ∙ Стеариновая кислота ∙ СН3(СН2)16СООН

20 ∙ Арахиновая кислота ∙ СН3(СН2)18СООН

24 ∙ Лигноцериновая кислота ∙ СН3(СН2)22СООН

16 ∙ Пальмитоленновая кислота ∙ СН3(СН2)5СН = СН(СН2)7СООН

18 ∙ Олеиновая кислота ∙ СН3(СН2)7СН = СН(СН2)7СООН

18 ∙ Линолевая кислота ∙ СН3(СН2)4СН = СНСН2СН = СН-(СН2)7СООН

18 ∙ Линоленовая кислота ∙ СН3СН2(СН=СНСН2)2СН = СН-(СН2)7СООН

20 ∙ Арахидоновая кислота ∙ СН3(СН2)4(СН=СНСН2)3СН = СН-(СН2)3СООН

Липиды представляют собой соединения жирных кислот с глицерином (эфиры) Например, на рисунке изображен лецитин.



В клетке важную роль играют липиды, в которых к глицерину присоединен остаток фосфорной кислоты и 2 жирных кислоты. Они называются фосфолипидами. Молекулы фосфолипидов имеют полярную (то есть гидрофильную, хорошо растворимую) группу на одном конце молекулы и длинный гидрофобный хвост. К фосфолипидам относится фосфатидилхолин.



В водном растворе фосфолипиды образуют мицеллы, в которых молекулы обращены полярными "головами" наружу, в сторону воды, а гидрофобные "хвосты" оказываются внутри мицеллы, спрятанными от воды. Клеточную мембрану также липиды с полярными "головами", которые обращены наружу по обе стороны мембраны, а гидрофобные "хвосты" находятся внутри липидного бислоя.



Более подробно со строением липидов можно познакомиться в учебнике Макеева.

Синтез ДНК, РНК и белков

ЛЕКЦИЯ № 5

Тема сегодняшней лекции — синтез ДНК, РНК и белков. Синтез ДНК называется репликацией или редупликацией (удвоением), синтез РНК — транскрипцией (переписывание с ДНК), синтез белка, проводимый рибосомой на матричной РНК называется трансляцией, то есть, переводим с языка нуклеотидов на язык аминокислот.

Мы постараемся дать краткий обзор всех этих процессов, в то же время, останавливаясь более подробно на молекулярных деталях, для того чтобы вы получили представление, на какую глубину этот предмет изучен.


Репликация ДНК

Молекула ДНК, состоящая из двух спиралей, удваивается при делении клетки. Удвоение ДНК основано на том, что при расплетении нитей к каждой нити можно достроить комплементарную копию, таким образом получая две нити молекулы ДНК, копирующие исходную.



Здесь также указан один из параметров ДНК, это шаг спирали, на каждый полный виток приходится 10 пар оснований, заметим, что один шаг — это не между ближайшими выступами, а через один, так как у ДНК есть малая бороздка и большая. Через большую бороздку с ДНК взаимодействуют белки, которые распознают последовательность нуклеотидов. Шаг спирали равен 34 ангстрем, а диаметр двойной спирали — 20 ангстрем.

Репликацию ДНК осуществляет фермент ДНК-полимераза. Этот фермент способен наращивать ДНК только на 3' — конце. Вы помните, что молекула ДНК антипараллельна, разные ее концы называются 3'-конец и 5' — конец. При синтезе новых копий на каждой нити одна новая нить удлиняется в направлении от 5' к 3', а другая — в направлении от 3' к 5-концу. Однако 5' конец ДНК-полимераза наращивать не может. Поэтому синтез одной нити ДНК, той, которая растет в "удобном" для фермента направлении, идет непрерывно (она называется лидирующая или ведущая нить), а синтез другой нити осуществляется короткими фрагментами (они называются фрагментами Оказаки в честь ученого, который их описал). Потом эти фрагменты сшиваются, и такая нить называется запаздывающей, в целом репликация этой нити идет медленней. Структура, которая образуется во время репликации, называется репликативной вилкой.



Если мы посмотрим в реплицирующуюся ДНК бактерии, а это можно наблюдать в электронном микроскопе, мы увидим, что у нее вначале образуется "глазок", затем он расширяется, в конце концов, вся кольцевая молекула ДНК оказывается реплицированной. Процесс репликации происходит с большой точностью, но не абсолютной. Бактериальная ДНК-полимераза делает ошибки, то есть вставляет не тот нуклеотид, который был в матричной молекуле ДНК, примерно с частотой 10-6. У эукариот ферменты работают точнее, так как они более сложно устроены, уровень ошибок при репликации ДНК у человека оценивается как 10-7-10-8. Точность репликации может быть разной на разных участках геном, есть участки с повышенной частотой мутаций и есть участки более консервативные, где мутации происходят редко. И в этом следует различать два разных процесса: процесс появления мутации ДНК и процесс фиксации мутации. Ведь если мутации ведут к летальному исходу, они не проявятся в следующих поколениях, а если ошибка не смертельна, она закрепится в следующих поколениях, и мы сможем ее проявление наблюдать и изучить. Еще одной особенностью репликации ДНК является то, что ДНК-полимераза не может начать процесс синтеза сама, ей нужна «затравка». Обычно в качестве такой затравки используется фрагмент РНК. Если речь идет о геноме бактерии, то там есть специальная точка называемая origin (исток, начало) репликации, в этой точке находится последовательность, которая распознается ферментом, синтезирующим РНК. Он относится к классу РНК-полимераз, и в данном случае называется праймазой. РНК-полимеразы не нуждаются в затравках, и этот фермент синтезирует короткий фрагмент РНК — ту самую «затравку», с которой начинается синтез ДНК.


Транскрипция

Следующий процесс — транскрипция. На нем остановимся подробнее.

Транскрипция — синтез РНК на ДНК, то есть синтез комплементарной нити РНК на молекуле ДНК осуществляется ферментом РНК-полимеразой. У бактерий, например, кишечной палочки — одна РНК-полимераза, и все бактериальные ферменты очень похожи друг на друга; у высших организмов (эукариотов) — несколько ферментов, они называются РНК-полимераза I, РНК-полимераза II, РНК-полимераза III, они также имеют сходство с бактериальными ферментами, но устроены сложнее, в их состав входит больше белков. Каждый вид эукариотической РНК-полимеразы обладает своими специальными функциями, то есть транскрибирует определенный набор генов. Нить ДНК, которая служит матрицей для синтеза РНК при транскрипции называется смысловой или матричной. Вторая нить ДНК называется некодирующей (комплементарная ей РНК не кодирует белки, она "бессмысленная").



В процессе транскрипции можно выделить три этапа. Первый этап — инициация транскрипции — начало синтеза нити РНК, образуется первая связь между нуклеотидами. Затем идет наращивание нити, ее удлинение — элонгация, и, когда синтез завершен, происходит терминация, освобождение синтезированной РНК. РНК-полимераза при этом «слезает» с ДНК и готова к новому циклу транскрипции. Бактериальная РНК-полимераза изучена очень подробно. Она состоит из нескольких белковых-субъединиц: двух α-субъединиц (это маленькие субъединицы), (β- и β'-субъединиц (большие субъединицы) и ω-субъединицы. Вместе они образуют так называемый минимальный фермент, или кор-фермент. К этому кор-ферменту может присоединяться σ-субъединица. σ-субъединица необходима для начала синтеза РНК, для инициации транскрипции. После того, как инициация осуществилась, σ-субъединица отсоединяется от комплекса, и дальнейшую работу (элонгацию цепи) ведет кор-фермент. При присоединении к ДНК σ-субъединица распознает участок, на котором должна начинаться транскрипция. Он называется промотор. Промотор — это последовательность нуклеотидов, указывающих на начало синтеза РНК. Без σ-субъединицы кор-фермент промотор распознать не может. σ-субъединица вместе с кор-ферментом называется полным ферментом, или холоферментом.

Связавшись с ДНК, а именно с промотором, который распознала а-субъединица, холофермент расплетает двунитевую спираль и начинает синтез РНК. Участок расплетенной ДНК — это точка инициации транскрипции, первый нуклеотид, к которому должен комплементарно быть присоединен рибонуклеотид. Инициируется транскрипция, а-субъединица уходит, а кор-фермент продолжает элонгацию цепи РНК. Затем происходит терминация, кор-фермент освобождается и становится готов к новому циклу синтеза.


Как происходит элонгация транскрипции?

РНК наращивается на 3'-конце. Присоединением каждого нуклеотида кор-фермент делает шаг по ДНК и сдвигается на один нуклеотид. Так как все в мире относительно, то можно сказать, что кор-фермент неподвижен, а сквозь него «протаскивается» ДНК. Понятно, что результат будет таким же. Но мы будем говорить о движении по молекуле ДНК. Размер белкового комплекса, составляющего кор-фермент, 150 А°. Размеры РНК-полимеразы — 150x115x110 А°. То есть это такая наномашина. Скорость работы РНК-полимеразы — до 50 нуклеотидов в секунду. Комплекс кор-фермента с ДНК и РНК называется элонгационным комплексом. В нем находится ДНК-РНК гибрид. То есть это участок, на котором ДНК спарена с РНК, и 3'-конец РНК открыт для дальнейшего роста. Размер этого гибрида — 9 пар оснований. Расплетенный участок ДНК занимает примерно 12 пар оснований.



РНК-полимераза связанна с ДНК перед расплетенным участком. Этот участок называется передним дуплексом ДНК, его размер — 10 пар оснований. Полимераза связана также с более длинной частью ДНК, называемой задним дуплексом ДНК. Размер матричных РНК, которые синтезируют РНК-полимеразы у бактерий, могут достигать 1000 нуклеотидов и больше. В эукариотических клетках размер синтезируемых РНК может достигать 100000 и даже нескольких миллионов нуклеотидов. Правда, неизвестно, существуют ли они в таких размерах в клетках, или в процессе синтеза они могут успеть процессировать.

Элонгационный комплекс довольно стабилен, т. к. он должен выполнить большую работу. То есть, сам по себе он с ДНК не «свалится». Он способен перемещаться по ДНК со скоростью до 50 нуклеотидов в секунду. Этот процесс называется перемещение (или, транслокация). Взаимодействие ДНК с РНК-полимеразой (кор-ферментом) не зависит от последовательности этой ДНК, в отличие от σ-субъединицы. И кор-фермент при прохождении определенных сигналов терминации завершает синтез ДНК.



Разберем более подробно молекулярную структуру кор-фермента. Как было сказано выше, кор-фермент состоит из α- и β-субъединиц. Они соединены так, что образуют как бы «пасть» или «клешню». α-субъединицы находятся в основании этой «клешни», и выполняют структурную функцию. С ДНК и РНК они, по-видимому, не взаимодействуют, ω-субъединица — небольшой белок, который также выполняет структурную функцию. Основная часть работы приходится на долю β- и β'-субъединиц. На рисунке β'-субъединица показана наверху, а β-субъединица — внизу.

Внутри «пасти», которая называется главным каналом, находится активный центр фермента. Именно здесь происходит соединение нуклеотидов, образование новой связи при синтезе РНК. Главный канал в РНК-полимеразе — это то место, где во время элонгации находится ДНК. Еще в этой структуре сбоку есть так называемый вторичный канал, по которому подаются нуклеотиды для синтеза РНК.

Распределение зарядов на поверхности РНК-полимеразы обеспечивает ее функции. Распределение очень логично. Молекула нуклеиновой кислоты заряжена отрицательно. Поэтому полость главного канала, где должна удерживаться отрицательно заряженная ДНК, выложена положительными зарядами. Поверхность РНК-полимеразы выполнена отрицательно заряженными аминокислотами, чтобы ДНК к ней не прилипала.

РНК-полимераза работает как молекулярная машина, и в ней есть различные детали, каждая из которых выполняет свою функцию. Например, нависающая над "пастью" часть β'-субъединицы удерживает передний ДНК-дуплекс. Эта часть называется "заслонкой". После связывания с ДНК заслонка опускается, проходя путь в 30 ангстрем, и зажимает ДНК так, чтобы она не могла выпасть в процессе транскрипции.

Внутри "пасти" находится активный центр РНК-полимеразы, то есть то место, где непосредственно происходит комплементарное взаимодействие поступившего по боковому каналу рибонуклеоиздтрифосфата с ДНК-матрицей. Если вновь прибывший нуклеотид комплементарен матрице, то он ферментативно пришивается к свободному β' — концу РНК. По характеру реакция образования новой связи в РНК относится к реакциям нуклеофильного замещения. В ней участвуют два иона магния. Один ион постоянно находится в активном центре, а второй ион магния поступает с нуклеотидом и после образования новой связи между рибонуклеотидами уходит, затем поступает новый нуклеотид со своим новым ионом магния.



При выходе из РНК-полимеразы ДНК-РНК гибрид должен быть расплетен. В этом участвует структура, называемая "шип".

В транслокации, то есть перемещении РНК-полимеразы по нити ДНК, участвует а-спиральная структура, снизу вверх торчащая из β-субъединицы.



Как же узнали, какая часть фермента какую роль выполняет. Молекулярные биологи поступают следующим образом. Они удаляют часть белковой последовательности и смотрят, какая функция исчезла. Было показано, что если выбросить фрагмент зажима (когда его выбрасывали, еще не знали, что он держит ДНК), то ДНК держаться не будет. Такой же результат получается, если удалить ДНК переднего дуплекса. Оставшаяся часть — РНК-ДНК гибрид и задний дуплекс — оказываются слабо связанными с РНК-полимеразой.

Известно, что магний координирует связь между фосфатами растущей молекулы ДНК и фосфатами вновь входящих нуклеотидов. При этом происходит последовательность реакций, называемых реакциями нуклеофильного замещения. Известно, каким образом меняются связи внутри этого комплекса. Новый нуклеотид приходит, будучи связанным с еще одним ионом магния. Новый нуклеотид таким образом взаимодействует с растущей цепью ДНК. В конце реакции, второй ион магния выводится из активного центра фермента.



РНК-полимераза является представителем молекулярных машин. Помимо того, что в начале синтеза ДНК опускается заслонка, меняется конформация других частей РНК-синтазы, в ней во время роста цепи РНК происходят циклические изменения, не такие сильные, как при начале синтеза цепи. В начале заслонка опускается на 30 А°, а при каждом шаге фермента ДНК протягивается на один нуклеотид. В перемещении по ДНК участвует элемент РНК-полимеразы F-спираль (альфа-спиральная структуры, точащая из бета-субъединицы вверх в главный канал). F-спираль при этом изгибается, перемещается вместе с комплексом РНК-ДНК, освобождается от них и опять выпрямляется. Перемещается F-спираль за один шаг на 3,4 А. Именно такой шаг у РНК-полимеразы.

Изменение конформации различных частей РНК-полимеразы происходит за счет изменения потенциальной энергии, что связано с электростатическими и гидрофобными взаимодействиями. Можно провести следующую аналогию. Если взять поднос с горкой яблок, то после того, как мы этот поднос потрясем, яблоки будут рассыпаться ровным слоем по подносу. У них при этом изменится потенциальная энергия, связанная с действием силы тяжести. Если молекулу РНК-синтазы «потрясти» (а «трясет» ее, также как и все другие молекулы в клетке, броуновское движение), то она начнет принимать конформацию с более низкой потенциальной энергией. То есть, источником движения молекулярной машины является энергия теплового движения отдельных ее составляющих, а устройство машины таково, что это движение приводит к нужному результату. При этом молекулярная машина потребляет энергию, которая, в основном, идет на изменение состояния тех или иных связей.

Сейчас остановимся на инициации транскрипции. Как уже говорилось, инициация осуществляется с участием а-субъединицей. Она взаимодействует со структурой ДНК, которая называется промотор. Она имеет у кишечной палочки такую структуру. За десять нуклеотидов до точки инициации находится ТАТА-бокс. Не обязательно стоит именно такая последовательность, но она является "идеальной" последовательностью для взаимодействия с а-субъединицей, то есть такой, с которой транскрипция инициируется наиболее эффективно. Замена отдельных нуклеотидов в этой последовательности снижает эффективность инициации транскрипции. Еще примерно за 35 нуклеотидов до него находится структура, называемая «-35». Эту последовательность также распознает а-субъединица. Эту структуру (сочетание последовательностей "-10" и "-35") назвали классическим промотором, т. к. она была описана первой. Но оказалось, что устройство промотора может быть и другим. Этот вариант включает в себя тот же ТАТА-бокс, но нет последовательности «-35», однако есть дополнительно два нуклеотида, и этого достаточно, чтобы а-субъединица распознала промотор.

Эта структура называется расширенным промотором. σ-субъединица РНК-полимеразы садится на промотор в ДНК и разными частями белковой молекулы взаимодействует с частями промотора. Распознает его σ-субъединица через большую бороздку ДНК. После того, как σ-субъединица в составе кор-фермента связалась с промотором, ДНК на этом участке начинает плавиться (расплетаются нити ДНК). На прошлой лекции обсуждалось, что в паре А-Т связи между нуклеотидами разрываются легче, чем в паре Г-Ц, так как последняя содержит 3 водородных связи, а первая — две. Промотор содержит пары А-Т, поэтому плавится он достаточно легко. И затем начинается синтез РНК, растущая цепь РНК выталкивает σ-субъединицу и происходят еще другие изменения, которые вызывают диссоциацию σ-субъединицы от кор-фермента.

Теперь приведем пример, как изучают функции разных частей белка. Если небольшой кусочек белка отрезать и посмотреть, как изменились функции белка, то можно понять, какие были функции у отрезанного кусочка. В нашем случае сделали по-другому. Взяли две ДНК-полимеразы, одну взяли из кишечной палочки, а другую — из теплолюбивой бактерии (термофильной), которая растет при 80 °C, (в лабораторных условиях их растят в колбе, которая находится в термостате в почти кипящей воде, в естественных условиях они живут в горячих источниках, есть такие, которые могут жить при 98 °C), следовательно оптимум работы ее РНК-полимеразы и σ-субъединицы — 80 °C, (на рисунке σ-субъединица термофильной бактерии показана красным, а кишечной палочки — желтым), а у кишечной палочки наиболее эффективная работа идет при температуре человеческого тела, (так как она живет в кишечнике). У ее а-субъединицы всего четыре части, разрезали белок и сшивали эту σ-субъединицу с кусочком от σ-субъединицы термофильной бактерии. И потом разные кусочки от термофильной бактерии вставляли, заменяя ими разные фрагменты а-субъединицы. Затем смотрели, активен ли полученный гибридный белок при 20 °C или нет. Термофильная бактерия при такой температуре не работает, для нее это слишком холодно, а кишечная палочка активна. На рисунке видно, что при данной температуре работает только та комбинация, при которой у а-субъединицы первая и вторая часть от кишечной палочки, а третья и четвертая от термофильной бактерии. Таким образом, делают вывод, что температуру работы σ-субъединицы определяют первая и вторая составные части.

На самом деле разрезают не белок, а ДНК, потом кусочки ДНК от разных бактерий сшивают вместе и затем вводят в бактерию, там при активизации этой части ДНК синтезируется гибридный белок. Эта технология относится к генной инженерии, она была разработана в 70-х годах.

Еще одной особенностью транскрипции является то, что кор-фермент бактериальной клетки один и тот же, а а-субъединицы могут быть разными. У кишечной палочки всего 7 а-субъединиц, они узнают разные промоторы. Зачем это нужно? Если клетке срочно нужно переключить синтез белков с одной группы генов на другую, она может использовать разные а-субъединицы. Например, есть гены теплового шока, если кишечную палочку подогреть до состояния, когда жить ей станет очень тяжело, она включает аварийную систему сопротивления тепловому шоку, сопротивления тем разрушениям, которые произошли в клетке. В эту систему входит тот набор генов, который в норме работать не должен, перед этими генами свой особый промотор. И тогда другая σ-субъединица, не основная, синтезируется и активирует эти гены. То есть смена субъединицы — это смена программы работы генов. Это способ регуляции работы генов.


Трансляция

Перейдем к трансляции — синтезу белков. Она проводится рибосомами. Рибосома состоит из двух субчастиц: большой и малой.



Каждая субчастица состоит из нескольких десятков белков, каждый из которых уже изучен, известно, каким образом каждый белок уложен в субчастицу. При исследовании белков используют метод электрофореза, то есть в электрическом поле в специальном геле или специальном носителе молекулы белков разъединяются в зависимости от их заряда и молекулярного веса, то есть под действием поля они начинают двигаться и могут отодвигаться друг от друга на разное расстояние. Другим методом разделения белков является хроматография, в результате этого метода на носителе получают пятнышки, каждый из которых соответствует отдельному белку.

Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее в определенном порядке начинают налипать белки. На рисунке представлена рибосомная РНК. В ней самокомплементарные участки нити РНК спариваются, образуя шпильки (вторичная структура), и затем РНК сворачивается (третичная структура РНК), образуя каркас субчастиц.

Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомногй или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три "стебля" с петлями на концах и один "стебель", образованный 5'- и 3'-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. "Голова" на этом листе представлена антикодонной петлей, здесь находится антикодо — те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем — сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.



В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).



Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза — на один.

Аминоцил т-РНК входит в рибосому, комплементарно связываясь с кодоном мРНК, затем происходит реакция при которой аминокислотные остатки связываются друг с другом, а т-РНК удаляется.



"Словарь" для перевода с языка нуклеотидов на язык аминокислот называется генетическим кодом. Аминокислот — 20, нуклеотидов — 4, число комбинаций из 4 по 2 = 16, а аминокислот 20, поэтому кодировка не двух, а трехбуквенная, каждая тройка называется кодоном. Каждая аминокислота кодируется тремя нуклеотидами в мРНК (которая, в свою очередь, кодируется ДНК).



В таблице на рисунке боковые столбцы кодируют левую и правую букву кодона, верхняя строка — среднюю. Например, кодон AUG кодирует аминокислоту метионин.

Число комбинаций из 4 по 3 = 64, то есть некоторые аминокислоты кодируются несколькими кодонами. Три кодона не кодируют никакую аминокислоту, они называются терминирующими. Когда они попадаются в мРНК, рибосома прекращает свою работу и готовая полипептидная цепь выбрасывается наружу.

Таблица генетического кода была составлена в 60-х годах. Начало положили Ниренберг и Маттеию. Они пытались производить в пробирке эксперименты на клеточных экстрактах, к которым были добавлены искусственные матрицы РНК. В то время считалось, что кодоны, состоящие из одного нуклеотида (UUU или ААА) не кодируют аминокислоты. Ниренберг и Маттеи использовали полии-РНК (то есть состоящую только из урацилов) в качестве контроля в своих опытах, но именно в этой пробирке прошла реакция. Стало ясно, что кодон UUU кодирует аминокислоту фенилаланин. Затем была составлена таблица генетического кода.

Генетический код универсален. Он один и тот же у всех микроорганизмов. Есть небольшие отличия в генетическом коде митохондрий.

Генетическим кодом называется таблица соответствия кодонов аминокислотам. Когда журналисты пишут о том, что недавно расшифрован генетический код человека — это грубая терминологическая ошибка. Генетический код человека расшифрован тогда же, когда и всех остальных живых существ — в 60-х годах XX века. Недавно расшифрован геном человека, то есть полная последовательность нуклеотидов всех молекул ДНК.

Структура биологии как науки. Ранние этапы эволюции жизни

ЛЕКЦИЯ № 6

Как устроена наука биология? Можно представить ее как слоеный пирог. Ее можно разрезать на куски, соответствующие объектам изучения (бактерии, простейшие, растения, животные, человек). В каждом куске будут слои, соответствующие уровню изучения: молекулярная биология, биохимия, физиология, анатомия, генетика и т. д. до экологии. Биологический подход определяется не тем, что мы изучаем (объект изучения), а методами и концепциями, используемыми для изучения наших объектов.

Напомним, что на предыдущих лекциях мы говорили, об устройстве молекул, из которых состоят живые организмы, об основных молекулярных процессах и о биополимерах. Кратко повторим строение биополимеров. Биополимеры состоят из мономерных звеньев, которые состоят из углерода, водорода, кислорода и т. д. (см. схему ниже).

Они, объединяясь в последовательности, линейные или разветвленные, образуют функционирующие в клетке биополимеры. И функции молекул лежат в основе жизнедеятельности клетки.

БИОПОЛИМЕРЫ

Нуклеиновые кислоты C, H, N, О, Р

Белки C, H, N, O, S

Углеводы C, H, O

Липиды C, H, O

Изучение химической структуры веществ, составляющих живую клетку, было начато еще в 19 веке, но структура и функции ДНК, РНК, белков были установлены в 20 веке. За каждым открытием стоит работа многих ученых. Рассмотрим в качестве примера как были открыты нуклеиновые кислоты, как их изучали, установили их функции.

В 1868 году Фридрих Мишер в ядрах клеток обнаружил фосфорсодержащее вещество, названное им нуклеином (от слова нуклеус — ядро). Он соскабливал с гнойных бинтов клетки, в которых было много лейкоцитов, и из них выделил это вещество.

Затем, в 1889 году, удалось определить, что в состав нуклеина входит нуклеиновая кислота и белок. Этим занимался Рихард Альтман. Появился термин "нуклеиновая кислота". Затем все азотистые основания были проанализированы, их состав и структура была установлена химиками. Предполагалось, что структура ДНК выглядела следующим образом: ДНК состоит из того, что мы сейчас называем нуклеотидами, А, Т, Г, Ц; их там четыре штуки, они вчетвером образуют колечко, которое находится в ядре. В начале двадцатого века ДНК выделяли из тканей тимуса, а РНК удалось выделить из ядер клеток проростков пшеницы. Поэтому ДНК считали животной нуклеиновой кислотой (называли тимонуклеиновая кислота), а РНК — растительной. Считали, что была найдена биохимическая особенность, отличающая клетки животных и растений.

Затем в 1938 году был проведен рентгеноструктурный анализ ДНК. В частности, установили, что расстояние между нуклеотидами в ДНК равно 3,4 А. Кроме того, показали, что нуклеотиды взаимодействуют друг с другом, и что при этом азотистые основания уложены стопками. Это называется стекинг-взаимодействием (взаимодействие плоских гидрофобных поверхностей нуклеотидов). Это открытие принадлежит Уильяму Астбюри и Флорину Беллу.

В середине века было показано, что ДНК и РНК являются компонентами всех клеток. Кроме того, установили, что ДНК находится в ядре, РНК — в ядре и в цитоплазме.

В 1953 году Эрвин Чаргафф установил следующие закономерности (правило Чаргаффа): количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина (А = Т, Г = Ц). Это послужило отправной точкой в установлении структуры двойной спирали Уотсоном и Криком.

Соотношение Г-Ц и А-Т пар варьируется от организма к организму, но постоянно для каждого вида.((Г+Ц)/(А+Т) = К — коэффициент специфичности). Сейчас существует выражение "Г-Ц богатая ДНК". Вы помните, что между гуанином и цитозином существует три водородные связи, и их труднее разорвать, чем те две, которые существуют между аденином и тимином. Г-Ц богатые ДНК труднее плавят-

В середине века было установлено, что ДНК является носителем наследственности. В начале века считалось, что именно белки, как вещества, имеющие более сложную структуру, передают наследственную информацию (эту гипотезу выдвинул наш соотечественник Николай Кольцов). Два эксперимента легли в основу того мнения, что именно ДНК являются носителем наследственности.

В 1944 году Эвери, Маклеод и Маккарти показали, что, если выделить ДНК из штаммов капсульного пневмококка (у пневмококка есть разные штаммы: образующие и не образующие защитную капсулу вокруг клетки; это наследственное постоянное свойство), а затем внести ее в бескапсульный штамм, то последний начинает образовывать капсулу. Можно было предположить, что степень очистки ДНК была невысока, и вместе с ней в образец попала часть белков, которые и передали это свойство. Тогда полученный препарат обработали протеазой (фермент, расщепляющий белки), но активность препарата при этом не потерялась; а после обработки препарата ДНКазой его способность передавать свойство образовывать капсулы полностью исчезло.



Второй эксперимент поставили через восемь лет после этого Херши и Чейз. Они использовали бактериофаги. Бактериофаги — это инфекционные агенты, способные заражать бактерии, и имеющие размеры намного меньше бактериальной клетки. В то время было неизвестно, какая именно часть бактериофага несет наследственную информацию; было лишь известно, что бактериофаги состоят из белка и ДНК. Было известно, что если бактериофаги добавить к бактериям, то они проникают в бактериальную клетку и в ней размножаются. Бактериальная клетка разрывается, и новые бактериофаги выходят наружу. В этом эксперименте использовали кишечную палочку и паразитирующие на ней бактериофаги. Белок бактериофагов был мечен радиоактивной серой (35S), а ДНК — радиоактивным фосфором (32Р). Фаги внесли внутрь бактерии. Через некоторое время, достаточное для инфицирования, бактерий отмыли в растворе, и оказалось, что сера отмылась, а внутри бактерий остался фосфор; через некоторое время эти бактерии лопнули, и из них вышли новые частицы фагов. Таким образом, было показано, что именно ДНК обеспечила синтез новых фагов, и что именно ДНК является носителем наследственной информации.

Напомним, что последовательность мономеров в цепи называется первичной структурой. Первичная структура белка — это аминокислоты, а первичная структура ДНК и РНК — это нуклеотиды. При записи первичной последовательности нуклеотиды обозначаются одной буквой (А, Т, G, С для ДНК и A, U, G, С для РНК). При записи первичной структуры белка аминокислоты обозначают либо тремя начальными буквами их английского названия (аргинин — Arg, метионин — Met) или одной буковой (обозначения указаны в таблице генетического кода в лекции 5).

И нуклеиновые кислоты, и белки обладает пространственной структурой, которую называют вторичной структурой. Последовательность нуклеотидов образует двойную спираль ДНК. Значительная часть молекулы РНК также принимает двуспиральную форму, а часть ее функционирует в одно-нитевом состоянии. На рисунке изображена транспортная и рибосомная РНК.



Для того, чтобы могли образоваться спиральные участки в РНК, части молекулы должны быть друг другу комплементарны. То есть первичная структура РНК (последовательность нуклеотидов) определяет образование вторичной структуры (двуспиральных участков). В больших молекулах РНК разные участки могут комплементарно спариваться друг с другом, образуя различные сочетания двойных спиралей. Какие же будут образовываться на самом деле? Сейчас существуют методы расчетов вторичной структуры РНК, и, по сути, они сводятся к поиску комплементарных участков и перебору возможных образуемых ими структур. Оптимальной считается та, в которой будет спарено наибольшее количество нуклеотидов, то есть наибольшая часть РНК войдет в состав двойной спирали. При этом она будет более стабильна, чем одно-нитевой клубок. Реально одно-нитевой клубок РНК для больших молекул практически не существует, существуют отдельные одно-нитевые участки. Самокомплементарные нити ДНК также могут образовывать «шпильки».

Чтобы шпилька образовалась, необходимо, чтобы последовательности соответствующих участков были комплементрны. Это называют палиндромами (палиндром — это последовательность, которая в обоих направлениях читается одинаково, например, "А роза упала на лапу Азора" или, если речь идет о ДНК

3'-GACGTC-5'

5'-CTGCAG-3'

Палиндромы образуют шпильки в РНК. Они же могут образовывать шпильки и в ДНК, но так как ДНК двуспиральная, то шпильки на обеих нитях выглядят как крестообразная структура. В процессе функционирования структура может меняться, и один и тот же участок нуклеиновой кислоты может входить то в одну, то в другую шпильку.

Белки образуют вторичные структуры нескольких типов. Наиболее распространены из них два: α-спираль и β-структура. При образовании α-спирали аминокислота взаимодействует с четвертой от нее аминокислотой. То есть, спираль устроена так, что четвертая аминокислота находится над первой. Если они способны образовать водородную связь, то спираль стабилизируется. Вся α-спираль может быть скреплена подобными связями, β-структура — развернутая структура, в которой аминокислотная цепь вытянута. Образованию α-спирали препятствуют пролин (аминокислота, в которой карбоксильная группа и азот жестко закреплены, и в ней невозможно вращение вокруг связей С-С) и одноименно заряженные аминокислоты (они просто отталкиваются друг от друга, не давая спирали образоваться).

В формировании пространственной структуры биополимеров участвуют так называемые гидрофобные взаимодействия и водородные связи. В гидрофобные взаимодействия вступают вещества, молекулы которых состоят из неполярных групп, плохо растворимых в воде (пример: жирные кислоты). В водном растворе ассоциация полярных групп приводит к уменьшению площади контакта гидрофобных групп с диполями воды и снижению потенциальной энергии молекул.

Водородные связи образуются между двумя группами, одна из которых представлена отрицательным концом диполя, а вторая является донором протона. Донором протона, например, может быть молекула воды, или NH2 — группа.

Все белки состоят из а-аминокислот. В данном случае греческие буквы указывают позицию углерода в соединении, к которому присоединена аминогруппа. От считывать договорились от карбоксильной группы. Существуют и β-, и γ-аминокислоты, но просто они не входят в состав белка. Например, в молекуле γ-аминомаслянной кислоты (сокращенно ГАМК) аминогруппа присоединена к третьему атому углерода, который обозначается буквой γ. ГАМК работает в тормозных нейронах, и ее прописывают как лекарство людям с повышенной тревожностью.


Отметим, что хотя вторичная структура белка также называется α- или β-спираль, это не означает, что α-структура состоит из а-аминокислот, β-структура из чего-то другого. Все белки, независимо от типа их вторичной структуры, состоят из L-изомеров а-аминокислот.

При расчете вторичной структуры белка, то есть возможности образования альфа-спиралей и других элементов вторичной структуры, анализируя расположение аминокислот, учитывают, возможно ли взаимодействие аминокислот в позициях 1–4, учитывают наличие рядом заряженных аминокислот, определяют, какие участки белка могли образовать а-спираль, проверяют не мешает ли пролин образованию альфа-спирали. Для β-структур тоже есть свои характеристики, их выявляют, и размечают на первичной последовательности. Затем рассчитывают третичную структуру, то есть, определяют, как α-спирали и β-струткуры располагаются в пространстве один относительно другого. Методы расчета третичной структуры не всегда дают точные результаты. Они созданы на основе изучения экспериментально установленной третичной структуры белков методом рентгеноструктурного анализа кристаллов белка. Однако не для всех белков удается получить кристаллы.

В образовании вторичной и третичной структуры белка участвуют:

1. Ковалентные связи между остатками двух цистеинов (дисульфидные мостики). Цистеин содержит SH-группу, и два цистеина могут взаимодействовать друг с другом через сульфидный мостик (R-SH + HS-R => R-S-S-R + 2Н+). Такие мостики скрепляют пространственную структуру белка. Они могут быть разорваны каким-нибудь восстанавливающим агентом, а могут быть, потом опять восстановлены.

2. Ионные (электростатические) взаимодействия между противоположно заряженными аминокислотными остатками. Например, между 8-аминогруппой лизина (NН3+ — группой) и карбоксильной группой (СOO-) глутаминовой или аспарагиновой кислоты.

3. Водородные связи. Участвуют все аминокислоты, имеющие гидроксильные, амидные или карбоксильные группы

4. Гидрофобные взаимодействия

Функции ДНК и РНК. ДНК участвует в репликации и транскрипции. РНК участвует в трансляции (мРНК), выполняет структурные функции (структура рибосом в первую очередь определяется структурой рибосомной РНК) и транспортные функции (тРНК). Также РНК выполняет регуляторную функцию. Недавно был описан целый класс маленьких молекул РНК размером около двадцати нуклеотидов (раньше считали, что это просто какие-то обломки болтаются в клетке). Они имеют очень важную функцию. Эти маленькие РНК, комплементарные, например, к матричной РНК, могут с ней связываться. Образованные короткие двойные спирали РНК распознают специальные белки, которую матричную РНК «разгрызают». Получается, что ген работает, РНК на ДНК синтезируется, но все это вхолостую, потому что сбоку к ним «подползают» эти маленькие РНК, и матричная РНК поэтому работать не может, разрушается. Кроме этого, у РНК есть еще одна функция — ферментативная, каталитическая. РНК, способная осуществлять ферментативную реакцию, называется рибозимом. Также РНК обеспечивает клетку энергией.

Функции белков, липидов и углеводов. Белки выполняют следующие функции: структурную, ферментативную, обеспечивают движение клетки, передачу сигналов, и, в общем-то, практически все происходящие в клетке процессы. Лет двадцать назад считалось, что вообще все процессы обеспечивают белки; теперь же стало ясно, что белкам очень сильно «помогают» РНК, выполняя те функции, которые считались раньше характерными только для белков. Белки и углеводы выполняют структурную функцию, углеводы и липиды откладываются в качестве запасных питательных веществ.


РАННИЕ ЭТАПЫ ЭВОЛЮЦИИ ЖИЗНИ

Как же возникли такие сложные молекулы, столь согласованно друг с другом работающие, обеспечивающие сопряженные метаболические процессы в клетке? На этот вопрос пока никто не может дать полный ответ. Однако некоторые детали известны. Известен путь, на котором можно найти ответ.

Проведем следующую аналогию. Процитируем рассказ "Пляшущие человечки" Артура Конан Дойля, один из рассказов о Шерлоке Холмсе, в котором он в очередной раз поразил Уотсона своей проницательностью:

… - Холмс, как, черт побери, вы об этом узнали? — спросил я.

Видите ли, дорогой мой Уотсон… Не так уж трудно построить серию выводов, в которой каждый последующий простейшим образом вытекает из предыдущего. Если после этого удалить все средние звенья и сообщить слушателю только первое звено и последнее, они произведут ошеломляющее впечатление. После взгляда на впадинку между большим и указательным пальцем вашей левой руки, мне было совсем нетрудно заключить, что вы не собираетесь вкладывать свой капитал в золотые россыпи.

— Но я не вижу никакой связи между этими двумя обстоятельствами!

— Вот опущенные звенья этой простейшей цепи. Во-первых… Во-вторых… В-шестых…

— До чего просто! — воскликнул я.

— Конечно, — сказал он, слегка уязвленный, — всякая задача оказывается очень простой после того, как вам ее растолкуют. А вот вам задача еще не решенная.

Для нас эта нерешенная задача — это происхождение жизни на Земле. Мы видим последнее звено этой цепи — жизнь существует. И по результатам многочисленных исследований мы можем представить себе атмосферу молодой Земли, процессы, которые на ней происходили. Жизни тогда еще не было. То есть, у нас есть первое и последнее звено, но у нас нет промежуточных этапов. Если мы не видим промежуточных звеньев, нам кажется это чудом. Это «чудо» истолковывают по-разному: одни говорят, что жизнь была занесена из Космоса, другие считают, что жизнь кто-то создал; но мало кто представляет, что эти звенья можно реконструировать. На данный момент восстановить все эти звенья никто не может, но мы попытаемся представить некоторые из них, показать, каким способом можно реконструировать этапы возникновения жизни на Земле и ее развитие.

ДНК —> РНК —> БЕЛОК

Эта схема называется догмой молекулярной биологии. Она появилась в 50-60-е годы 20 века, когда стали ясны в общих чертах основные процессы синтеза ДНК, РНК и белка. Считалось, что это закон жизни — на матрице ДНК синтезируется РНК, на матрице РНК синтезируется белок. И функции "молекул жизни" были, казалось бы, ясны: ДНК хранит информацию, РНК ее переносит от ДНК к белку, белок выполняет всю работу в клетке. Но в 1975 г. схема изменилась:

ДНК <-> РНК —> БЕЛОК

В 1975 г. Говард Темин и Дэвид Балтимор независимо друг от друга открыли обратную транскрипцию. Оказалось, что существует фермент ревертаза, который синтезирует ДНК на матрице РНК. Они за это открытие получили Нобелевскую премию.

Еще одно открытие, касающееся нашей темы (и тоже удостоенное Нобелевской премии), было сделано в 1989 году Сидней Олтменом и Томасом Чеком. Оказалось, что РНК может выполнять ферментативную функцию. Олтмен и Чек установили, что молекула РНК сама способна «откусить» от себя кусочек, и для этого ей не нужны никакие белки. Потом были найдены другие, более сложные формы каталитической активности РНК. РНК-ферменты были названы рибозимами (по аналогии с белковыми ферментами, энзимами). Надо отметить, что ДНК также может работать как дезоксирибозим, но таких экспериментов гораздо меньше, чем экспериментов с рибозимами.

Остановимся еще раз на взаимодействии белков и РНК, в частности, об обеспечении происходящих в клетке процессов.

Надо сказать, что РНК работают несколько медленнее белков, а в некоторых ферментах РНК выполняют основную работу, а белки ей помогают, то есть без белков она выполняет свою работу гораздо хуже, но тем не менее, может работать и без белков. Когда были открыты рибозимы, ученые — биологи стали ставить РНК в центр размышлений о происхождении жизни и о ранних этапах эволюции жизни. Во-первых, РНК — нуклеиновая кислота, которая может образовывать комплементарные связи, то есть ее можно реплицировать. Есть вирусы, содержащие РНК, которая реплицируется, у этих вирусов есть специальный фермент РНК-репликазы. То есть РНК может выполнять функцию репликации, ферментативную также может выполнять, то есть она может работать как РНК-геном и как РНК-фермент.

Гипотеза о том, что РНК могла возникнуть раньше, чем ДНК и белки, была названа РНК-миром. Сейчас это считается во многих учебниках общепризнанным фактом, хотя, строго говоря, нельзя исключить другие сценарии развития жизни. Гипотеза объясняет очень многое, гораздо больше, чем другие гипотезы. Гипотеза о том, что белки лежат у истоков жизни менее рациональная, так как надо искать еще и ответ на вопрос, почему белки, которые самореплицировались, утратили потом эту способность?

Гипотеза РНК-мира не говорит о самом начале возникновения живых молекул на Земле, она говорит о следующем этапе эволюции, когда биомолекулы существуют, существуют какие-то процессы, но мир еще не такой, как сейчас, к которому мы привыкли. ДНК в том мире еще нет, белков, видимо, тоже нет, хотя аминокислоты и олигопептиды уже есть, нет процесса трансляции, зато есть процесс транскрипции, только РНК не на ДНК синтезируется, а на РНК. Есть РНК-геном, на котором синтезируется рабочая молекула РНК-фермента. Некоторые авторы, пытаясь реконструировать особенности этого мира предполагают, что тРНК — это реликт РНК-мира, и что РНК-геном был похож на тРНК. Молекулы тРНК участвуют не только в биосинтезе белков в качестве переносчиков аминокислот, но участвуют и в других процессах, в том числе и регуляторных. Предполагают, что три нуклеотида, которые располагаются в антикодоне, были меткой для генома, а в рабочей молекуле РНК этих нуклеотидов не было. Рабочие копии молекул РНК могли разрушаться во время работы, и их не надо было использовать для репликации. РНК-геном с меткой являлся матрицей для синтеза множества рабочих молекул, а когда надо реплицировать РНК, то по этой метке узнают, какую именно молекулу надо реплицировать, образуется копия вместе с меткой и уже с этой метки образуется новая геномная РНК. Подчеркнем, что это только гипотеза и доказать пока что ее нельзя, хотя есть некоторые указания на то, что такие процессы могли идти.

Следующий появившийся процесс — трансляция. На РНК начали синтезироваться белки и есть множество гипотез, как и почему это произошло и почему это было выгодно. Считают, что последней появилась ДНК. Так как РНК менее стабильна, ДНК стала выполнять функции генома, а РНК сохранила только часть функций, которые имела в РНК-мире. ДНК-копии молекул РНК могли возникнуть в процессе обратной транскрипции. Но для того, чтобы считать информацию с ДНК, должен был появиться процесс транскрипции. Возможно, сначала для репликации ДНК требовалось перевести ее в РНК-овую копию, а потом путем обратной транскрипции синтезировать новую ДНК. Но на каком-то этапе должна была появиться репликация ДНК без РНК-посредника. Правда, совесем без РНК до сих пор обойтись не удается — напомню, что ДНК-полимеразе для инициации синтеза ДНК требуется РНК-затравка.

Предполагаемый порядок появления функций живого такой: каталитические функции рибозимов и репликация РНК, затем добавляется трансляция, затем добавляется обратная транскрипция и транскрипция РНК на ДНК, после этого ДНК-репликация. Позже всего возникла компактизация ДНК (напомню, мы говорили на одной из лекций о белках-гистонах и нуклеосомах, которые выполняют, обеспечивают, компактизацию в эукариотической клетке). Компактизация ДНК позволила увеличить размер генома.

Интересно заметить, что, так как во всех ныне живущих организмах от бактерий, вирусов и до человека используется один генетический код и основные метаболические процессы сходны. Считают, что все ныне живущие организмы произошли от одного общего предка. Общим предком считается коллекция клеток и субклеточных структур. Точнее было бы сказать, что общий предок представлял коллекцию метаболических процессов и катализаторов, их регулирующих.



Этот общий предок, имевший все основные системы современных организмов (ДНК, РНК, белок), называется прогенот (прародитель). Далее пошла эволюция, которую более понятно, как изучать. На счет того, что было до этого, можно строить только гипотезы, но гипотезы эти должны быть обоснованы. Например, есть работы, в которых пытаются реконструировать метаболизм РНК-мира. Как это делают? В начале изучают метаболические процессы современной клетки и пытаются в них найти реликты РНК-мира. То есть если представить, что существовал РНК-мир, то современный метаболизм был «написан» поверх того, который существовал тогда. Например, мы знаем, что АТФ работает как донор фосфора, но донором фосфора могут быть и другие молекулы. Зачем же тогда сохранять молекулу, содержащую рибонуклеиновую часть? Предполагают, что это как раз реликт РНК-мира. Не только АТФ имеет функции, параллельные с другими веществами, но и множество рибонуклеиновых ко-факторов, то есть соединений, участвующих в ферментативных реакциях, служащих посредниками, "помощниками" в работе ферментов. Например НАДФ — никотинамид динуклеотидфосфат и др. Если какие-то процессы идут с участием ко-факторов, в состав которых входит кусочек РНК, и такие же процессы могут идти в других организмах или в других частях клетки без участия этого рибо-кусочка, то есть есть другой донор фосфорной группы или донор метильной группы, то предполагают, что там, где ко-фактор с РНК-составляющей есть реликт РНК-мира. И, проделав такой анализ, нашли процессы, которые могли быть представлены в РНК-мире. Интересна такая особенность, что синтез жирных кислот, предположительно, не был представлен в списке таких процессов, ведь для этого нужны обязательные белковые компоненты, которых тогда не было.

Интересен вопрос, занимался ли рибо-организм кислородным фотосинтезом? Ведь кислород появился в атмосфере 2 млрд. лет назад, произошло изменение бескислородной атмосферы на кислородную. Если реконструкция покажет, что в рибо-организме мог идти кислородный фотосинтез, то это означало бы, что рибо-организмы жили 2–3 млрд. лет назад, а в это время уже есть вполне заметные следы прокариотических клеточных структур в осадочных породах, и тогда можно предположить что их оставили не ДНК-овые организмы, а РНК-овые.

Мы говорили об этапах развития жизни на земле, говорили, что сначала появились прокариоты, затем эукариоты, многоклеточные, затем социальные организмы, затем человеческое общество. Иногда задают вопрос: а почему бактерии еще существуют? Почему более совершенные организмы (эукариоты) не вытеснили прокариот. На самом деле эукариоты не могут жить без прокариот, ведь эукариоты возникли на Земле, где уже жили бактерии, они встроены в эту систему. Эукариоты едят бактерий, потребляют то, что сделали бактерии, они приспособлены именно к жизни, которую им создали бактерии. Если прокариот убрать, то рухнет фундамент жизни на Земле. Каждый новый, более сложный интегративный уровень жизни возникал на основе уже сложившейся предшествующей системы, приспосабливался к ней, и без нее существовать уже не мог.



Разнообразие бактерий велико, они используют очень разные химические реакции как источники энергии. По существу в современной биосфере все геохимические циклы контролируются в основном бактериями. Сейчас они ведут некоторые ключевые реакции, например, цикл железа, цикл серы, фиксацию азота. Никто, кроме бактерий, не может из атмосферы достать азот и включить в состав собственных молекул.


БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ

Наверное, все слышали о круговороте веществ в природе, то есть о системе биохимических циклов Земли. Она представлена на рисунке.

Основной цикл — это цикл углерода. Цифрами показано распределение вещества по Земле. Все величины даны в 1018 г. Двуокись углерода СО2, например, распределена между атмосферой и океаном. Кислород — преимущественно газообразный в атмосфере, хотя входит в состав многих веществ. Сера распределена между океаном и земными породами.

На основе каких данных можно попытаться восстановить, какой была атмосфера, какие шли в ней процессы в далеком прошлом? На основе изучения осадочных пород. Появление жизни отмечают по изменению изотопного состава этих пород, наиболее древние следы жизни — 3,8 млрд. лет назад — найдены в породах Гренландии, и считается, что с этого момента на планете существует жизнь. Изучение пород показывает, что до 2 млрд. лет тому назад в них присутствует недоокисленное железо (не трех, а двухвалентное). Следовательно, свободного кислорода в атмосфере в тот период не было, иначе все железо было бы окислено полностью. Есть и другие указания на состав атмосферы, логика рассуждений примерно такая же.



2 млрд. лет назад появился кислород. И раньше в бескислородной атмосфере были отдельные кислородные карманы (кислород — токсичное вещество, которое может все окислить, разрушить анаэробную клетку, которая не может жить при кислороде, а тогда большинство клеток было анаэробами). Некоторые бактерии «научились» делать для себя безопасным кислород, они называются аэротолерантными, у них появились ферменты, защищающие клетку от разрушающего действия кислорода. Потом появились бактерии, которые «научились» его использовать. Затем атмосфера стала кислородной в результате кислородного фотосинтеза, и теперь есть только отдельные бескислородные места. Глубоководные бактерии или бактерии, живущие в вулканических источниках — анаэробы, часть из которых представляет, видимо, реликты древнего мира.

Основной углеродный цикл очень простой, вы его уже знаете. В процессе фотосинтеза из углекислого газа и воды образуется углеводы (глюкозы, например) и кислород. Потом происходит деструкция — обратная реакция, разрушение органических веществ, когда в результате окисления питательных веществ в организме образуется вода и двуокись углерода. Причем при фотосинтезе энергия света затрачивается на образования углеводов, а при деструкции эта энергия выделяется и организм использует ее для своих нужд. Это и есть цикл углерода. Если посмотреть на схему, то можно увидеть, что он незамкнутый. Углерод все время изымается, с частью живых организмов уходит в осадочные породы, при этом кислород остается в избытке. Если его не убирать, то его станет очень много, может остановиться углеродный цикл. Что происходит с этим избыточным кислородом? Он идет ("стекает") на окисление серы и железа, то есть с углеродным циклом сопряжен цикл железа и серы. Таким же образом сопряжены циклы других веществ. Для каждого из этих процессов существует группа микроорганизмов, бактерий, которые занимаются поддержанием этого круговорота, и за счет этого получают энергию. Разнообразие метаболизма бактерий таково, что они способны катализировать прохождение всех биогеохимических циклов на Земле. Подчеркнем, что наша биосфера встроена в цикл геохимических процессов.

В качестве источников энергии бактерии могут использовать самые разнообразные соединения. Часть бактерий, которые используют кислород, называются аэробами, те кто не используют кислород — анаэробы. Те, кто способен обойтись без органических веществ называются автотрофами. Те, кому нужны органические вещества — гетеротрофы.



Как уже было сказано, в древние времена мог существовать только анаэробный фотосинтез, а именно на его основе мог получиться кислородный, потому что если света на Земле достаточно, то лимитирующим будет не освобождением кислорода СO2, a H2S. То есть если вместо сероводорода использовать воду, то энергии можно получить неизмеримо больше, поскольку воды на Земле намного больше, чем сероводорода. Видимо, это и произошло с появлением кислородного фотосинтеза, то есть бактерии, которые стали использовать воду, получили большое преимущество. Правда, при этом в качестве побочного продукта выделялся кислород, и его накопление было настоящей экологической катастрофой для древней биосферы.

В углеродном цикле фотосинтетическую функцию выполняют простейшие бактерии и высшие растения. Деструкцию также выполняют некоторые бактерии, грибы, небольшой вклад вносят животные. В последнее время, очень недавнее в эволюционном масштабе человек начал возвращать ту часть углерода, которая ушла из круговорота, обратно в атмосферу. Когда человек сжигает каменный уголь, он может сделать то, что не может сделать ни одна бактерия, то есть без помощи человека каменный уголь лежал бы инертный, исключенный из круговорота. Правда, при этом человек успевает внести значительную путаницу в биосферные процессы, загрязняя атмосферу веществами, к которым она не приспособлена. Хотя бактерии очень пластичны. Есть бактерии, которые питаются нефтью, то есть бактерий можно использовать для удаления некоторых загрязнений и в море, и в почве, но и они могут не справиться с антропогенными загрязнениями.

Общая схема отношений между разными типами бактерий представлена на схеме:



Мы уже говорили о том, что клетка представляет собой систему метаболических циклов. Биосфера представляет собой систему геобиохимических циклов. Если в клетке каждый метаболический процесс контролируют ферменты, то в биосфере такие метаболические циклы планеты контролируются группами бактерий определенных видов. То есть бактерии катализируют метаболизм в планетарном масштабе. В эту систему можно включать не только бактерии, но и другие организмы. Однако некоторые процессы (фиксация азота, метаболизм железа и серы) осуществляются только бактериями.

На рисунке представлен цикл Кребса (цикл трикарбоновых кислот):



Этот цикл назван по имени ученого, который его описал. В цикл Кребса поступают питательные вещества, потом они подвергаются циклическому преобразованию, идет поэтапное окисление молекул, в результате чего на определенных этапах энергия тратится на синтез АТФ.

Реакции цикл Кребса можно разделить на две половины, каждая из которых существует независимо в клетках от цикла Кребса. То есть цепь реакций, составляющая правую половину (см. рисунок) цикла Кребса, и цепь реакций, соответствующая левой половине цикла. Правда, в левой половине направления реакций не такие, как на предыдущей схеме, то есть это две цепочки реакций, не образующих цикл. Но если запустить левую часть в обратную сторону (а это вполне возможно, так как все ферменты могут проводить как прямые, так и обратные реакции) и соединить полученную цепь всего одной реакцией (на рисунке она указана пунктирной стрелкой), то получится высокоэффективный цикл Кребса.

Возможно, именно таким образом возник этот цикл — при объединении двух независимо возникших цепей реакций. Пока это лишь гипотеза, но сейчас существуют методы, позволяющие ее проверить. Можно проанализировать происхождение ферментов, ведущих этот цикл, и найти такие доказательства, в частности, изучая последовательности ДНК, которые кодируют эти ферменты.

Этот пример иллюстрирует идею блочной эволюции, то есть усложнения организации живых систем путем объединения блоков, сформировавшихся на предыдущем этапе эволюции.



Мы говорили об РНК-мире, то есть о мире, в котором уже существуют сложные биологические процессы. Теперь обратимся к вопросу о происхождении жизни.

В 1862 году Луи Пастер получил премию Французской академии наук за то, что доказал невозможность самозарождения жизни. Суть его опыта: в колбе с изогнутой трубкой, такой, что воздух мог в нее проходить, но пыль и микроорганизмы из воздуха попасть не могли, находился прокипяченный сенный настой. В течение нескольких недель он стоял совершенно прозрачный. Как только колбу наклонили (сквозь трубку в колбу попали микроорганизмы) — настой забродил. Вывод — живое только от живого.

Это было большим открытием, так как в то время были распространены взгляды, что самозарождение возможно (например, считалось, что мухи зарождаются в гниющем мясе и т. п.). После опытов Пастера господствовали взгляды, что все живое происходит только из живого, и образование живого из неживого невозможно.

Идея о том, что жизнь возникла абиогенным путем, то есть из неживой материи, была сформулирована в 20-х годах прошлого века А.И. Опариным и Дж. Холдейном почти одновременно и независимо. Они считали, что аминокислоты, нуклеотиды и другие молекулы, составляющие основу жизни, могли возникнуть абиогенно, в силу тех условий, которые существовали тогда на Земле. Концепция абиогенезе сейчас в научной среде считается принятой большинством ученых, хотя существуют и другие представления о происхождении жизни. Например, гипотеза о том, что споры первых появившихся на Земле организмов были занесены из Космоса. Однако это не снимает вопроса о происхождении жизни, просто переносит начальные события в другое, неизвестное место. В изучении происхождения жизни наиболее перспективным представляется сочетание подходов, учитывающие физические, геохимические и молекулярные процессы в атмосфере молодой Земли.

Таким образом, вам были представлены некоторые элементы в цепи событий, которые могли бы привести к появлению жизни на Земле, к эволюции метаболических циклов и появлению клетки.

Более подробно ознакомиться с этими вопросами можно в книгах:

Г. А. Заварзин. Становление биосферы. Вестник РАН. 2001, № 11.

Ю.В. Чайковский. Эволюция. М. Центр системных исследований, 2003. (Обстоятельный обзор истории эволюционных учений и современного состояния. Ряд положений рассматривается с позиций концепции номогенеза.)

К.Ю. Еськов История Земли и жизни на ней[2]. Учебное пособие для старших классов. М. Мирос, 2000.

Строение и функции прокариотической клетки

ЛЕКЦИЯ № 7

Немного истории. Аристотель пытался все объекты природы систематизировать. У него была "лестница существ". Внизу наиболее примитивно организованные камни, потом растения, животные и человек. Стремление к линейной классификации довольно долго сохранялось, но потом его пришлось отвергнуть, так как объекты живой природы не выстраиваются в единую лестницу. Деление на растения и животные известно давно. Эти группы называют царствами: царство растений и царство животных. Потом были описаны простые одноклеточные растения и животные, о которых не всегда понятно, растения они или животные. Они были выделены в группу одноклеточные (Протисты). Затем открыли бактерий и выделили их в отдельное царство. Позже в отдельное царство были выделены грибы. Для нас они кажутся похожими на растения, но, тем не менее, от растений они существенно отличаются, в частности, тем, что, как животные, запасают гликоген, а не крахмал.



Итак, живые организмы разделили на царства Растений, Грибов, Животных и Простейших (одноклеточных), и царство бактерий, в которую входили все прокариоты. Но когда изучали бактерий, оказалось, что они также делятся на две сильно отличающиеся группы. Соответственно, их пришлось разделить на два царства: Эубактерии (собственно бактерии) и Архебактерии (другое название — Археи). Последние также не имеют ядра, но по структуре сильно отличаются от бактерий.

Такое деление возникло недавно. В 1990 году вышла посвященная этой теме публикация. Деление было сделано на основе последовательности рибосомной РНК. Если раньше для того, чтобы описать какой-либо новый вид, нужно было изучить организм, описать, как он питается, его морфологию, и только после этого его можно было классифицировать, то сейчас классификацию организма можно провести, даже не зная, как он выглядит. Достаточно просеквенировать (определить последовательность нуклеотидов) его рибосомную РНК. И поскольку для многих организмов последовательность рибосомной РНК известна, то по степени сходства этих РНК строится классификация, а не по внешнему сходству или по особенностям метаболизма. Некоторые группы архебактерий так и были описаны: рибосомные РНК есть, а сами организмы пока никто не видел. В чем же смысл перехода к классификации по степени сходства рибосомной РНК? Рибосомная РНК отражает родство по происхождению, в то время как одинаковая форма может быть у совершенно неродственных животных. Если вспомнить лягушку, крокодила и бегемота, то окажется, что глаза у них из воды торчат похожим образом. Но эти животные относятся к разным классам. То есть, построение классификации на основе рибосомной РНК отображает родство организмов, но зато зачастую не отражает сходство в образе их жизни. Почему выбрана именно рибосомная РНК? Потому что это самая консервативная, т. е. наиболее медленно меняющаяся, часть генома. Ниже на рисунке представлено дерево родства разных организмов. На нем выделяются группы бактерий, архей и эукариот. Эти группы, более высокого ранга, чем царства. Их называют надцарства или домены. Термин домен используется в разных науках. В данном случае, в систематике, «домен» обозначает группу (рангом выше царства), объединяющую разные организмы, обладающие определенным набором общих черт.



Что же общего у бактерий и архей, что отличает их от эукариот?



Строение клетки прокариот

У прокариотических клеток есть цитоплазматическая мембрана, также как и эукариотических. У бактерий мембрана двуслойная (липидный бислой), у архей мембрана довольно часто бывает однослойной. Мембрана архей состоит из веществ, отличных от тех, из которых состоит мембрана бактерий. Поверхность клеток может быть покрыта капсулой, чехлом или слизью. У них могут быть жгутики и ворсинки.

Клеточное ядро, такое как у эукариот, у прокариот отсутствует. ДНК находится внутри клетки, упорядоченно свернутая и поддерживаемая белками. Этот ДНК-белковый комплекс называется нуклеоид. У эубактерий белки, которые поддерживают, ДНК отличаются от гистонов, которые образуют нуклеосомы (у эукариот). А у архибактерий гистоны есть, и этим они похожи на эукариот. Энергетические процессы у прокариотов идут в цитоплазме и на специальных структурах — мезосомах (выростах клеточной мембраны, которые закручены в спираль для увеличения площади поверхности, на которой происходит синтез АТФ). Внутри клетки могут находиться газовые пузырьки, запасные вещества в виде гранул полифосфатов, гранул углеводов, жировых капель. Могут присутствовать включения серы (образующейся, например, в результате бескислородного фотосинтеза). У фото-синтетических бактерий имеются складчатые структуры, называемые тилакоидами, на которых идет фотосинтез. Таким образом, у прокариот, в принципе, имеются те же самые элементы, но без перегородок, без внутренних мембран. Те перегородки, которые имеются, являются выростами клеточной мембраны.

Размер различных представителей прокариотов представлен на схеме ниже. Самая маленькая бактерия — это паразитическая микоплазма (она живет внутри клеток эукариот). Она имеет размер 0,1 мкм. Самые большие представители прокариот видны невооруженным глазом (граница видимости — 70–80 мкм). Эта спирохета имеет длину 250 мкм. Типичный же представитель прокариот имеет размер 0,5 мкм в ширину и 2 мкм в ширину. Для сравнения приведены размеры вируса герпеса — одного из самых крупных вирусов (имеет размер, сравнимый с размерами паразитической микоплазмы), и вируса желтой лихорадки — одного из самых маленьких вирусов, в пять раз меньше вируса герпеса; а также размеры молекул глобулярных белков и эукариотических одноклеточных организмов (размеры у них намного больше, чем у прокариот).



Форма прокариотических клеток не так уж и разнообразна. Круглые клетки называются кокки. Такую форму могут иметь как археи, так и эубактерии. Стрептококки — это кокки, вытянутые в цепочку. Стафилококки — это «грозди» кокков, диплококки — кокки, объединенные по две клетки, тетрады — по четыре, и сарцины — по восемь. Палочкообразные бактерии назыаются бациллами. Две палочки — диплобациллы, вытянутые в цепочку — стрептобациллы. Еще выделяют коринеформные бактерии (с расширением на концах, похожим на булаву), спириллы (длинные завитые клетки), вибрионы (коротенькие загнутые клетки) и спирохеты (завиваются не так, как спириллы). Ниже проиллюстрировано все выше сказанное и приведены два представителя архебактерий.




Рис. 1. Строение белковой оболочки Sulfolobus:

а — схеме поперечного сечения. Овальные элементы встроены в цитоплазматическую мембрану и служат якорями, через соединители они связаны с фигурными субъединицами трехлучевой симметрии, образующими пористый поверхностный белковый слой


Хотя и археи, и бактерии относятся к прокариотическим (безъядерным) организмам, строение их клеток имеет некоторые существенные отличия. Как уже было отмечено выше, бактерии имеют липидный бислой (когда гидрофобные концы погружены в мембрану, а заряженные головки торчат с двух сторон наружу), а археи могут иметь монослойную мембрану (заряженные головки имеются с двух сторон, а внутри единая целая молекула; эта структура может быть более жесткой, чем бислой). Выше представлено строение клеточной мембраны архебактерии.

По образу жизни археи отличаются от бактерий тем, что среди них нет паразитирующих организмов. Кроме того, археи часто живут в экстремальных условиях. Ниже представлен диапазон температур, в которых могут существовать прокариоты (от -10 °C до 110 °C). В зависимости от оптимальной температуры роста выделяют психрофилов (любителей холода), мезофилов (средний диапазон температур; к ним относятся все симбионты и паразиты человека) и термофилов (любителей тепла).



Фотосинтез и азотфиксация

Некоторые виды бактерий и архей способны к фиксации азота. Примерно половина азота, входящего в состав живых организмов, фиксируется бактериями. Азот-фиксация, то есть превращение атмосферного азота в различные соединения, осуществляется ферментом нитрогеназой. Фиксация азота — один из наиболее дорогих биохимических процессов: на фиксацию одной молекулы азота расходуется 16 молекул АТФ. Есть менее эффективные системы фиксации, которые расходуют для этих целей до 35 молекул АТФ. Есть и небиологическая фиксация азота. После того, как начали производить удобрения (промышленная фиксация азота), человек вполне успешно может конкурировать с биологическими фиксаторами и биосферой в количестве фиксируемого азота.

Фиксировать азот могут только прокариотические организмы. Все организмы, способные фиксировать азот, имеют сходные ферменты нитрогеназы. Нитрогеназа способна работать только в анаэробных условиях, в присутствии кислорода фермент инактивируется и фиксация азота останавливается.



Фиксированный азот уходит в органические соединения. Это процесс могут проводить бактерии и растения. Мы можем только переводить органические соединение в аммиак. Соединения аммиака также могут переходить в окиси азота, после фиксации которого бактериями вновь получается азот.



Фиксацию азота осуществляют около 250 штаммов эубактерий: азотобактерии, клостридии и др. Половину этих штаммов составляют разные виды цианобактерий, ранее называемые сине-зелеными водорослями.

Как уже говорилось, нитрогеназа чувствительна к кислороду. В его присутствии она инактивируется и тогда не обратима. А сине-зеленые водоросли занимаются фотосинтезом, при котором образуется кислород, и процесс фиксации азота несовместим с процессом фотосинтеза. В результате, днем нитчатая цианобактерия осциллятория занимается фотосинтезом, а ночью, когда фотосинтез не идет, она занимается фиксацией азота.

Единственный организм, способного одновременно проводить и фиксацию азота и фотосинтез, это цианобактерия Anabaena. Каким образом это осуществляется? Фотосинтез происходит в большинстве клеток (зеленые клетки на рисунке) на свету, и цианобактерия может использовать источники азота, растворенные в окружающей среде. Однако если азота не хватает, она переходит к фиксации азота. Для этого отдельные клетки, которые раньше занимались фотосинтезом, дифференцируются. Они называются гетероцисты. Это более крупные клетки, покрытые плотной оболочкой. Фотосинтез в них прекращается, и ферменты фотосинтеза из них исчезают. Зато начинается синтез нитрогеназы. Толстая оболочка не пропускает внутрь кислород, и в гетероцистах происходит фиксация азота, в то время, как все остальные клетки занимаются фотосинтезом. Все, что нужно гетероцисте для работы (в том числе и азот), она получает от соседних клеток через специальные межклеточные контакты, а сама гетероциста отдает соседним клеткам аминокислоту глутамин (посмотрите строение аминокислот в лекции 4), которая синтезируется после фиксации азота.



К фотосинтезу способны многие представители прокариот. Раньше мы упоминали уже, что фотосинтез бывает оксигенный и аноксигенный фотосинтез. Совмещают оба этих вида опять же цианобактерии. Большинство бактерий способны поводить только один из двух типов фотосинтеза. Встречаются фотосинтетики и среди архей.



Для фотосинтеза необходим свет. При этом используются световые волны определенного диапазона, который зависит от "настройки" биоантенн, улавливающих квант света. Жесткий ультрафиолет использоваться не может, так как он повреждает ДНК и белки. Растения реагируют на свет длиной волны до 700 нм.



Прокариоты пользуются более широким спектром излучения. Наиболее простая схема фотосинтеза — у архей галобактерии, живущей в Мертвом море. Красноватая окраска этих бактерий обусловлена наличием пигментов каротиноидов, защищающих клетки от фотоповреждений, которые вполне возможны при высокой интенсивности солнечного света. Фотосинтез у галобактерий проводится специальным белком бактериородопсином.

Этот белок находится в клеточной мембране, улавливает квант света и переводит его энергию в электрохимический заряд на мембране (DmH).

В качествен "антенны", улавливающей свет в бактериородопсине, используется ретиналь — светочувствительная молекула, такая же, как та, что содержится в родопсине, светочувстительном белке высших организмов.



Фотоантенной у цианобактерий и высших растений служат хлорофиллы. Это сложные полициклические соединения с наличием сопряженных связей.



Где живут бактерии

Мы рассмотрели некоторые особенности строения и функционирования прокариот, теперь рассмотрим, где они обитают.

Многие виды бактерий — свободноживущие организмы, способные синтезировать необходимые для жизни соединения из веществ, содержащихся в окружающей среде. Однако некоторые бактерии являются симбионтами или паразитами других организмов, чаще всего — эукариотических. Среди архей паразиты не обнаружены.

Бактерии могут вступать в симбиоз, как с одноклеточными, так и с многоклеточными эукариотами. Примеры — жгутиконосец цианофора и корненожка. Клетка цианофоры содержит две цианобактерии. Когда жгутиковая цианофора делится, то каждой дочерней клетке достается по одной цианобактерии, которые потом также делятся, чтобы восстановить количество цианобактерий на клетку цианофоры. Когда жгутиконосец содержит цианобактерии, он обладает фототаксисом, т. е. движением по направлению к свету или от него.

Корненожка также содержит внутри клетки цианобактерии, но другого вида. Свободноживущие бактерии и бактерии-симбионты отличаются по своим свойствам. Некоторые виды симбионтов способны покидать своего хозяина и переходить к самостоятельному образу жизни, тогда как другие виды цианобактерии не могут жить отдельно от хозяина. Такие утратившие самостоятельность цианобактерии называются цианеллами. Считается, что именно через симбиоз возникли хлоропласты высших растений. Предки хлоропластов — это свободноживущие цианобактерии.

Пример симбиоза животного с фотосинтезирующими одноклеточными представляет моллюск тридакна. Мантия моллюска набита водорослями зооксантеллами. Причем их так много, что моллюск не может затащить мантию внутрь. Водоросли занимаются фотосинтезом, а моллюск обеспечивает их безопасность.



Многие азотофиксирующие бактерии могут жить сами по себе. Некоторые виды также могут обитать в клубеньках бобовых растений. Как было сказано выше, эукариоты не способны к азотофиксации. Поэтому некоторые бактерии в симбиозе с высшими растениями обеспечивают их азотом. Симбиотические азотфиксирующие бактерии живут в клубеньках, которые образуются на корне растения в ответ на проникновение в него бактерий из почвы. На рисунке ниже показаны клубеньки на корнях бобового растения. Клетки такого клубенька набиты азотофиксирующими бактериями. Чтобы изолировать бактерии от кислорода растения синтезируют белок леггемоглобин, похожий по структуре на гемоглобин, который связывает кислород и защищает симбионтов от его действия.



Очень интересные организмы, похожие на растения, образуются при симбиозе некоторых видов грибов и бактерий, в том числе уже знакомых нам цианобактерий. Это лишайники. Для жизни им нужны лишь минимальные количества воды, так как бактерия обеспечивает фотосинтез, а гифы гриба защищают бактерий от высыхания и добывают воду. В симбиотическом состоянии бактерия продуцирует большое количество питательных веществ, которые передаются грибу, тогда как в свободном состоянии она обеспечивает только свои нужды. При улучшении условий составляющие лишайники бактерии и грибы могут выходить из симбиотического взаимодействия и жить самостоятельно. Лишайники — это тоже форма существования бактерий.



Еще один вид симбиоза представлен светящимися бактериями. Люминесценция некоторых подводных рыб обусловлена тем, что в их светящихся органах живут симбиотические бактерии. Свечение обусловлено работой бактериального фермента люциферазы. Ген, кодирующий этот фермент, выделен и используется в научных исследованиях.



Симбионты и паразиты человека

Бактериальные симбионты человека составляют его нормальную микрофлору. Они живут в кишечнике, на коже, на слизистых, обеспечивая либо защиту (конкурентным способом не давая другим, зловредным, бактериям заселить эти участки), либо участвуя в переваривании пищи и синтезировании некоторых, необходимых человеку витаминов. Мы уже упоминали симбионта человека кишечную палочку. Всего к нормальной микрофлоре человека относится около 500 видов бактерий. Если убить всех бактерий на коже или в кишечнике человека, то ничего хорошего из этого не получится. Роль нормальной микрофлоры изучена на стерильных животных. В специальных условиях выращивают животных (крыс или мышей), и смотрят, что с ними происходит в отсутствии бактерий. Надо отметить, что живут они не очень хорошо. Таким образом, каждый реальный человек — это не просто представитель вида Homo sapiens, а целая коллекция различных организмов.

Кроме нормальной микрофлоры человека есть бактерии, являющиеся паразитами. От вирусных и бактериальных инфекций погибает людей больше, чем от самых кровопролитных войн. Борьба с вирусными инфекциями началась в 1796 году с открытия Дженнером вакцины против оспы. В 1885 году Луи Пастер впервые привил укушенного бешеной собакой мальчика от бешенства. Сейчас существуют вакцины, способные защитить человека от очень многих инфекций.

Рассмотрим строение и жизненный цикл паразитических бактерий на примере возбудителей заболеваний, передающихся половым путем. Заболевания, передающиеся половым путем, вызываются бактериями, вирусами (т. е. одноклеточными) или грибами. В силу анатомических особенностей женщины больше подвержены инфицированию, чем мужчины. У женщин также легче диагностировать эти заболевания. Ниже перечислены возбудители различных болезней.



Половым путем также могут передаваться вирусы, например, вирус герпеса. Вирус герпеса вызывает образование пузырьков на коже, наполненных вирусными частицами ("лихорадку"). Среди населения западных стран 70–90 % инфицированы вирусом герпеса, у 30 % бывают высыпания, у 10 % — генитальные формы заболевания. Половым путем могут передаваться вирусы иммунодефицита человека (вызывает СПИД — синдром прогрессирующего иммунодефицита), гепатита В и С (поражают печень), папилломавирусы (вызывают разрастания кожного эпителия и образование бородавок; некоторые виды провоцируют развитие рака).


Рассмотрим строение паразитических микроорганизмов.

Возбудитель гонореи — гонококк — был открыт в 1879 году Нейсером (поэтому в честь открывателя латинское название этой бактерии — Neisseria gonorrhaea). Гонококк относится к группе диплококков. Под микроскопом он выглядит как пара кофейных зерен, лежащих рядом. На рисунке изображена характерная картина неполного фагоцитоза: лейкоцит пытается уничтожить паразитов, но микроорганизм способен защититься от его действия, и переварить его лейкоцитам не удается. Гонококк имеет размер клетки 0.7x1.7 мкм и строение, характерное для одноклеточных.



Среди возбудителей заболеваний, передающихся половым путем, ранее других были описаны гонококк, бледная спирохета и эукариотический организм трихомонада. Долгое время, ели у больного имелись признаки мочеполовой инфекции, но ни один из этих трех возбудителей не был выявлен, ему ставили диагноз "неспецифический уретрит". Однако во второй половине XX века были найдены возбудители "неспецифического" воспаления. К ним относятся гарднерелла, хламидия, уреаплазма, микоплазма и некоторые другие виды. Вызываемые ими заболевания отличаются тем, что часто проходят малосимптомно, остаются незамеченными носителем и переходят в хроническую форму. Хотя бы один из этих возбудителей встречаются у 30–50 % людей, у части людей (имеющих несколько половых партнеров) можно обнаружить целый "букет" возбудителей. До сих пор некоторые врачи считают, что эти бактерии неопасны. Это, неверно, давно уже показано, что эти бактерии являются не только возбудителями мочеполовых инфекций, одним из самых тяжелых осложнений которых является бесплодие, но и ряда общих заболеваний, просто устоявшиеся представления меняются медленно.

Бактерия гарднерелла, вызывающее гарднереллез — воспалительное заболевание мочеполовых путей — была описана в середине двадцатого века. Гарднерелла немного крупнее гонококка, имеет характерное для прокариот строение. В препаратах, полученных от больных, клетки эпителия полового тракта выглядят как бы «приперченными»; эти перчинки — как раз и есть гарднереллы. Они также вызывают воспаление урогенитального тракта, и самым тяжелым последствием такого заболевания является бесплодие.



Хламидия, внутриклеточный паразит, отличается от гонококка своим жизненным циклом и строением. Если гонококк — это внеклеточный паразит, т. е. он находится на тканях в промежутках между клетками, то хламидия неспособна жить вне клетки, и этим она сходна с вирусом. Вне клетки хламидия сохраняется в виде мелких частиц, называемых элементарными тельцами (0.2–0.3 мкм диаметром), которые являются инфекционными. Внутри клетки элементарные тельца увеличиваются в размерах и превращаются в ретикулярные тельца (размером 0.5–0.7 мкм). В таком виде они живут внутри клетки, используя в готовом виде питательные вещества. Хламидии также вызывают воспаление урогенитального тракта, но кроме этого хламидия давно известна, как возбудитель воспалительного заболевания глаз — трахомы. Течение хламидийной инфекции отличается тем, что со временем она генерализуется (распространяется из очага инфекции по всему организму). У человека появляются симптомы отита (воспаления уха), конъюнктивита (воспаления конъюктивы) и артрита (воспаления суставов). Это триада — конъюнктивит, отит и артрит — называется синдром Рейтера. Раньше считалось, что это осложнение гонореи. Только потом было обнаружено, что этот синдром вызывается отдельным микроорганизмом. Излечение от хламидий приводит к исчезновению всех этих симптомов. Хламидия имеет особенность часто распространяться вместе с гонококком в связи с тем, что пути распространения у них одинаковы, а лечить их необходимо по-разному. Поэтому после излечения от гонореи у больного оставалась хламидийная инфекция. В настоящее время разработаны эффективные методы диагностики, которые позволяют ставить диагноз и выбирать оптимальную схему лечения на ранних этапах заболевания.


Перейдем к вирусам.

Вирусы не относятся к прокариотам. Иногда их выделяют в отдельное царство, иногда описывают вне царств природы. Существуют некоторые проблемы с классификацией вирусов, споры на тему, считать вирусы живыми или неживыми. Раньше вирусы считались наиболее простыми организмами, так как они самые маленькие, и в них меньше всего белков и ДНК, и полагали, что от вирусов произошли все остальные организмы. Но сейчас, когда установлено, что вирусы без клетки жить не могут, нет оснований думать, что они появились раньше клетки. Видимо, наиболее близко к истине представление о том, что вирусы — это "взбесившиеся" гены, т. е. это гены, которые стали автономными и приобрели систему собственного размножения.

Несмотря на все различия в форме и размерах, все вирусы образованы сходным образом. Все они покрыты белковой оболочкой и в их состав входит нуклеиновая кислота — РНК или ДНК. ДНК может быть кольцевой или линейной, РНК может быть одноцепочечной или двуцепочечной.

ДНК-содержащие вирусы: герпес-вирусы (вирусы простого герпеса и ветряной оспы, цитомегаловирус); вирус натуральной оспы; папилломавирус; аденовирусы; вирус гепатита В.

РНК-содержащие: вирус гриппа; вирус кори; вирус бешенства; вирусы гепатита А и С; вирус иммунодефицита человека; ретравирусы.

Рассмотрим строение частиц вируса на примере вируса герпеса. Белковая оболочка вируса, называемая нуклеокапсид, построена из белков и представляет правильный шестигранник. Вокруг имеется оболочка, которую вирус строит из кусков клеточных мембран, которые организм не атакует, так как это мембраны его собственных клеток. Правда, эти мембрана инкрустирована вирусными белками, поэтому иммунная система вирус герпеса все-таки может распознать. «Заворачивание» в мембрану — это способ защиты вируса. Внутри белкового шестигранника находится линейная двуспиральная молекула ДНК. Ниже на рисунке справа изображена клетка, «нафаршированная» частицами созревающего вируса. Вирус герпеса размножается в клетках кожного эпителия, но при размножении частицы вируса инфицируют нервы, и по нерву вирус проникает в спинной мозг. Там вирусная ДНК встраивается в геном клеток корешков спинного мозга, поэтому, раз инфицировавшись, человек несет в себе вирусную ДНК. Излечить его навсегда невозможно, разве что вместе с клетками спинного мозга удалить. Время от времени геномные копии могут синтезировать новые вирусные ДНК. Но если у человека хорошо работает иммунная система, то у него имеются антитела, защищающие его от этого вируса. Эти антитела не дают вирусу выбраться из своего укрытия. Но при ослаблении иммунной системы, например, при простуде, титр антител в крови падает, вирусы выходят из клеток спинного мозга и по нерву добирается до кожного эпителия, и там он уже начинает размножаться. Поэтому пузырьки, высыпающие в тех местах, через которые вирус попал в организм — чаще всего на лице, на губах — называют "простудой".

Близким родственником вируса герпеса является вирус ветрянки. Ветрянкой человек болеет один раз в жизни, обычно в детстве. Все тело ребенка покрывается герпетическими пузырьками; потом вирус ветрянки также поселяется в спинном мозге, и активация вируса вызывает воспаление нервов и высыпания на кожи, которые называются опоясывающий лишай. Процесс довольно болезненный и может лишить человека работоспособности на месяц.



Папилломавирус гораздо более мелкий, по сравнению с вирусом герпеса. Принципиально строение такое же. Передается при непосредственном контакте, в том числе при половом контакте. Папилломавирус довольно распространен; он вызывает разрастание эпителия (образуются бородавки и папилломы). Некоторые штаммы этого вируса онкогенны — они вызывают рак шейки матки у женщин. То есть, это форма рака, передающаяся половым путем. Сейчас разработаны вакцины, предохраняющие человека от этой формы рака.


Вирус иммунодефицита человека



На рисунке представлена модель и фотография вируса иммунодефицита человека (ВИЧ). Вирус вызывает синдром прогрессирующего иммунодефицита (СПИД). Вирусная частица содержит несколько белковых оболочек, внутри которых находятся две молекулы вирусной РНК. Этот вирус поражает лимфоциты, клетки, защищающие организм от инфекции. Разрушая лимфоциты, он лишает человека иммунной защиты против различных инфекций. Именно сопутствующие инфекции или опухоли, которые развиваются из-за ослабления иммунной защиты, являются причиной смерти больных СПИДом.

Жизненный цикл вируса иммунодефицита человека характерен и для других вирусов, содержащих РНК, и встраивающих свой РНК-овый геном в геном хозяина.

Можно выделить следующие стадии:

1. Вирус прикрепляется к рецепторам на поверхности клетки.

2. Вирус проникает внутрь клетки с помощью этих рецепторов и "раздевается" — снимает с РНК белковую оболочку.

3. На вирусной РНК с помощью фермента обратной транскриптазы (ревертазы) синтезирует на РНК копию ДНК. Ревертаза входит в состав вирусной частицы. Сначала синтезируется одна нить ДНК, потом РНК в этом комплексе разрушается РНКазой, и синтезируется вторая нить ДНК.

4. ДНК-копия вирусного генома проникает в ядро и встраивается в геном клетки. После этого вирус может там существовать несколько лет, ничем себя не проявляя. Это называется латентной фазой.

5. На встроенной в геном хозяина вирусной ДНК происходит транскрипция, синтезируются вирусные белки. Они запускают процессы, необходимые для обработки РНК и превращения ее в форму, которая входит в состав вирусных частиц. Затем происходит сборка инфекционных частиц.

6. Новые вирусные частицы выходят из клеток. После некоторого преобразования белков, входящих в состав вирионов, частица становится инфекционной ("созревает"), и цикл может повториться опять.



Вероятность заражения ВИЧ при однократном воздействии

• Сексуальные контакты (вагинальные, анальные, оральные) 1,0%

• Переливание крови и препаратов из неё > 90%

• Парентерально (загрязнённые медицинские и др. инструменты) от 1,0 % до 90%

• Ранения медперсонала загрязнёнными инструментами <0,5%

• Перинатальное (беременность, роды) инфицирование от 2–5 % до 30%


Защитные средства.

Для защиты от инфицирования возбудителями заболеваний, передающихся половым путем, используют барьерные контрацептивы (мужские и женские презервативы), защитные кремы и капсулы (типа "Фарматекс" и "Патентекс", эффективно предохраняют от многих видов заболеваний, применяются до контакта, действие начинается через несколько минут после нанесения и продолжается несколько часов), жидкости, содержащие бактерицидные вещества (гибитан, мирамистин и др., применяются для профилактики сразу после контакта, спектр ограничен внеклеточными паразитами). Ко всем средствам защиты прилагается инструкция, которую необходимо соблюдать.



Небактериальные инфекции урогенитального тракта

Кроме бактериальных инфекций половым путем передаются также заболевания, вызываемые эукариотическими организмами — простейшими и грибами. К наиболее распространенным грибковым инфекциям, передающимся половым путем, относится кандидоз (молочница) — вызывается дрожжеподобным грибком рода Candida.

Воспаление мочеполового тракта вызвает трихомонада — простейшее одноклеточное. Как и все эукариоты, трихомонада имеет ядро, но, что интересно, у нее нет митохондрий. Энергообеспечивающие органеллы трихомонады называются гидрогеносомами. Они выделяют молекулярный водород и эффективны при недостатке кислорода, когда аэробное дыхание малодоступно. Гидрогеносомы являются эволюционными производными митохондрий, и это доказано тем, что в них нашли ДНК. Кроме трихомонад, их содержат некоторые другие простейшие.

Трихомонада способна поглощать другие микроорганизмы. На фотографии внизу изображена трихомонада с гонококками, которые она захватила. Она при этом защищает их от действия антибиотиков, поэтому врач всегда учитывает, какое сочетание возбудителей обнаружено. Вначале нужно вылечить трихомоноз, и только затем бактериальные инфекции.



Лечат эти инфекции с помощью антибиотиков. Первым был выделен антибиотик из плесневого гриба пенициллум. Открытие сделал в конце 1920-х гг. Александр Флеминг, сотрудник лаборатории при больнице в Лондоне (Нобелевская премия по медицине 1945). Антибиотик назвали пенициллином, его применение спасло жизни многих людей. Пенициллин действует на мембраны бактерий. Он относится к классу бета-лактамных антибиотиков. В молекуле этих антибиотиков есть так называемая лактамное кольцо. Оно имитирует элемент бактериальной клеточной стенки, поэтому ферменты, которые строят клеточную стенку, связываются с молекулой антибиотика и ингибируются. В клеточной стенке бактерии появляются "дыры", и клетка может просто лопнуть. К антибиотикам этой группы относятся также цефалоспорины.



Антибиотики других групп, в том числе тетрациклин, блокируют разные этапы синтеза белков на мРНК. Они действуют только на мелкие прокариотические рибосомы. У человека, также как и у других эукариотических организмов, рибосомы крупные. Но в митохондриях содержатся рибосомы прокариотического типа, и поэтому этот класс антибиотиков повреждает митохондрии. Обычно в первую очередь страдают митохондрии в клетках, работающих в среднем ухе, поэтому в качестве осложнений при лечении такими атибиотиками может развиться глухота. При лечении необходимо соблюдать рекомендованные дозы лекарства, и не использовать один за другим несколько антибиотиков с одинаковым побочным действием.

Противогрибковые антибиотики воздействуют на мембрану клеток грибов, поскольку грибы — это эукариоты, и на рибосомы у них воздействовать трудно. Мембраны у них отличаются от мембран человеческих клеток, поэтому можно блокировать ее синтез.


Литература

1. М.В. Гусев, Л.А. Минеева. МИКРОБИОЛОГИЯ учебник для студентов биологических специальностей университетов ИЗДАТЕЛЬСТВО МОСКОВСКОГО УНИВЕРСИТЕТА 1992

2. Мокеева Т.М. Заболевания, передающиеся половым путем. Биология в школе, 1996, № 2.

3. "Любовь земная", Энциклопедия "АВАНТА", том "Человек"

Поведение бактерий

ЛЕКЦИЯ № 8

Что из себя представляет поведение бактерий? Они могут только двигаться или плавать на месте. В принципе, к поведению можно отнести изменение метаболических циклов, но принято к поведению относить движение бактерий, то есть их реакцию на внешний мир.

Такие двигательные реакции впервые были описаны в девятнадцатом веке Теодором Энгельманом (он наблюдал скопление бактерий вокруг пузырьков воздуха) и Вильгельмом Пфеффером. Они наблюдали движение бактерий при добавлении в суспензию разных веществ. Бактерии плыли к внесенному в суспензию капилляру с питательными веществами, и даже набивались внутрь его. Работы были продолжены на совершенно ином уровне уже в середине двадцатого века. Были описаны различные реакции бактерий. Двигательные реакции назвали таксисами. То, что наблюдал Пфеффер, называется хемотаксис. Таксис — это двигательная реакция бактерии в ответ на появление в среде аттрактанта (вещества, привлекающие бактерии) или репеллента (вещества, отпугивающие бактерий). Понятно, что в естественных условиях аттрактантами являются вещества, полезные для бактерий, а репеллентами — те, которые бактериям вредны. К примеру, кислород привлекает аэробов и является репеллентом для анаэробов.

Аттрактанты — вещества, привлекающие бактерий: сахара, аминокислоты, пептиды, кислород для аэробов.

Репелленты — вещества, отпугивающие бактерий: кислоты, ионы тяжелых металлов, кислород для анаэробов.

Кроме химических соединений таксис у бактерий вызывают и другие стимулы. Так, фотобактерии реагируют на свет. Интересно, что свет является привлекающим стимулом до определенной интенсивности, а при слишком высокой интенсивности он вызывает негативный таксис. Выделяют отдельно аэротаксис — позитивную или негативную реакцию на кислород, термотаксис — реакцию на изменение температуры. У магнетобактерий выделяют магнетотаксис. У этих бактерий имеются магнетосомы (образования внутри клетки, содержащие соединения железа), которые помогают им ориентироваться в магнитном поле. Надо сказать, что в поле тяготения бактерии ориентироваться не могут — им просто нечем. А магнетотаксис помогает бактериям найти морское дно.

Восприятие различных стимулов осуществляется белками-рецепторами, расположенными на мембране, и передается через посредников (метилакцептирующие белки) на мотор жгутика. Метилакцептирующие белки — это белки, которые химически модифицируются путем «пришивания» метильной группы. Уровень метилирования белка зависит от концентрации того или иного вещества в окружающей среде. При этом, если хеморецепторов у клеток имеется всего 25 типов (а молекул рецепторов может находиться на мембране около 20000), то метилакцептирующих белков всего 4 типа. Они собирают все поступающие от рецепторов сигналы, и результирующий сигнал выходит на мотор жгутика, который управляет движением бактерии в зависимости от соотношения полезных и опасных веществ в окружающей среде.

Уровень метилирования у метилакцептирующих белков сохраняется до 2–3 мин, то есть ситуацию в окружающей среде бактерия может помнить и оценивать до двух-трех минут.

Размер кишечной палочки 0,5 мкм в диаметре и 2 мкм в длину. Она способна воспринимать изменения концентрации в 0,1 % от текущей концентрации. Будем считать, что это не зависит от концентрации, хотя, конечно, это не так. На самом деле есть минимальный уровень, который бактерия может рецептировать, и максимальный уровень, после которого повышение концентрации не влияет на поведение бактерии. Итак, вопрос заключается в следующем: каким должен быть градиент концентрации сахарозы, чтобы бактерия смогла плыть к вкусной сахарозе? Или тот же вопрос, сформулированный иначе: какого размера должна быть клетка, чтобы детектировать разницу, если концентрация меняется от 0 до 1 % на 10 см?



Правильный ответ на второй вопрос — 100 мкм. Рассуждения следующие: на один сантиметр разница концентраций составляет 10 % (разница между концентрацией в 1 % сахарозы и 0.9 % сахарозы), на 1 мм разница концентраций составит 1 %, на 0,1 мм — 0,1 %.

Таким образом, мы встречаемся со следующим парадоксом. Бактерия каким-то образом может находить питательные вещества, но в силу своих маленьких размеров и имеющейся чувствительности ориентироваться в пространстве не может. На самом деле, у нее есть еще одна проблема: из-за своих маленьких размеров она не может долго сохранять одно и то же направление движения, потому что возмущения в среде изменят это направление, независимо от ее попыток куда-то доплыть.

Как же эти проблемы были решены? Во-первых, детекция концентрации осуществляется не на разных концах бактериальной клетки, а в начале и конце трека пробега бактерии, длина которого составляет приблизительно 30-100 мкм. Далее, направление движения бактерии время от времени меняется случайным образом, причем бактерия не может выбирать направление движения, зато она имеет возможность регулировать продолжительность прямолинейного движения.

Проблемы бактерии при ориентировке в пространстве из-за малых размеров клетки:

— детекция градиентов концентрации

— невозможность сохранять постоянное направление движения

Решение:

— детекция осуществляется в начале и конце трека прямолинейного движения (протяженность трека 30-100 мкм)

— направление движения периодически изменяется случайным образом.

Регулируется продолжительность прямолинейного движения.

Ниже представлена схема движения бактерии. Когда мотор работает в одну сторону, все жгутики у бактерии складываются и крутятся вместе, и бактерия движется прямолинейно. В конце пробега бактерия останавливается, мотор переключается и начинает работать в другую сторону. Жгутики растопыриваются и «бултыхаются» независимо друг от друга. Бактерия при этом переориентируется в пространстве случайным образом. Этот процесс называется тамблинг (от англ. tumble — кувыркаться). После этого, мотор опять переключается и начинает работать в ту сторону, в которую жгутики работают вместе, и возникает следующий отрезок прямолинейного движения.



Параметры движения бактерии таковы: скорость перемещения во время пробега — 20–80 мкм/с (E.coli — 30 мкм/с) (для сравнения: аналогичная скорость для человека относительно длины тела — 100 км/ч). Время пробега обычно 1–3 секунды, переключение направления вращения мотора — 0.01 сек, тамблинг занимает 0.1 сек, время передачи сигнала от рецептора к мотору составляет 0.2 сек.

Если есть градиент концентрации аттрактанта, то движение бактерии выглядит следующим образом. Бактерия начинает движение, затем останавливается и переориентируется. При этом замеряется концентрация аттрактанта путем детекции изменения уровня метилирования метилакцептирующих белков. Если концентрация аттрактанта в конечной точке меньше, чем в начальной точке трека, то следующий раунд движения мотора будет дольше (и, соответственно, пробег длиннее). Если концентрация увеличилась, то следующий пробег будет меньше (зачем же бактерии убегать из хорошего места). Понятно, что, двигаясь подобным образом, она попадет туда, куда ей надо. В изотропной среде изменение направления движения бактерий остается случайным, а длина треков приблизительно постоянно (имеет случайные отклонения от среднего).



На рисунке ниже представлен график, иллюстрирующий поведение бактерии, при добавлении аттрактанта (чем хуже бактерии, тем длиннее ее пробеги).



Ниже представлено реальное стереоизображение трека движения кишечной палочки. Фотографии делали в течение 30 секунд. Количество точек — это количество фотографий кишечной палочки. Если вы умеете смотреть стереофотографии, то можно увидеть след движения в трехмерном пространстве.



В критических ситуациях, при падении ДрН (или концентрации АТФ в клетке) ниже критической величины (то есть когда энергозапасов уже не достаточно для того, чтобы вести обычный образ жизни) тамблинг прекращается, и бактерия совершает смертельный рывок — плывет прямолинейно в случайном направлении до тех пор, пока запасы энергии не будут исчерпаны. Иногда ей везет, и она успевает за счет этого рывка из последних сил выбраться из плохого места. Но если она не находит лучшее место для жизни, то она умирает.

Некоторые бактерии в критических ситуациях способны спорулировать (кишечная палочка к этому неспособна). Споры некоторых бактерий настолько живучи, что переживают кипение. Поэтому, когда микробиологи готовят среду для каких-то важных экспериментов, то они эту среду кипятят, затем дают постоять в тепле несколько дней, чтобы споры проросли, а затем опять кипятят (дробная стерилизация).

Таким образом, поведение бактерий мы можем назвать стратегией ненаправленного (случайного) поиска оптимальных условий. То есть, не имея в силу своих маленьких размеров возможности ориентироваться в пространстве, бактерия все равно оказывается там, где ей нужно. Можно сказать, что бактерия не воспринимает пространство, то есть ее пространство нульмерное, и жизнь ее течет только во времени.

Вывод: ПОВЕДЕНИЕ БАКТЕРИИ — СТРАТЕГИЯ НЕНАПРАВЛЕННОГО (случайного) ПОИСКА ОПТИМАЛЬНЫХ УСЛОВИЙ.


Дополнительный материал. Ориентация в пространстве одноклеточных и многоклеточных эукариот

Остановимся на способах ориентации в пространстве других существ. Размер эукариотической клетки порядка 30-200 мкм. Как было посчитано выше, размеры клетки достаточны для рецептирования градиентов концентраций. У одноклеточной эвглены есть хлоропласты и она способна к фотосинтезу. Для того, чтобы она могла оказаться в месте, где возможно заняться фотосинтезом, у нее есть светочувствительный глазок и стигма (это — скопление пигмента). Сама клетка прозрачная, а стигма — нет. Во время движения эвглена все время вращается, при этом стигма периодически затемняет фоточувствительный элемент. Причем частота этого затемнения зависит от того, движется эвглена по направлению к свету прямолинейно или под углом. От фоторецептора сигнал поступает на жгутик, который переориентирует эвглену таким образом, чтобы она двигалась к свету. У эвглены, как и у инфузории, есть хеморецепция. О хеморецепции поговорим на примере инфузории. Когда инфузория движется, она «машет» своими ресничками, которые покрывают тело инфузории, причем движение клетки происходит по спирали. При этом она воспринимает из среды химические сигналы либо вибрацию той частоты, которую издает объект ее питания. Вращаясь, инфузория сканирует пространство, и если там обнаруживается сигнал, то размах вращений сужается, инфузория переориентируется таким образом, чтобы сигнал поступал на передний конец тела, и плывет дальше к жертве, удерживая этот сигнал. Таким образом, у эвглены и инфузории мир одномерный.



Последний пример ориентировки в пространстве — это плоский червь планария. Он уже вполне макроскопических размеров. Живет этот червь на дне, и там есть все, что ему необходимо для жизни. Он способен воспринимать вибрацию и химические сигналы. Для ориентировки он поднимает передний конец тела, ориентируется в пространстве так, чтобы интенсивность сигнала на рецепторах, разнесенных на разные стороны головы, была одинакова, поворачивается в нужном направлении и ползет.



Ученые проводили следующий эксперимент. Они подвесили кусочек мяса на некотором расстоянии от дна. Червь ориентировался, полз в нужном направлении, проползал под кусочком мяса, останавливался, опять ориентировался, полз обратно, и ползал так очень долго, если только случайно при ориентировке не задевал кусочек мяса головой. Мир этой планарии двухмерен, то есть третье измерение она не воспринимает, так как оно ей не нужно.


СТРУКТУРА ГЕНОМА ПРОКАРИОТ

Все, что бактерия умеет делать кодируется ее генетическим аппаратом. То есть восприятие сигналов из внешней среды зависит от того, какие рецепторы находятся на мембране клетки, а рецепторы кодируются бактериальной ДНК. На примере кишечной палочки рассмотрим, как устроен геном бактерии. Геном — это совокупность всей наследственной информации. У кишечной палочки двухцепочечная ДНК замкнута в кольцо. Это кольцевая молекула состоит из 4,6 млн. пар нуклеотидов, что соответствует молекулярной массе 3х106 Да. Длина молекулы составляет порядка 1.5 мм. Время репликации этой молекулы 20 мин. Есть бактерии, которые размножаются медленнее, чем кишечная палочка.



Структура бактериальной ДНК как кольцевой была предложена в 1956 году Жакобом и Вольманом. Это было революционное предположение, так как до этого считалась, что ДНК линейная. Но революция во взглядах произошла еще раз, когда выяснилось, что геном бактерии может быть представлен как кольцевой, так и линейной молекулой ДНК. Кроме основной молекулы ДНК у нее могут встречаться (а могут и отсутствовать) плазмиды — небольшие (3–5 тысяч нуклеотидов) кольцевые или линейные ДНК, часто несущие гены устойчивости к антибиотикам и другие необязательные системы. Именно из-за наличия плазмид (а они способны передаваться горизонтально от клетки к клетке, даже между бактериями разных видов), распространение устойчивости к антибиотикам происходит очень быстро между всеми бактериями, живущими в одном месте.

То есть в состав генома бактерий могут входить как кольцевые, так и линейные молекулы ДНК. И геном может состоять из одной или из нескольких молекул ДНК, называемых хромосомами или плазмидами. Если гены, которые содержаться на дополнительной молекуле, необходимы клетке, то эта молекула называется минихромосомой, а если без них клетка может обойтись — то плазмидой.

Размеры молекул ДНК указывают в парах оснований, п.н. или bp (base pairs)

Для больших фрагментов используют т. п.н. или kb (kilo base)=103 bp и Mb (mega base)= 106 bp

Геномы бактерий — от 0.58 Mb у Micoplasma genitalium до 9.5 Mb у Myxococcus xanthus.



Как изучали геном бактерии. В середине двадцатого века был описан половой процесс у бактерий. Это процесс, при котором бактерии обмениваются своей генетической информации. На рисунке представлена схема этого процесса. Он называется конъюгацией. Во время конъюгации образуется цитоплазматический мостик, по которому происходит перенос молекулы ДНК из одной клетки в другую. У кишечной палочки имеется молекула ДНК, которая называется F-фактор (fertility factor — фактор плодовитости). Молекула F-фактора способна встроиться в геномную ДНК. В F-факторе кодируется специальный белок, который образует половые ворсинки, они называются F-пили. Эти самые ворсинки прикрепляются к другой клетке, которые F-фактор не содержат, и F-фактор инициирует репликацию. В процессе репликации образуется две копии молекулы ДНК, причем одна копия остается в исходной клетке, а вторая копия переносится в другую клетку. То есть, генетическая информация из одной клетки попадает в другую.

С ДНК, которая попала во вторую клетку происходит следующее. Хозяйская хромосома содержит такие же гены, как и тот кусок ДНК, который был перенесен в клетку. Однако варианты генов в исходной, донорной клетке, и в клетке-реципиенте могут отличаться. Например, в исходной клетке ген кодировал синтез фермента лактазы (расщепляет молочный сахар лактозу), а в рецепиенте такой же ген испорчен, то есть лактазу не кодирует из-за какой-то мутации. При этом бактерия не способна использовать сахар лактозу в среде.



Вновь прибывшая ДНК и хозяйская ДНК обмениваются гомологичными (то есть содержащими одинаковые гены) кусками. Образуется новое сочетание генов в хозяйской клетки. Среди ее старых генов оказывается встроен кусок с новым геном, прибывшим из клетки-донора. Этот процесс обмена кусками ДНК называется рекомбинацией. Та ДНК, которая в процессе рекомбинации оказалась не включенной в хромосому, деградирует и исчезает. Новый ген проявляет себя, клетка оказывается способной расщеплять тот сахар, который раньше использовать не могла. Это все детектируется исследователем. В такой ситуации ген лактазы называют генетическим «маркером», он маркирует участок хромосомы, связанный с определенным свойством бактерии (способностью расщеплять сахар, которую может детектировать исследователь).



Процесс репликации у кишечной палочки продолжается 20 минут, а процесс конъюгации длится 3–5 минут. За это время успевает перейти не вся хромосома, а только ее кусочек. Чем дольше длится конъюгация, тем больший кусочек успевает перейти из одной клетки в другую. Этот процесс позволяет определит какие маркеры поступили в клетку, если исходно клетки различались по нескольким генам. F-фактор способен встраиваться в разные участки хромосомы, и когда начинается передача, разные маркеры попадают в другую клетку. Проводили эксперимент. После конъюгации клетки встряхивали, и мостики между ними разрывались. Это встряхивание проводили через 2, 3, 5 минут, и смотрели, какие маркеры (и, соответственно, какой фрагмент хромосомы) за это время войдут. По этим данным строили генетическую карту (расположение друг относительно друга генетических маркеров). Генетическая карта кишечной палочки была построена в 60-х годах. На этой карте были гены-маркеры, расположенные по всей кольцевой хромосоме, а координаты генов на карте обозначались в минутах. Итоговая карта, построенная в 60-х годах, имела координаты в промежутке от 0 до 90 минут. Поэтому один известный микробиолог шутил, что кишечная палочка — это удивительный организм, у которой жизнь длится 20 минут, а половой процесс — 90 минут.




Построение такой карты было большим достижением, так как для кишечной палочки она была построена впервые; для других организмов существуют другие методы построения генетических карт, но все они основаны на рекомбинации. В начале 20-ого века были построены рекомбинационные карты для изучения генома мухи, а затем подобные карты стали использоваться для изучения генома человека.

Появились более точные технологии изучения генома бактерий, пределом точности является определение нуклеотидной последовательности, точнее карту построить невозможно. На этой карте расстояние обозначается уже не в минутах, а в парах нуклеотидов.

Метод определения последовательности нуклеотидов, или секвенирование, был разработан в 70-х годах. Две группы ученых независимо друг от друга разрабатывали эти методы. Один из них был разработан Сэнгером, второй — Максамом и Гилбертом, и все они получили в 1980 году Нобелевскую премию. До сих пор созданные ими принципы используются при секвенировании, сейчас уже проводимом не вручную, а автоматами.

В 1995 году был прочтен первый относительно небольшой геном бактерии Haemophilus influenzae. Это было огромным достижением, очень большой сенсацией. До этого удавалось определить полностью только геномы вирусов, которые на порядок меньше геномов бактерий. На настоящий момент полностью прочитаны геномы более 100 видов бактерий.


ЧТО УДАЕТСЯ УЗНАТЬ О БАКТЕРИЯХ ПО ИХ ГЕНОМУ

Состав генома (какие гены присутствуют)

Раньше, чтобы узнать что-то о бактерии, надо было долгие годы исследовать ее способность расщеплять те или иные сахара, другие питательные вещества, установить, какая температура оптимальная для ее роста, получить множество мутантов, для того, чтобы построить генетическую карту генома бактерии. Но сейчас можно очень многое узнать о неизвестной бактерии, если прочесть ее геном. По тому, какие гены входят в состав генома, можно определить, какой образ жизни ведет бактерия. Это важно для возбудителей различных заболеваний — по составу их генов можно установить, к каким веществам они чувствительны, и точно подобрать лекарство или создать новый эффективный препарат для лечения.

К примеру, размер генома паразитической бактерии микоплазмы (Mycoplasma genitalium) — 580000 пар нуклеотидов. 90 % ее генома кодирует белки, 10 % содержат регуляторные последовательности белков, т. е. белки не кодирует. У нее 4 68 генов (это можно с точностью определить по нуклеотидной последовательности генома).



Что означают различия в количестве кластеров рибосомной РНК? Кишечная палочка делится раз в двадцать минут, туберкулезная микобактерия делится раз в сутки. Кстати, это представляет трудности в диагностики туберкулеза (для того, чтобы выделить из мокроты больного эту бактерию, необходимо ее выращивать неделями, чтобы там что-то можно было проанализировать). Из-за того, что она так медленно растет, ей не нужно активно синтезировать рибосомы, поэтому у нее меньше генов, нужных для синтеза рибосом (в 10 раз меньше, чем у свободно живущей и активно растущей Bacillius subtilis).

Процент кодирующих последовательностей самый высокий у микоплазмы Mycoplasma genitalium. Она живет в постоянных условиях внутри клетки, ей мало что нужно регулировать. У других бактерий большую долю занимают кодирующие белки, а у человека, по сравнению с бактериями, кодирующие белки занимают намного меньшую часть генома (2 %). В принципе, это соответствует развитию общества: все меньшую часть занимает производство, и все большую часть занимает сервис и информационные технологии.


Ориентация генов (направление транскрипции)

Когда ДНК реплицируется, одна нить синтезируется непрерывно (ведущая нить), а на второй нити синтезируется фрагменты Оказаки, которые потом сшиваются (запаздывающая нить). Направление транскрипции большинства генов совпадает с направлением синтеза ведущей нити. Репликация ДНК начинается с точки ori, и идет в обе стороны. И соответственно, гены расположены преимущественно в том же направлении, в котором идет репликация. Поэтому при репликации транскрипция не прерывается надолго.



Минимальный набор генов живой клетки

Анализ полных геномов позволил определить минимальный набор генов, необходимый каждой живой клетке. Показано, что как минимум 250 генов необходимы для клеточной формы жизни. Сейчас ведутся попытки синтезировать ДНК, содержащую эти 250 генов с тем, чтобы посмотреть, получится ли живая клетка из того, что эта ДНК будет кодировать.


Минимальный набор 256 генов, необходимый живой клетке

Функция белков ∙ Число белков

Преобразование энергии ∙ 28

Транспорт и метаболизм аминокислот ∙ 11

Транспорт и метаболизм нуклеотидов ∙ 20

Транспорт и метаболизм углеводов ∙ 5

Метаболизм липидов ∙ 6

Метаболизм кофакторов ∙ 8

Биогенез рибосом и трансляция ∙ 94

Репликация, рекомбинация. Репарация, транскрипция ∙ 35

Структурная функция ∙ 7

Секреция к адгезия ∙ 5

Шапероны ∙ 13

Транспорт неорганических ионов ∙ 4

Предсказана гипотетическая функция ∙ 15

Функция неизвестна ∙ 4

Установлен по сравнению наборов генов M.geiiitalium и Н. in flu mzae.

Экспериментально исследован по инактивации генов В-subtilis (существ, часть генома 318 кb)


Разное количество генов отвечает за разные клеточные функции. Ниже приведено генов по функциям в геноме кишечной палочки.




Гомологичные гены и копийность генов

В геноме бактерий могут присутствовать гены, похожие по нуклеотидной последовательности. Такие гены называются гомологичными (гомо — одинаковый). Гомологичные гены могут появиться в геноме в результате удвоения (дупликации) одного гена. В этом случае их называют паралоги. При наличии в геноме нескольких гомологичных генов они могут приобрести разные функции. Если же два вида бактерий, имевших общего предка, разошлись, и у них сохранились гены, похожие по последовательности и часто совпадающие по функциям, то эти гены называются ортологами. Если ген попал в организм при горизонтальном переносе из другого организма в другой, то он называется ксенологом (ксено — чужой).



Некоторые гены, сходные по строению, но немного отличающиеся по функциям, имеют большую копийность в геноме. Ниже представлено количество копий разных генов в геноме свободноживущей бактерии Bacillus subtilis. Копийность генов связана с образом жизни бактерий. Это можно сравнить, к примеру, с языком. Так, у народов, занимающихся скотоводством, лошадь имеет множество названий (не как у нас: лошадь, жеребенок, мерин, а множество названий для лошадей разного назначения и разного возраста); у эскимосов много слов, обозначающих снег. Также, в геноме бактерий многокопийны те гены, которые важны для жизни бактерий. Говорят, это те гены, которые обуславливают экологическую специфичность.



Изменение функции гена в процессе эволюции

Гены, отвечающие за соседние реакции в метаболической цепи, часто расположены рядом на хромосоме. Например, на рисунке изображены 7 генов, отвечающих за синтез вещества хоризмата. Реакция проходит в 7 этапов. И эти 7 генов кодируют 7 ферментов, проводящие реакцию. В геноме гены расположены в том же порядке, в котором потом работают кодируемые ими ферменты. С этих генов считывается одна мРНК, на которой проходит трансляция. Синтезированные ферменты оказываются в цитоплазме клетки рядом друг с другом и передают субстрат один другому, последовательно проводя реакции.

У дрожжей нашли белок, который объединяет 5 функций. Он состоит из пяти глобул, связанных полипептидной связью, которые выполняют те же функции, что и отдельные белки в других организмах. Это пример того, что белки могут выполнять те же функции, независимо от того, объединены они в одну полипептидную цепь или нет.

Интересным примером являются археи. У них есть белки с аналогичными функциями. Когда посмотрели геном архей, оказалось, что 6 генов у них такие же, то есть эти 6 генов являются ортологами уже известных генов бактерий. Однако один ген здесь стоит совершенно другой, не ортологичный бактериальному, а родственный генам совершенно другого фермента. При биохимической проверке функции этого неортологичного гена оказалось, что она совпадает с функциями того гена, который должен находиться на этом месте.

И хотя новый ген полностью отличается по нуклеотидной последовательности от стоящих рядом, но выполняет он те же функции, что и стоящий на этом месте у бактерий белок. Это явление назвали неортологичеким замещением.



Ферменты могут менять специфичность в процессе



Мы говорили, что цикл Кребса мог возникнуть при замыкании двух реакций при добавлении всего одного фермента, и такие вот примеры показывают, что такой фермент мог быть рекрутирован из фермента с близкой ферментативной активностью.

Каким образом, геномы бактерий меняются в процессе эволюции? Все изменения можно классифицировать на пять групп: точечные замены (замены одной «буквы» на другую), дупликации и амплификации (копирование участков генома), делеции (выпадение участков генома), инверсии и транслокации (перестановка участка гена в другую часть генома или изменение его ориентации в геноме), горизонтальный перенос генов (фрагмент ДНК переносится из одной бактерии в другую).


ИЗМЕНЕНИЯ ГЕНОМА В ПРОЦЕССЕ ЭВОЛЮЦИИ

• точечные мутации

• дупликации и амплификации

• делеции

• инверсии и транслокации (изменение ориентации и положения фрагментов генома)

• горизонтальный перенос генов между организмами разных видов


Литература:

Б.В.Громов. Поведение бактерий. Соросовский образовательный журнал, № 6, 1997.

С.А.Боринская, Н.К.Янковский. Структура прокариотических геномов. Молекулярная биология, 1999, 33 (6):941–957.

Более подробно об истории изучения бактериальных геномов: Г.Стент, Р.Кэлиндар. Молекулярная генетика. М., "Мир", 1981.

Обзорная лекция по эволюции животных

Н.Е. Вихрев

ЛЕКЦИЯ № 9

Имеющая на сегодня место неоднозначность ответов на многие вопросы в биологии вообще и зоологии в частности делает непростым написание такого текста как этот. Но лучше небесспорная логика, чем нагромождение бессмысленных фактов. Ибо провал между знаниями узких специалистов и пониманием зоологии даже биологом, скажем, молекулярным, столь велик, что следует его чем-то вменяемым заполнить.


1. Кто такие животные (чем животные отличаются от растений).

Есть два типа питания живых организмов: автотрофный или растительный и гетеротрофный или животный. При растительном типе питания организм, во-первых, способен преобразовывать энергию солнечного света в форму, пригодную для использования для собственных нужд. Процесс не такой уж загадочный, как кажется на первый взгляд. Например, современный автомобиль не может ехать, используя в качестве горючего дрова, хотя дрова вовсе не плохое топливо. Но если дрова перегнать в спирт, то для многих автомобилей это уже вполне подходящее горючее. Растения превращают энергию фотона в энергию химической связи в молекуле аденозинтрифосфорной кислоты (АТФ), что соответствует реакции:

АДФ + ф + энергия фотона = АТФ.

Теперь АТФ может быть истрачена следующим образом:

АТФ = АДФ + Ф + энергия в форме, пригодной для совершения той или иной полезной работы, требующей энергетических затрат.

Будучи достаточно большой и химически нестабильной молекулой, АТФ хорошо служит для удовлетворения текущих нужд организма, но не пригодна для того, чтобы запасать энергию впрок. Для этого используются более простые и стабильные органические соединения, например, глюкоза. Соответственно, во-вторых, растительный тип питания характеризуется способностью синтезировать органическое вещество из доступных неорганических молекул в реакции:

СO2 + Н2O + энергия —> O2 + (СН2O)n.

Полученную таким образом глюкозу растения тратят тремя способами.

a) Часть глюкозы по мере необходимости вновь сжигается для обеспечения организма энергией: O2 + (СН2O)n = СO2 + Н2O + АТФ (этот процесс называет ся дыханием).

b) Другая часть используется для синтеза полимера глюкозы — целлюлозы, из которой строится скелет растения (те самые дрова, которые не годятся для автомобиля). При этом растительный скелет строится на клеточном уровне, в виде твердой клеточной оболочки, а макроскелет состоит из соединенных клеточных оболочек.

с) Наконец, глюкоза расходуется на синтез всех прочих органических веществ, среди которых наиболее важны нуклеиновые кислоты — полимеры 4-х нуклеотидов и белки — полимеры 20 аминокислот.

Описанное выше в п.п. а, Ь, с использование органического вещества, будь то глюкоза или иное, характерно и для животного типа питания, с той разницей, что исходное вещество они получают не в результате фотосинтеза, как растения, а просто съедая растения (или друг друга).

Животный тип питания характерен для нефотосинтезирующих бактерий. Но бактерии, вне зависимости от того, являются они авто- или гетеротрофами, отделились от организмов, в клетках которых есть оформленное ядро, на очень раннем этапе развития жизни и принципиально от них отличаются. Гаплоидный (из одной копии) геном прокариотов определяет особенности их эволюции. Бактерии «не помнят прошлого и не думают о будущем, живя сегодняшним днем». Соответственно, и рассматриваются они отдельно от высших организмов.

Из высших организмов гетеротрофами являются грибы и животные, которые реализуют две противоположные стратегии выживания.

Грибы лишены способности к движению и, следовательно, активному захвату пищи. Казалось бы, для организма с животным типом питания такой выбор самоубийственен. Но это не так. Дело в том, что более 90 % биомассы планеты, т. е. 90 % потенциального источника органического вещества для гетеротрофов, составляют растения, а более 90 % биомассы растений приходится на скелетообразующую целлюлозную клеточную оболочку. Но этот полимер химически весьма инертен и очень медленно поддается расщеплению на молекулы глюкозы. В результате целлюлоза — негодный корм для активных организмов, поскольку не покрывает их высокие энергетические затраты. А вот для неподвижных грибов такой труднодоступный, но практически неисчерпаемый источник органического вещества вполне годится и позволяет им процветать на Земле. Поселившись, например, на стволе мертвого дерева, гриб неторопливо его растворяет и впитывает раствор поверхностью тела.

Настоящие животные избрали активный образ жизни, что дает им возможность и, в то же время, обязывает использовать более калорийные источники пищи, например, не целлюлозу, а грибы, ее переработавшие. Как следствие этого выбора, использование органического вещества у собственно животных происходит иначе, чем это характерно для растений.

a) Ведя активный образ жизни (передвигаясь), животные в процессе дыхания сжигают для извлечения энергии значительно большую часть органического вещества, чем растения.

b) Целлюлозный клеточный скелет, характерный для растений (и для грибов) не приемлем для двигающихся животных и отсутствует у них. Поэтому для «строительных» нужд они используют сравнительно немного глюкозы.

c) Животные вторично утратили способность синтезировать из глюкозы многие необходимые им органические вещества. Ибо, зачем утомляться, если эти вещества можно получить из съеденных организмов непосредственно?


2. Биологическая систематика

Имеет смысл разобраться с принципами систематики, в соответствии, с которой царство животных разбито на группы, прежде, чем мы перейдем к знакомству с ними.

Когда отец систематики Карл Линней разбил живые организмы на группы, то он сделал это хотя и интуитивно, но весьма удачно. Например, отнес филина и журавля к птицам, а жирафа и медведя к млекопитающим. А ведь можно было бы объединить в группу длинношеих жирафа и журавля, а остальных отнести к короткошеим. Однако следует как-то определиться, какие признаки более, а какие менее существенны, иначе можно бесконечно и бессмысленно спорить до хрипоты о том, что просто является делом вкуса. С появлением эволюционной теории стало ясно, что должна отражать правильная систематика: она должна отражать происхождение организмов, степень их родства друг с другом, т. е. как давно жил общий предок двух организмов или двух групп организмов. Если очень давно, то это разные типы животных, если не так давно — классы, если еще позже — отряды и т. д. Соответственно, важны консервативные признаки, которые указывают на то, как выглядели много миллионов лет назад предки организма (например, количество сегментов у личинки), а более заметные признаки нередко вовсе не существенны, например, мышь альбинос все равно мышь. И при таком подходе неизбежны жаркие споры о классификации между специалистами, но споры эти, по крайней мере, не беспредметны.

Наглядный пример — крылатые насекомые. Крылья у них сконструированы совершенно иначе, чем у других активно летающих животных. Это всегда выросты покровов спинной стороны 2-го и 3-го сегментов груди. Крылья всегда приводятся в движение не непосредственно, а мускулами, двигающими скелетизированные участки сегментов, к которым крылья прикреплены. Крылья имеют скелет — жилки, основная геометрия которых очень консервативна и совпадает у всех насекомых. Крылья отсутствуют у личинок. И еще много чего… Т. е., у всех насекомых крылья устроены одинаково, а больше ни у кого так не устроены. А у вшей, например, от крыльев не осталось и воспоминаний, но все равно иннервация и мускулатура 2-го и 3-го сегментов, ясно указывают, что они там когда-то были. Единственное разумное объяснение этого — предположить, что такие крылья возникли единожды в ходе эволюции, а значит, все насекомые имеют общего предка, который более никому общим предком не был. А значит все насекомые — монофилетическая (родственная, имеющая общего предка) группа, и выделение их всех в отдельный класс абсолютно правомерно.

В последнее время появился новый метод определения степени родства — сравнение непосредственно геномов разных организмов. В ближайшее время молекулярно-генетические исследования очень многое изменят в наших представлениях о том, какова была на самом деле история происхождения жизни на Земле, и появится новая систематика, наверняка не очень неудобная в использовании. Во-первых, кое-какие кажущиеся похожими группы организмов окажутся вовсе не родственны друг другу, во-вторых, придется отказаться от рангов, вроде семейства, отряда и т. п., и просто построить систему в виде огромного ветвящегося дерева, что добавит немало трудностей начинающим изучение биологии. Ну и ладно, разберутся как-нибудь.

По-другому решается только вопрос о том, относятся два организма к одному виду или к разным. Вид — это множество особей (или множество популяций особей) между которыми обмен генами осуществляется постоянно, эпизодически или, хотя бы, теоретически возможен. Пока это происходит, эволюционная судьба всего множества организмов общая, а если процесс обмена генетической информацией прерван, то каждая группа идет своим путем. Как правило, сначала возникает географическая изоляция, например река разделяет две половины популяции, а потом, когда река вновь пересохнет и популяции смешаются, может оказаться, что они теперь изолированы не географически, а генетически, т. е. возникли два разных вида. Критерий репродуктивной изоляции иногда поддается экспериментальной проверке, но чаще носит теоретический, умозрительный характер. Например, две популяции еще географически разделены и кто знает, как они себя повели бы, если бы преграды не было. Или, искусственно овчарку можно оплодотворить спермой таксы, а при одичании этих собак, такое развитие событий выглядит маловероятным. Или организмы вообще утратили половое размножение, и остается лишь спрашивать себя, а что было бы, если бы не утратили. Но лучше уж такой философский критерий, чем вовсе никакого.


3. Простейшие

Как и прокариоты (бактерии), высшие одноклеточные организмы бывают и с растительным, и с животным типом питания, и рассматриваются одни в курсе ботаники, другие зоологии. Искусственно такое деление или нет, не очень понятно, но оно удобно для данного материала.

К зоологическому типу простейших относятся:

a) Несколько, вероятно, неродственных групп паразитических организмов, сильно измененных из-за такого недостойного образа жизни. Это явно боковые ветви эволюции простейших.

b) Инфузории — очень специализированные свободноживущие организмы, иллюстрирующие предельные конструктивные возможности в рамках одноклеточности.

c) Группа амеб и жгутиконосцев, наиболее близкая к исходной организации простейших и исходная для перехода к многоклеточности. Посмотрим на их примере, как живут простейшие. Главное заключается в том, что все задачи, стоящие перед организмом должны быть решены силами одной клетки. Функционирование клетки — предмет цитологии, мы же рассмотрим только некоторые особенности, специфические для простейших и важные для дальнейшего изложения.

Размножение и половой процесс. Тут не должно быть путаницы. У людей, например, размножение и половой процесс совмещены, и мы можем воспринимать это как само собой разумеющееся совмещение и для других организмов. Но размножение — это просто увеличение количества особей. При этом дочерние особи получаются идентичными родительским, т. е. применительно к людям, происходило бы то, что сейчас называется клонированием. Половой процесс, напротив, происходит не для увеличения количества особей, но с целью увеличения генетического разнообразия популяции.

На первый взгляд может показаться, что генетическое разнообразие — задача совершенно второстепенная по сравнению с размножением. Зачем тратить столько энергии на перекрестное оплодотворение, а в результате, наряду с жизнеспособным потомством, плодить и уродов, которые все равно выбраковываются естественным отбором? Можно привести примеры высших растений, которые утратили половой процесс и, размножаясь вегетативно, процветают, или высокоорганизованных животных, успешно размножающихся партеногенетически (т. е. откладывая неоплодотворенные яйца). Все так, но благоденствие этих видов будет, увы, очень недолгим, поскольку совершенная конструкция, отобранная для копирования, совершенна только для определенных условий существования, а условия эти как раз очень непостоянны. Нельзя ответить на вопрос что лучше — сапоги или сандалии, не зная где и когда их придется носить, одинаково смешон человек в сапогах на пляже и в сандалиях зимой. При половом процессе популяция накапливает резерв генетической изменчивости и, рекомбинируя генотипы, создает в каждом поколении особей, способных эффективно ответить на сегодняшние или будущие вызовы среды. При этом немалые издержки ресурсов, которые тратятся на половой процесс, с лихвой окупаются.

Так вот, простейшие — это группа организмов, у которых половой процесс еще отделен от размножения, которое происходит при простом митотическом делении клеток. При половом же процессе сначала происходит мейотическое деление клетки, которое имеет результатом перегруппировку генов в хромосомах и редукцию хромосомного набора до гаплоидного (одинарного). Далее у жгутиконосцев происходит слияние таких гаплоидных клеток, а у инфузорий конъюгация, в ходе которой клетки сначала сближаются, затем обмениваются гаплоидными ядрами (у каждой особи их к этому моменту по два), затем ядра попарно сливаются, восстанавливая исходный диплоидный (двойной) набор хромосом. И в том, и в другом случае, никакого размножения, только генетическая рекомбинация.

Движение простейших происходит либо с помощью жгутика или многих жгутиков — ресничек (как у инфузорий), либо перетеканием тела (как у амеб).

Питание. Для животного питания необходимо растворить другой организм, т. е. превратить его белки в 20 аминокислот, ДНК в 4 нуклеотида и т. д. Затем эти универсальные органические вещества можно использовать для извлечения энергии и для строительства собственных белков, ДНК и т. д. Необходимые ферменты, катализирующие такие реакции, у простейших имеются. Беда только в том, что окружающая среда, будь то океан, пруд или капля, очень велика по сравнению с, например, амебой, поэтому, просто выделив эти ферменты в пруд, амеба никакого успеха не добьется, а только зря потратит ресурсы. Следовательно, необходимо уменьшить объем среды до такого, в котором процесс пищеварения станет эффективен. Амеба добивается этого, обволакивая добычу и заключая ее в пищеварительную вакуоль. Другие простейшие делают в принципе то же самое, с той разницей, что пищеварительные вакуоли образуются не в любом месте клетки, а в определенном, а подогнать добычу к нужному участку помогают жгутик или реснички. Другая амеба может съесть первую, если имеет достаточные размеры, чтобы заключить ее в свою пищеварительную вакуоль. Бесконечно так продолжаться не может, поскольку, размер клетки, при котором она может функционировать, ограничен. Как защититься маленькой амебе? Выход один — объединиться. При этом те амебки, которые окажутся внутри скопления, лишатся доступа к источнику питания и либо вымрут, либо переберутся наружу. В результате получится полый шар — колония простейших (рис. 1, 2).



Рис. 1. Принцип поедания одним простейшим другого.



Рис. 2. Объединение в колонию как защита от хищников.


Такое защитное построение таит в себе и атакующие возможности, но это уже следующая история, история о многоклеточных животных.


4. Тип кишечнополостные

Полый однослойный шар может быть вогнут внутрь себя, и это не слишком изменит его жизнь, но внутри образуется полость, куда вполне поместится и может быть переварена самая большая отдельная амеба (рис. 3).



Рис. 3. 1 — колония простейших; 2 — вогнутая колония простейших (= кишечнополостное); 3 — кишечнополостное — суперхищник в мире простейших.


Эта простая схема в принципе вполне отражает конструкцию кишечнополостных. Великий прорыв к многоклеточности совершен по нехитрой схеме: скопление — шар — вогнутый шар, для решения насущной задачи — не быть съеденным и съесть другого. Главное приобретение, объединившее клетки в единый организм — гастральная или кишечная полость, участок пространства позволяющий реализовать животный тип питания, прототип нашей кишечной трубки. Все прочие особенности строения кишечнополостных — это приспособления, обслуживающие работу кишечной полости по перевариванию других организмов, для чего требуется решить две основные задачи.

Во-первых, часть времени надо держать полость замкнутой, отделенной от окружающей среды для эффективного пищеварения, и часть времени эту полость надо открывать для попадания пищи и удаления непереваренных остатков. Решение, что в данный момент надлежит делать, принимает специализированная группа клеток — нервные клетки. Эти клетки должны уметь возбуждаться в ответ на стимулы окружающего мира и должны уметь передавать это возбуждение другим нервным или иным клеткам организма. У кишечнополостных нервные клетки располагаются во внешнем слое клеток — эктодерме (внутренний называется — энтодерма). Такое приграничное положение, если вдуматься, естественно, для клеток, отвечающих за контакты организма со средой. У всех других многоклеточных животных нервные клетки также имеют эктодермальное происхождение, хотя располагаются во взрослом состоянии уже отнюдь не снаружи.

Во-вторых, появляются клетки, способные собственно осуществить это замыкание, т. е. мышечные клетки, обладающие способностью сокращаться.

В-третьих, внутренние клетки, выстилающие кишечную полость, уже вполне специализируются на пищеварении, не отвлекаясь на иную деятельность.

У кишечнополостных есть и тип клеток, не имеющий аналогов у других организмов — стрекательные клетки, которые убивают добычу, впрыскивая в нее яд через полую нить.

Есть еще один тип животных — Губки, для которых характерно то, что клетки их тела хоть и специализированы, но способны эту специализацию менять. Отнесение губок к настоящим животным не бесспорно.

Кишечнополостные — настоящие животные, и им присущи две особенности, характерные для всех многоклеточных животных и не характерные ни для кого более:

А) наличие 2 клеточных слоев — эктодермы и энтодермы (энтомезодермы), которые выделяются в раннем развитие и образуют в дальнейшем различные ткани. Причем ткани, являющиеся производными одного из этих слоев, не могут образоваться из клеток другого и наоборот.

Б) образование в эктодерме нервных клеток.

Несмотря на простоту организации и глубокую древность, кишечнополостные вполне процветающая и поныне группа, населяющая свою родину — мировой океан. У кишечнополостных есть две жизненные формы — полип (вогнутый шар лежит на дне с кишечной полостью, открывающейся вверх) и медуза (вогнутый шар плавает у поверхности с кишечной полостью, открывающейся вниз). У подтипа медуз полипоидное и медузоидное поколения чередуются.

Живущая в пресной воде (которую освоили очень немногие кишечнополостные) представитель этого класса — гидра утратила медузоидное поколение. За жизнью гидры можно понаблюдать в обычном аквариуме.

Для некоторых медуз характерно лишь медузоидное поколение, а для подтипа Коралловых полипов — только полипоидное. Медуз видели все, кто был на море. В тропиках немало медуз жалящих не просто неприятно, но и опасно. В кухне стран Юго-Восточной Азии медуз с удовольствием едят, блюдо получается вкусное, напоминает мягкие хрящики.

Живущие на дне коралловые полипы менее заметны. Но результаты их деятельности можно увидеть, даже не выходя из дому, на географической карте. Многие острова в экваториальной части Тихого Океана созданы именно отложениями отмерших кораллов. Если кораллы обрастают кратер потухшего подводного вулкана, то образуется типичный атолл, кольцевидный остров с лагуной в центре. Интересно, что кораллы как сейчас не могут жить при температуре воды холоднее +20, так и никогда не могли в далеком прошлом. Поэтому по находкам ископаемых кораллов можно строить заключения о климате (и, соответственно, географическом положении) континентов в палеозое, например.


5. Радиально-симметричные животные

Для животных, ведущих неподвижный образ жизни лежа на дне или дрейфуя у поверхности воды, среда неоднородна в направлении верх-низ, но одинакова по сторонам света. Соответственно для таких животных характерна радиальная симметрия тела. Помимо кишечнополостных первичной радиальной симметрией обладают гребневики. Гребневики — особый тип животных, по строению они похожи на медуз, но явно им не родственны. Одна из особенностей гребневиков то, что органами движения им служат ряды гребных пластинок, образованных пучками ресничек.

У активно двигающихся животных среда становится неоднородной и в направлении вперед-назад и, как следствие, появляется хорошо нам знакомая по строению собственного тела двусторонняя симметрия. При вторичном переходе к неподвижному образу жизни, как например, у иглокожих (морских звезд), развивается вторичная радиальная симметрия, но утраченная двусторонняя симметрия сохраняется в асимметрии расположения некоторых органов взрослого животного или, еще чаще, в строении личинки.

Перейдем к двустороннесимметричным.


6. Тип Плоские черви

Предположим, что кишечнополостное животное легло на дно. Такое положение представляется вполне рациональным, если, например, имеет место постоянное горизонтальное течение. Если течение ослабеет впоследствии, то это можно скомпенсировать собственным движением. Что из того, что имелось у радиальносимметричных предков можно приспособить для активного движения? Реснички и мышечные клетки. Реснички имеют тот недостаток, что, будучи клеточными органеллами, они пригодны лишь для очень некрупных организмов или как дополнительный двигатель. Что реально у плоских червей и наблюдается. Другой ресурс — мышечные клетки. Следует просто увеличить их количество, и получится кожно-мускульный мешок, согласованные сокращения которого позволят вполне внятно передвигаться в водной среде. Нарастить мышечные клетки — дурацкое дело — нехитрое, а вот добиться согласованности их сокращений совсем не так просто. Нервная система кишечнополостных была диффузной, т. е. представляла собой равномерную сеть нервных клеток на теле животного. Раздражение любой из клеток приводило к возбуждению всех остальных нервных, а затем и всех мышечных клеток. Плоским червям такой примитивной реактивности уже не достаточно, требуется центр хранения программ действий и центр обработки информации, поступающей от органов чувств, для запуска одной из имеющихся программ. Нервные клетки вокруг первичного рта умножаются и группируются, образуя такой центр — кольцевое окологлоточное скопление, а от него тянутся назад нервные стволы. Принципиально таким же образом устроена и нервная система большинства других беспозвоночных, включая и насекомых с их сложным поведением.

Увеличение количества мышечных клеток создает еще одну проблему — тело червя становится достаточно толстым, и поступление веществ от клеток, выстилающих кишечную полость, к остальным клеткам за счет диффузии становится недостаточно эффективным. А двигательная активность как раз такой эффективной передачи требует. Плоские черви решают эту проблему разветвлением кишечной полости, веточки которой близко подходят к разным участкам тела.

Еще одна проблема, с которой приходится сталкиваться плоским червям, также проистекает от утолщения тела. Куда девать ненужные продукты обмена образующиеся в клетках — например, избыток азота, который у людей выводится в виде мочевины, а у некоторых других животных в виде иных соединений? У двуслойных кишечнополостных вопрос решался просто — клетки и экто- и энтодермы могли непосредственно выбрасывать их во внешнюю среду. А у многослойных червей продукты оказываются и внутри организма тоже. Приходится обзавестись специальными клетками, чья функция — очистка внутренней среды организма путем выброса наружу вредных веществ, т. е. тех, чьи концентрации становятся нежелательно высокими.

Так в основном устроены свободно живущие в водной среде плоские черви, относящиеся к классу Ресничных. Есть еще немало паразитических плоских червей, измененных и упрощенных так, что мать родная не узнает, но ими пусть занимаются специалисты или те, у кого глисты.


7. Тип Круглые черви или Нематоды

Тем, у кого глисты и эта глава рекомендуется. Но паразитические круглые черви не сильно отличаются по облику от свободноживущих. В сечении все нематоды действительно круглые. По сравнению с плоскими червями круглые имеют два усовершенствования.

Во-первых, появляется кутикула — защитная пленка, выделяемая клетками эктодермы и покрывающая тело червя. Наличие кутикулы, предохраняющей нематод от быстрого высыхания, позволило им освоить такую среду обитания как почва. Речь идет, конечно, только о горизонтах почвы, где воздух почти постоянно насыщен водяными парами, но и это большое завоевание.

Во-вторых, у нематод появляется первичная полость тела. То пространство, между кишечной полостью и наружными покровами, которое у плоских червей заполняли мышечные клетки и клетки рыхлой паренхимы, теперь заполняется жидкостью. Клетки паренхимы и, частично, мышечные клетки при этом редуцируются.

Появление полости решает немало проблем. Теперь обмен веществами между клетками через полостную жидкость происходит намного эффективней и отпадает необходимость в разветвленном, как это было у плоских червей, кишечнике. А неразветвленный кишечник позволяет, наконец-то, обзавестись анальным отверстием — простым, но полезным приспособлением. Другое применение — опорное: столбик несжимаемой жидкости, заключенный даже в тонкую кутикулу, создает некое подобие скелета, достаточно прочное, чтобы крошечные нематоды могли существовать в почве в воздушной среде (плоских червей просто размазало бы по субстрату). Рациональней становится и работа выделительной системы, теперь нефридии чистят полостную жидкость, куда клетки все ненужное им выделяют.

Нематоды и сегодня богатая видами и повсеместно распространенная группа животных. За создание полости тела им пришлось заплатить исчезновением части мускульного мешка. Усеченная мускулатура и круглое сечение делают их никудышными пловцами. Но для донных и почвенных обитателей, коими является огромное большинство нематод, круглое сечение благо, а примитивность движений — невеликая беда.


8. Тип Кольчатые черви

Напомним себе, что в существовавшем когда-то в архее мире червей — существ, не умевших кусаться, размер был очень важен. Он позволял проглотить более мелких, а более крупные никем не могли быть проглочены. Все нематоды мелкие. И у желеобразных плоских червей больших размеров достигли лишь паразиты кишечника позвоночных, и то «недавно», тогда, когда эти позвоночные появились.

Всякая конструкция имеет свои оптимальные размеры, имеет минимальные и максимальные, за пределами которых она нежизнеспособна. Это было справедливо по отношению к клетке, справедливо и по отношению к червю. Покрытое тонкой кутикулой, нежное тело червя очень ранимо, причем тем более, чем он крупнее — это с одной стороны. С другой, некоторые системы или не рассчитаны на обслуживание большого тела, или попросту отсутствовали за ненадобностью.

Самые крупные черви — кольчатые. Как и нематоды, они имеют поверхностную кутикулу и полость тела. Полость тела кольчецов называется вторичной или целомом, и развивается из специальных зачатков — парных полых целомических мешков, которые разрастаясь, вытесняют первичную полость тела. Эволюционно полость нематод и целом — совсем разные полости, но конструктивно отличия не принципиальны. Конструктивных новшеств тоже немало.

A. У нематод распределение по телу питательных веществ, поступающих из кишечной трубки, и кислорода, поступающего через внешние покровы, происходило через полостную жидкость пассивно. Для более крупного животного этого недостаточно, нужно искусственно ускорить циркуляцию жидкости. Появляется насос, сократимая мышечная камера — сердце, и система шлангов — сосудов. Так у кольчецов появляется кровеносная система.

Б. Кольчатые черви — сегментированные животные, они состоят из головного и хвостового отсека, возникающих как передний и задний концы самой ранней личинки, и многих одинаковых отсеков, большинство из которых образуются постепенно по мере роста личинки. Сегментированность упрощает, упорядочивает рост червя, а также решает и другие проблемы. Как большие корабли делят на герметичные отсеки, так и составленное из многих сегментов тело кольчатого червя становится менее уязвимым при внешних воздействиях. Ряд систем дублируется посегментно и для таких, например, как выделительная система это выход из положения, поскольку конструктивно она не рассчитана на большой объем жидкости. Нервная система кольчецов принимает вид, характерный для сегментированных животных: окологлоточные скопления + брюшная нервная цепочка с узлами в каждом сегменте.

B. Личинка, трохофора, заслуживает отдельного упоминания. Она имеет форму яйца и снабжена ресничками по экватору и на тупом (головном) конце. Маленькая личинка еще не имеет мускульного мешка для того, чтобы двигаться, но ее крошечные размеры позволяют и двигаться, и загонять себе пищу с помощью ресничек. Вспомним, что также конструктивно устроены и инфузории, преуспевающая группа одноклеточных организмов. Жизнеспособность, даже эффективность, личиночной стадии — немаловажный фактор успеха трохофорных животных в конкурентной борьбе.

Г. Большой размер создает проблемы со снабжением тела кислородом. Все ранее рассмотренные группы получали кислород через поверхность тела. Но объем растет пропорционально кубу измерения, а поверхность только квадрату. Площадь поверхности можно, однако, существенно увеличить, сделав ее складчатой. У кольчатых червей появляются на каждом сегменте парные выросты, состоящие из мышечных волокон и покрытые эктодермой с кутикулой — параподии. Поступление кислорода через параподии увеличивается не только из-за большей теперь площади поверхности тела, но и потому также, что параподии способны шевелиться. Согласованные движения параподий также могут убыстрять плавание червя, хотя эта их функция едва ли очень существенна для кольчецов.

Мы почти ничего не знаем о доисторическом мире червей, отсутствие у них скелета делает ничтожной вероятность палеонтологических находок. Сегодняшняя фауна кольчатых червей знакома широкой общественности, главным образом, благодаря дождевым червям и пиявкам.



Рис. 4.Черви.

1 — плоские, 2 — круглые, 3 — кольчатые.


9. Тип Моллюски

Есть основания полагать, что моллюски родственны кольчатым червям. То есть общий для моллюсков и кольчецов предок жил намного позднее, чем общий предок их с, например, круглыми или плоскими червями. На это указывают общие новоприобретения, такие как целомическая полость и трохофороподобная личинка.

В некоторых архаичных группах моллюсков сохраняются и признаки того, что их предки были сегментированными животными, хотя такая интерпретация небесспорна и признается не всеми зоологами.

Итак, предками моллюсков были если не сами кольчатые черви, то организмы весьма похожие на них. Еще одной общей чертой строения, как кольчатых червей так и моллюсков, является то, что хотя кишечная трубка и имеет энтодермальное происхождение, но заднем и переднем (глоточном) конце кишка составлена клетками эктодермы, как бы слегка завернувшимися внутрь кишечника. Но клетки эктодермы "умеют" выделять кутикулу, а если кутикулу выделить в глотке, то получится глотка с хитиновыми "зубами". Глотка имеет мускулатуру, которую можно приспособить для некоторой подвижности зубной пластинки — радулы. Являясь характерным для всех моллюсков изобретением, радула стала одним из самых ранних приспособлений для измельчения пищи, созданных жизнью на нашей планете. Собственно, для измельчения то пищи она не слишком и пригодна, скорее для соскабливания, но и этого немало. Например, дождевой червь пропускает через свой кишечник рыхлую почву со всеми, кто в ней живет, и это лучшее, что можно придумать, не имея какого-либо ротового аппарата. Умеющим соскабливать моллюско-червям стали доступны обрастания камней и скал, огромный пищевой ресурс, который они контролируют и поныне. Более того, несколько сотен видов безраковинных червеобразных моллюсков, относящихся к классу Aplacophora, дожили до наших дней и иллюстрируют исходную организацию моллюсков — червь с радулой.

Спокойно наслаждаться плодами своего главного изобретения — радулы, моллюскам, впрочем, не дали. Идея атомной бомбы, став очевидной для физиков, была в середине XX века почти одновременно реализована в разных странах. Так и идея создания ротового аппарата уже витала в водах докембрийского океана и выйти на этот уровень организации тоже удалось сразу нескольким группам животных (о членистоногих и хордовых, нынешних хозяевах Земли — речь ниже).

Кто бы ни начал кусать моллюскочервей, свои же или чужие, но защита тела снаружи становится весьма актуальной. Сначала клетки эктодермы спинной стороны начинают выделять не эфемерную кутикулу, а много более прочное вещество на основе карбоната кальция, в котором в морской воде нет недостатка. Получается раковина. Строго говоря, раковину выделяет складка эктодермы — мантия. Мантия свисает с верха спины по бокам тела, раковина тоже. Раковина в результате не прилегает плотно к телу моллюска, между ней и телом существует мантийная полость. По той же причине (что является производным мантии), раковина не образуется на брюшной, прилегающей к дну поверхности тела.

Б. Одно плохо — раковина не позволяет плавать «баттерфляем» за счет сокращений мускульного мешка. Плавать нельзя, но ползать-то можно! Мышцы под раковиной редуцируются за бесполезностью, а на брюшной стороне, напротив, сильно развиваются и образуют ногу — орган ползания, верхом на котором движется сам моллюск вместе с раковиной. Движение получается небыстрым, но и спешить особенно некуда.

В. Так путем нехитрых преобразований мы получаем существо, очень напоминающее примитивных моллюсков хитонов (класс Polyplacophora).

Раковина хитона не препятствует росту животного, но и недостаточно надежно его защищает.

Брюхоногие моллюски (класс Gastropoda) создали по-настоящему закрытую раковину, а для того, чтобы моллюск мог расти, придали ей форму расширяющейся спирали. Брюхоногие наиболее последовательно реализовали стратегию «соскабливатель», — неторопливые, надежно защищенные животные, 100 000 видов. Плотно закрываясь, их домик спасает не только от врагов, но и от высыхания, благодаря чему брюхоногие отлично освоили и сушу тоже.

Двустворчатые моллюски (класс Blvalvla) имеют раковину из двух симметричных половинок, закрывающих полностью все тело, в том числе и с брюшной стороны. Такая раковина ставит крест на подвижном образе жизни, с ней можно только лежать на боку на дне и фильтровать воду, выбирая взвешенную органику. Радула и та ими утрачена, поскольку не нужна. Фильтруют и другие организмы, но их, бывает, покусывают. А двустворчатым за прочными створками никто не мешает заниматься любимым делом.

Головоногие моллюски (класс Cephalopoda) раньше тоже имели спирально закрученную раковину. Ее нежилые отсеки, те, из которых моллюск уже вырос, все равно пустовали, и головоногие научились закачивать туда газ. Таким образом, регулируя свой удельный вес, головоногие смогли плавать в толще воды. Нога превратилась частично в сократимую воронку, орган плавания, выбрасывающий воду. Другая часть ноги стала щупальцами, ими хищные головоногие ловят добычу, а радулой добычу измельчают (перетирают). Все раковинные головоногие, например, аммониты и белемниты, вымерли (кроме одного вида — наутилуса). Все остальные современные головоногие раковину утратили, но и без нее ведут прежний образ жизни.


10. Тип Членистоногие

Родство членистоногих с кольчатыми червями, выглядит совсем очевидным: помимо целома и трохофоры, совпадает общий план строения: головная лопасть,

многочисленные сегменты тела, хвостовая лопасть. Причем, каждый отсек несет по придатку.

Членистоногие, как и моллюски, появились в результате решения кольчатыми червями задачи приобретения наружного панциря. Моллюски сделали упор на прочность панциря и использовали в качестве основного строительного материала соли кальция и магния. Панцирь получился тяжелый, но в водной среде это не большая беда. Панцирь моллюсков выделяется мантией и потому не плотно прилегает к поверхности тела, что позволяет, придав ему подходящую форму, например, расширяющейся спирали, расти. Другим решением могло быть то, что моллюск вылезал бы из старого панциря и быстренько делал новый размером побольше, на вырост. Никто из живущих моллюсков или из вымерших такую стратегию не реализовал, среди прочего, вероятно, и потому, что создание новой известковой раковины дело долгое, а за это время тебя успеют съесть.

Членистоногие совершенствовали панцирь на основе хитиновой кутикулы. Добавление к хитину солей металлов позволяет добиться прочности при сохранении легкости панциря. Но, поскольку панцирь выделяется не мантией, а непосредственно поверхностным эпителием, то он плотно облегает тело и уже никаких возможностей для роста не оставляет. У членистоногих не остается другого выхода, как расти прерывисто, в момент после выхода из старого панциря и до образования нового. Такая процедура называется линькой. Линька существенно облегчается благодаря химическим свойствам хитина, — новый хитиновый панцирь можно заранее приготовить под старым. При этом панцирь будет эластичным, но быстро затвердеет, когда это станет необходимо.

A. Поверхностная кутикула кольчеца утолщается и твердеет, образуя хитиновый панцирь вокруг всего тела.

Б. Единственное, что возможно приспособить для движения — параподии, которые ранее выполняли в основном функцию жабр. Параподии удлиняются, становятся членистыми, теперь помимо дыхательной функции они становятся органами движения, а затем и органами измельчения пищи, если трутся друг об друга. Мускульный мешок, став бесполезным, редуцируется, но часть мышц сохраняется и служит теперь для шевеления конечностями.

B. То, что мы в результате получаем, устроено по сути точно так, как трилобиты, представители членистоногих (в ранге подтипа), изобиловавшие в морях раннего палеозоя и дружно вымершие к позднему палеозою, оставив нам на память лишь множество прекрасно сохранившихся красивых окаменелостей. Все сегменты тела трилобитов несли одинаковые двигательно-жевательно-дыхательные конечности, лишь на головной лопасти придатки служили антеннами — органами осязания, вероятно.

Стратегия дальнейшего совершенствования организации членистоногих состояла в специализации конечностей. Процесс этот существенно облегчался посегментным расположением конечностей, ведь сегменты изначально и «конструировались» как независимые, до некоторой степени автономные отсеки тела. Общую тенденцию специализации конечностей и несущих их сегментов, подсказывает простой здравый смысл, и действительно, в общем, она независимо совпадает у всех групп членистоногих.

Головная (предротовая) лопасть и первый сегмент несут чувствительные придатки, ибо, где им быть, как не спереди. Следующие сегменты, расположенные в непосредственной близости к ротовому отверстию, специализируются на захвате и измельчении пищи. Передний отдел тела с чувствительными и ротовыми придатками — голова. Состав головного отдела очень консервативен и является важнейшим основанием для деления членистоногих на группы. Для головного отдела характерно также тесное слияние его сегментов так, что само изначальное их количество не без труда и споров устанавливается и специалистами.



Рис. 5. 1 — кольчатый червь; 2 — кольчатый червь в экзоскелете (= трилобит); 3 — трилобит со специализированными конечностями (= современное членистоногое);


Следующий отдел, грудь, несет двигательные конечности. Количество двигательных конечностей имеет тенденцию к сокращению.

Последний отдел, брюшко наиболее непостоянен по составу, а конечности его, как правило, либо редуцируются, либо изменяются до трудноузнаваемости. Более подробное рассмотрение сегментации и специализации конечностей членистоногих способно заморочить любую светлую голову.

Современные членистоногие делятся на три подтипа: Хелицеровые, Ракообразные и Трахейные. Архаичные и нов©приобретенные признаки затейливо перетасованы у разных групп, так что зоологам во всем этом пытающимся разобраться, жизнь медом не кажется. Если совсем коротко, то хелицеровые утратили придатки головной лопасти, антенны I, а конечности первого сегмента у них имеют вид хелицер, придатков убивательно-жевательных, но уж никак не осязательных. Чувствительными же стали конечности второго сегмента — педипальпы, хотя и ходильно-жевательное применение им не чуждо. Ракообразные сохранили как придатки головной лопасти (антенны I), так и антенны II на первом сегменте, что, впрочем, не мешает многим использовать как первые, так и вторые для плавания и иных нужд. Трахейные сохранили на головной лопасти антенны I, которые честно используют по назначению, но утратили антенны II, да и почти весь первый сегмент заодно.

По общему мнению, наиболее рано обособились хелицеровые, чьи околоротовые конечности еще малоспециализированы и похожи на двигательные. Хелицеровые отделились до того, когда остальные членистоногие изобрели сложный фасеточный глаз, состоящий из множества простых, а независимо создать его хелицеровым не удалось. Приходится довольствоваться простыми глазками, которых зато много. К хелицеровым относят экзотические классы мечехвостов и морских пауков, плюс вымерший класс ракоскорпионов. Единственный процветающий класс — паукообразные, среди которых многочисленны и вездесущи собственно пауки и клещи, к которым мы еще вернемся.

Для остальных членистоногих характерны сложные глаза, что не отменяет наличия и простых глазков тоже. У всех конечности 2 и 3 сегментов превратились в специализированные ротовые органы. Ракообразные, несмотря на некоторые исключения, были и остались водными животными. Их размеры рекордны для членистоногих как среди микроскопических, так и среди самых крупных. Ракообразные сохранили архаичное двуветвистое строение конечностей, в котором узнаются исходные параподии кольчатых червей.

О трахейных речь пойдет дальше.

Резюме. По сравнению с кольчецами внутреннее строение членистоногих изменилось не принципиально. Главное приобретение — плотно облегающий тело панцирь и решение проблемы роста механизмом линек. Отсюда развитие конечностей из параподий, отсюда специализация части конечностей в ротовой аппарат. Ротовой аппарат снимает великую проблему докембрийского Мира червей — теперь можно съесть что угодно и кого угодно, не обращая внимания на свои размеры (например, маленькие) и размеры съедаемого (например, большие).


11. Пищевые ресурсы палеозоя

Однако, как уже отмечено, сами животные органического вещества не производят. Поэтому, сколь бы они успешно друг друга ни ели, органики больше не станет. Напротив, на каждом этапе 90 % органики расходуется, посему тонна планктона дает центнер привеса селедки, а центнер селедки 10 кг привеса дельфина, и это в лучшем случае. Единственный возобновляемый источник органики — растения. В океане у берегов есть обрастания камней и водоросли, которые плавают или закрепляются в грунте. Эти ресурсы делят группы, имеющие ротовой аппарат — моллюски и ракообразные. На огромных же площадях открытого океана, где фотосинтез возможен в тонком верхнем слое, его осуществляют там мелкие и мельчайшие взвешенные растения. Такой фитопланктон — добыча для животных с любым типом организации, и действительно, фитопланктон мгновенно выедается, не успевая накапливаться. Столь быстрое поедание фитопланктона даже приводит к тому, что в океане пищевая пирамида оказывается перевернутой, т. е. вес всех растений океана меньше веса животных. (Такая ситуация не противоречит законам термодинамики, как может на первый взгляд показаться. Просто соотношение биомасс — удобный, но косвенный показатель, а если судить по прямому — соотношению первичной продукции, то в океане все в порядке).

Иная ситуация на суше. Осваивая ее, растения столкнулись с силой тяжести и с дефицитом воды. В ответ появились корни, стволы и ветви — механические конструкции из целлюлозы — полимера глюкозы. На суше освещенность намного выше, это позволило появиться многоярусным сообществам сухопутных растений. В результате появился невиданный запас органики в несущих конструкциях растений и огромное, невиданное в морях разнообразие условий обитания. Никем не съеденный избыток органики осаждался бесполезными залежами угля. Кто-то должен был придти и прибрать к рукам такое богатство.


12. Завоевание суши

Освоение суши требовало от животных решения тех же проблем, что и от растений. Начать с того, что животные, как и растения, не умели размножаться вне водной среды. Эффективная в воде личинка трохофора вовсе нежизнеспособна на суше. Решение нашлось такое: во-первых, следует сделать оболочку яйца водонепроницаемой. Во-вторых, следует быстренько пройти внутри яйца стадию трохофоры и к моменту выхода на свет божий сформироваться до стадии пусть маленького, но взрослого, пригодного к самостоятельной жизни животного.

Для предотвращения быстрой потери влаги необходимо иметь хотя бы кутикулу. У не имеющих ее кишечнополостных и плоских червей нет никаких возможностей для перехода даже к полуназемному существованию. Круглые и кольчатые черви уже могут существовать в местах, куда не попадают прямые солнечные лучи, если воздух насыщен влагой, т. е. проще говоря, в почве. Адаптивная ситуация для такого перехода возникала и возникает множество раз — море отступает, и морская почвенная фауна плавно становится фауной сухопутной почвы, где, впрочем, вынуждена и оставаться.

Утолщенная кутикула членистоногих гораздо эффективнее сберегает влагу, но для того, чтобы стать по-настоящему сухопутными животными, следует как-то решить проблему потери воды при работе выделительной и дыхательной систем.

Выводя продукты обмена в виде водного раствора (мочи) мы много жидкости теряем. Членистоногие придумали выводить мочу не во внешнюю среду, а в кишечник, откуда вода вновь всасывается, а продукты обмена окончательно выводятся уже в твердом виде.

Дыхание подразумевает газообмен в жидкой среде или через влажную поверхность, что также привело бы к огромным потерям воды через эту поверхность, например, если постоянно смачивать конечность с жаберными лепестками. Выход может быть в том, чтобы спрятать жаберную ногу в специальный карман (рис. 6) и, таким образом, создать влажную камеру для газообмена (=легкие членистоногих).



Рис. 6. 1 — жаберная нога; 2 — она же в кармане; 3 — жаберные легкие;


Такой механизм дыхания и был реализован, но при малых размерах тела более эффективным оказался другой выход из положения — трахейное дыхание. Трахеи — это тонкие ветвящиеся трубочки, ведущие от поверхности тела непосредственно к снабжаемым кислородом органам.

Из хелицеровых полностью сухопутной группой являются паукообразные, но общий предок всех паукообразных был морским организмом. Это видно из того, что разные группы паукообразных независимо создавали дыхательную и выделительную системы, пригодные к наземному существованию.

Многочисленны на сегодня две группы паукообразных — собственно пауки и клещи. Брюшные конечности пауков стали паутинными бородавками, паутина — это и орудие охоты, и убежище, и кокон, и способ расселения, и даже подводный колокол. Клещи уменьшили свои размеры до такой степени, что полости между частицами почвы стали для них огромной пещерой, покрывающей всю поверхность планеты. Миниатюрность открыла клещам и широкие возможности для паразитизма. Однако устройство ротового аппарата паукообразных подразумевает питание жидкой пищей и, следовательно, хищничество. Биомасса растений суши досталась не им.

Выделительная и дыхательная системы Трахейных устроены по единому плану. Значит, общий предок всех Трахейных был уже сухопутным животным. К Трахейным относятся многоножки, скрытночелюстные и насекомые.


13. Насекомые

Из сегодняшних насекомых ближе всех к прототипу Трехвостки. Чешуйницу, например, можно иногда встретить в ванной обычного жилого дома. Тело чешуйницы устроено так же, как и всех прочих насекомых, но благодаря отсутствию всяких изысков его проще рассмотреть. Голова состоит из слитых головной лопасти и 4 первых сегментов, усики длинные, из неопределенно большого числа члеников, ротовой аппарат грызущий. Грудь состоит из 3 сегментов и несет 3 пары ходильных ног. Брюшко из 10 сегментов с рудиментами конечностей, заканчивается хвостовыми нитями (рис. 7).



Рис. 7. Первичнобескрылое насекомое — чешуйница Thermobia domestica


Чешуйницы непривередливы к еде, съедят и кусочек газеты, который будут долго переваривать с помощью характерных для растительноядных насекомых симбиотических бактерий в их желудке. Бактерии имеют утраченные животными ферменты для разложения целлюлозы, чешуйница поставляет им жидкую кашу из перетертой клетчатки, все довольны. Вот мы и добрались до растительной биомассы суши.

Как и у многих других насекомых у чешуйницы нет крыльев, да и летать под ванной особенно некуда. Но если мы рассмотрим внимательно вшей, которые к счастью тоже не летают, то обнаружим признаки того, что крылья у них когда-то были. Аналогичное изучение трехвосток заставляет придти к выводу, что крыльев никогда и не было, трехвостки — первичнобескрылые, в отличие от остальных насекомых.

Крылатые насекомые имеют крылья, описанные в разделе 2. Преимущества способности к активному полету очевидны.

Древнекрылые насекомые не были способны складывать крылья, что делало их весьма неуклюжими на земле. Сохранилось две группы древнекрылых. Поденки проводят свою жизнь в воде в виде личинки. Лишь в последний день жизни они превращаются в крылатых половозрелых насекомых, спариваются, откладывают яйца и умирают. Стрекозы также имеют водную личинку, но и взрослая стадия у них отнюдь не эфемерна, как у поденок. Стрекозы в совершенстве овладели полетом, в воздухе они ловят добычу, могут в воздухе спариваться и откладывать яйца, не касаясь ногами поверхности. Завоеванное ими с конца палеозоя «господство в воздухе» до сих пор не поставлено под сомнение никем из насекомых, разве только птицы существенно потеснили стрекоз.

К новокрылым насекомым принадлежат остальные 99,9 % видов. Новокрылые научились переворачивать крылья и компактно плоско складывать их на спине, таким образом, они вернули себе легкость передвижения по земле, не утратив способности к полету. Новокрылые довели до совершенства грызущий ротовой аппарат, а также создали непревзойденный сосущий ротовой аппарат в модификациях колюще-сосущий (цикады, клопы, комары), лижуще-сосущий (мухи), просто сосущий (бабочки).

Новокрылые делятся на насекомых с неполным и полным превращением. У всех насекомых рост сопровождается многими личиночными линьками, но только в результате последней линьки появляется крылатое насекомое и только в результате ее же появляется половозрелое насекомое. Крылатая стадия всегда половозрела, хотя половозрелая не всегда крылата (при вторичной утрате крыльев). Таким образом, крылатая половозрелая форма должна сформироваться внутри последнего личиночного возраста, что накладывает определенные ограничения на конструкцию личинки у насекомых с неполным превращением (равно как и у древнекрылых). Насекомые с полным превращением сделали личинку последнего возраста неподвижной, спеленатой в кокон куколкой. На стадии куколки неторопливо происходит глубокая перестройка организма, что позволяет личинке быть сколь угодно непохожей на взрослое насекомое (гусеница — бабочка). Поскольку ничего другого обнаружить не удается, то похоже на то, что именно эта особенность приводит к тому, что по числу видов насекомые с полным превращением составляют 90 % от всех обитателей планеты.

К новокрылым насекомым с неполным превращением относятся:

1. Веснянки, имеющие как поденки водную личинку и короткоживущую, непитающуюся крылатую стадию.

2. Тараканы-богомолы-термиты, непохожие внешне родственники. Термиты — основные потребители целлюлозы в жарких странах.

3. Прямокрылые — кузнечики, саранча, палочники.

4. Вши и пухоеды.

5. Хоботные — цикады и клопы.

Насекомые с полным превращением:

1. Малочисленные примитивные группы — сетчатокрылые, верблюдки, вислокрылки.

2. Жуки, чьи передние крылья превращены в дополнительный панцирь, а задние обеспечивают способность к полету. Похожая идея независимо реализована клопами.

3. Перепончатокрылые — наездники, осы, пчелы, муравьи.

4. Группа скорпионницеобразных, куда входят бабочки и двукрылые (мухи и комары).

Насекомые освоили все мыслимые и немыслимые виды пищи и среды обитания. Единственное, чего им не удалось, это во всеоружии новой организации вернуться в родную среду членистоногих — океан, как у млекопитающих, например, это сделали китообразные. Пресные воды кишат насекомыми, в соленых — никого.

Известно порядка миллиона видов насекомых, это намного больше, чем известно видов всех остальных живых организмов вместе взятых. Были проделаны остроумные опыты. Тропическое дерево накрывали мелкой сеткой, затем опрыскивали дустом и пытались собрать и определить всех насекомых там живших. Определили, открыли М новых видов. Одну из групп изучили особенно тщательно, привлекли всех специалистов по ней, открыли в ней еще Н новых видов. Затем прикинули, что будет, если все деревья опрыскать дустом и все найденное тщательно изучить, оказалось, что получится 5-10 млн. видов насекомых.

Методы различения видов становятся все более противоестественными. Сначала описывали форму и окраску, затем детали жилкования крыльев и расположение щетинок. Теперь виды какого-нибудь рода мух отличают по хитро приготовленным препаратам гениталий самцов, а отличить самок до сих пор никто не умеет. Маразм? Как ни странно — нет, поскольку самцы мух, не пущенные на препараты, прекрасно умеют различать своих самок, соответственно имеет место генетическая изоляция и полноценные виды.


14. Механизм преадаптации

Пора остановиться на механизме существенных эволюционных конструктивных новоприобретений. Эта проблема — излюбленный объект критики основ биологической науки. Суть возражений сводится к следующему:

1. Одновременное согласованное появление мутаций необходимых для создания, например, минимально летающих крыльев, космически маловероятно. Что справедливо.

2. А нелетающие крылья бесполезны и, более того, вредны. Что справедливо отчасти.

3. А посему крылья возникнуть в результате естественного отбора не могут.

За что Всевышний спустил всех недоумков именно на биологию? Почему бы им хоть частично не сосредоточится на математике, скажем? Не написать трактат о том, что интегральное исчисление вздорно, поскольку мудрено. Обидно. Мы же не мешаем им составлять гороскопы.

Суть механизма преадаптации такова:

1. Да, появление сразу крыльев невероятно.

2. Но выросты покровов грудных сегментов, из которых крылья возникли, могут быть не вредны, а напротив, полезны. Например, для пассивного расселения ветром. Или как зонтик от солнца. Или для привлечения самок, как нелепый хвост павлина. Или для стряхивания клюквы с веток. Или еще для какой-то надобности, очевидной в палеозое и глубоко непонятной при взгляде на сегодняшнюю планету.

3. Выросты покровов, служившие некой надобности и бывшие адаптивными, могут затем стать крыльями. Что тоже маловероятно, что подтверждается тем, что крылья всех насекомых возникли единожды. Но не космически, а просто маловероятно, что подтверждается тем, что крылья насекомых все-таки возникли и тем, что способность к полету возникла также у птиц, летучих мышей и птеродактилей, и тоже нуждается там в каком-то объяснении.

Другой пример. Глаз, сложнейшая структура, тоже, оказывается, возникнуть не мог, ибо сразу не мог, а не зоркий, примитивный глаз, кому он нужен? Вот уж, когда адаптивный механизм очевиден, но видеть его отказываются. Ну, действительно, зачем одноклеточной водоросли плыть приблизительно к свету, а не приблизительно от него подальше? Ну, на хрена ей положительный фототаксис, если Ван Гога от Гогена все равно не отличить. А спросим у очкарика, не выколоть ли ему глазки, чтоб не моргали зря, такие подслеповатые?

Впрочем, кое в чем я лукавлю. Господь без нужды не карает, он не спроста напускал саранчу на Египет, а недоумков на биологию. Те открывают учебник математики и чуют — недоступно, но последовательно, открывают учебник биологии, и видят — написан братьями по разуму. Оказывается, рыбообразные предки земноводных освоили легочное дыхание атмосферным воздухом с горя, когда пересох их водоем. Ага, говорит сообразительный читатель, а если автора сунуть головой в корыто, то прорежутся жаберные щели? Ихтиандр получится! Предлагаю придумать вменяемый преадаптивный механизм для этого случая самостоятельно.

Я категорически настаиваю, что тот или иной преадаптивный механизм, повышающий до разумного уровня вероятность любого эволюционного приобретения, всегда был независимо от того, догадались ли мы какой именно или пока не догадались. Если не догадались, то следует размышлять, а не писать письмо ученому соседу…

Таким образом, когда вероятностный барьер непреодолимо высок, живые организмы иногда все же могут его преодолеть так же, как человек отвесную скалу. Для этого они идут по более пологому склону, часто в противоположенную сторону, а затем поворачивают и оказываются таки на вершине. Суть в том, что все новоприобретения потомков появляются не в виде новой оптимальной конструкции, а как переделанная конструкция предков. Диалог:

Мудрец (Леснику): Вы человек разумный, мне кажется?

Лесник: Да.

Мудрец: Согласен. И потому уже год раздумываю, почему у вас на сарае такой неподходящий, неудобный замок. Для какой скрытой от моего разума цели?

Лесник: Так уж вышло. Сначала замка совсем не было, ежики запасы воровали. Купил замок недорого. Потом старая дверь развалилась. Срубил новую дверь. А замок пока старый остался.

Мудрец: Ни хрена себе!

---

Мораль: прежде, чем решать задачу, прочтите внимательно ее условия.

Р. S. И еще одна мораль. Как раз «неподходящий» замок и может подсказать, как выглядела та дверь, которая давно сломалась (=предок, который давно вымер)!


15. Вторичноротые

Мы закончили группу трохофорных животных (кольчецы, моллюски, членистоногие). На самом деле, не слишком внимательный человек, живущий вдали от моря, почти никого кроме трохофорных никогда и не видел. Если это было не позвоночное (рыба, лягушка, птица или зверь), то членистоногое, если не членистоногое, то улитка или червяк, а если уж червяк, то кольчатый — дождевой или пиявка, в крайнем случае. И это притом, что большая часть типов животных, населяющих Землю, в этой книге даже вскользь не упомянута.

Позвоночные животные, включая людей, к трохофорным не принадлежат. Их сближает с трохофорными только успешность, вторичная полость тела и сегментированность, но, скорее всего, все это позвоночные обрели самостоятельно, независимо от трохофорных.

В своем эмбриональном развитии организмы в той или иной степени повторяют путь эволюционного развития их предков. Яйцеклетка соответствует одноклеточным простейшим, первые клетки будущего организма животного собраны в полый шар, как колония простейших. Затем часть клеток с поверхности переселяется тем или иным способом внутрь, и зародыш становится двухслойным с первичным ртом, ведущим в кишечную полость, т. е. повторяется организация кишечнополостных. Затем у трохофорных животных на заднем конце тела прорывается анальное отверстие. В соответствии с этим, трохофорные относятся первичноротыми животными. Позвоночные относятся к вторичноротым животным. У вторичноротых, то отверстие, ведущее в кишечную полость, которое закладывается как анальное (после первичного рта, на противоположенном первичному рту заднем конце тела) в дальнейшем вторично служит ртом, а первичный рот становится, соответственно, анусом. От удивления у читателя отвисла челюсть на первичном анальном отверстии J.

Кроме типа хордовых, к которому принадлежат и позвоночные, к вторичноротым относятся и другие типы океанических животных, из которых наиболее заметен тип Иглокожих, к которому принадлежат морские звезды и морские ежи. Не обижайте их, это наши родственники. Иглокожие вторично вернулись к радиальной симметрии, но строение личинки и детали строения взрослых животных доказывают двустороннюю симметрию их предков.

Помимо вторичного рта вторичноротых объединяют и другие общие признаки. Совсем по-другому происходит раннее дробление яйцеклетки, иначе (как карманы кишечника) закладываются целомические мешки и всегда в количестве трех пар, что соответствует 3 первичным сегментам. Личиночный мозг вторичноротых не является мозгом взрослого животного и даже не входит в состав взрослого мозга.

Родственные связи внутри вторичноротых намного менее понятны, чем для первичноротых. Ситуацию можно проиллюстрировать так: предположим, что кольчатые черви давно дружно вымерли, и окаменелостей их мягких тел не сохранилось. Какие гипотезы выдвигали бы тогда те, кто искал общего предка моллюсков и членистоногих? Другой яркой иллюстрацией является то, что ранее отнесенный к вторичноротым тип Погонофоры, 10 лет назад был разжалован до семейства (!) в составе кольчатых червей.

Поэтому ограничим знакомство с вторичноротыми одним типом.


16. Тип Хордовые

Для типа хордовых характерны четыре уникальные особенности.

Во-первых, у них имеется плотная трубка — хорда, которая закладывается как выпячивание кишечника со спинной стороны.

Во-вторых, нервная система у них тоже организована в виде трубки, которая образуется как впячивание покровов, тоже со спинной стороны.

В-третьих, кишечная трубка хордовых имеет на переднем конце щели (жаберные щели), через которые она соединена с внешней средой.

В-четвертых, та сторона, которую мы называли спинной, на самом деле первично брюшная, — хордовые, перевернутые кверху брюхом животные.

Пятой особенностью хордовых можно назвать то, что все эти особенности у 99,9 % хордовых мало, в чем проявляются у взрослых животных. Только горстка представителей богом забытого подтипа Бесчерепных (ланцетники), устроены именно так, как положено хордовым. Представители другого подтипа — Оболочников дегенерировали до прикрепленных к дну мешков, окруженных студенистой оболочкой и фильтрующих морскую воду. Лишь тогда, когда были изучены личинки оболочников, которые день-другой активно плавают, расселяясь перед тем, как навсегда уткнуться головой в дно, то обнаружились и хорда, и нервная трубка, и жаберные щели.

Третий подтип — Позвоночные с лихвой компенсирует убогость своих родственников. Позвоночные, кажется, до конца использовали все преимущества того плана строения, который им достался как хордовым животным.

1. Хорда. На первый взгляд наличие хрящевого тяжа, который структурирует тело, вещь полезная, но не более. Вопрос в том, как использовать хорду, если так, как малоподвижный ланцетник, то можно было бы обойтись и полостью тела. Но, если делать ставку на активный образ жизни, то хорда — основа осевого скелета, на который можно «подвесить» остальные необходимые конструкции. Тому способствуют свойства хряща. Во-первых, если клетки соединительной ткани в принципе способны выделять хрящ, то хрящ может образоваться не только в составе хорды, но и на других участках тела. Во-вторых, если выделяющие хрящ клетки добавят в него побольше солей, то хрящ станет сначала тверже, а затем и вовсе окостенеет.

Эластичная хорда ланцетника заменяется позвонками, сначала из прочного хряща (хрящевые рыбы = акулы), а затем просто костными (костные рыбы). Подвижное сочленение прочных позвонков дает конструкции необходимую гибкость. Выросты позвонков со спинной стороны дают защиту нервной трубке, а с брюшной — нежным внутренним органам.

Еще одной характерной особенностью вторичноротых является то, что кожные покровы их многослойны, под эпидермисом лежит еще слой соединительнотканных клеток, тех самых, что умеют выделять хрящ. Появляется соблазнительная возможность создать панцирь из кожных костей. Вымершая группа панцирных рыб так и сделала, но как видно из результата, сделала напрасно. Успех ждал не тех неповоротливых позвоночных, что спрятались в панцирь, а тех, кто избрал тактику — «мы будем быстры и вездесущи, а вы попробуйте нас догнать или укрыться от нас». Тем не менее, кожные окостенения были в той или иной степени характерны для всех позвоночных, а кожные кости, опустившись вглубь тела, образовали, в частности черепную коробку — вместилище головного мозга = передней части нервной трубки.

Наличие хорды подразумевает и использование ее как орган движения. Ланцетник плавает, изгибая хорду в горизонтальной плоскости, рыбы тоже, но плавают много быстрее за счет хорошо развитого хвостового плавника. Плавники образуются как кожные складки, заполненные хрящами. В дополнение к основному хвостовому появляется спинной (киль) и две пары боковых (рули глубины). Плавники надежно крепятся на осевом скелете, две пары боковых плавников, соединенные с позвоночником станут в будущем конечностями четвероногих.

2. Жаберные щели. Возникли как нехитрое приспособление для дыхания и, возможно, фильтрации воды. В конструкцию напрашивается структурирование их хрящом. У ланцетников имеются в большом количестве (десятки) с тенденцией к уменьшению числа. Налицо прекрасная преадаптация к созданию вожделенного ротового аппарата: задние щели редуцируются бесследно, средние используются по исходному назначению, передние превращаются в подвешенные к черепу челюсти. Считая моллюсков и, само собой, членистоногих, это третий известный случай изобретения ротового аппарата.

3. Нервная трубка. Центральная нервная система позвоночных, как и у первичноротых, располагается на переднем конце тела, поближе ко рту и органам чувств. У позвоночных она организована как расширения нервной трубки. Мы слишком мало знаем о механизмах функционирования нервной системы, чтобы судить о том, эти ли конструктивные отличия, или какие-либо иные, привели к существенным различиям в функционировании нервных систем, но различия существенны.

Поведение первичноротых может быть и весьма хитроумным, но всегда жестко генетически запрограммировано, вне какой-либо зависимости от возможного изменения обстоятельств. Изменения поведения могут происходить лишь как любые другие генетические изменения, не направлено и случайно.

Поведение позвоночных тоже генетически запрограммировано, но программа допускает изменения самой себя. Например, увидев мелкий движущийся объект, съешь его! Но. Если объект больно ужалил, запомни это. Запомнил, был вторично ужален! OK, программа изменена, теперь так: увидев движущийся объект, съешь его, если он не полосат, если полосат — проигнорируй.

Очевидно, что чем короче жизненный цикл животного, тем выгоднее жесткое «первичноротое» программирование. И напротив, обучаемая программа рассчитана на долгую жизнь. Заметим, что такую же стратегию диктует и возникший у позвоночных внутренний скелет. В самом деле, у членистоногих наружный скелет при увеличении размеров быстро становится недопустимо тяжелым. У позвоночных внутренний скелет размеров не ограничивает. Глупо не воспользоваться возможностью стать больше других, но затраты на достижение крупных размеров будут оправданы уж никак не в том случае, когда животное, этого размера достигнув, немедленно врежет дуба.


17. Позвоночные, этапы большого пути

Описывая общие тенденции эволюции Позвоночных, мы собственно уже и дошли до уровня организации рыб — первой по-настоящему успешной группы позвоночных. Рыбы создали внутренний скелет, двигательные конечности и ротовой аппарат. Разве только следуют сказать, что две группы рыб, хрящевые (акулы) и костные (все остальные) состоят лишь в очень отдаленном родстве и иллюстрируют, то как к сходному устройству можно придти независимо. Рыбы заняли все мыслимые экологические ниши в водной среде, но как мы помним, пищевые ресурсы Земли распределены так, что большая их часть сосредоточена на меньшей сухопутной части планеты.

Первый шаг к освоению суши сделали земноводные. Преадаптивный механизм для появления дыхания атмосферным воздухом (раздел 14) почти наверняка состоял в хроническом дефиците кислорода в теплых, заполненных гниющей органикой внутренних водоемах каменноугольного периода. Отсюда: заглатывание атмосферного воздуха, далее появление специального воздушного кармана в желудке, далее отделение этого кармана с превращением его в легкие. Превращение парных плавников в мускулистые ползательно-ходильные придатки, вероятно, имело преадаптацией необходимость преодоления препятствий во внутренних водоемах (завалы растительности или пороги).

Возможность дышать и передвигаться по суше открывала соблазнительные перспективы питания непугаными насекомыми каменноугольного периода. Последние были уже многочисленны и хоть и имели размеры по нынешним меркам обалденные, но ограниченные в росте экзоскелетом и трахейным дыханием, являлись, однако, естественной добычей для амфибий, чьи эндоскелет и легочное дыхание росту в разумных пределах не препятствовали.

Земноводные дают нам единственный в своем роде пример группы, чье существование подразумевает глубокое раздвоение личности. С одной стороны, по способу питания это типично наземные существа, с другой, по способу размножения — рыбы как рыбы, способные метать икру вне водной среды не более, чем любая другая камбала. Плюс рыбьи покровы тела и рыбья выделительная система, не знающая водосберегающих технологий. Приходится прыгать вокруг лужи, каменноугольный климат вечной весны прекрасно для этого подходил, нынешний, много более континентальный, не столь хорош для земноводных.

По-настоящему сухопутная группа позвоночных — Амниоты. Они покончили с зависимостью размножения от водной среды, снабдив яйцо запасом питательных веществ, достаточным для развития молоди, способной к самостоятельному наземному существованию.

Они покрыли яйцо непроницаемыми оболочками и создали из этих оболочек мешки для хранения выделений, накапливающихся за долгое развитие крупного зародыша. Амниоты прекратили потерю влаги через покровы тела, покрыв их легкими чешуями из ороговевших клеток верхнего слоя кожи. Минимизация расхода влаги выделительной системой достигнута за счет того, что ее протоки открываются в заднюю часть кишечника (в клоаку), где происходит обратное всасывание воды. Не правда ли, проведенные мероприятия аналогичны тому, как проходило освоение суши членистоногими?

Традиционно выход на сушу приписывается группе животных, именуемой рептилиями, куда относят разных покрытых чешуями здравствующих и вымерших яйцекладущих животных. Родственные связи внутри группы — предмет споров и, похоже, только молекулярно-генетические исследования смогут внести ясность. Одно ясно, если птицы, например, ближе к рептилиям крокодилам, чем эти рептилии к другим рептилиям (аналогичная ситуация с млекопитающими), то нынешнее деление амниот на классы не естественно, а искусственно, точнее, не естественно, а противоестественно. Зачем храним так бережно эту священную корову линнеевской классификации, не скажу, и чем она лучше аристотелевского таксона «Гады» — не знаю. Быть может, наведение порядка в классификации помешает орнитологам дальше изучать птиц, по-прежнему игнорируя крокодилов?

Итак, амниоты.

Некоторые амниоты повторили великое изобретение насекомых — активный полет. Конструкцию насекомых никто, впрочем, не повторил кроме живописцев, рисующих ангелов с крыльями, похожими на выросты покровов спины. Все амниоты использовали для этой цели преобразование передних конечностей. Птеродактили растянули кожистую перепонку от рук к телу, птицы видоизменили чешуи в перья, летучие мыши также использовали кожную перепонку, но растянули ее между удлиненными пальцами рук.

Другой важный шаг — освоение питания грубой растительной клетчаткой, что делает пищевые ресурсы суши доступными не опосредованно, через поедание растительноядных насекомых, а непосредственно. Все земноводные хищники, только на личиночных стадиях они растительноядны (головастики). Современные рептилии — хищники, но среди вымерших травоядные были. Птицы — хищники или условно растительноядны (питание плодами или семенами, т. е. питательными, но дефицитными частями растений). Это понятно, поскольку и необходимость борьбы с лишним весом, и высокие энергозатраты на полет — все требует калорийного питания. Млекопитающие в лице копытных и грызунов дорвались до запасов целлюлозы сухопутных растений.

Основной тенденцией эволюции амниот стала активизация образа жизни, минимизация его зависимости от окружающей среды. Нагляднейшая иллюстрация этого, независимо достигнутое птицами и зверями постоянство температуры тела.

Другой шаг в том же направлении — резкое повышение уровня заботы о потомстве, предельным случаем которого являются млекопитающие. Забота о потомстве имела значительно более серьезные последствия, чем просто возможность родить белого медвежонка среди полярных льдов. Какая, в сущности, разница, отметать 1000 икринок, чтобы две выжили, или родить трех детенышей с тем же результатом? Но воспитание детенышей открыло принципиально новую, не генетическую, возможность передачи информации от предшествующего поколения к последующему. Например, у журавлей отсутствует генетическая программа, описывающая маршрут осеннего перелета на юг и весеннего к местам гнездования. Запрограммирована лишь способность запомнить маршрут однажды совершенного перелета, а перелетом руководят старшие птицы, которым, в свою очередь, путь когда-то показали их родители. Журавли — древние птицы, а значит, этот механизм исправно работает уже многие миллионы лет. Другие птицы (большинство Воробьинообразных) передают информацию о маршруте генетически. Какой способ лучше сказать не легко.

Но, существует по крайней мере один вид, который обязан своим процветанием именно негенетическому, подражательному способу передачи информации. Это Homo sapience, человек разумный. Генетически человек отличается от шимпанзе минимально, как два близких вида одного рода. Но наследственная передача приобретенных знаний через механизм подражания отделила человека от шимпанзе пропастью глубины невозможной. За последние 4 тысячи лет мы повторили или превзошли большинство из того, что органическая жизнь создала за 4 миллиарда лет! Мы вновь создали химические вещества, секрет синтеза которых был утерян животными еще в далеком Архее, и мы создали химические вещества, которые никто никогда не умел синтезировать. Мы создали аппараты, грызущие не только растительную клетчатку, но и горы, если потребуется. Наши органы чувств, видят объекты меньшие, чем мельчайшие из организмов. В воде мы быстрее, чем рыбы, а в воздухе — чем насекомые и птицы. Когда-нибудь мы разберемся даже в систематике Амниот…

Обзорная лекция по эволюции растений

Гурева И.И., Томск

ЛЕКЦИЯ № 10

Рассказать за одну лекцию обо всех растениях сразу — довольно сложная задача. В первую очередь определим, что такое растения.

Растения — это фотоавтотрофные эукариоты. Это значит, что растения создают органические вещества своего тела из простых неорганических соединений — диоксида углерода (СО2) и воды (Н2О) под действием света.

Синтез органических веществ из неорганических происходит под действием света при участии зеленого пигмента хлорофилла. Этот процесс называется фотосинтезом. Фотосинтез — сложный процесс, который происходит в несколько этапов. В качестве побочного продукта фотосинтеза выделяется кислород. Поэтому растения очень важны для нас, так как являются производителями кислорода на Земле.

Царство Растения включает в себя приблизительно 400 000 видов и делится на две большие группы, так называемые, подцарства — низшие растения (водоросли) и высшие растения (наземные). Водоросли — это, вообще говоря, растения, живущие в воде. Но для ботаника это слово значит нечто большее. Это растения, которые устроены определенным образом. Тело водорослей представлено одной клеткой или нерасчлененным на органы слоевищем, то есть у водорослей клетки не дифференцированы. Тело высших растений в той или иной мере расчленено на органы — корень, стебель, лист.

Водоросли — это низшие растения, населяющие, в основном, водную среду. Это могут быть совершенно разные водоемы: текучие, стоячие, соленые, пресные. Но не обязательно только водоемы, потому что водоросли могут жить и на суше в пленке воды. В основном, это почвенные водоросли и водоросли, обитающие на других растениях. Ниже на картинках изображены представители одноклеточных водорослей.

Чем замечательны диатомовые водоросли? Во-первых, их тело состоит из одной клетки, а во-вторых, эта клетка заключена в прозрачный панцирь. Причем панцири бывают украшены различными рисунками, и по этим рисункам водоросли и различаются. Панцирь состоит из кремнезема, они прозрачны для света, поэтому водоросли могут осуществлять фотосинтез. Интересно, что когда водоросли отмирают, панцири осаждаются на дно водоема и образуют породу диатомит. Это легкая, прочная порода, кроме всего прочего она может использоваться как фильтр.

Следующие водоросли — эвгленовые — тоже относятся к одноклеточным. Ботаники относят их к растениям, а зоологи — к простейшим животным. Так получается, потому что ботаники считают, что если в организмах содержится хлорофилл, если это автотрофы, к тому же еще и фотоавтотрофы — то это растения; а зоологи считают, что если организмы могут двигаться, то это животные. К тому же у этих водорослей есть еще некоторые особенности, характерные для животных. В частности, они могут терять хлорофилл и питаться уже готовыми органическими веществами (то есть они гетеротрофы). Также у этих водорослей есть жгутик, благодаря которому они движутся. Причем движутся очень интересно. Это движение так и называется — эвгленоидным. Жгутик вращается и продвигает клетку вперед заостренным концом.



Следующие представители водорослей — это бурые и красные водоросли. Называются они так, потому что бурые водоросли содержат хлорофилл и, кроме того, желтые и оранжевые пигменты, которые помогают улавливать свет и помогают осуществлять фотосинтез. Бурые водоросли — это многоклеточные водоросли, обитающие исключительно в соленых водах. Тело бурых водорослей может быть устроено очень сложно, но, тем не менее, это все слоевище. К бурым водорослям относится небезызвестная морская капуста ламинария, которую можно есть, а также саргассум, единственная бурая водоросль, которая не прикрепляется к субстрату, а плавает сама по себе. Они замечательны тем, что накапливают много йода, содержащегося в морской воде, и употребление их в пищу довольно полезное занятие.

Красные водоросли — совершенно особая группа водорослей, которая благодаря особым ферментам способна обитать на больших глубинах. До пятисот метров могут спускаться эти водоросли, но, тем не менее, улавливать на этой глубине то ничтожное количество света, которое туда доходит. Красные водоросли также могут быть устроены достаточно сложно, но это все — слоевища. Настоящих органов ни у каких водорослей нет.

Еще две группы многоклеточных водорослей: зеленые и харовые водоросли. Зеленые водоросли содержат, в основном, пигмент хлорофилл. Среди них бывают водоросли самой разнообразной формы: кустистые, нитчатые, слоевидные. Но у них всех клетки не дифференцированы. Зеленые водоросли имеют большое значение в эволюции растений. Считается, что именно от них произошли высшие растения, которые являются сухопутными наземными растениями.

И еще одна группа водорослей — харовые водоросли. Они устроены совершенно необычно. По строению они похожи на хвощи. Их тело состоит из отдельных члеников, ветвеподобных образований.

Значение водорослей для создания морских экосистем очень большое. В основном, все пищевые цепи в морях и океанах начинаются с планктонных водорослей. Водоросли являются строителями экосистем в шельфовой, прибрежной, зоне и большую роль некоторые красные водоросли играют в строении коралловых рифов. То есть, коралловые рифы строятся не только кораллами, но и красными водорослями, в теле которых тоже может откладываться известь.



Поговорим теперь о высших растениях. Первые наземные растения появились 420 млн. лет назад.

Если принять все время, прошедшее от момента «Большого взрыва», приведшего к появлению нашей Вселенной, до настоящего времени за 12 месяцев, то:

Солнечная система и Земля появились 13 сентября, первые признаки жизни — 11 октября, наземные растения — 20 декабря, первые млекопитающие — 26 декабря, первые гоминиды — 31 декабря в 21 час 45 мин.

Считается, что все наземные растения, существующие сейчас, произошли от риниофитов (тип споровых растений, составленный самыми примитивными сосудистыми формами). Сейчас наземные растения представлены моховидными, псилотовидными, плауновидными, хвощевидными, папоротниковидными, голосеменными и цветковыми растениями. Предполагается, что предками всех существующих растений были водоросли, в частности, зеленые.

Для того, чтобы выйти на сушу, растениям надо было решить ряд проблем.

Во-первых, в воде менее сильно действует гравитация на тело, поэтому ему нужно было иметь какую-то определенную форму тела, и в итоге, приобрести опору.

Необходимые для фотосинтеза диоксид углерода, свет и вода находятся в двух средах — воздушной и почвенной. Поэтому нужно, чтобы часть растения находилась в почве, а часть — в воздушной среде, то есть одновременно они должны присутствовать в двух средах. Кроме того, чтобы проводить воду из почвы вверх, должна была появиться транспортная система.

Следующая задача заключалась в защите от обезвоживания. Сухопутная среда способствует обезвоживанию, поэтому растения должны были прибрести приспособления для добывания и сохранения воды.

Для фотосинтеза и дыхания нужно, чтобы газообмен происходил не с раствором (как в случае с водорослями), а с воздушной средой. Для этого у растений существуют такие образования — устьица.

Нежные половые клетки должны быть защищены, а мужские гаметы — подвижные сперматозоиды — могут двигаться только в воде. В процессе эволюции произошел переход к образованию неподвижных мужских гамет — спермиев и доставке их к яйцеклетке с помощью пыльцевой трубки.



Выше упоминалось о необходимости защиты от обезвоживания. Как же растения справлялись с этой задачей? Оказалось, что первые растения были покрыты толстым слоем воскоподобного вещества кутина, то есть они защищались от обезвоживания кутикулой. Затем в процессе эволюции появилась ткань эпидермис. Если кутикула покрывала все тело, то она защищала его от обезвоживания, но при этом должны были появиться приспособления для газообмена.

Они и появились в виде ткани эпидермиса. Он состоит из плотно пригнанных друг к другу клеток. Иногда они еще имеют изогнутые клетки, и плотно соединяются между собой. Эти клетки выделяют наружу кутикулу, но для того, чтобы осуществлялся газообмен, существуют такие остроумные приспособления, которые называются устьица. Они очень интересно устроены, и механизм их работы довольно интересен. Полукруглые клетки, которые видны на рисунке, называются замыкающими клетками устьиц. Та их сторона, которая обращена к щели, более утолщена по сравнению с остальными тонкими стенками. Они содержит хлоропласты и способны осуществлять фотосинтез. В тот момент, когда начинается работа хлоропластов, накапливаются углеводы, их концентрация увеличивается, соответственно, концентрация воды уменьшается, и в это время начинает поступать вода из окружающих клеток. Поскольку эти замыкающие клетки устьиц по-разному утолщены, то они выпячиваются в ту сторону, где стенка толще. Так происходит раскрытие устьиц, туда поступает углекислый газ, выделяется кислород, то есть происходит газообмен.



Какую форму было целесообразно иметь растениям при выходе на сушу? При плоской форме нет надобности развивать опору, она благоприятна для фотосинтеза, поскольку свет и диоксид углерода улавливаются поверхностью. Но в этом случае растения быстро бы закрыли всю поверхность суши. Поскольку таких растений сейчас немного, видимо, более целесообразной оказалась такая цилиндрическая, радиальная, разветвленная форма тела. Такую форму, конечно, нужно было поддерживать, поэтому в процессе эволюции выработалась опора.

Для осуществления фотосинтеза эта форма тела не самая удобная. При цилиндрической форме тела увеличение фотосинтезирующей поверхности возможно при росте тела. Но при этом объем увеличивается как куб, а поверхность — как квадрат линейного прироста. Увеличения фотосинтезирующей поверхности можно достичь образованием плоских органов — листьев. В процессе эволюции у разных растений появились разные листья, разного происхождения. Одни из них пошли по более простому пути — это просто выросты покровных тканей.




Одно-, двухслойные листья, как у мхов и плаунов. Но они не могут достигать больших размеров, поэтому они оказались не очень эффективными. Другие листья образовались из разветвленных осей путем дальнейшего их уплощения. То есть, листья представляют собой уплощенные ветки.



Эти плоские ветки особенно хорошо представлены у папоротников. Здесь целые системы осей образовывали листья, поэтому они могут быть такими большими, разветвленными. У голосеменных и цветковых листья образовались из уплощенных конечных веточек.



Что касается опоры. Для поддержания вертикального положения тела растения необходимо было появление опоры. Эта опора появилась в виде механических тканей. Она состоит из длинных клеток с очень утолщенными стенками. Причем стенки пропитаны веществом лигнином, которое придает им дополнительную прочность. На рисунке ниже видно, что внутренняя часть этих клеток совсем невелика по сравнению со стенками. Кроме того, клетки, приобретшие такие толстые стенки, не могут быть живыми. То есть эти ткани выполняют свои функции только в мертвом состоянии.



Что касается транспортной системы — она должна быть двух типов. Одна должна проводить воду от корней к листьям, а другая — проводить вещества, образовавшиеся в листьях к разным органам растений. Ткани, по которым идет восходящий ток (то есть вода с растворенными в ней минеральными веществами) называется ксилемой. На рисунке ксилема окрашена красным цветом.

Кроме того, что эта ткань проводит воду, она еще выполняет дополнительную опорную функцию. В некоторых случаях только она является той укрепляющей опорой, которая поддерживает растение, это особенно важно для тех растений, у которых нет механических тканей, а есть только ксилема, которая выполняет сразу две функции. Клетки ксилемы тоже могут действовать только в мертвом состоянии. Для того, чтобы вода проходила беспрепятственно, содержимое клетки отмирает, и вода поступает наверх по капиллярному типу.

Вторая ткань — это флоэма. Она осуществляет проведение того, что образовалось в листьях ко всем органам, которым нужны эти вещества — это нисходящий ток. У флоэмы клетки в живом состоянии проводят эти вещества. Эта ткань мягкая, так как стенки клеток не одревесневшие.

Что касается размножения. Для начала расскажем общие положения. У всех наземных растений в жизненном цикле, то есть проходящем от зиготы (оплодотворенной яйцеклетки) одного растения до зиготы другого, происходит закономерное и ритмичное чередование двух фаз или поколений: бесполого диплоидного (т. е. содержащего двойной набор хромосом) поколения, который называется спорофит, и полового гаплоидного (т. е. содержат одинарный набор хромосом) — гаметофит. Спорофит производит споры, при образовании спор происходит мейоз, поэтому споры гаплоидные.

На рисунке показан спорангий папоротника, находящийся на спорофите, в котором образуются одинаковые или разные споры.

Из споры вырастает следующее поколение — гаметофит. Это поколение гаплоидное, на гаметофите образуются половые органы, производящие гаметы (половые клетки, сперматозоиды и яйцеклетки). Все наземные растения имеют половые органы одного типа: мужские называются антеридии, а женские — архегонии. В муж ских органах образуется много сперматозоидов, а в женских — одна крупная неподвижная яйцеклетка. В процессе эволюции, в процессе приспособления к дефициту воды происходила постепенная редукция (то есть сокращение продолжительности жизненных циклов) гаметофитов и упрощение половых органов.



На следующем рисунке показан жизненный цикл мха.

Мхи — это растения, которые пошли по пути преобладания в жизненном цикле гаметофитного поколения. То, что мы видим в лесу — гаметофиты. На их верхушке образуются мужские и женские половые органы, то есть может происходить оплодотворение. Для этого нужна вода. Как ее можно получить и сохранить. Вы, наверно, наблюдали, что мхи растут плотной дерниной, на ней и удерживается достаточное количество воды, в которой могут плавать сперматозоиды. Что происходит при оплодотворении? Образуется зигота, потом она прорастает на этом самом гаметофите в новое диплоидное растение — спорофит. Спорофит отдельно жить не может, он паразитирует на гаметофите, и представляет собой коробочку, в которой образуются споры, коробочка на ножке, а также у него имеется присоска, через которую он присасывает все, что ему нужно из гаметофита.

Все остальные наземные растения пошли по другому пути — пути преобладания в жизненном цикле спорофита. Спорофит получил расчленение на органы, он устроен довольно сложно. Гаметофит представляет собой маленькое растеньице. В каждой группе есть различия, поэтому расскажем про каждую группу.



На рисунке представлен жизненный цикл папоротников. Виден спорофит, на его нижней поверхности есть спорангии, в которых образуются споры. Они разносятся ветром, попадают во влажные условия, лопаются и начинают прорастать, в конце концов образуя сердцевидную очень маленькую пластинку. На ней образуются гаметангии — мужские и женские органы, о которых уже было сказано. Каким образом сперматозоидам попасть в яйцеклетку, если это растение наземное? Дело в том, что пластинка лежит той стороной вниз, на которой образуются половые органы, под ней конденсируется вода, которую сперматозоиды могут использовать, чтобы доплыть до яйцеклетки. Они плывут с достаточно большой скоростью: 0,3 мм/мин. После оплодотворения образуется зигота, и из зиготы вырастает спорофит следующего поколения, он пока еще находится на гаметофите, но через некоторое время гаметофит отмирает, и спорофит начинает самостоятельно существовать.



Примерно так же все происходит и у хвощей. Хвощи имеют членистое строение. Листьев у них нет, одни оси, вертикальные и горизонтальные, которые и осуществляют фотосинтез. На спорофите образуются споры, которые разносятся ветром, для этого у них есть выросты, с помощью которых они сцепляются и облегчают себе полет. В конце концов, они находят где-то условия для прорастания, в следствие чего образуется гаметофит. Он имеет немного другую, отличную от папоротника форму, но он тоже наземный и зеленый, то есть может сам расти и питаться, а затем происходит все то же самое.

У плаунов размножение происходит немного по-другому. Из спор появляется гаметофит, но отличие в том, что гаметофит прорастает под землей, а для того, чтобы ему жить нужно питаться, сам он питаться не может, так как не имеет хлорофилла, поэтому он обязательно должен встретиться с грибом, который внедрится в тело гаметофита и будет его кормить. Такой гаметофит живет 15–20 лет, он долго развивается, может потому плауны остались в считанном количестве видов. А далее, если встреча произошла и образовалась зигота, то из нее образуется спорофит.

Все вышеназванные растения споровые, они образуют мужские половые клетки — сперматозоиды, окончание — зоид означает, что они движутся в воде, и это приводит к тому, что эти растения могут жить только там, где есть достаточное количество воды для размножения. В геологическом прошлом Земли процветание этих видов было тогда, когда климат был очень влажный, их расцвет приходится на каменно-угольный период, и именно они образовали залежи каменного угля, которыми мы до сих пор пользуемся. Но вскоре климат изменился, изменились условия, эти растения стали вымирать, на смену им пришли другие растения, и эти растения должны были научиться не использовать воду для оплодотворения. Доставка мужских клеток к яйцеклеткам должна была происходить без участия воды. Такими растениями стали семенные: голо- и покрытосеменные.

Первыми появились голосеменные.



Несмотря на то, что это семенные растения, у них также есть споры. Они разные: есть мелкие — микроспоры, которые образуются в мелких шишках, есть споры крупные, которые образуются в крупных так называемых женских шишках. Из микроспор появляется мужской гаметофит, производящий мужские гаметы, а из мегаспоры появляется женский гаметофит. Но они устроены совершенно не так, как у предыдущих групп. Микроспоры образуются на чешуйках, в мешковидных образованиях, которые называются пыльниками. А сами микроспоры называются пыльцой. Мегаспора образуется в структурах, называемых семязачатками. Они находятся в женских шишках, на чешуях, по два семязачатка на каждую чешуйку. Так вот внутри этих семязачатков и образуется мегаспора. Далее должны образоваться гаметофиты. Пыльца начинает прорастать внутри пыльцевой оболочки путем деления на несколько клеток. Часть из них отмирает, часть остается, но главное, что остаются две клетки, одна из которых потом будет иметь значение для оплодотворения, а из второй образуются два спермия. В семяпочке выделяется одна клетка, мегаспора, она делится многократно, в конце концов получается образование, называемое женским гаметофитом. Далее мужской гаметофит каким-то образом должен попасть на женскую шишку. Выбрасываемая из пыльцевых мешков пыльца попадает туда при помощи ветра. После того, как она туда попала, семяпочки выделяют сахаристую липкую жидкость, к которой прилипает пыльца. После этого одна из клеток антеридий начинает расти, образуя трубку, которая буквально врастает в архегонию и освобождает спермии, которые по трубке проводятся к яйцеклетке. Получается нечто вроде внутреннего оплодотворения, без участия воды. Далее все происходит как обычно. Внутри семяпочки из зиготы развивается зародыш, из которого, в конце концов, образуется семя. Зародыш — уже следующее поколение спорофита, который хорошо защищен внутри семени. Семя еще защищено оболочкой, семенной кожурой, кроме того, некоторые семена имеют древовидные выросты, с помощью которых они и распространяются. Попав в благоприятные условия, семя прорастает и дает новый спорофит, который вырастает в дерево. У цветковых растений (цветковые растения — это вершина эволюции), как и у всех прочих, в жизненном цикле доминирует спорофит. Ниже показана яблоня.



Вот эта яблоня и есть спорофит. На яблоне образуются цветки, в цветках, несмотря на все их разнообразие и сложность строения, главными структурами являются тычинки и пестики. В тычинках образуются микроспоры, которые здесь тоже называются пыльцой, а в пестиках образуются семяпочки, из которых образуются мегаспоры. Здесь защита еще более мощная, чем у голосеменных растений.



Семяпочки развиваются в завязи, и там они хорошо защищены. Из микроспоры должен образоваться мужской гаметофит. Мужской гаметофит здесь вообще крайне редуцирован — он состоит всего из двух клеток. Из одной клетки образуется пыльцевая трубка, а из другой — два спермия. Пыльца различными способами доставляется на рыльце пестика. Рыльце пестика покрыто сахаристой жидкостью, которая, во-первых, прилипанию, а во-вторых, прорастанию пыльцы. Но эта жидкость также выполняет еще одну роль. Она позволяет прорасти пыльце только своего вида. То есть любая другая пыльца, попавшая на рыльце этого пестика, что бывает довольно часто, не прорастает. Внутри семяпочки происходят сложные процессы формирования женского гаметофита. Мегаспора делится три раза, образуется восемь клеток, и одна из получившихся клеток становится яйцеклеткой. Еще две клетки сливаются в центре этого гаметофита, и это образование называется зародышевым мешком. Когда пыльца попадает на рыльце пестика, она начинает прорастать, также, как и у голосеменных, образуется пыльцевая трубка, которая проникает в этот зародышевый мешок, и один из спермиев оплодотворяет яйцеклетку, а второй не отмирает, как у голосеменных, а оплодотворяет центральное ядро. Вначале оно было диплоидным, а в результате становится триплоидным. В результате из яйцеклетки развивается зародыш, а из триплоидного ядра образуется ткань, которая является питательной для зародыша, а затем и для развивающегося проростка. У голосеменных семяпочки и семена лежали открыто на семенных чешуях, то у покрытосеменных, во-первых, семяпочки находились внутри завязи, завязь находилась внутри цветка, и то, что получается из всех этих частей после оплодотворения, называется плодом. То есть семена получаются заключенными в образование, которое называется плод. (В данном случае, плод — это яблоко.)

Семя, попадая в благоприятные условия, прорастает, семенная кожура лопается, а в семени уже в готовом виде находится следующее поколение спорофита. Пока еще зародыш, который уже имеет два семядольных листика, верхушечную почку и корешок. Когда кожура лопается, первым появляется корешок, он заякоривает это будущее растение в почву, начинает самостоятельно питаться, появляются зеленые листья, и в конце концов, этот бывший проросток превращается в растение.

У покрытосеменных существует несколько способов доставки пыльцы в семяпочки. Самый распространенный способ — это с помощью насекомых.

Многие растения приспособлены к тому, чтобы пыльцу на пестик доставляли насекомые. (Процесс переноса пыльцы к семяпочкам называется опылением.) Как правило, при этом происходит взаимное приспособление насекомого и цветка друг к другу. Интерес цветка понятен — его нужно опылить, а насекомому нужно питаться. Цветок начинает вырабатывать нектар (кроме того, некоторые насекомые едят саму пыльцу). Помимо этого, некоторые насекомые откладывают яйца прямо в пестики, и потом внутри завязи развиваются личинки. Для того, чтобы семена в этом случае произвелись, а не были съедены личинками, у цветков есть способы защиты. В данном случае (см. рис. ниже) цветок устроен так, что нижняя губа представляет собой «взлетно-посадочную» площадку. Иногда она бывает даже каким-то образом размечена, то есть на ней имеются какие-то пятна. Иногда насекомые принимают цветок за насекомых противоположного пола и летят к цветку. Когда насекомое садится на нижнюю губу, тычинки с силой бьют его по спине, высыпая на него пыльцу. Насекомое пролезает вглубь цветка, касаясь спиной рыльца пестика. А поскольку насекомые за день бывают на нескольких цветках, то происходит процесс переноса пыльцы с одного цветка на рыльце пестика другого. Некоторые растения приспособились к тому, чтобы их опыляли не беспозвоночные, не насекомые, а уже позвоночные животные, например, птицы. Ниже представлена фотография колибри, которая опыляет цветок. Она запускает свой клюв внутрь пыльцевой трубки и высасывает оттуда нектар. А в это время пыльца высыпается на перья колибри. Некоторые растения приспособлены к опылению млекопитающими — летучими мышами.



Многие цветковые растения опыляются ветром. Этим ветроопыляемым растениям нет нужды производить яркие цветки, поэтому они у них мелкие, невзрачные, и основные части этих цветков — это тычинки и пестики.

Как было сказано выше, после того, как произошло оплодотворение, из цветка образуются плоды. Плоды у покрытосеменных самые разнообразные. И это не столько способ защиты семян, сколько их распространения. Существует разные способы распространения плодов. Это различные зацепки, с помощью которых плоды цепляются к шерсти животных; это приспособления, с помощью которых сами растения разбрасывают семена (не очень эффективный способ — семена разлетаются на не очень большие расстояния). (Ниже на рисунке показан боб. Створки боба скручиваются и разбрасывают вокруг семена. Есть еще растение, которые образуют сочные плоды, похожие на огурец, в этих сочных плодах возникает давление, и в итоге, плод отрывается от плодоножки, и семена с силой выстреливаются в этой точке отрыва. Такое растение называется бешеный огурец.)

Некоторые растения приспособились к производству сочных плодов. Они нужны, чтобы кто-то их съел, а затем семена, пройдя через кишечник, выйдут где-нибудь в другом месте. Кроме того, здесь еще есть удобрения, и в итоге, такие семена лучше прорастают. Кстати, черника имеет плоды мелкие, но покрытые очень твердой семенной кожурой. И если черника не была предварительно съедена медведем, и семена эти не были обработаны в желудке и кишечнике кислотой, они не прорастают. Многие плоды человек использует в пищу.

На этом общая часть заканчивается. Далее будут идти картинки тех групп, о которых шла речь выше, с краткими комментариями.

Это мохообразные, своеобразная группа мхов, которая называется печеночники.

Их тело представляет собой слоевище. Мужские и женские половые органы появляются на «подставках». Они имеют своеобразное строение. Сверху на мужской подставке образуются сперматозоиды, а на женских подставках образуются яйцеклетки. Интересно, как тут может присутствовать капельно-жидкая влага и как сперматозоиды попадают к яйцеклеткам. Происходит это так. Капли дождя падает на подставку, сползает вместе со сперматозоидами вниз, шлепается на слоевище, и часть брызг вместе со сперматозоидами попадает к яйцеклеткам. Этот способ размножения, конечно, не очень эффективен, но что-то из этого когда-то получается, если печеночники до сих пор существуют. Обитают печеночники по берегам рек, болотам.



Выше представлены более привычные мхи — зеленые, которые растут в лесах. А белые или сфагновые мхи образуют сфагновые болота.

Сфагновые мхи замечательны тем, что они нарастают верхушками всю жизнь, а с нижнего конца отмирают, таким образом образовывая слои, которые потом спрессовываются и называются торфом. То есть эти мхи образуют торфяные, иногда очень значительные по размерам болота. Эти мхи бывают различного цвета, хоть они и называются белыми. Белыми они называются потому, что внутри их тела есть пустые, ничем не заполненные клетки, с отмершим содержимым.

Далее идет представитель Плауновых — Селягинелла. На них можно увидеть те самые листья-выросты, которые не очень эффективно увеличивают площадь, но существуют они до сих пор.

Это хвощи. Вы можете видеть хвощ речной и хвощ гигантский. Это самый высокий в мире хвощ: 4–5 метров высотой. Хвощи имеют такое своеобразное членистое строение, состоят из отдельных члеников, которые появляются сразу, и когда хвощ растет, они просто раздвигаются.



Это папоротникообразные. Как уже было сказано, их листья — это плоские ветки, целая система осей, которая уплощается и в процессе эволюции превращается в листья папоротника. На картинке показано, что не у всех папоротников такие листья, бывают листья простые, не рассеченные, почковидной формы и др.

Очень интересен папоротник, который образует два вида листьев: зеленые и нишевые. Этот папоротник эпифидный, то есть он растет на других деревьях, и вот в нишевых листьях скапливаются остатки почвы, перегнившие остатки листьев; таким образом папоротник создает на дереве себе среду для жизни.

Вот древовидные папоротники, которые еще существуют в тропиках и субтропиках, они образуют там целые леса, где образуют верхний древесный ярус, а также встречаются в нижнем наземном ярусе леса. На стволах древовидных папоротников могут жить другие папоротники.

Это уже голосеменные. На этом рисунке показано, какие бывают листья у голосеменных и шишки. Мужские шишки мало заметны в отличие от женских. У сосны женские шишки состоят из деревянистых чешуй, между которыми располагаются семена. У сосны обыкновенной это крылатые семена, у сосны кедровой и сибирской — некрылатые семена, которые называются кедровыми орешками. На рисунке также видны шишки не с деревянистыми чешуями, а с мясистыми, которые для некоторых животных съедобны, поэтому они их едят и распространяют таким образом семена.



Вот это растение тоже голосеменное.

Это растение известный ботаник назвал монстром среди растений. Этот монстр обитает в самой безводной пустыне Намиб. Каждая особь может прожить тысячу или две тысячи лет. Листьев образуется только два (на рисунке они разорвались), они могут расти всю жизнь со скоростью 20 см в год, но так как они могут быть съедены животными, то в среднем длина листа сохраняется: 6-10 мет ров. Но самое интересное не это. Пустыня совершенно безводная, корни только удерживают растение на земле, а влага улавливается путем конденсирования на листьях, то есть листья являются поставщиком воды.



На следующем рисунке слева представлен единственный представитель класса голосеменных — гинкго двулопастной, который выжил совершенно случайно потому, что его выращивали китайские монахи вокруг монастырей. Справа представлен саговник. Они бывают разные. В основном это тропические растения. Интересно то, что их листья похожи на листья папоротников: крупные, многократно рассеченные, находящиеся на верхушке ствола.

А это уже более привычные нам хвойные. А именно Араукария чилийская. Она имеет правильные листья, расположенные спиралью на ветвях, очень жесткие, как пластмассовые. Интересно то, что у этого растения опадают не листья, а целые ветки. На нижнем правом рисунке показаны ее женские шишки.

Это уже покрытосеменные. На рисунке видны цветки, венчики которых срослись, они способны только к насекомоопылению. Внизу слева показаны цветки с бахромчатыми лепестками. На этом рисунке также представлены разные цветки.



У одних цветков интересные тычинки, они торчат далеко из цветка, и причем другого цвета (ярко красные), отличного от цвета лепестков (желтые).

У другого цветка тычинки срастаются в трубку, внутри которой расположен пестик. Цветки образуют целые соцветия в семействе Сложноцветные.

А это цветки орхидных:



Это самое крупное семейство, оно содержит примерно 30 тыс. видов. Поскольку цветки орхидных очень красивые, необычные, это очень популярное оранжерейное растение. Некоторые коллекционируют орхидеи, это очень дорогое занятие. Сейчас выведено более 100 тыс. сортов. Орхидные наиболее приспособлены к опылению насекомыми, причем только одним видом. Интересно приспособление к опылению орхидных. У них пыльца падает на насекомое не отдельными зернами, а комочками, которые имеют ножку и прилипальце, и когда насекомое сует голову в цветок, из пыльника высыпаются эти образования и цепляются ему на голову.

У известного вам банана цветки раздельнополые. Из женских цветков образовались плоды. А соплодие ананаса образовано из многих семяпочек.

На этом рисунке показана форма листьев покрытосеменных.

Вот форма листьев водного растения Виктория регия, каждый лист-плот выдерживает примерно 50 кг веса. Внизу находятся такие выросты, которые не позволяют этому плоту переворачиваться.

Справа показана Бугенвиллея, у которой прицветные листья выполняют функцию привлечения насекомых, для этого они окрашены в розовый цвет, между тем сами цветки белого цвета, мелкие и невзрачные.

Совершенно особые растения, которые можно назвать плотоядными, потому что они кроме питания за счет фотосинтеза (а некоторые вообще утратили способность к фотосинтезу) поедают насекомых для восполнения нехватки питательных веществ, в основном азота. Для ловли насекомых у них существуют разные приспособления.



Слева внизу изображена росянка, ее листья покрыты волосками, на конце которых есть железа с пищеварительными ферментами, которая выделяет липкую жидкость. Насекомое садится на этот лист, прилипает, и лист начинает постепенно сжиматься, причем это движение видно. То же самое происходит у растения Венерина мухоловка. У нее лист разделен на две половинки, по краям которых находятся щетинки, среди которых выделяют три сигнальных. Если насекомое задело одну щетинку, то листья не захлопываются, если за две — захлопывается, причем очень быстро. У изображенного справа внизу растения — непентеса — другое приспособление к ловли насекомых. У него черешок превращается в кувшинчик, который заполнен пищеварительным соком. Насекомое попадает в этот кувшинчик и выбраться из него уже не может, потому что кувшинчик изнутри покрыт направленными вниз щетинками. Лист этого цветка часто закрывает черешок, преобразованный в кувшинчик.


Кооперативные процессы в эволюции

ЛЕКЦИЯ № 11

Мы попытаемся разобраться, как могла возникнуть многоклеточность, как многоклеточные потом усложнились.

Вспомним, каких одноклеточных мы знаем. Об одноклеточных мы уже говорили на предыдущих лекциях. Амеба — простейшее одноклеточное, относящаяся к типу Protozoa. Клетка у амебы выполняет все жизненно необходимые для нее функции. На рисунке показано, как она охотится. Она выпячивает ложноножки, которые охватывают нечто съедобное для амебы.



На обзорной лекции по зоологии было рассказано о том, как образуются колонии. Ниже представлена колония вольвокса (одноклеточные со жгутиками). В принципе, клетка не погибает, если отделить ее от колонии, но при размножении довольно быстро образуется колониальная форма. Колония способна размножаться, то есть внутри колонии образуются более мелкие колонии. До 10 000 одноклеточных может входить в такие колонии. Действия между ними согласуются через контакты между отдельными клетками, то есть все клетки машут жгутиками согласованно, чтобы колония могла перемещаться не беспорядочно.



Более сложно устроено примитивное животное губка. Хотя с виду губки похожи на растения, к перемещению не способны, они относятся к животным, потому что фотосинтезом не занимаются и имеют животный тип питания. Стенка у губки имеет трехслойное строение: покровные (толстые наружные) клетки, жгутиковые клетки (хоаноциты, внутренние клетки). Пространство между наружным и внутренним слоями клеток заполнено слизистым веществом, в котором находятся клетки амебоциты (похожи на амебу). В отличие от кишечнополостных, во внутренней полости у губок не происходит пищеварение. Эта полость служит только для протока воды. Жгутики машут таким образом, что вода протекает через поры в теле губки и выходит через устье губки. С водой поступают частицы, которые хоаноциты захватывают и поглощают. Покровные клетки и амебоциты питаются частью съеденной хоаноцитами пищи, которую те им передают. С одной стороны, мы видим дифференцированные клетки, но с другой стороны, они дифференцированы не насовсем: хоаноцит может превратиться в амебоцит, потом перебраться на другую сторону и стать покровной клеткой. Таким образом, нельзя сказать, что губки имеют ткани, как у высших животных: хотя у них и имеются слои дифференцируемых клеток, последние специализированы временно. Еще раз подчеркнем, что тут уже имеется разделение функций между клетками, клетки не одинаковые, но это разделение временно.



Каким образом клетки, содержащие одинаковый геном, могут иметь разную форму и выполняют разные функции? Для этого должны синтезироваться разные белки, которые идут и на строительство клеток, и на ферментативные функции. Гены во всех клетках одинаковые, за исключением половых клеток. То есть, гены во всех клетках одинаковые, но при этом клетки имеют разную форму и разные функции. Это объясняется тем, что в каждой клетке работают не все гены, а только те, которые нужны в данный момент. Гены могут включаться и выключаться, то есть, как говорят, активироваться либо быть репрессированными (выключенными).

Сделаем небольшое отступление, чтобы обсудить регуляцию активности генов. Обсудим мы ее на примере бактерий. У них регуляция активности генов несколько проще, чем у высших организмов, но принцип тот же. Мы уже говорили о переключении работы групп генов при помощи изменения сродства РНК-полимеразы к промотору. Напомним. РНК-полимераза — это фермент, который считывает генетическую информацию с ДНК и синтезирует матричную РНК. Как вы помните, в РНК-полимеразе есть а-фактор — белок, который распознает промотор и помогает РНК-полимеразе на него сесть и начать транскрипцию. Таким образом переключается работа больших групп генов, это такая системная регуляция. Клетка переключается с одной жизненной программы на другую. Сегодня будет рассказано о еще двух системах регуляции. Они называются катаболитная активация (или катаболитная репрессия), и активация-репрессия отдельных оперонов. Оказалось, что у бактерий группы генов, которые кодируют совместно работающие белки, расположены рядом. Ниже приведен пример лактозного оперона (гены, кодирующие белки, которые перерабатывают лактозу). Первый фермент, кодируемый геном lacZ, необходим для расщепления лактозы при извлечении энергии из сахара лактозы; ген lacY кодирует фермент пермеазу, который переносит лактозу из внешней среды внутрь клетки; третий ген также кодирует фермент, метаболизирующий лактозу. Эти три гена находятся рядом друг с другом, и считываются с одного промотора.

Гены, транскрибируемые с одного промотора, называются опероном. В данном случае мы говорим о лактозном опероне. Концепция оперона была предложена Жакобом, Моно и Вольманом, за что они получили Нобелевскую премию.



Каким же образом регулируется работа этого оперона? Для того, чтобы он работал, необходимо, чтобы РНК-полимераза распознала промотор и начала синтез матричной РНК. При этом в ней будут считаны сразу три гена, и с полученнрой мРНК будут синтезированы три отдельных белка. Выгодно было бы для кишечной палочки включать работу лактозного оперона, когда лактоза есть, и выключать, когда лактозы нет. Эта система работает следующим образом. После промотора, до начала структурных генов (гены, кодирующие белки), находится участок, который называется оператор. На нем в отсутствии лактозы находится белок, называемый белком-репрессором лактозного оперона. Он кодируется отдельным геном, находящимся рядом с лактозным опероном и постоянно работающим. С этого гена синтезируется своя мРНК, с нее транслируется белок-репрессор, и этот репрессор садится на операторный участок. Когда здесь находится белок-репрессор, РНК-полимераза не может сесть на промотор и начать синтез. Белок-репрессор физически не дает ей этого сделать. Если в среде появляется лактоза, она связывается с белком-репрессором, тот меняет свою конфигурацию и отваливается от оператора. РНК-полимераза может начать свою работу и считать структурные гены. То есть, в присутствии лактозы синтез мРНК лактозного оперона разрешен, в ее отсутствие — запрещен, репрессирован.

В присутствии глюкозы для Е. coli не выгодно использовать другие сахара — лактозу, галактозу, мальтозу (период генерации при росте на глюкозе — 50 мин, на лактозе — 80 мин). При использовании лактозы необходимы некоторые дополнительные реакции, переводящие ее в форму, которую клетка может использовать.



Значит, если во внешней среде имеются одновременно и лактоза, и глюкоза, то запускать обработку лактозы невыгодно; нужно использовать более выгодную для клетки глюкозу. Существует несколько возможных алгоритмов того, как это сделать, некоторые из которых реализуются в других оперонах. Для лактозного оперона природа придумала такое решение. У кишечной палочки есть белок, который вместо того, чтобы репрессировать этот оперон, его активирует. Этот белок называется белок-активатор катаболитных генов (БАК, английская аббревиатура ВАС). Дело в том, что лактозный промотор сам по себе не настолько сильный, чтобы с него шла хорошая транскрипция. БАК садится перед промотором и помогает РНК-полимеразе начать транскрипцию. Без этого белка РНК-полимераза не способна запустить транскрипцию с лактозного промотора. А сесть перед промотором белок может только тогда, когда в клетке нет глюкозы.

Как устроена эта система. Дело в том, что БАК способен связаться с ДНК только тогда, когда белку присоединен циклический аденазинмонофосфат (цАМФ). Это вещество образуется из АТФ специальным ферментом аденилатциклазой. В присутствии глюкозы аденилатциклаза блокируется и концентрация цАМФ в клетке падает, и цАМФ больше не может связываться с БАК. БАК диссоциирует с промотра, транскрипция прекращается. Когда глюкоза попала в клетку, она ингибирует работу аденилатциклазы, белок слезает не только с лактозного, но и с некоторых других промоторов, в частности, прекращается метаболизм мальтозы и некоторых других сахаров прекращается, потому что глюкоза — наиболее выгодный продукт.

Таким образом, лактозный белок-репрессор специфичен: у него только одно любимое место во всем геноме кишечной палочки — оператор лактозного оперона, в то время как БАК-белок может сесть на несколько промоторов. Не на все, но на строго заданные — на те, которые не должны работать в присутствии глюкозы. В отсутствие глюкозы он сидит на промоторах и активирует их, а как только глюкоза в клетку попадает, транскрипция с этих промоторов прекращается.



Ниже представлена шариковая модель циклического АМФ. Он — типичный регулятор внутриклеточного метаболизма. Такая система изменения активности аденилатциклазы и, соответственно, концентрации циклического АМФ в клетке, работают не только у бактерий, но и у очень многих организмов, в том числе и у нас с вами. Через аденилатциклазу, регулируя ее активность, действуют некоторые гормоны. Меняя концентрацию циклического АМФ, эти гормоны влияют на внутриклеточные процессы.



Интересно, что циклический АМФ используется не только для регуляции внутриклеточных процессов, но и для межклеточной коммуникации при формировании многоклеточности. Об этом будет рассказано на примере уникального организма — амебы, которая называется Dictyostelium discoideum. Это одноклеточная амеба, которая живет в почве и питается бактериями.



Когда все хорошо, амебы диктиостелиума ползают по своему месту обитания, питаются и делятся время от времени. Но если они голодны, долго не попадалось хорошей еды и их энергозапасы начинают истощаться, они выпускают во внешнюю среду цАМФ, соседние клетки этот сигнал воспринимают. Если клетки сыты, то они на него не реагируют, если же они голодны, то они начинают сползаться в кучу. Вначале они собираются небольшими группами, выпускают циклический АМФ, его концентрация становится больше, поэтому одиночные клетки начинают к ним подползать, образуя агрегат клеток. В итоге к самой большой кучке сползаются остальные группы клеток, и они формируют единый многоклеточный организм, который называется псевдоплазмодий. Он способен ползать, и в отличие от амебы, способен перемещаться на заметные расстояния. Он с довольно заметной скоростью уползает из плохого места. Если ему удается переползти туда, где есть еда, то он опять распадается на отдельные клетки, которые, как приличные одноклеточные амебы, начинает питаться. Если же он ползет — ползет, а хорошая жизнь все не наступает, то он останавливается, примерно 20 % клеток ползут вверх, образуя жесткий стебелек, и затем отмирают (то есть, приносят себя в жертву всем остальным). По стебельку остальные клетки переползают на самую верхушку, образуют плодовое тело, в котором созревают споры. Они разбрасываются на некоторое расстояние вокруг, пережидают неблагоприятный период. Когда наступает хорошее время, они прорастают в амебы, и вся история начинается заново. Этот процесс проиллюстрирован на картинке ниже. Эта амеба не является ни одноклеточным, ни многоклеточным организмов. В ее случае мы сталкиваемся с тем, что то, что можно наблюдать в живой природе, сложнее, чем придуманная людьми система классификации. Dictyostelium часть своей жизни одноклеточный, другую часть — многоклеточный, и он способен переходить из одной формы в другую, то есть, так просто его не классифицируешь. Он на стадии псевдоплазмодия имеет дифференцированные клетки. Его передний конец обладает хеморецепцией, он лучше все чувствует, чем задний конец псевдоплазмодия. И образование плодового тела — это процесс уже ярко выраженной дифференциации, при которой 20 % клеток образует стебелек и погибают. Размер генома Dictyostelium'а 3.5х107 Ьр. Мы можем назвать Dictyostelium факультативно многоклеточным.




Итак, благодаря тому, что не все гены работают в клетке одновременно, клетка может менять программу своей активности, образовывать разные ферменты и иметь разную форму. Это происходит как у одноклеточных, так и у многоклеточных. У многоклеточных регуляция еще более сложная, так как помимо внутриклеточных процессов нужно регулировать еще межклеточные взаимодействия. Но возникает вопрос, как вообще могли образоваться многоклеточные. Как исходно одноклеточные организмы превратились в многоклеточные? У практически всех одноклеточных известны мутанты, не расходящиеся при делении клетки. То есть нормальное деление клетки происходит, все у нее делится: ядра делятся, митохондрии делятся, хлоропласты расходятся по разным дочерним клеткам, но последний этап, когда клетки должны отцепиться друг от друга, у них не происходит, они остаются сцепленными. У некоторых видов эти клетки-мутанты живут хуже, чем нормальные одноклеточные формы, потому что у них нет системы регуляции взаимодействия клеток. Но некоторые виды, видимо, приспособились к этому, эти клетки начинают взаимодействовать друг с другом, у них есть программа согласования своих действий. Нерасхождение при делении встречается не только на уровне одноклеточных, но и на уровне многоклеточных, (например, сиамские близнецы). Не всегда это является уродством, иногда это вариант нормы.

На рисунке вы видите червей, которые после деления не разошлись. Все вместе они образуют то, что называется временной линейной колонией. Если их друг от друга отделить, они будут дальше вполне комфортно жить. Такая колония может потом сама разделиться. Но происходит это не сразу, какое-то время черви живут все вместе.



Существуют колонии так называемых гидроидных полипов. Напомним, что гидра относится к типу Кишечнополостных, подцарство Metazoa. У гидры следующее строение: имеется внешний слой клеток — эктодерма, внутренний слой клеток — эндодерма, (эти клетки могут заниматься пищеварением), есть щупальца, способные захватывать жертву, на которых у нее есть стрекательные клетки, есть рот, внутри гидры есть полость, в которой происходит пищеварение. Гидра прикрепляется ко дну водоема при помощи так называемого базального диска. У гидры имеется сеть из нервных клеток, большое скопление этих клеток находится у щупалец, так как надо реагировать мгновенно на любое прикосновение. Такое строение имеют и остальные представители кишечнополостных.



Многие виды кишечнополостных типа образуют колонии. Ниже представлена колония животных — гидроидных полипов, которая с виду похожа на растение. Каждый "листочек" такого "растения" имеет такое же строение, как гидра.



Жизненный цикл у некоторых из гидроидных полипов проходит следующим образом: полипы растут вместе, они объединены общим проводящим каналом, время от времени некоторые из них отрываются, превращаются в медуз (принципиальное строение гидры и медузы одинаковое), которые уплывают и активно размножаются, проходят определенные стадии, образуют половые клетки, которые, сливаясь, дают зиготу, из которой вырастает новый полип. И снова весь цикл повторяется.



Известные вам красивые кораллы — это скелет коралловых полипов. Полипы — похожие на гидру существа, у который есть общий проток воды по общим объединяющим их каналам, они строят для себя известковый скелет. У некоторых этот скелет включает в себя соединения железа, которые окрашивают его в красивый красный цвет. Коралловые полипы живут в море. На следующем рисунке представлены разные формы коралловых полипов.



На следующем рисунке слева представлен мадрепоровый коралл. У него отдельные полипы уже неразличимы, они все сливаются в единое целое, от них остаются только глотки с щупальцами, причем эти щупальца обобществлены, они заглатывают кусочки пищи и направляют ее в общую полость. Справа виден родственник гидры и полипа — мшанка кристателла. У нее тоже отдельные особи сливаются своими основаниями. Каждая особь называется не полипом, а зооидом, то есть это как бы и не отдельное животное, и не орган. Они способны втягиваться в трубку у основания общего тела. Объединенная часть их образует подошву, и, в отличие от кораллов, мшанка способна передвигаться со скоростью 15 мм в сутки.



Другой более отдаленный родственник гидры — физалия — относится к подклассу сифонофор. Это животное называют португальский военный кораблик. У физалии есть сверху парус, который может иметь разную окраску, от голубого до пурпурного. Она довольно ядовитая, у нее есть стрекательные клетки, которые способны сильно отравить даже человека, не говоря уже о мелких животных, которыми

Самый верхний образует плавательный пузырь, внутри него находятся клетки, выделяющие газ, если физалии надо подняться на поверхность. Под плавательным пузырем находятся плавательные колокола — это как бы отдельные индивиды, но здесь они уже превращаются в органы. Ниже находятся индивиды, которые используются как половые органы, они не способны питаться, поэтому другие зооиды — гастрозоиды, их кормят, но не только их, но и весть «организм». Есть защитные зооиды, имеющие стрекательные клетки.



Таким образом, если у колонии коралловых полипов каждый полип равнозначен, то здесь колония может превращаться в достаточно сложноустроенный организм, с дифференцированными полипами, каждый из которых превращается в орган. Таким образом, этот организм нельзя однозначно проклассифицировать — является ли он колоний организмов или отдельным организмом.

Аналогичную ситуацию мы можем наблюдать, изучая социальных насекомых — муравьев, пчел, термитов.

У пчел (так же как и у муравьев и термитов) обычно имеется единственная плодоносящая матка. Остальные пчелы — рабочие самки, они неплодоносящие и по сравнению с маткой мелкие. Они кормят матку, которая ничем другим не занимается, кроме как откладывает яйца, из которых появляются рабочие пчелы или трутни.

На картинке показаны термиты.



Они строят огромные термитники. Справа сверху показаны: 2 рабочие особи, солдат и матка. Пока она функционирует, другие особи не могут развиться в матку. Если ее убрать, то одна из рабочих особей превращается в царицу — плодовитую матку. Это регулируется (так же как и у пчел и муравьев) через выделение ферамонов и др. веществ матки. То есть матка выделяет вещества, которые ингибируют (запрещают) трансформацию других самок в матку. Когда матка умирает, все самки начинают выделять эти вещества, и та самка, которая опережает других, тормозит их, становясь маткой. Это означает, что у самок не утеряна способность плодоносить, но она репрессирована.

У термитов, если есть вторая плодоносящая самка, то она улетает в другое место и образует новое сообщество. Одна оплодотворенная матка может создать целое гнездо. Она хранит спермии в определенном резервуаре, которые расходует для оплодотворения яиц очень экономно. После того, как она отложит яйца, она за ними начинает ухаживать, как только появляются личинки, матка их кормит частью яиц, и после этого, личинки превращаются в рабочих особей. Они начинают помогать матке кормить новых личинок вначале яйцами, затем добычей. Часть из рабочих особей ходят за добычей, а часть строят термитник. Таким образом от одной плодоносящей матки может получиться новое гнездо с огромным количеством особей.

У пчел матка может откладывать как оплодотворенные, так и неоплодотворенные яйца. Из первых образуются рабочие пчелы-самки, из вторых — трутни. Трутни могут вылетать в другие ульи и оплодотворять чужую матку, таким образом осуществляя перекрестное оплодотворение. Хотя можно использовать трутней из своего улья, потому что при этом все равно происходит перекомбинация генетического материала.

Здесь следует подчеркнуть, что вегетативное деление клетки вполне обеспечивает увеличение числа клеток. Половой процесс нужен для перекомбинации генетического материала. Есть виды, например среди одноклеточных, для которых описано самооплодотворение. Когда заканчивается обычное деление, проходит половой процесс. К делится, образуя половые клетки, которые потом сами с собой сливаются, то есть потомки одной клетки сливаются друг с другом и образуют зиготу. В данном случае деление не приводит к увеличению числа потомков, но у них перемешивается генетический материал.

Какую можно провести аналогию между термитами и, например, с сифонофорами? Мы здесь видим отдельных индивидов, вроде бы независимых друг от друга, но они образуют колонию, хотя в отличие от сифонофор, отдельные части этой колонии способны самостоятельно передвигаться. Но ясно, что колония — это «организм» с дифференцированными органами. Этими органами являются отдельные термиты. Есть репродуктивный орган — матка, орган защиты — солдаты, есть органы питания и ухода за личинками — рабочие самки, есть система коммуникаций (химическая и поведенческая формы) между органами. Как же социальные насекомые между собой общаются?

В свое время было сенсацией расшифровка языка пчел.



Когда пчела нашла нечто съедобное, она прилетает обратно в свой улей и сообщает остальным, что и где она нашла. Что она нашла, понятно по тому, что прилипло к ее телу. А где она это нашла — сообщает на языке танца. Во время танца пчела движется по вертикальной поверхности. Она совершает движение, схематически отражающее направление и расстояние до места, куда следует лететь за едой.

Солнце в этой схеме по умолчанию находится сверху. Например, если место кормежки расположено прямо по Солнцу, то пчела ползет вверх и делает такую «восьмерку», как показано на рисунке. Таким образом направление она указала. Если место для питания под углом 60°, то пчела поворачивает восьмерку на 60° (рисунок Ь). Аналогично остальные ситуации. А количеством виляний брюшком она указывает на расстояние. У разных пчел разные диалекты, поэтому у них одно число виляний брюшком показывает разное расстояние. Также пчела может объяснить не только, как лететь по прямой к месту кормежки, но и как облететь, например, гору. Если еда находится рядом с ульем, то пчела выполняет танец, который показан на рисунке слева вверху.

Как же пчела ориентируется на местности, как запоминает ориентиры? Дело в том, что пчелы видят все в поляризованном свете, у них по другому устроено зрительное восприятие, и есть посвященные этому исследования. Интересно знать, что у пчел врожденное владение языком. При жизни они, конечно, совершенствуют свой танец, добавляют новые, свойственные только этому улью элементы танца, но в принципе они изначально могут показать путь к месту, где есть еда. Если взять пчел, говорящих на разных диалектах, то оказывается, они не могут понять друг друга. Возникает вопрос: применяют ли пчелы еще в каких-нибудь ситуациях свой «язык»? Нет. Для остальных ситуаций у пчел хорошо развита система коммуникаций, регулирующая отношения индивида внутри роя, для того, чтобы они делали то, что надо. Но наиболее загадочным и интригующим для ученых была их способность рассказать о том, куда лететь. За работу над расшифровкой языка пчел Карл фон Фриш получил Нобелевскую премию (1973 г.).

Хочется отметить один факт: что у нас, что у пчел общая архитектура нейронов задана наследственно, а не обучением, индивидуальный опыт добавляет то, как они друг с другом соединятся на конечных стадиях. Мы отличаемся от пчел тем, что у нас гораздо большая часть нервных связей наследственно не задана, и на них ложится индивидуальный опыт.

Существуют две причины, почему отдельные независимые индивиды (будь это клетки или гидроидные полипы, или приматы) объединяются в колонию или многоклеточный организм. Это наиболее эффективное использование ресурсов и защита. На примере волков объясним первую причину. Летом волки живут небольшими группами, семьями. Они занимаются тем, что ловят разную живность, например мышей, которых летом много, и вполне успешно способны прокормиться. Но зимой мыши и другие мелкие насекомые прячутся под снегом, и приходится ловить крупных животных — лосей или оленей, например. Тогда волки сбиваются в стаи. Стаи могут осуществлять очень сложные виды загонной охоты, некоторые загоняют, некоторые сидят в засаде. Во время охоты волки обмениваются между собой вокальными сигналами, координируя таким образом свои действия. То есть здесь мы сталкиваемся с ситуацией, аналогичной поведению Dictyostelium'a, который часть времени проводит как одноклеточное, а часть времени — как коллектив одноклеточных, объединяющихся в единый организм.

Очень интересен образ жизни приматов. На картинке представлен детеныш шимпанзе бонобо. Как уже говорилось на первых лекциях, шимпанзе бывает двух видов: обыкновенный и бонобо, они разделились примерно 2 млн. лет назад. И тот и другой виды равно близки к человеку. Эти виды очень похожи по образу жизни. Живут они в разных зонах, хотя ареалы их расселения перекрываются.



Шимпанзе живут отдельными группами, которые включают в себя несколько десятков особей, они ведут образ жизни охотников-собирателей, питаются они растениями, мелкими животными, объединяются в группы для охоты, несколько молодых самцов способны поймать мелкую добычу и съесть, также они едят муравьев, термитов, и используют орудия для того, чтобы их ловить. Например, для того, чтобы достать термитов, они разжевывают веточку, опускают в термитник, там на нее налипают термиты, и шимпанзе вынимает веточку и снимает их с нее губами. Для того, чтобы достать воду, они способны использовать губку из травы. Они могут разбивать орехи двумя камнями, один из которых — прототип молота, второй — наковальни. В группе существует достаточно строгая иерархия: есть лидирующий самец. Лидер выбирается не по силе и агрессивности, как раньше думали, а по способности к образованию максимального числа дружеских связей и способности к организации своих соплеменников на кооперативные действия. Все остальные члены группы ему подражают, маленьких детенышей воспитывают так, чтобы те приветствовали лидера и не вели себя плохо в его присутствии. Взаимодействия членов группы построены на некоторых видах поведения, например, вычесывание шерсти (груминг).



У человека сохранились от наших родственников приматов некоторые формы поведения, о которых будет рассказано на следующей лекции.

Процессы кооперации в социальной эволюции

ЛЕКЦИЯ № 12

Вспомним схему, которую мы уже рассматривали на лекции № 2. Это схема повышения уровня сложности организации живых систем. В ней по порядку идут: прокариоты, эукариоты, многоклеточные, объединение многоклеточных индивидов в социальные системы. В прошлый раз мы говорили о «социальных насекомых»: муравьях, пчелах, термитах, у которых социум скорее похож на организм, части которого отдельно бегают, — это одно направление; и о социальной эволюции у приматов, об организации социума у приматов. Более сложные социальные системы существуют только у человека.

Предмет биологии с одной стороны ограничивается появлением жизни, появлением клеточных структур, а с другой — выходом на уровень социальной эволюции.

Возможно ли сейчас абиотическое появление клетки? Сейчас это невозможно. Если бы существовало какое-то скопление органических веществ, то оно было бы съедено уже существующими клетками. Почему сейчас обезьяна не превращается в человека? Один вариант ответа: она превращается, но мы просто не замечаем; второй вариант: существующие люди ей это сделать просто не дадут, так как занимают пригодные для этого экологические ниши. Как и государства: если, где-нибудь захотят создать государство, как это когда-то было, то уже существующие на этой территории государства не позволят это сделать. Возможно деление уже существующих государств, но появление новых не реально.

А почему же все-таки происходило повышения уровня организации, почему возрастала сложность систем? Бактерии размножаются и передают ДНК из поколения в поколение ни чуть не хуже других организмов. Зачем надо было повышать сложность организации, а не решать задачи в рамках уже имеющейся организации? Что же служило источником усложнения? Рассмотрим следующий пример.

Если закручивать веревку, то через некоторое время на ней начнут появляться витки второго порядка, а потом и третьего. На этом примере видно, что чтобы в системе что-то происходило, необходимо, чтобы в нее поступала энергия. А когда «емкость» система данного уровня сложности исчерпана, т. е. упругость нашей веревки больше не позволяет образовываться виткам, происходит образование витков второго порядка и т. д. Это — аналогия, иллюстрирующая то, что все жизненные процессы на Земле, в том числе эволюция, с усложнением структуры систем, происходят при поступлении в систему энергии. Есть два источника энергии — солнечная энергия и тепло недр земли. Мы сейчас, вряд ли можем оценить, какой источник был более важным, какой сыграл более важную роль, но понятно, что оба они необходимы для жизни. Если бы энергия не поступала, то жизнь бы прекратилась, и никакой эволюции бы не было. Если бы она поступала медленно, то все эволюционные процессы протекали бы очень медленно. Если бы она поступала очень быстро, то все бы разрушилось. То есть поток энергии должен быть таким, чтобы он был способен поддерживать биологические процессы, не разрушать молекулы. Часть постоянно поступающей энергии рассеивается, часть идет на поддержание существующих структур, эту энергию перерабатывающих, и часть — на образование новых структур из уже существующих, упорядочивание, повышение эффективности их взаимодействия. То есть, в эволюции участвуют вещество, энергия, а в результате их взаимодействия все структурируется. Можно сказать, здесь возникает порядок из хаоса, как у Пригожина. Назовем этот третий параметр информация. Из-за того, что Солнце светило на Землю, а в Земле происходили процессы, согревающие ее поверхность, потоки вещества структурировались с образованием все более сложных систем. Можно сказать, что в информации, т. е. в структуре потоков веществ, которые составляют жизнь, законсервирована солнечная энергия, поступавшая на Землю. Она законсервирована в структуре прокариот, структуре эукариот, в организации многоклеточных, в социальных структурах (когда в Госдуме происходят драки, это результат процесса консервации солнечной энергии и структурирования на социальном уровне:). Заметим, что это была просто метафора или аналогия. Главная ее идея — заключается в том, что никакие жизненные процессы не происходят без энергии, и двигателем эволюции является солнечная энергия.

О происхождении жизни мы уже говорили на одной из лекций. Сегодня мы обсудим социальную организацию приматов, то, как устроены социумы у приматов.

Для того, чтобы отличить кучу бактерий или амеб, сползающихся к еде, от многоклеточного организма, проверяют наличие коммуникации. Если все ползут в одну сторону, потому что там хорошо, и никто друг с другом не общается, то это просто «толпа» бактерий. Если же имеется система коммуникаций, то уже можно говорить о переходе к единому организму. На прошлой лекции были разобраны ступени такого перехода. Мы говорили и о том, что в социуме приматов имеется система коммуникаций. И некоторые виды коммуникаций приматов сохранились вплоть до сегодняшнего дня в человеческом обществе. В прошлый раз уже был упомянут груминг, который характерен и для обезьян, и для человека. Еще одна сохранившаяся форма поведения — это ношение детеныша. Приматы, начиная с лемуров и заканчивая шимпанзе, гориллами и орангутанами, носят своих детенышей на спине. Детеныш очень крепко держится за шерсть матери, и даже при ее быстром передвижении он не падает. У человеческого ребенка сохранилась эта способность в виде так называемых врожденных рефлексов. Если младенцу до месяца вложить что-то в руку, палец, например, то он его сразу же крепко схватит. Это остатки рефлекса, когда в прошлом детеныш обезьяны должен был хвататься за шерсть матери. Есть еще один рефлекс, связанный с тем, что за маму надо было очень крепко держаться и ни в коем случае ее не терять. Если подложить ребенку под голову руку, а потом резко отпустить, то он махнет головкой, а руками резко разведет в стороны и затем обхватит себя за бока. Понятно, зачем этот рефлекс нужен: если ты потерял маму, то нужно побыстрее так махнуть, может еще успеешь поймать маму. У человека сохраняется такой же способ ношения детей. В очень многих племенах, ведущий традиционный способ жизни, детей носят привязанными на спине, реже на бедре. Это явно сохранилось от наших предков приматов. Но поскольку мамы теперь не волосатые, держаться за них трудно, детей теперь приходится привязывать.



В стаде шимпанзе существует система обучения.



Группы шимпанзе, живущие в географически отдаленных местах, могут иметь абсолютно разные культурные традиции. Есть и общие традиции, но есть и разные. Так, в одной из групп шимпанзе, то животное, которое вычесывают, во время груминга закидывает руки за голову, а в других группах ничего подобного не происходит.

Группы предков человека вели образ жизни, видимо, сходный с тем, который ведут сейчас шимпанзе. Шимпанзе — наши ближайшие родственники среди ныне живущих приматов. С появлением человека как биологического вида сотни тысяч лет группы людей занимались охотой-собирательством и кочевали с места на место в поисках еды.

Многие традиции сохранились у племен с архаичным укладом. Ниже на рисунке вверху представлены бушмены. Народы, живущие на юге Африки. Они, видимо, сохранили образ жизни с древнейших времен. Они охотники-собиратели, живут кочующими группами около 30 человек. Когда они останавливаются на стоянку, то они сооружают навесы из веток, защищающие от ветра. Численность семьи от 2 человек (если это муж с женой) и до 7–8 человек (если это муж, жена, дети; иногда могут быть их родственники). Обычно группа состоит из 2–5 семей. Иногда люди уходят куда-то в сторону поохотиться, но потом возвращаются. Бушмены любят ходить в гости в соседние общины. Община имеет свою территорию, заходить на которую без ее разрешения и собирать там орехи или охотиться совершенно неприлично.

Справа внизу изображены другие жители Африки — масаи-скотоводы. Основной источник их пищи — то, что они получают от коров (молоко и мясо).

Слева изображен представитель охотников на северного зверя — чукчей и эскимосов. Они ведут приблизительно одинаковый образ жизни. Обратите внимание, на различие в пропорциях. Масаи живут в теплом жарком климате, поэтому у них длинное тело и длинные ноги, чтобы лучше шел теплообмен. Эскимосы живут на Севере, поэтому они ниже ростом и конечности у них короче — на Севере тепло надо беречь. Это — адаптация к климатическим условиям. Это небольшое отступление от темы; на социальные взаимоотношения антропологический адаптивный тип практически не влияет.



Вернемся к приматам, к тому, как устроено их стадо. Структуру стада можно хорошо рассмотреть на стоянке, когда животные кормятся, или на марше, когда животные передвигаются. В центре стада находится лидер, обычно это — сильный взрослый самец. Его называют а-самец — самец самого высокого ранга. Вокруг него — самцы второго ранга, самки с детенышами (как только у самки появляется детеныш, ее ранг сразу повышается, и она проводит много времени близко к лидеру). Они окружены более низкоранговыми животными: взрослыми самками без детей и молодыми самцами. По периферии стада находятся молодые буйные подростки, которые это стадо охраняют. Они еще мало обучены, и потому наименее ценные. Потерять самца-лидера — это большая потеря, он много знает. Его функции: они принимает решения, где кормиться, остановиться на водопой или пройти мимо, в случае опасности — бежать или защищаться. Он организует своих соплеменников на совместные действия, он принимает решения о том, что должна делать группа. Это мудрая сильная личность, индивид, не знаю, как сказать, потому что после того, как ознакомишься с культурой шимпанзе, называть их животными язык не поворачивается. Итак, в центре стада находятся наиболее ценные представители стада — лидер и самки с детенышами. Если детенышу угрожает опасность, вся группа бросается на его защиту. На стоянке во время кормежки, молоды самцы охраняют стадо. Они «стоят в дозоре», и когда видят что-то опасное, криком оповещают об этом остальных. И самец-лидер также ведет наблюдение за окружающей территорией.

Во время охраны, молодые самцы сидят, раздвинув свои задние лапы, и демонстрируя миру эрегированный половой орган. Это является знаком угрозы и демонстрацией боевого духа охранника. Дело в том, что во время драки в кровь животного, равно как и человека, поступает гормон адреналин и другие гормоны, мобилизующие организм. Часть этих путей мобилизации совпадают с путями появления эрекции, поэтому эрекция — это знак того, что животное сильное и агрессивное, и может победить всех, защищая свою группу. Таким образом, эрекция, кроме того, что она еще и по прямому назначению иногда применяется, является знаком коммуникации, который обозначает «Я — сильный, не подходи ко мне!».

Это сохранилось и у людей. Ниже на фотографии изображены представители племен, которые, подчеркивая мощь своего полового органа, надевают на них чехол. Если он очень длинный, то его еще подвязывают. Чем мужчина старше и уважаемее, тем больше размеры чехла. Носят его не все время (потому что неудобно), а в каких-то ритуальных ситуациях. Иногда там внизу еще делают кармашки, чтобы всякую мелочь туда складывать. Функции те же — подчеркивает ранг и силу обладателя этого величественного чехла.



Когда проводили раскопки римских городов, засыпанных пеплом, в Геркулануме были найдены возле домов столбики, называемые гермами. Это столбики с головой мужчины и выполненной на соответствующем месте изображением эрегированного члена. Они охраняли территорию, сообщая всем, что здесь есть защитник. Ниже изображена деревянная фигурка, совершенно с такой же структурой, вырезанная недавно представителем одного из африканских племен. Функции те же — охранные. К приматам восходит и традиция носить на шее охранные амулеты в виде фаллоса. Туда же восходит известный неприличный жест, который сообщает все то же самое, что и у приматов. И, как предполагают некоторые лингвисты, к этим биологическим корням восходят некоторые матерные ругательства. И еще один интересный момент. Так как эрегированный половой орган означает угрозу, то низкоранговые особи не имеют права проявлять эрекцию в присутствии старших по рангу. Проявление эрекции прощается только детенышам-несмышленышам. Но с определенного возраста (с 3–5 лет), если он демонстрирует эрекцию в присутствии старших, ему дают по шее, чтобы вел себя прилично. То есть это еще и механизм поддержания иерархии внутри социума.

Еще один механизм, связанный с репродуктивными системами. У приматов спаривание происходит в определенной позиции: самочка принимает позу подставления, а самец ее покрывает.



Эта позиция приобрела еще и коммуникативный смысл. Ниже изображена самочка, которая выполняет элемент позы подставления, а самец выполняет элемент позы покрывания.

Это фотография двух обезьян из зоопарка. Самка впервые увидела кошку, испугалась и таким образом просит защиты у самца. Поза подставления имеет коммуникативное значение, обозначая низкий ранг, и выражает просьбу о защите, или вообще любую просьбу.



Рис. 48. Самка (без набухания) боится приблизиться к незнакомым существам — котятам. Она обращается за поддержкой к вожаку, подставляясь ему. Самец условно покрывает ее — кладет руки на спину (Тих, 1950)


Значение этих поз сохранилось и у человека. Ниже представлена картина «Возвращение блудного сына». Блудный сын сообщает о том, что он имеет более низкий ранг и просит о защите, а отец оказывает ему такую защиту, выполняя элемент позы покрывания. Похлопывание по плечу, кстати, — тоже элемент позы покрывания (обычно, более старший хлопает младшего по плечу в знак одобрения). И поза, в которой стояли в свое время все наши вожди (с вытянутой рукой), — это тоже элемент позы покрывания.



Возвращение блудного сына Рембрандт Харменс ван Рейн (1606–1669), 1668/69, Голландия


Ниже на фотографии изображен экспериментатор, который предлагает молодому павиану банан, и вежливый молодой павиан, перед тем, как взять банан, подставляется, совершает нечто вроде реверанса — таким образом он говорит «спасибо». Реверанс — это тоже элемент позы подставления.

Эти позы используются для обозначения иерархии, в случае конфликтов между двумя животными (конфликты чаще бывают между самцами). У шимпанзе до драки дело обычно не доходит, они просто стоят, друг на друга грозно смотрят, стучат себя в грудь, грозно кричат на соперника, делают угрожающие жесты, и тот, кто проиграл, он признает себя слабее, принимает позу подставления, сообщая сопернику «Ты старше, ты сильнее». Если вы в зоопарке подойдете к обезьянам и поднимите руки, то они очень сильно расстроятся и огорчатся, потому что это означает, что вы конкурируете с ними за ранг, выполняя элементы позы покрывания и говорите им «Ты маленький и глупый, а я старше и умнее тебя».



Рис. 49. Павиан подросток подставляется человеку, перед тем как взять предлагаемое ему угощение (Тих, 1950)


Лингвисты нашли интересный параллелизм в терминах. До этого прозвучали факты, сейчас будет высказана гипотеза. Она заключается в том, что поза подставления-покрывания нашла отображение в языке. В индо-европейских языках, слова с корнем «ген» или «жен» или «зн» имеют два ряда значения (верхний и нижний ряд): верхний ряд связан с высшим рангом («знатный») и познанием («гений», «гностика»), а низший ряд имеет репродуктивное значение — гениталии, генезис (на древнегреч. — влагалище, понимается в смысле места происхождения, откуда человек произошел) и жанр (гендр — пол). В русском языке — жена, женщина, роженица, и есть еще старославянское слово «зната», обозначающее девственность, которое тоже восходит к этим корням. То есть, не исключено, что от этих поз приматов произошли понятия, зафиксированные в языке. Интересно, что в древнееврейском языке, в Библии, там где записано, что Адам познал Еву, использован глагол «yada», который обозначает «познать некоторую мудрость» и собственно, «познание женщины», то есть сам половой акт. Напомним, что пока это только гипотеза.

Таким образом, многие элементы поведения приматов сохраняются в человеческой культуре, несмотря на то, что от приматов мы отделились более пяти миллионов лет назад.

Еще несколько слов о социальной организации приматов. Приматы имеют разную структуру стада, это зависит от экологических условий. Например, у горилл гаремная организация: у самца есть 3–4 самки, он живет вместе с ними и детьми. У шимпанзе несколько самцов и самок живут вместе с детьми, детеныши потом остаются в стаде, а самки могут переходить в другие стада. У орангутанов преобладают супружеские семьи, самец и самка живут вместе с детьми, причем половозрелых молодых самцов выгоняют из стада, они могут объединяться и жить отдельно на другой территории леса. В зависимости от организации различается и образ жизни. Теоретически гаремная организация выгодна, когда мало еды, так как другие самцы становятся «лишним ртом», который надо кормить. Воспроизведение популяции зависит от числа самок, количество самцов можно сокращать. У горилл гаремная организация, из-за этого самец все время занят охраной своего гарема, потому что вокруг ходят молодые самцы, которые хотят отбить у него самку. Поэтому гориллы более агрессивны. Если же условия благоприятные, то самцы могут оказаться нелишними. Шимпанзе более миролюбивы, внутри кочующей группы время от времени образуются пары, которые потом распадаются и могут образоваться снова в новом составе — так называемые тасующиеся группы. Наиболее миролюбивы шимпанзе бонобо — они разрешают конфликт сексуальным взаимодействием или тем, что можно было бы назвать «эротическими играми». Конфликты у них крайне редки.


Эволюция социальной организации у человека

Какими чертами обладали древние группы людей? Какие отличия от социальной организации обезьян стали возникать у человека? Наверное, многие слышали о матриархате. Якобы одной из форм организации древнего общества был матриархат, то есть власть женщин.

Однако, как показывают исследования этнографов и специалистов по социальной эволюции, матриархата никогда не было. Наличие женского божества (известны скульптурные изображения «богинь плодородия», созданные более 20 тыс. лет назад) не означает, что женщина у власти. В девятнадцатом веке появились первые концепции социальной эволюции, в том числе и концепция матриархата. В это время впервые попытались научно осмыслить (то есть, на основании каких то фактов) развитие человеческого общества. Наиболее известен среди ранних эволюционистов Эдвард Тайлер. Работы, которые легли в основу теории матриархата, написали Людвиг Бахофен (книга «Материнское право») и американский юрист Льюис Морган. Приятелем Моргана был ирокез, он для него провел какое-то дело, после чего тот пригласил его к себе домой, в племя, и Морган увидел, что племя ирокезов и их система родства очень сильно отличаются от привычных для человека европейской культуры. У ирокезов счет родства ведется по материнской линии, а не по отцовской. На работах Моргана и Бахофена была выстроена теория матриархата. Бахофен взял в качестве источника своей теории материнского права миф об амазонках. И на основе этого мифа и еще некоторых рассказов о некоторых народах написал книгу «Материнское право», в которой выстраивал линейную схему социальной эволюции, считая, что наиболее древние общества вели родство по материнской линии и женщины там стояли у власти. У ирокезов родство ведется по материнской линии, муж переселяется жить к жене, женщины у власти не стоят. Это было настолько необычно и вроде бы и архаично, что Морган описал это как универсальную стадию социальной эволюции человека.

Для Маркса и Энгельса, которые работали в то же время, труды Бахофена и Моргана были последним достижением научной мысли того времени, поэтому они вписали его в свои концепции. Кроме того, матриархат можно было противопоставить патриархату, то есть господствовавшим в том время представлениям об устройстве общества, и это очень подходило для того, чтобы изменить представления об этом устройстве. У Энгельса в книге о происхождении семьи, частной собственности и государства можно найти однолинейную схему, соответствующую представлениям Моргана: раннее общество имеет промискуитет — беспорядочные половые связи, а затем матриархат — женщина у власти, потому что она собирает основную еду (надо заметить, что реально даже в тех племенах, где 70 % еды собирает женщина, она не стоит у власти). В Советском Союзе концепции марксизма были сакрализованы, и критика любых положений (в том числе и давно опровергнутых наукой представлений о матриархате) была запрещена.

Этнографы подвергли критике работу Моргана и Бахофена и других сторонников теории матриархата. Уже к концу девятнадцатого века появились работы, которые обоснованно критиковали эти концепции и выдвигали другие. За 100 лет советской этнографии не удалось найти ни одного реального общества среди народов мира, где был бы матриархат, хотя советские этнографы старались. Сторонники матриархата выдвинули так называемую «мягкую» версию. Они сказали, что пусть не было власти женщин, но были группы, в которых родство велось по материнской линии (так называемая матрилинейность) и эти группы были матрилокальны, то есть муж переходил жить на территорию жены.

Этнографы выделяют по локальности брачного поселения несколько видов: наиболее распространен патрилокальный способ поселения — то есть жена переходит жить к мужу, (например у народов Кавказа, там считается неприличным мужу жить у жены). Матрилокальность — супруги живут с родственниками жены; билокальность, когда могут жить и у тех, и у других родственников (например, живут у того, у кого квартира больше, как в московском социуме); неолокальность — когда молодые селятся на новом месте (для нашего общества — снимают отдельно от родителей квартиру).

Как проверить, является ли матрилокальность и матрилинейность наиболее архаичной или нет? Мы не можем по археологическим данным установить тип поселения, хотя есть некоторые факты, например, при матрилокальности жилища обычно больше. Интересный источник представляют собой этнографические данные. Сейчас описано несколько тысяч обществ, находящихся на разных уровнях развития, в том числе и архаичные общества охотников-собирателей, которые не знают ни колеса, ни железа, делают каменные орудия и ведут тот образ жизни, который, вероятно, вели наши предки 10 тысяч лет назад. Можно посмотреть, каковы системы родства и каковы типы поселений у этих обществ. Если у охотников-собирателей прослеживается матрилокальность и матрилинейность, а при переходе к земледелию она меняется на патрилокальность и патрилинейность, то значит мягкая версия сторонников матриархата верна.

Приведем некоторые цифры. Матрилинейных сообществ у охотников-собирателей 8 %, патрилинейных — 14 %, тогда как у мотыжных земледельцев матрилинейных родов 17 %, а патрилинейных — 60 %. При переходе к плужному земледелию доля матрилинейных родов падает.

То есть мы видим, что закономерность прямо противоположная предсказанной теорией матриархата — у наиболее архаичных обществ, у охотников-собирателей, матрилинейных обществ меньше, чем у ранних (мотыжных) земледельцев. Кроме того, матрилинейные общества, как оказывается, встречаются в несколько раз реже, чем патрилинейные, на всех уровнях сложности организации обществ.



С чем связано возрастание процента матрилинейности при мотыжном земледелии? У мотыжных земледельцев основную работу выполняли женщины. Если женщина выходит замуж, она должна идти жить к мужу, то есть мотыги и другой инвентарь брать с собой на незнакомую территорию, а это все снижает производительность ее труда. Поэтому лучше, если муж будет жить у жены. Поэтому мотыжные земледельцы матрилокальны, а соответственно и матрилинейны.

Чем определяется матри- или патрилинейность общества? Вкладом женщины в хозяйство. Если вклад женщины большой, то будет матрилинейное общество. Однако доля женского труда в хозяйстве — не единственный фактор. Если в обществе существует внутренняя агрессия, например, кровная месть (то есть в любой момент могут напасть), тогда выгодно, чтобы сыновья оставались с родителями и защищали их, следовательно, это будет патрилокальное общество. Если при этом велик вклад женского труда или предсуществовала матрилинейность, то общество будет авункулокальным — то есть супруги селятся у брата матери жены. При наличии внешней агрессии, то есть войны, когда мужчины часто уходят на войну, а женщины остаются дома, общество обычно матрилокально и матрилинейно, так как сестры лучше между собой договорятся, чем невестка со свекровью.

В девятнадцатом веке создатели раннего эволюционизма пытались построить линейные схемы развития социума, потом от однолинейных схем отказались, так как они очень примитивны, стали строить многолинейные схемы, сейчас же социальные эволюционисты переходят к сетевой схеме развития социума, то есть это уже не линии, а пространства вероятностей, и общество с большей или меньшей вероятностью может перейти из одного состояния в другое, и эти состояния определяются сочетанием традиций, имеющихся в обществе, и наличием внешних условий, как экономических, так и внешне- и внутриполитических.



Каковы существующие представления о социальной эволюции. Исходно эволюционирующая единица, такая же, как кочующая группа у шимпанзе, это локальная группа охотников-собирателей — 30–50 человек, то есть несколько семей по 2–8 человек. Большую часть своей истории, около 200 тыс. лет человечество существовало в виде таких локальных групп. Самые ранние земледельческие поселения состояли из одной локальной группы. В эпоху неолита (перехода к земледелию) — 11 тыс. лет назад люди постепенно перешли к оседлому образу жизни. До сих пор есть племена, которые в сезон когда много живности ведут кочевой образ жизни, то есть они по 2–3 семьи охотятся, а когда живности мало, собираются на стоянку и занимаются земледелием. Когда наступает новый благоприятный сезон, они опять расходятся и кочуют по своей территории, охотясь на всякую живность. Похоже на жизненный цикл диктиостелиума, только на другом уровне.

Плотность населения как у современных охотников-собирателей, так и, видимо, у тех, кто жил более 10 тыс. лет назад — 0,1 чел/км2, у земледельцев, занимающихся подсечно-огневым земледелием, ведущих полуоседлый образ жизни — 1-10 чел/км2, в аграрном обществе (то есть начинают использовать удобрения и разные системы севооборота) — 5 тыс лет назад — до 100 чел/км2, в современном земледельческом обществе (с XII–XVII века) — до 2000 чел/км2. Ясно, что внутри страны плотность населения может варьировать, например, от 0.1 (в Сибири) до 700 чел/км2 (в мегаполисах). Плотность населения наибольшая там, где благоприятные климатические условия. (Европа, часть Америки, Океания).

При росте плотности населения и росте численности локального поселения возникает необходимость иерархизации социальных структур. Каким образом она происходила? Локальная группа в 30–50 человек, о которой мы говорили выше, объединялась с другими локальными группами, образуя структуру второго порядка. Способа объединения два. Первый — одна группа завоевала все остальные, при этом образовалась иерархическая структура, в которой одна община главная, а остальные ей подчинены. Другой вариант — несколько локальных групп, имеющих равные права, объединяются по собственному желанию, образуя своего рода конфедерацию. Это может быть выгодно для более эффективной добычи и использования пищи или защиты. Тогда структура не иерархическая, то есть «главная» община не выделяется, и все взаимодействующие общины равны.



Иерархически организованные структуры впервые были описаны на традиционных обществах индейцев в Америке. Они получили название вождества (так как во главе обычно стоит вождь — предводитель группы, которая всех завоевала). Были сделаны попытки перенести термин вождество на социальную эволюцию Месопотамии и вообще Евразии, но хотя это не всегда адекватно, пока другого термина нет. Важно понимать, что есть социальные общества с горизонтальными связями, то есть все люди внутри общины равноправны, например общины бушмен (такие отношения называются эгалитарными), и есть неэгалитарные общины, где некоторые члены общины находятся в зависимости от других членов этой общины. Например, у австралийских аборигенов положение мужчин и женщин неравноправно, с женщинами обращаются почти как с рабами. Следующий уровень социальной организации после общины — вождество — включает в себя 250–500 человек. Далее вождества могут объединяться по тем же причинам, что и общины, тогда возникает сложное вождество. Дальнейшее объединение сложных вождеств носит название суперсложное вождество. Следующим уровнем сложности является государство. Характеристика социальных систем разных типов приведена в таблице выше.

Государство отличается от вождества тем, что при вождестве собирается дань и не имеются установленные системы наказаний и порядка, а в государстве имеется фиксированный налог и исполнительная власть. Вождество от племени отличается распределением ресурсов. В вождестве распределение ресурсов централизованное, идет через основные органы власти, через вождя и его приближенных, а в племенах с равноправными общинами распределение ресурсов нецентрализованное. Интересно знать, что кочевые племена, которые существовали на территории Китая, объединялись в империю тогда, когда в Китае все было хорошо, они получали дань с Китая. Глава империи распределял дань (рис, шелковые халаты, ценное оружие и др.) между вождями отдельных племен, и таким образом держал власть в своих руках. Когда в Китае наступали кризисы, и поток потребления этих предметов сокращался, империя распадалась на отдельные независимые племена. То есть социальная структура зависит от поступления ресурсов, как и любая биологическая.

Усложнение социальной организации связано с развитием земледелия, так как при земледелии плотность населения и общая численность людей, живущих на одной территории, становится больше. Первые земледельческие общества появились 11 тыс. лет назад в Месопотамии и на восточном берегу Средиземного моря. Здесь возросла плотность населения, возникла социальная иерархия, именно поэтому здесь появились первые государства. Следующим была долина Нила — Древний Египет, где также рано возникло земледелие, здесь оно развивалось вдоль Нила, соответственно и государство располагалось по берегам Нила. Еще одним из ранних, но уже вторичных очагов цивилизации были Крит, Микены и Греция. Вероятно сюда земледелие пришло из Месопотамии. К первичным очагам земледелия, вероятно, можно отнести Китай, где начали выращивать рис. В Индии скорее всего вторичный центр земледелия, здесь была высокоразвитая культура городов (Хараппская цивилизация), с линейной упорядоченной планировкой, с водопроводом и ваннами внутри домов. Но она просуществовала недолго, города были покинуты и занесены песком. В Америке независимые очаги земледелия развивались на 2000 лет позже чем в Евразии, Эта карта показывает положение ранних государств, соответствующих центрам развития земледелия.




Единой общепризнанной теории социальной эволюции в настоящее время не существует, хотя многие аспекты социальной эволюции довольно детально разработаны. Выше были перечислены отдельные элементы этих концепций.

Строение эукариотической клетки

ЛЕКЦИЯ № 13

Эукариотические клетки имеют общий план строения (см. рисунок)



Оболочку, покрывающую клетку снаружи, называют клеточной мембраной. Внутри клетки часто встречаются пузырьки, оболочка которых очень похожа на клеточную мембрану. Их называют мембранными пузырьками, или вакуолями. Различные части клетки называются органоидами. На рисунке видны срезы нескольких органоидов: ядра, эндоплазматической сети (ЭПС), комплекса Гольджи, митохондрий, двух центриолей (вместе они имеют название "клеточный центр"). Внутреннее содержимое клетки, за исключением ядра, называют цитоплазмой.

Клетка живет активной жизнью. Шевелится мембрана, разные органоиды перемещаются с места на место, некоторые мембранные пузырьки сливаются в один пузырек, другие, наоборот, разделяются на несколько новых пузырьков. Если в роли большого пузырька выступает вся клетка, то при слиянии с ней маленького пузырька его содержимое выбрасывается наружу. Эту ситуацию выброса из клетки "начинки" мембранного пузырька называют экзоцитозом, а ситуацию захвата чего-либо внутрь клетки — эндоцитозом (от слов "эндо-" — "внутрь" и "экзо-" — "наружу").

Любая живая клетка питается, т. е. захватывает из внешней среды съедобные для себя вещества (в виде отдельных молекул или больших групп молекул — пищевых частиц, иногда даже целых клеток меньшего размера), и так или иначе использует эти вещества.


Как клетка использует захваченные из внешней среды питательные вещества

Есть всего два принципиально различных варианта.

1. Молекулы питательных веществ можно использовать для построения других молекул, выполняющих в жизни клетки какие-нибудь более или менее важные функции, например, различных молекул, входящих в состав клеточной мембраны. Этот вариант использования клеткой питательных веществ называется ассимиляцией.

2. Другой вариант — по сути дела сжечь их. Если поджечь, например, кусочек сахара или древесины, то он будет гореть, выделяя энергию в виде света и тепла. Похожий процесс происходит с отдельными молекулами пищи в процессе дыхания. Энергия, которая при этом выделяется, используется клеткой, например, для передвижения или для захвата новых пищевых частиц. Такой вариант использования веществ называется диссимиляцией.

Фагоцитоз ("фагос" — "пожиратель", "цитос" — "клетка") — питание клетки сравнительно большими пищевыми частицами (в том числе другими клетками). Общая картина фагоцитоза показана на рис. 12. Проплывающая мимо клетки пищевая частица касается мембраны и прилипает к ней (1,2). Мембрана под ней прогибается, охватывая частицу со всех сторон (3). В результате образуется мембранный пузырек с частицей внутри — пищеварительная вакуоль (4). Она отрывается от мембраны и уплывает вглубь цитоплазмы.

Механизм образования пищеварительной вакуоли при фагоцитозе. В большинстве клеток работают два независимых механизма.

Первый из них — простое следствие механизма прилипания пищевой частицы к мембране. За счет теплового движения молекул воды и пищевая частица, и рецепторы мембраны все время слегка вибрируют. Поэтому близко расположенные, но еще не соединившиеся друг с другом рецепторы и лиганды через короткое время сталкиваются и слипаются. Получается, что мембрана все больше и больше налипает на пищевую частицу со всех сторон.



Схема образований пузырька и поглощения пищевой частицы



Схема транспорта пузырьков, отделяющихся от окаймленного ЭПР


Второй механизм обеспечивается работой специальных белков, одним концом присоединяющихся к рецепторам мембраны, уже прилипшим к лигандам на пищевой частице, а другим — к расположенным под мембраной микротрубочкам. Эти белки способны двигаться по микротрубочкам вглубь цитоплазмы, "волоча за собой" рецепторы, закрепленные в мембране. В результате работы многих таких белков весь кусок мембраны, прилипший к пищевой частице, погружается внутрь клетки, "на ходу" замыкаясь в пузырек.

Итак, пищеварительная вакуоль оказывается в цитоплазме. Там она сливается с другим пузырьком (первичной лизосомой — от слов "лизис" — "растворение, расщепление" и "сома" — "тело"), отделившимся от комплекса Гольджи. Пузырек — результат этого слияния — называют вторичной лизосомой. После этого пищевая частица начинает растворяться. Минут через 20 внутри вторичной лизосомы виднеются только несколько маленьких бесформенных кусочков, почему-то "не захотевших" растворяться. Затем вторичная лизосома подплывает к мембране клетки и сливается с ней, выбрасывая из клетки наружу эти "кусочки". Другой вариант, гораздо более приемлемый для многоклеточных животных — вторичная лизосома выбрасывает непереваренные остатки в специальную вакуоль накопления на «вечное хранение».



Все эти превращения происходят благодаря деятельности специальных молекул. На следующем рисунке показаны молекулы мембраны клетки (они называются рецепторами), обеспечивающие прилипание пищевой частицы к мембране и образование пищеварительной вакуоли. Рецепторы — это молекулы мембраны клетки, которые могут узнавать другие молекулы (лиганды), и прочно к ним прилипать. Коснувшаяся мембраны частица прилипает в том случае, если на ее поверхности имеются лиганды к каким-нибудь рецепторам, имеющимся на поверхности клетки (на мембране обычно имеется около 100 различных разновидностей рецепторов, и каждый из них "узнает" определенный лиганд).


Растворение частиц пищи во вторичной лизосоме (этапы 5–7)

Пусть в данном конкретном случае клетка захватила с помощью фагоцитоза другую клетку, только маленькую. Первичная лизосома принесла из комплекса Гольджи специальные молекулы (пищеварительные ферменты), умеющие "разрезать" большие молекулы (например, полимеры) на части. Из-за этого органоиды захваченной клетки "разваливаются" на отдельные мелкие молекулы.



В мембране вторичной лизосомы имеются также белки-переносчики, которые умеют переносить эти мелкие молекулы через мембрану в цитоплазму клетки.



В мембране, кроме липидов, имеется большое количество молекул белков. Одни из них погружены в двойной слой липидов, другие прикреплены к головкам липидов и целиком находятся либо снаружи, либо внутри клетки. Наружная поверхность клеточной мембраны отличается от внутренней: здесь к головкам липидов и к белкам прикреплены короткие цепочки из остатков моносахаридов — олигосахариды. Все вместе они образуют на поверхности клетки "сахарную шубу" — гликокаликс.



Схематичное изображение гликокаликса


Мембранное (пристеночное) пищеварение

Некоторые белки могут довольно прочно прикрепляться к поверхности клетки, соприкасаясь при этом только с олигосахаридами гликокаликса. Например, такой способностью обладают многие пищеварительные ферменты. Если первичная лизосома сольется с наружной мембраной клетки, то многие из находившихся в ней пищеварительных ферментов, оказавшись "на улице", сразу же прилипнут к поверхности гликокаликса. При этом они смогут "ловить" проплывающие мимо соответствующие полимеры и расщеплять их. Белки-переносчики из лизосомы окажутся в наружной мембране, и начнут переносить внутрь клетки соответствующие мономеры. Получается, что пища будет перевариваться прямо на поверхности клетки. Особенно активно пристеночное пищеварение происходит в кишечнике у разных животных.

Как вы уже знаете, клеточная мембрана образована липидным бислоем, в который встроены различные белки.



Схематическое трехмерное изображение участка клеточной мембраны площадью около 10 нм2



Рис. 39. Фосфолипидные структуры, самопроизвольно возникающие в водных растворах:

А — мицелла; Б — монослой; В — бислой; Г — липосома.



Рас. 40. Распространенные гликолипиды и стероиды биологических мембран:

А — цереброзид; Б — холестерин; В — упаковка молекулы холестерина между двумя молекулами фосфолипидов: а — наименее упорядоченная область бислоя, б — область, упорядочиваемая холестерином, в — область полярных голов.


На самом деле разные участки мембраны могут иметь разную структуру. Поверхность мембраны похожа на поверхность воды со льдинами. Там есть так называемые кластеры, часть их обязана своим появлением тому, что отдельные молекулы (не содержащие двойных связей) слиплись между собой, вокруг них нарастают другие молекулы. Мембрана разделяется на части, некоторые из которых остаются твердыми и как бы плавают в более легкоплавких участках. Какие-то липиды прилипают к белкам, к ним прилипают еще липиды. Сквозь мембрану возможен перенос самых разных веществ.

Часть переносов осуществляется специальными белками. Бывает, что это происходит с затратой АТФ, иногда без затраты.



Различные типы каналов в клеточной мембране (вверху — аллостерический, внизу — потенциал-зависимый)


Одна из таких систем называется натрий-калиевый насос или натрий-калиевая АТФаза. Этот белок замечателен тем, что на него тратится колоссальное количество АТФ — примерно треть АТФ, синтезируемой в клетке. Это белок, который переносит через мембрену внутрь ионы калия, а наружу — ионы натрия. В результате получается, что натрий накапливается снаружи клеток. Открытых натриевых каналов в мембране нет, и получается, что снаружи довольно много натрия. Но в большинстве клеток животных имеются калиевые каналы, которые все время открыты. Поэтому перенос натрий-калиевой АТФазой калия особого значения не имеет. Так как снаружи накопился натрий, и там положительный заряд. По калию возникает равновесие и калий идет внутрь клетки. При этом внутри клетки заряд отрицательный, а снаружи — положительный. В результате любой положительный ион может быть перенесен через мембрану сравнительно легко просто за счет того, что есть разность зарядов.

Например, существует натрий-зависимый транспорт глюкозы — специальный белок присоединяет ион натрия и молекулу глюкозы снаружи, а дальше за счет того, что ион натрия притягивается внутрь, белок с легкостью переносит и натрий и глюкозу внутрь, т. е натрий-калиевая АТФаза создает разность заряда, которую можно много для чего использовать.

На этом же принципе основано то, что нервные клетки имеют такое же распределение зарядов, и это позволят пропустить внутрь натрий и очень быстро создать изменение заряда, называемое нервным импульсом. Об этом вам будут рассказывать позже.

Потенциал покоя характерен для большинства клеток.

Наконец, транспорт через мембрану происходит еще и за счет того, что молекулы липидов вращаются вокруг всех одинарных связей, и может возникать ситуация, когда несколько молекул воды проникают между раздвинувшимися друг от друга на долю секунды молекулами липидов, образуется пузырек из нескольких молекул воды, который дрейфует по мембране и с какой-то вероятностью может проникнуть внутрь.

Мембрана непроницаема для моно- и полимеров, находящихся внутри клетки. То есть внутри клетки много молекул, которые не могут пройти через мембрану. Если клетку поместить в дистиллированную воду, то вода начнет поступать внутрь. Это явление называется осмос. Клеточная стенка, о которой подробно написано в учебнике, защищает от осмоса. Если каплю человеческой крови капнуть в чистую воду, эритроциты раздуются. Диффузия воды будет направлена внутрь, клетка будет раздуваться и в конце концов лопнет. Таким способом раньше изучали строение мембран — когда эритроцит лопается, получается почти чистая мембрана. Единственный способ защитить клетку — понизить концентрацию воды в омывающей клетку жидкости. Для того кровь содержит хлорид натрия, и клетки животных могут жить только в солевом растворе (он же — физиологический раствор). Клетки животных, обитающих в пресной воде должны избавляться от излишка воды. У простейших для этого существует сократительная вакуоль. У некоторых животных, живущих в воде, например, у гидры, в каждой клетке имеется сократительная вакуоль.

Теперь обсудим цитоскелет. Цитоскелет состоит из нескольких компонентов. Там есть микротрубочки, я их упоминал, когда обсуждал фагоцитоз.

Микротрубочки полностью соответствуют своему названию. Это прямые микроскопические трубочки (наружный диаметр 28 нм, внутренний — 14 нм), состоящие из двух похожих друг на друга белков а-тубулина ("альфа-тубулин") и Ь-тубулина ("бета-тубулин"). Два конца микротрубочки отличаются друг от друга некоторыми важными свойствами (их называют "+" и "-"-концы). В ДНК клетки имеются два разных гена, содержащие информацию о последовательностях аминокислот а-тубулина и b-тубулина. После синтеза на рибосомах в цитоплазме молекулы а- и b-тубулина объединяются в димеры ("ди" — "два", "мерос" — "часть"). Димеры тубулина при определенных условиях могут присоединяться к "+"-концу микротрубочки, микротрубочка при этом удлиняется. С "-"-конца микротрубочки могут разбираться (то есть от него отделяются димеры тубулина, и микротрубочка при этом укорачивается). Изменяя условия в разных частях цитоплазмы, клетка имеет возможность делать сеть микротрубочек в ней более или, наоборот, менее густой. Кроме того, есть белки, способные присоединяться к "+"-концам микротрубочек, прекращая тем самым их сборку, и другие белки, способные присоединяться к "-"-концам и прекращать разборку микротрубочек (вместе они называются "кэпирующие белки").

Известны специальные транспортные белки, способные перетаскивать по микротрубочкам различные органоиды клетки. Один из них, кинезин, переносит их в направлении от "-"-к "+"-концу.

Следующий момент связан с тем, что если какие-то белки портятся, то такая конструкция гарантирует от того, что испортится вся микротрубочка. Если где-то возник разрыв белковой цепочки, то этот белок не присоединиться к плюс-концу или каким-то образом будет удален, или вся микротрубочка разберется. То есть так решается задача, как избавляться от испорченных молекул. Естественно, все макромолекулы в клетке постепенно портятся. И часть конструкций клетки ориентирована на удаление испорченных молекул. Например, в цитоплазме клетки есть ферменты — гидролазы, которые расщепляют белки. У всех белков, находящихся в цитоплазме, концы цепочки аминокислот спрятаны внутрь белковой глобулы. В норме они не торчат наружу. Если появился кончик, значит возник разрыв. И такой белок будет уничтожен, расщеплен на отдельные аминокислоты, которые потом можно опять использовать. И это правильно, так как белок испорчен. Похожая ситуация с нуклеиновыми кислотами — они как правило защищены от разрушения.



Из микротрубочек состоят центриоли. Центриоль — это цилиндр, состоящий из девяти троек микротрубочек. На поверхности цилиндра находятся белковые конструкции, которые служат центрами организации микротрубочек. Они обладают способностью создавать короткие участки микротрубочек из димеров тубулина. И каждому короткому участку дальше могут присоединяться димеры тубулина, и от центриоли в разные стороны расходятся микротрубочки. Это существенно при митозе. Так что центриоль служит центром организации микротрубочек.



Схема строения центроли.

Центриоль состоит из 9 триплетов микротрубочек, причем каждый триплет содержит одну полную микротрубочку (а) и две примыкающие к ней неполные микротрубочки (Ь и с). Особые белки образуют поперечные сшивки, поддерживающие цилиндрическую структуру.

Справа — центриоли клеточного центра. МЦ и ДЦ материнская и одочерние центриоли: МТ микротрубочки: ФСНТ фокусы схождения микротрубочек.


Центриоль является также основанием ундулиподии, они же жгутики или реснички. Это характерный органоид, которые, видимо, также как митохондрии и хлоропласты, имеет симбиогенное происхождение. Были некоторые симбиотические бактерии, которые постепенно превратились в ундулиподии.

Есть два варианта того как работают реснички. Есть два варианта работы ундулиподии. Один вариант, который называется ресничка, делает взмах, поверхность, к которой она прикреплена, получает толчок. Начальный участок реснички при этом становится мягкой и начинает сгибаться. Ресничка работает (делает эффективный удар) в одной плоскости.

У протистов (у инфузорий) ресничка иногда может совершать так называемый реверс, то есть бить в обратную сторону. В любом случае движение означает, что для того, чтобы животное двигалось в определенную сторону, все реснички должны быть ориентированы своими плоскостями в одну и ту же сторону. Действительно, так и есть. На теле планарии, например, они ориентированы в одну сторону.

Другой вариант — это жгутик. В этом случае кончик ундулиподии двигается по кругу. При этом в зависимости от того, как изогнута сама нить жгутика, жгутик может быть тянущим или толкающим. На рис. Показан вариант толкающего и тянущего жгутика.

Сама по себе нить закручена в спираль, витки которой перемещаются — обычно от основания к кончику жгутика. В результате в зависимости от того, как соотносится направление вращения и направление закрученности спирали, жгутик или «ввинчивается» в воду или как бы «вывинчивается».

У некоторых простейших бывает промежуточный вариант, когда ундулиподия работает как жгутик, но описывает при этом фигуру не круг, а сильно вытянутый овал.

Как устроена эта конструкция внутри. На срезе реснички видны девять пар микротрубочек. При этом в центре имеются еще две микротрубочки, соединенные некими связками и окруженные цилиндром из белка нексина. Это называется центральный цилиндр, от каждой пары микротрубочек центрального цилиндра отходит спица, которая тоже состоит из белка нексина.

Кроме того, каждая пара имеет «ручки» — выросты, состоящие из белка динеина, который обладает способностью, потребляя АТФ, присоединяться к соседней микротрубочке и создавать разность высот между парами микротрубочек. В результате, когда из 9 пар микротрубочек срабатывают динеиновые «ручки» примерно на половине, то какие-то пары микротрубочек поднимаются выше, а какие-то — опускаются. Жгутик сгибается, происходит взмах. Примерно так работает ундулиподии, которые используется при движении простейших.

Основной белок другой части цитоскелета — микрофиламентов — называется актин. Глобулы актина (называемого в этом состоянии г-актин) способны объединятся в нити, представляющие собой двойные спирали, соединенные между собой. Получается двойная спираль с двумя желобками. Есть большое количество белков, влияющих на архитектуру этой системы нитей. Есть белки, которые соединяют вместе случайно коснувшиеся нити, есть белки, которые слепляют их в пучки, и разные другие другие. Один из белков, регулирующих структуру нитей, называется тропомиозин. Он тоже образуется в виде глобул и формирует нити. Дальше эти нити укладываются в два желобка на нитях f-актина. Есть еще один белок, называется тропонин, который состоит из трех субъединиц. Одна субъединица связывается с f-актином, вторая способна связываться с тропомиозином, а третья обладает способностью обратимо связывать кальций. При наличии ионов кальция в растворе смесь субъединиц соединяется. Если убрать кальций, то кальций отделяется и все возвращается в исходное состояние. Такой филамент, состоящий из этих трех белков, в присутствии кальция будет переходить в другое состояние, при котором тропонин, удлинившись, будет вытаскивать из желобков нити тропомиозина. В результате при наличии кальция желобки будут открываться, а если кальций из среды убрать — закрываться. Зачем это нужно, сейчас объясню.



Схема организации реснички на поперечном разрезе (А) и объемная модель строения (Б).

1,2 — микротрубочки периферического дублета; 3 — динеиновые "руки"; 4 — нексиновые "спицы"; 5 — центральный дублет; 6 — нексиновая капсула; 7 — плазматическая мембрана; 8 — сателлитное тельце; 9 — базальное тельце; 10 — триплеты микротрубочек; 13,14 — базальный аппарат крепления; 15 — апикальная "шапочка" — аппарат крепления центрального дублета к плазматической мембране; 16 — фибриллярные структуры крепления периферических дублетов к плазматической мембране



Схема движения реснички на поверхности клетки. Каждый цикл длится от 0.1 до 0.2 с.



Слева — Схема строения актинового филамента, показывающая спиральную укладку молекул глобулярного актина. Справа — Схема строения микротрубочки.

А — поперечный срез; Б — участок микротрубочки



Строение молекулы миозина



Шарнирные участки в молекуле миозина


Еще один белок, принимающий участие в сокращении, называется миозин. Его структура хорошо изучена и представляет собой две переплетенные альфа-спирали с головками на концах. При этом имеется так называемая шарнирная область, в которой возможны изгибания. Даже одна такая молекула способна, связываясь головками с желобками актинового филамента, способна в присутствии кальция по нему взбираться, попеременно сгибаясь и разгибаясь (с расходом АТФ).

Молекулы миозина способны объединятся в димеры. Такой димер способен прикрепиться к двум нитям актина и двигать их навстречу друг другу в присутствии кальция. Более того, молекулы миозина способны слипаться друг с другом в агрегаты большего размера, так что получаются конструкции из сотен и даже тысяч молекул. Они представляют собой цилиндр с шестью рядами головок. Внутри — молекулы миозина, а торчат ряды головок. В середине такой молекулы есть пространство в котором, с одной стороны молекула ориентирована в одну сторону, а с другой — в другую, ширина конструкции примерно равна удвоенной длине молекулы миозина. В агрегате шесть филаментов с одной и шесть с другой стороны, и как только в среде появится кальций, они могут быть потащены навстречу друг другу.

Из таких агрегатов может быть составлена более сложная структура. Агрегат миозина с шестью рядами головок и нити актина (актиновые филаменты) — опять агрегат миозина и т. д. То есть получается по сути кристаллическая структура, в которой каждый актиновый филамент связан с тремя миозиновыми, а каждый миозиновый — с шестью актиновыми. Вся структура может сокращаться, и примерно так устроено мышечное волокно, например, поперечно-полосатые мышцы.



Рис. 73. Механизм смещения активного микрофиламента относительно молекулы миозина. Предполагается, что каждая из головок молекулы миозина осуществляет этот цикл независимо друг от друга.


К диску из специального белка с двух сторон прикреплены актиновые филаменты. Между актиновыми филаментами находятся агрегаты миозина. Получается структура с поперечными полосками (отсюда и название поперечно-полосатая мышца). Если в нее подать кальций, а для этого нужны участки эндоплазматической сети и белки-каналы в ней, которые в нужный момент откроются. Чтобы они открылись, нужно, чтобы по мембране мышцы побежал потенциал действия, о котором вам потом расскажут. Кальций выйдет, и тогда вся конструкция сократиться. Головки миозина присоединятся к актиновым филаментам и потянут их.



Рис. 62. Упрощенная схема различных изменений в структурной состоянии актина, обусловленных его взаимодействием со специфическими белками. На схеме не показаны заякоривающие белки (такие, как винкулил), которые связывают актиновые нити с другими клеточными компонентами, и различные малоизученные копирующие белки.


Ядро и ядерная оболочка

Ядерная оболочка двойная, в ней есть ядерные поры, они окружены в три ряда кругом из восьми белками. Один внешний круг контактирует с цитоплазмой, другой средний и внутренний круг контактирует с внутренностью ядра. Ядерная пора выполняет достаточно сложную функцию. Все белки синтезируются в цитоплазме. Соответственно, ядерная пора должна пропустить внутрь ядра только те белки, которые должны там работать, и не пропустить другие. Исследования показали, что существует определенная последовательности аминокислот, которая является пропуском внутрь ядра. Если эти 5–6 аминокислот химически присоединить к шарику латекса, и взвесь таких шариков инъецировать внутрь клетки, то белки пор протащат шарики в ядро. С другой стороны, эти же белки должны не выпускать из ядра молекулы ДНК, РНК и др. Молекулы ДНК особым образом закреплены в ядре, так что каждой молекуле (хромосоме) соответствует определенная хромосомная территория, участок внутри ядра. Иногда при повреждении клетки, например, под действием радиации, хромосомы с двух сторон ядра двигаются навстречу друг другу и с помощью специальных белков сравниваются и исправляют повреждение. Это все мало изучено, известно только, что ДНК прикреплена.



Рис. 113. Схема строения и расположения ядерных поровых комплексов ядерной оболочки.

Популяционная динамика

ЛЕКЦИЯ № 14

П. В. Турчин, Коннектикут


Цель данной лекции дать представление о совершенно потрясающей области биологии, как популяционная динамика.

Рассмотрим первый график. Он показывает зависимость популяции конкретных животных от времени.



Плотность популяции гусеницы


В данной ситуации речь идет о гусеницах, которая поедает лиственницы в горах Швейцарии. По оси ОХ отложено время, по оси 0Y отложен десятичный логарифм популяционной плотности. Как она измерялась? В данном случае энтомологи шли в лиственные леса в Альпах, там они срезали определенное количество веток, например 100 кг, трясли их и считали, сколько в них будет гусениц. Это дает оценку, какая плотность популяции имеется в этой области. Это вполне замечательная популяция, потому что она видна невооруженным глазом для любого туриста, приезжающего в Альпы. Каждые 8,5 лет есть год или два, когда Альпы становятся рыжими, потому что всю хвою в это время съедают гусеницы. Но самое интересное, что эти популяционные пики через несколько лет сменяются временами, когда обычный человек, сколько бы он ни искал, не сможет найти ни одной гусеницы, то есть, как видно из графика, количество гусениц уменьшается на несколько порядков. Это не самая обычная популяционная динамика, но такие примеры встречаются и с другими животными. Также из графика видно, что здесь прослеживается интересная нелинейная динамика, цикл, в котором может быть некоторая нерегулярность, связанная с внешними факторами (погода, изменения климата) или внутренними (хаос). На следующем графике представлена зависимость количества шкур рыси, поставляемых в Англию Гудзоновской компанией от времени (с конца IX века и до 1900 года.). Это знаменитый пример типичной популяции, который был разработан английским ученым Чарльзом Элтоном в в 20-30х годах двадцатого столетия. На этом графике период почти точно равен 10 годам, а разница между верхними и нижними пиками 2–3 порядка. (По оси 0Y опять логарифмическая шкала плотности популяции.) Мы видим, что перед нами какая-то колебательная система, хотя и не чисто периодичная. Возникает сразу вопрос, откуда берется такая удивительная периодичность в живой системе?



Каждый из нас хоть раз был в лесу и представляет, что лес — это большая «биологическая каша», в которой находятся десятки видов разных животных. Непонятно, как может такая сложная экосистема создавать такие красивые и четкие колебания? Как раз этим вопросом и занялись в прошлом столетии экологи. В данной лекции будут представлены три самые простые модели популяционной динамики.

Первой такой моделью будет экспоненциальная, которая основана на законе сохранения количества животных. Выделим какую-нибудь область и будем считать, что популяция — это все животные в той области. Существуют четыре процесса, путем которых количество животных в этой популяции может меняться: рождение, смерть, иммиграция и эмиграция. Сейчас это каждому очевидно. Но до начала IX века этот закон сохранения не был общепринятым в биологии, потому что в тот момент процветала теория о самозарождении жизни. Только потом многие ученые, в частности Луи Пастер отвергли теорию самозарождения.

Математически закон сохранения можно записать следующим образом:

N(t + Δt) = N(t) + BD + IE

где

В — Births (рождение)

D — Deaths (смерть)

• I–Immigration (иммиграция)

Е — Emigration (эмиграция).

N(t) — число особей в популяции во время t.

N(t + Δt) — число особей в популяции во время t + Δt.

Здесь Δt — маленький промежуток времени, который должен соответствовать биологии исследуемых животных, поэтому, например, для бактерий это может быть 1 минута, а для слонов — 10 лет. То есть нужно соизмерять шаг со скоростью размножения, смерти и др.

Теперь возьмем такую большую область, что эмиграция и иммиграция составляют такой маленький процент во влиянии на численность популяции, что о нем можно забыть (то есть эмиграция и иммиграция равны нулю). Тогда закон запишется

N(t + Δt) = N(t) + BD

Понятно, что D и В не могут быть константами, так как чем больше животных, тем больше родится новых и тем больше вероятность, что кто-то из них умрет. Они отражают не сам процесс, а результат процесса, а сам процесс отражает смертность и рождаемость, то есть мы переходим к понятию удельных скоростей рождаемости и смертности соответственно:


Тогда рождаемость можно записать так:

B(t) = bN(t)Δt

Аналогично находится и смертность. Далее записываем закон сохранения, подставляем удельные скорости:

N(t + Δt) = N(t) + B(t) — D(t)

N(t + Δt) = N(t) + bN(t)Δt — dN(t)Δt

Преобразуем наше выражение в следующий вид:

(N(t + Δt) — N(t))/Δt = (bd)N(t)

Далее видим, что в левой части стоит производная N при Δt, устремленной к нулю:


Значит, имеем формулу:

dN/dt = (bd)N(t)

Или

dN/dt = rN(t)

Таким образом, мы получили основную формулу для модели экспоненциального роста популяции. Интересно, что эта модель аналогична первому закону Ньютона. Если вместо N подставить In N, то мы получим линейную зависимость.

На следующих графиках представлена зависимость плотности популяции индеек (англ. turkeys на графике) в штате Мичиган от времени, по оси 0Y отложены N в левом и In N во правом графиках. К концу IX века всех индеек истребили, но скоро они опять появились, сначала это было небольшое количество особей, но затем популяция стала расти экспоненциально, что можно заметить на графиках.



Обычно, так ведет себя сравнительно небольшая популяция, расселившаяся на обширном пространстве. Но на самом деле в природе ни одна популяция по крайней мере долгое время экспоненциально не растет, то есть эта модель слишком упрощенная. Поэтому мы попробуем добавлять в наше уравнение некоторые ограничения, которые будут приближать нашу модель к реальной.

Заметим, что r не может быть константой, это функция от числа особей в популяции, ведь, как мы помним, r = b — d, a b и d зависит от числа особей, конкуренции внутри популяции, хищников и др. факторов, ведь чем больше особей в популяции, тем больше животные конкурируют за еду, пространство и т. д., и тем труднее становится им выживать. Чем больше N, тем меньше r, поэтому имеет место формула:



Здесь мы сделали самое простое предположение, что r зависит линейно от N. Величины r0 и К — начальные параметры, некоторые константы, причем К — емкость среды, то есть некоторое стабилизирующее значение числа особей, при котором устанавливается равновесие, то есть популяция перестает расти. Если же N больше К, то популяция наоборот начинает убывать, r0 — это удельная скорость популяционного роста при малых N. Подставляя это значение r в модель экспоненциального роста, мы получаем логистическую модель, которая выражает второй закон популяционной динамики, говорящий о том, что всегда существует предел экспоненциального роста, накладываемый средой.

Третья модель — это модель Лотки-Вольтерра. Но сначала поговорим о такой важной концепции, которая называется функциональной зависимостью. Это зависимость между скоростью, с которой хищник убивает жертв, и плотностью количества жертв.

Для наглядности проведем параллель с химической кинетикой. Представим, что у нас есть пробирка с находящимся внутри раствором какого-то реагента А. Бросим внутрь одну молекулу вещества В. Частицы будут участвовать в броуновском движении и, рано или поздно, молекула В встретится с молекулой А. Вероятность этого события за единицу времени, очевидно, пропорциональна концентрации [А] вещества А. Это и есть пример функциональной зависимости. Экологи провели массу экспериментов, в которых вещество А «представляли» жертвы, а вещество В — хищники (к примеру, запускала в аквариум головастиков и одного тритона и смотрели, с какой скоростью тритон будет их поедать, в зависимости от количества головастиков). Итак, функциональная зависимость — скорость, с которой один хищник убивает жертву. Если вещества В (хищников) у нас много, то скорость химической реакции пропорциональна произведению концентраций веществ А и В. Все уравнения для популяционных процессов были выведены по аналогии с химическими реакции, поэтому скорость поедания жертв хищниками пропорциональна популяционной плотности жертв и хищников.

В экологии мы говорим о ресурсах и потребителях, поскольку не только хищники и жертвы, но и патогенны и их хозяева, паразиты и их хозяева, травоядные и их пища — это все примеры взаимодействия типа «хищник-жертва». В описывающей эту функциональную зависимость формуле f(R) = aR буквой R обозначены ресурсы. Эта зависимость — линейная. Это самый простой вид функциональной зависимости первого типа. Проблема заключается в том, что даже в химических реакциях это очень неточное приближение. В популяционной динамике это очень плохое приближение, потому что, когда мы начинаем увеличивать количество жертв, достаточно быстро наступает момент, когда хищник может убить жертву, но не может ее съесть. Есть некоторый потолок, выше которого хищник не будет убивать жертв, потому что ему это не будет нужно. Функциональная зависимость этот факт учитываклцая, называется функциональной зависимостью второго типа. Она описывается такой формулой:

f(R) = cR/(d + R)



Плотность жертв


В формуле с — это как раз тот самый потолок, к которому асимптотически приближается наша гипербола; d показывает, с какой скоростью она к нему приближается (количество жертв, которых убивает хищник со скоростью, равной с/2).

Рассматривая функциональные зависимости, мы постепенно приближались к модели Лотки-Вольтерра.

Эту модель мы будем выводить, используя так называемый «коробочный» подход (он проиллюстрирован на рисунке).



В этой системе слева записаны плотности ресурсов и потребителей. Справа вторая «коробка» у жертв отвечает за популяционный рост, у хищников — за уровень смерти, а первая — за взаимодействие ресурсов и потребителей. В эту общую модель мы можем подставлять разные функциональные зависимости. Хищники жертв поедают, поэтому перед первой коробкой в первом уравнении стоит знак минус, а во втором — плюс, т. к. при поедании жертв улучшается возможность увеличения количества хищников. Начнем с простого, перейдя потом к сложному. Подставив в эту модель самую простую функциональную зависимость (экспоненциальную), получим следующую систему уравнений:

dR/dt = rR aRP

dP/dt = caRP dP

где

R — плотность жертвы (в килограммах мяса на квадратный километр),

Р — плотность хищника

r — удельная скорость роста популяции при малом числе хищников, т. е. удельная скорость, с которой хищники убивают жертв,

а — эффективность хищника (удельная скорость, с которой хищник убивает жертв),

с — эффективность превращения хищниками биомассы жертв в себя и потомство,

d — удельный коэффициент смертности, с которой хищники вымирают, когда нет жертв.

Эта простейшая модель взаимодействия хищника и жертвы, или ресурсов и потребителей и она называется моделью Лотки-Вольтерра (в русском языке почему-то делают ударение на последнем слоге, ВольтеррА, наверное, потому что его первая статья вышла на французском языке, а он итальянец, и произносить надо ВольтЕрра). Лотка был американец польского происхождения. Они изобрели свои модели почти одновременно, один в 1925 году, а другой — в 1926.

Когда Чарльза Элтон открыл популяционные циклы, он первым напечатал научную статью о популяционных циклах в 1924 году. Он там опубликовал возможные причины циклов, может быть, погода меняется или солнечная активность. Например, в 19 веке пики рыси совпадали с пиками солнечной активности (пятен на солнце), была маленькая разница, и за счет этой разницы в 20 веке эти циклы разошлись, и пошли в противофазе. То есть это было чисто случайное совпадение. Но Элтону даже в голову не пришло, что циклы обусловлены взаимодействием хищников и жертв.

И когда вышла статья Вольтерра в 1926 году (сначала во французском журнале, а потом в Nature), его преподаватель (Элтон был молодой, ему было 25 лет) увидел статью в журнале с моделью Лотки-Вольтерра, и вбежал в кабинет Элтона, воскликнув «Вот, вот почему они <циклы> происходят!». Это показывает, как важна теория, потому что из эмпирических данных невозможно было понять, что является причиной циклов.

С тех, за последние 80 лет эта гипотеза «хищника-жертвы» как основная гипотеза причин цикличности в экологии. В одно время она была заброшена по глупым причинам. Но сейчас она является основной, и была подтверждена многими исследованиями.

За последние 20 лет появилось масса исследований, которые доказали, что это взаимодействие по принципу даже не хищник-жертва, а по принципу ресурс-потребитель, для очень разных ситуаций, например, для болезней.

Повторим, что эта модель неприменима в жизни, так как она слишком упрощена, т. к. мы предположили, что число жертв растет экспоненциально в отсутствии хищников, что в действительности не так, что хищники умирают по экспоненте в отсутствии жертв — это, в принципе, мы можем оставить. Эффективность хищников можно оставить константой. В первом приближении эта модель действует.

Важно заметить, что эта модель дает совершенно патологическую динамику. Рассмотрим следующий график, здесь сплошная линия — жертва, пунктирная — хищник (график дает изменение во времени):



Или то же самое, но в фазовом пространстве (время мы убрали, здесь только численности хищника и численность жертвы):



Все видят, что процесс идет против часовой стрелки?

Проблема в том, что это цикл нейтральный, т. е. амплитуда колебаний задана начальными условиями, и не меняются, чего не бывает в жизни. Слишком долго объяснять, почему нейтральный цикл — это патологическое поведение. Примите это на веру. Эта модель хороша только как игрушечная модель, которая объясняет, что если все сделать самым простым образом, то получится цикл.

Нам надо подправить эту модель. Как это сделать? Самый элементарный способ — вместо экспоненциального роста ввести логистический. Если мы это сделаем, то это даст немедленный эффект, то есть модель стабилизируются, будут затухающие колебания, которые придут к точке, являющейся устойчивой. Если же мы поставим экспоненциальную модель, а сюда вместо первого поставить второй тип функциональной зависимости, то это приведет к дестабилизации, то есть амплитуда колебаний увеличивается, пока не произойдет столкновение с нулем, либо — что чаще и происходит — жертвы растут экспоненциально, а хищники (поскольку у них ограниченная скорость роста, просто не успевают убивать жертв) за ними не успевают, они тоже растут экспоненциально, но более медленно, и оба растут до бесконечности.

Мы изменили модель в два шага. Если же мы поменяем и то, и другое, то получим наиболее приближенную к реальности модель Розенцвайга-МакАртура:



Здесь К — емкость среды.

Эта модель на самом деле очень простая, простейшая модель, которая может быть приложена к реальным экосистемам. Пользуясь теоремами, которые еще Колмогоров доказал, можно доказать, что колебания в фазовом виде придут либо к стабильному циклу, либо к стабильной точке. Только два поведения. Может быть еще, конечно, ситуация, когда обе популяции упадут в ноль. Но два поведения — достаточно, потому что в зависимости от параметров мы можем получить либо стабильную точку, либо стабильный цикл.

Рассмотрим конкретный пример. На графике изображены сплошной линией — жертва (лог-шкала), а пунктирной — хищник.

Заметим, что это стабильный цикл. Поэтому если начнем с любой точки, все вернется на круги своя, и амплитуда хищников, и амплитуда жертв будет определена.

Для этих для конкретных параметров амплитуда хищников намного больше, чем амплитуда жертвы. Видно, что у жертвы верхние пики закругленные, и это важный момент, это результат нашего логистического уравнения. Без него хищники никогда не смогли бы догнать жертв, которые росли бы экспоненциально гораздо быстрее чем хищники, и никакого цикла не получилось бы.



Из них следует, что сначала жертвы растут до своей емкости среды, а хищники растут экспоненциально, потому что прямая линия на этом графике — это экспоненциальный рост. Потом их становится так много, что они поедают всех жертв, численность жертв падает экспоненциально, жертв становится мало, и у хищников численность тоже падает экспоненциально, затем, когда хищников почти не остается, численность жертв растет, причем кривая загибается на пике. Поэтому хищники выглядят такой пилообразной кривой, прямой подъем сменяется прямым спадом. А жертвы — у них трехфазовый подъем, потом они сидят близко к равновесию, потом спад. Получается закругленные пики. Таким образом, по топологии графиков можно определить, кто хищник, а кто жертва.

На следующем графике мы видим реальные данные — колебания популяции полевок, живущих в северной Финляндии. Полевка — это мышь, которая ест только траву. Финские экологи изучали их плотность два раза в год, в течение 40 лет. Они ставили ловушки и смотрели, сколько полевок в них попадется, рассчитывая из этого их плотность. Видно, что цикличность не очень четкая, но видно, что нижние концы все острые, а верхние — закругленные. Это больше напоминает жертв, чем хищников.



Ниже представлены колебания численности полевок (англ. voles), живущих в другом городе северной Финляндии. Видно, что популяция на пиках по три-четыре с половиной года сидела на емкости среды. Не все пики, но большинство пиков затупленные.

У леммингов (англ. lemmings), колебания плотности которых, тоже представлены ниже, практически все пики острые. Можно статистически показать, что у полевок пики тупые, а у леммингов — острые.

Из всего этого можно сделать вывод, что полевки, скорее, жертвы, а лемминги — хищники. Известно, что лемминги едят мох, и, на самом деле, они — травоядные, поэтому из остроты пиков следует, что лемминги потребители, а не ресурсы. Причины колебания у полевок и леммингов разные, хотя образ жизни у них похожий. Для полевок было доказано с помощью экспериментов, что их главный хищник — ласка. Есть подобные данные по ласкам, и показано, что колебания их численности согласуются с колебаниями численности полевок согласно модели «хищник-жертва».



Для леммингов показано, что их цикл возникает из-за их взаимодействия со своей кормовой базой. И хотя и лемминги и полевки травоядные, между их кормовыми базами (мхом и травой соответственно) существует различие, и циклы леммингов согласуются с циклами их кормовой базы, а циклы полевок — нет. Если вы уберете ласок, то никаких циклов между травой и полевками не будет. Это описано в моей статье в Nature.

У леммингов зигзаг пилообразный: пик-обвал. У полевок на пике они немножко живут.

Зигзаг на левом нижнем графике объясняется тем, что измерение проводили два раза в год, и это осень-весна, отличающиеся количеством кормов. Это видно по зигзагам, которые совершает численность популяции при общей тенденции увеличения или уменьшения. Они объясняются следующим образом. Замеры численности полевок производились два раза в год, а поскольку количество травы весной и осенью различно, то есть, размеры кормовой базы полевок отличаются в эти периоды времени, то и численность полевок увеличивается или, соответственно, уменьшается. Также отметим, что в модели Лотки-Вольтерра нет различия между пиками жертв и хищников. В уравнении, описывающем модель Розенцвайга-МакАртура, присутствует логистический член, который и дает плоские пики у жертв.

Приложимы ли эти закономерности к изменениям численности популяций людей?

Ниже представлены самые лучшие из имеющихся данных, данные о численности населения в Англии и Уэльсе, начиная с 1085 года и заканчивая 2000 годом. В 1085 году Вильгельм Завоеватель решил пересчитать население в завоеванных им Англии и Уэльса с целью обложения людей налогами, и он пересчитал практически всех англичан. И далее почти каждые 10 лет мы имеем данные о численности.



Из графика, во-первых, видна общая тенденция увеличения численности населения, здесь был пик 6 млн., здесь 6.5 млн., а здесь — 55 млн. Но не забывайте, что здесь произошла аграрная революция, и сейчас можно вырастить еды в 10–15 раз больше, чем в 13 веке. Эта тенденция нас не интересует, поэтому мы ее исключим из рассмотрения. Нас будет интересовать колебания, происходящие вокруг этой тенденции.

Ниже представлены те же данные, но исчисленные в процентах от емкости среды.



Мы смотрим среднюю урожайность по разным периодам, вычисляем, максимальное количество людей, которых Англия могла прокормить, какой процент от максимальной емкости среды составляет население. показан процент от максимального. Мы видим опять колебательный процесс, то есть люди тоже подвержены этому странному колебательному процессу. Ясно, что это не «хищник-жертва», потому что у людей просто нет хищников, которые могли бы вызвать такие колебания. Возможно, виноваты болезни, но это еще нужно исследовать. Здесь есть элемент экологии, а есть элемент социологии, вторым важным фактором выступает внутренняя гражданская война. Еще Томас Мальтус предположил что рост населения может вызвать трения в обществе и привести к развалу государства, гражданской войне, революции. и т. п. На следующей модели отражены эти идеи. N — численность населения, S — сила государства, оцененная по количеству собираемых налогов, W — частота внутренних конфликтов, всплески гражданская война, оцененные по смертности от внутренних стычек, убийств.



Если эти данные мы поместим на фазовое пространство, то по одной оси — индекс социально-политической нестабильности, измеряемый по гибели людей в результате внутренних военных действий (то есть не внешних нападений, а гражданская война). По другой оси — популяционная плотность.



Далее реальные данные по Китаю, начиная с 200 года до нашей эры. Китайцы 2000 лет назад собирали данные, их интересовала не популяционная динамика, а численность тех, кого надо обложить налогами. В результате у нас имеются данные по популяционным колебаниям, на графике даны в логарифмическом масштабе. N — это численность населения; W — это индекс нестабильности, оценивающий внутренние военные конфликты, восстания. Один китайский ученый посчитал, сколько было крупных восстаний в каждое десятилетие, разных бандитских выступлений и т. п. Это мы используем как индекс нестабильности.



Вы видите, что колебания происходят с тем же периодом, но пик нестабильности происходит с задержкой относительно пика численности населения. Вот то же самое на фазовом пространстве, мы видим цикл. В какую сторону он крутится?



Растет население, это вызывает всплеск гражданских войн, население падает, и постепенно гражданские войны тоже убывают. Незамкнут цикл потому, что это же реальные данные. То есть у нас есть какой-то цикл, и реальные колебания будут болтаться вокруг него. Это же история, это сложная система, там много разных факторов, там меняется климат, могут быть внешние вторжения, все будет толкать траекторию в разные стороны. Для реальных данных это очень четкие колебания.

Такая же фазовая диаграмма для Англии, популяционная плотность и нестабильность.



В исследованиях, которые я проводил, я стараюсь не заходить за 1900 год. Но есть некоторые данные для России. В истории России было несколько "вековых" циклов колебаний населения, которые заканчивались междоусобицами. Первый цикл проходил в Киевское время и закончился, когда монголы напали на Русь, она уже была раздираема междоусобицами. Второй цикл нестабильности закончился в начале 15 века во времена Василия Темного, Шемяки и т. д., когда Московское княжество также было раздираемо междоусобицами. Следующий цикл нестабильности начался при Иване Грозном. Опричнина была первым признаком, дальше началось Смутное время. За Смутное время население России уменьшилось на 20–30 %. Затем был очень длинный цикл, потому что Россия расширялась, экологическая ниша сильно выросла, и следующий обвал произошел, начиная с 1905 года, и далее, в соответствии с теорией, следует столетие развала, войн и революций. В России за это время население уменьшалось четыре раза: вначале Первая Мировая и гражданская война, затем репрессии и голодомор 30-х годов (когда миллионы людей умирали), Вторая Мировая Война (30 млн. погибших), и сейчас, то что происходит в 90-е годы, — возрастание смертности и снижение рождаемости. Судя по всему, это — не косвенное влияние нестабильности, социальная нестабильность растет, смертность растет, рождаемость падает. На эту тему есть несколько статей. Смертность во многом повысилась из-за того, что многие люди, попросту, потеряли смысл жизни, пьют. Все эти механизмы рассмотрены в истории, и сейчас они проявляются. Все это очень пока зыбко, и если теория подтвердится, а пока она подтверждается, то мы сможем приложить эту теорию к современности, тогда мы сможем делать заключения.


Ответы на вопросы:

Продолжительность циклов 200–300 лет. Циклы 150–200 лет подъем, и 100 лет упадка. Периоды смутного времени обычно продолжаются около века. Так что по непроверенной теории оно должно закончиться.

Я не согласен с теорией убыстрения демографических циклов, и по нашим данным, период не менялся за последние 2–3 тысячелетия. Другое дело, что ускоряется технический прогресс. Скорость популяционного роста зависит от уровня рождаемости, мы пока детей из пробирки не производим, и скорость прироста населения более-менее стабильна, поэтому демографические циклы имеют приблизительно постоянный период, то есть шаг спирали, по которому развивается история, не уменьшается.

Загрузка...