ЭЛЕКТРОНИКА

Преобразователи частоты и устройства плавного пуска



Никто не будет отрицать, что на данный момент вся мировая промышленность держится на асинхронном электродвигателе с короткозамкнутым ротором — машине переменного тока, преобразующей электрическую энергию в механическую энергию вращения вала электродвигателя.

По данным МЭК (Международного Электротехнического Комитета) на данный момент на каждого жителя планеты Земля приходится от 10 до 12 электродвигателей, более 80 процентов из которых — асинхронные электродвигатели. Асинхронные электродвигатели имеют целый ряд неоспоримых преимуществ, основным из которых является гениальная простота конструкции, и, как следствие, высокая надежность этой электрической машины.

Однако у асинхронных электродвигателей существует и целый ряд недостатков, в связи с которыми их эксплуатация иногда оказывается даже не целесообразной — например, когда вместо них устанавливают машины постоянного тока. Вы уже, конечно догадались, о чем идет речь — о невозможности регулирования частоты вращения этого простого устройства такими же простыми и надежными методами. Да, придумано множество методов регулирования частоты вращения асинхронных электродвигателей, однако все они отличаются сложностью исполнения, и как следствие, низкой надежностью по сравнению с самим электродвигателем. Например, механические вариаторы, введение в ротор сопротивлений (т. н. фазный ротор) и т. д. и т. п.

Промышленность тоже не стоит на месте, и повсеместно конструируются различные устройства и механизмы, в которых предполагается или изменять частоту вращения электродвигателя, или поддерживать ее в неких точных пределах, что, конечно же, невозможно при простом прямом включении асинхронного электродвигателя.

К счастью, новейшие разработки в области электроники позволили решить и эту проблему. Был придуман преобразователь частоты — не менее эпохальное изобретение, чем сам асинхронный электродвигатель. Это устройство (описание принципов работы см. в разделе «Теоретические и Практические основы работы Преобразователя Частоты») позволяет изменять частоту вращения электродвигателя от О оборотов в минуту до номинальной частоты вращения, и даже чуть выше, что позволило абсолютно видоизменить все представления о возможностях, которые открываются в работе даже простых механизмов (подъемников, дробилок, насосов и вентиляторов и т. д.), не говоря уже о чем-то более сложном.

Например, компания «Danfoss» ведет разработки по проектированию преобразователей частоты (далее ПЧ) с 60-х годов прошлого века. На данный момент эти устройства представляют собой практичные и надежные модели, срок службы которых сравним или даже превосходит срок службы тех электродвигателей, на которых они установлены. При этом все оборудование сделано по популярному ныне принципу «поставил и забыл», то есть при правильной установке и эксплуатации не требует технического обслуживания, вмешательства обслуживающего персонала.

Использование ПЧ в производственных процессах влечет за собой множество приятных побочных эффектов помимо ставящейся основной задачи — регулирования частоты вращения электродвигателя. Например, экономию электроэнергии при использовании в насосных станциях и системах вентиляции (да и в любых других системах с обратной связью) до 45 % в год. В какие суммы это выливается при постоянном повышении тарифов на электроэнергию, думаю, объяснять не стоит.

Кроме того, снижаются затраты на техническое обслуживание (ремонт) механической части системы двигатель-нагрузка. Связанно это с тем, что в процессе эксплуатации при пусках-остановах двигателя не возникает резких рывков скорости — ведь при прямом пуске электродвигатель стремится запуститься в максимально короткий промежуток времени — пусковые токи превышают номинально потребляемый в 4–6 раз. С этим нюансом связана и повышенная нагрузка на электросистему предприятия, что тоже приводит к случаям отказа электрооборудования. И это даже более серьезно по своим последствиям, чем механическая поломка единичного агрегата.

Получается, что установить преобразователь частоты можно не просто для решения текущих технических задач, но и как энергосберегающее оборудование.


Теоретические и практические основы работы преобразователя частоты


Конструкция асинхронного электродвигателя с короткозамкнутым ротором.



Трехфазный ток создает симметричное вращающееся магнитное поле



Эквивалентная электрическая схема асинхронного электродвигателя с короткозамкнутым ротором

Rs, Rr — Омические потери в статоре и роторе

Rfe — Потери в железе

Lss (L1) — Индуктивность рассеяния статора

Lsr (L2) — Индуктивность рассеяния ротора

LM (LH) — Индуктивность намагничивания

(1-s)/s Rr — Нагрузка


Обычное регулирование частоты вращения электродвигателя (т. н. скалярное, т. е. безвекторное) отношением напряжение/частота (U/f).



Преобразователь частоты выпрямляет переменное напряжение сети в постоянное, которое затем преобразуется в переменный ток с изменяющейся амплитудой и частотой. Двигатель, таким образом, запитывается регулируемым напряжением и частотой, которое позволяет обеспечить плавное изменение скорости вращения в трехфазном стандартном двигателе (АС) переменного тока.



1. Напряжение сети

3 х 200–240 В, 50/60 Гц;

3 х 380–460 В, 50/60 Гц;

3 х 550–600 В, 50/60 Гц.

2. Выпрямитель

Трехфазный выпрямляющий мост, который преобразует переменный ток в постоянный.

3. Промежуточная цепь

Напряжение постоянного тока = v2 х напряжение сети [В].

4. Катушки промежуточной цепи

Сглаживают ток в промежуточной цепи и снижают токи высших гармоник, поступающие в сеть.

5. Конденсаторы промежуточной цепи — сглаживают напряжение промежуточной цепи.

6. Инвертор

Преобразует постоянное напряжение в переменное с изменяемой амплитудой и частотой.

7. Напряжение двигателя

Переменное изменяемое напряжение, 10-100 % от напряжения сети питания.

8. Плата управления

Здесь находится компьютер, который управляет инвертором, генерирующим импульсную последовательность, с помощью которой постоянное напряжение преобразуется в переменное с регулируемой частотой.


Большинство современных преобразователей частоты (далее ПЧ) реализуют изменение частоты вращения вала электродвигателя обычным изменением соотношения на входе электродвигателя напряжения и частоты. При этом у электродвигателя не отслеживается ни вектор тока, ни вектор магнитного потока. Такие технические характеристики ПЧ определяют его использование на относительно простых задачах с постоянным моментом на валу электродвигателя, с отсутствием необходимости в широком динамическом диапазоне регулирования скоростей вращения вала электродвигателя.

Кроме того, как правило, ввиду простоты реализации данного метода управления, большинство конкурентных преобразователей частоты весьма плохо реализуют функции энергосбережения в виду того, что практически процессорная система таких ПЧ осуществляет простую коммутацию выходного напряжения IGBT-ключами, зачастую не отслеживая даже величину их открытия, не имеет математической модели электродвигателя, не компенсирует должным образом скольжение электродвигателя и т. д. То есть у производителей наблюдается четкая тенденция для ПЧ, реализующих простое скалярное управление электродвигателем, осуществлять простейшие схемотехнические решения, не усложняя программное обеспечение и алгоритмы работы IGBT-модулей.

Это ведет к тому, что любой подобный ПЧ, спроектированный по принципу упрощения схемы, не дает никаких дополнительных получаемых пользователем функций, кроме одной — изменения частоты вращения вала электродвигателя, да и то реализует ее лишь условно.

Таким образом, из-за несовершенства скалярного управления как метода и качества его реализации со стороны многих производителей, было внедрено новое технологическое решение в области управления электродвигателем — векторный метод управления скоростью вращения вала. Рассмотрим его подробнее:


Определение вектора напряжения





Модуляция положения вектора в пространстве

Используя трансформацию



Вектор тока



Вектор тока определяется так же, как и напряжения. Каждый вектор представляется либо Ist (а, Ь) координатами либо величиной и углом (r,q).

Для кругового пути а- и Ь-компоненты меняются во времени по sin и cos.


Вращающиеся координаты



Токи могут быть представлены в системе координат (х, у), одна из осей которой расположена на векторе напряжения.

Эта система координат вращается со скоростью напряжения.

В этой системе координат ix и iy постоянны во времени (при неизменной нагрузке).


Функциональная схема преобразователя частоты с реализацией векторного управления



Именно по описанному выше принципу работают преобразователи частоты фирмы Danfoss серий VLT5000, VLT6000, VLT8000. Эти преобразователи частоты наиболее полно оптимизированы для своих задач (соответственно — общепромышленное применение, вентиляторная серия, насосная серия).

Например, функции ААД (Автоматическая Адаптация Двигателя) и АОЭ (Автоматическая Оптимизация Энергопотребления) позволяют поднять КПД электродвигателя до 99 %, что лучше относительно параметров работы ПЧ производства других фирм на 2–3 %. А это величина дополнительной экономии электроэнергии, и соответственно, денежных средств пользователя.

Кроме того, для более сложных применений выпускается ПЧ серии VLT5000 Flux с прямым управлением вектором магнитного потока поля электродвигателя.


Принципы работы

Векторы тока а и Ь преобразуются во вращающуюся систему координат q-d. Эта система координат связана с вектором магнитного потока в воздушном зазоре, ws. При постоянной нагрузке токи iq и id не изменяются во времени.



Для реализации управления вектором магнитного потока в схему ПЧ вводится дополнительный блок расчета математической модели вектора потока. От качества и точности программной реализации данной модели зависит качество процесса регулирования частоты вращения электродвигателя, оптимизации энергопотребления и т. д. Специалисты фирмы Danfoss достигли следующих результатов в реализации управлением вектором магнитного потока 4-хполюсного электродвигателя:

Точность задания выходной частоты ПЧ (огибающей синусоиды)… 0.003 Гц

Динамический диапазон регулирования скорости… 1:1000 (с обратной связью)

Точность поддержания выходной скорости вращения (<1500 об/мин)… 1.5 об/мин

>1500 об/мин… 0.1 % от текущей скорости

Точность поддержания момента >… 5 % от текущего момента

Время отклика системы… 3 мсек

Регулировка мощности

Б. Колобов


Напомним, как важна регулировка мощности некоторых электроприборов. У электроплиток это позволит снизить расход энергии и предохранит пищу от пригорания. При стирке тонкого белья с кружевами лучше тоже не торопиться и снизить обороты электродвигателя вашей «Эврики» или «Вятки». Подобных примеров множество. Поэтому знайте: если электроприбор работает от сети 220 В и потребляет ток не более 10 А, то его мощность можно легко изменить при помощи регулятора, собранного на семисторе КУ208Г по первой схеме. Принцип работы устройства прост: сто раз в секунду на какое-то время прерывается подача тока к потребителю. И чем дольше перерыв, тем меньшая мощность потребляется. Рассмотрим его работу подробнее.

Переменное напряжение через гасящие резисторы R3 и R4 поступает на цепочку R5 и С1 и снимается с этой цепочки на диодный мост VD6, с которого подается на управляющий электрод семистора. Динистор VD7 служит для «замыкания» диодного моста VD6. Как только постоянное напряжение на выходе превысит напряжение пробоя динистора, он замыкает мост, и напряжение с цепочки R5 и С1 поступает на управляющий электрод. Резисторы R5 определяют время заряда емкости С1, а поворот его рукоятки позволяет нам изменить мощность, потребляемую нагрузкой Rh.



Стабилитроны VD8 и VD9 стабилизируют ток зарядки емкости.

Поэтому конденсатор С1 должен быть рассчитан на напряжение не ниже 100 вольт. Если данная емкость рассчитана на напряжение 250 В и выше, то стабилитрон можно исключить. Индикаторной лампой L1 определяют напряжение сети, а лампа L2 включена параллельно rh и показывает наличие напряжения на нагрузке. Если нагрузка потребляет ток около 10 А, то тиристор желательно поместить на радиатор. По своему действию наш регулятор равноценен трансформатору (типа ЛATP), плавно регулирующему напряжение на нагрузке. Его преимущества — примерно в тысячу раз меньший объем, в сто раз меньший вес, а также в десять раз меньшая стоимость. Если параллельно нагрузке включить вольтметр и покрутить рукоятку R5, то он покажет изменение эффективного значения напряжения в пределах от 25–30 до 200–210 В.

В некоторых случаях необходим верхний предел 220 В. Тогда следует уменьшить номинал резисторов R3 и R4 до 10 К, но увеличить их мощность в 1,5–2 раза. Если же нужно уменьшить нижний предел регулирования, поставьте динистор с меньшим напряжением отсечки.

В регуляторе применяются резисторы: R1 и R2 типа OMЛT-0,25: резисторы R3 и R4 типа ОMЛT-2, резистор R5 типа СПЗ-4, СП-1. Вместо моста VD6 можно использовать КЦ407А или четыре диода КД102Б, Д310, включенные по стандартной схеме выпрямительного моста. В качестве индикаторных лампочек можно использовать любые неоновые. Вместо динистора КН102А — аналогичный динистор данной серии с любой буквой, но при этом угол отсечки, низкое напряжение, будет соответствовать напряжению пробоя у динистора с данной буквой.

Регулятор, показанный на второй схеме, предназначен для работы двигателя постоянного тока от сети 24–36 В. Представьте себе электродрель, которая при включении начинает работать… не торопясь, оборотов 100 в минуту. Вы спокойно ставите сверло на керн, слегка нажимаете, и тут она начинает крутиться как следует. Чем сильнее сопротивление материала или давление вашей руки, тем большую мощность разовьет ее двигатель. Это регулятор с положительной обратной связью. Некоторые любители прилаживают к быстроходному маленькому двигателю медицинский бор или маленький наждачок, получается удобный инструмент. Взяв его в руки, можно делать узоры, барельефы и даже скульптуры из дерева. Но дерево — материал неоднородный: на крупных слоях, свилях, особенно сучках рука «спотыкается», уходит в сторону. Положительная обратная связь мгновенно увеличит скорость вращения инструмента, и рука мастера не дрогнет. И еще: любой инструмент или станок, оснащенный таким регулятором, меньше изнашивается и не так шумит, что немаловажно для работы дома.

Вот принцип действия регулятора. Прежде всего здесь имеется устройство, посылающее в двигатель импульсы тока, говоря проще, на короткое время включающее и выключающее двигатель. Чем чаще, тем быстрее он вращается (электронщики скажут, что это происходит от уменьшения скважности импульсов). При увеличений механической нагрузки на валу регулятор посылает импульсы чаще, и мощность его возрастает.

Но вспомним, что электродвигатели постоянного тока, если их вращать, превращаются в генератор. В паузах между импульсами двигатель вращается по инерции и очень небольшую мощность выдает на цепочку резисторов R10-R11. По величине напряжения на них можно судить о скорости вращения вала. И если оно начинает уменьшаться, то наш «высокоинтеллектуальный» регулятор делает вывод о том, что обороты упали, инструмент встретил сопротивление, двигатель нужно включать почаще.



Уточним, что регулировку оборотов производят при помощи резистора R11. Их можно задать от трех в секунду и до максимально доступных двигателю.

Схема регулятора состоит из генератора дифференцирующей цепочки C2R2, одновибратора с обратной связью, усилителя стабилизатора.

Генератор собран на элементах DD1.3, DD1.4, резистора, R1 и конденсатора С1. Он вырабатывает импульсы для нормальной работы одновибратора. Длительность импульсов одновибратора определяет период вращения двигателя. Резистором R12 выставляют максимальную длительность положительного импульса или максимальную скорость вращения. С выхода одновибратора DD1.3 импульсы поступают на усилитель мощности (на VT2 и VT4). Если VT4 открыт, на двигатель подано напряжение, и он набирает обороты. Когда он закрывается, двигатель продолжает вращаться по инерции. В этот момент закрывается транзистор VT3 и напряжение, которое вырабатывает вращающийся двигатель, заряжает через делитель RIO, R11 и R6 конденсатор С5. Напряжение с него поступает на транзистор VT1 и открывает или закрывает транзистор, который управляет длительностью импульса одновибратора. Если обороты двигателя по каким-либо причинам уменьшились (увеличилась нагрузка), то уменьшается и вырабатываемое двигателем напряжение в отключенном состоянии. Конденсатор С5 заряжается до меньшего напряжения. Транзистор VT1 закрывается, длительность импульса одновибратора увеличивается.

В схеме применяются постоянные резисторы типа OMЛT-0,125 или 02-23-0,125, подстроечный резистор R12 типа СПЗ-19 или ему подобный по размерам, переменный резистор R11 типа СПЗ-4 или СП4-1. В качестве постоянных емкостей используются конденсаторы типа КМ5, КМ6, К10-17. Электролитические емкости типа К50-6, К50-16 или К53-1. Диоды VD2, VD3 типа КД503 и т. п. Стабилитрон VD1 типа КС510А, его же можно заменить на КС182-КС514 с любым буквенным индексом. Микросхема DD1 K176ЛA7 меняется на K561ЛA7, 564ЛA7.

Лабораторный блок питания 0-20 В

Под таким заголовком в "Радио", 1998, № 5 было опубликовано описание несложного блока питания на микросхемах серии КР142. Особенностью нового варианта блока является возможность плавной установки порога ограничения выходного тока от единиц миллиампер до максимальной величины.

Основное отличие доработанного блока питания (рис. 1) заключается во введении операционного усилителя DA2 и установке микросхемы стабилизатора отрицательного напряжения -6 В вместо -1.25 В. Пока выходной ток мал и падение напряжения на токоизмерительном резисторе R2 меньше установленного резистором R3, на выходе 6 ОУ и на входе микросхемы DA1 (вывод 2) значения напряжения примерно равны, диод VD4 закрыт и ОУ не участвует в работе устройства. Если падение напряжения на резисторе R2 станет больше, чем на резисторе R3, напряжение на выходе микросхемы DA2 уменьшится, откроется диод VD4 и выходное напряжение блока уменьшится до значения, соответствующего установленному ограничению тока. Переход блока в режим стабилизации тока индицируется включением светодиода HL1.



Поскольку в режиме короткого замыкания выходное напряжение ОУ должно быть меньше -1.25 В примерно на 2.4 В (падение напряжения на диоде VD4 и светодиоде HL1), напряжение отрицательного источника питания ОУ выбрано равным — 6 В. Такое значение необходимо при всех положениях переключателя SA2, поэтому пришлось переключать и вход выпрямителя VD2, VD3.

Микросхему КР1168ЕН6Б можно заменить на аналогичную с индексом А, на MC79L06 с индексами BP, СР и АСР, а также на КР1162ЕН6А(Б) (см. статью: Нефедов А., Валявский А. "Микросхемные стабилизаторы серии КР1162" в "Радио", 1995, № 4), КР1179ЕН06, AN7906, р^7906, но у них габариты и расстояние между выводами больше (как у КР142ЕН12А). Цоколевка совпадает. Микросхема К140УД6 заменима на КР140УД608, К140УД7, КР140УД708. Светодиод может быть любого типа красного свечения. Резистор R2 — четыре параллельно соединенных С2-29В 2 Ом, 0.125 Вт. К точности его сопротивления никаких требований нет, поэтому резистор можно изготовить и самостоятельно из отрезка высокоомного провода. Резистор R12 — СПЗ-19а. Остальные элементы — те же, что и в основном варианте блока, аналогично и конструктивное оформление. Чертеж печатной платы приведен на рис. 2.



Сопротивления резисторов R3 и R4 могут отличаться от указанных на схеме в два раза, важно лишь, чтобы их соотношение было 1:10. Резистор R3 можно также заменить на два последовательно включенных, причем сопротивление второго должно составлять 5…10 % от первого, это облегчит точную установку тока ограничения.

При настройке блока подборкой резистора R7 устанавливают выходное напряжение 20 В и регулировкой R12 — 0 В. Поскольку эти операции взаимозависимы, их надо повторить несколько раз.

В режиме стабилизатора тока переключатель SA2 следует устанавливать в положение, соответствующее минимальному напряжению, при котором обеспечивается необходимый ток нагрузки. Блок будет стабилизировать ток и при большем напряжении, но мощность, выделяемая на микросхеме DA1, превысит предельно допустимую (10…12 Вт), и может сработать тепловая защита, встроенная в микросхему DA1.

Управление сетевой нагрузкой

Приведенная ниже схема позволяет управлять сетевой нагрузкой (220 В) от устройств, выполненных на микросхемах и имеющих выходной TTЛ-уровень. Схема имеет оптронную развязку, что позволяет хорошо защитить устройство, выполненное на микросхемах. Удобно применять подобное устройство, когда необходимо управлять с компьютера сетевыми устройствами через LPT порт.

В качестве оптопары можно попробовать использовать отечественные оптроны.


Загрузка...