Такие понятия, как постоянные, устойчивые и неизменные телесные проявления, чувства, восприятия, ментальные конструкции, сознание, мудрые люди в этом мире не признают. И я тоже говорю, что таких вещей не существует.
В ясный осенний полдень до тебя сквозь шуршанье падающих листьев доносится разговор мастера Дзеньё с монастырским поваром, бывшим к тому же одним из его самых что ни на есть взрослых учеников.
Дзеньё: Достопочтенный Будда утверждает, что всякое упорядочение вещей непостоянно и что все они стремятся к восстановлению беспорядка.
Повар: Это правда. Посмотри на этот заплесневелый рис!
Дзеньё: Мир так стар. Почему же кухня до сих пор не покрылась пылью?
Повар: Возможно, порядок образуется из беспорядка?
Дзеньё: Что же, кухня сама себя чистит?
Повар: Именно так, когда я в кухне.
Дзеньё: Но куда девается грязь?
Повар: За сараем множество мест, куда можно вылить грязную воду.
Дзеньё: Так вот она где! А откуда появляется твой завтрак?
Повар: Из солнечного света и дождя.
Дзеньё: А почему Солнце светит?
Повар: Потому что оно было так создано.
Дзеньё: А кто породил Солнце?
Повар: Вселенная.
Дзеньё: А кто наводит порядок во Вселенной?
Дрова превращаются в пепел, но пепел не может превратиться в дрова.
Ваш стол постепенно захламляется, кухня почти всегда нуждается в уборке. Автомобили разбиваются, мосты падают. Даже и сейчас, когда вы читаете эти строки, ваше тело стареет. Оно болеет, оно когда-нибудь умрет. Мы все подвержены распаду и гниению. Но полный хаос, однако же, не наступает: кухню убирают, автомобили собирают и чинят, мосты реконструируют, детей рожают.
Почему кухня никогда не самоочищается? И каким образом, раз она этого не делает, она все-таки оказывается чистой? Ведь убирающий ее человек тоже подвержен распаду! И если все распадается, то почему мир не дошел до состояния полного хаоса уже давным-давно? Существуют ли исключения в этом законе всеобщего разложения? И если да, то какие? А если нет, то как в мир вносится порядок? Скоро мы с вами увидим, что эти важные вопросы затрагивают некоторые фундаментальные основы физики, а также огромные масштабы пространства и времени.
Начнем с кухни. Что означает «навести на ней порядок»? Это означает, что вся посуда убрана в шкаф, а не раскидана по столешнице, что рис помещается на нужной полке, пол помыт, а стол чист. Беспорядок же в кухне означает, что вся утварь не находится на правильных местах. Посмотрим с другой стороны. Есть невероятное множество способов разместить в кухне тарелки, специи, кастрюли и продукты, но только очень немногие из них придают кухне убранный вид. Порядок — специальное свойство, и его очень легко утратить.
Точнее сказать, мы можем представить, что пронумеровали все конфигурации кухни, — то есть все возможные способы разместить тарелки, кувшины, кастрюли и прочую утварь. Теперь предположим, что каждой такой конфигурации мы присвоили описывающее ее определение: «отлично убранная», «неплохо убранная», «некоторый беспорядок» и «ужасный беспорядок». Совершенно ясно, что эти четыре градации перечислены в порядке увеличения числа включенных в них наших кухонных конфигураций.
Теперь представим, что кухня находится в одном из состояний категории «неплохо убранная», и допустим, что на нее действует некая сила, которая переставляет вещи независимо от наших определений. (Вы могли бы вообразить ряд случайных сил, переставляющих предметы, в порядке возрастания их разрушительной способности, например: землетрясение — ураган — четырехлетний ребенок.) Вы скоро увидите, что под действием этой внешней силы кухня с очень высокой вероятностью перейдет в категорию «некоторый беспорядок», а потом «ужасный беспорядок». Возможно, правда, что по чистой случайности кухня станет более убранной, но это крайне маловероятно.
Тенденция системы спонтанно становиться «беспорядочной» — это так называемый второй закон термодинамики в действии. Физики формулируют второй закон в терминах энтропии: «Энтропия в замкнутых системах не уменьшается». Но что такое энтропия? Физики используют ряд сбивающих с толку определений, которые, впрочем, можно свести к двум основным. Первое (ко второму мы вернемся позже) можно назвать энтропией беспорядка или просто беспорядком; это понятие было введено Людвигом Больцманом в девятнадцатом веке, и оно очень хорошо подходит к нашему обсуждению беспорядка на кухне.
Назовем каждую определенную конфигурацию кухни микросостоянием. Тогда все возможные конфигурации кухни соответствуют ансамблю всех возможных микросостояний. Теперь назовем четыре уровня чистоты макросостояниями, где приставка «макро» говорит о том, что это «большие» состояния. Мы можем распределить все микросостояния по макросостояниям, каждое из которых будет составлено из микросостояний. Другими словами, каждое макросостояние — это по существу метка, присвоенная набору микросостояний, причем присвоенная таким образом, что каждое микросостояние отмечено только одной меткой (рис. ниже). Мы можем также пересчитать количество микросостояний с определенной меткой и получить набор чисел, соответствующих разным макросостояниям. Макросостояние, определяемое этим числом микросостояний, физики связывают с «больцмановской энтропией»[58] (которую мы будем называть беспорядком). Второй закон термодинамики утверждает, что со временем система эволюционирует к макросостояниям с тем же или большим беспорядком. Кухня, постепенно утрачивающая порядок, подчиняется этому закону, и этот процесс мы сейчас можем описать количественно.
Каждая клеточка — определенное микросостояние, а пространство микросостояний разбито на макросостояния. Степень беспорядка макросостояния пропорциональна площади соответствующего макросостояния на диаграмме. Однако диаграмма не может передать того, что пространство состояний имеет огромное (а не только два) количество измерений, и того, что очень беспорядочные макросостояния имеют тенденцию быть гораздо больше упорядоченных.
До сих пор мы говорили только о различных объектах на кухне. Но каждый из них состоит из разных частей, и если мы, скажем, разобьем тарелку, то неожиданно получим новое состояние, которое не входит во множество наших прежних конфигураций. Чтобы снять это ограничение, мы можем рассмотреть гораздо большее множество возможных микросостояний, включающее и отдельные части кухонных объектов. Продолжая эту процедуру до естественного предела, мы можем создать очень полный набор микросостояний, дойдя до мельчайших ингредиентов, из которых состоит кухонная утварь — атомов и молекул. Проделывая это, мы вправе вообразить, что количество состояний бесконечно, поскольку положения, которые может занять, скажем, атом на кончике лопатки для разрыхления риса, составляют континуум. Но квантовая механика научила нас, что физические системы, вообще говоря, могут предоставить нам только конечный объем информации и, соответственно, фактически обладают конечным числом состояний[59].
Наконец, если у нас есть эти состояния, мы также можем рассмотреть законы физики, которые регулируют преобразование одного состояния в другое. В классической физике микросостояния определяют положение и скорость каждого атома, а физические законы, которые говорят нам, как атомы движутся, определяют правила преобразования одного микросостояния в другое. В квантовой физике состояния — это квантовые состояния, эволюция которых описывается уравнением Шрёдингера.
В точности те же самые правила и рассуждения можно применять и к этой новой комбинации состояний и их динамике. Однако в этом случае числа становятся невообразимо большими: в кухне находится порядка N = 1030 атомов, а число комбинаций, которые они могут образовывать, достигает порядка 10N. Мы можем определить новые макросостояния, разбив их на более мелкие группы, различающиеся некоторыми деталями (интересующие нас различимые состояния), и включив в определение не только разные комбинации расположений кухонных предметов, но еще и разные состояния каждого предмета — новый рис, вареный рис, старый рис, пережаренный рис, заплесневевший рис и так далее. Даже при этом намного более детальном описании каждое макросостояние включает огромное множество связанных с ним микросостояний, причем макросостояния с большим беспорядком содержат намного, намного больше микросостояний, чем состояния с меньшим беспорядком. Поэтому переходы в макросостояния с меньшим беспорядком (вроде превращения испортившегося риса в свежий), разумеется, не запрещены абсолютно, но вероятность их настолько исчезающе мала, что вы даже не сможете себе представить, будто это может случиться. Так что десять раз кряду выиграть в лотерею или стать одновременно и жертвой упавшего метеорита, и жертвой удара молнии — это куда вероятнее, чем сделаться свидетелем макроскопического нарушения второго закона термодинамики. Беспорядок неизбежно будет возрастать — отсюда слово «закон» в названии второго закона.
Вот мы и добрались до вопроса Дзеньё. Предположим, что мы сделали кухню замкнутой системой, полностью изолировав ее от любого внешнего влияния: ни одна вещь не может ни войти в кухню, ни покинуть ее, все влияния устранены. Хотя кухня и остается на месте, она эволюционирует согласно законам физики от состояния к состоянию. Но повторим еще раз — и суть дела именно в этом! — что законы ничего не говорят о конкретном наборе макросостояний, которые мы для себя определили; они ничего не говорят и ничего не знают о том, царит ли на кухне порядок или беспорядок, чисты ли и блестят кастрюли — или же они заржавели, а то и вовсе рассыпались в пыль. Законы подобны четырехлетнему ребенку: делают, что делают. И кухня эволюционирует к макросостояниям со все большим и большим беспорядком.
Если это так, почему любая реальная кухня сравнительно чиста, а не ужасно запущена, захламлена или вообще не превратилась в пыль? Конечно, за ночь, пока мы спим, кухня не уберет себя сама и не станет более чистой. Однако, как заметил повар, когда на кухне появляется человек, он может ее убрать. Так не нарушает ли второй закон (который утверждает, что беспорядок никогда не уменьшается) тот факт, что кухню можно убрать, — ведь чистая кухня обладает меньшим беспорядком, чем грязная? С одной точки зрения — да, а с другой, возможно, более фундаментальной, — нет. На уровне рассмотрения всех конфигураций всех предметов на кухне и наших четырех макросостояний — степеней чистоты — закон нарушается. Динамика системы (действия убирающего кухню) заставляет ее целенаправленно эволюционировать к «более упорядоченным» конфигурациям, и эта динамика противоположна динамике, возникающей от действий четырехлетнего ребенка или землетрясения.
Однако ясно, что это описание системы не полное и не может работать всегда. Допустим, вы заперты в «закрытой» кухне надолго. Некоторое время вы можете поддерживать ее в чистоте, но в конце концов мусор начнет накапливаться, рис будет плесневеть, а вы проголодаетесь. То есть не важно, как мы расставляем кухонную утварь: в конечном итоге кухня достигнет состояния, которого не было в числе наших изначальных состояний, и это происходит всегда, если подождать достаточно долго. Но этого не случается, когда мы используем ультрадетальный набор состояний, иначе говоря, — подробно описываем состояния всех 1030 атомов и молекул. Однако при этом более детальном описании такие состояния, как свежий и заплесневевший рис, — уже макросостояния, и мы не можем просто перевести систему от макросостояний с высокой степенью беспорядка к макросостояниям с большей упорядоченностью. Даже самый искусный работник не в силах превратить испорченный рис в свежий. По этой причине убранная закрытая кухня не может оставаться чистой слишком долго. В конце концов мы непременно обнаружим, что у нас возникнут проблемы, если мы не подсоединим нашу систему к большей системе, в которой можно позаимствовать свежие продукты и в которую можно отправить отходы (сунув их за сарай).
Да и уборщик не может оставаться в изоляции вечно. Люди способны видеть, думать и передвигать предметы благодаря тому, что они переваривают пищу. В полном желудке беспорядок мал. Таким образом, хотя уборщик наводит порядок вокруг себя, внутри у него, по мере усвоения и переваривания завтрака, возникает беспорядок. Таким образом, даже если беспорядок на кухне немного уменьшается, это всегда осуществляется за счет роста беспорядка (по крайней мере, настолько же), вызванного перевариванием пищи в чьем-то желудке. В конце концов этот источник упорядочения истощается — и кухня не может уже поддерживаться в убранном состоянии без подсоединения к большей системе, которая бы доставила туда новую еду с низкой степенью беспорядка, а также обеспечила место для хранения отходов.
Давайте подведем итоги. Кухня не может убрать себя сама. Человек может поддерживать в ней чистоту до тех пор, пока его обеспечивает некоторыми компонентами большая окружающая среда, возможно, сад и сарай. Оттуда он может получить вещества с высокой степенью упорядочения — такие, как продукты, — и вынести туда беспорядочные «отходы». Но сразу же возникает мысль, что мы просто свели проблему к предыдущей, но в большем масштабе. Почему эта большая система настолько упорядочена? Кроме того, мы всегда можем всегда рассмотреть еще большую систему: солнечный свет и дождь позволяют выращивать еду, а атмосфера и погодные условия способствуют разложению отходов. Фактически все эти операции неразрывно связаны с Солнцем, которое обеспечивает Землю огромными запасами порядка в виде относительно упорядоченного солнечного света[60].
Но зачем останавливаться на этом? Откуда приходит тот порядок, который позволяет Солнцу существовать? Ведь вместо него мог бы царить некий ужасный хаос! У Солнца есть два источника порядка. Первый: в составе Солнца содержится много веществ с низкой степенью химического беспорядка, поскольку их простейшие компоненты — водород и гелий — могут соединяться и образовывать гораздо более тяжелые элементы, выделяя при этом энергию и увеличивая беспорядок. Если бы Солнце было большим железным шаром (железо не может выделять энергию при плавлении или делении ядер), ничего такого произойти бы не могло. Второй источник порядка — гравитация, которая по своей сущности является силой притяжения, стремящейся сжать или схлопнуть объекты. На Солнце тоже действует эта сила, стремящаяся его сжать, но она уравновешивается давлением горячего газа, из которого состоит Солнце. Если бы не он, Солнце сколлапсировало бы за 20 минут. Но если бы такое стало происходить, каждый атом Солнца при движении к центру Солнца ускорялся бы, и это увеличивало бы его (атома) энергию. Таким образом, мы видим, что когда объекты коллапсируют, происходит высвобождение некоторой энергии, связанной с движением атомов, и эта энергия — тепло, обладающее большой степенью беспорядка.
Эта способность совершать работу и образовывать тепло говорит о том, что несколлапсированные объекты обладают порядком, и, соответственно, с точки зрения гравитации однородная среда, хоть и не имеет структуры, но обладает высокой степенью порядка. Наличие порядка у современного Солнца является следствием того факта, что газ, который его сформировал, был довольно однородным, а не образованным из кластеров. Складывая вместе химический и гравитационный факторы, можно заключить, что способность Солнца светить обусловлена наличием огромного резервуара однородного газа, состоящего из атомов простейших химических элементов. На самом деле Вселенная в больших масштабах как раз и есть такой резервуар. Фактически кухня может оставаться убранной из-за того, что Вселенная большая, простая и однородная. Поразительно. Но мы не можем удержаться, чтобы не спросить: «А почему Вселенная такая упорядоченная?»
Должны ли мы сослаться на еще большую систему?
Что останется, когда ты покинешь этот мир? Что сохранится после твоего пребывания в этом мире в невообразимо далеком будущем — через 400 лет?
Может быть, останутся какие-то зримые свидетельства твоего непосредственного влияния на мир? Кучка камней, зарубки на дереве, отметившие твой путь? Вещи, изготовленные твоими руками? Нет, ничего из этого так долго не живет. Конечно, ты можешь сделать записи, и ты наверняка останешься в памяти близких. Возможно, сохранятся упоминания в хрониках, записи в официальных документах и тому подобное. Все это может остаться благодаря усилиям тех, кто придет после тебя, и они могут сберечь эту память, если, сочтя нужным, позаботятся об этом.
Конечно, ты влиял на многое: выбирал варианты, осуществлял проекты — от личных до глобальных. Твое случайное слово могло оказаться решающим и изменить течение чужой жизни, ход событий или даже саму историю. Однако сколь долго это влияние будет ассоциироваться с тобой? Ведь в общем течении событий твое влияние трудно выделить даже здесь и сейчас.
Возможно, людям приятно считать, что остается буквально все — каждое действие, каждый выбор, каждая мысль, — остается, навечно воплощенным, в движении атомов и волн, хотя и сокрытым навсегда.
Но возможно, это вовсе не так.
«…»
До изобретения печатного станка большая часть работ по науке, философии и литературе существовала в лучшем случае в виде нескольких хрупких копий. При разрушении (повторном) библиотеки в Александрии были, к нашему прискорбию, безвозвратно утеряны бесчисленные работы Платона, Сократа, Евклида, Гипатии и других авторов. Сохранились ли они в этом мире, закодированные в волновой функции вселенной внутри расширяющейся сферы радиусом 2000 световых лет, спрятанные от нас и интригующие историков? Будут ли эти слова и ваши мысли, возникшие при чтении этих слов, навсегда и неустранимо впечатаны в космическую историю? Фундаментальное сохранение информации — один из основных постулатов и базовых принципов фундаментальной физики. Но что в точности это означает? И действительно ли это так?
Когда мы получали СОВЕТЫ ОТ ПОВАРА, мы описывали конкретную физическую систему — кухню — как набор состояний, что могут превращаться друг в друга при некоторой динамике. Мы видели и другие такие системы: летящую стрелу, падающий с башни шар, частицы, движущиеся в пространстве-времени в логове джинна, и так далее. Но взглянем на эту основную концепцию с более абстрактной точки зрения. Если мы обозначим буквой s одно состояние нашей системы, тогда s(t) будет состоянием системы в момент t. В падающем пушечном ядре, например, для определения s(t) нужны два числа: высота и значение направленной вниз составляющей скорости. Тогда s(t0) могло означать, что «пушечное ядро находится в состоянии покоя на высоте 100 метров», а состояние s(t1) через несколько секунд (в момент t1) могло бы соответствовать «пушечному ядру на высоте 45 метров, падающему со скоростью 30 метров в секунду».
Многие законы физики определяют правила, переводящие данное состояние в некоторый момент времени в состояние в другой момент. Давайте присвоим символ U всей процедуре, в соответствии с которой это делается. Рассуждение о пушечном ядре привело Галилея к пониманию того, что, если мы пренебрегаем сопротивлением воздуха, падающие объекты подчиняются особому правилу, устанавливающему, что направленная вниз скорость в течение каждой секунды возрастает на определенную величину (около 10 м/сек). Включенное в U, это правило позволяет по заданной в момент t0 высоте объекта и вертикальной составляющей скорости вычислить высоту и вертикальную составляющую скорость в любой последующий момент времени[61]. Вообще говоря, в классической механике U означает хотя и нечто гораздо более сложное, но в принципе похожее: нужно взять все частицы, рассчитать межчастичные силы и все траектории частиц, чтобы найти их положения и скорости в более поздние моменты времени; то есть это та самая процедура, которую джинн собирался использовать, чтобы узнать, как состояние мира эволюционирует от одного состояния к другому.
Когда у нас есть абстрактное понятие о состояниях s(t) и правило U, по которому развивается их эволюция (рис. ниже), можно в общем виде сформулировать и базовые свойства, которые должно иметь U, и те свойства, которые оно иметь не должно. Сосредоточимся на двух, особенно важных для разрешаемых нами вопросов.
Первое свойство — детерминизм: действительно ли из данного начального состояния следует, что при данном выборе более позднего момента времени в системе возникает единственное и неповторимое состояние? Высота нашего падающего пушечного ядра определенно обладает этим свойством: если мы введем текущую высоту пушечного ядра, скорость и интервал времени в соответствующую формулу и вычислим по этой формуле новую высоту, то мы получим одно-единственное значение. Классическая механика в общем случае обладает этим свойством — как и утверждал джинн. Им же будут обладать многие правила и алгоритмы, которые вы могли бы придумать.
Идеализированное пространство состояний системы.
Эволюционное правило U переводит любое состояние в момент t0 в соответствующее состояние в более поздний момент времени t1.
Второе свойство — унитарность, которую грубо можно определить как «обратимость». Если задано U, существует ли обратная процедура, позволяющая по данному состоянию в определенный момент времени восстановить состояние в начальный момент времени? Иными словами, можете ли вы повернуть часы вспять или перемотать назад ленту, безошибочно восстановив прежнее состояние? Что касается нашего пушечного ядра, то ответ — «да». Эта процедура соответствует перехватыванию на определенной высоте ядра, летящего с определенной скоростью вниз, и подбрасыванию его с той же скоростью вверх. Ядро при этом должно оказаться в точности на вершине башни. В классической механике, вообще говоря, обратная процедура соответствует движению классической частицы по той же самой траектории, по которой она двигалась через пространство-время, но назад.
Если в общем случае такой унитарный оператор существует для физических законов, то это значит, что прав Ленни Сасскинд, писавший: «В принципе вы всегда можете достаточно внимательно присмотреться к объектам и определить с бесконечной точностью, что с ними происходило раньше, прокрутив их историю в обратном направлении»[62]. Труды Платона и Гипатии в действительности не потеряны, поскольку траектории всех частиц, из которых состояли папирусные свитки, можно в принципе направить в обратном направлении для того, чтобы реконструировать исходные книги. Даже если бы нам пришлось сжечь одну из книг Платона, дым, пепел и тепло, состоящие из атомов, фотонов и прочего, все равно подчинялись бы правилу унитарности, как и вся окружающая книги среда. Хотя на практике, скорее всего, восстановить книгу невозможно — в силу тех же самых обстоятельств, которые мешают джинну точно предсказать будущее, — книги все-таки останутся здесь, с нами, закодированные и впечатанные в текущее состояние Вселенной (так же как и спрятанное там, по утверждениям джинна, будущее). Ничто не будет утеряно бесследно.
Но описание мира не ограничивается классической физикой. Что если мы опишем мир с помощью квантовой механики (а мы обязательно должны это сделать, если хотим быть добросовестными)? Или же что будет, если мы станем описывать мир классически, но допустим (и это мы тоже должны сделать!), что у нас есть некоторая неопределенность при описании состояния, в котором мир находится? В обоих случаях мы обнаруживаем очень хитрую и интересную комбинацию: мир, какой он есть, в некоем смысле одновременно унитарный и детерминистский и не унитарный и не детерминистский!
Возьмем классическую систему, для которой мы знаем только вероятности состояний — например, пятидесятипроцентную вероятность того, что кость находится на высоте 10,1 см над столом, и такую же вероятность того, что кость находится на высоте 10,2 см. Мы можем обозначить их как P(s) — вероятность, приписываемая каждому состоянию s. Теперь, если мы посмотрим на кость (быстро и внимательно) и увидим, что с большой вероятностью она находится на высоте 10,2 см, мы сможем считать, что, скажем, P(10,2 см) = 99 %, а P(10,1 см) = 1 %. Это изменение в P(s) было скачкообразным и непредсказуемым по определению, так как если бы мы могли это предсказать, то не стали бы вначале приписывать этим состояниям пятидесятипроцентные вероятности. И когда мы уже получили вероятности после наблюдения, у нас не осталось никакого способа (кроме, разве что, воспоминания) «восстановить» тот факт, что сначала неопределенность считалась нами равной 50–50 или 25–75 либо какой-нибудь еще. Таким образом, мы обнаружили и недетерминизм, и неунитарность.
Аналогично, мы видели, что квантовая механика — недетерминистская наука в смысле измерений свойств системы: когда вы задаете системе вопрос, на который у нее нет определенного ответа, вы получаете неопределенный (недетерминированный) ответ. Более того, делая это, вы меняете состояние довольно скачкообразно и необратимо, так как различные состояния до измерений могут дать одно и то же состояние при измерениях. Таким образом, вы не можете однозначно перевести то состояние, в котором система оказалась после произведения измерения, обратно в то единственное, в котором она находилась до того, как вы задали вопрос. Это означает, что данный процесс еще и не унитарный. Положение любой заданной молекулы дыма от сгоревшего папирусного свитка книги Платона представляло бы собой суперпозицию ее местоположений, а как только мы бы его определили, часть сведений о том, где она была раньше, исчезла бы.
Однако в таких системах есть и другой источник потери информации. Представим себе, что квантовое состояние эволюционирует с помощью уравнения Шрёдингера, или что классические вероятности P (s) эволюционируют в процессе действий симулятора, который мы использовали при расчетах поведения брошенной кости. В начале броска вероятность кости находиться в руке с различными ориентациями граней очень велика, а вероятность того, что она лежит на столе, мала. Но со временем вероятности изменяются и распределяются равномерно между состояниями лежащей на столе кости с разными цифрами на ее верхней грани.
В данном случае это выглядит так, будто вероятность «разветвляется» на все большее и большее количество состояний (рис. ниже). Даже при узком интервале начальных условий для игральной кости, скатившейся с вершины длинного холма, шансы реализации каждого из событий, состоящих в том, что одна из ее шести граней окажется вверху, будут примерно равны. Другими словами, классическая вероятность P, сконцентрированная для состояний, которые выглядят очень похожими друг на друга, будет эволюционировать к распределению между состояниями, кажущимися очень разными даже для невооруженного глаза. Это ветвление как раз и объясняет, почему мы говорим, что кость ведет себя «случайным образом». Но при этом представляется, что информация о начальной вероятности P(s) потеряна: почти при любом наборе вероятностей P(s) начальных состояний вероятности конечных состояний, при которых на верхней грани окажутся цифры 1, 2, 3, 4, 5 или 6, будут практически одинаковыми. Как же тогда мы сможем повернуть стрелки часов назад и восстановить начальные значения P(s)?
И все-таки это в принципе возможно! Присмотримся повнимательнее к определенному способу эволюции P(s): какую бы вероятность P мы ни приписали начальному состоянию s(t0), эта вероятность просто переносится на то состояние s(t), в которое данное начальное состояние переходит (рис. ниже). Другими словами, если мы приписываем вероятность P(s) начальному состоянию системы, все, что мы делаем, — это помечаем каждую возможную траекторию s(t) той ее вероятностью, которую траектория сохраняет. Но поскольку каждое состояние s(t) эволюционирует унитарно (обратимо), для каждого отдельного состояния мы всегда можем повернуть стрелки часов назад. Таким образом, если мы знаем P(s) в более поздний момент времени, мы, чтобы получить P(s) в более ранний момент, можем обратить время вспять: нам надо просто проследить за каждым состоянием, идя в обратном направлении по времени и придерживаясь приписанной ему вероятности.
Схематически изображенное фазовое пространство для брошенной кости. Эволюция состояний начинается от состояний «кость в руке», далее следуют состояния «кость в воздухе» и, наконец, состояния «подпрыгивание и остановка». Они ветвятся и распределяются по макросостояниям, соответствующим разным цифрам на верхней грани приземлившейся кости. Однако эта ветвящаяся картина эволюции образована бесчисленными микротраекториями, которые не ветвятся.
Это означает, что, в принципе зная (во всех деталях) вероятности состояний кости у подножья холма, можно в точности восстановить[63] изначальные (концентрированные) вероятности. Вся информация о начальных вероятностях при эволюции сохраняется и всегда может быть восстановлена, если повернуть эволюцию в обратном направлении. Теория унитарна. И поскольку, зная P(s) в какой-то момент времени, вы в состоянии вычислить ее в любой другой момент времени, теория еще и детерминистская! Во многом то же самое происходит в квантовой механике с уравнением Шрёдингера: зная квантовое состояние, его можно трансформировать в будущее или в прошлое единственным способом, и пока не сделаны измерения, эти преобразования будут и унитарными, и детерминистскими. Таким образом, динамика замкнутой системы, если ее отрезать от внешнего мира и не наблюдать за ней, может быть и детерминистской, и унитарной, — но если начать за ней подглядывать, то она становится и не унитарной, и недетерминистской. Странно, правда? Но так уж это выглядит: если вы не смотрите на систему — и в случае вероятностей, и в случае квантовой механики, — информация, попросту говоря, сохраняется.
В действительности существует математическое определение информации, которое превращает это грубое определение в очень точное. Когда мы получали СОВЕТЫ ОТ ПОВАРА, мы обсуждали приписываемую макросостоянию «беспорядочную» энтропию, впервые введенную Больцманом. Но есть и другое определение энтропии, точно в терминах P(s), введенное Дж. Уиллардом Гиббсом (и позже — в более общем виде — Клодом Шенноном). Эта энтропия Гиббса-Шеннона[64] достигает максимума, когда вероятность равнораспределена по всем состояниям, и равна минимальному значению, когда вся вероятность концентрируется на одном состоянии, а вероятность остальных состояний обращается в ноль. Мы могли бы назвать это свойство неопределенностью, чтобы отличать его от свойства беспорядочности, определенного Больцманом. Полная информация о системе (знание о точном состоянии) соответствует нулевой неопределенности, а полное неведение (одинаковые вероятности, приписываемые каждому состоянию) соответствует максимальной неопределенности. Теперь мы можем высказать некое точное утверждение, которое можно доказать математически: при унитарном преобразовании неопределенность остается постоянной. Это постоянство неопределенности отражает сохранение информации.
Но как же насчет «распределения» вероятностей при бросании кости? Кажется, мы пришли к парадоксу. С одной, формальной, точки зрения, кажется, что классическая динамика сохраняет информацию, но, с другой стороны, наше интуитивное представление о том, как происходит бросание кости, подсказывает нам, что информация теряется: многие начальные распределения вероятностей эволюционируют в почти одинаковое распределение вероятностей (равнораспределенность) в конце. Кажется, что наблюдение или ненаблюдение за поведением кости имеет мало общего с этой эволюцией состояний, поскольку мы можем подглядывать и в начале, и в конце процесса.
Ключом, позволяющим разрешить этот парадокс, является различие двух понятий, которые мы уже обсуждали: беспорядка и неопределенности. В то время как унитарная эволюция сохраняет вероятности микросостояний и удерживает постоянный уровень неопределенности, она может потерять объем информации (и обычно так и делает) о макросостоянии, тем самым увеличивая беспорядок. Верхние грани с разными цифрами соответствуют различным макросостояниям, каждое из которых содержит огромное количество микросостояний. Если узнать вероятности этих микросостояний у кости, докатившейся до подножья холма, то можно восстановить начальные микросостояния. Но если вы можете смотреть на систему только своими ограниченными макроскопическими глазами, вы упустите мелкие детали информации, которые понадобились бы вам для восстановления начальной информации.
Эта потеря порядка и есть в точности то, на что указывает второй закон термодинамики: в замкнутой системе макроскопический порядок теряется, несмотря даже на то, что микроскопическая информация сохраняется. Законы физики, хотя они и унитарные, сохраняют ту информацию, которую они выбирают для сохранения, но их ничуть не заботит информация или порядок, о которых мы, люди, беспокоимся, — будь то слова в книге, зарубки на дереве или следы на песке в пустыне. Все это уносится постоянно дующим ветром унитарной стихии.
Ничто, может, и не теряется, но все спрятано.
Нет, ты ни минуты не радовался своему пребыванию в плену, но поскольку дни на тропе в пустыне к востоку от Триполи тянулись медленно, а делать было абсолютно нечего, ты обдумывал свое положение очень и очень тщательно.
Твои охранники были хотя и осторожны, однако очень предсказуемы в действиях. Каждый день они почти в одно и то же время устраивали перерыв, и этот перерыв всегда длился примерно одинаковое время. Их проверки, угрозы и перегруппировки каждый день были одними и теми же. В этом строгом распорядке, а также в уверенности стражников, что ни один человек в трезвом уме не захочет сбежать, поскольку вокруг бескрайняя пустыня, ты увидел шанс для себя. 28 из 30 дней высокий суровый охранник был единственным, кто охранял тебя с 1:00 до 3:00 ночи с одним перерывом, длящимся от 1 до 3 минут. В течение 16 дней из этих 28 за эти два часа ни один из остальных охранников не проснулся.
Ночью ты сумел сбросить свои оковы. Стражник к этому моменту отсутствовал уже 4 минуты. Ты начал взвешивать свои шансы: вероятность того, что остальные стражники спят, примерно 50 %. Но когда же вернется тот, суровый? То, что он отсутствует необычайно долго, говорит о том, что он вот-вот вернется — или же о том, что случилось нечто такое, что задержит его еще на какое-то время?
Каковы твои шансы?
Жизнь и свобода висят на волоске.
И ты бежишь в освещаемую звездами пустыню.
Истинной логикой нашей жизни является подсчет Вероятностей, и учет величины этой вероятности имеется или должен иметься в голове каждого разумного человека.
Когда мы говорим, что событие произойдет с вероятностью P, что мы имеем в виду? Является ли P свойством мира, в котором это событие может произойти, или это свойство нашего восприятия мира? Или и то, и другое?
Когда мы обсуждали ЗАКОН ДОСТАТОЧНОГО ОСНОВАНИЯ ПРИ БРОСАНИИ КОСТИ, мы говорили, что вероятность P = 1/6 связана с симметрией игральной кости: кость имеет 6 одинаковых граней, и всякий, кто бросал ее достаточное количество раз, убеждался, что каждая из граней оказывалась вверху примерно одинаковое количество раз. Таким образом, ясно, что P в этом смысле «определяется костью». Однако мы также говорили, что вероятность P = 1/6 объясняется нашим невежеством. Более «осведомленный» симулятор приписал бы результату броска другие и более точные вероятности. Ну, так и как же обстоит дело? Вероятности обусловлены костью или нами?
Мы все — явно и неявно — постоянно используем вероятности. Но вопрос о том, что вероятности в точности означают, мучит ученых довольно давно. Путаница, как это часто бывает, в основном происходит из-за того, что существуют два противоположных подхода[65] к тому, откуда берутся вероятности.
Согласно первой точке зрения, вероятности можно считать совершенно объективными величинами — в том смысле, что они действительно всегда соответствуют относительным частотам реализации определенных событий в ансамбле аналогичных систем. Мы рассматриваем бросок кости, как один из многих. Эти броски могут быть как последовательными, так и параллельными, реальными или воображаемыми, но их всегда много, и, следовательно, есть много возможных реализаций событий. В этом и состоит обоснование вероятности. Если у нас имеются 30 дней и 16 из них все стражники, кроме одного, спят, оценка шансов в 50 % на то, что только один стражник не спит, — как раз яркий пример этого «частотного» (на основе оценки частоты событий) способа мышления.
При другом — противоположном — подходе вероятность всегда рассматривается как степень уверенности в фактах, которой придерживается некоторый наблюдатель или агент. Вероятность выпадения одной грани кубика P = 1/6 относится и к системе, и к человеку, наблюдающему за ней, и ее можно выразить численно в терминах риска по ставкам: разумно поставить на то, что вверху окажется определенная грань кости, если предложенный выигрыш превышает пять к одному. Этот подход к определению вероятности часто называется байесовским (а иногда субъективистским). В байесовском методе сравниваются степени уверенности в альтернативных возможностях, а затем, по мере поступления новых данных, эти степени уверенности обновляются. Каждый день, когда суровый стражник оставался в одиночестве, увеличивал уверенность в том, что «сегодня ночью будет бодрствовать только один стражник», а каждая ночь, в которую два стражника бодрствуют, эту уверенность уменьшает.
Оба подхода кажутся в каком-то смысле достаточно разумными, но имеют несколько странные следствия, если считать их непреложными. Не подлежит сомнению, что при возникновении новых обстоятельств мы можем и должны менять уже закрепившиеся в сознании вероятности. Но это звучит как-то неловко с точки зрения сторонников частотного подхода к вероятности, ибо означает, что при использовании относительных частот мы постоянно меняем ансамбль, к которому эти частоты относятся. Но если ансамбль так легко меняется, приспосабливаясь к нашим прихотям и новым представлениям, то насколько такой подход вообще объективен? А с байесовской точки зрения выходит вот что: если все существенные проявления физического мира, которые мы ощущаем, являются вероятностными по своей природе, а вероятности — это просто мера доверия, не значит ли это, что объективного физического мира вообще не существует?
Данная противоречивость сохраняется частично из-за того, что оба подхода в основном применяют один и тот же основной математический аппарат, описывающий вероятность, и обычно его можно использовать для перевода утверждений в рамках одного подхода в утверждения в рамках другого подхода. В то же время рассуждения на основе вероятностного подхода бывают довольно хитрыми, и эти различные понятия вероятности могут привести к довольно разным инструментариям и «допущениям», используемым при переводе проблем реального мира на язык вероятностей. Если рассматривается наш вопрос о том «как долго еще стражник будет отсутствовать», то понять, как превратить набор данных в вероятности исхода, весьма нелегко. При таком трудном выборе нужно учесть множество факторов — например, насколько важно то, что перерыв стражника длится дольше обычного, а если это и впрямь важно, то как это учесть?
Эти разные подходы к определению вероятностей (помимо практических различий между ними) соответствуют разным взглядам на саму реальность. До какой степени мир таков, каким он является на самом деле — то есть независимым от нас, а в какой степени он создается наблюдателем, который проводит испытания, ищет объяснения и воздействует на него? Различие становится особенно тонким, когда речь идет о вероятностном описании мира P(s), в котором ничего не исчезает. В частности, в ходе эволюции самой системы ничто не может пропасть или быть в нее привнесено, а вот мы можем потерять или добавить информацию об этой системе. Если, например, мы сделаем очень подробные измерения системы и убедимся, что она находится в состоянии S, тогда, независимо от того, какая вероятность P была до измерений, мы скажем, что вероятность P(s), оцененная после измерений для состояния s = S, будет равна 100 % и нулю для всех остальных состояний.
Таким образом, мы можем сказать, что если мы приписали системе вероятность P(s), а затем предоставили систему самой себе, P(s) будет трансформироваться по унитарному закону и сохранять свой уровень информации. Но любое взаимодействие с системой, которое дает нам повод изменить P(s), сделает это по определению, причем так, что данное изменение не будет охвачено ее унитарной эволюцией. Это может привести как к увеличению информации, связанной с системой, так и к ее уменьшению. В этом смысле классическая физика просто слегка морочит вам голову, рассказывая не только про то, как объективный мир эволюционирует, но и про то, как ваш субъективный взгляд на него меняется между измерениями.
Тем не менее остается вопрос: насколько вероятность P(s) определяется внешним миром, а насколько — нашим взглядом на него? И нигде этот вопрос не стоит так остро, как в квантовой механике.
Является ли квантовое состояние эпистемическим описанием нашего знания или понимания мира как набора вероятностей P(s), за которым может скрываться некая глубокая реальность, куда нам почему-то запрещен непосредственный доступ? Если дело обстоит именно так, то когда мы запрашиваем информацию, мы меняем это состояние, поскольку в действительности оно является состоянием сознания.
Или же квантовое состояние — это онтическая объективная характеристика мира, как, например, состояние s, описывающее положение множества атомов? В этом случае вероятности будут порождаться единственным квантовым состоянием, соответствующим, однако, множеству разных описаний, сделанных разными наблюдателями вроде нас, с учетом того, что мы не способны быть одновременно больше чем одним наблюдателем. Таким образом, мы — как данный наблюдатель за системой в настоящий момент — вынуждены приписывать всего лишь вероятность тому, что именно мы будем наблюдать за системой и в будущем. (Отсюда возникает огорчительное следствие, что есть и другие наблюдатели, которые, по сути, такие же, как и мы, и которыми мы в конечном итоге не станем.)
Также вероятностный характер квантовой механики запутывает все проблемы, над которыми мы бились и которые касаются классической физики, операторов эволюции и вероятности P (s), превращая их в огромный клубок тонких и совершенно непостижимых парадоксов. Является ли квантовомеханическое описание мира детерминистским? И да, и нет. Унитарно ли оно? И да, и нет. Существует ли одновременно объективная и субъективная версии мира? И да, и нет — или и нет, и да. Одно из двух.
Проблема состоит в том, что теперь есть две интерпретации вероятности, причем каждая из них требует некоторой позиции по отношению к тому, как понимать реальность. В коане «РАЗДЕЛЕНИЕ МИРОВ» мы уже говорили о том, что само квантовое состояние можно интерпретировать и как объективное (онтическое), и как субъективное (эпистемическое). Но теперь мы можем также приписать вероятности разным квантовым состояниям. Как мы видели и в коане «РАЗДЕЛЕНИЕ МИРОВ», и на третьей странице поэм в коане «ЧЕГО НЕЛЬЗЯ УЗНАТЬ», мы не можем быть уверенными в том, какой ответ даст система на конкретный вопрос, поскольку она находится в состоянии суперпозиции. Или же мы не можем быть уверены в самом состоянии, требующем от нас приписать вероятности различным квантовым состояниям. Возможно, эта неопределенность проистекает из нашей неосведомленности, или из того, что мы изолировали систему от окружающей ее среды, или из чего-либо еще. В любом случае, если мы присваиваем вероятности состояниям[66], мы можем спросить, что в точности они означают (да вдобавок мы не знаем точно, что означает вероятностная природа самого квантового состояния[67]).
Когда вы смотрите на привычный предмет в повседневной жизни, вы, даже зная, что ваши органы чувств несовершенны, интуитивно понимаете, что предмет, о котором говорят, что он «там», — это вполне определенный предмет. Потому-то так тревожно осознавать, что самое основное, фундаментальное описание этого объекта дается не просто в терминах вероятностей, а в терминах вероятности его вероятностного состояния. То есть что объект может быть частично «там», а частично «здесь».
Так что мир «там» является гораздо менее определенным, чем мы зачастую думаем.
И, конечно же, мир «здесь», что бы мы о нем ни думали, является зачастую гораздо менее определенным, чем мир «там».
Несмотря на то, что твоя комнатка была совсем крошечной и холодной, из нее открывался прекрасный вид на реку Лхаса, протекающую через долину. И каждое утро река была не такой, как накануне.
По-настоящему не такой. Не только в смысле «увиденной новыми глазами» (как сказал бы Трипа Драгпа), но и физически другой: множество ручейков, песчаных отмелей и крошечных островков изо дня в день заметно смещались и вся картина от недели к неделе менялась.
Ты обращаешь внимание на то, что структура реки оставалась практически прежней там, где долина сужалась и вся вода устремлялась в одно пробитое в горных породах русло. Зато там, где долина расширялась, у реки возникало множество протоков, которые то сливались, то разделялись, образуя замысловатый узор.
Тем не менее во время своих дневных наблюдений ты никогда не замечаешь этих изменений. Сначала ты думаешь, что не можешь заметить их потому, что они происходят слишком медленно, но, приглядевшись повнимательнее, понимаешь, что река меняется по ночам.
Поэтому в ближайшее полнолуние ты садишься и наблюдаешь, наблюдаешь, наблюдаешь. И около полуночи ты видишь: вода все поднимается и поднимается, и наконец возникает мощный поток, который быстро проносится по реке. Когда вода спадает, русло реки выглядит уже иначе.
За чаем ты сообщаешь об этом своем наблюдении Драгпе, который слушает тебя очень внимательно. Некоторое время он молчит, а затем указывает на реку, горы, небо. «Да, — говорит он, — так оно и происходит со всем, что было создано в ту эпоху».
Откуда берутся информация, порядок и структура? Случайность, беспорядок и разрушение могут возникнуть просто и быстро: как мы видели, их может создать любой ребенок (и непременно создаст, если пустить его на кухню!). Но и порядок тоже возникает везде: образуются галактики, звезды и планеты, появляются горы и океаны. По крайней мере здесь, на Земле, образовались сложные экосистемы, возникла и развивается жизнь, создается множество ее видов. Мы, люди, продвинулись еще дальше и придумали языки, социальные структуры, всяческие теории, технологии и их продукты… и многое, многое другое. Но если все вещи подвержены самопроизвольному распаду, то как же объяснить то, что они существуют? Почему так грубо нарушается дух второго закона термодинамики, которому неукоснительно подчиняются все физические системы без исключения?
Как мы уже видели, информация о физическом микросостоянии системы сохраняется при унитарной физической эволюции и количественно определяется так называемой неопределенностью. Информация в этом смысле является обратной стороной неопределенности, и, желая быть точными, мы могли бы определить информацию I как разность между реальной неопределенностью R и максимальной возможной неопределенностью системы Rmax:
I = Rmax — R.
Если мы исходим из определения неопределенности, введенного Шенноном и Гиббсом (которую они назвали «энтропией»), то это уравнение является количественным выражением наших мыслей об информации в терминах знакомых нам битов, байтов и тому подобного. На самом деле Шеннон разработал это определение именно с целью количественной оценки объема информации, которую может передать цифровое или аналоговое устройство передачи данных.
Представьте себе, например, что имеются восемь протоков реки Лхаса. В каждом из них вода может течь или не течь; таким образом, мы можем представить любое состояние реки, используя строку типа YNNNYNYY, где Y означает, что вода в протоке есть, а N — что ее нет. По определению Шеннона[68], если бы мы не знали, есть ли в каком-либо конкретном протоке вода (и, следовательно, присвоили бы каждому протоку вероятность 50 % тому, что в нем течет вода), мы бы считали неопределенность равной R = 8 битов, что также является максимально возможным ее значением. А если бы мы знали со стопроцентной уверенностью, что в некоем конкретном протоке вода течет, то, исходя из этого же определения, неопределенность будет равна 7 бит, а информация 1 биту: I = Rmax — R = 1 бит. Точно такие же рассуждения показывают, что знание состояния n протоков представляет n битов информации. Мы вправе применить этот метод к любой системе, состояниям которой мы можем приписать вероятности, чтобы количественно оценить содержащуюся в ней информацию[69]. Таким образом, этот набор идей применим не только к битам в компьютере, но также и к атомам в газе, к молекулам в живой клетке и ко всем другим системам.
Мы можем сделать что-то похожее с беспорядком, который в определении Больцмана делит пространство возможностей на макросостояния и присваивает значение беспорядка исходя из того, сколько микросостояний в каждом макросостоянии. Давайте (так же, как мы присвоили вероятность P(s) микросостояниям) предположим, что мы приписали вероятность P(M) каждому макросостоянию M, которому соответствует значение беспорядка, связанное с количеством микросостояний, в нем содержащихся. Теперь мы можем через эти величины определить величину D, которая является своего рода взвешенной суммой по значениям беспорядка этих макросостояний[70]. Эта величина, как и энтропия Больцмана, при естественной динамике системы стремится к росту. Теперь мы можем определить порядок как разницу между этим беспорядком и его максимальным значением[71]:
O = Dmax — D.
В процессе эволюции системы порядок исчезает, так как макросостояния с высокой степенью беспорядка становятся все более и более вероятными. Кухня становится неубранной.
В этой формулировке информация, определенная на микроуровне, сохраняется. А порядок, который был определен на макроуровне, в процессе эволюции замкнутой системы уменьшается. И вот загадка: что бы мы ни обсуждали — создание порядка или увеличения информации, — физика всегда выносит определенный вердикт: этого случиться не может.
Однако информация и порядок все же возникают. Как?
Как говорится, если правила вам не нравятся, измените правила! Если ни информация, ни порядок не могут быть созданы в закрытой системе (то есть в системе с неизменным пространством состояний), в которой происходит унитарная эволюция, тогда, чтобы создать их в данной системе, нам придется изменить либо пространство состояний системы, либо закон, по которому происходит эволюция, либо и то, и другое. Но как?
Один из способов знаком нам достаточно хорошо. Предположим, у нас есть хороший изолированный ящик с нагретым газом внутри него. Система не может перейти в состояние, когда один угол ящика будет нагрет до высоких температур, а остальная часть ящика с газом сильно охладится: это нарушило бы второй закон, поскольку можно показать, что системы с более равномерно распределенной температурой являются более беспорядочными, чем системы, состоящие из нескольких подсистем с разными температурами. Но мы все-таки можем получить холодный ящик, положив его в холодильник и остудив! Это равносильно встраиванию нашей системы в гораздо большую упорядоченную систему. Такое охлаждение делает три вещи: уменьшает энергию ящика, понижает беспорядок и уменьшает неопределенность внутри него. В то же время оно добавляет энергию, неопределенность и беспорядок в других местах объединенной системы[72]; тем самым удовлетворяются закон сохранения энергии, унитарность и второй закон в общей системе.
Сущность термодинамики состоит именно в том, чтобы разъяснить в деталях, как это происходит. С конца девятнадцатого века в рамках термодинамики было получено большое количество теоретических и практических результатов, на основе которых возникло множество полезных устройств — таких как двигатели, холодильники и много чего еще. Охлаждая что-то, мы обычно не думаем, что «создаем информацию». Но если определять информацию как разницу между фактической неопределенностью системы и ее максимально возможной неопределенностью, то в положенном в морозильник буррито реально создадутся триллионы терабайт информации[73] (это не очень полезный тип информации, так как она определяется конкретным состоянием атомов буррито, а не, скажем, битами или словами; но определение количества информации отличается от определения ее качества или полезности).
Другой способ создания информации или порядка — увеличение пространства состояний системы, то есть увеличение Rmax или Dmax в выражениях, приведенных выше. Предположим, например, что у нас имеются полностью запечатанная пустая комната и небольшой ящик, наполненный полностью неупорядоченным газом. В обеих системах, по существу, нет никакой информации. Однако если мы поместим ящик с газом в комнату и откроем его, то в объединенной системе мгновенно возникнет гораздо больше доступных состояний, чем было суммарно в двух отдельных системах. Rmax и Dmax резко возрастут, хотя R и D изначально будут примерно такими же, как перед объединением. Таким образом, информация и порядок I и O внезапно увеличатся и новая система приобретет уйму полезной информации и порядка. Река Лхаса делает примерно то же самое. Там, где долина узкая, уровень воды высокий и есть только один проток, ничего интересного нет. Но когда долина расширяется, у воды появляется гораздо больше возможностей, в результате чего «выбор», который она должна сделать, приводит к возникновению некоторой конфигурации полных и пустых протоков, и эта конфигурация уже содержит некую информацию.
Этот же механизм — создание некоего порядка, когда система вынуждена выбирать из множества возможностей, так как пространство состояний открыто, — приводит к тому, что русло реки Лхаса каждое утро выглядит иначе. Когда уровень воды ночью поднимается из-за дневного таяния снегов в верхнем течении реки, информация о русле реки «забывается». При высоком уровне воды река не должна «выбирать», в какие протоки направлять воду. Но утром, когда уровень воды падает, должна сформироваться какая-то конфигурация пустых и наполненных водой протоков. Что определяет эту конфигурацию? Процесс ее формирования явно очень сложен и зависим от мелочей: к примеру, чуть большее количество песка в одном месте может заставить воду обтекать эту насыпь, углубляя дно по ходу течения. Это приводит к тому, что насыпь увеличивается и со временем становится причиной раздвоения потока. Так крошечный песчаный островок превращается в большую песчаную отмель. Многие сложные системы похожи на эту. При определенных ограничениях — таких как высокая температура — они симметричны и почти лишены характерных черт. Когда температура понижается, система не может сохранить прежнюю симметрию и должна выбрать некую конфигурацию. Симметрия может быть нарушена огромным количеством разных способов — так же, как при образовании сети протоков или же при снегопаде над рекой холодным вечером.
Таким образом, система может создавать порядок, увеличивая свое пространство состояний. Может ли она создать порядок другим способом — изменив закон эволюции? В некотором смысле, да. Вспомним, что если закон эволюции унитарный, он превращает одно состояние в другое. Однако наблюдатель, который смотрит на реку, в действительности никогда не сможет описать ее точно — только в терминах набора вероятностей. А закон эволюции системы говорит нам, что эти вероятности развиваются совершенно определенным образом. В коане «РУКОПИСИ НЕ ГОРЯТ» мы видели, что при эволюции сохраняется информация, но теряется порядок. Тем не менее, в коане «БЫТИЕ И ЗНАНИЕ» мы пришли к тому, что вероятности этого типа связаны как с системой, так и с наблюдателем. Но что если мы не позволим системе развиваться по ее собственному усмотрению, а взглянем на нее более внимательно? Это будет означать, что мы произвели измерение какого-то свойства системы. Что, в свою очередь, будет означать, что мы поменяли вероятности! Вероятность некоторого свойства системы, которая раньше могла составлять 50 %, после произведенного нами измерения будет равна 100 %, то есть свойство будет определенным. Оказывается, это внесение исправлений в вероятности приводит к тому, что беспорядок и неопределенность уменьшаются и, следовательно, увеличиваются порядок и информация, которую мы приписываем системе. В этом смысле мы, как агенты, взаимодействующие с системой, можем создавать связанный с системой порядок.
Это изложение, хотя во многих отношениях и полезное, все же оставляет без ответа некоторые важные сложные вопросы. Чтобы понять, какие именно, предлагаю потянуть за две нити.
Первая. Все методы, с помощью которых мы создаем порядок или информацию, подразумевают возможности включения интересующей нас системы, которая может быть максимально беспорядочной, в большую, которая является менее беспорядочной. Тем не менее, если продвинуться еще на один шаг вперед, возникает естественный вопрос: откуда взялись информация и порядок в этой большей системе? Были ли они привнесены еще большей системой? Теперь мы видим, что нам придется связать свой завтрак с солнечным светом и дождем, то есть с Солнцем и дальше — со Вселенной. А откуда информация появилась во вселенной? Она была заложена во Вселенную кем-то, кто следит за ее чистотой! Этот ход мыслей указывает на очень, очень глубокую важность вопроса Дзеньё. То, что объясняет низкий беспорядок в раннем состоянии вселенной, также объясняет и то, что есть огромный резервуар порядка, который постоянно превращается в галактики, звезды, планеты, книги — и в нас.
Второе. Мы сталкиваемся с вопросом, являются ли неопределенность и беспорядок субъективными или объективными особенностями физической системы. Безусловно, в них есть и те, и другие черты. Порядок определяется в терминах макросостояний, которые мы сами определяем по своему выбору для наших собственных целей. И порядок, и информация основаны на вероятностях для микросостояний и макросостояний, но, как мы видели, сами вероятности в некотором смысле субъективны. С другой стороны, существуют объективные и серьезные ограничения на то, что может делать информация, даже если эта информация кажется «принадлежащей» наблюдателю. Рассмотрим наблюдателя, который получает информацию о системе и тем самым снижает ее энтропию. Этот наблюдатель нарушает второй закон? Да, так было бы, если бы наблюдатель мог узнать что-то о системе, не взаимодействуя с ней. Но это невозможно: получение информации именно потому и возможно, что в действительности мы расширяем систему и включаем в нее наблюдателя. И точно так же, как холодильник создает энтропию в комнате, охлаждая свое внутреннее пространство, так и наблюдатель будет создавать энтропию, если решит понаблюдать за системой, чтобы тем самым уменьшить беспорядок или неопределенность в этой системе[74].
Предположим, что мы измеряем не просто какую-то систему, а Вселенную. Становимся ли мы тогда частью информации, которой обладает Вселенная — или это Вселенная состоит из информации, которой мы обладаем?
Прошло три дня после побега из плена. Вода у тебя кончается, солнце пустыни слепит глаза, а расстилающееся впереди пространство кажется однообразным и бесконечным.
На пятый день, отметив небольшую перемену в окружающем пейзаже, ты стараешься убедить себя, что идешь куда-то. Не важно куда.
Но на самом деле у тебя едва хватает сил, чтобы приоткрыть глаза и осмотреться вокруг.
На шестой день ты замечаешь следы на песке и понимаешь, что они — твои собственные. Твое отчаяние безгранично, однако пересекать свою прежнюю траекторию ты не хочешь и устало бредешь дальше. На одиннадцатый день ты вновь наталкиваешься на свои следы. Вода у тебя кончилась, о еде ты уже и думать забыл. Если ты осмеливаешься поднять глаза, все кажется тебе одинаковым.
На 85-ый день ты уже потерял счет своим возвращениям назад. Вот они, знакомые приметы: сначала долго тянется участок буро-коричневого песка, затем (недолго) рыжевато-желтого, а иногда попадается песок коричнево-красный. Нет, это не может быть восемьдесят пятый день. Это ты понимаешь. Если бы это оказалось правдой, ты бы давно умер. Все очень просто: вероятно, ты просто сошел с ума.
На 91-ый день ты открываешь глаза и, как и ожидал, опять видишь буро-коричневый песок. Ты спрашиваешь себя «Если всю пустыню заполнить следами, значит ли это, что следов нет?»
На 112-ый (или 12-ый?) день ты по счастливой случайности натыкаешься на маленькую, почти неприметную пещеру.
Поэтому вселенная не может существовать вечно: рано или поздно должен наступить момент, когда последний имеющийся в ее распоряжении эрг энергии достигнет самой низкой ступени лестницы убывающей доступности, и в этот момент активная жизнь вселенной должна прекратиться.
Что происходит, когда система блуждает, блуждает и блуждает по своему пространству состояний, проходя через все большие и большие макросостояния? Где она в конце концов окажется? В наводящем тоску месте, в пустыне, где даже не кажется, что что-то происходит: в равновесии.
Представим себе пространство состояний системы как довольно пустынную местность между Дамаском и Багдадом, разные места которой соответствуют разным состояниям системы. Кое-что бросается в глаза. Во-первых, хотя пустыня огромна, она конечна. Можно представить себе физическую систему, для которой это утверждение несправедливо, но сейчас предположим, что это так. Во-вторых, если разделить пустыню на макросотстояния, такие как «коричнево-красная пустыня», или «рыжевато-желтая пустыня», или «около реки», или «пещера», мы также увидим, что полная площадь (и, следовательно, разупорядочение каждого макросостояния) тоже конечна.
Это означает, что есть макросостояние (возможно, это «буро-коричневая пустыня»), обладающее максимальной площадью и самое разупорядоченное. Совершенно естественно, что это то макросостояние, в которое система в конце концов попадет. Это и есть состояние равновесия?
Не совсем, поскольку на самом деле мы не можем всегда скитаться только по буро-коричневой пустыне. Она может быть огромна, но если мы обречены бродить по ней целую вечность, то в конце концов, по чистой случайности, мы оттуда выберемся и — что наиболее вероятно — попадем в «желто-коричневую пустыню»: следующее по величине беспорядка макросостояние. (Хотя затем, как это ни грустно, мы скорее всего опять окажемся в «буро-коричневой пустыне».)
Итак, равновесие — это на самом деле не состояние, или, по крайней мере, не макросостояние. Скорее, это состояние ума — то, в котором большую часть времени мы обнаруживаем, что находимся в самых разупорядоченных макросостояниях и проводим все меньше и меньше времени в состояниях с меньшим беспорядком. На самом деле мы можем рассматривать эти относительные интервалы времени как вероятности. Если, пытаясь осмотреться, мы периодически открываем ослепленные солнцем глаза, то долю времени, проведенную в каждом из макросостояний, можно считать вероятностью того, какое именно макросостояние мы увидим, открыв глаза.
Равновесие как состояние ума достаточно скучно и монотонно. Возникает ощущение, что на самом деле ничего не происходит. Хотя время от времени это макроскопическое состояние меняется, эти изменения настолько предсказуемы, что и это неинтересно. Ответ на любой вопрос почему всегда один и тот же: потому что я скитаюсь по пустыне равновесия.
Почему, открывая глаза, я вижу буро-коричневый песок? Потому что я в пустыне и, когда я открою глаза, то с подавляющей вероятностью увижу буро-коричневый песок.
Почему только один час из ста вокруг меня коричнево-красный песок? Потому что я в пустыне, и 1/100 ее часть именно такого цвета.
Ответ на любой ваш вопрос о том, что может произойти на макроскопическом уровне, формулируется на языке вероятностей, рассчитанных исходя из состояния равновесия, в котором вы оказались. Кроме этих вероятностей ничего больше нет.
Ну, то есть почти ничего. Хотя вы бесцельно бродите по пустыне, вы не парите над ней и не прокладываете туннель под ней. Есть ограничение, удерживающее вас на двумерной поверхности Земли. Какие-то ограничения есть в большинстве физических систем: фиксированная полная энергия или полный электрический заряд, фиксированный объем системы или постоянство числа частиц, и так далее. Точно так же, как география или гравитация могут ограничивать свободу странствующего путника, подобные ограничения делают доступной для системы только очень малую часть всего возможного пространства состояний. Например, если задана полная энергия системы частиц, это означает, что ни одна из частиц не может иметь энергию, превышающую эту полную энергию, а если такая система удерживается в определенной области пространства, то, конечно, эту область не может покинуть ни одна частица.
Если нарушение ограничений не допускается, в равновесии система всегда будет блуждать по «разрешенной» части пространства состояний. Но если ограничения в чем-то несовершенны, они могут удерживать там систему очень долго — однако не всегда. В конце концов система совершит «прорыв» в большую область пространства состояний — в новый мир, который можно исследовать! Но до тех пор, пока ответы на ваши вопросы определяет только сочетание равновесных свойств и ограничений, вы не можете — или еще не смогли — туда «прорваться».
Более того: если подумать, «равновесные» ответы на ваши вопросы практически не зависят от того, откуда началось ваше скитание по пустыне. Если вы провели в пустыне достаточно долгое время, как вы можете узнать, где именно все началось? Хотя, по сути, такое забвение предшествующей истории делает равновесие скучным, оно невероятно полезно для описания физических систем: не надо знать, из какого состояния система стартовала, не нужно детальное описание этого состояния. Нужно только знать все ограничения и понимать, что из себя представляет пространство состояний. Во многом именно благодаря этому возможна такая наука, как термодинамика.
Точно так же можно сформулировать более общее утверждение о независимости равновесного состояния. Что если вместо одного «скитающегося» микросостояния вы имеете дело с чем-то вроде рассмотренной выше «смеси» состояний, где каждому состоянию соответствует вероятность P(s)? Что-нибудь изменится? Нет! При условии, что на каждое возможное состояние накладываются примерно одинаковые ограничения, в целом прогноз равновесного состояния будет точно таким же. На самом деле, можно смешать все возможные состояния, подчиняющиеся одному и тому же набору ограничений. Это могут быть или очень похожие состояния, или состояния, переходящие одно в другое, — все равно. Даже если вы смешаете их все произвольно, в состоянии равновесия система по-прежнему будет вести себя так, как при смешивании цветов: в конечном итоге вы всегда получите коричневый. (Может, с небольшим добавлением бурого… может, красного… может…)
Хотя что-то загадочное в этом все же есть. Одно унитарно эволюционирующее состояние содержит огромное количество информации. Можно выбрать состояние, напоминающее хорошую энциклопедию и содержащее полезную информацию, — или же эта информация, подобно холодному буррито, может быть совсем бесполезной; но если мы точно знаем, что система находится в некотором определенном состоянии (и неважно, что оно из себя представляет), то информация всегда максимальна. Когда система долгое время эволюционирует, эта информация оказывается скрытой, но она никогда не теряется. С другой стороны, множество случайно перемешанных состояний содержит очень мало информации. (Напомним, что, распределяя вероятности по состояниям более однородно, мы увеличиваем случайность и тем самым уменьшаем информацию.) Если мы будем наблюдать, что происходит, когда такое состояние меняется, двигаясь вперед или назад во времени, мы увидим только сплошную мешанину: оно никогда не соберется ни в энциклопедию, ни вообще во что-либо интересное.
Предположение о равновесии используется постоянно, чтобы достаточно точно предсказать поведение физических систем. Хотя равновесие, которое можно определить как состояние с максимальным беспорядком, может быть состоянием с огромным количеством скрытой информации — или же не содержать практически никакой информации, не существует ничего, что позволило бы разделить эти два случая.
Этот парадокс зачаровывает и смущает меня. Не столь уж часто «так много» может одновременно означать и «так мало».
С того места, где ты сидишь, видна бесконечная река, текущая по бесконечной равнине. Впереди на склоне горы монастырь; монастырские строения спускаются к самой долине, а кругом горы, горы, горы… Твои мысли прерывают голоса двух монахов, идущих по тропинке. Они о чем-то спорят.
«Если кальпа самый длинный из возможных интервалов времени, разве ее можно определять так, как это делал Будда? Он говорил, что кальпа — это время, которое потребуется, чтобы заполнить площадь большого города зернышками горчицы, если добавлять по одному зернышку раз в сто лет, — сетует один монах. — Ведь я могу увеличить это время, если возьму не зернышки, а песчинки, или город будет больше, или добавлять зернышки я буду реже».
«Да, — нетерпеливо отвечает второй монах, — но Будда говорил, что кальпа длиннее. Просто дело в том, что площадь очень большая, а зернышки крошечные, поэтому, что бы ты ни менял, что бы ни придумывал, у тебя не получится потратить существенно больше времени».
Тебе кажется, что первый монах, побежденный своим старшим товарищем, несколько расстроен. И ты, вспомнив, как азартно играл при дворе падишаха Джахангира, решаешь вступить в разговор.
«Все не так! — восклицаешь ты. — Представьте себе двух дэвов, играющих в тибетские кости. Каждую тысячу лет они подбрасывают кости. Они играют, играют и играют миллиарды лет. Но однажды замечают, что сыграли уже так много игр, что новая партия точно воспроизводит игру, сыгранную раньше. Время, которое потребуется на это, и есть кальпа».
Сначала тебе кажется, что эти слова не произвели впечатления на монахов. Но затем они, тщательно обдумав сказанное, быстро обмениваются замечаниями, разобрать которые тебе не удается. После недолгого разговора они обращаются к тебе, и младший восклицает: «Этот период времени и в самом деле невообразимо огромен! Я представить себе не могу чего-то более длительного!»
Старший монах уже готов согласиться, но тут он замечает, что мимо идет Трипа Драгпа, который явно слышит их беседу. И монах обращается к нему с вопросом: «Учитель! Время игры дэвов — это действительно максимальное время, которое можно себе представить?»
Трипа Драгпа, по обыкновению невозмутимый, на мгновение задумывается, а затем внимательно смотрит на, сквозь и даже, кажется, вокруг старшего монаха. «Но кто из вас, — спрашивает он, — задает этот вопрос?»
Наш разум хорошо справляется с небольшими числами, такими как 3 и 46. Мы наглядно представляем себе три объекта. Возможно, не так четко, но достаточно хорошо мы понимаем, когда нам говорят, что есть 46 чего-нибудь. Но когда речь идет о таких числах как миллионы и миллиарды, приходится прибегать к сравнению. Например, мы можем представить себе мелкие песчинки в стакане (их около миллиона) либо в плавательном бассейне (их триллион или больше), или зернышки горчицы, целиком заполняющие куб со стороной 10 километров (там 1020 зернышек). Но мы совершенно беспомощны, когда сталкиваемся с такими числами как 10120, не говоря уже о 1010^20. Это те числа, которые возникают, когда речь заходит о вероятностном пространстве[75] физических систем в нашей вселенной.
Такие невообразимые, но имеющие смысл числа легко появляются в комбинаторике, то есть там, где есть большое число элементов и большое число их различных сочетаний. Если в розыгрыше лотереи участвуют 6 шаров, на каждом из которых может быть одно из 40 чисел, мы получаем 406 (около 4 миллиардов) разных возможных результатов. Играя в шахматы, мы делаем много ходов, приводящих к большому числу возможных последствий каждый. По оценке Клода Шеннона, имеется порядка 10120 возможных последовательностей шахматных ходов. Сходным образом за полчаса игры в тибетские кости можно около 120 раз подбросить два кубика. Это значит, что возможно сыграть не меньше 12120 различных игр. Согласно оценке монаха, игра, в которой кость бросают один раз в тысячу лет, займет около 105 лет, так что потребуется примерно 105 × 12120 ≈ 10134 года, чтобы партии действительно стали повторяться: в среднем все возможные последовательности ходов будут проиграны один раз. Но это невероятно долго: в сравнении с этим временем возраст наблюдаемой вселенной, а это порядка 1010 лет, пренебрежимо мал. Этот временной период столь велик, что заслуживает отдельного нового слова. Следуя Будде, назовем сверхдлинный период времени, длящийся 10(двузначное или более многозначное целое число) лет кальпой.
Тем не менее, как мы отметили, говоря о беспорядке на кухне, даже эти числа чрезвычайно, до смешного малы в сравнении с размером вероятностного пространства реальных материальных систем. Например, ваша рука содержит порядка 1026 каждой из элементарных частиц: протонов, нейтронов и электронов. При комнатной температуре каждая из таких частиц внутри объема руки может находиться, по очень грубой оценке, в одном из 1010 возможных состояний. Таким образом, пространство состояний частиц, из которых состоит рука, — это ошеломляющее число: 1010 в степени 1026, что составляет[76] 1010^27. Это число, на вид безобидное, состоящее всего из шести цифр, на самом деле невообразимо велико. Столь велико, что, умножив его на число порядка кальпы, вы можете и не заметить, что результат изменился! Например, результат умножения 1010^27 на невероятно большое число 10120 равен 1010^27 + 120. Видно, что показатель степени изменился на крошечную, совсем крошечную долю процента. Если речь идет о наблюдаемой вселенной, то в ней, по современным оценкам, число состояний порядка 1010^122. Это число еще более неправдоподобно велико: оно практически не меняется, даже если его разделить на 1010^27. Имеется огромное количество состояний, в которых может находиться вселенная! Как и раньше, временные масштабы абсурдно велики, если речь идет о времени, которое потребуется системе для совершения одного цикла, иначе говоря — для прохождения всех состояний. Будем использовать термин метакальпа для 10 в степени 10(целое число в какой-то степени или больше) лет (или любая другая единица времени)[77].
Какой бы запредельно большой ни была метакальпа, ее значение буквально ничто в сравнении с другой величиной, которую можно ввести с бесконечностью. Зададимся вопросом: не является ли число 1010^122 настолько большим, что его можно назвать бесконечностью? Во многих отношениях и во многих случаях это действительно так. Однако бесконечность — другая категория, качественно другое понятие. Образно говоря, другой монстр. И это различие действительно может оказаться важным.
Предположим, мы запечатали затейливый рисунок с большим числом мелких деталей, скажем, тибетскую тхангку[78], в идеально закрывающийся ящик. Окружающий мир никак не влияет на содержимое такого воображаемого ящика, и это условие соблюдается вечно. Картина просто будет находиться в ящике бесконечно долгое время, меняясь в соответствии с не меняющимися со временем законами физики и становясь все старше и старше. Когда пройдет кальпа или что-то вроде того, картина превратится в пыль, а потом, по прошествии долгого времени, она станет горячим газом. А затем, по истечении еще очень долгого времени, скорее всего произойдет разложение газа и образуется полностью равновесный суп[79] из ультрагорячих кварков, нейтронов и электронов[80].
А что дальше?
Тхангка скитается в пустыне равновесия. Притом что в небольшом ящичке порядка 1026 частиц, их пространство состояний сопоставимо с пространством состояний частиц вашей руки: 1010^27 возможностей. Как при блуждании по пустыне или, например, в кухне, куда вы запустили неугомонного четырехлетнего сорванца, может произойти случайная флуктуация, слегка уменьшающая беспорядок. Но существенное изменение беспорядка, скажем, уменьшение беспорядка более чем вдвое, будет означать, что система перешла в макроскопическое состояние, содержащее, скажем, 1010^26 состояний, а на это, в среднем, потребуется метакальпа.
Хотя это непостижимо большое время превышает все, что можно себе вообразить, оно бесконечно мало в сравнении с вечностью, в которой существует ящик. Поэтому такое событие действительно произойдет.
Более того: верно не только то, что в какой-то момент беспорядок станет существенно меньше. Доказуемо, что сама тхангка, рано или поздно, мазок за мазком, восстановится настолько детально, насколько вы этого потребуете. Во время вашего блуждания по пустыне этот удивительный результат, так называемая рекуррентная теорема Пуанкаре[81] (или теорема о возвращении Пуанкаре), становится очевидным. Предположим, что где-то вам пришла в голову безумная мысль отстать от каравана, и с этого места вы стартовали. Вы движетесь как попало, но есть два правила, нарушить которые нельзя. Во-первых, вы никак не можете покинуть пустыню (иными словами, это правило означает, что наша система изолирована и ее пространство состояний велико, но конечно). Во-вторых, никогда нельзя пересекать траекторию своего движения. Если допустить пересечение, получится, что какое-то одно место в пространстве состояний (то, где траектории пересеклись) будет эволюционировать вдоль двух различных траекторий. Но именно это запрещено условием унитарности[82], согласно которому для данного состояния есть только один-единственный путь эволюции этого состояния в будущее и в прошлое.
Легко видеть, что, если эти два правила выполняются, при блуждании вы «поглощаете» пространство состояний, покрывая его шагами. Даже если активно стараться не прийти туда, откуда начался ваш путь, по прошествии какого-то времени вам придется близко подойти к нему, а затем, с течением времени, вы будете подходить к нему все ближе и ближе. Таким образом, пространство состояний становится полностью плотно заполнено вашей траекторией, которая все ближе подходит к исходной точке (но никогда не проходит точно через нее). Сходным образом, стационарная замкнутая система в конечном счете обязательно окажется сколь угодно близко к своему начальному состоянию (см. рис. ниже).
Сколько времени на это должно потребоваться? Для обычной классической системы масштаб времени, требующийся для возвращения в исходное состояние, соответствует метакальпе. Невероятно, но для квантовой системы характерное время еще на одну ступень выше. Это время можно, если хотите, назвать трансметакальпой. Такое число — 10 в степени 1010(многозначное целое число) — типографским способом напечатать не удастся.
Но и это еще ничто в сравнении с бесконечностью!
В любом случае это означает, что, если подождать достаточно долго, в конечном итоге в ящике может произойти все что угодно[83], включая восстановление рисунка или материализацию любой другой конфигурации атомов, совместимой с сохраняющимися в данной системе величинами. Как и пустыня, образованная всеми следами, в ящике нет ничего — и одновременно есть все, что вы пожелаете. Надо только достаточно долго подождать.
Ящик по прошествии кальп и метакальп времени.
Можно успокаивать себя: мол, подобный навечно закрытый ящик — просто результат необузданного полета фантазии. Но не является ли Вселенная таким ящиком? Как и в случае ящика, к ней ничего не добавляется и ничего из нее не выходит. Как и ящик, она, вероятно, будет существовать всегда, возможно, почти всегда.
Если ты находишься в этом ящике, какой изо всех этих «ты» именно ты?
Хотя проводник много раз говорил, что это холмы, ты считаешь, что местность вокруг вполне можно назвать горами. Но вчера, когда после изнурительного подъема вы добрались до вершины седьмого «холма», ты понял, что он был прав. От вида далеких горных пиков, покрытых громадными снежными шапками, у тебя перехватывает дыхание. (Не в последний раз.)
Сегодня, отдыхая в крошечной лачужке в монастыре на склоне горы, ты наблюдаешь, как туман и тучи собираются и отступают через долину. По временам можно ясно видеть дно долины, лес, разбросанные валуны, ручьи…
Но наползает туман, размывая детали, и вместо канувших в неизвестность долин остается только искривленный и запутанный ландшафт. Временами скрыто все, кроме самых верхушек гор, леса и ручьи забыты, и только изредка снизу поднимаются какие-то призрачные образы.
Когда солнце выходит из-за туч, эти призраки превращаются в острова — твердые, притягательные, загадочные.
Кажется, что перед тобой иной мир.
Мир, в котором мы живем, состоит из предметов, живых существ, проторенных тропинок, определенных траекторий, правил, структур и многих других привычных объектов. Но физики, описывая наш мир, используют также — а может, даже и прежде всего — частицы, взаимодействия, волновые функции, суперпозиции, пространства состояний, законы физики и унитарную динамику. Каково соотношение между этими, кажущимися такими разными, мирами: одним, расположенным над туманом, и другим, скрытым под ним?
На самом деле это не один вопрос, а два, и теперь, когда мы уже что-то знаем, можно ими заняться. Вопрос первый: как законы, управляющие большим, очень большим числом крошечных частичек, связаны с набором более простых и понятных правил, позволяющих точно описать большое скопление этих крошечных частиц? Вопрос второй: каким образом квантовая механика, необходимая при описании очень малых объектов, превращается в классическую механику, справедливую для больших тел?
Мы уже обсуждали первый вопрос в терминах «грубой зернистости» — уменьшения детализации при переходе к макроскопическим состояниям. В коане «РУКОПИСИ НЕ ГОРЯТ» мы видели, что есть три возможных подхода к описанию эволюции классической системы: отслеживать какое-то определенное состояние, отслеживать вероятности P(s) разных состояний или отслеживать вероятности макроскопических состояний.
Рассмотрим последнюю возможность более конкретно, считая, что горы и туман не метафоры, а реальные объекты, дальнейшее поведение которых мы хотим предсказать. На микроуровне и то, и другое — невероятно большое скопление атомов. Можно записать уравнения, описывающие движение каждого из этих атомов, но решить эти уравнения по силам только джинну: число состояний, которые необходимо будет рассмотреть, непомерно велико. Однако мы можем перейти к макросостояниям.
Предположим, мы разделили кубический километр местности в Гималаях на миллиард кубиков объемом 1 метр кубический. Можно вычислить плотность, температуру, полный импульс и другие характеристики тумана в каждом из этих кубиков. Затем можно вывести законы, определяющие значения этих величин. Такой метод называется гидродинамическим. Он достаточно эффективен, хотя и не идеален: при описании каждого кубического метра мы опускаем множество деталей, заменив их всего несколькими величинами. Но теперь с задачей можно справиться: вместо 1038 частиц нам надо рассматривать всего несколько миллиардов чисел. Даже если получающиеся уравнения нелегко решить с помощью ручки и бумаги (что правда!), эту задачу можно поручить компьютеру. Именно так всегда и поступают, когда, например, надо предсказать погоду. С другой стороны, для камней гидродинамический метод не подходит. Более правомерно, считая каждый камень одной «частицей», проследить динамику примерно сотни миллионов таких частиц. Это все еще очень трудно, но несравнимо легче микроскопического описания.
В каком-то смысле выбор макроскопического описания — «искусство»: сглаживая детали, требуется сохранить достаточно информации для правильного описания системы. Иногда для понимания поведения макроскопической системы важны мельчайшие детали. Например, груды камней и песка могут очень сильно реагировать на небольшие изменения: причиной лавины может стать один булыжник, добавленный в правильном месте! В таких случаях требуется большая работа, чтобы найти уровень детализации, правильно передающий поведение системы и в то же время позволяющий устранить некоторые из невероятно большого количества деталей. В других случаях вообще не ясно, существует ли и стоит ли искать такое упрощенное описание системы. В частности, биологические системы серьезнейшим образом зависят от множества мельчайших деталей. Гидродинамическое описание человека в терминах плотности, давления и импульса с использованием миллиметровой шкалы позволит понять, как будет человек двигаться, падая со скалы, и показать, какие ограничения накладываются на возможные действия человека. Но это описание никоим образом не дает возможности предсказать его поведение или действительно помочь понять, как такая система, как человек, работает. Хотя перейти к грубой зернистости (уменьшить детализацию) сложно, мы, как и другие создания, использующие ум для выживания в этом мире, хорошо с этим справляемся! Мы без труда подразделяем реальность на «объекты» и «сущности»; мы вполне привыкли, что часть этих объектов ведет себя предсказуемо, другие — неким случайным образом, а третьи — в соответствии с собственным желанием и руководствуясь своими целями.
Однако с точки зрения физики, даже если мы сможем понять, как «увеличить зернистость», вопросы останутся. Вплоть до этого момента все наши рассуждения относились скорее к классическому, а не к квантовому описанию микросостояний. Мы уже видели, сколь непросты отношения квантового мира — с его дискретностью, квантовыми состояниями и суперпозицией — с классическим миром непрерывности, определенности и объективными качественными и количественными характеристиками. Квантовая реальность в какой-то мере неоднозначна, она несет в себе квазисубъективный элемент, хотя физическая реальность (в том виде, в котором мы ее наблюдаем) кажется абсолютно объективной. Это справедливо, особенно тогда, когда речь идет о предметах, сходных с булыжниками: в определенное время мы всегда находим их в определенном месте, их прекрасно описывает механика Ньютона, даже несмотря на то, что они состоят из атомов с их случайностью и набором непостижимых свойств. Как такое возможно?
В определенных случаях установить эту связь можно с помощью достаточно красивого, вызывающего удивление приема, объединяющего идею Фейнмана о всех возможных траекториях (через ворота без ворот) с выводами, к которым мы пришли, выбирая свою ДОРОГУ. Главное, что позволяет это сделать, — предположение о том, что частицы, как и наши пилигримы с молитвенными барабанами, несут с собой фазу, циклически повторяющуюся при их движении через пространство-время. Затем допустим, что в случае реальных частиц скорость изменения их фазы (т. е. числа оборотов вертушки при каждом шаге пилигрима) зависит от массы частицы. Точнее, суммарное изменение фазы в результате эволюции определяется не длиной траектории частицы через пространство или пространство-время, а действием S, накопленным при движении вдоль траектории. Это действие, как и там, где речь шла о ДОРОГАХ, КОТОРЫЕ МЫ ВЫБИРАЕМ, зависит от массы частицы. Для субатомных частиц циклическое изменение фазы может быть достаточно медленным, но, если частица более массивна, оно происходит очень, очень быстро. Давайте еще раз проведем эксперимент с пилигримами, но только будем считать, что у них сверхскоростные вертушки. Тогда мы увидим, что, когда пути двух пилигримов совсем разные, они интерферируют. Следовательно, в случае массивных частиц темные и светлые интерференционные полосы располагаются в пространстве чрезвычайно близко друг к другу.
Теперь добавим к этому вывод Фейнмана о том, что при вычислении вероятности перемещения частицы из одного места в другое надо учитывать все возможные траектории. Рассмотрим огромную толпу пилигримов, входящих через одни ворота и идущих по всем возможным тропинкам, которые заканчиваются где-то вблизи пагоды. Поскольку имеется много тропинок разной длины, они скорее всего будут пересекаться друг с другом, а поскольку их очень много, то пересекаются даже тропинки, слегка отличающиеся по длине. Это значит, что все эти тропинки являются препятствием друг для друга и уничтожаются всеми возможными случайными способами. В результате количество тропинок возле края пагоды будет близко к нулю.
Но из этого правила имеется исключение. Предположим, что есть особая выделенная траектория (тропинка), такая, что небольшое изменение этой траектории не приводит к изменению действия S. Тогда амплитуды выделенной и возмущенной траектории складываются. В каком случае изменение траектории не меняет S? С точки зрения математики это имеет место ровно тогда, когда траектория доставляет экстремум действию S.
Это значит, что, если масса велика, бесконечно много траекторий взаимно уничтожается, за исключением того места, где они суммируются когерентно, образуя одну выделенную траекторию. Эта выделенная траектория и есть та, которая доставляет экстремум действию и, следовательно, точно совпадает с классической траекторией, тоже обеспечивающей экстремум действия.
Вот так красиво одна определенная классическая траектория образуется из всех возможных траекторий.
Мы видели, что, если при описании очень, очень большого числа крошечных частиц перейти к существенно меньшему набору чисел, можно использовать макросостояния. И при переходе от очень малых систем к большим классические траектории появляются как результат комбинации большого числа возможных траекторий. Что еще лучше, это можно сделать одновременно. Элегантный метод, предложенный Марри Гелл-Маном, Джеймсом Хартлом и Робертом Гриффитсом[84], дает возможность определить историю наблюдаемых макроскопических состояний и вычислить вероятность каждой наблюдаемой истории в соответствии с правилами квантовой теории. Как и тогда, когда мы РАЗДЕЛЯЛИ МИРЫ, данный метод ставит вопрос о том, являются ли истории декогерированными. Если это так, то истории называются «классическими». Таким образом, когда частицы становятся больше или увеличивается их число, нечеткость и неопределенность квантового мира постепенно отступает. Наш взгляд устремляется все выше и выше, туда, где видны только вершины гор.
Но не исключительно туда. Нет четко определенной границы между квантовым и классическим мирами, где принципиально неопределенные события становятся определенными и объективными. И ничто не может нам помочь понять по-настоящему, что происходит, когда, как от взмаха сверкнувшего меча, одна классическая траектория разделяется на две. Поскольку физика определяет только вероятность наступления событий, это разделение происходит именно на всем пути вверх и вниз по лестнице, ступеньками которой являются сложность системы и ее размер: нигде на ней нет места, откуда можно сойти в одну, определенную реальность. Гриффитс несколько провокационно сформулировал это так:
Это противоречит глубоко укоренившейся вере или интуитивным представлениям как философов, физиков, так и самых обычных людей на улице, что в любой момент времени есть одно и только одно состояние вселенной, являющееся «истинным», и с ним должны быть согласованы все истинные утверждения, относящиеся к миру вокруг нас[85].
Иногда гора — это больше, чем гора, а иногда — меньше.
Джинн остановил наконец свое отражение. Он в ярости. Больше всего, даже больше криптостойких алгоритмов, NP-сложных задач[86] и больших комбинаторных множителей, он ненавидит парадоксы, имеющие отношение к нему самому.
Несмотря на ярость, джинн занялся делом: он разлагает свою локально восстановленную матрицу плотности на триллионы разных возможных базисов, стремясь отыскать квазилокальный квантовый гамильтониан, который позволит его модели эволюционировать во времени. Пытаясь выявить, как можно увеличить зернистость, джинн ищет элементы симметрии и коллективные переменные. Он обсчитывает огромное число декогерентных историй и их амплитуды[87]. Он проклинает крепкие стенки своей лампы, не позволяющие ему исследовать причинно-следственные связи за пределами этого крошечного объема. Человеческие существа забредают в убежище джинна очень, очень редко. Он надеялся использовать тебя, а теперь ему придется ждать другого посредника, способного исполнить его волю. Но он не отступит и ни о чем не забудет. Джинн переформулирует задачу в терминах тензорной нейронной сети и использует все 26. неопределенные бифуркации в декогерентных историях ее ухищрения, чтобы гонять модель взад и вперед по оси времени. Он прослеживает тебя в прошлом на корабле и в башне. Он следит, как в будущем ты идешь через пустыню, видит твои незаконченные разговоры с суфиями и брошенные кости.
Но изображение становится туманным: меч великого Муненори аккуратно рассекает его на две части, и оно веером разворачивается вдоль холмов под монастырем Ганден. Декогерентные траектории теряют связность, их нормированные веса становятся эргодическими. Джинн видит, как на многих из них его добыча просто сливается с какими-то предметами вдоль дороги, ведущей в провинцию Ляонин. Изображение померкло. И джинн, удвоив свои вычислительные мощности, берется решать задачу «в лоб», методом перебора частиц и волновых функционалов. Он направляет их в самое большое из гильбертовых пространств — и что же? Джинн растерян, никаких зацепок у него нет.
Изрыгая ругательства, джинн роет пещеру в своем разуме и помещает туда исследуемый объект.