Устойчивых бактерий победят тактикой троянского коня
Снимок бактерии синегнойной палочки, изучавшейся в данном исследовании
Новый способ борьбы с лекарственно-устойчивыми бактериями предложили ученые из исследовательской группы под руководством Прадипа Сигха, микробиолога из университета Вашингтона. Этот метод оказался весьма изобретательным и настолько же эффективным.
Занимаясь работой с бактерией синегнойной палочки (Pseudomonas aeruginosa), исследователи обратили внимание на то, что железо — важный микроэлемент как для бактерии, так и организма, в котором она развивается. При этом происходит своего рода сражение за железо: организм пытается "спрятать" железо от захватчиков, а бактерии, наоборот, активно стараются отыскать и "украсть" этот элемент. Исследователи решили воспользоваться таким состоянием дел и подсунули бактериям галлий — вещество, очень похожее по химическим свойствам на железо. Pseudomonas aeruginosa не могут "заметить" этого обмана и поглотают подложный элемент вместо железа. Поэтому, по словам Сигха, для бактерий, ищущих железо, галлий является троянским конем.
В некоторых биологических системах галлий может заменять железо, но при этом замедлять некоторые процессы. Аналогичным образом его действие сказалось и на изучаемых бактериях. Из-за того, что процесс развития бактерий затормозился, они стали гибнуть и не могли сформировать биопленку — слой, в котором они обычно развиваются.
Исследование показало, что эффективность галлия возрастала в условиях низкого содержания железа. Согласно данным, полученным в результате опытов на мышах, подобное лечение действенно как при острых, так и при хронических заболеваниях, вызванных изучаемой бактерией. Этот подход к терапии лекарственно-устойчивых инфекций сами исследователи считают многообещающим, хотя и отмечают, что стратегия галлиевого "троянского коня" пока что не готова к внедрению в клиническую практику.
Изучена пара хищных динозавров из Монголии
Изучена пара хищных динозавров из Монголии
Сразу два новых вида хищников мелового периода подвергли биологической систематизации палеонтологии из исследовательского коллектива под руководством Алана Тернера, палеонтолога из Американского музея естествознания. Интересно, что одно из этих существ относится к самым маленьким нелетающим динозаврам из всех, известных науке.
Один из видов — динозавр Tsaagan mangas — является представителем Dromaeosauridae. Этот хищник жил около 80 миллионов лет назад, перемешался на двух ногах, а размером был чуть больше индейки. Палеонтологи очень рады находке: череп существа сохранился очень хорошо, лучше, чем у других представителей того же семейства. По словам Тернера, обнаруженный череп обладает рядом черт, которые резко выделяют данный вид среди прочих Dromaeosauridae. Останки Tsaagan mangas (это название переводится с монгольского как "белое чудовище") — череп, несколько шейных позвонков и лопатка — были найдены в Монголии еще в 1993 году, но вид подвергся описанию только сейчас.
Второй хищный динозавр, которого изучил Тернер — Shanag ashile (от слов "shanag" — монгольское название танцоров на одном из буддистских праздников и "Ashile" — старинное название горной системы, где была сделана находка. Это животное, по мнению исследователя, скорее всего, напоминало четырехкрылого Microraptorgui. Оно жило на 20 миллионов лет раньше Tsaagan mangas и было намного меньше — величиной с ворону.
Гигантский гексагон на Сатурне интригует планетологов
Ночной вид на гексагон, полученный спектрометром Cassini в видимом и инфракрасном диапазонах волн. Яркий красный цвет — тепловое излучение, исходящее из глубины планеты. Темные участки — толстый слой облачности, блокирующей тепловое излучение интерьера гиганта. Синий нимб — проблеск солнечного света, освещающий противоположную половину планеты
Космический аппарат Cassini позволил ученым бросить беспрецедентный взгляд в глубину одного из самых таинственных образований в Солнечной системе — геометрически правильного шестиугольника с поперечником в 25 тысяч километров, окружающего северный полюс Сатурна.
Гексагон является долгоживущей структурой, сделали очевидный вывод астрономы, увидев его вновь после визита Voyager. Также выяснилось, что его светлые (в инфракрасных лучах) участки представляют собой гигантские прорехи в облачной системе, простирающейся, как минимум, на 75 километров вглубь атмосферы, под тонким слоем верхних облаков, которые когда-то снимали аппараты Voyager в дневном свете. Вообще же прямые стены этого вихря уходят вниз на 100 километров.
Исходя из полученных данных, ученые также сделали вывод о том, что загадочный гексагон не связан с авроральной активностью планеты или ее радиоизлучением. Вместе с тем, странный шестиугольник, по данным Cassini, кажется, вращается синхронно с вращением глубинных слоев атмосферы планеты-гиганта и, возможно, синхронно с ее внутренними частями.
Точная природа этого образования остается, впрочем, неясной. Кевин Бэйнес, эксперт по атмосферам из Лаборатории реактивного движения (JPL) и член научной команды Cassini, говорит, что ничего похожего ученые не видели ни на одной другой планете. Специалисты только предполагают, что гексагон представляет собой нечто вроде огромной стабильной волны, окружающей полюс и проникающей глубоко в атмосферу.
Создана трехмерная модель взрыва белого карлика
На иллюстрации, полученной в ходе симуляции взрыва белого карлика, показано формирование внутри звезды выброса раскаленного вещества
Ученые из университета Чикаго в Иллинойсе под руководством профессора Дональда Лэмба создали трехмерную модель взрыва белого карлика, благодаря ей, они смогли узнать о том, как развивается этот процесс. Работа Лэмба представляет большой интерес для астрофизики, так как считается, что именно взрывы белых карликов являются причиной сверхновых типа Iа.
В 2004 году этот ученый вместе с коллегами моделировал аналогичный процесс в двумерном варианте. На сей раз взрыв белого карлика исследователи построили в трех пространственных измерениях. Согласно данным исследователя, взрыв начинается ассиметрично с возникновения раскаленного "выступа" вещества размером около 15 километров внутри белого карлика. Эта структура примерно за одну секунду достигает поверхности, откуда вырастает грибообразное раскаленное облако высотой почти в 2 тысячи километров. Еще через секунду под этим облаком формируется поток вещества, выходящий с противоположной стороны звезды, который и вызывает детонацию и дальнейшее возникновение того, что мы называем вспышкой сверхновой. В целом процесс длится не более трех секунд.
Однако построение этой модели потребовало куда большего времени. Для исследования использовались суперкомпьютеры Ливерморской национальной лаборатории и Национальной лаборатории Лоуренса в Беркли, которым для этого потребовалось 75 часов работы 768 процессоров.
Пули в туманности Ориона
На этом инфракрасном снимке видны "пули" (показаны в виде голубоватых структур) и оставляемые ими следы (оранжевого цвета)
Ученые из обсерватории Gemini, находящейся на Гавайях, сообщили, что смогли получить чрезвычайно точные снимки "пуль" в туманности Ориона. Впервые “пули" в туманности Ориона были зафиксированы в видимом свете в 1983 году. Они представляют собой облака газа, состоящие в основном из водорода. А как показали новые наблюдения, в них содержатся еще и атомы железа, разогретые трением с окружающей средой до 5 тысяч кельвинов. Название структур не должно вводить в заблуждение: размер каждой из них внушителен и в десять раз превышает диаметр орбиты Плутона. То, что действительно как-то роднит их с пулями, так это огромная скорость движения — эти облака несутся в пространстве со скоростью до 400 километров в секунду (то есть в тысячу с лишним раз быстрее звука). Перемещаясь в газовой среде, “пуля" оставляет тянущийся за собой след длиной порядка 0.2 светового года, "Пули" — относительно молодые образования, возникшие всего около тысячи лет назад в результате выброса газа из глубин туманности. Это было вызвано неизвестным, бурно протекавшим процессом, связанным с формированием скопления массивных звезд, расположенных в той области.
"Пули" движутся в направлении от туманности, и благодаря высокому уровню точности, ученые надеются, что смогут в ближайшие годы отследить перемещение этих интересных объектов.
Найден метод превращения всей донорской крови в универсальную
Красные клетки крови, обработанные по новой технологии, авторы метода называют универсальными
Хенрик Клаузен из университета Копенгагена и его коллеги из ряда университетов Франции, США и Швеции, а также — из американской компании ZymeQuest, разработали технологию превращения крови любой группы а кровь группы 0, которую можно переливать всем пациентам,
Еще в 1380-х американские ученые показали, что фермент, выделенный из зеленых кофейных бобов, может удалить антиген В с поверхности красных кровяных клеток. Но главным препятствием внедрения этой технологии в клиническую практику была нехватка эффективных ферментов.
Теперь международная группа исследователей открыла, что фермент от бактерии Bacteroides fragilis хорошо удаляет антиген В, а фермент от бактерии Elizabethkingia menmgosepticum — удаляет антиген А. Оба этих фермента запускают высокоэффективные каталитические реакции, так что, к примеру, расход фермента от Bacteroides fragilis, в расчете на определенный объем крови, оказывается в тысячу раз меньшим, чем фермента кофейных бобов. Таким образом, специальный раствор, содержащий найденные учеными ферменты, способен быстро превратить кровь групп А, В и АВ в кровь группы 0.
Компания ZymeQuest, создавшая машину для обработки крови по новому методу, начала клинические испытания крови ECO. Если будет доказана безопасность технологии (и такой крови), машина могла бы выйти на рынок Европы в 2011 году.
Рак будут лечить триллионами нанобиозондов
Схема нанобиозонда: магнитное ядро, биополимерное покрытие, антитела. Внизу: действие такой сферы, прикрепившейся к поверхности раковой клетки
Профессор Салли Денардо и ее коллеги из университета Калифорнии в Дэвисе успешно применили для лечения раковой опухоли специальные термические нанозонды.
Использование сильного нагрева против опухоли медики обсуждают давно, но тут главная проблема точная локализация зоны нагрева и защита здоровых тканей. Эту задачу решили авторы новой работы, которые создали необычные нанобиозонды. Каждый из них состоит из крошечной сферы, сделанной из намагниченного оксида железа, соединенного с моноклональными антителами, снабженными радиоактивными метками. Наносферу покрывают полимеры, маскирующие ее от "внимания" иммунной системы.
Триллионы таких нанозондов ученые запускали в кровоток мышей, имевших раковую опухоль груди. Сферы, мигрируя по организму, в конце концов накапливались на поверхностях раковых клеток и, благодаря своим антителам, соединялись со специфическими рецепторами клеток опухоли. Через три дня исследователи направили на область опухоли высокочастотное (тысячи герц) переменное магнитное поле, которое вызвало мгновенный разогрев наносфер.
После единственной 20-минутной обработки (дозировка была вычислена на компьютере, исходя из различных параметров ткани и наносфер) ученые стали наблюдать за мышами. Оказалось, что темп роста опухоли замедлился, так как многие раковые клетки были убиты. При этом вредного, в том числе — токсического, действия наносфер на организм не наблюдалось. Денардо полагает, что данная техника может быть применена для лечения различных типов раковых образований у людей.
Создан прозрачный тонкий и гибкий аккумулятор
Новинке прочат применение в набирающем силу направлении — гибкой электронике на основе полимеров
Хироюки Нисидэ, Хироаки Кониси и Такео Суга из университета Васеда продемонстрировали тонкую, гибкую и при этом прозрачную аккумуляторную батарею. Новый аккумулятор построен на основе органических радикалов. В основе нового аккумулятора — пленка из растворимого в электролите полимера толщиной 200 нанометров, которая покрыта молекулами нитроксида. Радикал действует как переносчик зарядов. Для придания полимеру твердости команда использовала ультрафиолетовое излучение в сочетании со специальным компаундом — связующим агентам.
Новая батарея показала высокие удельные емкость и мощность. Но точные ее параметры авторы новинки не сообщают. Зато отмечают, что для полного заряда этой батареи достаточно всего одной минуты. А срок ее службы превышает 1 тысячу циклов.
На Титане открыты моря
Сравнение в одном масштабе крупнейшего (из найденных на этот момент) моря на Титане (слева) и озера Верхнее в Северной Америке. Внизу — еще одно море Титана, которой попало в кадр лишь своим краешком.
Радар космического аппарата Cassini позволил исследователям увидеть в высоких северных широтах Титана несколько морей, предположительно заполненных жидким метаном и/или этаном. Наибольшее из них превосходит по размерам любое из великих озер Северной Америки и сравнимо по величине с некоторыми морями на Земле.
Новые детали поверхности Титана затмевают прежние аналогичные объекты, именуемые озерами. Согласно пресс-релизу NASA и JPL, наибольшая "темная" (в радарном изображении) деталь обладает площадью, по крайней мере, 100 тысяч квадратных километров. Между тем самое большое из Великих озер — Верхнее; — имеет площадь 82,4 тысячи квадратных километров.
Напомним предысторию: в 2005-м на спутнике Сатурна нашли реки и, возможно, озера, позже открыли явное первое озеро, хотя в тот момент ученые не были уверены — есть ли там жидкость в данный момент, или это высохшее ложе. Через год была открыта уже целая группа озер, поперечник некоторых достигал 110 километров, часть этих озер оказалась соединена каналами.
В начале же года нынешнего исследователи нашли еще большую озерную систему — 75 "водоемов", размером от 3 до 70 километров, с комплексом каналов, речек и ручьев. Более того — на примере этой группы ученые выявили массу любопытных особенностей рельефа Титана. Теперь вот исследователи оранжевой луны говорят о море. Причем — с обоснованием.
Ученые объявили новый объект именно морем, поскольку вновь открытый “водоем" покрывает 0,12 % площади Титана, а, к примеру, наибольшее внутреннее море Земли (Черное) только 0,085 % земной поверхности.
Изрезанные береговые линии вновь открытых объектов говорят; об эрозии и изменениях в уровне “воды".
Биологи впервые построили архитектурный 3D-план клетки
Полная электронная томограмма дрожжевой клетки раскрывает клеточную архитектуру. Показаны плазменная мембрана, микротрубочки и светлые вакуоли (зеленый цвет), ядро, темные вакуоли и темные везикулы (золотой), митохондрия и крупные темные везикулы (голубой), а также светлые везикулы (розовый)
Группа ученых под руководством Клола Антони (Claude Antony) из Европейской лаборатории молекулярной биологии (European Molecular Biology Laboratory — EMBL) совместно с Ричардом Макинтошем (Richard McIntosh) из университета Колорадо (University of Colorado) впервые построили полное 3D-изображение эукариотической клетки дрожжей (одноклеточных микроорганизмов).
В каждой клетки нашего тела, как и у тела в целом, есть скелет, который позволяет телу держать форму, обеспечивает его жесткость и предохраняет внутренние органы от повреждений. Клеточный скелет состоит из длинных протеиновых волокон, которые сплетаются в сети, все мелкие детали, архитектуру и взаимодействие которых с другими частями клетки до последнего времени можно было рассмотреть только с помощью микроскопии высокого разрешения.
Основная составляющая клеточного скелета — длинное трубчатое волокно, называемое микротрубочками. Эта динамичная структура построена из постоянно растягивающихся и сжимающихся рядов элементарных протеинов, называемых тубулинами. Дабы увеличить собственную жесткость, микротрубочки срастаются в связки и, взаимодействуя со стабилизирующими протеинами, образуют сложные сети. Эти сети играют важную роль во многих внутриклеточных процессах, например, таких, как полюсный рост клетки.
Для получения общего изображения клетки со всеми структурными деталями Джоанна Хег (Johanna Нeg), аспирантка из группы Антони, использовала принцип электронной томографии. С помощью электронного микроскопа она сделала серию последовательных фотографий различных частей клетки дрожжей под разными углами, а затем реконструировала 3D-изображение на компьютере (по такому же принципу строится томография мозга человека). Помог ей в этом Ричард Макинтош, являющийся экспертом по электронной микроскопии. Полученные изображения помогли ученым определить структуру сетей из микротрубочек в момент деления дрожжевой клетки. Кроме того, было выявлено, что клеточный скелет определяет правильное положение митохондрий (органелл, поставляющих клетке энергию).
"Наше трехмерное изображение делящейся клетки дрожжей может послужить картой для всех биологов, интересующихся строением клетки, — рассказывает Джоанна Хег, — Вы можете получать информацию обо всех структурах и процессах, происходящих в клетке, или помещать свои данные в клеточное пространство".
* * *
ВНИМАНИЕ! ПОБЕДИТЕЛИ АКЦИИ
Обладателями подписки па 2008 год стали:
Степанов Т.Л. г. Донецк
Капитоненко Е.А. г. Дружковка, Донецкой обл.
Кузьмин А.И. г. Кривой Рог
Крюков Ю.Б. г. Харьков
Ганин М.М. г. Мариуполь, Донецкая обл.
Човган Н.В. г. Кривой Рог
Ложечник А.И. г. Червонозаводское, Полтав. обл.
Мещеряков Е.Г. г. Днепропетровск
Дука О.О. г. Волочиськ, Хмельницкая обл.
Решетник Г.А. г. Запорожье
Обладателями подписки на II полугодие 2007 года стали:
Скоблин А.А. г. Чертков, Тёрнопольская обл.
Шеляг А.Н. с. Головеньки, Черниговская обл.
Лапин А.В. г. Харьков.
Лешак Ю.В. г. Киев.
Воеводин В.А. г. Запорожье
Загребин Г.В. г. Кривой Рог
Брижатая О.И. г. Каховка, Херсонская обл
Славин И.Л. г. Днепропетровск
Скочко Б.Л. с. Уiздцi, Piвненской обл.
Андрющенко Ю.В. г. Ладожин, Винницкая обл.
Обладателями подписки на III квартал 2007 года стали:
Степанова Е.Н. г. Днепропетровск
Михайленко М.Т. г. Кривой Рог
Раткевич О.О. м. Яворiв, Львiвська обл.
Ветрова Л. г. Кременчуг
Самчишин М. г. Кременчуг,
Шевчук М.Ю. г. Одесса
Коваль М. с. Маркошль, Льшвська обл.
Дорогие друзья!
Большое спасибо вам за то, что выбрали наш журнал и поддерживаете его теплыми словами. Журнал будет развиваться и мы постараемся не обмануть ваши ожидания.
Присылайте отзывы и критические замечания, в которых мы очень нуждаемся. Мы в начале трудного, но интересного пути, и с вашей помощью его обязательно пройдем.
Ваш “НиТ”
* * *
Ожидайте в следующих номерах журнала:
• Такое трудное 5-е поколение
• Телохранитель для… танка
• История мер времени на Ближнем Востоке
• Византийская империя
• История Хин-Хона
• А также наши постоянные рубрики «Морской каталог» и «Авиационный каталог».
* * *
На 1-й странице обложки: Фотография сенсационного “лица” на поверхности Марса.
На 2-й странице обложки: Автомобиль УАЗ 3163 “Патриот”
На 3-й странице обложки: Тяжелые бомбардировщики ВВС РККА 30-х годов. Художник Чечин А.А.
На 4-й странице обложки: Тяжелый бомбардировщик К-7. Художник Игнатий А.Ф.
Цветная вставка № 1: Испанский галеон «Nuestra Senora de Atocha». Художник Поляков А.В.
Цветная вставка № 2.1 стр. Ручные и основные пулеметы периода Второй мировой войны.
Цветная вставка № 2. 2 стр.: Современные самоходные артиллерийские установки… Художник Поляков. А.В.
* * *
Журнал «Наука и техника» зарегистрирован Министерством Юстиции Украины (Св-во КВ № 12091-962ПP от 13.12.2006)
УЧРЕДИТЕЛЬ и ИЗДАТЕЛЬ — Поляков А.В.
ГЛАВНЫЙ РЕДАКТОР — Павленко С.Б.
Заместитель главного редактора — Барчук С.В.
Редакционная коллегия: Павленко С,Б., Поляков А.В., Кладов И.И., Мороз С.Г., Игнатьев И.И.
Мнение редакции может не совпадать с мнением автора.
В журнале могут быть использованы материалы из сети Интернет.
Приглашаем к сотрудничеству авторов статей, распространителей, рекламодателей.
Редакция приносит извинения за возможные опечатки и ошибки в тексте или в верстке журнала
Подписка на журнал принимается всеми отделениями “Укрпочты” до 20-го числа каждого месяца. Подписной индекс 95083.
Журнал можно приобрести или оформить редакционную подписку, обратившись в редакцию.
Адрес редакции; г. Харьков, ул. Плехановская. 1 К, оф. 502. тел. (057)7177-540, 7177-542 Адрес электронной почты: samson@kharkov.ua. Адрес для писем: 61140, г. Харьков, а/я 206.
Адрес в сети Интернет: www.nauka-tehnika.com.ua
Формат 60x90-1/8. Бумага офсетная. Печать офсетная. Уcл. печ. лист 9. Зак. № 98 Тир. 5200.
Типография ООО «Беркут+». г. Харьков, ул. Плехановская, 18, оф. 501, т. (057)7-543-577, 7-177-541 «Наука и техника», 2007, № 4 с. 1–74