V. НАЧАЛЬНЫЕ ЭТАПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

ВВЕДЕНИЕ

Генезис новой отрасли механики — динамики — не только совпал по времени с возникновением классической науки в целом, но и был одним из основных условий такого возникновения. Став учением о движении, механика могла претендовать на гегемонию, она начала объяснять всю совокупность явлений природы, логически развивая свои исходные принципы. Впоследствии такое сведение законов мироздания к механическим законам оказалось недостаточным, наука столкнулась с несводимостью более сложных форм движения к механическому перемещению. Но картина мира, нарисованная наукой в XVII в., уже не могла быть отброшена. Ее можно было конкретизировать, дополнять, изменять, но все эти модификации давали сходящийся ряд. Главным направлением науки стало подтверждение и уточнение старых знаний, и старые теории в пределах своей применимости приобрели историческую инвариантность: время могло их изменить, но уже не могло отбросить. Научный прогресс приобрел необратимый характер.

Такая достоверность научных представлений в рамках механической картины мира тесно связана с новым стилем научного исследования. Статика не могла слиться с экспериментальным исследованием. Динамика могла это сделать. Эксперимент исходит из начального состояния системы, подтверждает логический или математический вывод, сделанный на основе представления о механизме изменения, механизме перехода от начального состояния к последующему. Динамика говорит о том, что будет с телом при определенных начальных условиях и при определенных воздействиях. Именно в этом состоит схема эксперимента. Поэтому развитие динамики было условием развития экспериментального исследования. Последнее и придало механическому естествознанию ту необратимость развития и ту достоверность, которые отличают науку XVII в. от научных представлений предыдущего периода.

Основная серия открытий, создавших динамику, охватывает весь XVII в. В первые десятилетия этого столетия в трудах Галилея был сформулирован закон падения тел; Галилей же исследовал законы движения падающих тел и законы качания маятника. В 80-е годы того же столетия появились «Математические начала натуральной философии» Ньютона, в которых проблемы динамики уже получили разностороннюю и глубокую математическую (правда, не аналитическую) разработку. Труд Ньютона был началом нового развития механики на подлинно математической основе, ее совершенствования средствами нового математического аппарата. Основными вехами этого нового периода явились труды Эйлера, прежде всего его двухтомная «Механика» (1736), и «Аналитическая механика» Лагранжа (1788).

Проблема подлинной математизации понятий движения и силы впервые во всей своей широте возникла в XVII в. Правильнее будет сказать, что движение стало в центре внимания не только механиков, но и математиков. «Поворотным пунктом в математике была декартова переменная величина. Благодаря этому в математику вошли движение и диалектика, и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено Ньютоном и Лейбницем»{84}.

В своих «Началах» Ньютон несколько раз настойчиво заявлял, что он рассуждает как математик. Это заявление справедливо в особенности применительно к книге I, где Ньютон пытался формулировать проблемы с наибольшей общностью, лишь намечая те возможные конкретные истолкования, которые они получили в двух последующих книгах «Начал». Однако было бы совершенно неверно всецело доверяться в этом отношении внешней структуре «Начал». Если присмотреться к хронологической последовательности открытий Ньютона, нетрудно убедиться, что наблюдение, эксперимент, обобщенный теоретический вывод находились в сложном непрерывном взаимодействии. За абстрактными определениями, законами и теоремами «Начал» стоят собственно физические концепции, связанные с экспериментальными данными. Они в свою очередь обнаруживают зависимость от механико-математических обобщений. Эта сложная, нелинейная зависимость отнюдь не сводится, как можно было бы думать при чтении «Начал», к простой экспериментальной проверке теоретически выведенных положений, к простой сверке теоретических выводов с данными наблюдений.

Сказанное приложимо ко всей исторической обстановке XVII в. в целом. И здесь налицо сложнейшее взаимодействие между работой теоретической мысли, прогрессом экспериментальной техники, новыми наблюдениями, которые подчас неожиданно врывались в мир ученой мысли, вынуждали менять традиционные представления. В этой связи можно было бы напомнить о том, как первый повод к пересмотру старых представлений о боязни пустоты дало Галилею сообщение флорентийских мастеров о предельной высоте подъема воды при выкачивании ее насосами и как позднее, к 40-м годам XVII в., анализ тех же вопросов был поставлен Торричелли на почву строго продуманного эксперимента.

Для XVII в. характерно последовательное нарастание роли и значения эмпирических истоков механики. Столь же характерно, как и нарастание мощи логического и математического исследования. История начальных этапов классической механики показывает всю условность противопоставления рационалистического и эмпирического постижения истины. Эмпирическое исследование в XVII в. стало экспериментом в более точном смысле, чем раньше: речь шла об освобождении явлений от случайных осложняющих воздействий, о выявлении их механизма, причем механизма в буквальном смысле. С другой стороны, рационалистическое постижение мира оперировало понятиями, допускавшими измерение, наблюдения, количественный эксперимент.

В конечном счете это было связано с характером производства в XVII в. В это время горное дело включало гораздо более разнообразные, чем раньше, конструкции для откачки воды из шахт и подъема руды, в металлургических районах появились большие предприятия с механическими двигателями воздуходувок, с двигателями для дробления руды и обработки металла. Условия установки водяных колес стали настолько разнообразными, что ремесленная эмпирическая традиция стала недостаточной и понадобились теоретические соображения об их оптимальной конструкции. Баллистика и мореплавание также расширяли эмпирическую базу динамики.

В работах Галилея часто появляются прямые и явные ссылки на эмпирические корни динамики. Его «Беседы и математические доказательства» начинаются описанием венецианского арсенала. У Декарта таких картин меньше, но это не означает уменьшения роли эмпирических наблюдений. Декарт всю жизнь интересовался техническими проблемами, развитием мануфактур, разрабатывая планы специальных школ для ремесленников. В «Рассуждении о методе» Декарт писал, что физические идеи «позволяют достичь знаний, очень полезных в жизни, и вместо умозрительной философии, преподаваемой в школах, можно создать практическую, при помощи которой, зная силу и действие огня, воды, воздуха, звезд, небес и всех прочих окружающих нас тел, так же отчетливо, как мы знаем различные ремесла наших мастеров, мы могли бы наравне с последними использовать и эти силы во всех свойственных им применениях и стать, таким образом, как бы господами и владетелями природы»{85}.

Декарт требует от истинной науки отчетливости, которая уже достигнута в производственной технике. Но она была достигнута именно там, где речь шла о динамических задачах ремесла и мануфактуры.

В течение XVII в. эти задачи становились все ближе к другим, навеянным морской торговлей, мореплаванием и астрономическими наблюдениями. Здесь речь шла о теории движения небесных тел. Мысль, которая владела и Галилеем, и Декартом, и всеми основателями динамики, состояла в сближении земной, прикладной динамики с ее явными производственно-техническими истоками с небесной механикой. В конце концов это было достигнуто.

При этом необходима была количественная теория, поэтому в науке стали играть особенно важную роль уже применявшиеся в мореплавании методы точного измерения времени. Можно напомнить об открытии отставания маятниковых часов при изменении географической широты, которое впервые заметил Ж. Рише во время астрономической экспедиции в Кайенну, — неожиданном наблюдении, приведшем впоследствии к уточнению формы Земли, к новым соображениям о соотношении массы и веса, и т. д. С другой стороны, для иллюстрации встречи число теоретических построений и конкретных технических проблем показательно признание Христиана Гюйгенса, который отмечал, что циклоида исследовалась первоначально им, как и многими другими математиками, чисто абстрактно и лишь затем нашла свое применение при построении циклоидального маятника.

Нужно ли говорить, что успешная разработка динамики в XVII в., в частности в трудах Ньютона, была бы невозможна без астрономических наблюдений, сыгравших в становлении новой механики не меньшую (если не большую) роль, чем «земные» эксперименты, зачастую неточные из-за отсутствия хорошей экспериментальной базы и точных приборов. Наблюдения Тихо Браге послужили отправной точкой для Кеплера при открытии законов движения планет, носящих его имя, а эти последние не только получили свое объяснение в трудах Ньютона, но и явились одним из важных эмпирических подтверждений правильности теоретических выводов великого английского ученого. В дальнейшем мы несколько подробнее коснемся того, как, наоборот, неточные эмпирические данные затормозили на время ход теоретической мысли Ньютона, которая получила новый стимул лишь после точных градусных измерений Пикара.

Интересно проследить древние атомистические истоки классической механики.

Известно, что механика Галилея — Ньютона во многом примкнула к физике Демокрита — Эпикура. В основе ньютонова понятия массы лежит атомистическое представление о материи. Атомисты рассматривали тела как совокупность элементарных, однородных и неизменяемых частиц материи. Атомы неуничтожимы и несоздаваемы, они лишены всяких внутренних состояний и обладают единственным свойством — подвижностью. В этом учении уже содержалось по существу классическое представление о массе, которое нашло выражение у Ньютона (масса как мера количества материи определяется через плотность распределения частиц материи, заполняющих данный объем) и в несколько иной формулировке у Герца (масса определяется как относительное число атомов, содержащихся в данном объеме в данный момент времени).

Атомистический взгляд на строение материи Ньютон выразил следующим образом: «Бог вначале дал материи форму твердых, массивных, непроницаемых, подвижных частиц таких размеров и фигур и с такими свойствами и пропорциями в отношении к пространству, которые более всего подходили бы к той цели, для которой он создал их… Природа их должна быть постоянной, изменения телесных вещей должны проявляться только в различных разделениях и новых сочетаниях и движениях таких постоянных частиц».

Постоянство массы вытекает из постоянства атомов: так как атомы однородны и тождественны, то их массы пропорциональны объему. Удельные же веса, или плотности, сложных тел, представляющих собой комплексы одинаковых атомов, могут различаться, так как не все объемы заполнены атомами равномерно. Поэтому Ньютон и определяет массу сложных тел как меру количества материи, устанавливаемую пропорционально плотности ее и объему. Это определение массы, данное Ньютоном в его «Началах», представлялось многим критикам бессодержательным, ибо, по их мнению, само понятие плотности должно определяться через готовое понятие массы. Однако критика эта теряет основание, если согласиться, что в соответствии с атомистической концепцией Ньютон в приведенном выше определении имеет в виду не плотность массы, а плотность распределения атомов. Именно такое понимание массы, принятое Ньютоном, выражено точным образом в определении Герца.

К учению атомистов примыкают в значительной мере также классические представления времени, пространства и движения. Понятия пространства и времени атомисты совершенно отделяли от понятия материи: время и пространство существуют сами по себе, к материальным процессам, протекающим в них, они имеют чисто внешнее отношение. Эту концепцию целиком разделял Ньютон, выразивший ее следующим образом:

«Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью…

Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным…

Место есть часть пространства, занимаемая телом…

Абсолютное движение есть перемещение тела из одного его места в другое…

Как неизменен порядок частей времени, так неизменен и порядок частей пространства. Если бы они переместились из мест своих, то они продвинулись бы (так сказать) в самих себя, ибо время и пространство составляют как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения»{86}.

Нельзя, впрочем, забывать, что конкретно-исторический генезис идей Ньютона был значительно сложнее и наряду с отражением идей древних атомистов в ньютоновом учении об абсолютном пространстве можно найти отголоски позднеантичных концепций, которые дошли до Ньютона через кембриджских платоников.

Однако не только античная атомистика и позднеантичные концепции пространства воздействовали на развитие механики XVII в. Здесь особенно важно было древне-греческое представление о непрерывном движении. У Галилея эта концепция была тесно связана с воззрениями Архимеда. Дискретная часть вещества — античный атом — движется в непрерывном пространстве, и каждый отрезок его пути может быть разделен на сколь угодно большое число сколь угодно малых отрезков. Эта навеянная механикой Архимеда концепция Галилея открывает дорогу идее непрерывного ускорения и другим фундаментальным идеям классической механики.

В конце жизни Галилей писал о сложении криволинейного и прямолинейного движений у Архимеда как о непосредственном истоке своей теории движения.

«Я не предполагаю ничего иного, кроме определения движения, я хочу трактовать и рассматривать это явление в подражание Архимеду в его «Спиральных линиях», где, заявив, что под движением по спирали он понимает движение, слагающееся из двух равномерных, одного — прямолинейного, а другого — кругового, он непосредственно переходит к демонстрации выводов. Я заявляю о намерении исследовать признаки, присущие движению тела, начинающемуся с состояния покоя и продолжающемуся с равномерно возрастающей скоростью, а именно так, что приращения этой скорости возрастают не скачками, а плавно, пропорционально времени».{87}

Идея непрерывного приращения скорости — это не только исходная идея динамики Галилея, но и исходная идея всей динамики XVII в., «Математических начал» Ньютона и динамики следующего столетия. Более того, это центральная идея классической науки в целом. В механике Аристотеля рассматривалась лишь интегральная схема «естественных мест» и «естественных» движений и «насильственных» движений. Но при этом движение не рассматривали от точки к точке и от мгновения к мгновению. Теперь дело изменилось. В науке появилось дифференциальное представление о движении, об изменении скорости в данной точке, об ускорении. Отсюда изучение проблем динамики с помощью анализа бесконечно малых.

Как уже говорилось, для динамики XVII в. характерно сочетание логико-математического выведения одного понятия из другого и эмпирического изучения мира. Последнее приобретает характер эксперимента, в котором исследуется, проверяется, устанавливается рационально постижимый механизм процесса. В свою очередь логико-математический путь проходит через экспериментально постигаемые понятия.

Такое сочетание выражается в появлении аксиом, которые говорят не о геометрических понятиях, образах и объектах, а о поведении движущихся тел. Это аксиомы механики. К ним ведет долгий путь от интуитивного не-аксиоматизированного положения, молчаливо полагаемого в основу тех или иных выводов, до четко формулированной, логически осознанной аксиомы.

В этом отношении наиболее интересен, пожалуй, принцип сохранения, к которому в разной форме на разных этапах подходили ученые XVII в., принцип инерции как принцип сохранения «состояния», принцип сохранения количества движения, живых сил и т. д.


ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ

Современный историк механики не случайно начинает свою общую характеристику развития механики в XVII в. со следующего положения: «От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через законы падения и движения брошенных тел в пустоте, законы удара, теорию колебаний маятника, гидростатику и тяжесть воздуха, сопротивление жидкостей и движение в сопротивляющейся среде — таков путь, пройденный механикой XVII века»{88}.

При доказательстве теоремы о равновесии на наклонной плоскости Стевин исходит из верного интуитивного принципа — невозможности вечного движения, возникновения движения из ничего. Мах называл этот еще неаксиоматизированный опыт инстинктивным познанием — определение вряд ли удачно, поскольку здесь налицо некое первичное обобщение повседневного практического опыта, презумпция здравого смысла, лежащая в основе деятельности каждого ремесленника. В этом отношении весьма показательны более ранние высказывания Леонардо да Винчи, проникнутые презрением к искателям вечного движения, а также взгляд Кардано, согласно которому для того, чтобы имело место вечное движение, нужно, чтобы передвигающиеся тяжелые тела, достигнув конца своего пути, могли вернуться в свое начальное положение, а это невозможно без наличия перевеса, как невозможно, чтобы в часах опустившаяся гиря поднималась сама.

ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ (1608-1647)

Итальянский физик и математик, ученик Галилея. Известен открытием давления воздуха и возможности существования вакуума (торричеллиева пустота). Он открыл также закон истечения жидкости из сосуда первый научно обоснованный закон гидродинамики

Как нечто само собой разумеющееся (хотя и не возведенное еще в ранг аксиомы) фигурирует тот же принцип у Галилея, ссылающегося на него мимоходом, в ходе аргументации. В его фундаментальном труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки», сказано: «Если невозможно, чтобы тяжелое тело или соединение таковых поднялось само по себе вверх, удаляясь от общего центра, к которому стремятся все тяжелые тела, то одинаково невозможно, чтобы оно само по себе стало двигаться, если его собственный центр тяжести не приближается при этом к общему центру».

В 1644 г. ученик Галилея Торричелли (1608—1647) опубликовал труд «О движении естественно падающих и брошенных тел», в котором исходил из следующего принципа, игравшего у него роль аксиомы: «Два груза, соединенные вместе, не могут двигаться сами без того, чтобы их общий центр тяжести не опускался. В самом деле, когда два груза связаны друг с другом так, что движение одного влечет за собой движение другого, — безразлично, получается ли такая связь посредством весов, блока или другого механизма, — оба будут вести себя словно один груз, состоящий из двух частей; но такой груз никогда не придет в движение без того, чтобы его центр тяжести не опускался. Стало быть, если груз расположен так, что его центр тяжести никак не может опускаться, он наверняка пребудет в покое в том положении, которое он занимает».

Из этой аксиомы Торричелли выводит закон равновесия на наклонной плоскости: «Если два груза расположены на двух плоскостях разного наклона, но одинаковой высоты, и если веса этих грузов стоят друг к другу в том же отношении, что и длины этих плоскостей, момент обоих грузов будет одинаковый». «В самом деле, мы покажем, — продолжает Торричелли, — что их общий центр не может опускаться, ибо, какое бы движение ни было придано обоим грузам, этот центр всегда находится на той же горизонтальной линии… Таким образом, два груза, связанные вместе, двигались бы, а их общий центр тяжести не опускался бы. Это было бы противно закону равновесия, выдвинутому нами в качестве принципа».

В несколько иной формулировке Торричелли дал тот же закон равновесия в другом своем сочинении «Об изменении параболы». Он исходил здесь из следующего предположения, служившего одновременно определением понятия центра тяжести. Природа центра тяжести, говорит Торричелли, такова, что «тело, свободно подвешенное в одной из своих точек, не сможет пребывать в покое, если центр тяжести не находится в самой низкой точке сферы, по которой оно движется». Отсюда Торричелли выводит, что в момент равновесия центр тяжести находится на вертикали точки подвеса и ниже этой точки{89}.

Гюйгенс (1629—1695) обобщил аксиому Торричелли на случай движения. В сочинении «Маятниковые часы» (1673) он выдвинул в качестве своего исходного предположения тезис, согласно которому при движении некоторого числа тяжелых тел под действием тяжести общий центр тяжести этих тел не может подняться выше, чем он был в начале движения. Эта гипотеза, по словам Гюйгенса, не означает ничего другого, чем то, что никем не оспаривалось, а именно, что весомые тела не движутся наверх. В отношении одного тяжелого тела нет никакого сомнения, что оно не может двигаться наверх, т. е. центр его тяжести не перемещается кверху. «Однако то же самое должно произойти, если мы будем иметь произвольное число весомых тел, соединенных негнущимися связями, так как ничто не мешает рассматривать их как одно тело. Следовательно, не будет подыматься и их общий центр тяжести». «Если теперь представить себе произвольное число тяжелых тел, не связанных между собой, то мы знаем, что и они имеют общий центр тяжести… Точно так же, как весомые тела, находящиеся в одной горизонтальной плоскости, не могут под влиянием тяжести все подняться выше этой плоскости, так же мало возможно, чтобы центр тяжести каких-либо тел, как бы они ни были расположены, поднялся до большей высоты, чем та, на которой он сейчас находится»{90}.

Свою гипотезу Гюйгенс считал возможным применить к жидкостям и вывести из нее теоремы Архимеда о плавании тел и многие другие теоремы механики. Гипотеза исключает идею вечного двигателя.

Исходя из принципа невозможности вечного двигателя, Стевин в «Прибавлении» к той же «Статике» формулировал применительно к равновесию системы блоков следующее положение: «Путь, проходимый грузом, относится к пути, проходимому грузом, испытывающим воздействие так, как сила этого последнего относится к силе первого».

«Золотое правило» механики было известно древним. У них оно формулировалось применительно к времени или скоростям движения, например у Герона: каково отношение одной силы к другой, таково обратное отношение одного времени к другому. Этот принцип был сформулирован им в отношении колес, блоков и рычага.

Применительно к явлениям равновесия, т. е. в области статики, этот принцип соответствовал, следовательно до некоторой степени позднейшему принципу виртуальных (или возможных) скоростей.

Известно, что в средневековых трактатах по механике выделяются два направления: одни авторы шли по направлению, намеченному в «Механических проблемах» псевдо-Аристотеля, и сравнивали «виртуальные скорости» (например, перемещения обоих концов рычага); другие рассматривали «виртуальные перемещения», т. е. вертикальные линии подъема и опускания.

По первому пути пошел позднее Галилей, сформулировав принцип статики в прямом соответствии с принципом «Механических проблем».

Принцип сохранения работы Декарт (1596—1650) формулировал в небольшом трактате о простых машинах, приложенном к письму К. Гюйгенсу (отцу Христиана) от 5 октября 1637 г., а в следующем году изложил его почти в тех же словах в письме Мерсенну от 13 июля:

«Изобретение всех простых машин основано на одном-единственном принципе, который гласит: та же сила, которая способна поднять груз, скажем, в 100 фунтов на высоту 2 футов, способна также поднять 200 фунтов на высоту 1 фута, или 400 фунтов на высоту 1/2 фута и т. д., если она будет приложена к этому грузу».

Мерсенну он писал о том же в следующих словах, называя этот принцип «основой всей статики»: «Не требуется ни больше, ни меньше силы для того, чтобы поднять тяжелое тело на определенную высоту, и для того, чтобы поднять другое, менее тяжелое, тело на высоту, тем большую, чем менее оно тяжело, или для того, чтобы поднять более тяжелое на высоту, во столько же раз меньшую. Так, например, если сила способна поднять груз в 100 фунтов на высоту 2 фута, она способна также поднять груз в 200 фунтов на высоту 1 фут, или 50 фунтов на высоту 4 фута и т. д., если она будет приложена к этому грузу»{91}.

В обоих случаях (в трактате и в письме, к Мерсенну) Декарт связывал этот принцип с положением, что всякий результат, или эффект, должен всегда быть равен действию, которое его производит.

Самый принцип Декарт считал аксиоматическим: «Он настолько ясен сам по себе, что не нуждается ни в каком доказательстве». Почему же он все-таки способен породить возражения и недоумения? Во-первых, полагал Декарт, люди стали «слишком ученые в механике» и развил в себе придирчивость к принципам, высказываемым другими; впрочем, эти принципы, надо признаться, действительно зачастую оказываются неверными. Во-вторых, полагают возможным доказывать без этого принципа вещи, которые Декарт доказывает при его помощи, например принцип блока. Могло, наконец, ввести в заблуждение и то, что Декарт привел ряд примеров — иллюстраций, способных создать ложное впечатление, будто он стремился доказать свой принцип. Следует добавить: одним из источников споров и недоразумений могло явиться то, что Декарт воспользовался таким неопределенным понятием, как сила, употребив его в новом смысле, расходившемся с повседневным и традиционным. Не мудрено, что ему пришлось объяснить это Мерсенну.

Термин «сила» означает у Декарта не способность производить те или иные действия (в смысле потенции), а действительно реализуемую энергию, или работу.

Работа, которую Декарт называет силой, зависит от двух переменных: от того, что мы теперь называем силой, и от проекции пройденного пути на направление силы. Эти переменные можно рассматривать как прямолинейные координаты, и тогда работа, производимая постоянной силой, будет изображаться посредством прямоугольника. Сам Декарт в письме к Мерсенну воспользовался подобной графической схемой. В этом смысле Декарт говорил, что сила, служащая для подъема груза на какую-либо высоту, имеет всегда два измерения, тогда как сила, служащая для поддержания груза, имеет всего лишь одно измерение, и, таким образом, «обе эти силы отличаются друг от друга настолько же, насколько поверхность отличается от линии».

По примеру Декарта Паскаль (1623—1662) исходит не из принципа возможных скоростей, а из принципа возможных перемещений. Во всех простых машинах — рычаге, блоке, бесконечном винте — «путь увеличивается в той же пропорции, как и сила». В гидростатике же «совершенно безразлично, заставить ли 100 фунтов воды пройти путь в один дюйм или один фунт воды — путь в 100 дюймов»{92}.

В те же годы тем же принципом пользовался Роберваль (1602—1675) в своем трактате по механике.

БЛЕЗ ПАСКАЛЬ (1623-1662)

Французский математик, физик и философ. Изобрел суммирующую машину. Открыл один из основных гидростатических законов, носящий его имя. На законе Паскаля основан гидравлический пресс и другие гидростатические машины

Прошло, однако, более сорока лет, прежде чем Иоганн Бернулли (1667—1748) сформулировал принципы возможных перемещений в общей форме. Это было сделано им в письме к Вариньону из Базеля, датированном 26 января 1717 г. Вариньон включил его в свою книгу «Новая механика». Заметим, что Бернулли называл возможным перемещения возможными (или виртуальными) скоростями; из текста письма с полной очевидностью явствует, что, говоря «скорость», он подразумевал соответствующий отрезок пути.

Если рассматривать механику XVII в. со стороны ее воздействия на науку в целом, то особенно большое значение приобретает развитие идеи сохранения энергии. Действительно, понятие энергии позволило перенести то, что было создано в механике, в более общую область. При этом принципы механики и расширили и сузили область своего применения. Оказалось (значительно позже рассматриваемого периода), что эти принципы не могут быть применены в физике без существенной модификации, что физика не сводима к механике. Но в модифицированной форме принципы механики оказались чрезвычайно важными для физики. Понятие энергии выросло в механике, но стало оно фундаментальным понятием физики. Наряду с картезианской мерой движения в XVII в. появилась мера движения, которую Лейбниц назвал живой силой. Мы вернемся к этим вопросам ниже, здесь лишь отметим, что наряду с термином «живая сила» в XVII в. уже говорили и об энергии — это слово встречалось у Аристотеля. О сохранении живых сил говорил и Иоганн Бернулли. Он считал такое сохранение самым универсальным законом механики. Его также рассматривал Л. Эйлер, который связал живую силу с работой, измеряя приращение живой силы произведением силы на пройденный путь. Сам термин «работа» в этом смысле стал употребляться только в XIX в. Тогда же (в начале XIX в.) Т. Юнг (1773—1829) начал называть лейбницеву меру движения энергией движущегося тела. В дискуссиях о мерах движения участвовал и Даламбер, который высказал новые для того времени идеи о различной природе двух мер движения и об их применении в различных случаях.


ОСНОВНЫЕ ИДЕИ МЕХАНИКИ ДЕКАРТА

Мы видели, что принцип сохранения работы имел для Декарта характер аксиомы. Такой же характер имел для него принцип постоянства количества движения. В своих «Началах философии» Декарт в сущности не обосновывал его ничем, кроме ссылки на неизменность божественной воли.

Немного подробнее Декарт говорил о принципе сохранения количества движения за несколько лет до издания «Начал философии» в письме к де Бону от 30 апреля 1639 г. Он писал здесь так:

«Я утверждаю, что существует известное количество движения во всей сотворенной материи, которое никогда не возрастает и не убывает. Таким образом, когда одно тело приводит в движение другое, оно столько же теряет в своем движении, сколько отдает. Например, если камень падает с высокого места на Землю, я мыслю, что такая потеря происходит от того, что камень приводит в сотрясение Землю и передает ей тем самым свое движение; но если приводимая в движение Земля содержит в 1000 раз больше материи, чем камень, последний, передавая ей свое движение, сообщает ей лишь 1/1000 своей скорости».

Декарт продолжает: «И поскольку, когда два неравных тела получают одинаковое количество движения, это последнее не сообщает столько же скорости большому, сколько малому, можно в этом смысле сказать, что чем больше тело содержит вещества, тем больше оно имеет природной инертности. К этому можно добавить, что большое тело может лучше передавать свое движение другим телам, нежели малое, и что оно в меньшей мере может быть движимо последними. Таким образом, существует один вид инертности, зависящий от количества вещества, и другой, зависящий от протяжения его поверхности»{93}.

Здесь остается много неясностей, и, чтобы устранить их, нужно точнее раскрыть содержание самого понятия «количество движения».

Прежде всего следует заметить, что когда мы дальше обозначаем в соответствии с установившейся традицией количество движения у Декарта через mv, то обозначение m не должно ассоциироваться с позднейшим ньютоновским понятием массы[22]. Точно так же и обозначение v, как мы увидим, имеет у Декарта своеобразное значение. Итак, рассмотрим подробнее компоненты понятия количества движения у Декарта.

Для Декарта сущность материи заключается в протяженности; поэтому все физические различия и процессы в конечном итоге сводятся к форме pi величине тел и их движению. Природа тел, по Декарту, заключается «не в твердости, какую мы иногда при этом ощущаем, или в весе, теплоте и прочих подобного рода качествах, ибо, рассматривая любое тело, мы вправе думать, что оно не обладает ни одним из этих качеств, но тем не менее постигаем ясно и отчетливо, что оно обладает всем, благодаря чему оно — тело, если только оно имеет протяженность в длину, ширину и глубину».

Декарт ставил себе в заслугу то, что он без предположения, будто «бог вложил тяготение в вещество, составляющее Землю», показал, каким образом все ее частицы тем не менее должны стремиться к центру.

На ранних стадиях развития механики тяжесть рассматривалась по большей части как некое свойство самого тяжелого тела, а не как результат воздействия чего-то внешнего (например, притяжения другим телом). Действие тяжести могло изменяться от взаимодействия с другими факторами; в этом смысле говорили о результирующей «акцидентальной тяжести», о тяжести «соответственно положению» и т. д.

Совершенно иной характер приобрело понятие тяжести в картезианской физике, где все физические различия и процессы, как уже сказано, в конечном итоге должны были быть сведены к форме и величине тел и их движению. В картезианской физике сила тяжести оказывается результатом воздействия окружающих тел, а именно результатом движения тончайшей небесной материи. Поэтому в принципе становятся возможными «невесомые» тела.

«Согласно моему мнению, — писал Декарт Мерсенну, — тяжесть заключается не в чем ином, как в том, что земные тела в действительности толкаются к центру Земли тонкой материей».

По Декарту, представления о том, что материи как таковой свойственна тяжесть, что всякой материи как таковой присуще сопротивление пространственному движению, основаны на предубеждении наших чувств. Он пишет: «…С самого нашего детства мы привыкли переворачивать лишь тела твердые и обладающие тяжестью и, всегда встречая в этом трудность, убедили себя в том, что трудность эта проистекает из самой материи, а следовательно, является общей всем телам; это нам было легче предположить, чем принять во внимание, что в подобных случаях лишь тяжесть тел, которые мы пытались переворачивать, мешала нам их поднимать, а твердость и неровность их частей мешала нам их волочить, откуда вовсе не следует, будто то же самое должно случаться с телами, лишенными и твердости и тяжести»{94}.

Тяжесть, по Декарту, есть результат вихревого движения частиц тонкой материи (первого элемента), своего рода эфира, вокруг центра Земли; благодаря этому движению более крупные и более грубые частицы того вещества, которое Декарт называл землистым, или третьим элементом, обладающие более медленным движением, вынуждаются (поскольку пустота невозможна) заполнять место удаляющихся к периферии частиц тонкой материи, и это создает впечатление, будто тело, состоящее из землистых частиц третьего элемента, стремится к центру Земли.

Гюйгенс, развивший после смерти Декарта подобную же кинетическую теорию, так сформулировал ее принцип: «Вот в чем, вероятно, заключается тяжесть тел, — можно сказать, что это есть усилие тонкой материи, обращающейся вокруг центра Земли по всем направлениям, удалиться от этого центра и толкать на свое место тела, не следующие за этим движением».

Для пояснения своей концепции Декарт придумал следующий опыт. Чтобы понять, писал он, каким образом тонкая материя, кружащаяся вокруг Земли, гонит тяжелые тела к ее центру, наполните какой-нибудь круглый сосуд маленькими кусочками свинца, смешав вместе со свинцом несколько кусков дерева или другого вещества, более легкого, чем свинец, и заставьте сосуд этот быстро вращаться около центра. Увидите, что кусочки свинца будут прогонять куски дерева или камня к центру сосуда, хотя бы они были гораздо объемистее, чем маленькие кусочки свинца, посредством которых я представляю себе тонкую материю.

В 1669 г. в Парижской академии наук Гюйгенс демонстрировал два опыта, аналогичных тому, о котором говорил Декарт.

Первый заключался в следующем. Вода в круглом неподвижном сосуде приводилась во вращательное движение. В воду бросали кусочки немного более тяжелого вещества. Сначала они оставались около поверхности и увлекались водой, находясь у краев сосуда. Затем они падали на дно, вращаясь медленнее, чем вода, и скапливались в центре под действием центробежной силы воды.

Второй опыт производился также с круглым сосудом, наполненным водой. Но на этот раз вода вращалась вместе с сосудом. Поперек сосуда были натянуты две параллельные нити, по которым, как по рельсам, могло перемещаться небольшое тело, погруженное в воду. В первый же момент тело под влиянием центробежной силы оказывалось на конце диаметра. Затем сосуд внезапно останавливали. Вода продолжала вращаться, но тело съезжало по нитям к центру. Все происходило так, как если бы более медленное тело, находясь в более! быстром вихре, притягивалось к центру.

Описания тех же самых опытов можно найти в более позднем сочинении Гюйгенса «Рассуждение о причине тяжести».

На вращающемся диске укреплен цилиндрический сосуд, ось которого совпадает с осью вращения диска. Сосуд наполнен водой и покрыт стеклянной пластинкой.

РЕНЕ ДЕКАРТ (1596-1650)

Французский философ, физик, математик и физиолог. Декарт защищал положения о материальности и бесконечности Вселенной, о неуничтожимости материи и движения. В математике им заложены основы аналитической геометрии, впервые широко использовано понятие о переменной величине, введены многие из применяемых ныне алгебраических обозначений

В воду погружены кусочки размельченного сургуча. Когда диск приводят в движение, эти кусочки устремляются к краю сосуда. Когда вода приобретает скорость вращения, равную скорости диска, последний останавливают: кусочки сургуча устремляются тогда к середине сосуда, так как движущаяся вода гонит их туда благодаря своей центробежной силе. Поскольку она до некоторой степени продолжает увлекать кусочки, они движутся к оси по спирали; если же устранить эти влияние посредством горизонтально натянутых проволок, кусочки направляются к оси радиально.

Декарт предвидел возражение против своей гипотезы: центробежная сила нормальна к оси вращения, следовательно, нормальна к ней и центростремительная сила.

Поэтому тяжесть должна была бы быть направлена не по радиусам к центру Земли, а по нормалям к земной оси так, что на экваторе она была бы максимальной, а на полюсе — бесконечно малой, будучи направлена по касательной к земному шару. Декарт пытался найти выход из затруднения, предположив, что частицы тонкой материи движутся по всем направлениям и в каждой точке сферы равнодействующая оказывается направленной по радиусу. Точно так же Гюйгенс заменил цилиндрический вихрь Декарта сферическим, предполагая, что частицы тонкой материи движутся по всем возможным направлениям вокруг Земли.

Исходя из своей теории и предположив, что тяжесть тела зависит лишь от той части небесной материи, которая занимает объем, равный объему тела, Декарт следующим образом пытался количественно уточнить понятие тяжести: «Замещая тело, когда последнее опускается, тяжесть любого землистого тела (состоящего из землистых частиц третьего элемента) производится собственно не всей небесной материей, его обтекающей, а лишь той ее частью, которая непосредственно поднимется на его место, когда это тело опускается, и которая потому в точности равна его объему». Но любое землистое тело (твердое тело), как и воздух, заполнено тонкой материей в промежутках между его землистыми (твердыми) частицами. В менее плотных телах такой тонкой материи больше, в более плотных — меньше.

В другом месте «Начал философии» Декарт приводил понятие количества материи в соответствие с плотностью. Это видно из того, что количество движения планет он ставил в зависимость от их плотности, характеризуемой отношением совокупного объема частиц третьего элемента к геометрическому объему планеты.

Отголоски этого картезианского понятия количества материи можно заметить позднее у Ньютона, который начинает свой классический труд со следующего определения: «Количество материи есть мера таковой, устанавливаемая пропорционально плотности и объему ее»{95}. Ньютона упрекали в логическом круге: количество материи определяется на основании плотности, тогда как плотность в свою очередь определяется на основании количества материи в данном объеме. Такого круга не будет, если принять во внимание, что за приведенной фразой «Начал» скрывается другое, неявно подразумеваемое определение количества материи как величины, пропорциональной количеству частиц в данном объеме.

Здесь мы сталкиваемся с характерной чертой творчества Ньютона: за аксиоматизированными определениями стоят собственно физические, часто гипотетические построения (в данном случае атомистические) и обобщенные результаты экспериментов. Корпускулярное определение количества материи неизбежно вело к представлению о постоянстве этого количества: совокупный объем частиц в данном геометрическом объеме не может возрасти или убавиться, новые частицы не могут возникнуть из ничего или обратиться в ничто, для них нет места в пространстве, сплошь заполненном прежними частицами и тонкой флюидной материей. Однако тяжесть, или вес, зависящая, но Декарту, от внешнего воздействия на тело, может измениться, например в том случае, если частицы изменят свою форму, т. е. увеличат или уменьшат величину своих поверхностей, испытывающих воздействие омывающей их флюидной материи.

Видимо, именно в этом смысле следует понимать приведенные выше слова Декарта: существует один вид инертности, зависящий от количества вещества, и другой, зависящий от протяжения его поверхностей. Итак, по Декарту, пропорциональность между количеством материи и тяжестью, или весом, не всегда соблюдается.

В исторической перспективе этой картезианской традиции следует рассматривать позднейшие суждения Ломоносова, который несколько раз весьма решительно заявлял о своем несогласии с ньютоновым принципом пропорциональности количества материи и веса.

Принцип сохранения количества движения был формулирован Декартом в «Началах философии» в теснейшей связи с тремя законами природы, которые он считал основными.

О третьем законе речь будет дальше. Первые два уточняют понятие инерции.

В первом законе в самой общей форме дан универсальный принцип сохранения: «…Всякая вещь продолжает по возможности пребывать в одном и том же состоянии и изменяет его не иначе, как от встречи с другими». Состояние — очень широкое понятие, охватывающее, например, такие отличительные особенности тела, как его форма, или фигура.

Декарт ссылается на пример квадратной частицы материи, которая пребывает квадратной, пока не явится извне нечто, изменяющее ее фигуру. Покой для Декарта есть такое же состояние материи, как и ее движение. Поэтому всякое изменение как покоя, так и движения немыслимо без разумного основания, или причины. Если та или иная часть материи покоится, она сама по себе не начнет двигаться. «Мы не имеем также основания полагать, чтобы, раз она стала двигаться, она когда-либо прекратила это движение или чтобы оно ослабело, пока не встретилось что-либо его прекращающее или ослабляющее». Это последнее утверждение Декарт считал нужным подкрепить ссылкой на то, что «покой противоположен движению, а ничто по влечению собственной природы не может стремиться к своей противоположности, т. е. к разрушению самого себя».

Второй закон уточняет первый и гласит: «Каждая частица материи в отдельности стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой, хотя некоторые из этих частиц часто бывают вынуждены от нее отклоняться…» Здесь Декарт ссылается на неизменность бога, который сохраняет движение «точно таким, каково оно в данный момент, безотносительно к тому, каким оно могло быть несколько ранее».

Итак, покой — такое же «состояние», как и движение. Поэтому, «когда тело находится в покое, оно имеет силу пребывать в покое, стало быть, противостоять всему, что могло бы изменить его; точно так же движущееся тело обладает силой продолжать свое движение с той же скоростью и в том же направлении»{96}.

Иначе говоря, покой, по Декарту, обладает активным сопротивлением тому, что способно нарушить его, и в этом отношении в каком-то смысле компенсирует отсутствующее в картезианской механике понятие массы. Как мы увидим дальше, при разборе законов соударения тел Декарт именно на этом основании утверждал, что малое тело не способно сдвинуть большое, как бы ни была велика скорость движения этого малого тела. Существование состояния покоя у частиц Декарт считал достаточным и для объяснения твердости тел.

Очень важно указание Декарта на то, чем измеряются «сила пребывать в покое» и «сила продолжать свое движение с той же скоростью и в том же направлении». «Судить об этой силе следует по величине тела, в котором она заключена, по поверхности, которой данное тело отделяется от другого, а также по скорости движения и по различным способам, какими сталкиваются различные тела».

Весьма поучительны и показательны в этом отношении позднейшие суждения Мальбранша (1638—1715), воспитанного в атмосфере картезианских идей. Мальбранша не удовлетворяла та концепция Декарта, которая сводила твердость тела к простому покою его частиц. Он прямо и открыто говорил о заблуждениях господина Декарта.

По словам Мальбранша, «этот великий человек» считал, что покой имеет такую же силу, как движение, а потом стал измерять действие силы покоя по величине тел, находящихся в покое.

Для объяснения связанности частиц твердого тела мало одного покоя этих частиц; нужно, полагал Мальбранш, прибегнуть к представлению о движении тонкой материи, окружающей и сжимающей частицы тела. «Мне кажется ясным, — писал он, — что всякое тело само по себе бесконечно мягко, потому что покой вовсе не имеет силы сопротивляться движению, а потому часть тела, испытывающая больший толчок, чем соседняя с ним, должна отделиться от нее.

Таким образом, твердые тела являются таковыми лишь благодаря сжатию невидимой материей, их окружающей и проникающей в поры». Это так называемые «малые вихри», которые впервые именно Мальбранш ввел в картезианскую физику.

Для Мальбранша причина, в силу которой частицы твердых тел так крепко связаны друг с другом, заключается в том, что вне их находятся другие небольшие тела, пребывающие в несравненно более сильном движении, чем грубый воздух, который мы вдыхаем, и эти тела их толкают и сжимают. Не их покой является причиной того, что нам трудно разъединить эти частицы, а движение тех маленьких тел, которые их окружают и сжимают.

По Мальбраншу, тонкая материя необходимо должна быть причиной твердости тел или того противодействия, которое мы чувствуем, когда делаем усилие, чтобы их сломать. В качестве поясняющего примера Мальбранш ссылался на опыты Герике с «магдебургскими полушариями», прижимаемыми друг к другу давлением окружающего воздуха.

Вопреки и вразрез с Декартом, Мальбранш утверждал, что способность и сила всякого тела пребывать в том состоянии, в котором оно находится, относятся лишь к движению, а не к покою, потому что тела сами по себе не имеют никакой силы. По Мальбраншу, «покой не имеет силы, чтобы противостоять движению, и малейшее движение содержит больше способности и больше силы, чем самый большой покой; а значит, и не следует основывать сравнение сил движения и покоя на отношении, существующем между величинами тел, находящихся в движении и покое, как это сделал г-н Декарт»{97}.

Покой для Декарта был противоположностью движения, а потому мог рассматриваться им уже как таковой в качестве некоей силы, активно противодействующей движению. По Мальбраншу, покой есть просто нуль движения. «Движения бывают бесконечно разнообразны, они могут увеличиваться и уменьшаться; покой же есть ничто, а потому состояния покоя не разнятся друг от друга. Один и тот же шар, когда он катится вдвое скорее, имеет вдвое больше силы или движения, чем когда он катится в два раза медленнее; но нельзя сказать, чтобы один и тот же шар в одно время обладал большим покоем, в другое меньшим».

Согласно идеям Мальбранша, тела, находящиеся в движении, обладают движущей силой, а тела, находящиеся в покое, не обладают силой своего покоя. «Ведь отношение движущих тел к окружающим их телам постоянно изменяется, а следовательно, нужна постоянная сила, чтобы вызывать эти постоянные изменения… Для того же, чтобы ничего не делать, не нужна сила. Когда отношение какого-нибудь тела к окружающим его телам остается всегда одним и тем же, то ничего и не происходит»{98}.

Таково развитие, которое идеи Декарта получили в рамках картезианской школы.

Отметим, наконец, что говоря о количестве движения, Декарт не учитывал направление движения. Он совершенно категорически разделял оба понятия. В письме к Мерсенну от 11 марта 1640 г. он писал, что «сила движения» и «сторона, в которую движение совершается», вещи совершенно разные. При этом он ссылается на свою «Диоптрику», где действительно сказано, что «сила, побуждающая продолжать двигать мяч, отличается от той, которая направляет его предпочтительно в одну сторону, а не в другую», и что направление мяча на определенную точку «может быть изменено, даже если не произошло никаких изменений в силе его движения».

Эти рассуждения вплотную подводят к законам удара тел, которые Декарт рассматривает непосредственно вслед за тремя рассмотренными общими законами. Известно, что законы Декарта в большей своей части неверны. Поэтому, казалось бы, нет необходимости рассматривать их подробнее. Однако сделать это необходимо, и не только потому, что это позволяет лучше понять декартовский закон сохранения количества движения, но и потому, что на его примере раскрываются существенные вопросы о соотношении теории и эксперимента в механике XVII в.


ИСТОРИЯ ОТКРЫТИЯ ЗАКОНОВ УДАРА

Вопросами теории удара интересовался уже Галилей. Им посвящен «шестой день» знаменитых «Бесед», оставшийся не вполне законченным[23]. Галилей считал нужным определить прежде всего, «какое влияние на результат удара оказывают, с одной стороны, вес молота, а с другой — большая или меньшая скорость его движения, и найти, если возможно, способ измерения и выражения того и другого вида энергии»{99}.

При решении этих вопросов Галилей полагал необходимым начать с экспериментов. Но если при экспериментальном исследовании законов падения тел он уже имел в качестве ориентира теоретически выведенную формулу униформно-дифформного движения, то здесь, в теории удара, приходилось начинать заново.

Неизвестно, сколько и какие именно эксперименты произвел Галилей. Нет сомнения, что описываемый ниже опыт был им действительно произведен. Однако он разочаровал Галилея. Опыт заключался в следующем. К коромыслу весов были подвешены на одном конце противовес, а на другом два сосуда: первый с водой, а второй, подвешенный под первым на расстоянии двух локтей, пустой. Верхний сосуд имел отверстие, которое можно было закрывать и открывать.

ГАЛИЛЕО ГАЛИЛЕЙ (1564-1642)

Итальянский астроном, механик и физик, один из основоположников точного естествознания. Он открыл закон инерции, законы падения тела, колебаний маятника. С помощью изготовленной им зрительной трубы Галилей впервые наблюдал небесные светила. Открыл горы на Луне, четыре спутника Юпитера, фазы Венеры, звездное строение Млечного Пути, пятна на Солнце

Галилей предполагал, что при вытекании воды сила удара заставит опуститься плечо коромысла, и величину этой силы можно будет измерить посредством добавочного груза на другом плече. Результат оказался «неожиданным, даже совершенно изумительным»: «Как только отверстие было открыто и вода начала вытекать, весы наклонились, но в сторону противовеса; когда же вытекающая вода достигла дна нижнего сосуда, дальнейшее опускание противовеса прекратилось и он начал равномерно подниматься, пока не достиг прежнего положения и весы не пришли снова в равновесие, не отклонившись и на волос в другую сторону».

Для нас теперь в этом нет ничего удивительного.

До того как первая капля достигнет нижнего сосуда и будет производить давление на его дно, имеет место уменьшение давления в результате того, что исключается вес струи жидкости и, кроме того, сказываемся направленная вверх реакция вытекающей струи. Такова причина того начального отклонения стрелки, которое заметил Галилей. Когда вытекающая струя достигнет нижнего сосуда, давление на дно компенсирует потерю давления, происходящую в результате указанных причин.

Сам Галилей объяснил это явление тем, что «вся вода, содержащаяся в струе, как бы снята с весов»; пока вода вытекает, действует лишь удар, который соответствует скорости, приобретенной при падении с высоту двух локтей. Однако полная, уточненная количественно картина явления осталась ему неизвестной.

Вот почему Галилей счел себя вынужденным избрать другой путь и обратиться к опыту забивки свай. Но характерно, что здесь, прежде чем экспериментировать, он стал обстоятельно, во всех деталях обдумывать, что же могут дать подобные эксперименты, какие привходящие условия могут нарушить точность их показаний. Иначе говоря, вместо того чтобы производить опыты вслепую, Галилей сначала стал, экспериментировать мысленно. Из самого его изложения видно, что для примера были взяты произвольные величины.

Итак, в землю забивают сваю. Вес бабы — 100 фунтов, высота — 4 локтя, глубина, на которую свая входит в землю, — 4 дюйма. Предположим, что для достижения того же результата без удара, путем одного лишь давления «мертвого груза», требуется 1000 фунтов. Исходя из этих условных данных, Галилей вскрывает все возможные трудности эксперимента. Если при каждом новом ударе сопротивление грунта возрастает то ли от его изменения с глубиной, то ли от уплотнения самого грунта при ударе, становится трудным сравнение силы удара и того, что Галилей называл давлением «мертвого груза». Вот почему он пришел к выводу, что нужно начинать с рассмотрения случаев, когда «тело, испытывающее удар, оказывает последнему всегда одно и то же сопротивление».

Однако и новый эксперимент с двумя грузами, соединенными между собой перекинутой через блок нитью, имел свои трудности.

Шестой день «Бесед» остался, как уже сказано, не вполне законченным и обработанным. Вывод, к которому пришел Галилей, в значительной мере неопределенный и предварительный: сила удара имеет бесконечно большой момент, ибо не существует такого большого сопротивления, которое не могло бы быть преодолено силой даже самого незначительного удара. Однако указание на то, что энергия удара слагается из скорости и веса, что удар слагается из элементарных импульсов и что эффект давления мертвого груза отличен от эффекта удара, весьма важно.

На аналогичные трудности сравнения действия мертвого груза и удара указывал Декарт (напомним, что ему не мог быть известен «шестой день» галилеевских «Бесед»). Декарт писал: «Сравнивать силу пресса с силой удара можно только по их эффектам: ибо пресс может действовать всегда ровно на протяжении долгого времени, тогда как сила удара продолжается весьма мало и никогда не бывает одинаковой на протяжении двух моментов подряд»{100}.

Излагая в «Началах философии» законы (или, как он называл их, правила) удара, Декарт заканчивает следующим заявлением: «Все эти доказательства настолько достоверны, что хотя бы опыт и показал обратное, однако мы вынуждены придавать нашему разуму больше веры, нежели нашим чувствам»{101}.

Это отнюдь не значит, что Декарт игнорировал опыт. Подобно Галилею, он пытался сначала осознать и осмыслить данные опыты, и, подобно Галилею, он быстро убедился во всей сложности такой задачи.

Поучительны в этом отношении письма Декарта к Мерсенну, относящиеся к первой половине 1640 г., т. е. написанные четырьмя годами раньше, чем только что цитированные «Начала философии».

Декарт рассуждал здесь, например, о том, как при помощи молотка лучше сплющивать пулю — на мягкой подушке или на твердой наковальне? «Удивляюсь, — писал он, — как вы еще не слыхали, что лучше можно сплющить свинцовую пулю молотком на подушке и на подвешенной наковальне, подающейся под ударом, чем на наковальне, стоящей прочно и неподвижно; ведь этот опыт общеизвестный. И в механике есть бесконечное множество подобных явлений, зависящих от одной и той же причины, а именно: чтобы расплющить свинцовую пулю, недостаточно ударять по ней с большой силой, но нужно также, чтобы эта сила длилась некоторое время, чтобы части этой пули имели время переменить свои положения. Так вот, когда эта пуля положена на неподвижную наковальню, молоток отскакивает кверху почти в то же мгновение, когда он ударил, а потому не имеет достаточно времени расплющить пулю, между тем как в случае, если наковальня или другое тело, поддерживающее эту пулю, уступают удару, это приводит к тому, что молоток дольше прилегает к ней»{102}.

В другом письме Декарт вернулся к деталям тех же операций. «Нужно пользоваться молотком не слишком крупным, потому что если бы он имел достаточную силу, чтобы совершенно расплющить пулю на наковальне, он не мог бы сделать большего на подушке. Кроме того, нужно поместить железную пластинку или какое-нибудь другое тело между пулей и подушкой, дабы она уходила при ударе вглубь настолько, что молоток терял бы свою силу, уходя в подушку». «Но есть и другой, более общеизвестный опыт, сводящийся к тому же принципу, — добавлял Декарт. — Все парижские повара вас уверят, что, когда требуется разрубить кость бараньей ноги, они кладут ее только на свою руку или на салфетку и, ударяя сверху, легче разрубают ее, чем на столе или наковальне».

И, как бы откликаясь на вопрос Галилея, Декарт заявлял о трудностях сравнения давления с ударом. «Я не могу сказать, сколько тяжести требуется, чтобы сравняться с ударом молотком; ибо это вопрос факта, где рассуждение не ведет ни к чему без опыта»{103}. Какой контраст с последующим заявлением в «Началах»!

Впрочем, опыты сталкиваются с множеством трудностей. «Все части молотка или другого ударного инструмента действуют одновременно, а не так, как солдаты, стреляющие один за другим. Однако для расплющивания пули требуется время, которое нужно для того, чтобы части этой пули успели переменить свое расположение, а это они не могут сделать мгновенно; и в зависимости от того, требуют ли части тел большего или меньшего времени для перемены положения под воздействием удара, можно по ним более эффективно ударять на подушке или наковальне деревяшкой, дубинкой или железным молотком и т. п. Стало быть, эти соотношения варьируют бесконечно».

Или еще категоричнее и разочарованнее в том же самом письме: «Кто смог бы произвести точный эксперимент, определив, какой груз и какой удар производят тот же эффект? Тогда можно было бы узнать, с какой скоростью он начинает двигаться при своем движении вниз. Однако я думаю, что такой эксперимент невозможно даже вообразить». О том же тремя месяцами позже Декарт писал тому же Мерсенну: «Я не вникаю здесь, каким образом можно подсчитать, сколько ударов маленького молотка потребовалось бы для того, чтобы сравниться с силой большого, так как при подобных подсчетах нужно принимать во внимание множество обстоятельств, и притом эти подсчеты трудно приводятся в согласие с опытом и приносят мало пользы; вот почему, думается мне, лучше об этом вообще не говорить».

Нельзя браться за выяснение законов удара путем экспериментирования наугад, без предварительного размышления и без ориентирующей абстрактной схемы.

Такую схему Декарт попытался дать в «Началах». Формулированные им законы неверны. Он не проводит различия между телами упругими и неупругими. Он не принимает во внимание направление скорости, рассматривает скорость как скалярную, а не векторную величину. От одного случая нет логически оправданного, непрерывного перехода к другому. Все это так. Но немаловажно выяснить, почему Декарт сделал именно эти ошибки. Ответ на такой вопрос позволит прояснить исходные кардинальные понятия его механики. -

В предыдущем разделе была речь о первых двух законах, которые Декарт считал основными. Третий закон, имеющий непосредственное отношение к сохранению количества движения и законам удара, состоит из двух частей.

Первая его часть гласит: «Если движущееся тело при встрече с другим телом обладает для продолжения движения по прямой меньшей силой, чем второе тело для сопротивления первому, то оно теряет направление, не утрачивая ничего в своем движении». В данном случае Декарт ссылается на опыт: «Твердое тело, будучи брошено и ударившись о более твердое и плотное тело, отскакивает в том направлении, откуда шло, но не теряет ничего в своем движении; наоборот, встречая на пути мягкое тело, тотчас останавливается, так как передает последнему свое движение».

Кроме того, Декарт ссылается на то, что это сопротивление второго тела есть причина, заставляющая первое тело изменить направление движения, однако нет никаких оснований, по Декарту, чтобы это сопротивление было причиной утраты движения: «Причина, заставившая его утратить направление, очевидна, именно — сопротивление тела, препятствующего ему следовать далее; отсюда, однако, для него нет необходимости терять что-либо в своем движении, тем более, что оно у него никогда не отнимается этим телом или какой-либо иной причиной и что движение движению не противоположно»{104}.

Во второй части третьего закона читаем: «Если же движущееся тело имеет большую силу, то движет за собой встречное тело и теряет в своем движении столько, сколько сообщает второму телу». Эту часть закона (т. е. сохранение количества движения при передаче его от одного тела к другому) Декарт в сущности ничем не обосновывает, кроме ссылки на «неизменность действия бога»{105}.

Обратимся теперь к более детальному разбору семи правил удара, сформулированных Декартом. Они относятся к идеальным неупругим, или, как говорит Декарт, твердым, телам, однородным по веществу, рассматриваемым вне соотношения с другими телами, а потому лишенным таких свойств, как тяжесть, порождаемая движением среды. Во внимание принимаются лишь величины тел, скорость их движения, а также сила инерции (т. е. сила, или способность «пребывать в покое и, стало быть, противостоять всему, что могло бы изменить его», и сила продолжать свое движение с той же скоростью и в том же направлении), сила, пропорциональная величине тела и скорости движения{106}.[24] Напоминаем, что в применяемых нами дальше обозначениях m1 и m2 у самого Декарта имеется в виду не масса (четкого понятия которой у него еще не было), а величина тела: Декарт всюду говорит о большем и меньшем теле, равных телах и т. п. Напомним также, что сохранение количества движения для Декарта — исходная аксиома, причем разница алгебраических знаков во внимание не принимается.

Следовательно, анализ семи «правил» (или различных случаев) удара основывается на требовании, чтобы до и после удара сумма количества движения оставалась постоянной:

m1u1 + m2u2 = m1v1 + m2v2.

Из возможных случаев Декарт выбирал такой, при котором перемена в состоянии столкнувшихся тел представлялась ему наименьшей.

Для уяснения всего сказанного важны соображения Декарта, возникшие уже после выхода в свет «Начал философии», а именно в 1645 г. Декарт хотел разъяснить здесь ход мысли, который привел его к ошибочному положению, будто меньшее тело неспособно сообщить движение большому, какова бы ни была скорость этого меньшего.

Декарт писал, что основание, которое заставляет его утверждать, что тело без движения никогда не может быть приведено в движение меньшим телом, с какой бы скоростью это меньшее ни двигалось, заключается в том, что таков закон природы: тело, приводящее в движение другое тело, должно иметь больше силы его двигать, чем это последнее ему сопротивляться. Но этот перевес может зависеть лишь от величины тела, ибо тело без движения имеет столько градусов сопротивления, сколько другое тело имеет градусов скорости. Причина заключается в том, что если такое тело, находящееся в покое, приводится в движение телом, обладающим вдвое большей скоростью, чем прежнее, оно должно получить вдвое больше движения, а такому вдвое большему количеству движение оно сопротивляется вдвое сильнее.

Далее Декарт утверждает в общей форме, что перемена в состоянии должна быть наименьшей: «Если два тела встречаются и их состояния несовместимы, должна произойти перемена в этих состояниях, делающая их совместимыми, и перемена эта должна быть наименьшей, иначе говоря, если определенная мера изменения этих состояний достаточна, чтобы они стали совместимыми, то не произойдет изменения в большей мере, чем она. При этом нужно принимать во внимание в движении два различных состояния: во-первых, движение само по себе, т. е. скорость, и, во-вторых, направленность этого движения в определенную сторону, каковые состояния изменяются одинаково трудно»{107}.

Уже в 1652 г., через восемь лет после выхода «Начал философии» Декарта, 23-летний Гюйгенс высказал свои первые сомнения в правильности законов Декарта, за исключением первого закона, который он признал верным (для упругих тел). Двумя годами позже в письме к ван Скоутену, который ему не советовал тягаться с Декартом, Гюйгенс сознавался, что ему самому было неприятно убедиться в ошибках Декарта. Еще двумя годами позже Гюйгенс написал свой первый трактат «Об ударе тел», не собираясь, однако, публиковать его.

В октябре 1666 г. Лондонское королевское общество объявило конкурс на решение задачи об ударе тел, на который представили свои работы Валлис, Рен и Гюйгенс.

Мемуар Валлиса был доложен 26 ноября 1668 г. Валлис разбирает случаи соударения неупругих тел. Рассматривая «силу» как пропорциональную произведению веса (т) и скорости (v), он дает для скорости и после удара соотношение

при движении обоих тел в одну сторону и

при встречном ударе.

Таким образом, в отличие от Декарта Валлис принял во внимание знаки плюс и минус, стоящие перед количествами движения (mv). При косом ударе Валлис вводит отношение радиуса к секансу угла. Сравнивая удар неупругих тел с ударом упругих, он ограничивается качественной констатацией наличия «восстанавливающей силы» в упругих телах.

Несколько позже, 17 декабря 1668 г., был представлен мемуар знаменитого архитектора Рена. Он подводил итог многочисленным экспериментам над упругими телами, которые Рен произвел совместно с математиком Гуком. Выводы Рена совпадали с выводами Гюйгенса.

Мемуар Гюйгенса был представлен позже других (в первых числах января 1669 г.) и напечатан в Англии через несколько месяцев после мемуаров Валлиса и Рена. Не дождавшись его публикации в Англии, обиженный Гюйгенс опубликовал уже в марте во Франции{108}резюме своих выводов. Мы не будем вдаваться в рассмотрение возникших приоритетных споров и в разбор мемуара 1669 г., обратившись прямо к той более полной редакции, которая увидела свет лишь после смерти Гюйгенса (1695), — в издании его посмертных трудов (1703). Этот трактат — «О движении тел под влиянием удара» — один из шедевров механики XVII в.

Гюйгенс ограничился рассмотрением центрального удара упругих тел, состоящих из одного и того же вещества. Исходной точкой при рассмотрении соударения одинаковых масс является для него следующая аксиома (1-е правило Декарта): если два равных тела (шара) сталкиваются друг с другом с одинаковыми, но противоположно направленными скоростями, направление их движения меняется на противоположное без изменения скорости.

При неодинаковых скоростях (но при равных массах) Гюйгенс, основываясь на относительности движения, прибег к остроумному приему, позволившему свести все далее рассматриваемые случаи к первому аксиоматическому. Именно: он представил себе, что удар происходит в лодке, движущейся с постоянной скоростью вдоль ровного берега. Согласно классическому принципу относительности, в явлениях удара ничего не должно меняться. Величину скорости лодки в каждом новом случае выбирают такой, чтобы для наблюдателя, находящегося на берегу, явление сводилось к первому случаю, уже ранее разобранному.

Вскоре после конкурса, проведенного Лондонским королевским обществом, Мариотт напечатал свой «Трактат об ударе или соударении тел» (1678), выдержавший три издания (1679, 1684). Отправляясь от работ Гюйгенса, Валлиса и Рена, он дополнил их исследования новыми многочисленными экспериментами, производившимися им начиная с 1674 г.

ХРИСТИАН ГЮЙГЕНС (1629—1695)

Нидерландский механик, физик и математик. Создал волновую теорию света. В сочинении «Маятниковые часы» Гюйгенс ввел понятия центробежной и центростремительной силы и моментов инерции, исследовал движение математического и физического маятника

Для изучения явлений удара Мариотт придумал прибор, состоящий из двух шаров, подвешенных на двух нитях равной длины и находящихся в соприкосновении в состоянии равновесия. Он начал с изучения удара пластичных тел, беря шарики из глины. Скорости он измерял дугами, описываемыми шариками после столкновения.

В 80-х годах XVII в., упомянув о трудах Рена, Валлиса, Гюйгенса и Мариотта, Ньютон посвятил несколько страниц своих «Начал» произведенным им самим экспериментам. Однако главное, что внес Ньютон в изучение удара, это не столько новые эксперименты, сколько та связь, которую он установил между явлениями удара и формулированным им законом равенства действия и противодействия.

Связь законов удара с законом действия и противодействия Ньютон раскрывает в следующих словах: «Если какое-нибудь тело, ударившись в другое тело, изменяет своею силою его количество движения на сколько-нибудь, то оно претерпит от силы второго тела в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих же тел друг на друга постоянно равны. От таких взаимодействий всегда происходят равные изменения не скоростей, а количества движения, предполагая, конечно, что тела никаким другим усилиям не подвергаются. Изменения скоростей, происходящие также в противоположные стороны, будут обратно пропорциональны массам тел, ибо количества движения получают равные изменения»{109}.

Что касается существа собственных опытов, Ньютон изложил их в следующих словах: «Производя испытания над маятниками длиною 10 футов и над массами, равными и неравными, и пуская тела так, чтобы они встречались, пройдя большие промежутки, например 8, 12, 16 футов, я получал с ошибкою, меньшею 3 дюймов, в измерениях, что при прямом ударе между телами изменения их количеств движения были равны и направлены в стороны противоположные, откуда следует, что действие и противодействие между собой равны… То же самое происходит и при движении тел в одну сторону… Подобное соотношение имеет место и в остальных случаях: полное количество движения, рассчитываемое, взяв сумму количеств движения, когда они направлены в одну сторону, и разность, когда они направлены в стороны противоположные, никогда не изменяется от удара при встрече тел»{110}.

Отсюда отчетливо выявляется неверность декартовской формулировки закона сохранения количества движения, не принимающей во внимание алгебраические знаки.

Ньютон отмечает, что описанные им опыты относятся к неупругим телам, — они «удаются как с телами мягкими, так и с жесткими, и совершенно не зависят от степени твердости их». В случае же тел упругих «необходимо лишь уменьшить скорость отражения сообразно степени упругости тел».

Итак, к 80-м годам уже было прекрасно осознано, что закон сохранения количества движения в том виде, как формулировал его Декарт, неправилен. Более того, если принять его в этом виде, с одинаковым успехом может быть доказано и бесконечное возрастание количества движения, т. е. «вечное движение», и, наоборот, убывание его.


ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА ТЯГОТЕНИЯ

Декарт писал 12 сентября 1638 г. Мерсенну: «Невозможно сказать что-либо хорошее и прочное касательно скорости, не разъяснив на деле, что такое тяжесть и вместе с тем вся система мира»{111}. Это заявление диаметрально противоположно заявлению Сальвиати в «Беседах» Галилея: «Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения естественного движения тел, по поводу которого различными философами было высказано столько различных мнений. Будет достаточно, если мы рассмотрим, как он [Галилей] исследует и излагает свойства ускоренного движения (безотносительно к причинам последнего)»{112}.

С заявлением Галилея небезынтересно сопоставить позднейшее, столь же осторожное высказывание Роберваля, относящееся к 1669 г. Французский ученый указывал, что возможны разные точки зрения на природу тяжести: она заключена в самом тяжелом теле, она — результат взаимодействия между двумя телами, она производится третьим телом, толкающим одно к другому. Роберваль не вдавался в подобные дискуссии и заявлял: «Я всегда по возможности буду стараться подражать Архимеду, который именно в связи с тяжестью выдвигает в качестве принципа или постулата постоянный и во все минувшие до сей поры столетия засвидетельствованный факт: существуют тяжелые тела, отвечающие условиям, о которых он говорит в начале своего трактата на эту тему. На этом основании я построю, как и он, свои рассуждения о механике, не затрудняя себя вопросом, что же такое в конце концов начала и причины тяжести, и довольствуясь тем, что буду следовать истине, если она пожелает когда-либо предстать ясно и отчетливо передо мною. Вот правило, которого я всегда хочу держаться в сомнительных рассуждениях…»

Излишне повторять, как часто Ньютон говорил, что он отказывается вникать в природу тяжести. Напомним лишь некоторые наиболее выразительные высказывания.

«Под словом притяжение, — писал он в «Началах», — я разумею здесь вообще какое бы то ни было стремление тел к взаимному сближению — безразлично, происходит ли это стремление от действия самих тел, которые стараются сблизиться или приводят друг друга в движение посредством испускаемого ими эфира, либо, наконец, оно вызывается материальной или нематериальной средой (эфиром, воздухом и т. п.)»{113}. Аналогично в «Оптике»: «То, что я называю притяжением, может происходить посредством импульса или какими-нибудь другими способами, мне неизвестными. Я применяю здесь это слово для того, чтобы только вообще обозначить некоторую силу, благодаря которой тела стремятся друг к другу, какова бы ни была причина. Ибо мы должны изучить по явлениям природы, какие тела притягиваются и каковы законы и свойства притяжения, прежде чем исследовать причину, благодаря которой притяжение происходит»{114}.

Ньютон утверждал: «Причину… этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю… Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам и вполне достаточно для объяснения всех движений небесных тел и моря»{115}.

Формулировка закона тяготения и самое формирование понятия силы тяготения были результатом длительного исторического развития. Здесь незачем прослеживать хронологически все те многочисленные и разнообразные подходы к концепции, которые в конечном итоге привели к формулировке закона тяготения и его приложению к небесной механике. Достаточно отметить некоторые важнейшие вехи.

В ньютоновом законе тяготения мы выделим три наиболее характерных момента. Во-первых, в этом законе сила тяготения есть универсальный принцип. При его выводе из свойств материи принимается во внимание только одно — наличие массы. Масса, по Ньютону, — всеобщая характеристика любой материи. Поэтому закон тяготения, распространяющийся на все тела, безотносительно ко всем другим их свойствам, — это высшее, математизированное выражение идеи единства Вселенной, подготовлявшееся трудами Коперника, Кеплера, Бруно, Галилея. В законе тяготения исчезает противоположность небесного и земного, «подлунного» и «надлунного». Во-вторых, тяготение основано на взаимодействии тел, а не на одностороннем притяжении одного тела другим. И, в-третьих, понятие силы тяготения у Ньютона уточнено количественно.

Первые шаги к математизации силы притяжения были сделаны Кеплером. В своей «Новой астрономии» (1609) Кеплер опубликовал первые два закона движения планет, носящие его имя и открытые им при обработке данных, относящихся к Марсу. Десятью годами позже (1619) в «Гармонии мира» Кеплер дополнил их третьим законом: кубы средних расстояний планет от Солнца пропорциональны квадратам времен их обращения, или, как формулировал сам Кеплер на языке своего времени, — средние расстояния от Солнца стоят в «полуторном отношении» к времени обращения.

Показательно, что уже в 30—40-х годах Декарт задумывался над опытами, которые могли бы позволить определить убывание и возрастание тяжести на разных расстояниях от центра Земли, сознавая вместе с тем всю трудность подобной задачи. Обсуждая в переписке с Мерсенном вопрос о том, имеет ли тело большую или меньшую тяжесть, находясь к центру Земли ближе, чем находясь вдали от него, Декарт замечает: «Единственно, что можно сказать, что природа тяжести есть вопрос факта, т. е. люди не могут определить ее иначе, как производя опыты, а из опытов, производимых здесь, в нашем воздухе, нельзя судить о том, что происходит гораздо ниже, около центра Земли, или гораздо выше, за облаками, ибо если убывание или возрастание тяжести происходит, то маловероятно, чтобы оно происходило везде в одинаковой пропорции»{116}.

Проектируя возможный опыт, Декарт тут же отмечал его трудности. Опыт заключается в следующем: кусок свинца вместе с веревкой взвешивается на вершине башни, а затем прикрепляется одним концом к чашке весов и опускается в колодец. Разность в весе должна свидетельствовать о неравномерности земного притяжения. Декарт понимал, что опыт мог дать результаты лишь в том случае, если разница в весе весьма значительна, между тем глубина колодца и высота башни мала по сравнению с радиусом Земли.

Декарт добавил описания довольно странных для современного читателя опытов или наблюдений над птицами. «Крупным птицам, например журавлям и аистам, гораздо легче летать на высоте в воздухе, чем внизу, и это нельзя целиком отнести на счет силы воздуха, ибо то же самое бывает и в тихую погоду, а это дает основание думать, что их удаленность от Земли делает их более легкими. Подтверждают нам это и бумажные змеи, запускаемые детьми, и весь снег, находящийся в облаках»{117}.

Наконец, Декарт всерьез обсуждал версию об артиллерийских ядрах, якобы пущенных вертикально вверх и не вернувшихся на Землю. В этой же связи Декарт высказал и приведенные выше соображения о том, что планеты упали бы на Землю, если бы «большое расстояние между ними не парализовало этого их стремления», т. е. тяжесть должна убывать с увеличением расстояния.

Не удивительно, если Декарт в конечном итоге оказался вынужденным обратиться от проектируемых конкретных экспериментов к теоретическому рассуждению, произвести чисто мысленный эксперимент или, как выражался он сам, «произвести наши вычисления, подобно тому, как астрономы предполагают средние движения светил равномерными, чтобы легче рассчитывать истинные, которые неравномерны».

Через 11 лет после смерти Декарта, в 1661 г. (еще до своего официального утверждения), Лондонское королевское общество поручило особой комиссии исследовать вопрос о природе тяжести. 14 марта 1666 г. Роберт Гук сделал в Обществе сообщение, в котором писал: «Хотя тяжесть, по-видимому, есть одно из самых универсальных начал в мире, до недавнего времени пренебрегали ее изучением. И тем не менее ученая пытливость наших дней нашла в ней предмет новых размышлений; Гильберт делает из нее способность магнитного притяжения, присущую частям земного шара; благородный лорд Веруламский частично присоединится к этому мнению, а Кеплер, не без оснований, делает из тяжести свойство, присущее всем небесным телам»{118}.

Исходя из подобных же представлений, Гук предполагал, что тяжесть тел должна уменьшаться с возрастанием расстояния от центра Земли. Если Декарт только обдумывал возможности экспериментов, то Гук отважился и на экспериментирование. Он производил опыты на здании Вестминстерского аббатства и на вершине собора св. Павла. Он взвешивал тело вместе с проволокой на вершине башни и у поверхности земли. Опыты не могли дать, по признанию самого Гука, точных результатов как по причине колебаний столь длинной проволоки, так и по причине движения воздуха. Нескольких гранов на весах достаточно было, чтобы привести весы в колебательное движение.

Вслед за тем Гук столь же безуспешно произвел эксперименты в колодцах глубиной от 90 до 330 футов.

В докладе, сделанном 23 мая того же года, Гук вернулся к вопросу о силе тяжести в связи с движением планет. Криволинейность планетных орбит должна вызываться некоторой постоянно действующей силой: либо большей плотностью эфира около Солнца, либо притяжением тела, находящегося в центре. Наконец, восемь лет спустя, в 1674 г., Гук опубликовал мемуар под заглавием «Попытка доказать годовое движение Земли на основе наблюдений».

Излагаемая им здесь система мира основана на трех предположениях. Во-первых, все небесные тела производят притяжение к своим центрам, притягивая не только свои части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия. Таким образом, не только Солнце и Луна оказывают влияние на форму и движение Земли, а Земля — на Луну и Солнце, но также Меркурий, Венера, Марс, Юпитер и Сатурн влияют на движение Земли; в свою очередь притяжение Земли действует на движение каждой планеты. Второе предположение Гука — это закон инерции: «Всякое тело, получившее однажды простое прямолинейное движение, продолжает двигаться по прямой до тех пор, пока не отклонится в своем движении другой действующей силой и не будет вынуждено описывать круг, эллипс или иную сложную линию». Наконец, третье предположение заключается в том, что «притягивающие силы действуют тем больше, чем ближе тело, на которое они действуют, к центру притяжения».

«Что касается степени этой силы, — заключает Гук, — то я не мог еще определить ее на опыте; но во всяком случае, как только эта степень станет известной, она чрезвычайно облегчит астрономам задачу нахождения закона небесных движений, без нее же это невозможно… Я хотел бы указать это тем, у которых есть время и достаточная сноровка для продолжения исследования и хватит прилежания для выполнения наблюдений и расчетов»{119}.

Мы не будем останавливаться на спорах о приоритете, которые разгорелись между Гуком и Ньютоном. Можно с уверенностью сказать, что искусный экспериментатор и эмпирик, Гук не смог бы прийти к тем широким математическим обобщениям, к которым пришел Ньютон, самостоятельно размышлявший над проблемами тяготения уже с 1666 г.

Вот подлинные свидетельства самого Ньютона, в целом не вызывающие сомнений. Из письма Ньютона к Галлею (1686) явствует, что уже в 1665 или в 1666 г. Ньютон вывел из законов Кеплера обратную пропорциональность силы тяготения квадрату расстояния между притягивающимися телами. В другом письме к Галлею от того же года он сообщал: «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести к conatus recedendi (стремлению) Луны от центра Земли, хотя и не совсем точно».

В бумагах Ньютона, кроме того, имеется такая запись: «В том же году я начал думать о тяготении, простирающемся до орбиты Луны, и нашел, как оценить силу, с которой шар, вращающийся внутри сферы, давит на поверхность этой сферы. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояния от центров, вокруг коих они вращаются. Отсюда я сравнил силу, требующуюся для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и нашел, что они почти отвечают друг другу. Все это происходило в два чумных года, 1665 и 1666, ибо в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после»{120}.

Мы сказали, что нет оснований сомневаться в свидетельствах Ньютона в целом. Однако в одном существенном пункте они требуют исправления. А именно: при своих первых подсчетах Ньютон исходил из старых (грубых) измерений земного радиуса (ошибка в них достигала 15%); поэтому он мог определить, по его словам, соотношение между силой тяжести и центробежной силой Луны «не совсем точно». Такая неточность, видимо, заставила его отложить публикацию своих вычислений.

Между тем в 1672 г. Пикар произвел новое, более точное градусное измерение меридиана. В том же году соответствующее сообщение было заслушано в Королевском обществе. Находясь в уединении в Кембридже, Ньютон, по-видимому, долго не знал об измерениях Пикара, усиленные занятия оптикой в 1672—1675 гг. отвлекали его от исследования вопросов тяготения. Он вернулся к ним лишь тогда, когда эти же вопросы поднял Гук. Новое градусное измерение Пикара позволило Ньютону пересмотреть свои вычисления и получить желательный результат. Перед нами поучительный пример связи теоретических построений с эмпирическими данными: неверная величина земного радиуса затормозила на много лет правильный в своей основе ход мысли Ньютона!

Впрочем, некоторые исследователи (Ф. Кэджори и др.) предложили другое объяснение: Ньютон испытывал затруднения в вопросе, как именно измерять расстояние между падающим телом и Землей: брать ли его по отношению к поверхности или центру; только к 1685 г. он уточнил понятие о материальной точке, позволившее рассматривать массу Земли сосредоточенной в ее центре.

ИСААК НЬЮТОН (1643-1727)

Английский физик, механик, астроном и математик. В 1687 г. вышел его фундаментальный труд «Математические начала натуральной философии», в котором сформулированы основные законы классической механики. «Математические начала» явились поворотным пунктом всех работ по механике и небесной механике в течение последующих двух веков. Ньютон разработал дифференциальное и интегральное исчисление

Выводы, касающиеся тяготения, и в частности «падения Луны на Землю», тесно связаны с понятием о цептробежной силе. В этом пункте Ньютон имел предшественника в лице Альфонсо Борелли (1608—1679). Этот итальянский ученый, пытаясь в 1665 г. объяснить, почему планеты не падают на Солнце, ссылался на пример камня, вращаемого по кругу и сильно натягивающего нить, к которой он привязан: чтобы уравновесить силу, с которой планета стремится к Солнцу, эта планета противополагает ей тенденцию каждого тела удалиться от центра вращения.

Выше мы уже упоминали о вкладе Гюйгенса в механику. Кроме всего сказанного с именем Гюйгенса в механике связано много открытий и изобретений: изобретение маятниковых часов, изобретение часов с коническим маятником, устройство циклоидального маятника и т. д. В своих работах он широко пользовался механическим принципом относительности. В этом его механика глубоко отличается от механики Ньютона.

По Гюйгенсу, в механике нельзя оперировать понятиями покоя и движения, отнесенными к бесконечному пустому пространству. Даже вращение он рассматривал как относительное движение частей тела, стремящихся в различные стороны и удерживаемых связью. Но в данном случае нас интересуют не столько принципиальные различия в воззрениях Гюйгенса и Ньютона, сколько значение трудов первого в генезисе закона тяготения.

Сочинение Гюйгенса «Маятниковые часы» вышло в свет в 1673 г., когда Ньютон вновь вернулся к размышлениям о законе тяготения. В приложении к нему были напечатаны (без доказательств) «Теоремы о центробежной силе, вызванной круговым движением». Здесь были формулированы основные закономерности, связывающие центробежные силы с расстоянием и скоростями.

В год выхода в свет «Маятниковых часов» Гюйгенс послал через Ольденбурга экземпляр своего труда Ньютону. Гораздо позднее (в 1714 г.) последний писал: «Все, что с тех пор Гюйгенс опубликовал о центробежных силах, я предполагаю, он знал раньше меня». Это действительно так, ибо Гюйгенс вывел закон центробежной силы уже в 1659 г.

Однако Ньютону не нужно было дожидаться выхода в свет сочинения Гюйгенса для того, чтобы произвести свои собственные расчеты. В приложении к письму Галлею от 14 июля 1686 г. содержится рассуждение, которое Ньютон, как он сам говорит, нашел, разбирая свои старые бумаги. Оно дает основание полагать, что Ньютон уже до 1673 г. мог идти своим путем, независимо от Гюйгенса, и вывести центростремительное ускорение без гюйгенсовского понятия центробежной силы. А именно: Ньютон рассматривает многоугольник, вписанный в окружность. Тело, обладающее заданной скоростью, движется по периметру, отражаясь в каждой вершине о г окружности. Сила отражения пропорциональна скорости, а сумма сил в данное время будет пропорциональна этой скорости и числу отражений вместе. Переходя к пределу, когда длины сторон многоугольника стремятся к нулю, Ньютон определяет силу, с которой движущееся тело давит на окружность, и равное и направленное в противоположную сторону противодействие, оказываемое окружностью на движущееся тело.

В 80-х годах XVII в. над теми же вопросами задумывались и другие английские ученые. По словам Галлея, ему удалось в 1683 г. вывести из третьего закона Кеплера обратную квадратичную пропорциональность тяжести с расстоянием, но он не мог отсюда объяснить и вывести эллиптическое движение светил. Архитектор Рен развивал воззрения, похожие на взгляды Гука, предполагая, что движение планет слагается из их равномерного прямолинейного движения и падения на Солнце. Во время встречи Рена с Гуком и Галлеем Рен предложил премию тому, кто докажет, что под действием силы, убывающей обратно пропорционально квадрату расстояния, возникает движение по эллипсу.

В августе 1684 г. Галлей посетил Ньютона в Кембридже и задал ему прямой вопрос: какова будет траектория планет при предположении, что сила тяготения меняется обратно пропорционально квадрату расстояния их от Солнца? «Эллипс», — без колебания сказал Ньютон. На вопрос, почему, он ответил: «Потому, что я вычислил это». 10 декабря 1684 г. Галлей доложил Королевскому обществу, что Ньютон скоро пришлет важный мемуар «О движении». Этот мемуар был прислан в феврале 1685 г., но не был опубликован, а только зарегистрирован как заявка на приоритет.

В этом мемуаре со всей отчетливостью было формулировано положение, согласно которому сферическое тело однородной плотности во всех точках, одинаково отстоящих от центра; притягивает внешнюю частицу, как если бы вся масса была сосредоточена в центре.

За этим вскоре последовало опубликование классических «Начал». Первая книга была написана почти целиком в период с декабря 1684 по апрель 1686 г. Осенью того же года была закончена вторая книга, а редактирование третьей завершено в марте 1687 г.

Выше мы приводили ньютоново определение количества материи как величины, пропорциональной плотности, указав, что такое определение требует допущения корпускулярного строения материи (плотность подразумевалась как число частиц на единицу объема). Но на той же странице «Начал» Ньютон наметил другое определение, отождествив понятие количества материи с понятием массы. Массу, как и вес, можно мыслить чисто математически, сосредоточенными в одной точке. Именно такое абстрактное рассмотрение позволило Ньютону пойти дальше геометрико-механических моделей картезианства.

Ньютон отмечал, что специфической особенностью силы тяготения является ее происхождение от некоторой причины, которая «действует не пропорционально величине поверхности частиц, испытывающих ее воздействие (как это обыкновенно имеет место для механических причин), но пропорционально количеству твердого вещества», т. е. массе{121}.

Исследуя, по его собственным словам, явления механики «математически», а не «физически», Ньютон попытался придать своим «Началам» строго геометрическую форму по образцу «Начал» Евклида: за определениями и аксиомами следуют предложения, или теоремы, со следствиями (короллариями) и поучениями (схолиями). На первых же страницах ньютоновских «Начал» сделана попытка как бы кодифицировать основные положения, уже открытые ранее (например, закон инерции) или «носившиеся в воздухе». Многое, однако, осталось неполным; многое, предполагаемое само собой разумеющимся, осталось невыясненным, вместо того чтобы быть формулированным в виде аксиом. Присмотримся к общей структуре знаменитых «Начал».

Первая книга, состоящая из 14 отделов, построена в нарочито абстрактном математическом плане. Только в следствиях и поучениях (схолиях) теорем просвечивают иногда те физические или астрономические применения, которые впоследствии эти теоремы находят. Основное содержание книги — движение материальных точек и твердых тел под действием центральных сил.

Вторая книга, состоящая из девяти отделов, рассматривает движения и действия сил с учетом влияния среды. В ней доказываются теоремы важные для гидростатики, гидродинамики и баллистики. Но, кроме того, она имеет завуалированный полемический аспект: в ней Ньютон фактически учиняет разгром картезианской физики, и в частности декартовского учения о вихрях «тончайшей жидкой материи», наполняющей мировое пространство.

Напомним, что, по Декарту, вихревое движение тонкой флюидной материи, происходящее вокруг Солнца, увлекает за собой планеты, вращающиеся и вокруг своей оси, — по аналогии с тем, что можно наблюдать на примере кусков дерева, увлекаемых вихревым движением воды и одновременно приводимых во вращательное движение. До известного расстояния от Солнца величина частиц тонкой материи и их угловая скорость убывают, дальше и та и другая становятся постоянными. Каждая планета имеет свою плотность и соответственно разное количество движения, рассматриваемое как произведение плотности на линейную скорость.

Планета остается на своей орбите там, где количество движения частиц тонкой материи равно количеству ее движения. На более близком расстоянии центробежная тенденция берет верх над центростремительным воздействием частиц тонкой материи, на расстоянии же более далеком, наоборот, перевешивает это центростремительное воздействие.

Ньютон опровергает эту концепцию прежде всего ссылкой на данные гидродинамики: «Если в однородной и беспредельной жидкости вращается равномерно около постоянной оси твердый шар и жидкость приводится во вращательное движение единственно только этим натиском (импульсом) и всякая ее часть продолжает сохранять свое равномерное движение», то тогда «времена оборотов частиц жидкости будут пропорциональны квадратам их расстояний до центра шара»{122}.[25]

Но если времена обращений вихря должны быть пропорциональны квадратам расстояний до центра, т. е. R2 : r2 = T: t, то как привести это в согласие с третьим законом Кеплера, согласно которому R3 : r3 = Т2 : t2? Это возможно, говорит Ньютон, лишь в двух случаях: а) вещество вихря тем более текуче, чем оно дальше; б) сопротивление, «происходящее от недостатка скользкости частей жидкости, при увеличении скорости разделения частей друг от друга возрастает в большем отношении, нежели эта скорость». Однако, по Ньютону, ни то, ни другое не представляется «сообразным разуму»: ведь к периферии стремятся не более, а менее текучие частицы (если только они не тяготеют к центру), а сопротивление возрастает не в большем, а в меньшем отношении, чем скорость.

«Если же вихри, по мнению некоторых, движутся близ центра скорее, затем до некоторого предела медленнее, затем опять быстрее до окружности, то не может быть получено ни полукубическое, ни какое иное определенное отношение. Пусть философы сами посмотрят, при каком условии может быть объяснено вихрями явление, заключающееся в существовании указанного полукубического отношения».

В следующем за тем предложении Ньютон утверждает: «Тела, которые при переносе вихрем описывают постоянно одну и ту же орбиту, должны обладать одинаковою с вихрем плотностью и двигаться по тому же закону скорости и ее направления, как и части самого вихря».

В поучении (схолии) Ньютон делает отсюда общий вывод: планеты не могут быть переносимы материальными вихрями… И далее еще резче: «Таким образом, гипотеза вихрей совершенно противоречит астрономическим явлениям и приводит не столько к объяснению движений небесных тел, сколько к их запутыванию»{123}.

То же самое отмечал Ньютон позднее в «Оптике». Против «заполнения неба жидкими средами, если они только не чрезвычайно разрежены», свидетельствуют «правильные и весьма длительные движения планет и комет в небесном пространстве», показывающие, что «небесное пространство лишено всякого заметного сопротивления, а следовательно, и всякой ощутимой материи».

Антикартезианское «Общее поучение», которым заканчиваются «Начала», звучит весьма сурово: «Гипотеза вихрей подавляется многими трудностями. Чтобы планета могла описывать радиусом, проведенным к Солнцу площади, пропорциональные времени, надо, чтобы времена обращений частей вихря были пропорциональны квадратам расстояний их до Солнца. Чтобы времена обращений планет находились в полукубическом отношении их расстояний до Солнца, и времена обращений частей вихря должны находиться в полукубическом же отношении их расстояний до Солнца. Чтобы меньшие вихри вокруг Сатурна, Юпитера и других планет могли сохранять свое обращение и спокойно плавать в вихре Солнца, времена обращения частей солнечного вихря должны быть между собою равны. Вращение Солнца и планет вокруг своих осей, которое должно бы согласоваться с движениями вихрей, совершенно не согласуется с этими пропорциями. Движения комет вполне правильны и следуют тем же законам, как и движения планет, и не могут быть объяснены вихрями. Кометы переносятся по весьма эксцентрическим орбитам во всех областях неба, чего быть не может, если только вихрей не уничтожить»{124}.

Кульминационным пунктом «Начал» является третья книга, основное содержание которой составляет изложение системы мира. Весьма интересно и важно заявление Ньютона в самом начале этой книги. Из него явствует, что сначала он написал ее, придерживаясь популярного изложения, чтобы она читалась многими. Затем, однако, он переложил сущность этой книги в ряд предложений, по математическому обычаю, так чтобы она читалась лишь теми, кто сперва овладел «Началами». Сделал это Ньютон, по его собственному признанию, для того, чтобы «те, кто, недостаточно поняв начальные положения, а потому совершенно не уяснив силы их следствий и не отбросив привычных им в продолжение многих лет предрассудков, не вовлекли бы дело в пререкания». Интересно также, что Ньютон особо подчеркивал необходимость хорошенько изучить определения, законы движения и первые три отдела первой книги, после чего можно уже прямо переходить к третьей книге и обращаться к другим предложениям, «если того пожелают», лишь в тех местах, где на них сделаны ссылки. Три особо рекомендуемых для понимания третьей книги отдела первой книги посвящены: первый отдел математическому аппарату (методу флюксий, или методу первых и последних отношений, которым, кстати сказать, Ньютон пользуется далеко не везде в своих «Началах»); второй отдел озаглавлен «О нахождении центростремительных сил», и третий — «О движении тел по эксцентричным коническим сечениям». Попробуем последовать указаниям Ньютона и пойти по пути, который он наметил.

Сначала об определениях. Ньютон различает приложенную силу (силу в современном смысле) и силу, которая «врождена» материи или заключена в ней. Первая есть «действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения», вторая — присущая материи «способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения». Эту «силу» Ньютон называет также «инерцией материи», являющейся причиной того, что всякое тело лишь с трудом выводится из своего покоя и движения.

Ньютон говорит, что «эта сила всегда пропорциональная массе и если отличается от инерции массы, то разве только воззрением на нее».

Вслед за тем Ньютон дает определение центростремительной силы, которая составляет главный предмет первой книги «Начал». Это есть та сила, «с которою тела к некоторой точке, как к центру, отовсюду притягиваются, гонятся или как бы то ни было стремятся».

Как математик, Ньютон не вдается, следовательно, в физическую природу силы. Кроме абсолютной величины центростремительной силы Ньютон различает ускорительную и движущую величину ее. Первая есть «мера, пропорциональная той скорости, которую центростремительная сила производит в течение данного времени». Вторая пропорциональна количеству движения, которое производится центростремительной силой в течение данного времени. Отсюда следует, что

или, иначе, движущая сила пропорциональна ускорительной силе, умноженной на массу.

Второй отдел первой книги «Начал» есть «математическая прелюдия» к третьей книге. Первое предложение определяет зависимость между площадями, которые описывают радиусы, и временами (основа для последующего вывода второго закона Кеплера). «Площади, описываемые радиусами, проводимыми от обращающегося тела к неподвижному центру сил, лежат в одной плоскости и пропорциональны времени описания их». Наоборот, «если тело движется по какой-либо плоской кривой так, что радиусом, проведенным к неподвижной точке или к точке, движущейся равномерно и прямолинейно, описываются площади, пропорциональные времени, то это тело находится под действием центростремительной силы, направленной к указанной точке».

В третьем отделе Ньютон рассматривает движение тел по эксцентричным коническим сечениям под действием центростремительной силы, направленной к фокусу кривой. Отдельно для эллипса (предложение 11), гиперболы (предложение 12) и параболы (предложение 13) доказывается, что величина силы обратно пропорциональна квадрату расстояния до центра силы. Отсюда выводится основа второго и третьего законов Кеплера, а именно: «Если несколько тел обращаются около общего центра сил, причем центростремительные силы обратно пропорциональны квадрату расстояния до центра, то главные параметры орбит пропорциональны квадратам площадей, описываемых проведенными к телам радиусами в одно и то же время». И в следующем предложении: «При тех же предположениях утверждаю, что времена оборотов по эллипсам относятся между собою, как большие полуоси в степени 3/2».

Третьей книге предпосланы «Правила философствования», о которых мы скажем позднее, и «Явления», т. е. обобщенные данные астрономических наблюдений. Явление 1 относится к спутникам Юпитера, орбиты которых «не отличаются чувствительно» от кругов с центрами в центре этой планеты; к ним применим закон площадей (второй закон Кеплера) и третий закон Кеплера. Явление 2 — то же относительно спутников Сатурна. В явлениях 3—5 утверждается справедливость второго и третьего законов Кеплера относительно пяти «главных планет» (Меркурия, Венеры, Марса, Юпитера и Сатурна), а в явлении 6 — применимость закона площадей к движению Луны.

Поскольку в первой книге «Начал» законы Кеплера уже были выведены теоретически из закона центростремительной силы, а в только что упомянутых «Явлениях» констатировано, что эти законы распространяются на планеты и их спутники, постольку в первых предложениях третьей книги Ньютону уже не остается ничего другого, как сослаться на уже сказанное. Это сделано в полном соответствии с правилами изложения по обычаю геометров, т. е. по образцу «Начал» Евклида. В качестве примера достаточно привести лишь текст предложения 1 и его доказательства: «Силы, которыми спутники Юпитера постоянно отклоняются от прямолинейного движения и удерживаются на своих орбитах, направлены к центру Юпитера и обратно пропорциональны квадратам расстояний мест до этого центра». Доказательство сводится к фразе: «Первая часть предложения следует из явления 1 и предложения 2 или 3 книги I; последняя часть — из явления 1 и следствия 6 предложения 4 той же книги». Далее Ньютон добавляет: «То же самое разумей и о спутниках Сатурна на основании явления 2».

Центральное место в III книге занимает предложение 4: «Луна тяготеет к Земле и силою тяготения постоянно отклоняется от прямолинейного движения и удерживается на своей орбите».

Отсюда Ньютон делает свой знаменитый вывод, что сила, которая удерживает Луну на ее орбите, есть та самая сила, которая называется тяжестью, или тяготением.

Этот вывод Ньютон основывает на первом и втором правилах философствования, или, как переводит А.Н. Крылов, правилах умозаключений в физике. Первое правило гласит: «Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснений явлений». В этой связи Ньютон ссылается на старое утверждение философов, что «природа ничего не делает напрасно», что «природа проста и не роскошествует излишними причинами вещей». Отсюда второе правило: «поскольку возможно, должно приписывать те же причины того же рода проявлениям природы».

Следовательно, сила, которая удерживает Луну на ее орбите, и сила тяготения — одна и та же. На основании того же второго правила Ньютон распространяет сказанное на спутники других планет и самые планеты.

Если сопоставить только что сказанное с ранее приведенными положениями Ньютона, нетрудно видеть, что порядок изложения «Начал» — от общих абстрактных выводов к проверке их конкретными эмпирическими данными — вовсе не соответствует историческому ходу мысли самого Ньютона, где обнаруживается сложнейшее переплетение абстрактного и конкретного. Уместно напомнить, что как раз в годы написания «Начал» (1686—1687) Ньютон беспрестанно обращался к астроному Флемстиду с вопросами относительно точных данных, касающихся орбит Юпитера и Сатурна, сплющенности Юпитера у полюсов, расхождений между новыми наблюдениями Сатурна и таблицами Кеплера и т. д.

Ньютон несколько раз решительно заявлял, что в «Началах» он исследует силы не как физик, а как математик. Так, он писал: «Я придаю тот же самый смысл названиям ускорительные и движущие притяжения и натиски (импульсы). Названия же притяжение, натиск (импульс) или стремление я употребляю безразлично одно вместо другого, рассматривая эти силы не физически, а математически». Ньютон заявляет, что не хочет этими названиями определить самый характер действия или физические причины происхождения этих сил или же приписывать центрам (которые суть математические точки) и физические силы, хотя и будет говорить о «силах центров и о притяжении центрами»{125}.

В первой книге «Начал» Ньютон рассматривает центростремительную силу как «притяжение», хотя «следовало бы, если выражаться физически, именовать ее более правильно напором (impulsis)». «Но теперь, — продолжает он, — мы занимаемся математикой и, оставляя в стороне физические споры, будем пользоваться более обычным названием, чтобы быть понятнее читателям-математикам».

В другом месте Ньютон говорит, что в своих «Началах» он исследует не виды сил и физические свойства их, а лишь их величины и математические соотношения между ними. «Математическому исследованию подлежат величины сил и те соотношения, которые следуют из произвольно поставленных условий. Затем, обращаясь к физике, надо эти выводы сопоставить с совершающимися явлениями, чтобы распознать, какие же условия относительно сил соответствуют отдельным видам обладающих притягательною способностью тел. После того, как это сделано, можно будет с большею уверенностью рассуждать о родах сил, их причинах и физических между ними соотношениях»{126}.

Поэтому в известном смысле был прав анонимный рецензент «Начал» (по всей вероятности, ученик Декарта Режи), когда писал вскоре после выхода в свет труда Ньютона, что труд это есть «чистая механика, самая совершенная, какую только можно вообразить». Это значило в глазах рецензента, что Ньютон еще должен доказать физическую правильность своих абстрактных механических положений.

Воспитанный в атмосфере декартовских идей, но все более отходивший от правоверного картезианства, Мальбранш развивал в сущности те же мысли и до и после выхода «Начал». Природа не абстрактна; рычаги и колеса механические — не математические линии и круги. Геометрия, по словам Мальбранша, иногда «бывает для нас поводом к заблуждению». «Мы так увлекаемся очевидными и приятными доказательствами этой науки, что недостаточно наблюдаем природу. Вот главная причина, почему не все изобретенные машины бывают удачны… Почему самые точные астрономические вычисления не предсказывают хорошо продолжительности и времени затмений… В движении планет нет полной правильности; носясь в громадных пространствах, они неравномерно увлекаются жидкой материей, окружающей их».

Мальбранш готов признать, что «заблуждения, в которые мы впадаем в астрономии, механике, музыке и во всех науках, где применяется геометрия, происходят не от геометрии, науки неоспоримой». Дело в ложном применении ее, в истолковании математических и механических абстракций как вполне точных отражений физической действительности. «Так, например, предполагают, что планеты в своих движениях описывают совершенно правильные круги и эллипсы, а это неверно. Такое предположение необходимо для рассуждений, и оно почти верно; но мы должны всегда помнить, что принцип, на основании которого мы рассуждаем, есть только предположение. Точно так же в механике мы предполагаем, что рычаги и колеса совершенно тверды и подобны математическим линиям и кругам, не имеющим тяжести и трения»{127}.

В другом месте Мальбранш указывал, что астрономы Нового времени открыли эллиптическую форму планетных движений. Но если они утверждают, что эти эллипсы вполне правильны, они впадают в заблуждение, и такое заблуждение «тем труднее исправить, что наблюдения, производимые над течением планет, не могут быть ни достаточно точны, ни достаточно верны, чтобы обнаружить неправильность их движения». Только одна физика, заключал Мальбранш, может поправить эту ошибку.

Получалась парадоксальная картина. Картезианцы объявляли отвлеченной гипотезой всю теоретическую механику Ньютона и усматривали в картезианской физике вихрей подлинно физическое объяснение, тогда как Ньютон, наоборот, заявлял, что не измышляет гипотез, и объявлял всю картезианскую физику сплошной гипотезой в самом дурном, порицательном значении слова.

Но то, что картезианцы были склонны поставить Ньютону в упрек, было в действительности основным достоинством его основополагающих «Начал».

Напомним слова В.И. Ленина из его «Философских тетрадей»: «Мышление, восходя от конкретного к абстрактному, не отходит — если оно правильное…от истины, а подходит к ней. Абстракция материи, закона природы, абстракция стоимости и т. д., одним словом, все научные (правильные, серьезные, не вздорные) абстракции отражают природу глубже, вернее, полнее. От живого созерцания к абстрактному мышлению и от него к практике — таков диалектический путь познания истины, познания объективной реальности»{128}.

Если бы Ньютон последовал советам Мальбранша, можно смело сказать, что не было бы «Математических начал натуральной философии». Как математик, он умел ставить проблемы во всей их абстрактной общности, отвлекаясь от осложняющих моментов, но наряду с этим он же ставил столь же математически вопрос о праве не принимать во внимание до поры до времени подобные «осложняющие» моменты. Так, говоря о взаимодействии Луны и Земли, Ньютон считал возможным пренебречь действием Солнца, но одновременно он выяснял величину этого действия. Именно им были поставлены вопросы о возмущениях близких к круговому движению двух тел (Луны и Земли) под действием третьего, от них весьма далекого (Солнца).

Ньютон озаглавил свой труд «Математические начала натуральной философии». Мы видели, в каком смысле следует понимать слова «математические начала». Но изложил ли он в своем произведении математические начала всей натуральной философии? Он рассмотрел ряд важнейших явлений (небесные движения, приливы моря, удар тел, движение брошенных тел и т. д.). Однако не случайно восклицал он: «О если бы и остальные явления природы можно было также вывести путем того же способа аргументации из начал механики!» В деятельности Ньютона оставались области, которые не подвергались и еще не могли подвергнуться подобной математизации.

Особые усилия прилагал Ньютон к тому, чтобы добиться союза математики и физики в области оптики. В оставшихся забытыми «Лекциях по оптике» он писал: «Так же как астрономия, география, мореплавание, оптика и механика почитаются науками математическими, ибо в них дело идет о вещах физических, небе, земле, кораблях, свете и местном движении, так же точно и цвета относятся к физике, и науку о них следует почитать математической, поскольку она излагается математическим рассуждением. Точная наука о цветах относится к труднейшим из тех, кои желательны были бы философу. Я надеюсь на этом примере показать, что значит математика в натуральной философии, и побудить геометров ближе подойти к исследованию природы, а жадных до естественной науки сначала выучиться геометрии, чтобы первые не тратили все время на рассуждения, бесполезные для жизни человеческой, а вторые, старательно выполнявшие до сих пор свою работу превратным методом, разобрались бы в своих надеждах, чтобы философствующие геометры и философы, применяющие геометрию, вместо домыслов и возможностей, выхваляемых всюду, укрепляли бы науку о природе высшими доказательствами»{129}.

Обращая внимание на эти малоизвестные строки «Лекций», С.И. Вавилов писал: «Сложное учение о цветах Ньютон впервые поставил на почву измерительного физического опыта и математического расчета. Учение о цветах наряду с геометрической оптикой заняло законное место в «quadrivium»{130}.

Нет сомнения, что в этой и в аналогичных областях эксперимент и наблюдение должны были играть совершенно иную роль, чем при математическом исследовании математических начал натуральной философии.

Так наука на рубеже XVIII в. оказалась лицом к лицу с новыми проблемами математико-механического истолкования явлений и новой необозримой областью научного экспериментирования.

Ньютон сформулировал основную задачу, которую решает наука в этой новой области. Он говорил о двух вопросах, ответы на которые содержатся в «Началах натуральной философии». Один вопрос — это вопрос о поведении тел, об их положениях, скоростях и ускорениях, когда заданы действующие на них силы. Это механика в собственном смысле. Второй вопрос о силах, когда заданы положения тел. Как мы видели, этот второй вопрос был центральным вопросом ньютоновой теории тяготения. Последняя стала образцом для появившихся впоследствии концепций магнитного и электрического полей с тем, впрочем, различием, что эти поля зависят, как оказалось, одно от другого. Но такое отличие уже выводило науку за рамки ньютоновой схемы и означало эмансипацию физики от власти механики. Следующим актом этой эмансипации было подчинение самой механики более общим понятиям теории поля.

Но нас сейчас интересует история механики, причем в этой главе — история ее начальных этапов. Сопоставление двух вопросов, поставленных Ньютоном в «Началах натуральной философии» — определения движений и положений тел по заданным силам и определения сил по заданному положению тел, — бросает свет на характерную и важную особенность этих этапов. Классическая механика уже в XVII в. включала понятия и идеи, которые открывали ей дорогу к руководящей роли в науке, к сведению закономерностей природы к механике. И вместе с тем классическая механика содержала понятия и идеи, которые при своем дальнейшем развитии означали эмансипацию физики и, более того, изменении фундаментальных основ классической механики, заложенных в XVII в.


ИДЕЙНЫЕ ИСТОКИ МЕХАНИКИ ЛЕЙБНИЦА

Готфрид Вильгельм Лейбниц родился в 1646 г. — за два года до окончания Тридцатилетней войны. Отец его был профессором философии Лейпцигского университета; он умер, когда Лейбницу было 6 лет. Обучаясь на юридическом факультете того же университета, Лейбниц одновременно изучал философию и математику. После получения (в 20 лет) ученой степени он мог сделаться профессором, но, отказавшись от этого, поступил на службу к майнцскому курфюрсту в качестве юриста бывшего министра курфюрста Бойнебурга. Одновременно он вел научную и литературную работу, интересуясь философией, физикой, математикой. Бойнебург имел многочисленные знакомства в ученом мире, и благодаря ему Лейбницу удалось завести переписку с учеными различных стран. В 1672 г. он отправился за границу, жил несколько лет в Париже, где сблизился с Гюйгенсом, одним из величайших ученых того времени. Там в Академии наук он делал доклады о своих научных исследованиях. Гюйгенс оказал на Лейбница очень большое влияние.

Бойнебург, отправив Лейбница в заграничную командировку, вскоре умер, и Лейбниц оказался не у дел. Однако через некоторое время он был приглашен на службу ко двору ганноверского герцога в качестве библиотекаря с правом жить еще некоторое время за границей.

В конце 1676 г. он переехал в Ганновер, где его служба продолжалась до самой смерти. Здесь он выполнял самые разнообразные поручения в качестве экономиста, историка, дипломата, юриста, технического консультанта.

В 1687—1690 гг. Лейбниц совершил большое путешествие, во время которого посетил Австрию и Италию. В период 1711 —1716 гг. он несколько раз встречался с Петром I, который высоко ценил Лейбница как ученого и беседовал с ним по вопросу организации Академии наук и университетов в России.

В 1700 г., когда по предложению Лейбница в Берлине была учреждена Академия наук, он был назначен ее президентом, но последние годы жизни был мало с ней связан. Лейбниц был также членом Парижской академии наук и Лондонского королевского общества.

Лейбниц отличался необыкновенной работоспособностью. Его литературное наследство поистине огромно: одних только писем Лейбница осталось около 15 тысяч, и почти все они имеют большое научно-историческое значение. В своих произведениях Лейбниц вырисовывается как первоклассный и в высшей степени многосторонний исследователь, не только философ и математик, но и физик, механик, геолог, историк, психолог, экономист, языковед, богослов и правовед.

Служба при дворе отвечала характеру Лейбница: он, как и многие представители немецкого бюргерства его эпохи, свои мечты и чаяния о лучшем устройстве жизни связывал с просвещенным монархом, прилагал немало усилий к тому, чтобы склонить своего повелителя на путь политико-экономических реформ, которые должны были бы обеспечить капиталистическое развитие Германии. Но он мало чего добился: его бессовестно эксплуатировали, третировали, считали вольнодумцем, ему не доверяли. Как он ни старался примирить науку с религией, его подозревали в атеизме. Перед своей смертью, последовавшей в 1716 г., он оказался в полном одиночестве. Смерть Лейбница прошла незамеченной даже Берлинской академией наук, основателем которой он был. Только Парижская академия наук заслушала посвященное Лейбницу «похвальное слово», произнесенное Фонтенелем.

Идеализм считает, что Вселенную нельзя объяснить состоящей из одной только материи: материя мертва, слишком бедна качествами. По этой же самой причине дуализм Декарта основывался на признании двух субстанций — материи и души. Однако, вводя вторую, нематериальную субстанцию для «обогащения» мира, Декарт создавал неразрешимую для себя трудность: он не мог объяснить, каким образом эти две субстанции взаимодействуют. Из этого туцика дуализм выхода указать не мог по самому своему существу. Решения задачи надо было искать на пути монизма. Материалисты XVIII столетия давали монистическое решение вопроса, но они упрощали проблему, желая все богатство красок и жизни реального мира свести к элементарным механическим и геометрическим свойствам материи.

ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ (1646-1716)

Немецкий ученый, математик, философ, механик. Лейбницу наряду с Ньютоном принадлежит заслуга разработки дифференциального и интегрального исчисления

Лейбница не удовлетворяло то решение вопроса о материи, которое предлагалось механицистами XVII в., а социальная среда Германии того времени толкала его к идеалистическим позициям. Вместо материи он в основу мироздания ставил духовные субстанции — монады. Монада — это одухотворенный атом, обладающий особой индивидуальностью, движением, активностью и духовными качествами (представлениями). По словам Лейбница, каждая монада есть «мир для себя», каждая монада — «самодовлеющее единство». Роль материи, по Лейбницу, сводится к тому, что материя «нечто вроде инобытия души или киселя, связующего их мирской, плотской связью»{131}.

Лейбниц считал, что вообще в природе нет ничего абсолютно прерывного; все противоположности, все границы пространства и времени, а также своеобразия, исчезают перед абсолютной непрерывностью, перед бесконечной связью Вселенной.

В связи с этим Ленин замечает: «Тут своего рода диалектика и очень глубокая, несмотря на идеализм и поповщину»{132}. Указания на связь частей мира между собой, рассмотрение природы как целостного единства приводит Лейбница к учению о том, что бог в своих действиях следует естественным законам, правда установленным им самим, но в соответствии с его высшим разумом, а не случайными велениями.

Желая максимально возвеличить бога, Лейбниц избирал для этого такой путь, на котором наука не устранялась: он утверждал незыблемость законов природы (хотя в основе этих законов и лежали, по его мнению, изначальные принципы нематериального порядка). Он с презрением отвергал ту «фанатическую философию», которая объясняет «все явления тем, что приписывает их непосредственно богу при помощи чуда», или ту «варварскую философию, которая выдумывала для них специально скрытые качества или способности, считавшиеся похожими на небольших демонов или домовых, способных выполнять беспрекословно все то, что от них требуют, — вроде того как если бы карманные часы указывали время, благодаря некоторой часопоказывающей способности, не нуждаясь ни в каких колесиках, или как если бы мельницы мололи зерна, благодаря некоторой размалывающей способности, не нуждаясь в таких вещах, как жернова»{133}.

Оставаясь целиком на почве идеализма, Лейбниц допускал решительные отступления от него, думая, что этим он только укрепляет идеализм. Это дало Марксу основание видеть его заслугу в том, что он, как потом и Гегель, работал над «ниспровержением бога»{134}.

Лейбниц, подчеркивая, что «бог может сделать более того, что мы в состоянии понять, и что таким образом в догматах веры могут заключаться непостижимые для нас тайны», возражает против того, чтобы «в обычном ходе вещей прибегали к чудесам»{135}. В другом месте он писал: «Нелепым и бессмысленным было бы… чтобы бог повседневно творил чудеса»{136}.

Лейбниц телесную субстанцию понимал не только как протяженную массу, извне приводимую в движение, а как субстанцию, включающую в себя деятельную силу, — по выражению Фейербаха, — как «не знающий покоя принцип деятельности».

Ленин, конспектируя Фейербаха, с очевидной симпатией цитировал это замечание, а в другом месте писал: «Лейбниц через теологию подходил к принципу неразрывной (и универсальной, абсолютной) связи материи и движения»{137}.

Лейбниц вводит в науку элементы принципа действенности и самодвижения субстанции. Этот принцип был особенно ценным в лейбницевой физике и динамике.

Об идеализме XVII столетия и его отличиях от идеализма позднейшего Маркс писал: «Метафизика XVII века еще заключала в себе положительное, земное содержание (вспомним Декарта, Лейбница и др.). Она делала открытия в математике, физике и других точных науках, которые казались неразрывно связанными с нею. Но уже в начале XVIII века эта мнимая связь была уничтожена. Положительные науки отделились от метафизики и отмежевали себе самостоятельные области»{138}.

В динамике Лейбниц приписывал себе открытие двух основных законов мироздания: закона непрерывности и закона сохранения силы. Опираясь на свой закон непрерывности, Лейбниц отрицал возможность существования абсолютно твердых неизменяемых тел и неизменяемых атомов; он утверждал, что покой есть не что иное, как частный случай движения, и т. д. Что касается другого закона, закона сохранения силы (по терминологии Лейбница), то этот закон, разумеется, еще не носил у Лейбница того конкретного характера, который он принял в физике XIX столетия (после открытий Мейера, Джоуля, Гельмгольца и др.). Этому также мешало отсутствие знаний о превращениях энергии. Тем не менее ведущее значение идей Лейбница для наиболее передовых исследований позднейшего времени едва ли нуждается в доказательствах.

Лейбниц не был согласен с Декартом, утверждавшим, что в телах нет ничего, кроме протяженности. Помимо протяженности Лейбниц усматривал в телах «нечто более важное, чем протяженность», а именно «силу природы». Эта сила есть «стремление, или усилие (conatus), проявляющееся в определенном действии, если ему не препятствует противоположное стремление». Эта сила происходит от бога, но, с другой стороны, она составляет, по словам Лейбница, «самую внутреннюю природу тел»{139}.

Указанная «деятельность» телесной субстанции, получающая в дальнейшем наименование «силы», неразрывно связана у Лейбница с движением (механическим движением), но Лейбниц большее значение придает «силе», а не движению. Эта «сила» (vis), или потенция (potentia), соответствует теперешнему понятию энергии. Ее значение Лейбниц видит в том, что «сила представляет собой нечто реальное и абсолютное» (это вытекает из ее сохранения в природе), тогда как движение «принадлежит к разряду относительных феноменов»{140}. Кинетическую относительность движения Лейбниц понимал в духе классической механики, но нетрудно в его рассуждениях видеть прозорливое указание на то, что активность природы не исчерпывается движением механическим.

У Лейбнрща сила не отрывается от движения, и силу он не считает просто «причиной движения». Он говорит: «Всякое телесное действие происходит от движения, а само движение происходит только от движения, существовавшего уже ранее в теле или переданного ему от другого тела»{141}. В отличие от Ньютона Лейбниц считал, что «совершенно покоящееся тело в корне противоречит природе вещей»{142}.

Не ряду с этим «сила» у Лейбница — это «душа», аристотелевская «энтелехия», «субстанциальная форма», о которой так много говорилось в средневековой философии. Лейбниц сам, говоря о силе, или потенции, неоднократно подчеркивал, что при объяснении тех или иных явлений природы не следует апеллировать только лишь к энтелехии; по его словам, она является лишь «общей причиной», которой совершенно недостаточно для этого. Нужпы «особые и частные причины, без чего, говорит он, мы остаемся на позициях схоластического пустословия»{143}.

Лейбниц и Декарт сходились на том, что движение в природе не исчезает и не увеличивается. Различие во взглядах начиналось у них с вопроса, какой формулой измерять величину движения. Что касается Ньютона, он в принципе не допускал сохранения движения в природе, а потому не нуждался не только в решении, но даже в постановке вопроса о мере движения.

Основной мыслью, из которой исходил Лейбниц, было положение, что причина всегда количественно равна своему действию. Поэтому, как бы ни видоизменялись движения в природе, их общая итоговая мера должна быть неизменной, ведь движение имеет свою причину тоже в движении. Эту меру он назвал «живой силой» раньше того, как была найдена математическая формула для ее выражения. «Живая сила» у Лейбница имела и другие названия: «сила движения», «движущая сила», «потенция». Принцип равенства причины и действия приводил Лейбница к принципу сохранения живых сил, или к принципу сохранения силы. Это не математическая теорема, а философское положение, высший постулат разума, без которого мы должны были бы признать беспорядок, хаос во Вселенной. Когда это установлено в качестве общей непререкаемой истины, начинается специальное исследование: как математически правильнее выразить меру движения, чтобы указанная высшая истина смогла быть выражена в виде уравнения, в левой части которого стояла бы функция от величин, характеризующих движущееся тело, а справа постоянная.

Уже бывшая в ходу до Лейбница формула mv — const (mv называли «количеством движения») не отвечала тому назначению, которое давал силе Лейбниц. Правда, формула эта могла быть пригодна для явлений удара, где механическое движение передается от одного тела к другому в качестве механического же движения. Но стоит только взять простейшее явление, где механическое движение переходит в другую форму движения (например, в энергию натянутой пружины или в потенциальную энергию положения), как предположение о сохранении mv приводит к нелепому выводу о возможности «вечного механического движения», т. е. к возможности получения движения из ничего. Поэтому Лейбниц считал ошибкой Декарта, что тот, признавая, что сила движения в мире сохраняется, отождествил ее с величиной mv, тогда как сила движения вовсе не выражается через mv.

Лейбниц приводит целый ряд аргументов, поясняющих и доказывающих его положение, — здесь и Галилеев закон падения, и невозможность вечного механического движения, и т. д. Полемика с Декартом облегчалась еще тем, что тот под «количеством движения» понимал всегда положительное число независимо от направления скорости.

В пользу Декарта видимым образом говорили даже не столько правила удара (истинные правила удара указывают на векторный характер «количества движения»), сколько общепризнанное тогда правило статики — «золотое правило механики», согласно которому грузы при равновесии обратно пропорциональны их возможным перемещениям или скоростям этих перемещений. Так как в то время вес еще не различался от массы, то эта пропорциональность и означала равенство тех произведений, которые Декарт назвал «количеством движения».

Лейбниц разъясняет, что это равенство носит случайный характер, что вообще должно соблюдаться равенство произведений грузов и высот, но что здесь, в частном случае, высоты пропорциональны скоростям. А так как высоты, по закону Галилея, пропорциональны квадратам скоростей, достигнутых при падении (или начальных скоростей при подъеме), то меру движения должно считать пропорциональной квадрату скорости.

После того как Локк выступил с заявлением о своем согласии с Ньютоном, который убедил его, что при помощи толчка нельзя объяснить тяготения, а что здесь нужно привлечь «всемогущество божие и фактическое действие бога», Лейбниц в «Новых опытах» писал: «Я могу лишь воздать хвалу этому скромному благочестию нашего знаменитого автора, признаюшего, что бог может сделать более того, что мы в состоянии понять, и что таким образом в догматах веры могут заключаться непостижимые для нас тайны, но я не хотел бы, чтобы в обычном ходе вещей прибегали к чудесам и допускали абсолютно непонятные силы и воздействия. Ведь в противном случае под предлогом божественного всемогущества мы дадим слишком много воли плохим философам»{144}. Всемогущество божие всемогуществом, по нашей задачей остается отыскивать естественные причины для явлений в телах — такова мысль Лейбница.

Рассматривая Лейбницев закон сохранения энергии с точки зрения современной науки, можно сказать, что его формулировка при строгом подходе к ней оказывается не совсем ясной, расплывчатой. Но иначе и быть не могло. Закон сохранения энергии можно сформулировать со всей строгостью и в соответствии с реальной действительностью только в связи с понятием превращения энергии. Объективный закон НЕ = const включает в себя большое количество слагаемых (видов энергии), из которых во времена Лейбница были в точном смысле известны только кинетическая энергия, потенциальная энергия положения относительно земли и энергия натянутой пружины. Только работы Майера, Джоуля, Гельмгольца и других ученых в 40-х годах XIX столетия расширили понятие об энергии, и тогда вместо двух или трех слагаемых в сумме ΣЕ = const стало возможным говорить о большом числе их, при каком эта сумма только и становится действительно постоянной.

Лейбниц был прав в принципе, когда он считал, что сумма всей потенции (энергии) в природе необходимо остается постоянной, но он ошибался, когда расшифровывал эту сумму: слишком много тайн скрывала от людей в те времена природа, и они не знали, что механическое движение может превращаться в эквивалентное ему количество теплоты, электромагнитной энергии и т. п. Вот почему закон сохранения энергии у Лейбница остается скорее декларацией, чем фактическим завоеванием науки. Плодотворность этого принципа, декларированного Лейбницем, была показана последующим прогрессом научного знания в XIX—XX вв.


Загрузка...