VII. МЕХАНИКА В XIX ВЕКЕ

РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ

Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В четырехлетнем возрасте он неплохо знал географию и свободно читал литературу на английском языке, а восьми лет овладел итальянским и французским языками, изучал арабский, санскрит и латынь. Особенно большую склонность проявлял юноша к математике.

В 1824 г. Гамильтон поступил в Тринити-колледж Дублинского университета, где успешно изучал математические науки и разрабатывал геометрическую оптику, или теорию лучей. В возрасте 22 лет молодой ученый был назначен профессором астрономии колледжа св. Андрея Дублинского университета и королевским астрономом Ирландии. В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лекции по астрономии.

В 1837 г. Гамильтон был избран президентом Ирландской академии наук. Научные заслуги его нашли широкое признание во всем мире. В частности, в 1838 г. он был избран членом-корреспондентом Петербургской академии наук.

В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знаменитых работ — «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практических запросов их применения в оптических приборах. В третьем добавлении к этому труду ученый на основании сложных математических вычислений предсказал существование нового, до тех пор неизвестного явления — внешней и внутренней конической рефракции в двухосных кристаллах. Открытие Гамильтона вызвало огромный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.

Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый принцип наименьшего действия. Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и названная им «действием», должна иметь некоторое минимальное значение. Несколько позже Гамильтона и независимо от него принцип наименьшего действия был разработан русским ученым М.В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона — Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики (функция Гамильтона Н) оказалась при довольно широких условиях совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями, но последнее достаточно полно раскрылось лишь через столетие.

Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и законченном виде: он вел свои исследования, переходя к механике, преимущественно в предположении, что имеет дело с системой свободных материальных точек, взаимодействующих с силами, зависящими только от взаимных расстояний. Обобщение результатов и методов Гамильтона, устранение излишних ограничений, тщательная разработка математических методов является заслугой К. Якоби и М.В. Остроградского. Поэтому часто можно встретить в литературе термин «теория Гамильтона — Якоби», но исторически более справедливо говорить о теории Гамильтона — Якоби — Остроградского.

Эта теория является основным достижением аналитической механики XIX в. Поначалу казалось, что ее главное значение в развитии аналитических методов. Но более глубокое выявление связи механики с оптикой и раскрытие возможности нового геометрического истолкования механических проблем имели принципиальное значение. Во второй половине XIX в. накопление новых фактов и разработка новых методов в аналитической механике шло главным образом по линии геометризации. В начале XX столетия, когда это направление сочеталось с новыми течениями в физике, именно на созданной им основе были пересмотрены основные понятия классической механики.

УИЛЬЯМ РОУАН ГАМИЛЬТОН (1805—1865)

Английский математик и механик. Гамильтон внес большой вклад в развитие вариационных принципов механики. Построил систему комплексных чисел, так называемых кватернионов

Труды Гамильтона по механике получили высокую оценку. В 1842 г. па ежегодном собрании Британской ассоциации в Манчестере К. Якоби сказал: «Гамильтон — это Лагранж вашей страны». В 1866 г. Тэт охарактеризовал работу Гамильтона по динамике как «крупнейшее дополнение, полученное теоретической динамикой с тех пор, как были достигнуты великие успехи Ньютоном и Лагранжем». В 1835 г. Гамильтон был награжден золотой медалью Английского королевского общества.

Гамильтона всегда привлекала проблема мнимых величин, значение и геометрическая природа которых не были ясны математикам того времени. Замечательным вкладом в науку явилось открытие им в 1843 г. исчисления кватернионов — своеобразной системы чисел, представляющей собой обобщенную комплексную величину, которая состоит из суммы четырех членов. Первый член был назван ученым скаляром, три остальных — векторами (термин, введенный Гамильтоном и получивший широкое распространение в физике, механике и технических науках). В основе арифметики кватернионов лежат не две единицы, как в арифметике комплексных чисел (т. е. действительная и мнимая единицы), а четыре, операции над которыми подчинены определенным законам. Особые трудности представило для Гамильтона установление закона умножения кватернионов, который он нашел много времени спустя после того, как разработал правила их сложения и вычитания.

Гамильтон с большой глубиной и подробностью разработал теорию кватернионов, ее приложения в геометрии и механике, а также кватернионный и векторный анализы. Развитию этой теории он посвятил почти целиком последние 22 года своей жизни. В 1853 г. был опубликован капитальный труд Гамильтона по этой теории под названием «Лекции о кватернионах».

Историческая роль этой работы велика: во-первых, в ней заложены основы нынешнего векторного исчисления; во-вторых, теория кватернионов Гамильтона является одним из главных источников развития такой отрасли математики, как некоммутативная алгебра, т. е. алгебра, в которой не действует переместительный закон умножения. Такая некоммутативная алгебра получила широкое применение в современной теоретической физике.


ВКЛАД ЯКОБИ В РАЗВИТИЕ ДИНАМИКИ

Карл Густав Якоби (1804—1851) — один из крупнейших немецких математиков и механиков первой половины XIX в. Он был профессором математики сначала в Кенигсбергском, а затем в Берлинском университетах. В 1829 г. Якоби был избран членом-корреспондентом, а в 1836 г. действительным членом Берлинской академии наук. За свои выдающиеся научные заслуги он был избран членом многих зарубежных академий наук. Русские ученые одними из первых оценили огромное значение его исследований по математике и механике и уже в 1830 г. избрали его членом- корреспондентом Петербургской академии наук; три года спустя (в 1833 г.) ему было присвоено звание почетного члена Петербургской академии наук. Следует отметить, что Карл Якоби живейшим образом интересовался деятельностью Петербургской академии наук. Укреплению связей К.Г. Якоби с русскими научными кругами, в частности с М.В. Остроградским, благоприятствовал личный момент: его брат Мориц, крупный физик (известный в России как Борис Семенович Якоби), был русским академиком (с 1837 г.). К.Г. Якоби — один из создателей теории эллиптических функций, ему принадлежат крупные достижения в области теории чисел, линейной алгебры, интегрального исчисления, теории дифференциальных уравнений, вариационного исчисления. Он ввел в математику функциональные определители, которые часто называют в его честь якобианами. Основной труд Якоби по механике — его замечательные «Лекции по динамике», выполненные в 1842—1843 гг. и изданные его учеником А. Клебшем (1839—1894) после смерти Якоби в 1866 г. Эти лекции представляют собой развитие классической аналитической механики Лагранжа и содержат много новых идей как по математике (теория дифференциальных уравнений в частных производных, вычисление геодезических линий на эллипсоиде), так и по механике.

Исходным моментом исследований Якоби по механике является принцип Гамильтона — Остроградского, предложенный в первоначальной форме ирландским механиком и математиком У.Р. Гамильтоном и в окончательной ферме русским ученым М.В. Остроградским.

В своих «Лекциях» Якоби значительно развил теорию канонических уравнений Гамильтона, существенно расширив класс механических систем, к которым она применима. Изложив принцип Гамильтона и выведя канонические уравнения для любых механических систем, обладающих силовой функцией, в которую может входить время, Якоби применяет к этим уравнениям теорему С. Пуассона, открытую им в связи с другими задачами механики.

КАРЛ ГУСТАВ ЯКОБИ (1804-1851)

Немецкий математик. К. Якоби сделал ряд важных открытий в области теории эллиптических функций, вариационного исчисления, дифференциальных уравнений, теоретической механики и других математических дисциплин

В дальнейшем Якоби находит много различных случаев получения интегралов уравнений движения. Например, рассматривая системы с силовой функцией, Якоби показывает, что в случае, когда можно выбрать такие обобщенные координаты qi, где силовая функция не зависит от координаты qs, а живая сила зависит от нее, можно получить интеграл данной системы уравнений в виде os = const (при этом говорят, что координата qs циклическая).

Важнейший результат К. Якоби — его теорема о том, что канонические уравнения являются уравнениями характеристик некоторого дифференциального уравнения в частных производных первого порядка, т. е. интегральные поверхности указанного уравнения в частных производных состоят из интегральных кривых системы канонических уравнений, определяющих движение механической системы. Тем самым интегрирование канонических уравнений сводится к разысканию полного интеграла уравнений в частных производных.

Дальнейшее обобщение метода Гамильтона — Якоби было осуществлено М.В. Остроградским.


ТРУДЫ ОСТРОГРАДСКОГО ПО МЕХАНИКЕ

За свою почти сорокалетнюю научную деятельность Михаил Васильевич Остроградский (1801 —1861) создал ряд ценных трудов по основным проблемам механики. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщенных принципов статики и динамики.

Многочисленные исследования М.В. Остроградского по механике можно разбить, как это сделал Н.Е. Жуковский, на три группы: 1) работы по началу возможных перемещений, 2) работы по дифференциальным уравнениям механики и 3) работы по решению частных механических задач.

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит его с Лагранжем — одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.

Такой же подход к механике характерен и для Остроградского, который рассматривал ее проблемы, как правило, в самом общем виде. Общая постановка вопроса вела в свою очередь к изучению вариационного исчисления, в которое как частный случай входит динамика. Поэтому мемуар Остроградского «О дифференциальных уравнениях, относящихся к задаче изопериметров» (1850) принадлежит в равной мере как механике, так и вариационному исчислению. В силу такого сугубо математического подхода (как у Лагранжа) исследования Остроградского значительно обогатили, развили и углубили понимание вариационных принципов прежде всего с математической точки зрения.

МИХАИЛ ВАСИЛЬЕВИЧ ОСТРОГРАДСКИЙ (1801-1861)

Русский математик и механик, основатель аналитической механики в России. М.В. Остроградский разрешил ряд важных задач в области гидродинамики, гидростатики, теории упругости, теории теплоты, баллистики. Автор многочисленных трудов по математике и небесной механике

В названном мемуаре Остроградский рассматривает вариационную задачу, в которой подынтегральная функция зависит от произвольного числа неизвестных функций и их производных сколь угодно высокого порядка, и доказывает, что задача может быть сведена к интегрированию канонических уравнений Гамильтона, которые можно рассматривать как такую форму, в которую можно преобразовать любые уравнения, возникающие в вариационной задаче. Это преобразование не требует никаких операций, кроме дифференцирования и алгебраических действий. Заслуга такого обобщения задачи динамики принадлежит М.В. Остроградскому.

Кроме того, Остроградский ослабил ограничения на связи, всегда считавшиеся до него стационарными, и тем самым существенно обобщил проблему.

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения, — «Об интегралах общих уравнений динамики» (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.

Эта теория состоит из трех основных этапов. Прежде всего необходимо было найти наиболее простую возможную форму дифференциальных уравнений движения. Такой формой оказались канонические уравнения; они получили свое название благодаря замечательному свойству инвариантности относительно некоторых преобразований координат. Термины «канонические уравнения», «канонические преобразования» были введены Якоби.

Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта норвежским математиком Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид: в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей: найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных, так называемого уравнения Гамильтона — Якоби.

В разработку всей этой теории существенный вклад внес М.В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла независимо от Гамильтона и Якоби он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.

«По своей ясности, — писал Н.Е. Жуковский, — рассматриваемый мемуар Остроградского («Об интегралах общих уравнений динамики». — А. Г.) являлся по тогдашнему времени весьма ценным изложением теории интегрирования уравнений динамики и может с успехом служить для лекционных целей и в настоящее время»{179}.

Остроградский придавал большое значение изучению величин, инвариантных относительно преобразований координат. Он отмечает свойство инвариантности канонических уравнений и дает этому факту совершенно правильное объяснение: причина заключается в том, что само движение не зависит от выбора системы координат.

Работы Остроградского по динамике являются основополагающими. Их значение состоит еще в том, что они послужили источником для ряда дальнейших исследований по выяснению основ вариационных принципов механики.

Под влиянием работ Остроградского многие русские ученые внесли большой вклад в развитие вариационных принципов механики. В работах Н.Д. Брашмана, И.И. Сомова, М.И. Талызина, Ф.А. Слудского, Н.Е. Жуковского, Г.К. Суслова, Д.К. Бобылева и других ученых был решен комплекс вопросов о характере вариации в принципе наименьшего действия в форме Лагранжа и о методе вывода из него уравнений движения механики. Глубоко изучена была также строгая математическая форма самого принципа наименьшего действия и его связь с уравнениями движения. Выяснение этих вопросов было необходимо для того, чтобы принцип наименьшего действия стал не только безупречным основанием аналитической механики, но и мощным методом исследования в различных областях физики.

Действительно, роль принципа Гамильтона — Остроградского в дальнейшем развитии физико-математических наук оказалась весьма значительной. Теперь трудно указать такую область механики, физики, где мы не встретились бы в той или иной форме с применением принцип на Гамильтона — Остроградского.

Из других важных трудов Остроградского по механике следует отметить его исследование о принципе возможных перемещений «Общие соображения относительно моментов сил» (1834 г., опубликовано в 1838 г.). Эта работа значительно расширила область применения принципа возможных перемещений, распространила его на так называемые освобождающие (или неудерживающие) связи.

Исследования Остроградского по принципу возможных перемещений являются непосредственным продолжением работ Лагранжа и обобщением его идей. Так считал и сам Остроградский, писавший: «Лагранж не удовлетворился тем, что вывел следствия из принципа И. Бернулли, но расширил и обобщил самый принцип и приложил его к решению труднейших вопросов равновесия и движения систем. Затем вопрос сочли исчерпанным и полагали, что ничего нельзя уже прибавить к теориям, установленным Лагранжем. Однако принцип виртуальных скоростей еще шире, чем предполагал сам Лагранж, который, как и Бернулли, считал, что для равновесия системы необходимо, чтобы полный момент, т. е. сумма моментов всех сил, был равен нулю для всех перемещений, которым может быть подвержена система»{180}.

Под моментом сил Остроградский подразумевал работу сил. Итак, здесь ученый развивает мысль о распространении метода возможных перемещений на системы с освобождающими связями, поставив условием равновесия требование, чтобы полный момент сил был равен нулю или меньше нуля. Этот же метод был применен Остроградским для вывода дифференциальных уравнений движения, причем эти уравнения были выведены Остроградским и для случая голономных освобождающих связей, и для дифференциальных (неголономных) связей линейного вида.

В работах «О мгновенных перемещениях систем, подчиненных переменным условиям» (1838) и «О принципе виртуальных скоростей и о силе инерции» (1841 г., опубликована в 1842 г.) Остроградский дал строгое доказательство формулы, выражающей принцип возможных перемещений, для случая нестационарных связей. Во второй работе указаны некоторые неточности, допущенные Пуассоном в курсе механики.

Лагранж в «Аналитической механике» рассмотрел многие вопросы этой науки, но одна интересная задача теории удара была оставлена им в стороне; частный случай ее был изучен вскоре Л. Карно. В мемуаре «К общей теории удара» (1854 г., опубликован в 1857 г.) Остроградский исследовал удар систем в предположении, что возникающие в момент удара связи сохраняются и после него. Он распространил здесь принцип возможных перемещений на явление неупругого удара и получил основную формулу аналитической теории удара, из которой легко получается ряд теорем, решение упомянутой задачи, и в частности обобщение одной теоремы Карно. М.В. Остроградский читал лекции по аналитической механике. Курс, читанный им в Институте инженеров путей сообщения, был литографирован в 1834 г. По словам коллеги Остроградского, известного математика В.Я. Буняковского, выход этого сочинения ожидался с нетерпением. Позднее, в 1852 г., вышли в литографическом издании лекции по аналитической механике, читанные Остроградским в Главном педагогическом институте. Эти лекции Остроградского, составленные на основе классических работ Лагранжа, а также новейших работ Фурье (1768—1830), С. Пуассона (1781—1840), Гамильтона и самого лектора, имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простые и общие принципы, позволяющие доказывать ее теоремы изящно, кратко и просто.

Выдающийся советский ученый академик Алексей Николаевич Крылов в своем предисловии к новому изданию этих лекций говорил о богатстве их содержания и своеобразии изложения. В докладе Президиуму АН СССР Крылов писал: «Эта книга не только будет служить некоторым памятником знаменитому ученому, но принесет большую пользу как пособие для вузов и втузов».

Остроградскому принадлежат не только общие теоретические труды широкого охвата, но и работы, содержащие решения конкретных частных задач механики, возникших в технической практике того времени. Особого упоминания заслуживает серия его работ по баллистике, предпринятая по заданию русского артиллерийского ведомства. Плодом этих занятий явились следующие его мемуары в этой области: «Заметка о движении сферического снаряда в сопротивляющейся среде» и «Мемуар о движении сферического снаряда в воздухе» (1840 г., опубликован в 1841 г.), а также «Таблицы для облегчения вычисления траектории тела в сопротивляющейся среде» (1839 г., опубликовано в 1841 г.). В первых двух работах Остроградский исследовал актуальный для артиллерии того времени вопрос о движении центра тяжести, о вращении сферического снаряда, геометрический центр которого не совпадает с центром тяжести. Здесь был сделан существенный шаг вперед по сравнению с несколько более ранними исследованиями Пуассона, который изучил движение сферических снарядов в допущении, что эти два центра совпадают.

Третье упомянутое сочинение заключает в себе вычисленные Остроградским таблицы функции

которая играет весьма важную роль в баллистике. Эти работы послужили одной из основ для создания во второй половине XIX в. русской школы баллистики, блестящими представителями которой впоследствии явились П.Л. Чебышев, Н.В. Маиевский, Н.А. Забудский и др.

Стоит отметить также, что в последние годы жизни М.В. Остроградский дважды прочитал курс баллистики в Артиллерийской академии. Подчеркнем также, что труды Остроградского по баллистике и по небесной механике привели его к открытию важных формул в области приближенных вычислений.

Подведем итог краткому разбору основных трудов Остроградского по механике выразительной характеристикой, принадлежащей Н.Е. Жуковскому: «Большая часть ученых работ М.В. Остроградского относится к его любимому предмету — аналитической механике. Он писал по разнообразным вопросам этого предмета: по теории притяжения, по колебанию упругого тела, по гидростатике и гидродинамике, по общей теории удара, по моменту сил при возможных перемещениях и т. д. Во всех его работах главное внимание сосредоточивалось не на решении частных задач, а на установлении общих теорий. Он с особенной любовью занимался расширением метода Лагранжа о возможных скоростях и установлением на самых общих началах теорем динамики. Его обширная работа «Об изопериметрах» заключает в себе как частные случаи различные предположения Лагранжа, Пуассона, Гамильтона и Якоби об интегрировании уравнений динамики. С именем М.В. Остроградского всегда будет связано распространение способа возможных перемещений на системы с освобождающими связями и изложение теорем динамики с помощью вариаций координат, происходящих от изменения произвольных постоянных»{181}.


МЕХАНИКА ГЕРЦА

В XVII в. трудами Галилея и Ньютона были заложены принципиальные основы классической механики.

В XVIII и XIX вв. Эйлер, Даламбер, Лагранж, Гамильтон, Якоби, Остроградский, исходя из этих основ, построили великолепное здание аналитической механики и разработали ее мощные математические методы.

Казалось, что механика — этот «рай математических наук», как назвал ее Леонардо да Винчи, — достигла высокой степени совершенства и своей завершенности. Но завершенность эта была лишь кажущейся, ибо в самих основных понятиях и законах механики заключались многочисленные трудности, которые были только временно отодвинуты, а отнюдь не разрешены мощным прогрессом аналитической механики.

Еще до коренного пересмотра физического содержания основных принципов классической механики, осуществленного теорией относительности и квантовой теорией, появился ряд работ, пытавшихся по-новому осмыслить эти принципы. Эти попытки были связаны прежде всего с тем, что наряду с физикой дискретных тел возникла физика континуума поля, потребовавшая критического пересмотра основ классической механики.

Такой попыткой была, в частности, замечательная книга Генриха Герца «Принципы механики, изложенные в новой связи»{182}, которая сыграла важную роль не только в развитии классической механики, но и в исторической подготовке теории относительности Эйнштейна.

Философские основы механики Герца. Предсмертное сочинение Герца «Принципы механики» не ставило целью решение практических задач или разработку методов механики. Цель этого сочинения — показать, что общие теоремы механики и весь ее математический аппарат могут быть последовательно развиты исходя из единого принципа.

ГЕНРИХ ГЕРЦ (1857—1894)

Немецкий физик и механик. Герц занимался главным образом вопросами электродинамики. Опубликовал интересную работу по механике «Принципы механики, изложенные в новой связи»

В свете марксистско-ленинской философии и успехов новой физики ясно, что решение Герцем указанной проблемы имело механистический характер. Однако в его основе лежала правильная материалистическая тенденция рассматривать все явления природы как проявления движения материи. Ограниченность материализма Герца рамками механистического мировоззрения и некоторое влияние на него многочисленных разновидностей кантианской философии явились причиной его непоследовательности, колебаний между кантианством и материализмом.

Используя эти колебания и отдельные отклонения от последовательного материалистического мировоззрения, идеалисты различных направлений пытались, извращая факты, доказать, что философская концепция, лежащая в основе «Принципов механики» Герца, имеет кантианский или махистский характер. В книге «Материализм и эмпириокритицизм» В.И. Ленин критикует эти маневры идеалистов и защищает материалистическую основу «Принципов механики» замечательного немецкого физика. «Г. Коген, — пишет Ленин, — старается завербовать себе в союзники знаменитого физика Генриха Герца. Герц наш, он кантианец, у него попадается допущение априори! Герц наш, он махист, — спорит махист Клейнпетер, — ибо у Герца проглядывает «тот же субъективистский взгляд, как и у Маха, на сущность наших понятий». Этот курьезный спор о том, чей Герц, дает хороший образчик того, как идеалистические философы ловят малейшую ошибку, малейшую неясность в выражении у знаменитых естествоиспытателей, чтобы оправдать свою подновленную защиту фидеизма. На самом деле, философское введение Г. Герца к его «Механике» показывает обычную точку зрения естествоиспытателя, напуганного профессорским воем против «метафизики» материализма, но никак не могущего преодолеть стихийного убеждения в реальности внешнего мира. Это признает сам Клейнпетер, с одной стороны, бросающий в массу читателей насквозь лживые популярные брошюрки о теории познания естествознания, причем Мах фигурирует рядом с Герцем, — с другой стороны, в специальных философских статьях признающийся, что «Герц, в противоположность Маху и Пирсону, держится все еще предрассудка насчет возможности механически объяснить всю физику», что он сохраняет понятие вещи в себе и «обычную точку зрения физиков», что Герц «все еще держался за существование мира в себе» и т. д.{183}.

Подчеркивая непоследовательность Герца, В.И. Ленин в то же время настойчиво выделяет основную материалистическую линию «Механики» Герца, противопоставляя ее кантианскому априоризму и махистскому субъективизму. Ленин пишет: «Рей тоже абсолютно не знаком с диалектикой. Но и он вынужден констатировать, что среди новейших физиков есть продолжатели традиций «механизма» (т. е. материализма). По пути «механизма», говорит он, идут не только Кирхгоф, Герц, Больцман, Максвелл, Гельмгольц, лорд Кельвин»{184}. И далее: «…Герцу даже и не приходит в голову возможность нематериалистического взгляда на энергию. Для философов энергетика послужила поводом к бегству от материализма к идеализму. Естествоиспытатель смотрит на энергетику как на удобный способ излагать законы материального движения в такое время, когда физики, если можно так выразиться, от атома отошли, а до электрона не дошли»{185}.

Во введении к своей «Механике» Герц выдвигает в качестве ближайшей и важнейшей цели научного познания предвидение полезных будущих открытий и организацию в соответствии с ними практических и теоретических усилий в настоящем.

В процессе познания, по мнению Герца, исходят из уже накопленного опыта. Метод же выведения (предвидения) будущего из прошлого состоит в следующем: из накопленного и многократно проверенного в процессе практики опытного материала создаются «внутренние образы» (т. е. понятия) внешних предметов. К этим «образам» предъявляется следующее основное требование: логически необходимые следствия этих «образов», или понятий, должны являться «образами» естественно необходимых следствий свойств внешних предметов. Чтобы это требование могло быть осуществимо, очевидно, должно быть известное согласие между природой и нашим мышлением. Практика показывает, что такое согласие существует в действительности. Согласованность, в основе которой лежит общность законов мышления и внешнего мира, объясняет, почему логически необходимые следствия правильных научных понятий непременно осуществляются независимо от человека или при его содействии, как только появляются все необходимые условия.

Эти основные гносеологические положения Герца выражают его материалистический взгляд на цели и метод научного познания природы. Как естествоиспытатель, Герц убежден в объективности природы. Познав объективные закономерности развития внешних предметов, можно сознательно ускорить наступление будущего, т. е. использовать объективные законы природы в интересах человека.

Книга Герца «Принципы механики» и ее место в развитии механики. Особое место среди вариационных принципов механики, которые должны указать интегралы или функции, имеющие экстремум в действительном движении системы, занимает принцип наименьшего принуждения Гаусса. Этот принцип является общим началом и может быть выражен одной из самых простых аналитических формулировок, в которой нахождение уравнений движения любой системы, голономной или неголономной, сводится к нахождению минимума функции второй степени.

Установление этого принципа, опубликованного Гауссом в 1829 г., связано, как он сам указывает, с его работами по способу наименьших квадратов.

В короткой заметке{186} Гаусс с изумительной ^ясностью и лаконичностью не только осветил вопросы, связанные с формулируемым им принципом, но также высказал весьма интересные методологические соображения и кратко остановился на существовавших тогда принципах механики. Рассматривая вопрос о значении принципов механики, он писал: «Если для прогрессивного развития науки и для индивидуального исследования представляется более удобным идти от легкого к тому, что кажется более трудным, а от простых законов к более сложным, то, с другой стороны, наш ум, дойдя до более высокой точки зрения, требует обратного движения, в свете которого вся статика представляется ему в качестве частного случая динамики. И упомянутый нами геометр (речь идет о Лагранже. — А. Г.), по-видимому, оценил это обратное движение, представляя в качестве преимущества принципа наименьшего действия возможность охватить одновременно законы движения и законы равновесия, если его рассматривать в качестве принципа наибольшей или наименьшей живой силы. Но надо признать, что эта мысль является более остроумной, чем верной, так как в этих двух случаях минимум имеет место при совершенно различных условиях»{187}. Такая точка зрения Гаусса, естественно, приводит его к формулировке общего принципа механики — принципа наименьшего принуждения.

Строгая формулировка принципа Гаусса такова: для материальной системы со связями без трения, находящейся под действием каких угодно сил, естественное движение отличается от всех остальных, совместных со связями, тем, что для него принуждение со стороны связей (так же как и давление на связь) имеет наименьшее значение, если исключить свободное движение.

Глубокое развитие идей Гаусса в связи с идеей Гельмгольца о кинетическом объяснении всех видов энергии при помощи «скрытых движений» дал в 90-х годах XIX в. Генрих Герц, разработавший принцип прямейшего пути. Познавательная ценность этого принципа состоит в том, что он сводит задачи механики к проблеме геодезических линий, коренным образом геометризует классическую динамику.

Во введении к «Принципам механики» Герц характеризует существующие картины механических процессов. Он считает, что до середины XIX в. полным объяснением явлений природы считалось сведение этих явлений к бесчисленным, действующим на расстоянии силам между атомами материи. Но в конце XIX в. под влиянием резко возросшего значения принципа сохранения энергии физика предпочитает рассматривать «относящиеся к ее области явления как превращения одной формы энергии в другую и считать своей конечной целью сведение явлений к законам превращения энергии»{188}. Тогда в механике понятие силы уступает место понятию энергии. Однако если картина, основанная на силе, была построена, «то о второй картине этого, разумеется, сказать нельзя»{189}.

По мнению Герца, при этом исходят из четырех независимых друг от друга основных понятий, отношения между которыми должны составить содержание механики. Два из них, по Герцу, носят математический характер — пространство и время; два других — масса и энергия — вводятся как две физические сущности, являющиеся определенными неуничтожаемыми количествами. Из анализа результатов опыта выводится следствие, что энергию можно разделить на две части, одна из которых зависит только от скорости изменения обобщенных координат, а другая — от самих координат. Здесь связаны между собой понятия пространства, массы и энергии. Для того же чтобы связать все четыре понятия, а вместе с тем и течение во времени, воспользуемся одним из интегральных принципов обыкновенной механики, пользующихся понятием энергии. «Какой из принципов мы используем, практически безразлично; можно воспользоваться принципом Гамильтона, что мы имеем полное право сделать»{190}.

В каком отношении эта картина находится к картине классической механики? Прежде всего она охватывает значительно больше особенностей движения, чем классическая, основанная на понятии силы.

Основные понятия этой картины могут быть связаны принципом Гамильтона, смысл которого Герц усматривает в том, что разность между кинетической и потенциальной энергией должна быть возможно малой на протяжении всего времени движения.

Хотя этот закон и не является простым по форме, все же он в одном-единственном определении однозначно воспроизводит все естественные превращения энергии из одной формы в другую и тем самым позволяет полностью предвидеть будущее развитие физических явлений (по крайней мере обратимых). Однако принцип Гамильтона в обычной его форме не охватывает движение систем с не-голономными связями.

Герц выдвигает третью систему принципов механики, которая отличается от первых двух главным образом тем, что она пытается исходить только из трех независимых основных представлений: времени, пространства и массы. Герц ссылается при этом на Г. Кирхгофа{191} (1824—1887), который в своем курсе механики еще раньше отметил, что эти три независимые друг от друга понятия необходимы, но также и достаточны для развития механики. Вместо понятий силы и энергии, исключаемых Герцем из основных понятий, он вводит представление о скрытых связях, скрытых массах и скрытых движениях.

Основной закон, связывающий фундаментальные понятия пространства, времени и массы воедино, Герц выражает в форме, представляющей весьма тесную аналогию с обычным законом инерции: «Каждое естественное движение самостоятельной материальной системы состоит в том, что система движется с постоянной скоростью по одному из своих прямейших путей»{192}.

Это положение объединяет закон инерции и принцип наименьшего принуждения Гаусса в одно единое утверждение.

Прямым путем Герц называет такой, для которого все его элементы имеют одинаковое направление, а кривым — такой, когда направление его элементов изменяется. В качестве критерия кривизны, как и в геометрии точки, вводится скорость изменения направления при изменении положения. Из всех возможных путей в тех случаях, когда движение системы ограничено связями, выделяются некоторые, обладающие особенно простыми свойствами. Это прежде всего пути, которые во всех положениях искривлены так незначительно, как это только возможно. Именно их Герц называет прямейшими путями системы. Затем идут пути кратчайшие. При известных условиях понятия прямейших и кратчайших путей совпадают: «Это соотношение, — говорит Герц, — будет нам вполне понятно, если мы вспомним теорию поверхностей… Перечисление и систематизация всех возникающих при этом соотношений относится к геометрии системы точек… Так как система n точек выражает 3n многообразие движения, которое, однако, может быть уменьшено связями системы до любого произвольного числа, то в результате возникает большое число аналогий с геометрией многомерного пространства, причем эти аналогии заходят отчасти так далеко, что те же самые положения и обозначения могут иметь место как здесь, так и там»{193}.

Смысл такого метода изложения, по мнению Герца, состоит прежде всего в том, что он устраняет искусственное разделение механики точки и механики системы, позволяя рассматривать любое движение как движение системы. Кроме того, такой геометризованный метод выражения «ярко оттеняет тот факт, что метод изложения Гамильтона скрывает свои корни не в особых физических основах механики, как это обычно принимают, но что он, собственно говоря, является чисто геометрическим методом, который может быть обоснован и развит совершенно независимо от механики и который не находится с ней в более тесной связи, чем любое другое используемое механикой геометрическое познание»{194}. Это нашло свое выражение в аналогиях, которые обнаружены при сопоставлении идей Гамильтона в механике и геометрии многомерного пространства.

Герц доказывает, что для голономных систем каждый прямейший путь есть геодезический и наоборот, причем геодезическим путем материальной системы он называет путь, длина которого между двумя любыми положениями отличается лишь на бесконечно малую величину высшего порядка от длины любого другого бесконечно близкого соседнего пути между теми же положениями (в неголономных системах это не имеет места).

Кратчайший путь между двумя положениями есть геодезический, но геодезический путь не есть обязательно кратчайший, хотя он всегда есть кратчайший между любыми двумя достаточно близкими соседними его положениями, находящимися на конечном удалении друг от друга.

Необходимым и достаточным аналитическим условием геодезического пути является требование, чтобы интеграл между какими-либо двумя положениями пути имел вариацию, равную нулю, причем вариации должны исчезать на пределах интеграла и вариации координат и их дифференциалы должны удовлетворять уравнениям — условия системы. Исчезновение вариации интеграла не есть, однако, достаточное условие того, чтобы путь между конечными положениями был кратчайшим; для этого необходимо, чтобы его вторая вариация была существенно положительной. Для достаточно близких соседних положений пути это условие всегда выполняется.

Уже из этого изложения можно видеть две особенности механики Герца, связанные с тем, что в исходных предпосылках он ограничивается тремя, а не четырьмя (как это имеет место у Ньютона и Гамильтона) понятиями. Во-первых, отсутствие среди основных понятий понятия силы (или энергии), что приводит к усложнению изложения и не дает простого пути для решения конкретных задач. Во-вторых, особо важная роль, отводящаяся геометрическим образам. Если первая особенность ограничивала практическое значение его механики, то вторая была чрезвычайно важным этапом на пути синтеза аналитического и геометрического аспектов механики.

Затем Герц доказывает теорему, в которой выражена, по существу говоря, глубокая связь его механики с геометрической оптикой и теоремой Бельтрами — Липшица. Теорема Герца гласит: если построить во всех положениях некоторой поверхности прямейшие пути (а следовательно, в случае голономной системы — геодезические), перпендикулярные к этой поверхности, и отложить вдоль этих путей равные длины, то получим новую поверхность, которая будет пересекать эти прямейшие пути также перпендикулярно.

Таким образом, в самой сердцевине механики Герца заключаются геометрические соотношения, которые связывают ее с общей теорией поверхностей. Пространственные формы механического движения материальных тел играют поэтому у Герца основную роль.

Естественно возникает вопрос об отношении принципа Герца к принципу наименьшего действия Эйлера — Лагранжа в его классической форме и в форме, которую придал ему Якоби, и к принципу Гамильтона.

Герц посвятил этому вопросу несколько разделов своей книги. Так как в голономной системе прямейший путь между двумя достаточно близкими положениями является одновременно кратчайшим, то естественный путь такой системы между указанными положениями короче, чем какой-нибудь другой возможный путь между теми же положениями. Эта теорема сразу приводит к принципу наименьшего действия в форме Якоби. Согласно обычному пониманию механики, отмечает Герц, приведенная теорема представляет собой частный случай теоремы Якоби, а именно случай, когда силы отсутствуют. Однако, «по нашему мнению, наоборот, предпосылки полной теоремы Якоби следует считать более узкими, а теорема Якоби является специальной формой выражения нашей теоремы»{195}. Такая точка зрения Герца основана на том, что Якоби для получения своего выражения принципа наименьшего действия должен был воспользоваться законом сохранения энергии, чтобы с его помощью исключить время, в то время как принцип Герца совершенно не зависит от этого закона. Кроме того, выражение Якоби в отличие от принципа Герца справедливо лишь для голономных систем.

Легко показать, далее, следуя Герцу, что естественное движение свободной голономной системы переводит систему из данного начального в достаточно близкое конечное положение за более короткое время, чем какое-либо другое возможное движение с одинаковым постоянным значением энергии, так как в этом случае энергия и скорость одинаковы и время перехода пропорционально длине пути. В этом случае интеграл по времени от энергии равен произведению данного постоянного значения энергии на промежуток времени перехода. Таким образом получается принцип наименьшего действия Эйлера — Лагранжа. Отношение этого принципа к принципу Герца такое же, как принципа наименьшего действия в форме Якоби.

Аналогичные рассуждения могут быть приведены и для принципа Гамильтона.

Герц рассматривает, наконец, вопрос о том, в какой степени телеологические умозаключения на самом деле связаны с этими принципами. По его мнению, такая связь не вытекает с необходимостью из рассмотрения якобы будущих целей движения. Более того, представление о таком телеологизме даже недопустимо. То, что «такое понимание этих принципов не необходимо, вытекает из того, что свойства естественного движения, являющиеся как бы проявлениями цели, на самом деле устанавливаются нами как необходимые следствия закона (т. е. принципа Герца. — А. Г.), в котором не содержится никакого выражения предвидения будущего»{196}. Недопустимость же такого представления вытекает из того, что «если бы природа действительно имела цель достигать кратчайшего пути, наименьшей затраты энергии, кратчайшего времени, то невозможно было бы понять, как могут существовать системы, в которых эта цель хотя и достижима, но природа постоянно терпит неудачу»{197}.

Таким образом, Герц со своих материалистических позиций полностью отвергает какие-либо телеологические домыслы, связываемые без должного обоснования с рассматриваемыми принципами.

Выведя далее гамильтонову характеристическую и главную функции, Герц отмечает, что в них, по его мнению, «содержится только слегка завуалированный простой смысл прямейшего расстояния…»{198}

Принцип Герца был бы просто частным случаем принципа Гаусса, если бы он не заменил силы, действующие на систему, связями ее с другими системами, находящимися с ней во взаимодействии. Этим самым Герц как бы изучал только свободные системы. Для своего геометрического рассмотрения Герц должен был считать все массы как кратные некоторой условной единичной массе.

Зоммерфельд справедливо отметил, что «механика Герца построена в высшей степени увлекательно и последовательно, но в силу сложности замены сил связями оказалась малоплодотворной»{199}.

Понятие силы в механике Герца. Механику Герца часто называют «механикой без силы». Понятие силы хотя и вводится Герцем, однако оно не является основным, исходным понятием его механики. В этом состоит прежде всего резкое отличие механики Герца от обычного ее изложения. Сложность понятия силы в классической механике, абсолютизация его многими крайними ньютонианцами и заманчивая возможность объяснить силу движением некоторых (хотя бы и скрытых) масс привели многих физиков второй половины XIX в. к попыткам пересмотреть смысл и место понятия силы в системе механики.

Важнейшим стимулом в этом отношении было развитие континуарной физики поля, в первую очередь электромагнитного.

Классическое понятие силы, которое возникло из изучения непосредственного контакта (удара) двух масс, постепенно стало рассматриваться не как выражение взаимодействия тел в процессе движения, а как нечто, не зависящее от движения материи. Физика поля, напротив того, по самому своему характеру подсказывала возможность рассматривать силу как вторичное понятие, выражающее взаимодействие среды (эфира) и весомых тел.

В том же направлении влияло и введение Гельмгольцем понятия скрытых масс и скрытых движений для отнесения не специфического, не укладывающегося в рамки обычной механики характера тепловых процессов. Естественно поэтому было попытаться отказаться в механике от сложного понятия силы как исходного понятия, положив в основу взаимодействие скрытых и наблюдаемых масс. Принципиально эта концепция была прогрессивной, так как стремилась выразить все основные понятия механики через движение масс, рассматриваемое как исходный пункт. Но в силу исторической ограниченности физики XIX в. в этой концепции характер и поведение скрытых объектов рассматривались как чисто механический комплекс взаимодействий. Кроме того, скрытые массы оставались скрытыми, непознаваемыми элементами этой картины, что неизбежно приводило к агностическим выводам.

Герц был не первым ученым, разрабатывавшим во второй половине XIX в. «механику без силы». До него это в наиболее отчетливой форме пытался сделать Кирхгоф, который не отвергал совершенно понятие силы, а только отказывал ему в первичности. Однако всесторонне развил и последовательно изложил эту точку зрения только Герц.

Путь к исключению понятия силы подсказывает уже сама механика Галилея — Ньютона. Рядом с собственно силами, являющимися причинами изменения состояния движения, эта механика поставила другой вид сил, а именно силы условий связи системы, ограничивающие степени свободы движения последней. Направление этих сил определяется чисто геометрическими условиями, а величина остается, строго говоря, неизвестной.

Элементарная механика в обычном изложении смешивает эти два вида сил, рассматривая силы условий как собственно силы, величина которых вначале неизвестна. Она сводит, следовательно, силы ограничения движения к собственно силам. Однако уже в аналитической механике различие этих сил выступает очень резко, гораздо резче, чем в элементарной механике. В уравнениях аналитической механики силы условий движения имеют совсем другой вид, чем собственно силы, будучи определены только геометрическими условиями движения.

Герц поставил перед собой задачу, обратную той, которую так или иначе решает элементарная механика: нельзя ли все собственно силы свести к силам ограничения движения? Возможно, что вообще все наблюдаемые изменения скорости, которые не требуются как будто с точки зрения геометрических связей, вызваны на самом деле не силами, а именно какими-то, может быть, еще не исследованными геометрическими связями. Сама сила есть лишь способ описания этих связей, применимый при известных допущениях, но отнюдь не являющийся необходимым для однозначного и ясного научного познания мира. Понятие о силе как о причине замедления или ускорения в механике Г. Герца исчезает бесследно. Сила, с точки зрения Герца, является только мерой переноса или взаимопреобразования движения между «прямо связанными» системами. Загадочная потенциальная энергия консервативных систем обычной механики оказывается обычной кинетической энергией скрытых материальных систем. В основе действий, наблюдаемых между удаленными телами (например, планетами), лежит материальный процесс, протекающий в скрытых материальных системах, связывающих обычные или «наблюдаемые» системы.

Механика Герца представляет в высшей степени ясную, математически обоснованную картину механики. Единственным недостатком этой картины является ее… иллюзорность. Герц доказал лишь, что скрытые или адиабатически-циклические системы, дополняющие обычную систему до свободной, обладают всеми свойствами обычных консервативных систем. Но отсюда еще не следует, что реальные консервативные системы являются такими, какими они представляются в механике Герца.

Носителем скрытых циклических систем, по мнению Герца, является мировой эфир, но так как скрытым системам Герц приписывает общепринятые свойства механических движений, то эфир в механике Герца имеет характер чисто механической системы; частицам эфира приписываются свойства обычной инертной материи, обычные механические движения и кинетическая энергия, движения частиц эфира подчиняются законам классической механики и т. д.

Главный недостаток механики Герца не в ее конкретных механических конструкциях, а в универсализации развитой им интерпретации сил. Утверждение Герца, что мнимое действие сил на расстоянии сводится исключительно к процессам механического движения в наполняющей пространство среде, Между мельчайшими частицами которой существуют неподвижные связи, было опровергнуто последующим развитием физики, и прежде всего механикой Эйнштейна. Механическая теория эфира, на которой основана система Герца, оказалась несостоятельной. Однако в некоторых важных идеях теории относительности и механики Герца имеется много общего. В теории относительности движение планет вокруг Солнца объясняется без привлечения действующих сил, при помощи представления об инерции как о фундаментальном свойстве тел. В механике Герца планеты движутся аналогично телам по кратчайшим линиям в римановом пространстве. В этом отношении отличие теории относительности от механики Герца состоит в том, что в первой материальные движущиеся тела определяют метрику пространства — времени, его геометрию, в то время как у Герца такое движение определяется кинематическими условиями, создаваемыми скрытыми массами системы. Несмотря на историческую ограниченность, связанную с механической картиной мира, механика Герца сыграла значительную роль в развитии одной из основных проблем физики — проблемы пространственно-временной формы движения материи.


Загрузка...