ФАКТЫ, ДОГАДКИ, СЛУЧАИ…


Оформление художника Ю. Бажанова


ОПАСНЫ ЛИ ОСЬМИНОГИ?

СКОРЕЕ ТЫКВА АТАКУЕТ, ЧЕМ ОСЬМИНОГ…

МНОЖЕСТВОМ гнусных ртов приникает к вам эта тварь: гидра срастается с человеком, человек сливается с гидрой. Вы одно целое с нею. Вы — пленник этого воплощенного кошмара. Тигр может сожрать вас, осьминог — страшно подумать! — высасывает вас. Он тянет вас к себе, вбирает, и вы, связанный, склеенный этой живой слизью, беспомощный, чувствуете, как медленно переливаетесь в страшный мешок — в это чудовище.

Ужасно быть съеденным заживо, но есть нечто еще более неописуемое — быть заживо выпитым».

Так представлял себе Виктор Гюго опасность, которой подвергается человек, схваченный осьминогом. Свои редкие сведения он, несомненно, заимствовал из работ некоторых старых натуралистов, но его драматическое описание не стало от этого более правдоподобным. Слишком плохо в те времена, когда писалась книга «Труженики моря», знали осьминогов даже люди науки.

Намного ли наши знания продвинулись с тех пор?

Простой, казалось бы, вопрос поставлен мной в заглавии этой статьи, а ответить на него нелегко. Правда, мы уже знаем теперь, что присоски осьминога не действуют как насосы, вытягивающие из человека его «жидкое содержимое», человек не «переливается в страшный мешок». Присоски только удерживают жертву, а не «выпивают» ее.

Но тем не менее, опасен ли осьминог?

Популярная и художественная литература, газетные столбцы, посвященные морским происшествиям, кинофильмы и общее мнение подавляющего большинства людей утверждают, что осьминог, даже не очень крупный, — один из самых опасных морских хищников, с которыми приходится встречаться человеку под водой.

Можно было бы привести здесь много рассказов о битвах водолазов с осьминогами. Возможность такой схватки ни у кого не вызывает сомнения. Осьминог и водолаз — две всем хорошо известные фигуры из «мира приключений» подводного царства. Единоборство с осьминогом, по общему мнению, — одна из неизбежных неприятностей в профессии водолаза.

Мы попытаемся сейчас поколебать эту традиционную точку зрения.

В последние годы подводная охота, подводные съемки и просто прогулки под водой в маске и с ластами стали массовым спортом. Люди ближе познакомились с восьмируким морским страшилищем. И что же? Сначала раздались робкие растерянные голоса, потом все увереннее и громче «люди-лягушки»[96] начали заявлять, что совершенно неожиданно обнаружили в осьминогах очень доверчивых хозяев.

На Кусто и Дюма[97] осьминоги произвели «впечатление весьма безобидных существ». После «первых же встреч со> спрутами, — пишут эти пионеры в «Мире безмолвия», — мы решили, что слова «заживо выпитый» применимы скорее к состоянию автора, написавшего их, чем к человеку, действительно встретившему осьминога».

Макс Нол, американский специалист по водолазной технике, заявил, что, по его мнению, осьминог опасен для водолаза не более, чем кролик для охотника. С. Вильямс, другой аквалангист, выразился еще решительнее: «Скорее фермер на поле будет атакован тыквой, чем пловец осьминогом!»

С КАКОЙ СИЛОЙ ПРИСАСЫВАЕТСЯ ОСЬМИНОГ

Исследуем присоски осьминога — самое опасное, по общему мнению, его оружие. Каждая присоска представляет собой не сосущий рот, как думал Виктор Гюго, а скорее миниатюрную медицинскую банку. В момент, предшествующий присасыванию, мускулистые стенки «банки» сокращаются, ее полость уменьшается. Присоска своим отверстием плотно прилегает к телу жертвы. Затем все мускулы присоски быстро расслабляются — внутренняя полость «банки» увеличивается, давление внутри нее резко падает, и присоска прочно присасывается.

Присоска диаметром в два с половиной миллиметра может удержать тяжесть весом в 47 граммов, а диаметром в шесть миллиметров[98] — почти 170 граммов. На каждом щупальце осьминога располагается до сотни и больше присосок (в зависимости от вида и возраста животного). Допустим, что на каждом щупальце у осьминога сто присосок диаметром шесть миллиметров. На восьми щупальцах их будет 800. Вес, который они в состоянии удержать общими усилиями, равен в этом случае 136 килограммам. Конечно, это только теоретический подсчет суммарной присасывающей силы присосок среднего осьминога. В действительности никогда все присоски не бывают приведены в действие одновременно, да и мускулатура животного едва ли выдержит нагрузку в сотню килограммов.

Обычно на каждом щупальце присасывается с десяток, не больше, присосок. Если осьминог схватит человека, скажем, пятью щупальцами, а другими тремя будет держаться за камни, то его 10X5 = 50 присосок, приведенные в соприкосновение с противником, разовьют «силу притяжения», равную восьми с половиной килограммам. Усилие небольшое, но его вполне достаточно, чтобы под водой подтянуть к себе взрослого человека: ведь в воде человек становится как бы легче на 95 процентов.

Но этот богатырский поступок осьминог в состоянии совершить лишь при одном непременном условии — схваченный человек не должен сопротивляться! Если же он сильно оттолкнется, то мощь даже 800 присосок осьминога его но удержит.

Одной рукой человек может совершить рывок, равный по силе двум сотням килограммов.

Популярный одно время цирковой силач Юджип Сэпдоу[99] показал на динамометре усилие в рывке двумя руками в 450 килограммов.

Кулак человека, выброшенный вперед в сильном ударе, обрушивается на противника тяжестью двадцатипудовой гири[100].

Правда, под водой сопротивление среды значительно выше, и человек здесь более слабый боец, чем на суше. Однако и среди волн морской стихии, как показали испытания Принстонского университета, хороший пловец не уступает в силе акуле средних размеров (разумеется, без учета боевой мощи ее зубов), которая без труда справляется с любым осьминогом. Подтянуть к берегу пловца, привязанного к леске, оказалось труднее, чем акулу или меч-рыбу. Приборы подсчитали, что человек «на удочке» развивал на каждый килограмм своего веса тяговое усилие в 300 граммов — почти вдвое больше, чем акула.

Вряд ли стоило бы серией этих примеров доказывать «физическое» превосходство человека над осьминогом, если бы очевидность такого положения всем была ясна. Напротив, сочинения об осьминогах переполнены драматическими эпизодами прямо противоположного свойства.

КАКОВЫ РАЗМЕРЫ САМЫХ БОЛЬШИХ ОСЬМИНОГОВ

«Мой друг пронзительно закричал и, прыгая на месте, пытался освободиться от чего-то, что крепко держало его снизу, — пишет одни из сочинителей. — С группой новозеландцев он переходил риф во время отлива, когда это приключилось. Мы поспешили на помощь и увидели, что наш друг борется с молодым осьминогом. Оторвав щупальца от человека, мы освободили пария из западни.

Осьминог был небольшой — размер щупалец около 36 дюймов (приблизительно 90 сантиметров), однако попавший в его лапы маориец не мог освободиться без чужой помощи и утонул бы с началом прилива».

Некая миссис Додд купалась в море на юге Франции. На мелком мосте, где вода едва доходила ей до колен, из расщелины вдруг неожиданно появился осьминог и схватил ее за лодыжки, да так крепко, что она не смогла двинуться с места. «Еще несколько щупалец оплели ей ноги, и миссис Додд оказалась в совершенно беспомощном положении». На ее крик прибежали с берега люди и освободили Додд из осьминожьего плена.

Злоумышленника измерили — размером он оказался с кролика и весил всего несколько фунтов.

Года три назад я писал одному английскому натуралисту[101], который интересовался моим мнением по поводу этого происшествия: «Осьминог размером с кролика слаб, как кролик». Любая женщина без особого труда может освободиться от его объятий, если не сразу — не одним рывком, то, так сказать, по частям — разрывая моллюска на куски (кстати, сделать это куда легче, чем разорвать кролика: у осьминога нет костей и сухожилий).

Однако даже небольшой (размером с кролика!) осьминог, внезапно схватив человека под водой, действительно оказывает, как кажется вначале, значительное сопротивление. Он хможет удержать на месте ногу, занесенную для следующего шага. Но стоит посильнее рвануться (приложить усилие хотя бы в десять килограммов — легкий удар по мячу), и осьминог неминуемо должен будет расстаться либо с вашей ногой, либо с камнем, за который он уцепился другими щупальцами.

До сих пор речь шла о сравнительно некрупных осьминогах — размером около одного-полутора метров, весят они приблизительно пять-десять килограммов[102]. Мы установили, что сила и опасность этих животных сильно преувеличены.

Ну, а гигантские осьминоги, описаниями которых изобилует приключенческая литература, — опасны они для человека? Очень хочется сказать, что и эти герои морских рассказов не опаснее осьминогов размером с кролика, поскольку осьминоги-гиганты едва ли вообще существуют. Науке такие животные не известны. Вот цифры, характеризующие размеры самых крупных осьминогов, которыми располагает в настоящее время зоология.

Описано более ста видов осьминогов, но все это животные мелкие, длиной не более полуметра. Лишь три-четыре вида заслуживают внимания как возможные противники человека. Самые крупные из них — обыкновенный осьминог, осьминог Дофлейна и осьминог аполлион. Первый обитает во всех тропических, субтропических и тепловодных морях и океанах. Второй встречается у берегов Японии и изредка у южных Курильских островов и в заливе Посьета. Осьминог аполлион живет в скалах у побережья Аляски, западной Канады и Калифорнии.

Обычный осьминог и осьминог Дофлейна — массивные, «коренастые» создания, с короткими и толстыми щупальцами.

В длину они достигают трех метров и весят при таких размерах около 25 килограммов.

Гигантом среди осьминогов можно было бы назвать аполлиона, но гигант этот весьма субтилен.

В конце прошлого столетия у берегов острова Ситха рыбаки поймали осьминога, который своими пропорциями напоминал паука-сенокосца: маленькое туловище на длинных и тонких ногах-щупальцах. Длина его была около пяти метров (в размахе щупалец около восьми с половиной метров), но тело вместе с головой не превышало в ширину пятнадцати, а в длину тридцати сантиметров. Щупальца исключительно тонкие, а на концах почти нитевидные.

Позднее еще несколько осьминогов этого вида, по меньшего размера попались в сети у берегов Калифорнии, Канады и Аляски.

Североамериканские субтильные осьминоги аполлионы уступают своим собратьям предыдущих двух видов и в силе, и в весе примерно вдвое (при одинаковых размерах).

Конечно, в море могут жить осьминоги более крупные, чем все пойманные до сих пор. Однако сомнительно, чтобы их длина могла превышать четыре-пять метров (или восемь метров у аполлиона), а вес — пятьдесят-шестьдесят килограммов. Если такие осьминоги существуют, то только они могут представлять серьезную опасность для человека под водой.

ЯДОВИТЫЕ КАНАВАИ

Рассуждая о силе присосок осьминогов, мы совершенно упустили из виду другое оружие этих хищников — их укус. Родичи беззубых улиток и ракушек, они приобрели в процессе эволюции очень острые челюсти — роговые и крючковатые, по форме похожие на клюв попугая.

«Ядовитые канаван» — называют индийские рыбаки некоторых маленьких осьминогов и очень боятся этих тварей. Говорят, что если осьминога, попавшего в лодку вместе с рыбой, не выбросить немедленно за борт, то он сам может напасть на человека и укусить его в ногу или руку. Боль такая, словно ужалил скорпион. Нога распухает, человек несколько недель чувствует слабость и головокружение.

О ядовитости осьминогов ничего не пишут романисты. Мало кому известно вообще, что осьминоги обладают свойствами ядовитых гадов. Даже ученые сравнительно недавно узнали об этом.

Яд выделяет задняя пара слюнных желез, но это не пищеварительный фермент, а особая вирулентная жидкость, близкая по своему химическому составу к алкалоидам. Яд осьминога вводили в тело крабов, рыб и лягушек. Он действовал парализующе на центральную нервную систему. У крабов немедленно наступали судороги, и через несколько минут они умирали.

Осьминог, живший одно время в аквариуме в Сан-Франциско, убивал крабов, которыми его кормили, весьма оригинальным способом: выбрызгивал на них струю яда и не прикасался к отравленному крабу в течение двадцати минут. Если взять этого краба и рассмотреть повнимательней, то у него не удастся обнаружить никаких повреждений, никаких рай и уколов. А между тем он мертв.

Яд осьминога опасен и для человека. Однажды сотрудник Калифорнийского аквариума был укушен небольшим аполлионом в ладонь. В ту же ночь рука так распухла, что не видно стало суставов, прошло четыре подели, прежде чем опухоль спала. Боль и признаки болезни напоминали симптомы змеиного укуса.

В медицинской литературе описано уже около десятка случаев отравления ядом осьминогов. Человек в момент укуса чувствует острую боль, жжение, зуд. Ранка краснеет и опухает. Болезненное состояние длится от недели до месяца.

В зависимости от размеров осьминога и его вида последствия бывают различные. Обычно человек полностью излечивается. Но не всегда исход бывает благополучным.

Семь лет назад один австралийский моряк, возвращаясь с рыбной ловли, заметил у берега маленького осьминога, длиной сантиметров около пятнадцати. Желая позабавиться, моряк посадил восьмирукого крошку к себе на плечо. Осьминог переполз к нему на спину и вдруг укусил в область позвоночника.

Боли от укуса не было никакой, на коже осталась небольшая колотая ранка, из которой слабо струилась кровь. Но человек почувствовал слабость и головокружение. Началась рвота, он едва держался на ногах.

Товарищ, который был вместе с ним, доставил больного в госпиталь. В больницу его привезли уже в бессознательном состоянии, с посиневшим лицом, сердце билось очень слабо, и начались приступы удушья.

В госпитале приняли все необходимые меры лечения. Но ничто не помогло: укушенный осьминогом человек умер через четверть часа после прибытия в госпиталь и спустя два часа после укуса.

Теперь вернемся к вопросу, поставленному вначале, — опасны ли осьминоги? Как видно, опасны, но не столько присосками и силой своих щупалец, сколько сводим ядовитым, укусом. Правда, эти животные редко и неохотно пускают в; ход свое ядовитое оружие. Мак-Гинити, известный океанолог, говорит, что в его руках побывало несколько тысяч осьминогов и ни один из них его не укусил. И все же такие случаи, как мы видели, бывают.

Достоверных сообщений о встрече под водой с крупными спрутами известно очень мало. Но мелкими осьминогами морское дно местами буквально кишит. Ныряльщик, попавший в их общество, не должен забывать, что имеет дело с существами ядовитыми и отнюдь не кроткими.

И. Акимушкин

ЧЕЛОВЕК УПРАВЛЯЕТ ПОГОДОЙ

ЖАРКИЙ знойный день, сильно парит. На огромных фруктово-ягодных плантациях кипит работа. Но вот дежурный совхоза-гиганта получает предупреждение Метеорологической службы: к району приближается сильная гроза с ливнем и градом. Дежурный немедленно связывается с ближайшим аэродромом, самолеты которого ведут борьбу с грозовыми тучами.

После полудня горизонт темнеет и в дымке вырисовываются тяжелые облачные громады. В природе все затихло. Вдруг тишину прорезает рокот моторов. Это идут навстречу стихии, звено за звеном, самолеты. В бинокль хорошо виден воздушный авангард, нацелившийся на тучу и выпустивший туманный конус дыма. Туча «засеивается» химическими реактивами. Через 10–15 минут мощные облака теряют конфигурацию, гордо вздымавшиеся вершины тускнеют. Облачная громада преображается на глазах, в ней нет уже прежней силы. Облака становятся рыхлыми и приобретают мирный вид.

Самолеты возвращаются, победив тучу, и она проносится над совхозом, разражаясь теплым обильным дождем. Нет ни бури, ни града, ни опустошительного ливня. Растения жадно впитывают влагу. Урожай спасен!

Мы нарисовали картину отнюдь не далекого будущего. Управлять погодой сначала в небольшом масштабе, влиять на те ее явления, которые легче поддаются воздействию, а потом и на более сложные — реальная возможность. С помощью же атомной энергии можно будет направлять колоссальную энергию атмосферных процессов, проходящих в огромных масштабах.

МОЖНО ЛИ УПРАВЛЯТЬ ПОГОДОЙ

Издавна люди ставили перед собой вопрос — можно ли управлять погодой? Если очень важно уметь предвидеть погоду, то куда важнее влиять на ее формирование. Здесь, пожалуй, возникли бы затруднения: одному нужна одна погода, другому — другая. Но речь, конечно, идет не о том, чтобы каждый делал «свою» погоду, а о том, чтобы можно было влиять на нее в интересах хозяйства страны и бороться с ее вредными последствиями. В условиях планового социалистического хозяйства нашей родины можно было бы без затруднений для дела заставить пойти дождь во время засухи или, наоборот, остановить потоки дождя, который слишком затянулся, обезвредить градовую тучу, угрожающую полям, или рассеять туман на аэродроме. В атмосферных процессах участвуют могучие силы. Солнце посылает лучистую энергию на Землю. Но по-разному нагреваются суша и море, экваториальные и полярные области. Возникающая разница в температуре — основная причина движения воздушных масс.

Направление и скорость их перемещения зависят также от вращения Земли и от рельефа местности. И если бы мы захотели изменить движенце воздушных потоков всего на несколько дней, для этого понадобилось бы затратить энергию, исчисляемую миллиардами киловатт-часов. Достаточно сказать, что во время обычной местной грозы расходуется столько же энергии, сколько несут в себе 5—10 водородных бомб малой мощности. А при среднем шторме на море количество энергии, необходимой для его поддержания, эквивалентно сотням атомных взрывов. Поэтому человечество пока не в состоянии атаковать стихию в «лоб», искусственно вызывать перемещение воздушных масс, создавать циклоны и антициклоны и бороться с грозами и ливнями.

Однако в наших руках уже сейчас имеются надежные средства воздействия на климат, разумеется в ограниченном радиусе. Прежде всего мы можем преобразовать местность, над которой движутся воздушные массы, и таким образом относительно воздействовать на физическое состояние атмосферы. Человек давно научился защищать себя от климатических невзгод: он строит дома, создавая в них искусственный климат, выращивает в теплицах тропические растения, орошает засушливые районы, осушает болота, закладывает леса. Люди озеленяют города, разводят сады и парки, используют энергию ветра и речной воды. В Советском Союзе ведутся грандиозные работы, преображающие на наших глазах целые районы и области. И все же, несмотря на большие достижения современной науки, нередко стихийные явления природы приносят людям огромные бедствия: засухи, катастрофические наводнения, разрушительные ураганы, градобития и т. д. Поэтому не праздное любопытство заставляет многих людей так часто задавать вопрос: неужели нельзя найти средства борьбы с этими грозными явлениями природы?

Попытки влиять на погоду проводились еще в древности. Однако они носили примитивный характер из-за низкого уровня развития пауки и культуры. Средства воздействия на погоду искали в самых нелепых суевериях и религиозных предрассудках. В Китае, например, при длительной засухе с подобающей торжественностью колотили изображение дракона, который олицетворял злые силы природы. Чтобы прекратить дождь, у некоторых народов клали на землю раскаленные камни. А в Таиланде снимали крыши с храмов, чтобы боги скорее остановили дождь — иначе им самим пришлось бы намокнуть. В прошлом в России устраивали церковные молебны «о даровании дождя», причем некоторые служители культа имели барометр и выходили в поле только после того, как прибор показывал на дождь.

В средние века твердо верили, что шум разгоняет градовые тучи: при приближении грозы звонили в колокола. Церковники, рассчитывая на очень отсталые слои населения, делали на некоторых колоколах даже такие забавные надписи: «Живых созываю, мертвых оплакиваю, молнии разбиваю». Конечно, шум не прогонял грозу, зато многие звонари поплатились жизнью.

В XIX веке существовало убеждение, якобы сильная стрельба из пушек вызывает такое сотрясение воздуха, что начинает идти дождь. В качестве примера приводился Бородинский бой. Исследования метеорологов показали, что погода во время сражений и после них бывает именно такая, какая должна быть в силу общих атмосферных условий. Влияние взрывов при стрельбе крайне невелико; тепловое воздействие по сравнению с солнечной энергией ничтожно мало; химическое действие весьма незначительно по сравнению даже с продуктом горения топлива, потребляемого в большом индустриальном городе.

Однако такие исследования не убедили сторонников огнестрельных воздействий на погоду, и в прошлом столетии более четверти века применяли стрельбу из пушек по облакам. Опыты проводились во многих странах, захватив и Россию, и получили широкий размах. Были построены специальные мортиры, имеющие вид огромного конуса, направленного основанием к облакам. В нижнюю часть мортиры закладывался заряд пороха, который после взрыва выбрасывал вихревое дымовое кольцо, подобное тому, которое иногда вылетает из трубы паровоза. Предполагалось, что сильнейшие вихревые движения в этом кольце помешают образованию града в туче.

Результаты оказались неутешительными: несмотря на частую стрельбу, град шел с прежней силой. Теперь мы знаем: пытаться предотвратить град такими мортирами — все равно, что пробовать остановить поезд, обстреливая его горошинами.

Применяли и другой способ. На огромных матерчатых змеях к градовой туче поднимали большие заряды взрывчатого вещества. Надеялись, что взрыв расколет градины на мелкие безвредные кусочки льда. Но и это не помогало. Обстрел облаков прекратился лишь после того, как специальные комиссии ученых, проверив материалы опытов, доказали бесполезность таких воздействий.

Вновь об этом заговорили в период Великой Отечественной войны. Некоторые люди указывали, что неизмеримо возросшая мощь боевой техники, масса взрывов увеличили выпадение осадков на фронтах. Исследования ученых показали необоснованность таких воззрений. В качестве примера можно указать на ожесточенные бои под Берлином в апреле 1945 года. На этом участке фронта была создана необычайная плотность огня. Но никакого дождя не было, и сквозь дым непрерывных взрывов проглядывало солнце.

После неудачных опытов со стрельбой ученые и изобретатели пошли по другому пути, используя научные достижения физики и метеорологии. Было установлено, что для продолжительного дождя необходим подъем огромных масс влажного воздуха на высоту в несколько километров. Воздух при этом охлаждается, происходит сгущение водяного пара, появляются мелкие капельки, которые, сливаясь друг с другом, укрупняются и выпадают в виде дождя. Следовательно, если построить гигантскую трубу и гнать воздух вентиляторами вверх, то появятся облака и пойдет дождь. Но с экономической точки зрения такой метод нецелесообразен. Подсчеты показывают, что для получения таким путем 10 миллиметров дождя (хорошая поливка) на площади в один квадратный километр надо было бы сжечь тысячи тонн угля. Да еще по вся вода дойдет до земли: часть ее испарится по пути. В результате стоимость капли дождя будет непомерно высокой.

В 1925–1926 годах Геофизический институт и Центральная аэронавигационная станция (ЦАНС) в Москве под руководством профессора В. И. Виткевича проводили опыты по осаждению облаков и рассеиванию туманов при помощи электрически заряженного песка. Предполагалось, что в образовании дождя решающую роль играют электрические заряды капель. Если капли перезарядить наэлектризованным песком, то должен пойти дождь. Лабораторные опыты прошли успешно, и было доказано, что электрические заряды облегчают сгущение водяного пара и таким путем можно рассеять туман. Однако, когда заряженный песок сбрасывался с самолетов на кучевые облака, они заметно рассеивались, и все же получить дождь не удавалось.

В 1931 году на Всесоюзной конференции по борьбе с засухой профессор М. А. Аганин сделал доклад о возможности искусственного образования осадков. Аганин, проводя лабораторные исследования, раскрыл механизм слияния капель воды и показал процесс возникновения дождя.

С этого момента начинаются уверенные шаги в организации исследований и опытов как лабораторных, так и в свободной атмосфере. Работы ведутся в Москве — в Центральном институте экспериментальной метеорологии под руководством профессора С. Л. Бастамова и в Ленинградском институте экспериментальной метеорологии под руководством профессора В. И. Оболенского.

В 1934 в Средней Азии в окрестностях Ашхабада опыты по вызыванию искусственного дождя осуществляет группа ученых во главе с инженером В. А. Федосеевым. В этих опытах облака засеивались с самолета хлористым кальцием, который способствовал слиянию и укрупнению капель воды в облаке. Порошок хлористого кальция распылялся с самолета, пролетавшего над облаками или в самой гуще облаков. В нескольких случаях, несмотря на обычную для Ашхабада летнюю сухость воздуха и жару, облако, засеянное хлористым кальцием, давало небольшой дождь. Первые капли дождя содержали хлористый кальций, а в последующих даже отсутствовали следы его. Этим самым Федосеев показал, что в таких опытах возможен цепной процесс образования капель, то есть подобно снежной лавине, возникающей из кома, процесс слияния первых капель захватывает в итоге мириады их. Иными словами, достаточно дать своего рода толчок естественным силам к изменению физического состояния влаги в какой-либо одной части облака, как это же изменение произойдет само собой и в других частях облака.

Летом 1936 года на горе Дзынча, в районе Гагры, на Черноморском побережье, были проведены опыты искусственного получения дождя из облака, покрывавшего вершину этой горы. На площадке вершины в самой гуще облака был установлен мощный авиационный мотор, пропеллер которого распылял высоко вверх порошок хлористого кальция. Уже через. 6–7 минут после распыления этого вещества в толще облака образовался сквозной просвет в виде широкого колодца диаметром до 400 метров. Самое интересное заключалось в том, что колодец имел равные, как бы выложенные, по отвесу стенки, которых в естественных условиях у облаков не бывает. Вслед за этим пошел дождь, продолжавшийся до тех пор, пока все облако не рассеялось. Научными исследованиями установлено, что когда в естественных условиях дождь выпадает из малоустойчивого облака, то основная причина этого заключается в различных размерах капель облака. В устойчивом же облаке все капли имеют одинаковые размеры и находятся на равных расстояниях друг от друга. Для того чтобы достичь выпадения дождя из такого облака, необходимо добиться хотя бы в одном его месте слияния и укрупнения капель. Это достигается воздействием хлористого кальция.

Этими работами был установлен неоспоримый научный приоритет СССР в создании теоретической и экспериментальной основы получения искусственных осадков.

Как же обстоит дело с управлением погодой в настоящее время?

В нашей стране ведется экономное использование природных богатств с заметным воздействием на местный климат и погоду. Строятся водохранилища, прокладываются каналы. Смежные с водохранилищами районы уже испытывают влияние водоемов, и чем больше их площадь, тем дальше воздействие.

В летнее время вода в бассейне холоднее воздуха. В силу этого восходящие потоки над его зеркалом ослабевают и развитие кучевых облаков над водохранилищем будет слабее, чем на суше. Значит, облачность заметно уменьшится и будет-больше ясных дней. Осенью, когда вода теплее воздуха, на берегах водохранилищ и в прилежащих районах увеличивается число дней с туманом, что заметно утепляет местность и передвигает наступление осенних заморозков на более позднее время. Таких примеров можно привести много.

В то же время было бы неправильным объяснить, как это иногда делают, значительные колебания в характере погоды за последние годы влиянием вновь созданных водохранилищ, каналов и другими подобными обстоятельствами. Гидросооружения не могут изменить климат целой страны.

Сейчас для борьбы с наносящими немалый вред сельскому хозяйству заморозками устраивают дымовые завесы, жгут нефть, специальные шашки, утепляют воздух системой труб парового отопления. Все это дорогостоящие средства защиты.

В 1954 году советскими учеными проведены успешные опыты получения искусственного тумана распылением перегретой воды из аппарата под высоким давлением. Опыты, поставленные на виноградниках под Одессой, показали, что такой туман весьма устойчив. Низко стелясь над землей, туман прекрасно защищал растения от заморозков.

Со временем для борьбы с заморозками, возможно, будет применяться колоссальное количество дешевой тепловой энергии, образующейся в атомных котлах. Вполне осуществимой станет защита от зимних воли холода цитрусовых и других субтропических культур Кавказа, юга Средней Азии и Украины.

Для решения задач по управлению погодой ученые СССР и за рубежом провели многочисленные исследования строения облаков и процесса образования осадков. Созданы специальные камеры, в которых можно воспроизвести туман, облако, состоящее из ледяных кристаллов, добиться укрупнения водяных капель, проследить влияние электрических сил на образование осадков. Кроме того, метеорологи проводят на самолетах и аэростатах изучение облаков в свободной атмосфере. Люди научились ловить и фотографировать мельчайшие капельки воды, из которых состоят облака. Ведется большая теоретическая работа. После обстоятельного изучения всех сторон «небесной кухни погоды» ученые стали применять различные средства воздействия на лабораторию природы и притом не безуспешно.

В СССР в эту работу включились ученые Центральной аэрологической обсерватории, Главной геофизической обсерватории, Института прикладной геофизики и Института физической химии Академии паук СССР.

Один из методов управления погодой основан на том, что метеорологические процессы характеризуются борьбой противоречивых явлений. Это зачастую приводит к неустойчивому состоянию атмосферы, и сравнительно небольшое вмешательство в метеорологический процесс способно изменить его развитие. Ускорить или задержать выпадение дождя, задержать развитие града или грозы, рассеять облака — таковы цели подобного воздействия.

Опыты по управлению погодой идут, в таких направлениях: воздействие на существующие облака, предотвращение грозы, ливня, града, создание искусственных облаков в целях получения заслона и, наконец, рассеивание облаков и туманов.

ВОЗДЕЙСТВИЕ НА СУЩЕСТВУЮЩИЕ ОБЛАКА

Проблема получения искусственного дождя принципиально решена, но опыты пока ведутся в малых масштабах — на облаках, занимающих небольшие площади. Дело в том, что каждое облако лишь одно из звеньев в сложном процессе образования осадков. Оно не просто тратит накопленный запас воды, а является своего рода генератором влаги, преобразующим водяной пар в капли воды или кристаллы льда. Через каждое облако непрерывно проходит масса влаги, поэтому для воздействия на большие облачные массы необходимо огромное количество энергии.

Чтобы получить искусственный дождь необходимо добиться воспроизведения процесса, происходящего в природе. Напомним, что при слабом дожде все облако состоит только из мелких водяных капель. При сильном дожде туча несет в своей нижней части обычные водяные капли, в средней части — капли переохлажденной воды и еще выше — ледяные кристаллы. В туче происходит непрерывный процесс слияния и укрупнения капель и, что важнее, соприкосновение переохлажденных капель с ледяными кристаллами, отчего капли мгновенно замерзают и появляются мелкие градины. Они укрупняются от смерзания и намораживания новых прослоек льда, тяжелеют, падают вниз, где тают и в виде крупного дождя выпадают на землю. В природе это происходит при наличии сильных восходящих потоков воздуха, которые выносят облачные массы в высокие слои атмосферы, где круглый год держатся сильные морозы.

Но можно охладить облако и создать массу ледяных ядер и искусственно. Для этого облака, несущиеся бесконечной вереницей над земной поверхностью и не дающие ни капли дождя, «засеиваются» с самолетов сухим льдом, имеющим очень низкую температуру. Сухой лед дробится особым способом на мельчайшие кристаллики. Тогда в одном килограмме сухого льда может находиться до 10 триллионов частичек твердой углекислоты. Облако засеивается сверху, частички вызывают обледенение его вершины, что и приводит к выпадению дождя. Если опыт производится зимой, то выпадает снег. Чем больше посеять охлаждающих веществ, тем интенсивнее дождь.

В качестве примера засеивания облаков твердой углекислотой приведем описание опыта, проведенного в Адлере в августе 1957 года.

На зеленом аэродроме стоял самолет ИЛ-12, превращенный в своеобразную летающую лабораторию. В небе клубились облака. Пора было вылетать. Командир корабля оторвал машину от бетонной дорожки и начал набирать высоту. Перед каждым участником опыта столик с приборной доской и необходимым оборудованием вплоть до микроскопа. К бортам прижались большие резервуары с манометрами, обвитые змеями-трубами. Сигнализация ведется через ларингофоны.

На высоте пяти километров самолет достиг облачных вершин. Температура минус 8 градусов. В открытые окна, из которых фотографируются облака, врываются клубы морозного пара. В наушниках звучит команда руководителя экспедиции: «Приготовиться всем!» В поле зрения мощная гряда кучевых облаков. Нижняя граница гряды окутала горы и сползла к морю до высоты 150 м. Венчали же гряды четыре высокие белоснежные шапки. Было решено уничтожить три вершины, а четвертую оставить для контроля.

Самолет устремился к облакам. Мгновение — и машина окунулась в густой молочный туман. На стекле колпака выступили капельки, превратившиеся затем в ледяные кристаллы. Прозвучала команда: «Начали воздействие!» Это продолжалось не больше минуты. Самолет трясло, как в лихорадке. Трижды входил он в верхушки и наконец вышел на голубой простор. Но что это происходит с облаком? Вот оно начало менять цвет. Из белого оно превратилось в грязно-серое, потом темная полоса дождя протянулась до самой земли. Пышные шапки на глазах расслаивались на отдельные рваные клочья, которые тут же таяли. Десять минут потребовалось, чтобы огромное облако перестало существовать. Только четвертая, контрольная, шапка ослепительно сверкала на солнце.

Такие опыты неоднократно повторялись, и всякий раз облака растворялись. Опыты показали, что воздействию хорошо поддаются переохлажденные, то есть кучевые, облака и облака холодного времени года. На теплые облака воздействовать гораздо труднее. Нередко при засеве теплые облака просто таяли, не давая ни капли дождя. В других случаях, несмотря на интенсивное засеивание облаков, осадков выпадало мало. Все это говорит о сложности процесса управления погодой.

Вместо твердой углекислоты в ряде опытов применялось также йодистое серебро, кристаллы которого имеют решетку, сходную с кристаллической решеткой льда. Оказалось, что на йодистом серебре при определенной температуре быстро вырастают настоящие ледяные кристаллы и легко формируются снежинки.

РАССЕИВАНИЕ ОБЛАКОВ

Совершенно реальные результаты дали опыты по рассеиванию сплошных низких облаков над аэродромами. Рассеять облака — это большая и важная задача. Сколько стоит государству один нелетный день на большом аэродроме? Десятки самолетов стоят на приколе. Сотни пассажиров «ждут погоды». А облака сплошной пеленой закрывают аэродром — они как снежные заносы на железной дороге.

Для рассеивания тумана или облачности несколько самолетов пробивают низкие облака, заходят с наветренной стороны и посыпают их химическими реагентами. Через несколько минут на аэродроме начинается внезапный снегопад или моросящий дождь (если тепло), облака тают, появляется обширный участок неба, который держится все время, пока работают самолеты-опылители. Аэродром открыт.

Самый яркий эксперимент по снятию облачности был проведен недавно — во время празднования годовщины Великой Октябрьской социалистической революции в Москве.

На рассвете все небо над столицей было затянуто облаками. Один за другим взлетали к небу самолеты. И вот с юго-запада, со стороны Внукова, открылось небо в радиусе 30–40 километров. Светлая полоса поднималась, ширилась, и перед самым парадом первый луч солнца упал на Спасскую башню Кремля. Ни одно облако не прорвалось к праздничной Москве.

Успешные опыты по рассеиванию облаков и туманов неоднократно проводились и на других аэродромах Советского Союза.

Все рассказанное подтверждает, что атмосфера поддается искусственному воздействию, но необходимо осуществить еще много лабораторных опытов и исследований в свободной атмосфере, чтобы в конце концов прийти к практически ценным результатам.

«ФАБРИКА» КЛИМАТА И НЕКОТОРЫЕ ПЕРСПЕКТИВЫ

Большое значение имеют работы станции искусственного климата Института физиологии растений Академии наук СССР в Москве. Это своеобразная «фабрика» климата, оснащенная сложной аппаратурой, позволяющей создавать семидесятиградусный мороз и жару в несколько десятков градусов. На станции искусственного климата можно получить суховеи Заволжья и погоду предгорий Кавказа, зимой создать многочасовой июльский день.

Искусственный климат необходим для того, чтобы познавать закономерности жизни растений в различных температурных условиях, ставить эксперименты по зимостойкости и засухоустойчивости, наблюдать за влиянием на растения повышенной влажности воздуха или, наоборот, суховеев. Из машинного зала станции воздух поступает в лаборатории и камеры. Но прежде он проходит большой путь. Сначала компрессоры фильтруют воздух, освобождают его от пыли и посторонних примесей. Затем в особых отделениях воздуху придают необходимые свойства: он увлажняется либо сушится, нагревается или охлаждается. Все оборудование станции автоматизировано. Научные сотрудники станции только задают программу — точные приборы сами следят за ее выполнением. В лабораториях применяется яркое искусственное солнце.

Интересную идею изменения ледового режима Арктики путем таяния плавучих льдов выдвинул советский ученый Авсюк в 1958 году на Международной конференции по изучению морских льдов. Наблюдения дрейфующих станций «Северный полюс» показали, что тепловой баланс Арктики положительный. Значит, льды в Арктике существуют как бы по инерции, вследствие того, что они образовались давно и имеют большую отражательную способность солнечных лучей. Если льды уничтожить, то в современных условиях они не возникнут вновь. Уничтожение льда на некоторых трассах Северного морского пути технически осуществимо путем уменьшения отражательной способности льдов при засыпке их темными веществами. Это может привести к продлению сроков навигации на этом пути.

Все это пока лишь постановка вопроса. Однако важно, что человечество уже сейчас примеряет те средства, с помощью которых оно скоро возьмется за переделку климата в нужном направлении.

Успехи ракетостроения в СССР позволили заменить самолеты ракетами при воздействиях на облака сухим льдом. Успешные опыты по рассеиванию грозовых туч проведены летом 1960 года в Грузии. Значительные массивы туч с градом были уничтожены при помощи твердой углекислоты.

Значительными по площади и по конечному результату были воздействия на облака в полосе полного солнечного затмения 15 февраля 1961 года в некоторых пунктах юга Европейской части СССР, что позволило астрономам выполнить полностью задачу фотографирования солнечной короны (особенно успешно прошел опыт в районе Крымской астрофизической обсерватории).

Наступление на грозные силы стихии ведется с разных фронтов, по решающее слово в этой области будет, по-видимому, принадлежать термоядерной энергии.

Н. Колобков

ГИГАНТСКИЕ ВОЛНЫ В БУХТЕ ЛИТУЯ

ВОЗМОЖЕН ЛИ в естественных условиях внезапный подъем воды океана или морей на полкилометра вверх? До недавнего времени это казалось совершенно невероятным. Однако события, разыгравшиеся в 1958 году у тихоокеанского побережья Аляски, показали, что мы еще плохо представляем, насколько многообразны и уникальны могут быть проявления катастрофических землетрясений. Землетрясение, о котором идет речь, началось, как установлено по записям сейсмических станций, 10 июля в 6 часов 16 Минут по гринвичскому времени, или 9 июля в 22 часа по местному времени, в пункте с координатами 58°20′ с. ш., 136°55′ з. д., то есть на северном берегу пролива Кросс-Саунд, вблизи бухты Пальма (рис. 1).



Согласно выводам специальной экспедиции американских ученых, обследовавшей эпицентральную область, землетрясение явилось следствием перемещения одного крупного блока земной коры относительно другого.

Смещение произошло вдоль тектонического разлома Фэруэтер, протянувшегося по крайней мере на расстояние 200 километров, от залива Пальма до фьорда Нунатак. «Вспарывание» тектонического шва происходило, по-видимому, в направлении с юго-востока на северо-запад.

К северо-востоку от разлома Фэруэтер расположен одноименный горный хребет, в верхней части сложенный молодыми, четвертичными, породами. Между разломом и побережьем Тихого океана заключена полоса сравнительно невысоких предгорий, образованных преимущественно третичными, то есть менее молодыми породами. Сам разлом проходит по менее молодым, мезозойским, отложениям, однако они выходят на поверхность лишь в немногих местах, так как в рельефе это нарушение представляет собой серию каньонов и долин, в которые с окрестных гор спускаются мощные ледники, покрывающие разлом более чем на три четверти его длины.

Изучая с самолета, вертолета и на суше свежие разрывы земной поверхности в доступных для наблюдений местах, исследователи установили, что в результате землетрясения вся полоса предгорий сместилась на северо-запад относительно хребта Фэруэтер примерно на 3–6 метров и несколько (до 1 метра) приподнялась.

Поскольку смещение произошло почти мгновенно, в эпицентральной области, на отвесных стенах горных хребтов и на крутых морских берегах возникли многочисленные обвалы и оползни, в том числе немало очень крупных. Так, на островке Хантаак, расположенном против поселка Якутат, обвалилась часть прибрежной полосы длиной в 300 метров, похоронив под собой трех человек; в заливе Якутат этот обвал породил волны высотой до 6 метров. На реке Алсек, в том месте, где юна идет по разлому Фэруэтер, от обрушения ледников возникла ледяная плотина. Уровень воды в нижнем течении реки упал примерно на метр; через несколько часов вода прорвала плотину и затопила берега.

Однако самый грандиозный обвал был вызван землетрясением в бухте Литуя (рис. 2). Здесь-то и наблюдался подъем воды на фантастическую высоту. Бухта представляет собой ложе древнего ледника и имеет Т-образную форму. Глубина се достигает 200 метров, длина внешней части, проходящей в зоне предгорий, равна 11 километрам, ширина — до 3 километров. От океана бухта отделяется намывной косой; глубина у выхода в океан всего 10 метров.



Внутренняя часть бухты является частью каньона Фэруэтер и своими отвесными берегами, вздымающимися на высоту от 650 до 1800 метров, напоминает фьорд. Она делится на два небольших залива: Гильберт и Криллон, в каждый из которых спускаются мощные ледники из каньона.

Обвал произошел на северо-восточном берегу залива Гильберт. Здесь с высоты 900 метров в воду обрушилось около 30 миллионов кубических метров породы. Выброшенная этим «снарядом» из залива вода устремилась вверх по крутому склону противоположного берега, уничтожая все на своем пути. Гигантский всплеск достиг высоты 520 метров. Скорость движения воды была настолько велика, что и с поваленных, и с устоявших на корню деревьев были содраны кора и сучья.

От места обвала через всю бухту в океан прошла волна средней высотой около 20–30 метров и с отдельными заплесками до 60 метров. Она также «сбрила» всю растительность на берегах. Долгое время спустя бухта была плотно забита плавником и глыбами льда.

В момент землетрясения в бухте Литуя находились три небольших рыболовецких катера. Один из них, с владельцем катера и его семилетним сыном на борту (Е, рис. 2), стоял на якоре у южного берега бухты, недалеко от выхода в океан. Рыбак проснулся внезапно в 10 часов вечера оттого, что катер сильно раскачивало волной. Выскочив на палубу, он понял, что началось землетрясение. Как он потом рассказывал, через две с половиной минуты после первых толчков в заливе Гильберт раздался оглушительный взрыв и вскоре там появилось нечто вроде гигантского водяного облака. Из этого облака вынеслась огромная волна, через две-три минуты достигшая катера. В момент подхода к катеру волна имела высоту около 20 метров и ее фронт был очень крутым; перед фронтом же какого-либо возмущения уровня воды не наблюдалось, за исключением вибраций, вызванных землетрясением. Якорная цепь катера лопнула, и он, подхваченный волной, устремился на сушу, но затем обратным течением был отброшен к центру бухты. Гребень волны был сравнительно узким (7—15 метров), а задний фронт пологим. Другие два катера перебросило волной через входную косу. Экипаж одного из них спасся на лодке; другой катер погиб вместе с находившимися на нем двумя рыбаками.

После прохождения гигантской волны в бухте наблюдались беспорядочные, метавшиеся от одного берега к другому волны высотой до 6 метров. Через полчаса все успокоилось.

События 1958 года заставили более внимательно изучить историю бухты Литуя. Оказалось, что разрушительные волны, подобные описанным, возникали в ней неоднократно, а именно в 1936 году, с высотой всплеска до 150 метров, в 1899 году — до 60 метров, в 1874 году — до 2,5 метров и в 1853 или 1854 году — до 20 метров. Причины возникновения этих волн не установлены; известно, во всяком случае, что к последней из них — волне 1936 года — никакое землетрясение не причастно. Таким образом, эта пустынная бухта хранит еще не одну неразгаданную тайну природы.

С. Соловьев

ОБ АТМОСФЕРЕ МАРСА

СУЩЕСТВОВАНИЕ на любом космическом теле высокоорганизованной жизни, сходной (но не обязательно идентичной!) с земной и немыслимой без участия в ее создании белковых и прочих органических веществ, зависит от подходящей атмосферы, влажности, температурных условий и средств питания. По этому поводу современные научные данные говорят следующее.

Температурные условия южного полушария Марса, особенно вблизи его экваториальных областей, могут обеспечить существование органической жизни. В летние дни экваториальные зоны днем имеют температуру поверхности, поднимающуюся до плюс 20–30 градусов, а умеренные — до плюс 10–20 градусов. Зимой температура тропиков падает до плюс 10 градусов, а умеренных широт до нуля и минус 10 градусов. Днем во время летнего солнцестояния интенсивность солнечного облучения примерно такая же, как и на Земле. Зато ночи на Марсе очень холодные, и температура понижается даже летом до минус 20 градусов. При этом температура темных областей Марса («морей») выше, чем светлых, на 8—10 градусов. На полюсах Марса всегда очень холодно, как в Антарктиде.

Вода и водяной пар прямыми астроспектроскопическими наблюдениями на Марсе пока еще не обнаружены. Но о том, что вода, вероятно, все-таки есть, свидетельствуют полярные шапки и их сезонные изменения, а также облачные образования белого цвета (белые облака), не могущие быть пылевыми облаками. Интересно сообщение Пикеринга, еще в 1894 году наблюдавшего в некоторых местах поверхности Марса поляризацию. Это позволяет предполагать возможность на планете пространств, покрытых жидкостью (водой).

Сейчас можно почти не сомневаться, что на Марсе имеется растительность. Астроном Г. А. Тихов, создатель астроботаники, приводил немало соображений по этому поводу. А не так давно Синтон обнаружил в спектре отражения темных областей Марса полосы поглощения с длиной волны около 3,5 микрона, отвечающей колебаниям молекул органических веществ, имеющих С — Н группу. Это поглощение сходно с наблюдаемым у земных мхов и лишайников. Что же касается условий питания растений, то есть бесспорные данные о присутствии в атмосфере Марса углекислого газа в количествах больших, чем на Земле. Таким образом, не исключается возможность существования на Марсе растительности, питание которой происходит за счет фотосинтеза (высшие растения) Однако этот процесс необязательно должен происходить с помощью хлорофилла, так как на расстоянии, отделяющем Марс от Солнца, для этого требуется поглощение более длинноволновых лучей. Советский астроном Н. А. Козырев предполагает, что растительность Марса черного цвета. По-видимому, это мнение подтверждается темной окраской «морей» Марса.

Присутствие кислорода в атмосфере Марса с достоверностью обнаружить не удалось. Но иногда в спектре его полосы удавалось наблюдать. Еще в 1908 году, при исключительно благоприятных условиях, Слайфер обнаружил кислород, а в 1926 году Адамс и Джон нашли, что его там до 7 процентов, то есть в три раза меньше, чем на Земле. Но в последующем тем же авторам эти наблюдения воспроизвести не удалось.

Сейчас на основе довольно гадательных расчетов предполагается, что кислорода в атмосфере Марса меньше 0,1 процента. А присутствие азота и инертных газов не может быть обнаружено методами современной астроспектроскопии.

Все соображения относительно содержания инертных газов чисто умозрительны и, видимо, очень далеки от действительности. Зато много данных непосредственного наблюдения говорит о том, что в атмосфере Марса должны быть вещества, необычные для Земли или обычные, но находящиеся в необычных состояниях. Об этом можно судить на основании того, что на Марсе, во-первых, низка отражательная способность полярных шапок; и, во-вторых, существует загадочный «фиолетовый слой» на расстоянии 10–15 километров от поверхности планеты. Этот слой интенсивно поглощает фиолетовые и ультрафиолетовые лучи. О природе его имеются лишь догадки.

Резюмируя все сказанное, можно сделать вывод, что на Марсе есть для поддержания жизни такие условия, как температура, влажность и средства питания. Что касается атмосферы, то имеющиеся данные на первый взгляд кажутся мало утешительными. Ниже мы постараемся показать, при каких допущениях можно представить себе, что атмосфера Марса, весьма существенно отличаясь от земной, может обеспечить жизнь даже разумным марсианам.

Хотя на Марсе отсутствуют горы высотой более двух километров, есть предположения, что там существуют крупные понижения глубиной до 10 и даже 20 километров. К таким местам мы относим «моря» Марса, которые представляются нам глубокими низинами между очень полого спускающимися плоскогорьями. Но определить фактическую глубину «морей» Марса чрезвычайно затруднительно. Дело в том, что диаметр планеты, получаемый на фотографиях при помощи самых мощных телескопов, не превышает пяти миллиметров. Поэтому при диаметре Марса в 6780 километров впадина, даже в 20 километров глубиной, будет иметь на снимке величину, лежащую за пределами разрешающей способности фотоматериала.

Размеры Марса и его небольшая масса обусловливают и меньшую силу тяжести, составляющую около 40 процентов земной. Это должно сильно сказываться на условиях жизни на планете по сравнению с Землей. Совершенно своеобразно должны протекать там физические, химические, а также и биологические процессы. Меньшая сила тяжести должна накладывать свой отпечаток на все, что происходило и происходит на этой планете, и не дает права переносить земные условия и представления на Марс, даже в качестве первого приближения. Очень часто мы недопонимаем этого и недостаточно ясно представляем огромное значение такого фактора.

ПРОБЛЕМА КИСЛОРОДА НА МАРСЕ

Для жизни высокоорганизованных существ совершенно необходимо присутствие кислорода прежде всего потому, что процессы окисления — это основные источники энергии для живого организма. Но так как условия жизни на Марсе во все эпохи его существования сильно отличались от земных из-за меньшей силы тяжести, то, следовательно, живому существу при прочих равных с Землей условиях придется на Марсе затратить около 40 процентов той энергии, которую оно тратит на Земле для совершения работ, связанных с преодолением силы тяжести — то есть фактически всего того тепла, которое не связано с поддержанием температуры тела.

Есть основания предполагать, что человек Земли — уроженец ее тропических областей. Разумный марсианин тоже должен быть уроженцем наиболее теплых областей южного полушария Марса. Но средняя температура этих областей около 10–15 градусов вместо 20–25 градусов тропических областей Земли. Если у человека температура тела приблизительно на 10 градусов выше средней температуры тропических областей Земли, то при переносе подобной аналогии на марсианина температура его тела должна быть около 25 градусов. При такой температуре даже у земного человека большинство биологических процессов еще протекает некоторое время более или менее нормально.

Организм же марсианина в процессе эволюции жизни на Марсе вполне мог приспособиться к нормальному существованию при такой температуре тела. Конечно, тогда многие жизненные процессы, с пашей, земной, точки зрения, будут протекать иначе, чем на Земле, но это компенсируется значительно меньшей силой тяжести. Может быть также, что механизм тепловой регуляции марсианина допускает существенное отличие температуры для разных органов его тела. Но если небольшая сила тяжести не вполне компенсирует замедление процессов, происходящих из-за меньшей температуры тела, то эволюция живых существ на Марсе должна была протекать более медленными темпами, чем на Земле.

Учитывая все это, можно предположить, что для марсианина, вероятно, будет достаточно для поддержания нормальной жизни 40 процентов от содержания кислорода в атмосфере Земли, то есть 8 процентов кислорода во всей атмосфере. Невольно вспоминаются данные Адамса и Джонса, которые нашли близкую величину для содержания кислорода в атмосфере Марса — около 7 процентов. Почему эти данные не были вторично подтверждены, мы подробнее скажем ниже.

Источником кислорода в атмосфере Марса вне всякого сомнения следует считать процессы фотосинтеза у растений.

Сплошь покрытые растительностью «моря» Марса, по-видимому, и служат «фабриками кислорода», пополняющими естественную убыль его. Можно предположить, что эта растительность однодневная, ибо только такие растения с однодневным циклом существования были бы наиболее приспособлены к резким сменам температур дня и ночи, амплитуда которых может достигать 60–90 градусов. Особенность таких растений в отличие от земных в том, что, будучи генераторами кислорода, они не расходуют его ночью, так как биологические процессы при низких ночных температурах резко замедлены. Но, конечно, не исключена возможность существования растительности с более длительным циклом развития, однако тоже замирающей на ночь, подобно зимующим растениям Земли.

Но почему же кислород до сих пор еще не обнаружен в атмосфере Марса? Не считая несовершенства современных астроспектроскопических методов его обнаружения, это может быть вызвано следующими причинами: во-первых, поскольку источники кислорода на Марсе растения-однодневки, то его содержание в атмосфере должно быть переменным, повышаясь к концу дня (максимум температуры на Марсе приходится на 14 часов) и резко снижаясь к концу ночи и в начале дня; во-вторых, кислород должен быть сосредоточен в самых нижних слоях атмосферы Марса, главным образом над низинами. Вот эти условия и резко ухудшают возможности обнаружения кислорода.

ИНЕРТНЫЕ ГАЗЫ КАК ОСНОВНЫЕ КОМПОНЕНТЫ
АТМОСФЕРЫ МАРСА

Обладая меньшей силой тяжести, Марс, естественно, должен иметь атмосферу, сильно обогащенную тяжелыми газами. Скорость убегания для газов на Марсе составляет немного менее половины земной, что, однако, еще достаточно для удержания азота и кислорода. Следует только отметить, что убеганию кислорода будут содействовать процессы ионизации верхних слоев атмосферы Марса. Следовательно, доминирующую роль должны играть тяжелые газы. Прежде всего приходит мысль об углекислом газе. Хотя содержание его в атмосфере Марса гораздо больше, чем на Земле, оно не превышает одного процента или около того. Американский астроном Браун высказывал идею, что главный компонент марсианской атмосферы — аргон. Нам кажется, что, по многим причинам, таким главным компонентом следует признать криптоно-ксеноновую смесь с преобладанием первого. Французский же астроном Вокулер предполагает, что аргон на Марсе такого же происхождения, что и на Земле, и содержится его столько же, то есть около 1,2 процента, а 98,5 процента атмосферы Марса состоят из азота. Однако все эти рассуждения гипотетичны и основаны не на непосредственном определении содержания азота (которое пока еще невозможно), а на полном переносе на Марс земных условий.

В то же время инертные газы распространены в космосе довольно широко. По этому поводу Браун пишет: «Было бы удивительным с точки зрения физики ядра, если бы редкие газы встречались гораздо реже, чем другие элементы, стоящие с ними рядом в периодической системе». Почему, например, аргон должен быть распространен в космосе меньше, чем кальций, натрий, хлор, алюминий, никель? Что же касается криптона и ксенона, то их содержание в космосе было высчитано Брауном из предпосылки, будто распространенность их примерно такова же, что и на Земле. Это предположение кажется нам недостаточно обоснованным хотя бы потому, что инертные газы имеют наиболее устойчивые конфигурации электронных оболочек, к типу которых стремятся другие элементы путем отрыва или присоединения внешних электронов. Уже только это соображение дает возможность предположить значительное распространение инертных газов в космосе.

Мы не знаем источника происхождения космических инертных газов, исключая гелий и отчасти неон. Произошли ли наиболее тяжелые инертные газы в результате радиоактивного распада или же, наоборот, ядерного синтеза, пока не установлено. Известные нам процессы радиоактивного распада, по-видимому, не могут обеспечить всего количества тяжелых инертных газов, имеющихся в космосе. Каким же может быть источник, создавший аргоно-криптоно-ксеноновую атмосферу на Марсе? Возможны две предпосылки: либо эти газы присутствовали в атмосфере Марса с самого начала, либо они образовались на самой планете впоследствии.

Но мы знаем очень мало процессов, приводящих в конечном итоге к образованию стойких изотопов криптона и ксенона. С другой стороны, имеются некоторые соображения в пользу первичного происхождения такой атмосферы из тяжелых инертных газов. Так, по взглядам некоторых космогонистов, Марс и Луна имеют несколько иное происхождение, чем Земля, Венера и Меркурий. Советский космогопист профессор Б. Ю. Левин отмечает огромный дефицит на Земле тяжелых инертных газов по сравнению с их космическим изобилием. Он также отмечает исключительность положения Марса, который мог недополучить часть твердых веществ из-за соседства с массивным Юпитером. Но, может быть, в силу этого обстоятельства Марс смог удержать тяжелые инертные газы, чего не смогла сделать Земля?

НЕКОТОРЫЕ СВОЙСТВА ПРЕДПОЛАГАЕМОЙ КРИПТОНО-КСЕНОНОВОЙ АТМОСФЕРЫ МАРСА

Предположим, что атмосфера Марса состоит в основном из смеси криптона с ксеноном (с преобладанием первого) и примесью относительно небольших количеств аргона, азота, кислорода и углекислого газа. Такая атмосфера обладала бы удивительными особенностями, полное представление о которых сможет дать лишь труд многих специалистов. Все же попробуем представить себе наиболее любопытные свойства такой атмосферы и попытаемся усмотреть, нет ли в них причин некоторых уже известных из наблюдений загадочных особенностей атмосферы красной планеты.

Прежде всего — вопрос плотности. Такая атмосфера в земных условиях была бы, по крайней мере, вдвое-втрое плотнее нашей земной. Но учитывая силу тяжести на Марсе, плотность такой атмосферы в условиях Марса, вероятно, не очень отличалась бы от имеющейся на Земле. Поэтому режим дыхания марсианина был бы близок к режиму землянина.

Высота так называемой однородной атмосферы Земли (то есть атмосферы, сжатой до равномерной плотности, соответствующей плотности у поверхности Земли) около восьми километров. Для пашей гипотетической тяжелой атмосферы эта высота в условиях Земли была бы менее четырех километров, по меньшая сила тяжести на Марсе подняла бы ее там на высоту, почти не уступающую земной. Вот почему белые облака на Марсе встречаются на высоте 10–30 километров, примерно так же, как и на Земле. Интересно, что такие облака в основном связаны с «морями» Марса и областями вблизи них.

Следовательно, распространенность атмосферы Марса, во всяком случае нижних слоев ее (тропосферы), приблизительно такая же, что и для Земли[103]. Существование белых облаков на высотах в среднем около 20 километров очень трудно вяжется с принятым мнением, что атмосфера Марса крайне разрежена и у поверхности планеты соответствует плотности земной атмосферы приблизительно на высоте 20 километров. Если это так, то существование белых облаков на Марсе при такой разреженности и пониженной силе тяжести на двадцатикилометровой высоте представляется странным.

К нашему мнению о том, что атмосфера Марса в ее нижних областях должна иметь значительную плотность, приводят и некоторые другие факты, в первую очередь сильное распространение пылевых бурь в ней и долгое оседание пыли.

С пылевыми бурями связаны так называемые желтые облака, располагающиеся чаще всего на высоте 3–5 километров. При разреженной атмосфере длительное оседание пыли после пылевых бурь было бы весьма странным явлением, особенно если учесть, что желтые облака могут оставаться над одной и той же довольно ограниченной областью планеты в течение нескольких недель! Такое медленное оседание пыли при разреженной атмосфере, даже с учетом меньшей силы тяжести, плохо объяснимо. Но если в атмосфере Марса преобладают тяжелые газы, то все становится понятным. Атмосферные потоки и течения, с одной стороны, будут возникать несколько труднее, но, с другой стороны, придя в движение, они будут обладать гораздо большей энергией и смогут захватить более крупные частицы и в значительных количествах. В такой плотной атмосфере оседание частиц пыли в наиболее близких к поверхности слоях будет медленным.

Зависимость убывания плотности нашей гипотетической атмосферы с высотой будет весьма существенно отличаться от земной своей крутизной. Косвенным доказательством этого служит тот факт, что толща атмосферы Марса, определенная оптическими способами, составляет около одной трети земной, в то время как высота тропосферы Марса существенно по отличается от земной тропосферы. При этом наблюдается так называемый эффект Райта: различие диаметров планеты, сфотографированной в разных лучах. Этот эффект не может быть объяснен при существовании очень разреженной атмосферы. Надо учесть, что разница в плотностях главных составных частей земной атмосферы (азота и кислорода) сравнительно невелика: плотность азота относится к плотности кислорода, как 0,97 к 1,10. Поэтому, как показали исследования последних лет, земная атмосфера однородна и не обладает стратификацией почти до самых больших высот.

Иначе обстоит дело с нашей гипотетической атмосферой, плотности важнейших компонентов которой (кислород, аргон, криптон, ксенон) относятся соответственно, как 1,10 к 1,38; 1,10 к 2,86; 1,10 к 4,49 (по отношению к воздуху). При больших разностях в плотностях компонентов, в силу естественной диффузии, более мощной, чем на Земле (меньшая сила тяжести!), самые плотные газы скопятся во впадинах поверхности Марса, в его «морях», а верхние части марсианской атмосферы будут обогащаться более легкими газами. Однако близость потенциалов ионизации криптона и ксенона к потенциалу ионизации кислорода (у ксенона он даже меньше) будет затруднять процессы ионизации кислорода, те процессы, которые способствуют убеганию его из атмосферы Марса. Вот почему в условиях криптоно-ксеноновой атмосферы кислород будет оставаться в нижних ее слоях.

Мы предположили, что глубина впадин Марса может достигать 20 километров. На дне их, даже при глубине всего лишь в несколько километров, можно ожидать атмосферу с плотностью, близкой к плотности земной в горных областях Земли, где некогда с успехом процветали некоторые цивилизации (например, цивилизация инков на высоких плоскогорьях южноамериканских Анд). Толщину наиболее плотного слоя атмосферы Марса трудно предугадать, но, исходя из данных о высоте желтых пылевых облаков, располагающихся в 3–5 километрах от поверхности, она, скорее всего, не более 1–3 километров.

Следующая сторона вопроса — термические свойства тяжелых инертных газов. В этом отношении свойства криптоно-ксеноновой смеси поистине удивительны. Так как эти газы обладают низкими теплопроводностью и теплоемкостью (теплопроводность криптона составляет всего лишь 32 процента, а ксенона даже 21 процент от теплопроводности воздуха, а теплоемкости соответственно в 4 и 6 раз меньше!), то тело, нагреваемое в такой атмосфере, приобретает более высокую температуру, чем при нагревании в воздухе или даже в аргоне. На этом свойстве основано применение криптоно-ксеноновой смеси для наполнения ламп накаливания. Иногда неправильно понимают назначение этой смеси, считая, что эффект заключается только в повышении срока службы электроламп. Но В. Г. Фастовский четко указывает, что свойства криптона и ксенона позволяют при одной и той же затрате энергии повысить температуру накала нити за счет уменьшения тепловых потерь, обусловленных высокой теплопроводностью у других наполнителей электроламп (азота и даже аргона).

Такая особенность допускает, кроме того, выпуск электроламп в колбах значительно меньшего объема. Из этих свойств криптона и ксенона, если они преобладают в атмосфере Марса, следует, что можно ожидать ненормально высоких температур на его поверхности. Существующие температурные условия на Марсе действительно очень странны и трудно объяснимы без принятия нашей гипотезы. Если средняя вычисленная температура Земли плюс 4 градуса, а фактическая плюс 14 градусов, то для Марса средняя температура лежит между минус 30 и минус 50 градусами, но для самых теплых областей («морей») опа повышается вплоть до плюс 20–30 градусов. Более того, иногда в некоторых местах наблюдались температуры плюс 47 и даже плюс 70 градусов, как на поверхности жарких пустынь Земли! Распределение температур на поверхности Марса тоже любопытно, ибо южное полушарие, богатое «морями», в то же время и более теплое. При этом разность температур по отношению к светлым областям достигает десятков градусов.

Надо учесть и такой факт, что значительное содержание углекислого газа в атмосфере Марса должно способствовать повышению температуры его поверхности и атмосферы. Происходит это потому, что углекислый газ задерживает тепловое излучение и этим самым уменьшает потери тепла. Так, Ландон указывает, что увеличение количества углекислого газа в атмосфере Земли вдвое повысило бы среднюю температуру на нашей планете на 3,6 градуса Цельсия. Как известно, содержание этого газа в земной атмосфере составляет всего лишь 0,03 %. По данным же Гранжана и Гуди, в атмосфере Марса углекислого газа содержится в 13 раз больше. Такое повышенное содержание углекислого газа с избытком компенсирует прозрачность инертных газов к тепловым излучениям планеты, которые ими не задерживаются.

Атмосфера из тяжелых инертных газов приводит также к выводу, что и зависимость падения температуры по высоте в атмосфере Марса будет очень крутой. Этим и объясняются сравнительно высокие температуры у самой поверхности планеты и более низкие температуры в верхних слоях, ниже, чем для земной атмосферы. И общая температура будет также ниже земной. В этом отношении Марс несколько напоминает криптоновую электролампу накаливания с ее очень малым объемом колбы, очень высокой температурой нити накала и сравнительно небольшой температурой стекла колбы. В согласии с этой гипотезой находится также и тот факт, что на Марсе не обнаруживается непрерывное понижение температуры в течение ночи, как это предполагается в теории.

Термические особенности тяжелых инертных газов способствуют тому, что любые взрывы в такой атмосфере будут обладать очень большой яркостью. И любопытно, на Марсе неоднократно наблюдались яркие загадочные вспышки, не находящие объяснения. Если предположить там криптоно-ксеноновую атмосферу, то эта загадка получает простое объяснение: вспышки эти не что иное, как быстро сгоревшие метеориты, для которых даже тонкая криптоно-ксеноновая атмосфера — непробиваемая броня. Эта особенность приводит также к заключению, что самоторможение межпланетных ракетных кораблей в нижних слоях атмосферы Марса должно быть значительным и очень опасным.

В заключение хочется сказать еще несколько слов об одной особенности этих газов. Она заключается в том, что криптон и ксенон обладают высокой растворимостью в воде и способностью давать с ней при низких температурах, несмотря на свою химическую инертность, малостойкие твердые соединения — криогидраты. Эта особенность повышается с увеличением атомного веса и резче всего выступает у ксенона. Поэтому наиболее устойчивы криогидраты криптона и ксенона. При очень низких температурах на полюсах Марса (до минус 100 градусов) можно ожидать образования не только чистого льда, но и криогидратов, свойства которых очень мало изучены. Возможно, что их существование стоит в связи с некоторыми плохо объясняемыми особенностями полярных шапок Марса и его белых облаков.

НЕМНОГО ЧИСТОЙ ФАНТАСТИКИ

Если на Марсе действительно существуют или ранее существовали разумные существа, создавшие высокую цивилизацию и построившие, как предполагает советский ученый профессор И. С. Шкловский, искусственные спутники Марса — Фобос и Деймос, то для них единственным выходом поддержать свою жизнь в современных тяжелых климатических условиях Марса было бы создание искусственной атмосферы из тяжелых инертных газов. Такая атмосфера была бы неплохой броней против межпланетного холода, наступающего на планету, и против метеоритной бомбардировки, столь возможной из-за опасного соседства кольца астероидов. Она также мешала бы убеганию кислорода, существование которого в нижних слоях атмосферы Марса поддерживалось бы фотосинтезом специально выведенных для этого растений-однодневок, усиленно выделяющих кислород. Питание же этих растений влагой и углекислым газом, может быть, происходило через сеть естественных и искусственных трещин — каналов, по которым подаются влага от полюсов и углекислый газ из недр планеты.

Цивилизация, создавшая такие огромные искусственные спутники, по нашему мнению, способна была бы также создать и поддерживать искусственную криптоно-ксеноновую атмосферу. Каким способом могли быть получены эти газы, трудно предугадать. Быть может, они были получены за счет направленного распада рубидия и цезия, извлекавшихся специально выведенными для этого растениями или бактериями (для земных растений известны факты накопления рубидия) Или же применялись какие-то методы ядерного синтеза, процесса, еще нам недоступного в полном его объеме, — все это пока лишь фантастическая гипотеза, на основе которой можно написать научно-фантастический роман или повесть. Будем надеяться, что наши писатели-фантасты не обойдут своим вниманием и такую тему.

Н. Жиров

ИСТОРИЯ ДВУХ НАЗВАНИЙ

НЫНЕШНЕЕ время для африканских народов — пора завоевания долгожданной свободы и независимости. Иго колониализма в итоге мощного национально-освободительного движения африканцев свергнуто во многих бывших бесправных колониях.

Освобожденные народы Африки созидают новую жизнь. Вместе со всем старым они отбрасывают прочь и географические названия — Золотой Берег, Невольничий Берег, Проклятые Лагуны… — напоминающие им о долгих столетиях колониального рабства, разбоя и беззакония.

Но есть и такие географические наименования, данные европейцами-первооткрывателями, которые сохраняются и сегодня в молодых независимых государствах Африки. О возникновении этих названий и пойдет ниже речь.

РЕКА КРАБОВ

В УЗКОЕ створчатое окно косо падали солнечные лучи, освещая стоящий в углу комнаты стол и склонившегося над ним человека. Купец-работорговец Фернан Гомиш внимательно просматривал свои торговые книги, время от времени делая на полях пометки. Пора было уже подводить итоги, так как пятилетний срок монопольной торговли с Сенегамбией, милостиво предоставленный ему португальским королем Аффонсу V, истекал.

Судя по довольной улыбке, то и дело появлявшейся на лице Гомиша, результаты его подсчетов были более чем утешительны. И это несмотря на то, что король ограничил его возможности, повелев всю собираемую в Гвинее слоновую кость продавать ему по твердой цене. Мало того, посылаемые Фернаном Гомишем корабли должны были в течение оговоренного пятилетнего срока обследовать побережье Гвинейского залива, каждый год приблизительно на протяжении пятисот километров.

Гомиш листал страницу за страницей, и за скупыми цифрами вставали события и факты, свидетельствующие о его предприимчивости и кипучей деятельности. Каждый год, начиная с 1469, когда ему была предоставлена монополия, отмечался новыми открытиями, ознаменовывался умножением его богатств. Берег Слоновой Кости, вслед за ним Золотой Берег и еще далее на восток Невольничий Берег.

Каждое из этих названий говорило само за себя и служило как бы вехами торговой деятельности португальского купца. Слоновая кость давала немалый доход, но приобретаемое в стране ашанти золото в виде золотого песка было куда более соблазнительным. Не менее, а, пожалуй, даже более прибыльным делом была торговля рабами, черными невольниками, взамен которых в сундуки Гомиша лилось рекой золото. Не случайно берег Гвинейского залива между реками Вольта и Нигер получил название Невольничьего. Обилие укромных бухт, близость густо населенных областей тропической Африки — все это облегчило задачу работорговцев. Сюда прибывали их корабли и, нагруженные живым товаром, возвращались в Португалию. Эти места, свидетели деяний, позорящих человеческое достоинство, получили и другое наименование, еще более выразительное, — Проклятые Лагуны.

Но мысль об этом отнюдь не тревожила совесть богатого лиссабонского купца, и если на мгновение на его лице появлялось выражение тревоги, то оно было вызвано совершенно другой причиной. «Что с Сикейрой? Почему он до сих пор не вернулся?» Гомиш возлагал большие надежды на свою последнюю экспедицию и имел все основания для беспокойства. По его расчетам, Сикейра должен был возвратиться в Португалию еще месяц назад, а его все нет и нет. «Что могло с пим приключиться? Неужели кораблекрушение? Или, быть может, его постигла участь Нунью-Триштана, и он погиб в стычке с африканцами?».

Погруженный в эти невеселые мысли, Гомиш не расслышал осторожного стука в дверь. И только когда стук повторился, он крикнул: «Войдите!».

В дверь просунулась черноволосая голова его слуги. Глаза его блестели от возбуждения.

— Хозяин, — с трудом переводя дыхание, проговорил! он, — капитан Сикейра…

— Что? Погиб? — упавшим голосом спросил Гомиш, не дожидаясь, пока слуга закончит фразу.

— Я бежал что есть духу, — захлебываясь, продолжал тот, — от самой гавани, чтобы первым сообщить вам известие…

— Да говори же толком, что произошло! — раздраженно закричал купец. — Не тяни, ради бога!

— Ваша воля, хозяин, а только я и говорю, что сеньор Сикейра…

— Что, что Сикейра? — не в силах сдержать нетерпение и гнев перебил его Гомиш. — Скажешь ли ты, наконец, что Сикейра?

— Я хочу все время это сказать, да вы не даете мне закончить, — растерянно ответил слуга.

— Ну-ну, — внезапно успокаиваясь, сказал Гомиш, — говори, я тебя слушаю.

— Корабль сеньора Сикейры входит в порт, ваша милость, и я поспешил вам об этом сообщить, как вы и приказывали.

— Слава создателю, слава пресвятой деве Марии! — пробормотал купец, творя крестное знамение. — Эй, Диого, подай мне шляпу и плащ и следуй за мной.

Спустя несколько минут он уже шагал в сторону порта, да так быстро, что слуга едва поспевал за ним, хотя был вдвое моложе своего господина.

Еще издали Гомиш увидел знакомые очертания своего-корабля, на котором прибыл Сикейра, и, сгорая от нетерпения узнать о результатах плавания, не стал дожидаться, пока капитан съедет на берег, вскочил в одну из принадлежащих ему шлюпок и приказал грести к кораблю.

Поднявшись на палубу, он кратко приветствовал экипаж и поспешил уединиться с Сикейрой в каюту, чтобы выслушать его отчет.

— Вы доставили мне много беспокойства, сеньор Сикейра, — начал он, — признаться, я ожидал вашего возвращения значительно раньше…

— На то воля господа нашего всемилостивейшего, — почтительно перебил его Сикейра. — Обратный путь был тяжел, ветер отнес нас далеко в сторону от привычного пути, благодарение создателю, что мне удалось спасти корабль и людей.

— А там, на берегу, надеюсь, все было успешным?

— О, в этом можете не сомневаться, сеньор Гомиш, — самодовольно покручивая ус, ответил Сикейра. — Трюм набит до отказа, и товар весь отборный.

— Превосходно, любезный Сикейра, превосходно! — от полноты чувств воскликнул Гомиш. — Вы будете щедро вознаграждены! — Он был в восторге оттого, что последняя экспедиция позволит ему еще больше округлить свой капитал, и пришел в прекрасное расположение духа. — Рассказывайте же, что вам удалось повидать на этот раз, рассказывайте!

— Не буду вам докучать, сеньор Гомиш, пересказом того, о чем вам уже известно, — степенно начал Сикейра. — Ограничусь лишь тем новым, что удалось мне открыть и увидеть. Миновав уже известные вам лагуны, мы продолжали плыть на восток вдоль берега, который по-прежнему был. покрыт густой растительностью. То и дело нам удавалось обнаруживать небольшую бухточку, хотя я уверен, что многие из них мы миновали не заметив, настолько там густы лесные заросли. Погода все время нам благоприятствовала (не то что на обратном пути): небо оставалось безоблачным, ветер был попутным. Так мы плыли несколько суток, не встречая ничего примечательного и не высаживаясь на берег.

Как-то вечером (солнце вот-вот должно было скрыться за горизонтом) я обратил внимание на какую-то громаду, заслонявшую впереди чуть ли не полнеба. По моим предположениям, это могла, видимо, быть какая-то гигантская гора. Я предупредил кормчего, чтобы он удвоил внимание, а сам удалился к себе в каюту.

Наутро, выйдя на палубу, я удостоверился, что виденное мною накануне не было игрой воображения. Огромная гора возвышалась над берегом, подняв к самому небу остроконечную вершину. Клянусь вам, сеньор, мне еще не приходилось встречать на своем веку горы такой невероятной высоты.

Ввиду того что на корабле пришли к концу запасы пресной воды, я приказал зайти в одну из многочисленных бухт. Захватив с собой несколько бочонков, мы погрузились в шлюпки и направились к берегу. Там, оставив у вытащенных на песок шлюпок несколько человек охраны, я разделил своих людей на два отряда, и они разошлись в разные стороны в поисках питьевой воды.

Искать пришлось недолго. Не прошло и получаса, как мы наткнулись на небольшую речку, с трудом пробиравшуюся меж лесных зарослей. Вода в ней была чистая, прозрачная и очень вкусная. Набиравшие воду люди заметили, что речка изобилует рыбой и особенно крабами, которых в прозрачной воде легко было заметить. Наполнив бочонки водой, матросы ради забавы принялись их вылавливать и за несколько минут наловили целую кучу. Кто-то снял с себя рубаху и захватил улов с собой, отправляясь обратно к шлюпкам.

Изобилие в реке крабов подсказало мне мысль, что лучшего имени для этой реки, да и не только реки, по и вздымавшейся поблизости горы, о которой я упоминал, не придумаешь. Река Крабов! Гора Крабов! Звучит не так уж плохо. Как ваше мнение, сеньор Гомиш?

Купец кивнул в знак согласия и попросил продолжать.

— Вот, собственно, и все, заслуживающее внимания, сеньор, — пожал плечами Сикейра. — Впрочем, есть еще одно обстоятельство, которое, несомненно, представит интерес. Я хочу, чтобы вы знали о том, что сразу же после места нашей высадки берег меняет свое направление и поворачивает на юг. Как далеко он так тянется, не могу сказать, потому что вскоре я повернул корабль и пустился в обратный путь.


Приблизительно при таких обстоятельствах получила название протекающая в непосредственной близости от крупнейшей вершины на западном побережье Африки небольшая речка. Португальцы назвали ее рекой Крабов (Rio dos Саmaroes).

Одновременно, а по некоторым предположениям несколько позже, аналогичное название получила и упомянутая вершина, оказавшаяся вулканом. Camaroes — Камерун, под этим именем стал известен вулкан, а впоследствии это наименование получила и вся местность вокруг: Камерун — колония, Камерун — подопечная территория и, наконец, Камерун — самостоятельное государство, получившее независимость в 1960 году.

ЛЬВИНЫЕ ГОРЫ

— НА ЭТИ берега высаживаться небезопасно — чернокожие здесь очень воинственны.

— Возможно ли? А разве кто-нибудь уже побывал в этих местах? Признаться, мне думалось, что мы первые зашли так далеко.

— Как? Разве вы не слышали о гибели небезызвестного Нунью-Триштана и большинства его спутников в этих краях? Об этом было много разговоров в свое время. Впрочем, чему я удивляюсь? Вы еще так молоды, что вряд ли могли об этом что-нибудь знать!

Собеседники стояли на палубе корабля, медленно плывущего вдоль африканского побережья.

Это было небольшое португальское судно, одно из многих, отправлявшихся в середине XV столетия на поиски земель, богатых золотом, пряностями и даровой рабочей силой. Обитателей африканских берегов португальские мореплаватели насильно увозили с собой и по возвращении на родину продавали в рабство, выручая на этом большой барыш.

Один из разговаривающих, пожилой человек с суровым лицом, изборожденным морщинами, был начальник экспедиции по имени Перру да Синтра. Его собеседника звали да Кошта. Он был молод и, видимо, только начинал самостоятельную жизнь, пустившись в это рискованное, полное опасностей плавание.

Синтра равнодушно взирал на проплывавшие мимо берега, зато его молодой спутник не отрывал восхищенного взгляда от сменявших друг друга картин пышного великолепия тропической природы. Его приводило в восторг все: и густая зелень спускающихся почти к самой воде тропических зарослей, и внезапно открывающиеся уютные бухточки, окаймленные желтым песком пляжей, и виднеющиеся впереди в легкой дымке вершины невысоких гор.

— Извольте, если хотите, я расскажу вам историю Нунью-Триштана, — продолжал Синтра, снисходительно посматривая на оживленное лицо своего собеседника. — Она очень поучительна для тех, кто решил посвятить свою жизнь морскому промыслу.

Слушайте же внимательно.

Несколько лет назад (если мне не изменяет память, было это в 1443 году) Нунью-Триштан, слывший опытным мореходом, отправился в плавание на юг вдоль побережья Африки, как мы сейчас с вами, на поиски новых земель и благодаря упорству и настойчивости сумел не только достигнуть мыса Бранку, но и проникнуть южнее его. Оставив позади этот мыс, Нунью-Триштан продолжал плыть дальше и вскоре увидел группу островов. Оказалось, что острова обитаемы: на них там и здесь виднелись селения, а на берегу одного из островов, к которому подошел близко его корабль, стояли африканцы, разбившись на несколько групп. При ближайшем рассмотрении островитяне произвели на мореплавателя благоприятное впечатление. Они были прекрасно сложены и казались сильными и выносливыми.

Что, как вы думаете, делает Нунью-Триштан? Он велит захватить несколько человек и берет их с собой в Португалию, где сбывает пленников, причем с такой баснословной выгодой, что у него тут же является мысль повторить это предприятие.

С тех пор не было экспедиции, отправлявшейся в африканские земли, которая бы не занималась столь прибыльным промыслом.

Спустя некоторое время Нунью-Триштан вновь отправляется в плавание. На этот раз ему удается заплыть еще дальше к югу (мы не так давно миновали эти места). Выбрав удобную стоянку, он высаживается на берег с намерением поохотиться здесь на туземцев. На этот раз он не собирается ограничиться поимкой нескольких пленников, а намерен захватить столько африканцев, сколько сможет вместить его корабль.

И тут происходит такое, чего Нунью-Триштан никак не ожидал. Люди, которых он считает дикарями и которых он и его спутники пытаются пленить, оказывают упорное сопротивление. В ожесточенной стычке наши соотечественники, уступавшие в численности туземцам, терпят поражение. Сам Нунью-Триштан убит, большинство его соратников тоже.

Спаслись лишь пять человек, которые поспешно бежали на корабль, оставив на берегу трупы своих товарищей. Они были настолько напуганы случившимся, что возвращались в Португалию не вдоль берега, как это делали все их предшественники, а через открытый океан, из боязни приблизиться к африканскому побережью.

Когда я увидел эти берега, мне припомнилась бесславная кончина Нунью-Триштана, и я счел необходимым предупредить вас, человека, еще не искушенного, об опасностях, подстерегающих нас.

Синтра замолчал и продолжал блуждать рассеянным взглядом по проплывавшему мимо африканскому берегу. Молчал и Кошта, находясь под впечатлением только что услышанного.

Между тем свежело. Горизонт на юге покрылся тучами, среди которых то и дело мелькали вспышки молний. Ветер заметно крепчал, будоража поверхность океана. День шел на убыль, быстро темнело.

Синтра распорядился поставить штормовые паруса на случай, если разразится буря. Одновременно он присматривался к незнакомым контурам гористого побережья.

Корабль плыл недалеко от берега, и было слышно, как ветер с ревом и свистом прорывался сквозь густые лесные заросли, ударялся о скалистые уступы гор и с грохотом мчался дальше. Хлынул дождь, сопровождаемый раскатами грома. Эхо многократно повторяло голос непогоды среди горных склонов.

— Как величественно и страшно это! — с восхищением и трепетом воскликнул Кошта. — Не кажется ли вам, сеньор, что в этих горах собралось множество львов, сотрясающих своим мощным рыком воздух далеко окрест? Вы только прислушайтесь к этому реву.

Синтра усмехнулся. Он не мог не согласиться с меткостью сравнения, найденного его молодым спутником.

— Вы правы, мой друг, ваше сравнение очень удачно, — заметил он. — Оно заслуживает того, чтобы им воспользоваться. Вот что мы сделаем. Поскольку нам все равно надо как-то обозначить берег, мимо которого мы сейчас проплываем, назовем его по имени гор, которые вы так удачно окрестили. Пусть отныне берег называется Львиным в память об этом ненастном вечере.


С тех пор за этим участком Гвинейского залива Атлантического океана утвердилось название Сьерра-Леоне, несколько искаженное португальское Serra da Lioa, что означает в переводе Львиные горы.

С. Узин

ВОДА НА ЛУНЕ


Перевод с английского Л. Самсоненко


ЭТОЙ статье дано заведомо интригующее заглавие, чтобы привлечь внимание читателя и заставить его серьезно задуматься над вопросом, на который так много исследований, казалось бы, дало уверенный отрицательный ответ. Разве мы не слышали с детства, что Луна — это мир, лишенный климата, в котором нет воды, поскольку на Луне нет атмосферы? Разве мы не повторяли, что Галилей и другие наблюдатели небесных светил подвергались впоследствии ожесточенным нападкам за ошибочное наименование плоских лунных областей «морями»? И разве, наконец, специалисты не вспомнят презрение, с которым ученые встретили гипотезу немецкого астронома Гербигера о «льде на Луне» всего поколение или два назад?

Цель статьи — не приносить извинения за ошибочные мнения наших предшественников; их идеи не могут быть исправлены или подновлены аргументами, опирающимися на наши современные знания. Однако редко бывает так, что та или иная научная проблема бывает разрешена действительно до конца, как об этом провозглашают современники. Новые поколения, вооруженные новыми знаниями, могут увидеть эти задачи в другом свете. Это, как мне кажется, происходит и с многовековым вопросом о воде на Луне.

ВОЗНИКНОВЕНИЕ И СУДЬБА ЮВЕНИЛЬНЫХ ВОД

Чтобы начать с самого начала, отправимся в путешествие назад во времени, к эпохе образования Солнечной системы, то есть примерно на 4600 миллионов лет назад (эта дата установлена достаточно уверенно по изучению возраста метеоритов, падающих на Землю из межпланетного пространства). «Катастрофические» гипотезы образования Солнечной системы из горячей материи, вырванной из недр Солнца, ныне оставлены. По мнению ученых, занимающихся вопросами космогонии, планеты и другие тела Солнечной системы образовались путем постепенного накопления допланетных частиц газа и пыли при температурах, измеряемых, самое большее, несколькими сотнями градусов по шкале Кельвина[104]; сходным образом рождалось и наше центральное светило — Солнце.

Если подобные представления правильны, то весьма вероятно, что химический состав первоначального газо-пылевого облака, из которого образовалась Солнечная система, должен быть очень похож на химический состав твердых метеорных тел, носящихся в межпланетном пространстве. Их остатки обращались вокруг Солнца от дней образования Солнечной системы до тех пор, пока не столкнулись с Землей. Химический анализ метеоритов показывает, что, кроме атомов и молекул многих химических элементов, в них присутствуют вполне измеримые количества различных легко испаряющихся веществ, самым важным из которых является вода. В так называемых хондритовых метеоритах она может составлять до 0,1 процента их массы.

Существование воды в первичной космической материи не должно пас удивлять, поскольку водород и кислород широко распространены в космосе, а молекулы воды очень устойчивы. Но еще более интересна роль и судьба так называемых ювенильных вод, то есть горячих внутренних вод, которые существуют со времен образования тела лунного или даже планетарного размера. Если подобные тела образуются при температуре выше 1000 градусов Кельвина, то большая часть воды испарится с самого начала и для тел с размерами и массой Луны безвозвратно растеряется в межпланетном пространстве. Если же — как мы ныне уверены — первоначальная температура подобных тел не была так высока и ограничивалась немногими сотнями градусов, ювенильная вода осталась связанной в твердых телах как кристаллизационная пода.

Что же случилось с этой водой (и другими летучими составляющими) со времени образования Луны в такое тело, которое мы знаем сегодня? Ответ во многом зависит от последующего увеличения температуры в недрах Луны. Это повышение температуры происходит благодаря выделению тепла при самопроизвольном распаде радиоактивных элементов. Эти элементы, если судить по аналогии с земной корой или хондритовыми метеоритами, должны находиться на Луне в заметных количествах (в особенности калий-10, торий-228, уран-235 и уран-238). Выходящий наружу поток этого «радиогенного» тепла, несомненно, очень сильно ослабляется из-за малой теплопроводности лунных пород. Результаты многочисленных расчетов потока тепла из недр Луны, в особенности в работах американского ученого Юри, не оставляют сомнений в том, что Лупа должна быть разогрета и что ее недра в настоящее время имеют температуру до 1000–1200 градусов Кельвина. Эта температура уже достаточна для испарения кристаллизационной воды из большинства твердых пород, содержащих «связанную» воду, и постепенной диффузии ее в виде перегретого пара через различные щели и трещины во внешнее пространство.

Если предыдущие аргументы и содержат какой-либо роковой недостаток, еще не выявленный сегодня, все же мало сомнений в том, что большая часть глубоких недр Луны (с температурой порядка 1000 градусов Кельвина) должна быть полностью обезвожена и высушена, а ее наружная кора, напротив, обогащена водой.

Но насколько близко эта вода могла подойти к лунной поверхности?

Судя по измерениям тепла, излучаемого Луной, поверхностные слои Луны совершенно холодные. На глубине меньше одного метра (куда тепло от нагревания солнечными лучами уже не проникает) по всей Луне господствует постоянная температура 230 ± 10 градусов Кельвина (примерно на 40 градусов ниже точки замерзания воды). Горячий пар, медленно пробирающийся через лунную кору во внешнее пространство, должен здесь конденсироваться в жидкость и превращаться в лед задолго до того, как он достигнет поверхности. Вдоль трещин в кристаллических породах, которые могут служить каналами для более быстрого выхода пара, образование льда происходит очень близко к лунной поверхности. Это может привести к таким изменениям строения лунной поверхности, которые, возможно, укажут земному наблюдателю на существование подповерхностных лунных ледников.

НАБЛЮДЕНИЯ, ПОДТВЕРЖДАЮЩИЕ ТЕОРИЮ

На недавнем симпозиуме по Луне в Ленинграде английский астроном Голд указал, что подобные подповерхностные ледники (покрытые пылью и различными обломками), возможно, наблюдаются нами в виде так называемых «лунных куполов» — небольших вздутий лунной поверхности, располагающихся обычно группами. Эти образования найдены в большом количестве на видимом полушарии Луны. Наибольшие из таких возвышенностей, обнаруженные по соседству с лунным кратером Коперник, имеют в поперечнике 20–25 километров, но большинство из них — по 3–6 километров в поперечнике и 100–300 метров в высоту. У лунных куполов есть заметное внешнее сходство с гидролакколитами[105] Аляски и Северной Канады, которые, быть может, являются их земными аналогами. Однако необходимы подробные исследования, прежде чем эти предположения встанут на более прочную основу.

Допустим, как крайний случай, что ювенильная вода, вырываясь из горячих недр Луны, обогащала поверхность случайными выбросами — в виде гейзеров. Такие явления с уверенностью до сих пор не наблюдались (да их и весьма трудно было бы обнаружить, за исключением весьма специальных обстоятельств), но у некоторых из наибольших лунных куполов имеются центральные углубления, которые, возможно, представляют собой жерла таких гейзеров, и если горячая вода временами извергается из этих гейзеров, то что же происходило с ней потом?

Точный ответ зависит, конечно, от температуры гейзера и высоты выброса, но можно не сомневаться в том, что, если подобный выброс произойдет лунной ночью или в месте, заслоненном от прямых солнечных лучей, значительная часть выброшенной струи воды не испарится в окружающее пространство, а превратится в лед. Отсюда вопрос — сколько времени может просуществовать такой лед, подвергающийся непосредственному действию условий межпланетной среды, без защиты атмосферы?

Оказывается, «время жизни» льда может быть очень велико. Этот важный факт ускользнул от внимания большинства ученых. Измерение теплового излучения Луны с помощью термоэлементов показало, что господствующая температура на части лунной поверхности, заслоненной от прямых солнечных лучей, составляет 120 градусов Кельвина. Это ненамного выше температуры жидкого воздуха[106]. При этой температуре скорость испарения льда такова, что за все время существования Луны (4,5 миллиарда лет) с каждого квадратного сантиметра ее поверхности испарилось бы 4,6 килограмма льда. Другими словами, если бы Луна была окружена сплошной оболочкой изо льда сразу после своего образования, то вследствие испарения она потеряла бы за протекшие 4,5 миллиарда лет менее 50 метров своей внешней коры! А ледники, например, нашей земной Антарктиды имеют толщину в несколько километров.

Какова же максимально возможная толщина ледников, образовавшихся на Луне? Обратимся к аналогии с Землей. Предположим, что все количество воды во всех океанах Земли равномерно распределено по ее поверхности. Тогда вода покроет весь земной шар равномерным слоем толщиной 1800 метров. Если эта вода образовалась путем «высушивания» всей массы Земли, каждый грамм этой массы должен дать 1,54 x 10-4 граммов ювенильной воды. И если допустить, что эти же цифры справедливы и для Луны, то ее меньшая масса высвободила бы количество ювенильной воды, которое может покрыть весь лунный шар океаном глубиной 300 метров. Сравнивая эту величину с приведенным выше числом 50 метров, мы видим, что это количество воды намного больше того, которое могла бы потерять Луна за все время существования вследствие испарения в условиях лунной ночи.

Эти числа, разумеется, весьма приблизительны; при расчете их предполагались полный выход всей ювенильной воды на поверхность Луны (а этот процесс, может быть, еще далек от завершения) и ее равномерное распределение здесь. На самом деле выход воды на поверхность мог происходить в ограниченных областях, а основная часть Луны оставалась обезвоженной. Английские астрономы Ватсон, Мюррей и Гаррисон-Браун недавно отметили, что приведенные доводы делают возможным успех поисков сохранившегося льда в постоянно покрытых тенью областях Луны вблизи ее полюсов, где Солнце никогда не поднимается полностью над горизонтом и где низкие ночные температуры господствуют почти всегда.

Каковы будут результаты подобных исследований, может сказать только будущее, но одно ясно, что наши прежние взгляды о существовании воды на Луне нуждаются в пересмотре.

Зденек Копал

ПО СЛЕДАМ КОРАБЛЕКРУШЕНИЯ


Перевод с французского И. Кочетковой


ГАРУН ТАЗИЕВ, известный исследователь вулканов, оставил на три месяца свои «встречи с дьяволом», чтобы заняться изучением остатков фрегата, опознанного им как обломки «Астролябии» — одного из кораблей Лаперуза. Они были замечены в 1958 году губернатором островов Санта-Крус Антониозом, который известил Тазиева об интересной находке. Результаты исследований места кораблекрушения и сообщение Тазиева об этом — новая глава в драматической истории экспедиции Жана-Франсуа Лаперуза.

Великий мореплаватель Лаперуз (1741–1788) и лейтенант Флерио де Лангль по приказу французского короля Людовика XVI отправились в самую большую по тем временам научную экспедицию. Корабли покинули Брест 1 августа 1785 года. Вся Европа с живым интересом следила за этим путешествием, в подготовке которого принимал участие и сам король: он составил инструкцию на пятистах страницах — «in quarto» (Королевские советы) — как производить исследования и составлять карты. Хорошо оснащенные всем необходимым два фрегата, «Астролябия» и «Буссоль», вышли в море, чтобы совершить небывалое путешествие, и увы!., не вернулись. Воспоминания о капитане Куке, погибшем пятью годами ранее на Сандвичевых островах, были еще очень живы в памяти людей.

Неизвестные и воображаемые земли можно было увидеть тогда на глобусе. Лаперуз, отправившийся, чтобы пополнить карту мира новыми названиями, начал с того, что стал стирать обозначенные на пей наименования: острова Скалы Дрейка[107] были безжалостно перечеркнуты. «Земли воображаемые», — писал он о них в судовой книге, копия которой отправлялась в Версаль из каждой гавани.

На пятисотый день плавания началось гидрографическое изучение Таврии, ныне Восточной Сибири. Лаперуз прошел Корейским проливом и оказался в той части земли, где не развевался даже флаг капитана Кука. Ничто не укрылось от исследований Лаперуза. Глубины ущелий были измерены, высота гор — определена.

Но после сообщений Лаперуза, полученных в январе 1788 года, наступило тревожное молчание, которое опечалило всю Европу. Людовик XVI спрашивал своего тюремщика, нет ли вестей от Лаперуза, даже накануне того дня, когда должен был подняться на эшафот. Конвент голосовал за предоставление кредитов на организацию поисковой экспедиции. Поддержал это решение и еще один человек. Правда, он имел для этого особые основания: когда «Астролябия» и «Буссоль» снимались с якоря в Бресте, воспитанник «Эколь милитэр», не включенный в списки экипажа, плакал, спрятавшись от людей. Его звали Наполеон Бонапарт.

КОРАЛЛОВАЯ ЛОВУШКА ОТКРЫВАЕТ СВОИ ТАЙНЫ

В коралловом море, изобилующем рифами, навигация в наше время не менее опасна, чем во времена Лаперуза. В лагуне острова Ваникоро шторм погубил «Астролябию» и «Буссоль». Большая часть тех, кому удалось спастись, были уничтожены. Многие погибли на плотах, которые они соорудили наспех.

Экспедиция Тазиева опознала остатки славных фрегатов. До этого на дне лагуны острова Ваникоро было найдено только несколько обломков. Небольшие взрывы дали возможность расчистить дно и найти шесть якорей, несколько пушек, ядра, латунные гвозди. Не хватало только прямого доказательства принадлежности этих предметов фрегатам. Но накануне отъезда один из пловцов экспедиции Тазиева случайно нашел и такое доказательство. Это был серебряный рубль русской чеканки с изображением Петра Первого и с датой 1724 года. Этот рубль мог принадлежать только кому-нибудь из моряков «Астролябии» — единственного в то время корабля, который побывал и у берегов Восточной Сибири, и в южных морях.

На пятисотый день плавания спасшиеся после кораблекрушения лейтенант де Лангль и физик Ламанон были убиты вместе с десятью другими моряками на острове Тутуила (Океания). Через несколько месяцев исчезли Лаперуз и его товарищи.

Что же произошло?

Виево — восьмидесятисемилетний старик, самый старый из местных жителей острова Ваникоро — передал Тазиеву странный рассказ: «Дед моего деда видел корабль, потерпевший крушение, разбившись о рифы. Все жители острова бросились на пирогах к кораблю, отрезали головы и привозили в деревню. Те, кто пытался спастись вплавь, утонули. На месте, где зарыты их трупы, дед моего деда и другие жители деревни воздвигли курган». Старый Виево проводил туда Тазиева. Там была только груда камней.

На этом острове до сих пор поют старинную песню, в которой говорится о дне, когда было погублено много белых людей

Бернар Жикель

ПРИРОДА ПОДСКАЗЫВАЕТ ИНЖЕНЕРУ

ОБЪЯСНИМЫЙ ПАРАДОКС

НЕСКОЛЬКО ЛЕТ назад в зарубежной печати появились сообщения об использовании дрессированных голубей для… управления боевыми ракетами. В течение нескольких лет было проведено множество экспериментов, и в окончательном виде эта оригинальная система управления функционировала так. В головке ракеты помещалось устройство, которое следило за целью (например, самолетом или кораблем) и проектировало ее изображение на особый экран. Перед ним сидел на жердочке голубь, который клевал изображение, когда оно появлялось на экране. Если ракета двигалась точно, в направлении цели, изображение находилось в затемненной центральной части экрана и поэтому было невидимым. Однако едва ракета отклонялась в сторону, изображение цели перемещалось на освещенную часть экрана, голубь видел его и принимался клевать, пока оно не исчезало вновь. Поверхность экрана была токопроводящей, а на клюв птицы надевался металлический наконечник. Это давало возможность в зависимости от положения цели на экране снимать с него ток определенной величины. Через преобразователь этот ток подавался на рули управления, которые заставляли ракету снова лечь на правильный курс…

Правда, поразительно: стальное чудовище, в утробе которого заключена сила нескольких десятков тысяч лошадей, управляется столь примитивным устройством. В чем дело, почему исследовался такой «допотопный» способ управления ракетой? Ведь любой конструктор в течение часа без труда набросает десяток, а то и больше схем — механических, пневматических, электрических и каких угодно, — с помощью которых вроде бы вполне можно обеспечить выполнение функций, доверенных голубю. Устройства, работающие по этим схемам, вообще говоря, не так уж трудно создать, или, как говорят в таких случаях инженеры, «воплотить в металл».

Наконец, есть специальная наука об управлении — кибернетика, которая занимается созданием управляющих систем и которая располагает, казалось бы, чудесной, всемогущей и универсальной техникой. В самом деле, сколько в последнее время приходится читать и слышать о быстродействующих электронных вычислительных машинах, о машинах, играющих в шахматы, сочиняющих стихи и музыку, помогающих врачу ставить диагноз, управляющих разнообразными технологическими процессами. Может быть, следовало обратиться к услугам кибернетики? Почему же тогда американцы предпочли прибегнуть к такому ненадежному устройству, как голубь?

Как это ни парадоксально, использовать голубя для управления ракетой предложили именно кибернетики. Впрочем, парадокс здесь только кажущийся: вспомните, что кибернетика имеет дело с процессами управления и в системах, созданных человеком, и в системах, созданных природой в ходе эволюции. Само развитие кибернетики тесно связано с расширением наших знаний о процессах управления и регулирования в живых организмах. Дело в том, что природа — это огромная лаборатория, работающая сотни миллионов лет. За это время в ней было произведено бесчисленное множество экспериментов. И хотя эволюция слепа — ее можно сравнить со скульптором, который не видит собственных творений и не знает, что с ними будет дальше, — она, пройдя сквозь запутанные лабиринты поисков и потерпев невероятное количество неудач, создала тем не менее то фантастическое разнообразие видов живых организмов, которое существовало и существует на пашей планете. И вот обнаружилось, что живые организмы обладают, как правило, уникальными аппаратами управления и регулирования — удивительно экономичными, надежными, способными воспринимать и запоминать порой ничтожные изменения множества факторов внешней среды и отвечать на это сложнейшими приспособительными реакциями.

С точки зрения кибернетики любой живой организм — это своего рода некая система управления и регулирования, сложная, правда, но зато очень эффективная и по своей надежности в некоторых отношениях даже превосходящая управляющие системы, созданные человеком. Эти слова можно отнести, например, к подсолнечнику, шляпка которого с поразительной точностью поворачивается вслед за солнцем; петуху, который неведомым для нас способом «отмеряет» время от крика до крика; наконец, к человеку, мозг которого, в сущности, великолепное счетно-решающее устройство — весьма «портативное», обладающее колоссальной памятью, потребляющее небольшую мощность, способное делать сложнейшие расчеты и умозаключения.

Сразу же возникает вопрос: нельзя ли, зная, как устроены и работают биологические системы управления и регулирования, создавать искусственные системы, которые обладали бы подобными же характеристиками и свойствами? Разумеется, можно. В свое время Архимед сказал, восхищаясь возможностями, заложенными в таком простом механизме, как рычаг: «Дайте мне точку опоры, и я подниму земной Шар!»

С неменьшим правом инженеры наших дней могут заявить: «Дайте нам схему механизма любой биологической системы управления и регулирования, и мы создадим не менее совершенную техническую систему!»

БИОЛОГИЯ ПЛЮС КИБЕРНЕТИКА

Вся трудность в том, однако, что механизмы работы биологических систем управления и регулирования по большей части неизвестны. Биология, как известно, не принадлежит (во всяком случае сейчас) к числу точных наук. До недавнего времени основными методами, которыми она пользовалась, были описание и качественная оценка явлений, изучаемых ею. Лишь в последние десятилетия и особенно в последние годы наметился переход биологии в лагерь наук, пользующихся в своих методах аппаратом математики для установления точных количественных оценок. Решающую роль в этом сыграло появление и развитие кибернетики.

Особенно плодотворным для биологии оказалось ее тесное содружество с кибернетикой. Впрочем, это содружество немало дает и кибернетике. Обе эти науки — биология и кибернетика — образовали сейчас нечто вроде автоколебательного контура. Чтобы сделать бросок вперед, кибернетике все чаще приходится опираться на достижения биологии. Но продвинувшись вперед, кибернетика не остается в долгу, подтягивая на новые рубежи и биологию. Изучая с помощью биологов управляющие системы и чувствительные органы, созданные природой, инженеры используют принципы их работы для создания тех или иных технических устройств. В свою очередь разработка этих технических устройств помогает и кибернетикам и биологам глубже понять процессы, которые происходят в живых системах.

В последнее время сотрудничество биологов и кибернетиков вылилось в совершенно новую форму: появилась молодая отрасль технической кибернетики — бионика. Это направление кибернетики занимается решением инженерных проблем, используя изучение биологических систем и процессов. Цель бионики — создание технических устройств, характеристики которых приближаются к характеристикам живых организмов.

Не надо думать, однако, что бионика ставит своей задачей просто копировать природу. Зная принципы работы различных механизмов биологических систем, человек не только сможет воспроизвести их, но и создать на их основе более совершенные устройства. Кстати, у него для этого больше возможностей, чем у природы. Ведь природа не может, подобно конструктору, разобрать свое творение на части и заново собрать его, пытаясь сотворить нечто лучшее. Ее творчество выражается лишь в поправках, достройках, доделках, усовершенствованиях.

И не так уж она мудра, эта природа. Немногого добился бы человек, если бы он решил рабски подражать ей. Наши предки правильно сделали, что не стали в свое время придумывать шагающую повозку, а изобрели колесо, которое во многих отношениях оказалось более удобным. Или еще примеры. Скажем, самолет никак нельзя назвать увеличенной во много раз птицей, а подводная лодка движется совсем не так, как рыба. Среди творений живой природы нет ни одного, которое передвигалось бы со сверхзвуковыми скоростями, а человек собирается в будущем создать межзвездные корабли, которым будут доступны субсветовые скорости.

Но вместе с этим природа создала множество устройств, о которых ученые и инженеры пока могут только мечтать. Больше всего она «дразнит» их своими системами, предназначенными для переработки громадных объемов информации, и сверхчувствительными датчиками, принимающими и передающими информацию. Количество и разнообразие оригинальных систем, созданных природой в ходе эволюции, просто ошеломляет. Кажется, нет ни одного живого организма, при знакомстве с которым не возникло бы желание: вот бы позаимствовать у него схему управляющего механизма.

Правда, сегодня о большинстве этих биологических управляющих систем мы знаем лишь в общих чертах, но в недалеком будущем несомненно появятся и целые библиотеки книг, в которых они будут описаны, и груды авторских свидетельств, выданных на аналогичные им искусственные системы. Чтобы представить себе потенциальные возможности бионики, давайте совершим с вами экскурсию в музей, где выставлены интересующие нас изобретения природы.

ПО ЗАЛАМ НЕОБЫЧНОГО МУЗЕЯ

Вы, конечно, понимаете, что этот музей — сама природа, а его экспонаты — всевозможные живые организмы, созданные ею. Большинство из них вы видели и раньше, но, по-видимому, не догадывались при этом, с какими чудесами техники сталкиваетесь. Приглядимся к ним повнимательнее.

Мы уже упоминали об удивительной способности петухов «отмерять» время. Быть может, вы знаете и о том, что цветы на лугу или в саду открывают и складывают свои венчики в определенный час дня. Делают они это с такой пунктуальностью, что по ним можно сверять время. В последние годы способность ориентироваться во времени обнаружена у большого числа живых организмов. Оказалось также, что многие процессы внутри организма протекают в двадцатичетырехчасовом цикле. Это явление ученые называют сейчас «биологическими часами».

Где в организме помещается механизм «биологических часов» и как он действует — это пока неизвестно. А между тем вопрос этот имеет, вероятно, и большой практический интерес. Вообразите, что мы разгадали механизм «биологических часов» и научились по своему усмотрению останавливать и снова заводить их. Опыты, проведенные недавно группой английских физиологов, доказывают, что это принципиально возможно. Поместив петуха в специальную камеру, они обнаружили, что после нескольких дней пребывания в темноте он утратил «чувство времени» и, растерявшись, перестал кукарекать. Его «биологические часы» остановились. Но достаточно было осветить эту камеру хотя бы на мгновение лучом солнечного света, как «часы» снова пошли. В течение нескольких дней петух своим кукареканьем «отмерял» время как обычно, но затем опять замолк. Словно у его «часов» раскрутилась «пружина».

Как же человек может использовать свою способность останавливать «биологические часы» живых организмов? Вот одна из возможностей. Токсичность большинства микробов и бактерий в течение суток неодинакова и меняется в соответствии с ходом «биологических часов» по определенному закону. У некоторых видов микроорганизмов она временами доходит почти до нуля. А что если в этот момент остановить «часы»?

С работой «биологических часов» некоторые ученые связывают, например, способность голубей находить дорогу домой. Считают, что голубь каким-то образом ставит в соответствие показания своих «часов» и положение Солнца на небе, определяя с помощью этого свое местонахождение. Может быть, используя этот принцип, инженерам удастся создать точнейшие приборы для аэро- и космонавигации?

У многих животных, рыб и насекомых удивительно развита чувствительность к запахам. Собака, например, различает нужный ей запах в «букете», составленном из нескольких сот различных ароматов. Самцы одного из видов бабочек — павлиний глаз, — по-видимому, находят самку по запаху веществ, выделяемых ее железами, даже если она находится в десяти-пятнадцати километрах. Пчелы чувствуют запах меда, находящегося в герметически закрытой банке.

Физическая природа запахов установлена лишь недавно. Согласно последней гипотезе, предполагают, что запах, присущий тому или иному веществу, объясняется характерными для этого вещества низкочастотными колебаниями его молекул или частей молекул. При этом вибрирующие молекулы излучают электромагнитные волны длиной от 8 до 14 микронов, которые воспринимаются и регистрируются органами обоняния. Таким образом, поразительная чувствительность к запахам у животных и насекомых объясняется тем, что их органы обоняния — это своего рода великолепные радиоприемники, обладающие тонкой настройкой, способные принимать и анализировать электромагнитные колебания невообразимо ничтожной мощности.

Как пригодились бы человеку такие чувствительные устройства! Ведь с их помощью химики, скажем, могли бы быстро и точно производить сложнейшие анализы различных веществ и смесей, астрономы, быть может, определили бы, не покидая своих обсерваторий, химический состав атмосфер других планет нашей Солнечной системы, врачи получили бы, пожалуй, возможность, контролируя обмен веществ в организме, ставить диагноз болезни, едва она наметится.

А ориентация рыб и водных животных с помощью обоняния, способность их улавливать запахи в воде? Ведь это означает возможность радиосвязи под водой! Надо думать, существует какой-то диапазон электромагнитных колебаний, которые не поглощаются водой или же поглощаются незначительно. Не подскажет ли природа инженеру, какие длины волн для этого подходят? Нельзя ли заимствовать у нее схемы чувствительных устройств, воспринимающих запахи?

Впрочем, не менее интересны для инженера и другие созданные природой «устройства», с помощью которых обеспечивается функционирование тех или иных органов чувств: слуха, зрения и других. Какую зависть у инженера вызывают, например, такие «приборы», как глаза — глаза насекомых, птиц, пресмыкающихся, рыб и других живых существ. Оказывается, многие насекомые воспринимают ультрафиолетовый свет, особые глаза глубоководных кальмаров способны воспринимать инфракрасные лучи, человеку же удается краешком глаза «заглянуть» в эти области электромагнитного спектра лишь с помощью сложных и несовершенных приборов. Но инженеры считают сейчас, что, «проконсультировавшись» у природы, они смогут в недалеком будущем создать особые устройства, своего рода искусственные органы зрения, которые дадут человеку возможность значительно увеличить объем получаемых им зрительных восприятий.

Прогулка по музею изобретений природы лишь началась, а сколько замечательного мы уже увидели! К сожалению, невозможно хотя бы перечислить все созданные ею системы, к которым с интересом присматриваются сейчас инженеры. Упомянем лишь еще о нескольких загадках, над которыми бьются сегодня бионики. Это прежде всего принципы ультразвуковой локации летучих мышей, дельфинов, термолокации гремучих змей, принципы действия «антенн» у бабочек, системы ориентации водных животных на основе обоняния, устройство и работа «фабрик» в клетках зеленого листа, наконец, устройство и работа человеческого мозга, механизм кодирования информации в нем, структура памяти, схемы выработки программ поведения, вопросы, связанные с тем, как осуществляется обучение, как осуществляется контроль над исполняющими органами.

Впрочем, об этом следует рассказать несколько подробнее.

КИРПИЧИКИ И БЛОКИ МОЗГА

Мы уже говорили о том, что с точки зрения кибернетики мозг — это некое счетно-решающее устройство, обладающее огромной памятью, экономичное и надежное. Особенно уникален мозг человека. Вот его основные «технические данные»: вес около полутора килограммов, емкость памяти равна примерно 10 триллионам знаков, состоит он из 14 миллиардов «кирпичиков» — нейронов, потребляемая им мощность составляет несколько десятков ватт.

Насколько паша техника близка к тому, чтобы создать счетно-решающее устройство с подобными же характеристиками?

Чтобы ответить на этот вопрос, нужно подумать сначала, из каких элементов, из каких «кирпичиков» мы будем его строить. Электронные лампы — основной элемент большинства современных вычислительных машин — явно не подходят. Лучшие из этих машин весят в сотни тысяч раз больше, чем мозг человека, во столько же раз «примитивнее» его (если исходить из числа основных элементов) и во столько же раз требуют больше энергии.

Но может быть, нас устроят малогабаритные полупроводниковые элементы? Увы, тоже нет. Несколько лет назад в одном из американских изданий был приведен любопытный расчет. Оказалось, что для создания «памяти», состоящей всего лишь из миллиона попарно связанных между собой полупроводниковых элементов, нужно создать устройство невообразимых размеров, которое потребляло бы мощность около 100 миллионов ватт! А ведь в мозге человека таких элементов свыше 10 миллиардов, и соединены они не попарно, а много сложнее!

Кроме того, и электронная лампа, и полупроводниковый элемент — это просто реле, или выключатели. Устройство нейрона — основного элемента мозга — значительно сложнее. Вычислительные машины, состоящие из ламп или полупроводников, не смогут конкурировать с мозгом, какими громоздкими они ни были бы.

Единственный выход — строить счетно-решающие устройства на основе тех или иных аналогов нейронов. Именно в этом направлении сосредоточены сейчас усилия многих ученых-биоников. И хотя свойства нейрона изучены не до конца, удалось создать несколько его моделей, которые по своим характеристикам приближаются к «кирпичику» живого мозга.

Искусственный нейрон — это преобразователь с двоичным «выходом» и несколькими «входами». Один из видов таких нейронов, так называемый артрон, взят за основу разрабатываемых сейчас познающих, самоорганизующих систем. У него два «входа» — поощряющий и наказывающий. Это позволяет «наказывать» машину, если она, действуя наугад, сделает что-то неправильное, и «поощрять» ее, когда она случайно же сделает это верно. В результате машина приобретает определенные, требуемые от нее «навыки». Такие машины получили название персептронов. Первая из них, знаменитый «Марк I», созданный в 1960 году, после пятнадцати «уроков» безошибочно опознавала любую букву алфавита. «Видел» он ее «глазом», построенным из 400 фотоэлементов. Однако такие системы могут работать не только от оптических импульсов. Несложно заставить ее, например, опознавать звуки и преобразовывать их в сигналы, управляющие, скажем, пишущей машинкой.

Хотя сегодня подобные машины, как говорится, еще в пеленках, несомненно у них большое будущее. С их появлением человек освободится от необходимости делать большое количество однообразной, нетворческой работы. Учителя смогут доверить им проверку школьных тетрадей, библиографы — поиски тех или иных публикаций, конструкторы — вычерчивание стандартных деталей, инженеры — расчеты по типовым схемам. Станут исчезать такие профессии, как стенографистка, машинистка, наборщик, корректор-считчик и многие другие.

Из подобных систем можно будет, как из блоков, создавать и более сложные устройства, способные выполнять работу повышенной сложности. Например, диагностическую машину, которая поможет врачу оценить состояние больного и назначить лечение. Или машину-синоптика, которая будет в состоянии анализировать огромное количество подробных метеосводок и выдавать точнейшие прогнозы погоды.

Хотя сегодня искусственные аналоги нейронов значительно превосходят размерами нейроны мозга, бионика уже наметила пути их миниатюризации. Уже сейчас она обещает приблизить в перспективе плотность монтажа технических счетно-решающих систем к плотности элементов мозга!

Ничто не помешает нам создавать в будущем вычислительные и логические устройства любых размеров. Таким «мозгам» или даже бригадам «мозгов» под силу будет перерабатывать гигантские объемы информации, решать невиданно трудоемкие проблемы, которые поставит перед ними человек.

МЕЛЬНИЦА, ПЕРЕМАЛЫВАЮЩАЯ ПРОБЛЕМЫ

В наши дни новые отрасли знаний возникают одна за другой и прямо из пеленок устремляются к далеким горизонтам И все-таки трудно найти другую молодую науку, которая застолбила бы для себя больше «золотых россыпей» в списке нерешенных проблем, чем бионика. Ее хочется сравнить с мельницей, перемалывающей проблемы. Причем жернова у нее — математический аппарат и кибернетическая техника — от работы не снашиваются, а, наоборот, становятся все тверже.

Мы говорили уже, что бионика занимается созданием управляющих систем и чувствительных органов с не менее совершенными характеристиками, чем у живых организмов. Особенно большое воздействие эти приборы оказывают и еще окажут на развитие тех наук, которые пока не относятся к числу точных.

Медицине бионика даст возможность решить такие проблемы, как точная постановка диагнозов, как безотказные методы регулировки «разлаженного» организма, как создание протезов, способных полностью заменить те или иные органы и ткани. Великолепный успех советских ученых Кобринского, Брейдо и Гурфинкеля, создавших управляемый биотоками мозга и мышц протез руки, показал, что можно использовать для этих целей регулирующие системы нашего организма. В нашей стране уже созданы регуляторы работы искусственных легких, управляемые биотоками дыхательных мышц, механизм затвора к рентгеновскому аппарату, который включается биотоками сердца и позволяет получить снимок сердца в нужной фазе сокращения.

С развитием бионики, возможно, совершенно иначе встанет вопрос о приобретении организмом каких-то качеств и передаче их по наследству. Быть может, удастся покончить с болезнями, передаваемыми по наследству, искусственно закреплять те или иные навыки.

Фантастично, не так ли? Да, и все-таки это принципиально возможно. Ведь аппарат наследственности — это, в сущности, передаваемая из поколения в поколение удивительная книга. В ней сочетаниями аминокислот описано почти все будущее развитие организма. При «переизданиях» этой книги возможны «опечатки». Но разве нельзя эти опечатки «выправить»? В самом деле, если дать эту книгу специальной «читающей» машине, то она сможет сравнить ее с каким-то эталоном, так сказать, с «рукописью», найти искажения в тексте. Найдя способ исправления «опечаток», человек сможет, по-видимому, вносить в «текст» и свои дополнения.

В перспективе — еще более заманчивая возможность «писать» такие «книги», какие нам нужны. Трудно представить себе переворот, который начнется в нашей жизни, когда это станет осуществляться.

Представьте себе химические фабрики, на которых будут производиться любые количества всевозможных искусственных биомасс! Одни такие биомассы по своим питательным и вкусовым качествам ничем не будут отличаться, скажем, от мясного фарша, другие — от пшеничной муки или даже печеного хлеба, третьи — от каких-нибудь фруктовых соков, мармеладов, варений. Или вообразите рудник, где искусственные микроорганизмы будут восстанавливать металлы из их окислов и выбрасывать свои «отходы» — например, порошковое железо — прямо на конвейер.

Тоже фантастично? Верно, но опять-таки к этому нельзя относиться, как к чему-то нереальному. Нужно иметь поистине необычную фантазию, чтобы «изобрести» проблему, которая затрагивала бы биологию и технику и которая в то же время была бы принципиально неразрешима для бионики. Она еще многим нас удивит — эта инженерная наука биовека!

В. Ковалевский





Загрузка...