Глава четвертая. Середина века

1

В историческом очерке я указывал, что к началу XVII столетия лидерство в науке перешло к Франции. Это утверждение нуждается в разъяснении. Дело в том, что в это время страна испытывает многочисленные социальные и политические ограничения, связанные со все возрастающим упрочением абсолютизма, и этот процесс сковывает любое выражение новых идей, в равной мере в политике и науке. Если сравнивать положение во Франции и ее научные достижения с другими странами Европы, то картина будет весьма схожей, и вроде бы нет оснований считать, что Франция находится впереди. Действительно, в Италии гений Галилея еще в полном расцвете, рядом с ним выдающийся математик Кавальери, работы которого, без всякого сомнения, можно считать важным вкладом в нарождающееся исчисление бесконечно малых, в Германии — довольно многочисленная, хотя и разрозненная, группа замечательных ученых во главе с Кеплером, в Англии — Гильберт, Бэкон и Гарвей.

Тем не менее для приведенного утверждения имеются веские основания. Это, во-первых, существование особой интеллектуальной атмосферы, которая в силу политического и национального единения проявлялась во Франции повсюду, и, во-вторых, тот факт, что именно французу удалось к середине столетия создать систему натуральной философии, способную заменить старое аристотелевское представление о мироздании. И хотя Декарт большинство своих произведений создал не во Франции, а в Голландии, нет причин сомневаться в том, что истоки его великих достижений лежат во французской культуре и французской научной традиции.

Что же можно сказать об этой традиции и о той интеллектуальной атмосфере, которая сложилась во Франции (в отличие от других стран)? В каком-то смысле процесс, происходящий во Франции, был схож с тем, который имел место в Италии XVI в., когда новая наука начала возникать в кружках ученых нового толка в городских республиках и при дворах просвещенных государей, только во Франции подобные кружки возникали в домах состоятельных горожан и аристократов, которые должны были проявлять большую изобретательность в поиске защиты у властей предержащих от самих этих властей.

Необходимость в такой защите была очевидна. Абсолютизм установил неусыпный надзор за любым проявлением свободомыслия. В 1604 г. специальным декретом короля предписывалось, чтобы экземпляр каждой новой книги присылался в Королевскую библиотеку для прочтения ее чиновником, выполнявшим функции цензора, хотя так и не называвшимся. Но уже в 1623 г. была создана государственная цензура как институт: каждая новая книга должна была быть представлена в цензурную палату, которая стала контролировать всю книжную торговлю. Любой издатель, желавший продавать ту или иную книгу, должен был получить на это разрешение палаты, причем это разрешение выдавалось лишь на определенный срок. При этом введение государственной цензуры никоим образом не отменяло цензуру церковную, которая осуществлялась теологическим факультетом Сорбонны и действовала к тому времени уже около столетия. В 1629 г. во главе цензурной палаты был поставлен министр юстиции и бюрократическая процедура проверки была еще более ужесточена. Когда Декарт в 1637 г. решил опубликовать свое «Рассуждение о методе», его рукопись была затребована самим Сегиром — министром юстиции при Людовике XIII и Людовике XIV, одним из покровителей Французской академии.

Тем не менее государственный надзор за умами при всей жестокости не был вездесущим: он касался главным образом печатных изданий. Государственная полиция, к счастью, не была тогда столь многочисленна и столь изощрена, чтобы предотвратить контрабандную перепечатку и распространение запрещенных книг. Чтение рукописей и частные разговоры не преследовались, если внешне люди сохраняли видимость подчинения тем правилам, которые были установлены в государстве и обществе. Частный дом и частные собрания для французских интеллектуалов начала века стали тем центром, вокруг которого сосредоточивалась их деятельность. Такие кружки были прямыми наследниками собраний гуманистов XVI столетия, но теперь их интересы переместились от классической филологии к науке. «Достаточно взглянуть на переписку всех этих людей, чтобы увидеть, что республика писателей превратилась в республику ученых, члены которой гордились своими познаниями в математике, астрономии и музыке, а не познаниями в классической филологии и которые интересовались в первую очередь историей собственной страны, а не теологическими спорами» [1, с. 186].

Отличительной чертой французской общественной жизни начала XVII столетия была организация или, скорее, расцвет таких научных кружков. Они росли как грибы после дождя не только в самом Париже, но и в провинции: в Лиможе, Каоре, Дижоне, Провансе и в других местах. Наиболее замечателен из них кружок Никола-Клода Фабри де Пейреска, знаменитого коллекционера и ученого из Прованса. Пейреск был состоятельным человеком, и его дом в Э служил приютом для любого, кто хотел заниматься наукой. В своем доме, а также в загородном имении Пейреск хранил манускрипты, собрания монет и разных других редкостей, он устроил домашнюю обсерваторию и побуждал своих гостей к занятию астрономией. Пейреск переписывался со всей Европой, и именно в его доме нашел убежище Кампанелла, бежавший из Италии. Один из французских писателей того времени дает ему такую характеристику: «Это человек, которому нет равных в Европе по обходительности и доброте, а также по мудрости и интересу к изящным вещам и знанию всего, что происходит в мире. Нет области или крупного города, в котором у него не было бы корреспондентов и где он не знал или не обладал бы чем-нибудь замечательным и редким — посредством людей заслуженных и образованных, с которыми он обменивался письмами, или же посредством людей, которых он содержал в этих местах для этой самой цели. Таким образом, его кабинет является самым интересным в Европе, библиотека содержит как печатные издания, так и рукописи» [1, с. 189].

Деятельность Пейреска является также прекрасным примером того, как была налажена связь между учеными (и вообще людьми, которые интересовались наукой) в то время, когда еще не существовало научных журналов. Пейреск сам, можно сказать, был таким журналом, если учесть, что он переписывался с более чем 500 корреспондентами во всем мире от Алеппо и Дамаска до Гамбурга и Лондона — в то время он был одним из наиболее известных в Европе людей.

В Париже в 20—30-е годы XVII столетия существовал целый ряд замечательных обществ. Одним из них был кружок, собиравшийся ежедневно в библиотеке знаменитого историка и члена парламента Жака Огюстена де Ту. После смерти де Ту в 1617 г., согласно его завещанию, библиотека перешла к братьям дю Пюи, и потому этот кружок часто назывался Пюитанской академией. Библиотека постоянно пополнялась, и ко времени, когда братья дю Пюи стали ее владельцами, она была лучшей библиотекой Парижа, превосходя даже Королевскую библиотеку. В Пюитанской академии ежедневно не только проходили дискуссии, но и ставились эксперименты, хотя математика и астрономия не привлекали столь пристального внимания ее членов, как философия и история.

Другим важным местом собраний ученых людей был кружок Мерсенна. Монах-минорит Марен Мерсенн был большим любителем и знатоком точных наук, два раза в неделю в его келье в Пале Ройяль собирались друзья, разделявшие его увлечения, а с 30-х годов эти собрания стали еженедельными. Вскоре они приобрели большую известность, в первую очередь благодаря научному авторитету участников, а среди них можно назвать Этьена Паскаля, его сына Блеза, Дезарга, Роберваля, Гассенди и, наконец, Декарта, когда тот приехал в Париж. Кружок Мерсенна состоял более чем из 100 человек, и часто его покои в Пале Ройяль не могли вместить всех желающих. В отличие от Пюитанской академии здесь занимались в основном математическими науками, а также философией, но лишь в той мере, в какой она была непосредственно связана с математическими проблемами. Роль Мерсенна в начальном развитии научных сообществ XVII в. была уникальной: не будучи ученым высокого класса, он тем не менее был прекрасным координатором, стимулировавшим решение многих важных научных проблем и способствовавшим обмену мнениями между людьми, важность которого в ряде случаев трудно переоценить, как, например, в споре между Гассенди и Декартом.

Двойственность и конформизм, столь характерные для французских интеллектуалов XVII в. (эта ситуация также напоминает несколько более раннюю эпоху в Италии — достаточно вспомнить хитроумное лавирование, которое было свойственно Галилею) , отчетливо видны и в поведении Мерсенна. Этот умный монах внимательно следил за изменением политической ситуации в стране — решительно осудивший Кампанеллу и Галилея, он тем не менее продолжал штудировать Коперника, читать и перечитывать Галилея и после процесса 1633 г. Независимость его суждений, хотя и не высказываемая открыто, была широко известна, и это в высшей степени способствовало популярности и авторитету его кружка.

Как видим, даже в этом кратком рассказе об интеллектуальной атмосфере, существовавшей во Франции в первой половине XVII в., можно проследить основные тенденции развития общественной жизни применительно к науке. Свободомыслие, как бы оно ни ограничивалось государственными институтами, получило широкое распространение. Под свободомыслием понималась свобода творчества и высказываний по всем вопросам религиозной, политической и научной жизни, причем наука в этом процессе приобретала все более существенный вес. Может показаться, что государство как бы удовлетворялось внешними признаками послушания, не слишком заботясь (или не имея для этого возможности) о действительном завоевании умов и сердец. Важно подчеркнуть, что этот процесс приобрел национальный характер, и ему не в силах были противостоять даже те, кому принадлежала власть в стране. Кто же был организатором многочисленных кружков, насаждавших в стране свободомыслие? Это были священники, высокопоставленные государственные чиновники и лишь в последнюю очередь ученые-профессионалы. Занятие наукой было окружено атмосферой почитания, и не в малой степени в силу того, что это было одним из каналов образования национального государства.

Хотя престижность занятия наукой стояла достаточно высоко почти во всех европейских странах и почти везде ученые сталкивались с одинаковыми трудностями в поисках безопасного пристанища и возможности открытого и безопасного выражения своих мнений, в Голландии и Англии обстановка была более либеральной. Недаром француз Декарт предпочитал жить и работать в Голландии, а о Франции говорил, что он не жалеет о том, что жил там, но счастлив, что уехал оттуда, потому что во Франции наиболее заслуживающими жалости кажутся ему те, кто обнаруживает наиболее блестящие способности.

Первая половина XVII в. прошла под знаком борьбы между двумя королевскими домами — Бурбонов и Габсбургов. Еще до того как разразилась Тридцатилетняя война, католическая лига нашла себе покровителя в лице испанского короля, а Генрих IV Бурбон стал тайным союзником протестантской унии и уже намеревался было вступить в открытую борьбу против Габсбурга, когда был убит фанатичным католиком Равальяком. Сын Генриха Людовик XIII (1610—1643) вступил на трон, когда ему было всего 9 лет, и вначале казалось, что политике его отца положен конец вследствие происпанских действий его матери Марии Медичи, но с достижением королем совершеннолетия (т. е. 14 лет) все вернулось на круги своя.

В 1624 г. фактическую власть в стране взял в свои руки кардинал Ришелье, основные усилия которого были направлены на усиление абсолютизма в борьбе как против феодальной аристократии, так и против гугенотской политической организации. После взятия Ла Рошели он отменил все политические привилегии гугенотов, следовавшие из Нантского эдикта, что означало государственное объединение севера и юга Франции. Будучи в основе консерватором, Ришелье был гибким и умным политиком, сумевшим подчинить своему диктату не только «людей мантии», но и «дворянство шпаги»; ему хватило дальновидности учесть возрастающие интересы буржуазии, в отношении которой он проводил меркантилистскую политику. В международных отношениях он был продолжателем линии Генриха IV, стремясь всеми возможными способами ослабить влияние Габсбургов. Вначале он тайно помогал протестантам в Германии и других странах, а в 1635 г. Франция открыто вступила в Тридцатилетнюю войну, возглавив антигабсбургскую оппозицию. Ришелье умер в 1642 г., а Людовик XIII пережил его меньше чем на год.

Правление Людовика XIV (1643—1715) представляет собой кульминацию абсолютизма во Франции. Его крылатая фраза «Государство — это я» (L' etat с'est moi!) лучше всего выражает позицию тщеславного эгоцентризма, которая в течение полувека определяла во Франции политическую и общественную жизнь. После смерти в 1661 г. Мазарини, ученика и преемника Ришелье на посту первого министра, Людовик взял бразды правления в свои руки. Будучи в юности королем лишь номинально, он решил теперь не делить ни с кем власть, но оказался при этом достаточно осмотрительным, чтобы обзавестись надежными и талантливыми помощниками, среди которых самым выдающимся был, безусловно, Жан Батист Кольбер (1619—1683). Сын богатого купца, Кольбер быстро сделал блестящую карьеру, став при Людовике генеральным контролером финансов, т. е. фактическим руководителем финансовой политики короля. Кольбером было немало сделано для укрепления экономической мощи Франции, развития ее торговли и промышленности. Он снизил налоги на крестьянство, одновременно повысив косвенные налоги, которыми облагалась в основном городская буржуазия, кроме того, он уничтожил внутренние пошлины, значительно увеличив таможенные тарифы, стимулируя тем самым сбыт французских товаров в самой стране и их экспорт. При Кольбере государство субсидировало организацию крупных централизованных мануфактур, ставших фундаментом капиталистического производства, поощряло создание торговых компаний, строительство флота, наконец, были созданы первые французские колонии в Индии, Африке и Северной Америке.

Значительных успехов Людовик XIV добился и во внешней политике. Умело лавируя между Англией, Швецией и немецкими государствами, он сумел захватить испанские (южные) Нидерланды, Эльзас и Франш-Конте. Ко времени нимвегенского мира в 1678 г. Людовик XIV обладал самой многочисленной и наилучшим образом организованной армией в Европе, которой командовали выдающиеся полководцы. Авторитет Франции как мировой державы достиг к этому времени своего апогея.

Однако могущество Людовика сказывалось самым печальным образом на общественной жизни. Свобода мысли, справедливость и религиозная терпимость были изгнаны из страны. Решающее влияние на интеллектуальный климат приобрели иезуиты, которые использовали короля в качестве орудия самой жестокой католической реакции. В результате в 1685 г. был уничтожен Нантский эдикт, и десятки тысяч протестантов были вынуждены бежать в соседнюю Голландию, Германию или Англию.

Огромные суммы, которые тратились королем на содержание армии и двора, бесчисленные захватнические войны, в особенности война за испанское наследство, истощили и подорвали экономические ресурсы страны, так что к концу царствования Людовика XIV Франция потеряла былое могущество и уже не могла претендовать на первые роли в мировой политике.

2

Галилей и Кеплер разрушили аристотелевскую картину мира с ее иерархическим строением и двойственными физическими законами, с трудом поддающимися математическому описанию и едва ли соответствовавшими эксперименту. Но мечта Кеплера о создании новой физики, где все явления могли бы быть объяснены с помощью некоего фундаментального закона (или законов), который приводил бы в движение мироздание наподобие того, как гиря приводит в действие часовой механизм, была еще далека от своего осуществления. Первым, кто сделал существенный шаг в выполнении этой программы, был Рене Декарт.

Декарт родился 31 марта 1596 г. в городке Ла Э провинции Турен, находящейся на территории сегодняшнего департамента Эндр и Луара, к юго-западу от Парижа. Обычно считается, что он происходил из очень старинного дворянского рода, хотя А. Кромби пишет, что он происходил из дворянства мантии и его отец Иоахим Декарт был советником парламента Бретани. Рене был четвертым ребенком в семье, позднее он сам называл себя «дворянином из Пуату», так как в наследство от матери он получил к своей фамилии прибавление «дю Перрон» и имение в Пуату, и относительную финансовую независимость. Декарт родился хилым и слабым младенцем, и врачи полагали, что ему не дожить до зрелого возраста. К счастью, эти прогнозы не оправдались — он рос хотя и болезненным, но чрезвычайно способным ребенком, и в 1606 г., когда Декарту исполнилось 10 лет, в конце пасхальных каникул отец привез его в Анжу для поступления в королевский коллеж Ла Флеш. Ла Флеш был одним из наиболее знаменитых иезуитских школ Европы; Декарт провел в нем около 10 лет, поэтому имеет смысл остановиться на его описании более подробно, при этом нас будет интересовать не только сам коллеж, по и вся система иезуитского образования в целом.

РЕНЕ ДЕКАРТ

Со времен Реформации и протестанты, и католики вели ожесточенную борьбу за власть над умами: мы помним, как энергично принялись протестанты за организацию школ и университетов, отдавая в их распоряжение конфискованные монастырские здания и строго надзирая за подготовкой будущих теологов, юристов, медиков и астрономов, способных отстаивать в спорах с католиками правоту идей Реформации. Но католическая церковь тоже не сидела сложа руки — она лихорадочно изыскивала средства и возможности противостоять протестантской пропаганде, при этом не отказывалась и от использования авторитетов, чья преданность догматам католицизма могла быть легко поставлена под сомнение. Так было, например, когда папа Урбан VIII пытался издать книгу Галилея как доказательство просвещенности католической церкви, о чем Галилей по его указанию прямо написал в предисловии к «Диалогу».

Но самым эффективным инструментом в католических институтах образования и пропаганды оказался орден иезуитов. Еще в 1552 г. Лойола учредил первый иезуитский колледж «Коллегиум германикум» специально для подготовки искусных и изощренных в дискуссиях защитников католической веры. Догматы доктрины, выработанной Тридентским собором, специально подчеркнувшим в своих постановлениях необходимость улучшения системы образования, иезуиты защищали на основе рациональных доводов, не слишком заботясь о теологических тонкостях. Они выдвинули специальный план создания новых школ (этому проекту было посвящено сочинение отца Аквавивы, одного из генералов ордена «Ratio atque institutio studiorum societatis Jesu», согласно которому новые иезуитские колледжи должны были стать частью общественной жизни тех мест, в которых они были организованы. Для этого устраивались публичные состязания между учащимися, нечто вроде публичных научных диспутов, особенной популярностью пользовались театральные представления, на которые приглашались родители учеников, а также городская знать. Короче, мероприятия, которые раньше были внутренним делом колледжей, теперь стали заметными событиями в жизни городов.

Родители с большей охотой отдавали своих детей в иезуитские школы, стиль преподавания в которых был столь новым и привлекательным. При этом необходимо помнить, что колледжи иезуитов были в первую очередь и главным образом орудием Контрреформации, контингент учащихся состоял в основном из представителей правящих классов, дворянства и буржуазии, причем новые методы обучения были направлены на то, чтобы наставить и укрепить учеников в католической вере, а также способствовать тому, чтобы протестанты возвращались в лоно католицизма. Случалось, что деятельность иезуитских колледжей приводила к заметному увеличению числа католиков в протестантских городах (например, в Аугсбурге).

Во Франции, где иезуиты с первых шагов своей деятельности встретили резкое противодействие Екатерины Медичи, находившейся под влиянием галликанцев, недовольных постановлениями Тридентского собора, тем не менее иезуитам удалось организовать в 1564 г. Клермонтский коллеж, в котором уже через пять лет было три тысячи учащихся. В конце столетия иезуиты были изгнаны иа Франции вследствие организованного ими покушения на Генриха IV в 1596 г., но не прошло и десяти лет, как им было разрешено вернуться, и вскоре во Франции было уже около 40 иезуитских колледжей. Успех иезуитских школ объяснялся стремлением преподавателей ордена дать своим ученикам наилучшее классическое образование наряду с изучением естественных и точных наук, а также с обучением правилам хорошего тона.

Коллеж Ла Флеш, в котором Декарт провел неполных десять лет (1606—1615), был основан в 1604 г. с разрешения Генриха IV, который отдал для этого иезуитам свой фамильный замок Шатонеф в Анжу и неизменно оказывал коллежу свое покровительство и щедрую финансовую поддержку. В Ла Флеши была замечательная библиотека, а преподавание доверено хорошим профессорам. Впоследствии Декарт писал, вспоминая о своих школьных днях, что он «учился в одной из самых знаменитых школ Европы и думал, что если есть на земле где-нибудь ученые люди, то они должны быть именно там» [2, с. 262].

Вторая половина этой фразы как бы предполагает, что на самом деле это было не так, и объяснение этой неопределенности заключается, по-видимому, в том, что образование в Ла Флеши было насквозь схоластическим, хотя и модернизированным и либеральным по отношению к Декарту (известно, что ему делались многочисленные поблажки в соблюдении строгого, почти монастырского режима: он имел возможность читать книги, считавшиеся еретическими, и т. д.). Схоластика определенно набила оскомину Декарту, и «как только возраст позволил мне,— пишет он,— выйти из подчинения моим наставникам, я совершенно забросил книжную науку, решив не искать иной науки, кроме той, какую можно найти в себе самом или в великой книге мира» [2, с. 265]. Тем не менее он обязан Ла Флеши большим, чем просто прекрасным образованием: как справедливо пишет Я. Ляткер, «схоластика оказалась не только предметом преодоления, но и источником той культуры сомнения, которая в конечном счете превратилась в картезианский метод» [3, с. 44]..

Окончив Ла Флеш летом 1615 г., Декарт два года прожил в Париже, ведя беззаботную светскую жизнь. С годами он физически окреп, занятия фехтованием и верховой ездой, которым он уделяет в Париже много времени, казалось, окончательно превратили его в человека, преодолевшего свои недуги. Теперь он чувствует себя в состоянии начать познавать мир по-настоящему — в путешествиях и общении с людьми.

Светская жизнь в Париже была естественной реакцией на годы лафлешианского затворничества, но вскоре Декарт, психологически склонный к уединению и самоанализу, начинает ею тяготиться. Возможно, что импульсом, возвратившим его к интеллектуальным занятиям, была встреча с Мерсенном, но, как бы то ни было, нам доподлинно известно, что в 1616 г. он получил степень бакалавра прав в университете в Пуатье, а затем (по-видимому, летом 1618 г.) он отправляется в Голландию и вступает вольнонаемным солдатом в армию принца Морица Оранского (Голландия тогда вела войну против Габсбургов — общего ее с Францией врага).

За границей Декарт оказался в военной школе для иностранцев, находящейся в Бреде, и встретился в этом городе с Исааком Бекманом, талантливым и разносторонним ученым, который вновь пробудил в нем интерес к науке. Медик по образованию, Бекман был также искушенным математиком, и именно математика увлекла Декарта в первую очередь. В конце 1618 г. им было закончено первое научное сочинение «Compendium Musiсае», затрагивающее проблемы механики и акустики и посвященное Бекману (опубликовано посмертно в 1650 г.). А в марте следующего года Декарт, покидая Бреду, пишет в прощальном письме Бекману: «Вот уже шесть дней, как я, возвратившись сюда, с небывалым усердием вновь взялся за науки. За столь краткое время я нашел, с помощью моих циркулей, четыре замечательных и по существу новых доказательства. Первое — для знаменитой проблемы деления угла на произвольное число частей. Три других относятся к трем родам кубических уравнений...» [3, с. 189]. Но главное в этом письме другое: Декарт сообщает в нем о своем намерении «изложить совершенно новую науку, которая позволила бы общим образом разрешить все проблемы независимо от рода величины, непрерывной или прерывной, исходя каждый раз из природы самой величины» [3, с. 190]. Так было положено начало созданию аналитической геометрии.

Эта фраза Декарта характерна не только для его занятий математикой, его отношение к познанию вообще всегда отличалось стремлением проникнуть в суть вещей, узнать некий фундаментальный принцип, из которого бы все остальное получалось как необходимое следствие. Он постоянно размышлял о возможности нахождения такого универсального принципа, будучи интуитивно убежден, что он обязательно существует. Его воображение постоянно работало, создавая, отметая и создавая вновь мысленные конструкции, которые могли бы привести его к желанной цели. Вообще, воображение как таковое играет особую роль во всем творчестве Декарта. В своей работе 1619 г. «Олимпика» он говорит, что «в сочинениях поэтов содержатся более основательные мысли, чем в сочинениях философов. Причина этого заключается в том, что поэты творят вследствие энтузиазма и способности к фантазии» [4, X, с. 217].

10 ноября 1619 г. его посетило долгожданное озарение, когда он находился уже в Ульме, в Германии, в армии герцога Максимилиана Баварского. Это событие определило всю его дальнейшую жизнь. Вот как впоследствии он его сам описывает в «Рассуждении о методе»: «Я был тогда в Германии, куда меня привели события войны, которая и сейчас еще там не окончилась. Когда я с коронации императора (Фердинанда II Штирийского.— В. К.) вернулся в армию, наступившая зима задержала меня на месте стоянки армии. Не имея ни с кем общения, которое бы меня развлекало, свободный, по счастью, от забот и страстей, которые бы меня волновали, я проводил целый день один у очага и имел полный досуг отдаваться своим мыслям» [2, с. 267].

В результате своих размышлений Декарт пришел к выводу, что путеводной нитью в поисках истины является сомнение и он должен начать с того, чтобы методически подвергать сомнению все, чему учат в современной философии, и искать некие самоочевидные истины, отправляясь от которых следует реконструировать все науки. Поэтому первое и главное правило его метода состоит в том, чтобы «никогда не принимать за истинное ничего, что я не познал бы таковым с очевидностью, иначе говоря, тщательно избегать опрометчивости и предвзятости и включать в свои суждения только то, что представляется моему уму столь ясно и столь отчетливо, что не дает мне никакого повода подвергать их сомнению» [2, с. 272]. Но может ли сама способность сомневаться быть плодотворной и положительной в смысле познания вещей? Очевидно, да, если она способна указать на существование неоспоримых истин. Именно поэтому, обнаружив пример такой связи, Декарт решил, что «нашел основание чудесной науки» [4, X, с. 179]. И тогда, пишет он, «заметив, что истина: я мыслю, следовательно я существую, столь прочна и столь достоверна, что самые причудливые предположения скептиков неспособны ее поколебать, я рассудил, что могу без опасения принять ее за первый искомый мною принцип философии» [2, с. 283].

Декарт, должно быть, ясно понимал, во всяком случае он чувствовал на примере собственного творчества, как непрост и мучителен путь от провозглашения философских аксиом до законов природы. Лишь год спустя он пишет, что «начал понимать основание своего чудесного открытия», и проходит еще девять лет, прежде чем ему удается развить свою идею в цельное представление о мироздании. Первым шагом на этом пути были незаконченные «Правила для руководства ума», написанные в 1628 г. и так и оставшиеся тогда неопубликованными (они вышли лишь после его смерти в Амстердаме, в 1701 г.). Но между 1619 и 1628 г. многое в его жизни изменилось. Во-первых, он оставил военную службу и в 1623—1625 гг. совершил большое путешествие по Италии. Еще в Ульме он дал обет совершить паломничество в Лорето и поклониться тамошней знаменитой мадонне в благодарность за снизошедшее на него озарение. Теперь ему представилась возможность выполнить свой обет, но он побывал не только в Лорето он останавливался в Риме, Венеции, Турине, Пьемонте и других городах Италии, а кроме того, он был также и в Швейцарии.

Вернувшись на родину в 1625 г., Декарт обосновался в Париже, в Сен-Жерменском предместье, и здесь снова окунулся в водоворот столичной жизни. Однако на этот раз в Париже его интересуют прежде всего философские и научные проблемы. Он близко сходится с кружком Мерсенна (самого Мерсенна он вновь встретил либо перед поездкой в Италию, либо сразу после нее, между ними налаживаются тесные отношения, которые уже не прерываются до самой смерти Мерсенна в 1648 г.) и становится одним из притягательных центров парижской интеллектуальной жизни. Кульминацией его парижской славы был публичный диспут с неким Шанду, выступившим с критикой системы Аристотеля (в 1628 г.). Декарт буквально уничтожил Шанду, разгромив его по всем пунктам, при этом он подчеркивал, что, хотя система Аристотеля и является неудовлетворительной, ее не имеет смысла заменять еще более неудовлетворительной системой своего оппонента.

В этом выступлении Декарта во всем блеске проявились две черты его интеллектуального гения — одна старая, схоластическая, ибо кто как не Декарт, воспитанник иезуитов Ла Флеши, мог лучше знать все сильные и слабые стороны аристотелевской доктрины, а другая — его собственная, картезианская, изумившая всех присутствовавших силой логики и «математичностью» доказательств. Доводы Декарта произвели столь большое впечатление на участников спора, что один из них, влиятельный кардинал де Брюль, убеждал его, по словам Байе, посвятить свою жизнь разработке применения «своего философского метода к медицине и механике. В первом случае это послужило бы восстановлению и сохранению здоровья, а во втором — уменьшению и облегчению человеческого труда» [5, с. 52]. Впрочем, вряд ли Декарта надо было в этом убеждать. Он уже давно понял свое предназначение и искал лишь одного — уединения и убежища, где он мог бы спокойно и без помех обдумывать свои мысли. И то и другое он нашел в Голландии, куда переехал в конце 1628 или в начале 1629 г.

Голландии Декарт обязан наиболее плодотворными годами своей жизни: за двадцать лет, которые он там провел, были написаны все его основные произведения, там нашел он желанное уединение (вспомним его девиз: «Тот хорошо прожил, кто хорошо укрылся»!), друзей, единомышленников и оппонентов.

Во многих отношениях Голландия представляла собой исключение благодаря тому интеллектуальному климату, который сложился в этой стране к середине XVII в. Можно сказать, что в континентальной Европе не было другого государства, где ученые и писатели пользовались бы столь полной свободой самовыражения. В этот период, когда кочевая жизнь была столь характерна для людей искусства и науки, Голландия оказалась прибежищем для многих из них (среди звезд первой величины, кроме Декарта, здесь можно упомянуть и Яна Амоса Коменского, знаменитого чешского ученого и педагога). Буржуазная революция совпала с периодом национально-освободительных войн против испанского господства, и в результате государство Объединенных провинций еще долго не могло освободиться от духа свободомыслия, столь широко распространившегося в те годы в стране. Особым гостеприимством пользовались протестанты и многочисленные религиозные секты: гугеноты Ла Рошели, немецкие анабаптисты, польские социане и многие другие — все находили убежище в республике Объединенных провинций. Ярким примером гостеприимства и религиозной терпимости Голландии был тот факт, что она предоставила приют евреям-эмигрантам из центральной Европы и Испании, позволив им строить синагоги и учреждать школы раввинов при том единственном условии, что они будут лояльны к государству. В середине столетия в Амстердаме было две синагоги: одна для сефардов, выходцев из Португалии и Испании, которые бежали в Голландию через Францию и Германию, а другая для ашкенази, выходцев из Центральной Европы. В 1632 г. в семье старейшины сефардской общины в Амстердаме родился Барух Спиноза, великий философ-материалист.

Наплыв эмигрантов представлял для Голландии серьезную проблему, которая приводила к столкновению двух влиятельных общественных групп: торговая буржуазия твердо стояла на позициях религиозной терпимости, а кальвинисты, занимающие ключевые позиции в государственных и религиозных учреждениях, стремились противодействовать наплыву иноверцев. Тем не менее, пройдя через ряд конфликтов и компромиссов, республика Объединенных провинций осталась верна своим принципам гостеприимства. Все виды протестантства, включая всевозможные секты, находили себе приют, обосновывались в больших и малых городах и мало-помалу превращались в голландцев. Фактом, который подчеркивает религиозную и интеллектуальную терпимость, является расцвет книжной торговли. Амстердам превратился в центр европейского книгопечатания и книжной торговли, заняв место Венеции XVI в. Доверенные люди амстердамских печатников и книготорговцев распространились по всей Европе, и через их посредство любой мог получить книгу, напечатанную в Голландии.

3

Нередко можно встретить утверждение, что вклад Декарта в решение проблем механики не столь уж существен, во всяком случае по сравнению с его достижениями в других областях, например философии и математике, что в механике важно лишь то влияние, которое он оказал на людей, подобных Гюйгенсу, хотя сам, по сути, сделал мало [5, с. 60]. Мне кажется, что подобная точка зрения является заблуждением, связанным с неправомерной попыткой отделить механику Декарта от его философии.

Декарт с самого начала стремился к глобальному объяснению мироздания, его неудовлетворяли попытки ученых, направленные на решение частных проблем, оставляющие в стороне фундаментальные основания науки. Вопрос «почему» был для него основным, и он не мог считать задачу выполненной, если не знал на него ответа. Именно поэтому он был так воинственно и критически настроен по отношению к Галилею, ориентированному в первую очередь на решение частных проблем. Он говорил о Галилее, что тот, «не касаясь первопричин в природе, искал причины лишь некоторых ограниченных явлений и таким образом строил здание без фундамента» [6, II, с. 391]. В своем подходе к объяснению природы он претендовал на ничуть не меньшее, чем то, что было когда-то сделано Аристотелем, и в действительности его система не кеплеровский набросок machina mundi, сделанный в неудачных попытках найти гармонию мира, не галилеевские отрывочные открытия и правила, а нечто всеобъемлющее, претендующее на объяснение как целого, так и частностей — от устройства Вселенной до конкретных физических явлений. Для Декарта, провозгласившего примат математического описания, его картина мира, нарисованная лишь качественно (так же как и аристотелевская), выглядит довольно неестественно, но, к сожалению, Декарт не первый и не последний ученый, у которого декларированная методология не соответствует собственной научной практике.

Механика Декарта изложена в основном в трех его главных сочинениях: в трактате «Мир», оставшемся при жизни неопубликованным, в «Рассуждении о методе» и в «Началах философии». (То, что Декарт не отделял свою механику от философии, находит, в частности, отражение и в том, что он ее включил в свои философские труды как составную и неотъемлемую часть.) В этих произведениях он исходит из двух основных положений, из которых в дальнейшем строится вся его система: во-первых, это представление об отсутствии в мире пустоты и о наполненности Вселенной материей, а во-вторых, это отождествление материи и пространства. К этим двум следовало бы добавить еще третье положение — о неизменности Бога, откуда у Декарта непосредственно вытекает закон сохранения количества движения.

Здесь необходимо отметить, что все великие ученые XVII в. были людьми глубоко религиозными (может быть, лишь Галилей представляет исключение) и теологические соображения играли большую роль в защите и пропаганде их собственных взглядов. Так, например, Ньютон, выступая против Декарта, обвинял его в том, что отождествление материи и пространства есть «прямая дорога к атеизму». По Ньютону, материя существует лишь постольку, поскольку Бог создает ее в непрерывном акте творения; у Декарта же она существует изначально. Ньютон не мог принять такой точки зрения, ибо в таком случае допускалось существование независимой от Бога субстанции. На самом деле точки зрения обоих не различались существенно — и в этом одно из доказательств прямой преемственности идей от Декарта к Ньютону. У Декарта Бог наделяет материю свойством непроницаемости, что, собственно, и делает ее материей повседневного опыта. У Ньютона Бог наделяет пространство свойством непроницаемости, и лишь в силу этого оно становится материей. Важно то, что и у Декарта, и у Ньютона непроницаемость, присущая материи в результате непрерывного акта творения, является тем основным свойством, которое ее (материю) определяет.

Посмотрим теперь, как строится декартовская механика, и определим те ее черты, которые были наиболее существенны для будущего развития науки. В главе VII трактата «Мир», озаглавленной «О законах природы этого нового мира», Декарт делает следующее вводное замечание:

«Из одного того, что Бог продолжает сохранять материю в одном и том же виде, следует с необходимостью, что должны существовать известные изменения в ее частях. Изменения эти, как мне кажется, нельзя приписать непосредственно действию Бога, поскольку это последнее неизменно. Поэтому я приписываю их природе. Правила, по которым совершаются эти изменения, я называю законами природы» [7, с. 166]. Если отвлечься от теологических импликаций, в этом отрывке для нас важно одно: по Декарту, в мире существуют законы сохранения, относящиеся ко всему миру в целом и принимающиеся за аксиому Взаимодействия же составных частей мира должны подчиняться законам природы, действующим, впрочем, в рамках этих аксиом сохранения.

Декарт далее поясняет: «...говоря о качествах материи, мы предположили, что частицы ее обладают различными движениями с самого начала их сотворения и что, кроме того, все они со всех сторон соприкасаются друг с другом, не оставляя нигде пустоты. Из этого необходимо вытекает, что с момента начала движения частицы, встречаясь одна с другой, начали изменять и дифференцировать эти движения. Таким образом, сохраняя их в том же самом виде, в каком он их сотворил, Бог не сохраняет их в одном и том же состоянии» [7, с. 166].

Затем сразу же Декарт приступает к изложению законов, которым должны подчиняться взаимодействия частиц материи; он их называет правилами. Итак,

«Первое правило состоит в том, что каждая часть материи по отдельности всегда продолжает оставаться в одном и том же состоянии до тех пор, пока встреча с другими частями не вызовет изменений этого состояния».

Это правило вроде бы и не похоже на закон механики, в действительности оно им и не является — это некое общее философское положение. Но посмотрим, как далее Декарт его детализирует и делает из него конкретные выводы:

«Иными словами: если частица обладает некоторой величиной, то она никогда не сделается меньшей, пока ее не разделят другие частицы; если эта частица кругла или четырехугольна, она никогда не изменит этой фигуры, не будучи вынуждена к этому другими...»

И наконец, замечательное утверждение:

«Если она (частица) остановилась в каком-нибудь месте, она не покинет его до тех пор, пока другие ее оттуда не вытолкнут; и если она начала однажды двигаться, то продолжает это движение постоянно и с равной силой до тех пор, пока другие ее не остановят или не замедлят ее движения» [7, с 167].

Это утверждение замечательно не только потому, что представляет собой отчетливое выражение закона инерции, оно замечательно потому, что вкладывает в него новый смысл. Новый смысл возникает в результате введения термина «состояние» и его одинакового использования и для случая покоя, и для случая движения. Суть использования термина «состояние» означает для Декарта то, что покой и движение имеют по отношению к объяснению одинаковый статус, и если состояние покоя, в котором тело продолжает пребывать как угодно долго, не нуждается в объяснении, то точно так же и состояние движения, длящееся бесконечно долго, не должно в нем нуждаться. Причем надо отметить, что использование этого слова — не случайное совпадение: на следующих двух страницах трактата Декарт подробно объясняет свою точку зрения, специально подчеркивая равносильность этих двух состояний: «Каждому из своих движений философы приписывают бытие более прочное и истинное, нежели покою, который, как они говорят, не является бытием, а есть небытие. Я же думаю, что покой является качеством, которое нужно приписывать материи, находящейся на одном и том же месте, и что в этом смысле покой не отличается от движения, т. е. качества, которое нужно приписывать материи тогда, когда она меняет свое место» [7, с. 169].

Говоря о движении, Декарт отвергает его аристотелевское определение, включающее, как мы помним, возникновение и уничтожение, сгущение и разрежение, увеличение и уменьшение интенсивности и т. д., утверждая, что движение «заключается в том, что тела переходят из одного места в другое, последовательно занимая все пространства, которые находятся между этими местами». Он полагает, что движение является такой же характеристикой материальных тел, какой являются форма тела или его размеры. Именно поэтому оно должно сохранять свою первоначальную величину, точно так же как четырехугольная частица сохраняет свою четырехугольную форму. Для Аристотеля и средневековых ученых движение составляло достаточно широкое понятие, сводящееся к актуализации потенциальной возможности. Для Декарта, закладывающего основы механики, такая постановка проблемы нелепа, ибо тогда весь его замысел обречен на провал. Поэтому для него движение как actus entis in potentia (акт вещи в потенции) Оккама ничего значить не может.

Возвращаясь к формулировке закона инерции Декарта, можно отметить, что у него не сказано, какую форму примет траектория движения — прямолинейную, криволинейную или какую-либо другую. Мы помним, что в этом пункте у Галилея имелись неясности, и он склонялся скорее к тому, что траектория инерционного движения будет окружностью, а если и высказывался относительно прямолинейного движения по инерции, то никак не увязывал это свое высказывание с первоначальным.

Декарт в этом пункте абсолютно определенен, правда, он высказывается относительно формы траектории несколько позднее, но сути дела это не меняет. Здесь он снова апеллирует к неизменности Бога: «...только Бог является творцом всех существующих в мире движений, поскольку они существуют и поскольку прямолинейны. Однако различные положения материи делают эти движения неправильными и кривыми» [7, с. 176].

Более отчетливую формулировку закона инерции мы находим в «Началах философии», опубликованных спустя почти пятнадцать лет после написания Декартом трактата «Мир». В «Началах» он уже прямо называет свои правила законами природы. Его первый закон совпадает с первым правилом из трактата, а второй гласит: «Всякое движущееся тело стремится продолжать свое движение по прямой», причем он подчеркивает: «каждая частица материи стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой, хотя некоторые из этих частиц часто бывают вынуждены от нее отклоняться, встречаясь на своем пути с другими частицами...» [2, с. 487].

Итак, закон инерции содержится у Декарта в полном объеме, и, по-видимому, лишь полемическая запальчивость Ньютона удержала его от того, чтобы воздать должное Декарту в своих «Началах»[14]. Но как бы то ни было, заслуга открытия первого закона Ньютона принадлежит Декарту.

Изложив закон инерции в двух правилах трактата «Мир», Декарт возвращается к истоку этих законов и формулирует свое первоначальное положение в механических терминах, что трансформирует его в закон сохранения количества движения (укажем при этом, что под количеством движения Декарт понимал произведение количества материи на скорость, хотя у него и не было ясного представления о массе): «Эти два правила с очевидностью следуют из одного того, что Бог неизменен и что, действуя всегда одинаковым образом, он производит всегда одно и то же действие. Предположив, что с самого момента творения он вложил во всю материю определенное количество движения, мы должны либо признать, что он всегда сохраняет его в таких же размерах, либо отказаться от мысли, что он действует всегда одинаковым образом» [7, с. 178].

Еще более детальное механическое объяснение закона сохранения количества движения дается в письме 1639 г.: «Я принимаю,— пишет Декарт,— что во всей созданной материи есть известное количество движения, которое никогда не уменьшается, не увеличивается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает. Так, если камень падает с высокого места на землю, то в случае, когда он не отскакивает, а останавливается, я допускаю, что он колеблет землю и передает ей свое движение. Но так как часть земли, приведенная в движение, содержит в себе в тысячу, например, раз более материи, чем сколько заключается в камне, то, передав ей свое движение, он может сообщить только в тысячу раз меньшую скорость» [8, III, с. 465].

Введение понятия количества движения mv, как мы видим, тоже обязано Декарту, хотя этот факт часто замалчивался творцами новой науки, и в первую очередь Ньютоном, который хотя и широко им пользовался, но ни разу не упомянул о его картезианском происхождении; впрочем, нелишне здесь напомнить о том, что Ньютон отвергал представление о сохранении количества движения. Вообще, идея о существовании законов сохранения имеет наиболее прочные корни во французской науке (в этом смысле Гюйгенс ее прямой наследник), а система Ньютона, как бы внушительна и плодотворна она ни была, испытывает в ней ощутимый недостаток. Заслуга XVIII в. в том и состояла, что механика Ньютона была существенным образом переформулирована (на языке бесконечно малых) и дополнена, причем законы сохранения явились одним из важнейших дополнений.

Можно не сомневаться в том, что открытие Декартом двух фундаментальных физических законов — закона инерции и закона сохранения количества движения — оказало сильнейшее влияние на все последующее развитие науки, важность этого события трудно переоценить, даже имея в виду неправильную теорию удара, выведенную Декартом на основе этих законов. Как интересно отмечает А. Койре, представление о полной онтологической эквивалентности покоя и движения привело Декарта к неправдоподобной трактовке покоя как сопротивления (антидвижения) и заставило его приписать телу в состоянии покоя некую силу сопротивления (количество покоя), аналогичную и противоположную движущей силе тела (количеству движения), находящегося в движении. Койре говорит, что, именно исходя из такого представления, Декарт со всей присущей ему логикой выводит абсолютно неверный закон удара, согласно которому, с какой бы скоростью ни двигалось меньшее тело, оно не способно привести в движение большее тело, поскольку оно не может преодолеть значительно большую силу его сопротивления [9, с. 219].

Нетрудно видеть, что такой вывод находится в противоречии с процитированным выше утверждением Декарта, убеждающим нас, что камень, падающий на землю, передает ей свое движение, чем приводит ее в колебание. Непонятно, каким образом Декарт мог оставить это очевидное противоречие неразрешенным, ведь в данном случае речь шла не о несоответствии теории и опыта (что Декарта не слишком заботило), а о несоответствии двух логических концепций (что было для него принципиально важным). Что же касается того факта, что законы удара, предложенные Декартом, очевидно противоречили опыту, то Декарт на это отвечал, что его «доказательства настолько достоверны, что хотя бы опыт и показал обратное, однако мы вынуждены были бы придавать нашему разуму больше веры, нежели нашим чувствам» [2, 496].,

Хотя Декарт в этой фразе использует сослагательное наклонение, как бы лишь предвидя возможность несоответствия, на самом деле он уже тогда был хорошо осведомлен о том, что его утверждения не согласуются с экспериментом, и поэтому он тут же предпринимает попытку свести концы с концами. Он говорит, что его выводы справедливы лишь в идеальных условиях, предполагающих, что тела взаимодействуют в пустоте, а сами они являются абсолютно твердыми. Но реально эти условия не выполняются: никакое тело не может быть совершенно твердым и все они вынуждены взаимодействовать в среде, заполненной материей. Именно влияние промежуточной среды, оказываемое на погруженные в нее тела, приводит к тому, что его законы удара не подтверждаются на опыте. Декарт продолжал настаивать на справедливости своих выводов, несмотря на все усиливавшуюся критику, и законы удара получили свою адекватную формулировку лишь в трудах физиков следующего поколения — в работах Гюйгенса, Рена и Валлиса.

Неудача декартовой теории удара не должна заслонять его 'великих достижений в механике — установления закона инерции и закона сохранения количества движения. Обычно эту неудачу относят за счет того, что Декарт не осознал векторного характера количества движения. Это действительно так, и для случая двух соударяющихся тел его закон может быть записан в виде

m1|u1| + m2|u2| = m1|v1| + m2|v2|.

Однако это отнюдь не означает, что Декарт не понимал векторного характера движения. Векторный характер скорости был ясен уже итальянским инженерам эпохи Возрождения, и, конечно, для Декарта направление скорости было существенной характеристикой движения. Но его попытки проникнуть в смысл векторного характера движения этим не ограничивались. Одним из важнейших понятий в его анализе движения является «конатус», который можно обозначить как стремление тела двигаться в данном направлении. По Декарту, это «стремление», или «тенденция» движения может реализоваться, а может и не реализовываться в действительном движении в зависимости от тех ограничений, которые на это движение накладываются. Он, например, утверждает, что, хотя в общем случае путь тела представляется криволинейной траекторией, «тем не менее каждая из частиц тела по отдельности стремится продолжать свое движение по прямой линии. Таким образом, их действие (action), т. е. склонность к движению, которой они обладают, отлично от их движения» [7, с. 173].

Далее Декарт поясняет: «Заставьте, например, колесо вращаться вокруг своей оси: все его части будут двигаться тогда по кругу, так как, будучи соединены друг с другом, они не могут перемещаться иначе; однако склонны они передвигаться не по кругу, а по прямой. Это ясно видно, когда одна из частиц его оторвется от других. Как только она очутится на свободе, движение ее перестает быть круговым и продолжается по прямой линии» [7, с. 174].

Было бы упрощенным трактовать декартовский конатус как мгновенную скорость. Скорее это некий эквивалент силы или импульса силы, как показывает следующее за предыдущим утверждение: «Камень не только летит совершенно прямо, выскочив из пращи, но и находясь на ней, все время давит на середину пращи и заставляет натягиваться веревку. Это совершенно ясно доказывает, что камень все время имеет склонность лететь по прямой линии и что по кругу он вращается лишь вынужденно» [7, с. 174].

Мы видим, что в этом отрывке конатус, натягивающий веревку, эквивалентен центробежной силе и направлен от центра по радиусу. Для нас здесь, кроме того, важно, что Декарт ясно заявляет о сведении всех криволинейных движений к прямолинейным (т. е. обратно тому, что было сделано Галилеем, пытавшимся свести все прямолинейные движения к круговым, что подготавливало основу для инфинитозимального анализа движений. В дальнейшем декартовское понятие конатуса как эквивалента силы широко использовалось Гюйгенсом в его механике и оптике.

Декарт стремился построить механическую модель мира, в которой все было объяснено, по крайней мере на качественном уровне, с помощью представлений механики. Он не считал возможным закон или явление, взятое из непосредственного наблюдения в природе, поставить на уровень аксиомы (что со времени Ньютона входит в практику физика-теоретика), а искал им объяснение в терминах «ясных и отчетливых идей». Ярким примером такого отношения является его объяснение тяготения. Предпринятая Ньютоном попытка постулировать закон тяготения в качестве основного закона природы, не сводимого к более понятным взаимодействиям, многими считалась неудовлетворительной и после выхода «Математических начал». Ньютон и сам был этим не вполне удовлетворен, большинство же ученых континента воспринимали его подход к проблеме как введение в науку «оккультных качеств». Задолго до появления «Математических начал» Декарт так высказывался по этому поводу: «Мы прибавим к нашим предположениям, если вам это угодно, что Бог не совершает в нашем мире никаких чудес» [7, с. 170]. И более конкретно: «То, что Галилей говорит относительно скорости падающих тел, не имеет основы — ему надо бы сказать, что такое тяжесть; если бы он понял ее природу, то увидел бы, что не существует пустого пространства» [6, II, с. 391].

Декарту кажется, что он может «сказать, что такое тяжесть» и «что он понял ее природу». В своем объяснении тяготения он оперирует с центробежной силой, показывая, что существование центробежной силы в пространстве, заполненном материей, необходимо вызывает центростремительную силу, которая и есть тяготение. Конечно, он не использует термина «центробежная сила», который лишь позднее был введен Гюйгенсом, как нет у него и «центростремительной силы» — термина, который впервые использовал Ньютон, но качественная картина от этого не меняется. Согласно Декарту, каждая планета окружена вихрем тонкой материи, и частицы тонкой материи (или эфира), участвуя в быстром вращательном движении, стремятся удалиться от центра вихря. Но поскольку материя заполняет все пространство во Вселенной и все пространство вокруг планеты (более того, пространство, по Декарту, тождественно материи), то, чтобы частицы тонкой материи переместились дальше от центра вихря, необходимо, чтобы частицы грубой материи, составляющие обычные весомые тела, переместились к его центру.

Чертеж из трактата «Мир», поясняющий сущность тяготения

Говоря словами Декарта, «ни одна из частиц, находящихся в равновесии, не может ни подняться, ни понизиться без того, чтобы другая не сделала в тот же момент противоположного; всегда перевес на одной стороне влечет перевес на другой. Так, например, камень Р противостоит в точности равному его величине количеству воздуха, находящегося над поясняющий сущность тяготения ним. Место этого воздуха он должен будет занять в случае, если он удалится сильнее от центра T, а воздух этот неизбежно должен опускаться по мере поднимания камня. Точно так же камень этот противостоит другому подобному количеству воздуха, находящемуся под ним. Место этого воздуха он должен будет занять, если станет приближаться к центру; подъем этого воздуха является необходимым условием того, чтобы камень опускался» [7, с. 208]. Но, поскольку частицы тонкой материи вращаются гораздо быстрее, чем Земля, к которой принадлежат и камень, и воздух, а «материя неба более располагает силой, заставляющей камень Р опускаться к T, чем силой, заставляющей опускаться туда окружающий его воздух» [7, с. 211], в результате камень будет падать на землю.

В этом объяснении Декарта есть одна тонкость, заключающаяся в только что процитированной фразе. Это высказывание предполагает, что воздух, занимающий больший объем, а следовательно, большую поверхность по сравнению с камнем равного количества материи, обладает большим сопротивлением по отношению к движению к центру (по сравнению с камнем), и отсюда тяжесть получается пропорциональной не только массе, но и поверхности тела. Эта черта декартовой теории тяготения интересна для нас потому, что она характерна для представлений о природе тяготения, принадлежащих Ломоносову, который, очевидно, испытал сильнейшее влияние картезианских взглядов. А Декарт заключает свой анализ таким образом: «Так как этой материи в камне значительно больше, чем в количестве воздуха равного с ним объема, то он должен быть толкаем к Т значительно сильнее, чем этот воздух» [7, с. 211].

Объяснение процесса удара и сущности тяготения принадлежит к ошибочным теориям Декарта, хотя они и оказали большое влияние на формирование правильных представлений об этих явлениях.

Теперь остановимся еще на одной трактовке механических понятий, содержащейся в сочинениях Декарта, а именно на понятии относительности места и движения. Согласно Декарту (и в противоположность Ньютону), не существует абсолютной системы отсчета, а следовательно, и абсолютного движения. Декарт говорит, что «в мире нет неподвижных точек» и что «ни для какой вещи в мире нет твердого и постоянного места, помимо того, которое определяетcя нашим мышлением». Поскольку в его картине мира материя эквивалентна пространству, а материальное тело — части пространства, которую оно занимает, то «самые названия «место» и «пространство» не обозначают ничего, действительно отличного от тела, про которое говорят, что оно «занимает место»; ими обозначаются лишь его величина, фигура и положение среди других тел» [2, с. 471].

Чертеж из книги «Начала философии»

Итак, уже само «место» есть относительное, а не абсолютное понятие, а поскольку движение в общепринятом смысле есть не что иное, как «действие, посредством которого данное тело переходит с одного места на другое» [2, с. 477], то и движение как таковое становится понятием относительным. Более того, попытка Декарта каким-то образом индивидуализировать тело, обусловить возможность проведения с ним эксперимента приводит его к необходимости дать еще одно определение движения, еще более «релятивировать» это понятие. Так, Декарт наряду с движением в общепринятом смысле (le mouvement pris selon Fusage commun) вводит понятие движения в подлинном смысле слова (le mouvement proprement dit), которое есть «перемещение одной части материи, или одного тела, из соседства тех тел, которые непосредственно его касаются и которые мы рассматриваем как находящиеся в покое, в соседство других тел» [2, с. 477].

Понятие покоя, таким образом, тоже становится относительным — покой мыслится локальным, тогда как в целом покоящиеся тела (или места) в действительности непременно находятся в движении, именно поэтому «движение и покой — лишь два различных модуса» [2, с. 478] движущегося тела. В этом смысле покой неотличим от движения, «ибо перемещение взаимно, и нельзя мыслить тело АВ переходящим из соседства с телом СО, не подразумевая вместе с тем перехода СО из соседства с АВ и не имея в виду, что и для одного, и для другого требуется одинаковое действие. Поэтому, если мы хотим приписать движению природу, которую можно было бы рассматривать в отдельности, безотносительно к другим вещам, то в случае перемещения двух смежных тел — одного в одну сторону, другого в другую, в силу чего тела взаимно отдаляются,— мы не затруднимся сказать, что в одном теле столько же движения, сколько в другом» [2, с. 479-480].

Взгляд на движение как на относительное понятие, помимо чисто физических приложений, имел для Декарта еще и ту привлекательность, что избавлял его, как ему казалось, от опасности быть осужденным церковью за свою приверженность к коперниканству, как это произошло с Галилеем. Койре обратил на этот момент особое внимание, подчеркивая, что новое определение движения позволило Декарту утверждать, «что, хотя Земля носится в своем вихре и посредством этого своего вихря вокруг Солнца, в действительности она не движется. Следовательно, утверждал Декарт, осуждение его не касается: он не приписывал Земле движение, наоборот, он утверждал, что она покоится. Неудивительно, что эта столь субтильная и в то же время столь наивная попытка отмежеваться от Коперника и Галилея, предпринятая (как его именовал Боссюэ) очень осторожным философом, никого не обманула, кроме разве что нескольких современных историков. Тем не менее она удалась» [9, с. 221]. «Начала философии» были включены в «Индекс запрещенных книг» лишь в 1664 г., и не по причине явного коперниканства Декарта, а из-за того, что его понятие материи было несовместимо с догматом пресуществления.

Оптика Декарта примыкает к его механике, вместе с которой она входит как основная составная часть в систему мира в целом. Недаром главное сочинение Декарта, нежно им лелеемое в лучшую нору жизни и оставшееся неопубликованным, носит характерное название: «Мир, или трактат о свете». В этой работе он с самого начала пытается представить свет как естественный повод поговорить и порассуждать о множестве вещей, которые на первый взгляд со светом никак не связаны. Заявив, что из имеющихся в мире тел ему известно «лишь только два вида таких, которые обладают светом, именно — звезды и пламя или огонь» [7, с. 133], Декарт переходит к рассмотрению свойств пламени, твердости и жидкости, рассуждает о возможности существования пустоты, о числе элементов и их качествах, о законах движения и, наконец, переходит к описанию устройства Вселенной. В частности, он полагает, что вся существующая в природе материя состоит из частиц трех типов, различающихся по величине. Самые тонкие частицы образуют так называемый первый элемент, или элемент огня, более крупные частицы принадлежат второму элементу — элементу воздуха, и наконец, наиболее грубые частицы составляют третий элемент — элемент земли. Не вполне понятно, как эти атомистические представления уживаются с картезианским принципом отсутствия пустоты и бесконечной делимости материи. По этому поводу Декарт лишь замечает, «что элемент огня можно назвать наиболее тонкой и всюду проникающей жидкостью, какая только существует на свете» [7, с. 152]. Затем он приступает к обсуждению света как такового.

Декартова теория света была в своей основе корпускулярной, т. е. свет — это действие, производимое частицами второго элемента; он говорит даже, что «свет можно также хорошо представить посредством движения» [7, с. 136]. Но на самом деле свет, по Декарту, был не столько движением частиц, сколько «конатусом» — стремлением к движению, импульсом силы, распространяющимся мгновенно и прямолинейно в среде тонких частиц второго элемента, заполняющего промежутки между видимыми макротелами.

Для понимания его теории идея конатуса особенно важна (кстати, эту же идею впоследствии использовал Гюйгенс); «... прежде всего нужно подчеркнуть, что, когда я говорю, что некоторое тело стремится в такую-то сторону, я не хочу, чтобы при этом думали, будто бы тело это имеет в себе какую-то мысль или волю, влекущую его туда. Я хочу сказать только, что это тело склонно двигаться в известном направлении, причем безразлично, движется оно туда на самом деле или же ему мешает в этом какое-нибудь другое тело» [7, с. 216]. Итак, не движение, не перемещение частиц, а передача их стремления двигаться представляет собой свет. Давление частиц на глаз и вызывает ощущение света, поэтому моделью света может служить палка слепого, которая ощупывает предметы и, натыкаясь на них, мгновенно передает об этом информацию — импульс. Зрение, таким образом, превращается в осязание, прикосновение, давление, механическое понятие.

Замечателен перечень свойств света как «действия, посредством которого могут быть толкаемы глаза людей» [7, с. 230]:

«Основными свойствами света являются следующие: 1) он распространяется во все стороны вокруг тел, называемых светящимися, 2) на всевозможные расстояния, 3) мгновенно и 4) обычно по прямым линиям, называемым лучами света; 5) некоторые из этих лучей, исходя из различных точек, могут собираться в одну и ту же или 6) исходя из одной точки, расходиться в различные пункты; 7) исходя из разных точек и идя к разным точкам, лучи эти могут проходить через одну и ту же, не мешая друг другу, 8) но иногда, когда сила их значительно неравна и превосходство одних над другими в этом отношении весьма велико, они могут мешать друг другу; 9) направление этих лучей может быть изменено посредством отражения или 10) преломления; 11) сила их может быть увеличена или 12) уменьшена благодаря различным положениям или качествам передающей их материи» [7, с. 231].

Как следует из свойства 8), Декарт не имел ясного понятия о том, что сегодня называют принципом суперпозиции, т. е. в данном случае, что пересекающиеся световые лучи не влияют друг на друга, хотя в объяснении предыдущего свойства он указывает, что «каждая из частиц второго элемента способна получать в одно и то же время несколько различных движений» [7, с. 234]. Эта двойственность позиции Декарта, которая выражается уже в том, что он постулирует для света два противоположных свойства — седьмое и восьмое, определяется тем, что его теория занимает промежуточное положение между корпускулярной теорией истечения и волновой теорией. И хотя главным материальным агентом у него является частица второго элемента, свет не есть движение этих частиц, а лишь передача склонности к движению от частицы к частице. Но, поскольку наглядно объяснить, что такое этот конатус непросто, Декарт прибегает к вполне наглядным чисто корпускулярным аналогиям (в данном случае к пересекающимся трубам, по которым движется воздух), и сразу многообещающая тонкость его представлений утрачивается.

Вообще, физическая оптика Декарта весьма своеобразна, но, несмотря на ошибочность многих представлений, она удивительным образом сработала при выводе двух фундаментальных положений: закона преломления и отражения, а также объяснения образования радуги. Строго говоря, слово «сработала» здесь не вполне уместно, потому что в действительности Декарт не выводил закона преломления из своих качественных представлений, он лишь впоследствии приспособил свою теорию для объяснения уже найденного им соотношения. Каким же именно образом он к нему пришел, до сих пор остается загадкой. Долгое время авторство Декарта в установлении закона преломления вызывало сомнения, многие ученые, в том числе Христиан Гюйгенс, обвиняли его в плагиате и заимствовании формулировки закона у Виллеброрда Снелля, который открыл его в 1621 г. Однако это открытие оставалось неизвестным вплоть до 1632 г., когда Голиус обнаружил рукопись Снелля, содержащую этот закон. Тем не менее сегодня существуют веские доказательства того, что Декарт независимо от Снелля открыл закон преломления в 1626 г., когда друг Декарта Клод Мидорж изготовил для него гиперболическую линзу, лишенную сферической аберрации и рассчитанную исходя из декартова закона синусов для преломления.

В 1637 г. в «Диоптрике» Декарт дает уже пространственное доказательство закона преломления, основанное прежде всего на его двух законах механики, а именно на принципе инерции и на законе сохранения количества движения. Несмотря на то что (как уже говорилось выше) количество движения он понимал как скалярную величину, конатус, или стремление имело у него всегда векторный характер и могло быть разложено на компоненты.

Для вывода своего закона Декарт моделирует свет с помощью теннисного мяча, падающего на плоскую поверхность. Сначала он выводит закон отражения и для этого представляет, что мяч падает на поверхность СЕ, которая мыслится идеально твердой и неподвижной. Предположим, говорит Декарт, что теннисный мяч, посланный ракеткой в точке А, двигается равномерно по линии АВ и попадает на поверхность СЕ в точке В. Разложим его стремление на две составляющие — АС, которая перпендикулярна поверхности, и АН, ей параллельную. Так как мяч, ударившись о поверхность СЕ, не сообщит ей никакого движения, скорость его после отскока не изменится по величине, и он по прошествии времени, равному тому, которое ему потребовалось для прохождения отрезка АВ, окажется где-то на окружности, описанной радиусом АВ вокруг точки В. После отскока составляющая стремления АН, параллельная поверхности СЕ, останется без изменений (AH = HF), а вертикальная составляющая АС изменит свой знак на противоположный. Итак, горизонтальная составляющая определит прямую FE, находящуюся от вертикали НВ на расстоянии HF. Ясно, что по прошествии нужного времени мяч должен будет находиться на пересечении этой прямой с окружностью, т. е. в точке F. Отсюда с необходимостью следует, что угол падения АВН равен углу отражение HBF.

К закону отражения Декарта
К закону преломления Декарта

Закон отражения был известен давно, и для Декарта его доказательство лишь прелюдия к объяснению явления преломления, действительно нового и неизвестного. Но для этого он коренным образом изменяет свою модель (для него — как позднее для Максвелла — модель не столько картина реальности, сколько способ понимания, поэтому он и может изменяться). Теперь поверхность СЕ уже не представляется абсолютно твердой и неподвижной, мяч не только может проходить через нее, но при этом он необходимо теряет часть своего движения, т. е. скорости. Если отношение скоростей до и после прохождения поверхности СЕ раздела двух сред равно р : q, то время, потребное для мяча, чтобы достичь окружности, описанной из В радиусом АВ (т. е. чтобы пройти путь, равный АВ), будет относиться к первоначальному так же, как р : q (поскольку движение предполагается в обоих случаях равномерным). Затем Декарт снова находит величину горизонтальной компоненты конатуса; очевидно, что после прохождения границы раздела эта компонента будет иметь большую величину, чем до столкновения с границей, потому что мячу придется пройти больший путь по горизонтали, прежде чем достичь круга, описанного радиусом АВ. И снова размеры горизонтальной компоненты после и до столкновения будут находиться в отношении р : q, т. е. FH:АН = р: q, тогда мяч достигнет круга в точке I.

В этом пункте Декарт снова видоизменяет свою модель. Дело в том, что согласно его теории света скорость света увеличивается с ростом плотности среды, в которой распространяется свет. Буквально Декарт утверждает, что свет проходит сквозь более плотные среды с большей легкостью, а это нельзя интерпретировать иначе, как лишь увеличением его скорости. (Это утверждение очевидно противоречит его постулату о мгновенном распространении света. По-видимому, Гюйгенс именно поэтому отказывался понимать теорию света Декарта.) Кроме того, прямые эксперименты показывали, что луч света в более плотной среде отклоняется по направлению к вертикали, а не к горизонтали. Поэтому Декарту необходимо, чтобы теннисный мяч в его модели не уменьшал свою скорость, попадая в более плотную среду, а, наоборот, ее увеличивал. Чтобы удовлетворить этому условию, он представляет, будто бы мяч при прохождении границы раздела приобретает добавочную скорость, как если бы его снова ударили ракеткой. Закон преломления получается вне зависимости от того, больше или меньше единицы отношение р : q, и, следовательно, для самого вывода закона последнее, видоизменение модели не нужно. В самом деле

Вывод закона преломления Декартом дает замечательный пример довольно часто встречающегося в истории науки случая, когда правильные выводы следуют из целиком неправильных предпосылок; это еще раз подтверждает справедливость слов Джойса, что ошибки гения являются вратами в открытие.

Зная закон преломления, Декарту не составляло большого труда дать объяснение происхождения радуги. Рассматривая преломление лучей света в сферическом сосуде, заполненном водой, он рассчитал радиусы главной и побочной радуг.

4

«Совершенно новая наука», о которой Декарт писал Бекману еще в 1619 г., появилась как иллюстрация и приложение общих положений, развитых в «Рассуждении о методе». Это была на самом деле новая наука в том смысле, что была совершенно оригинальна. Знаменитый математик Шаль, с восхищением отзываясь о декартовской «Геометрии» ровно два столетия после ее опубликования, писал, что представления, развитые в этой книге, являются «детьми, появившимися на свет без матери» (proles sine madre creata), настолько они непохожи на прежнюю математику.

Без всякого сомнения, «Геометрия» Декарта знаменует собой начало новой эпохи в истории математики, но было бы неверным утверждать — и это подчеркивает Г. Цейтен [10, с. 198], — что почва для ее появления была неподготовленной. Не говоря об аналитической геометрии Ферма, символике Стевина и Виета, алгебре коссистов, представленной в трудах Петера Рота и Кристофа Клавия, исторические основы геометрии Декарта следует искать в трудах античных авторов. Декарт сам писал об этом в «Правилах для руководства ума»: «...некоторые следы этой истинной математики можно заметить еще у Паппа и Диофанта, которые, хотя и не относятся к ранним векам, все же жили задолго до нашего времени».

И далее: «Наконец, несколько гениальных людей нашего времени пытаются воскресить это искусство, ибо не чем иным, как искусством, представляется им наука, обозначаемая иностранным названием „алгебра", если ее освободить лишь от множества загромождающих ее знаков и непонятных фигур настолько, чтобы у нее не было недостатка в той высшей ясности и простоте, которую мы предполагаем необходимой для истинной математики» [2, с. 92-93].

Однако задача, которую поставил перед собой Декарт, далеко не ограничивалась введением новой, более удобной символики, хотя и это было делом первостепенной важности. Задача была значительно более глубокой и принципиальной: как соотнести алгебраические понятия и геометрические построения, чтобы затем исключить из алгебры необходимость в таких построениях. Например, любое квадратное уравнение или выражение вида (a + b)2 = а2 + 2ab + b2 изображалось с помощью квадратов, связанных, как показано на рисунке. Эта традиция вела свое начало от Евклида, но даже и Виет постоянно иллюстрировал свои алгебраические выводы геометрическими построениями.

Титульный лист книги Декарта «О методе»

Главная трудность состояла в том, чтобы дать многочленам любых степеней наглядное геометрическое изображение. Для a2 таким изображением являлся квадрат, для a3 — куб, но уж четвертая степень представляла неодолимую проблему. Декарт решил ее, поставив степени любого числа в соответствие не фигуру или тело, а отрезок, сделав таким образом все величины, входящие в любое алгебраическое выражение, однородными. Вот как сам он излагает свою идею:

«Подобно тому как вся арифметика состоит только в четырех или пяти действиях, именно в сложении, вычитании, умножении, делении и извлечении корней, которое можно считать некоторого рода делением, подобно этому и в геометрии для нахождения искомых отрезков надо только прибавлять или отнимать другие; или, имея отрезок, который я для лучшей связи с числами буду называть единицей и который вообще можно выбирать по произволу, и имея, кроме него, два других отрезка, надо найти четвертый, который так относится к одному из этих двух, как другой к единице,— это равносильно умножению; или приходится находить четвертый, который так относится к одному из двух данных, как единица к другому,— это равносильно делению; или, наконец, случается находить одно или несколько средних пропорциональных между единицей и другим отрезком — это равносильно извлечению корня. И я нисколько не колеблюсь ввести эти арифметические выражения в геометрию, чтобы мое изложение было более понятным» [11, с. 11—12].[15]

Поясним сказанное Декартом для случая умножения. Пусть дано: отрезок АВ, равный 1, отрезок BD, равный а, отрезок ВС, равный b. Требуется найти отрезок, равный произведению BD∙BC, т. е. ab. Для этого на сторонах произвольного угла откладываем отрезки АВ, ВС и BD так, как это показано на рисунке. Точки А и С соединяем и проводим через D прямую DE, параллельную АС. Из подобия треугольников ABC и ADE находим: AB/BD = BC/BE, или AB∙BE = BC∙DB, так как АВ = 1, то BE = BC∙DB = ab.

Естественно, если a—b = x, то мы получаем для x2 геометрическое представление в виде отрезка. Беря затем в качестве сомножителей x2 и x, получаем представления для x3 и т. д.

Геометрическая интерпретация умножения (Евклид)
Геометрическая интерпретация умножения (Декарт)

Проблема однородности вообще была чрезвычайно существенной при становлении классической науки XVI—XVII вв. Ученым приходилось преодолевать традиции античного мышления, которые часто сковывали продвижение вперед. Правила составления отношений требовали, чтобы эти отношения были составлены лишь из однородных величин, причем это требование было обязательным не только в математике, но и в физике. Выше уже говорилось, что для античных и средневековых последователей Аристотеля было совершенно неприемлемым мыслить, скажем, скорость как отношение пути ко времени. Все развитие науки о движении было тесно связано с преодолением традиционной ситуации, когда понятие скорости выводилось интуитивно из отношений путей, проходимых за одинаковое время, или же из отношений времен, затраченных на прохождение одинаковых путей. В математике необходимость оперировать в отношениях лишь с однородными величинами была постулирована у Евклида (V книга «Начал»), и в этом смысле неправомерно, например, рассматривать в алгебре отношение a2/b3, поскольку величина в числителе связывается с плоской фигурой — квадратом, а величина в знаменателе — с пространственной фигурой, кубом. Декарт же, вводя числовые показатели степени, утверждал, что квадрат какой-либо величины не отличается от самой этой величины в том смысле, как геометрическая прямая отличается от геометрического квадрата, а в действительности «корень, квадрат, куб и проч. являются не чем иным, как последовательно пропорциональными величинами, которым всегда предшествует наперед заданная единица» [2, с. 158—159].

Нововведение Декарта можно пояснить следующим образом. Пусть нам дана последовательность отношений: 1/x = x/x2 = x2/x3 = ..., где первое отношение берется между однородными величинами, а остальные также являются однородными, так как получаются из первого умножением на очевидно однородное отношение x/x. Тогда получается, что мерой квадрата, куба и прочих степеней является число отношений, отделяющих их соответственно от выбранной единицы.

Плодотворность этого подхода трудно переоценить. Действительно, ведь античная математика, хотя и устанавливала соответствие между операцией сложения и откладыванием отрезков-слагаемых вдоль прямой линии, она не способна была представить умножение иначе, чем построение прямоугольника со сторонами, равными сомножителям, и в результате произведение отличалось по сути от сомножителей. Теперь же, как было показано, умножение (и аналогично все остальные действия) стало иметь своим результатом величину, однородную с сомножителями, т. е. отрезок, который находится путем отношений. Отсюда вытекает, что каждому отрезку x и многочлену Р(x) с рациональными коэффициентами можно поставить в соответствие другой отрезок y = Р(x). Это утверждение и составляет основу алгебраической геометрии Декарта, которую Лакруа в конце XVIII в. назвал аналитической геометрией.

Легко видеть, что новый подход давал возможность совершенно иной интерпретации алгебраических соотношений. Например, уравнение x2 + y2 = R2 не столько выражало факт равенства площадей трех квадратов, сколько определяло собой окружность радиуса R с центром в начале координат.

Правда, у самого Декарта еще не было прямоугольных координат, которые мы сегодня называем декартовыми (на самом деле это были произвольные косоугольные координаты), хотя остальные обозначения a, b, c (известных величин) и х, у, z (неизвестных величин) принадлежат самому Декарту.

Примером реализации нового подхода Декарта явилась знаменитая проблема Паппа, внимание к которой было привлечено Якобом Голиусом в 1631 г. Коротко проблема состоит в следующем: в плоскости дано п прямых; требуется найти на этой плоскости точку, такую что произведение отрезков, проведенных из этой точки под данным углом к n/2 прямым, находится в данном отношении к произведению таких же отрезков, проведенных к остальным n/2 прямым (для случая четного n; для нечетного n условия задачи несколько усложняются).

Детально рассматривая решение для случая n = 4, Декарт получает также классификацию решений для других значений. Он принимает одну из прямых за ось абсцисс, тогда ординатой искомой точки будет служить отрезок, проведенный из нее на абсциссу под данным углом. Затем Декарт показывает, что отрезок, проведенный из этой точки к любой другой прямой, может быть выражен через комбинацию двух неизвестных в виде αх + βx + γ, где α, β, γ определяются условиями задачи. Отсюда следует, что для данного числа n степень x в уравнении, соответствующем произведению отрезков, не будет превышать n/2, а в большинстве случаев она будет меньше. Поэтому для решения проблемы Паппа в случае 5 или меньшего числа прямых получается квадратное уравнение. Если число линий увеличивается, соответственно увеличивается трудность задачи, которая определяется повышением степени уравнения.

Вторая книга «Геометрии» посвящена подробному рассмотрению кривых, которые являются геометрическими местами точек, представляющих решение проблемы Паппа. В частности, там показывается, что для n ≤ 5 такие кривые являются коническими сечениями. Декарт подчеркивает в этой книге, что уравнение кривой содержит достаточно информации, чтобы определить ее геометрические свойства и характеристики, среди которых наиболее важной является нормаль к любой точке кривой. Поскольку нормаль к кривой в данной точке является перпендикуляром к касательной в этой точке, то правило определения нормалей, данное Декартом, эквивалентно решению задачи о нахождении касательной к кривой; эта последняя играла существенную роль в процессе возникновения дифференциального исчисления.

Рассмотрение уравнений, соответствующих различным кривым, приводит Декарта в третьей книге «Геометрии» к построению теории таких уравнений. Он доказывает сначала утверждение, что любой многочлен Р(x) с действительными коэффициентами может быть представлен в виде Р(x) = (x—a) (x— b)... (x—s), где a, b,..., s — корни уравнения Р(x) = 0. Затем Декарт формулирует основную теорему алгебры, гласящую, что уравнение n-й степени имеет в точности n корней (отметим, что впервые эта теорема была сформулирована А. Жираром в 1629 г.), и тут же предлагает путь ее доказательства.

«Геометрия» Декарта имела огромное значение для всего последующего развития науки, и дело здесь не только в том, что появилась новая область математики, а вместе с нею мощный аппарат для решения всевозможных задач. Важно и то, что одновременно появилась модель математического метода исследования физических проблем, ибо для Декарта физика была равносильна геометрии (хотя в его собственных сочинениях это утверждение и осталось в основном декларацией). Так, он писал Мерсенну в марте 1640 г.: «В физике мне следовало бы считать, что я ничего не знаю, если бы я был способен объяснить лишь то, каковыми могут быть явления, без того, чтобы доказать, что иными они быть не могут. Ибо, сведя физику к математике, это, по-видимому, возможно, и я полагаю, что могу это сделать в рамках небольшого запаса моих знаний, хотя я и не сделал этого <до сих пор> в моих сочинениях» [4, III, с. 39].

5

Декарту повезло в Голландии не только потому, что он нашел там убежище и необходимые условия для работы, он приобрел в этой стране друзей и коллег. Как бы он не стремился укрыться, он не мог обойтись без обсуждения научных проблем, без живого общения с людьми. Голландия для этого была превосходным местом. Во-первых, там было немало замечательных ученых, достаточно назвать Стевина, Снелля, Жирара, Сен-Винцента, а среди тех, с кем Декарт был непосредственно связан,— Бекмана, Голиуса, Схоутена, Гюйгенса-отца и др., а, во-вторых, престиж науки в Голландии был невиданно высок. В ней раньше всех других стран произошла буржуазная революция, и поэтому к ней в первую очередь относятся слова Энгельса: «Буржуазии для развития промышленности нужна была наука, которая бы исследовала свойства физических тел и формы проявления сил природы. До того же времени наука была смиренной служанкой церкви, и ей не позволено было выходить за рамки, установленные верой... Теперь наука восстала против церкви, буржуазия нуждалась в науке и приняла участие в этом восстании» [12, II, с. 93].

В этом отношении характерным является тот факт, что ученых можно было найти даже среди правящей верхушки страны. Например, Ян де Витт, который стоял во главе государства в продолжении четверти века (между Вильгельмом II и Вильгельмом III — 1650—1672), был способным математиком и с увлечением занимался наукой. Ко второму латинскому изданию «Геометрии» Декарта было добавлено приложение, написанное де Виттом, в нем рассматривались кинематические методы образования конических сечений и впервые давалось аналитическое решение задачи об определении геометрического места точек, сумма или разность расстояний которых от двух данных точек постоянна.

Другим высокопоставленным голландцем, в лице которого Декарт нашел искреннего друга и почитателя, был Константин Гюйгенс, человек блестящий и обладавший множеством талантов — он был известным поэтом, неплохим художником и музыкантом, говорил почти на всех европейских языках и к тому же разбирался в математике и физике. Достаточно сказать, что Декарт решился опубликовать свою «Диоптрику» благодаря одобрению Гюйгенса, прочитавшего работу в рукописи. Относительно поэтического дарования Гюйгенса интересно отметить, что в начале XIX в. его стихи были переведены на русский язык П.А. Корсаковым, сотрудником русской миссии в Гааге, составившим, по-видимому, первую в России антологию голландской поэзии.

Константин Гюйгенс занимал пост секретаря принца Оранского, что делало его одним из наиболее влиятельных людей в стране. Служба дому Оранских стала в семье Гюйгенсов традиционной — секретарями принцев были и отец Константина, Христиан, и его сын Константин.

Получив прекрасное домашнее образование и закончив затем Лейденский университет, Константин Гюйгенс избирает карьеру дипломата и становится в 1625 г. секретарем штатгальтера Фредерика-Гендрика. При предыдущем штатгальтере, принце Морице, человеке умеренных взглядов и лишенном политического честолюбия, страна тем не менее переживала тяжелые времена из-за религиозных распрей: партия гомаристов, выступавшая с позиций фанатичного кальвинизма, противостояла партии арминистов, стремящихся к установлению религиозной терпимости в стране. Гомаристы стояли за продолжение войны с Испанией и за ужесточение борьбы с католицизмом, в то время как арминисты, выражавшие интересы крупной буржуазии, стремились к миру с Испанией и к расширению с ней торговли. Оранские поддерживали гомаристов, и в 1619 г. штатгальтер Мориц жестоко подавил восстание арминистски настроенной буржуазии, лидер восставших Олденбарневелт, был казнен. Объединенные провинции в 1621 г. вступили в Тридцатилетнюю войну на стороне противников Испании.

При Фредерике-Гендрике, секретарем которого Константин Гюйгенс стал при вступлении принца в должность штатгальтера, положение Голландии упрочилось и стабилизировалось. Принц восстановил мир внутри страны и положил конец религиозным войнам. За годы его правления (1625—1647) Объединенные провинции расширили свою территорию и вскоре получили по Мюнстерскому договору 1648 г. официальное признание своей независимости. В этот период мы видим расцвет торговых компаний (среди них отметим Ост-Индскую, основанную еще в 1602 г.), расширение колониальных владений и рост промышленности в самой метрополии, словом, все то, что дало повод Энгельсу назвать Голландию образцовой капиталистической страной 17 века [13, XXIII, с. 761]. Годы правления Фредерика Гендрика совпадают со временем жизни Декарта в Голландии; это период относительной свободы печати, вероисповедания и науки.

Константин Гюйгенс сделал завидную политическую карьеру — сохранив место секретаря при последующих штатгальтерах, Вильгельме II и Вильгельме III, он стал к концу жизни председателем государственного совета. С Декартом он познакомился в доме Якоба Голиуса — известного арабиста и профессора математики Лейденского университета (вспомним, что Голиус привлек внимание Декарта к проблеме Паппа). Декарт был очарован Гюйгенсом — через два дня после их встречи он так писал о нем Голиусу: «Есть качества, которые заставляют уважать тех, кто ими владеет, без того, чтобы любить их за это, и качества, которые заставляют любить без того, чтобы уважать, но нахожу, что он владеет в совершенстве теми, которые вызывают и одно и другое» [14, с. 26].

Гюйгенс, со своей стороны, проникся к Декарту глубокой симпатией, и тот не раз останавливался в его доме, когда приезжал в Гаагу.

Через несколько месяцев после того, как Декарт переехал в Голландию, 14 апреля 1629 г., у Константина Гюйгенса родился сын, который в память деда был назван Христианом. Христиану Гюйгенсу (1629—1695) суждено было сыграть выдающуюся роль в становлении новой науки.

ХРИСТИАН ГЮЙГЕНС

Наряду с традиционной дипломатической службой в семье Гюйгенсов были и другие традиции, например, стало обычаем, чтобы образованием детей занимался их отец. Константин был во многом обязан своей эрудицией своему отцу, деду Христиана, и сам, в свою очередь, тратил много времени и усилий на образование своих детей, Христиана и его брата, тоже Константина. Христиан учился дома до 16 лет, и за это время сделал большие успехи: он свободно владел латынью, греческим и французским, немного знал итальянский, был хорошо образован в логике, математике, механике и географии, к тому же он был весьма музыкален, хорошо пел, играл на лютне, клавесине и виоле да гамбе. В нем рано проявились и большие теоретические способности, и любовь к практической механике — известно, например, что в 13 лет он сам собрал токарный станок; эти два качества доминировали во всем его творчестве.

В 1645 г. Христиан поступил в Лейденский университет, который стал к этому времени одним из наиболее знаменитых университетов Европы. В нем преподавали Стевин, Скалигер и другие выдающиеся ученые, среди которых выделим Франца ван Схоутена, занимавшего в Лейдене кафедру математики. Собственные заслуги Схоутена в математике были скромными, отметим, впрочем, что им впервые решение некоторых числовых кубических уравнений приведено к задаче о трисекции угла, а также составлена таблица простых чисел до тысячи; гораздо существеннее значение Схоутена как пропагандиста и популяризатора передовых математических идей. В 1646 г. он опубликовал собрание сочинений Виета, а через три года — «Геометрию» Декарта, переведенную им на латинский язык. Издание Схоутена было снабжено также многочисленными комментариями и дополнениями (в том числе и работами де Витта, о которых говорилось выше).

Под руководством Схоутена Гюйгенс изучал классическую математику, в частности работы Аполлония по коническим сечениям, и самостоятельно Архимеда, которым он особенно восхищался. Много внимания он уделял и современным методам, внимательно читая Виету, Ферма и Декарта. Отношения учителя и ученика перешли впоследствии в теплую дружбу, не прерывавшуюся до самой смерти Схоутена в 1660 г. Надо сказать, что многие математические результаты Гюйгенса часто становились известны ученому сообществу именно благодаря Схоутену, всегда находившемуся в курсе исследований своего бывшего ученика. Вообще, обстановка для развития талантов молодого исследователя была очень благоприятной; Схоутен был не единственным его наставником: по-прежнему Константин Гюйгенс не упускал сына из сферы своего пристального внимания, и Мерсенн, с которым Константин постоянно переписывался, начал присылать через отца математические задачи, предназначаемые Христиану.

В октябре 1646 г. Мерсенн заинтересовался решением задачи о падении тел, принадлежащим молодому Гюйгенсу, о котором сообщил ему Гюйгенс-отец, и с этого времени началась переписка между Мерсенном и самим Христианом, которая продолжалась до самой смерти Мерсенна. Эта переписка оказала очень большое влияние на формирование научных интересов Гюйгенса и определила многие его творческие начинания. Так, Мерсенн познакомил Христиана с задачей о квадратуре круга, связанной с расчетом точного положения центра тяжести, привлек внимание к опытам по определению скорости звука и по расширению воздуха в пустоте, поставил перед ним проблему об определении центра качаний. Решение этой последней задачи составило в дальнейшем одно из главных достижений механики Гюйгенса. Вот как сам он вспоминал об этом: «Когда я был еще почти мальчиком, ученейший муж Мерсенн задал мне и многим другим задачу — определить центр качаний... Мерсенн поставил мне задачу нахождения центров качания круговых секторов, подвешенных или в центре, или в середине дуги и могущих совершать боковые качания... При этом Мерсенн назначил большую, вызывающую зависть премию, если я решу задачу. Однако он тогда ни от кого не получил того, что требовал» [15, с. 119].

Решение задачи о центре качаний Гюйгенс смог получить лишь спустя 20 лет, а пока он заканчивает учебу в Лейденском университете (1645—1647), затем еще два года проводит в только что организованной «Оранской коллегии» в Бреде (где его отец был одним из трех кураторов), все более убеждаясь при этом, что его истинным призванием являются естественные науки. Поэтому после окончания учебы Христиан решает не следовать семейной традиции в выборе профессии и вместо дипломатической карьеры полностью посвятить себя изучению природы. Впрочем, со смертью Вильгельма II в 1650 г. и с приходом к власти противников дома Оранских, партии крупной буржуазии, возможность дипломатической карьеры для Гюйгенса сильно уменьшилась. Как бы то ни было, Христиан возвращается в дом своих родителей в Гаагу, где проводит все последующие 16 лет (1650—1666), за исключением трех поездок в Лондон и Париж. Для его творчества эти годы оказались наиболее плодотворными.

Общеизвестно, что большое влияние на молодого Гюйгенса оказали философия и математика Декарта. Со слов отца, который преклонялся перед Декартом, Христиан впервые узнал о представлениях великого француза, а впоследствии он внимательно проштудировал его опубликованные труды. «Когда я читал „Начала" в первый раз, мне казалось, что все идет наилучшим в мире образом, и когда встречались затруднения, я обвинял себя в том, что плохо понимаю его некоторые мысли. Мне было только 15—16 лет», — писал он спустя много лет.

Декарт, находясь в постоянном общении с Константином Гюйгенсом и Мерсенном, был прекрасно осведомлен о талантах молодого Гюйгенса и пророчил ему блестящее будущее. Начало научной деятельности Гюйгенса совпало со смертью Декарта — стремясь избежать волнений, вызванных все усиливавшейся активностью противников картезианства в Голландии, Декарт принял предложение королевы Христины и переехал в Швецию, однако суровый климат Стокгольма оказался губительным для него, и вскоре после приезда в Швецию 11 февраля 1650 г. он умер от воспаления легких. Гюйгенс откликнулся на его смерть взволнованными стихами:

Душа, которая в столь мудрости великой

Являла разуму сокрытое от глаз,

Создав миров картины разноликих,

Ушла, покинув мир земной и нас.

Декарт... Природою он первый был оплакан,

В своем отчаяньи склонившейся пред ним.

В последний час угас священный факел,

Но ярче вспыхнул свет идей, рожденных им [14, с. 48].

Многое восприняв от Декарта, Гюйгенс в главных своих методах оставался верен античным традициям. Недаром так часто историки науки подчеркивают его связь с Архимедом, труды которого он увлеченно изучал и логике которого стремился следовать. Мерсенн был, по-видимому, первым, кто соединил эти два имени, когда в начале 1647 г. написал Гюйгенсу: «Я молю Бога, мсье, хранить Вас весь этот год в превосходном здравии, а также чтобы Вы стали Аполлонием и Архимедом наших дней или даже грядущего века» [16, с. 34].

Первые работы Гюйгенса продолжали исследования Архимеда. Имеются в виду его работы «О квадратуре круга» и работы по гидростатике, которые в 1650 г. были сведены в рукопись под названием «О плавающих телах». В ней Гюйгенс основывается на утверждении, что механическая система находится в равновесии, если центр тяжести занимает наинизшее из всех возможных положений. В этой работе закон Архимеда не постулируется, а выводится из приведенного выше утверждения, а также доказывается, что плавающее тело находится в равновесии, если расстояние между центром тяжести всего тела и центром тяжести части, погруженной в воду, минимально. Затем Гюйгенс определяет условия плавания тел вращения в вертикальном положении, а также центр тяжести различных фигур — косо срезанных параболоидов вращения, конусов и цилиндров.

После гидростатики Гюйгенс продолжает свои исследования по механике и в 1652 г. обращается к теории удара. Начало этим работам было положено в результате размышлений над теорией удара Декарта. Если раньше ему казалось, что непонятность некоторых мест у Декарта обусловливается его собственным незнанием, то теперь он подходил к этому критически, и естественно, что декартовы правила соударения его не удовлетворили, поскольку они не согласовывались с опытом. Результаты исследований были представлены в рукописном трактате 1656 г., называвшемся «О движении тел под действием удара», который при жизни Гюйгенса не был опубликован и появился лишь в 1703 г. в сборнике его посмертных трудов. Тем не менее его теория удара стала хорошо известна при его жизни, так как в 1668 г. наиболее важные теоремы он представил Королевскому обществу, а в следующем году опубликовал их без доказательства в «Journal des Scavans». Мерой движения у Декарта была характеристика, пропорциональная величине тела и абсолютной величине его скорости. Выражаясь современным языком, можно сказать, что количество движения понималось им как m|v|. Гюйгенс в противоположность Декарту утверждал, что понимаемое в таком смысле количество движения не сохраняется. Об этом он ясно пишет в Предложении VI: «Когда два тела соударяются, то не всегда сохраняется количество движения, бывшее в обоих до удара, оно может уменьшиться или увеличиться» [15, с. 223].

Но если количество движения понимать как mv(→),

то имеет место закон сохранения, который Гюйгенс позднее формулирует следующим образом: «Количество движения, которое имеют два тела, может увеличиваться или уменьшаться при столкновении; но его величина остается постоянной в ту же сторону [в том же направлении], если мы вычтем количество движения обрат-го направления» [15, с. 366]. Затем этот принцип получает у него другую, ныне общеизвестную формулировку: «Кроме того, я заметил удивительный закон природы, который я могу доказать для сферических тел и который, по-видимому, справедлив и для всех других тел, твердых и мягких, при прямом и при косом ударе: общий центр тяжести двух или трех или скольких угодно тел продолжает двигаться равномерно в ту же сторону по прямой линии как до, так и после удара» [15, с. 366].

В рукописи первая формулировка дается в расплывчатой форме Предложения VI, а вторая и вовсе отсутствует; по-видимому, Гюйгенс не решался провозгласить векторную величину mv(→) истинной мерой количества движения и ограничился, если можно так сказать, полумерой. Поэтому его изложение проблемы удара по сравнению с современным вывернуто наизнанку, хотя, наверно, такой путь более оправдан интуитивно, т. е. он сначала доказывает специальный случай столкновения (Предложение VIII), затем распространяет его с помощью принципа относительности на общий случай и лишь потом, как следствие этого общего закона удара, получает некоторые законы сохранения. Сегодня мы поступаем в точности наоборот: а именно, законы удара выводятся из аксиоматических законов сохранения.

Трактат Гюйгенса «О движении тел под действием удара» состоит из пяти гипотез, тринадцати предложений и двух лемм. Гипотеза I представляет собой закон инерции: «Тело, приведенное в движение, при отсутствии противодействия продолжает свое движение неизменно с той же скоростью и по прямой линии».

Гипотеза II говорит о том, что мы имеем дело с абсолютно упругим ударом: «Если два одинаковых тела, движущихся с одинаковой скоростью навстречу друг другу, сталкиваются прямым ударом, то каждое из них отскакивает назад с той же скоростью, с какой ударилось».

Гипотеза III гласит: «Движение тел, а также их одинаковые или разные скорости надо рассматривать как относительные по отношению к другим телам, которые мы считаем покоящимися, не учитывая того, что как те, так и другие тела могут участвовать в другом, общем движении. Поэтому два тела, соударяясь, даже в случае, если оба вместе участвуют еще в другом равномерном движении, для лица, также участвующего в общем движении, действуют друг на друга так, как будто бы этого общего движения не существовало» [15, с. 213—214].

Это утверждение Гюйгенса является первой явной формулировкой принципа относительности, который в современной физике называют принципом Галилея. Оно означает, в частности, что если два тела А и В имеют до соударения скорости vA и vB, а после соударения uA и uB, то те же самые тела со скоростями uA + v и uB + v до соударения, после него приобретут скорости uA + v и uB + v соответственно. Аксиома, выраженная гипотезой III,— центральная в трактате, она отражает тот факт, что результаты анализа движения в некоторой системе отсчета не зависят от того, движется ли эта система или нет.

В Предложении VIII рассматривается случай, когда тела, движущиеся навстречу друг другу, имеют массы, обратно пропорциональные их скоростям. Гюйгенс говорит, что тогда, если mA: mB= vB : vA, тела после соударения просто оттолкнутся друг от друга с первоначальными скоростями, т. е. uА= -vА и uB= -vB. Чтобы доказать это утверждение, Гюйгенс пользуется еще двумя гипотезами.

«Гипотеза IV: Если большее тело соударяется с меньшим, находящимся в покое, то оно сообщает последнему некоторое движение и, следовательно, теряет несколько в своем движении». Из этой гипотезы следует опровержение четвертого правила удара Декарта, вызывавшего наибольшие возражения: «Любое большое тело приводится в движение любым малым телом при любой скорости малого тела».

«Гипотеза V: Если при соударении двух твердых движущихся навстречу друг другу тел обнаруживается, что одно из них сохранило все движение, то и другое не выигрывает и не теряет ничего в движении» [15, с. 219].

Строго говоря, Гюйгенс нигде в своих рассуждениях не пользуется понятием массы, вместо этого он говорит «величина тела». Правда, позднее он отождествлял величину тела с его весом: «При всем этом (т. е. при всех этих правилах) я рассматриваю тела из одного и того же вещества или же принимаю, что величина тел определяется их весом» [15, с. 367]. Поскольку вес пропорционален массе, все рассуждения Гюйгенса оказываются правильными и допускают модернизованную интерпретацию, использующую это понятие.

В процессе доказательства Гюйгенс пользуется еще одним важным соображением, а именно что центр тяжести механической системы может в своем движении подняться лишь на ту высоту, на которой он первоначально находился. После того как Предложение VIII доказано, он обобщает его для любого упругого столкновения в Предложении IX, которое дает правило вычисления скоростей тел после соударения (рассматривается прямой удар). Его результат эквивалентен хорошо известным сегодня формулам


Наконец, он выводит из этого общего правила удара утверждение, что сумма произведений величин тел на квадраты их скоростей остается неизменной до и после удара. У него эта величина еще не имеет названия, спустя почти 50 лет Лейбниц назовет ее «живой силой», а по прошествии еще нескольких десятилетий положение, высказанное Гюйгенсом, утвердится в качестве одного из фундаментальных законов сохранения.

6

Первые годы после учебы, проведенные Гюйгенсом в Гааге, обнаруживают широту интересов молодого ученого — математика, механика, оптика, астрономия — все интересует его, и всем он пытается заниматься. Одним из первых практических увлечений Гюйгенса было искусство изготовления оптических линз, это увлечение разделял с Христианом его старший брат Константин, и вскоре братья достигли в изготовлении линз большого совершенства. Одновременно с практическими занятиями его привлекают и теоретические вопросы, относящиеся к оптике и конструкции оптических приборов. Уже в 1653 г. у него готов «Трактат о преломлении и телескопе», в котором он рассматривает закон преломления, определение фокусов у линз, а также показателей преломления, а кроме того, обсуждает строение глаза, форму линз для очков и конструкции телескопа.

Успехи, достигнутые Гюйгенсом в искусстве шлифования линз (а линзы, изготавливаемые в лаборатории Христиана и Константина, славились не только в Голландии, но и за ее пределами), и прекрасное владение геометрической оптикой позволили ему построить в начале 1655 г. 12-футовый телескоп, который, по-видимому, тогда был лучшим в Европе, несмотря на то что это был первый телескоп, сделанный его руками. С помощью этого телескопа в марте того же 1655 года Христиан Гюйгенс открыл спутник Сатурна, названный позднее Титаном. Он определил период его обращения вокруг планеты, который оказался равным 16 дням и 4 часам, а также заметил, что плоскость орбиты спутника совпадает с плоскостью, в которой расположены «придатки», или «ручки», Сатурна. Странная форма Сатурна была загадкой для астрономов с тех пор, как Галилей сделал это открытие.

Как писал сам Галилей, «это открытие состоит в том, что звезда Сатурна не является одной только, но состоит из 3, которые как бы касаются друг друга, но между собой не движутся и не меняются; они расположены рядом по длине зодиака, причем средняя из них примерно в 3 раза больше, чем две боковые; и они расположены в такой форме oOo » [17, I, с. 594]. Сатурн в виде вазы с ручками наблюдали после Галилея многие, в том числе Кристоф Клавий, и теперь Гюйгенсу предстояло дать тому объяснение.

Гюйгенс начал с того, что предположил, что Сатурн окружен кольцом, и доказательство этой гипотезы он основывал на картезианском представлении о космических вихрях. Согласно Декарту, частицы небесной материи, находящиеся ближе к центру вихря, имеют период обращения меньший, чем период обращения частиц, находящихся дальше от него [7, с. 185—186]. Это положение согласуется с тем фактом, что период собственного вращения планет является много меньшим, чем периоды их сателлитов, причем периоды внутренних спутников меньше, чем внешних. Примером могут служить Солнце и планеты, Земля и Луна, Юпитер и его спутники. Поэтому частицы небесной материи, прилегающие к Сатурну, должны иметь такой же период обращения, что и сама планета, а следовательно, много меньше 16 дней, т. е. периода спутника. Но, наблюдая много месяцев за Сатурном, Гюйгенс не заметил никаких изменений в положении «ручек», поэтому он решил, что материя, их составляющая, должна быть равномерно распределена вокруг Сатурна симметрична его оси (оси вихря), т. е. «ручки» есть след кольца, окружающего Сатурн.

В феврале 1656 г. был построен новый, более мощный телескоп, с помощью которого гипотеза Гюйгенса получила впоследствии (в декабре 1657 г.) экспериментальное подтверждение. Результаты своих наблюдений Гюйгенс опубликовал в книге под названием «О спутнике Сатурна новое наблюдение», где по примеру Галилея и Кеплера зашифровал свое открытие с помощью анаграммы:

а7 с5 d1 e5 g1 h1 i7 l4 m2 n9 o4 p2 q1 r2 s1 t5 u5.

Разгадка заключалась в фразе: «(Saturrms) cignitur annulo tenui, piano, nusquam cohaerente, ad eclipticam inclinato» — «Сатурн окружен тонким плоским кольцом, нигде не прикрепленным и наклоненным к эклиптике». Через несколько лет Гюйгенс опубликовал полное изложение своих наблюдений вместе с их объяснением и множеством других сведений относительно планет и их спутников, которые представляли существенные данные в поддержку теории Коперника.

Занятия астрономией не помешали Гюйгенсу совершить свое первое путешествие во Францию, где он провел вторую половину 1655 г. За это время он наладил связи с французскими учеными, что было для него особенно существенно, ибо после смерти Мерсенна в 1648 г. контакты с Францией стали резко ослабевать. Он познакомился с Гассенди, многие идеи которого разделял (например, он признавал существование пустоты и реальность атомов), Робервалем, парижским астрономом Исмаэлем Буйо и многими другими. Во Франции он формально закончил свое образование, сдав в университете Анжера экзамены на степень доктора права. Впрочем, его юридическое образование так й осталось данью семейной традиции — Гюйгенс никогда его и не пытался применить на практике.

Гюйгенса многое роднит с Галилеем; различные по темпераменту, они были сходны по научным пристрастиям: оба преклонялись перед Архимедом и считали его примером для подражания. Даже детство у них было похожим — оба воспитывались в обстановке любви к искусству, причем и для Галилея, и для Гюйгенса музыка была той атмосферой, в которой они росли. Галилей был безразличен к религии, а для Гюйгенса это характерно в еще большей степени. «Когда в 1660 г. иезуитский математик патер Такэ попытался совратить его в католицизм, то Гюйгенс написал ему, что все это далеко отстоит от очевидности геометрических доказательств» [18, с. 127]. Многие проблемы, которые пытался решить Галилей, представляли собой предмет исследований Гюйгенса. Таковой была работа о кольце Сатурна, а в 1656 г. он занялся проблемой, которая интересовала Галилея в конце его жизни, а именно использованием маятника в качестве регулятора хода часов. Изохронизм колебаний маятника был открыт Галилеем еще в юности, но лишь в 1641 г. он решил использовать его в часах. В следующем году Галилей умер, и работу продолжил его сын Винченцо. Нам не известно, удалось ли Винченцо довести дело до конца, но существуют веские доказательства, что маятниковые часы были построены учеником Галилея Вивиани — это следует из описи его наследства и сохранившегося рисунка [19, с. 91].

Для морской державы, какой была Голландия, особенно остро чувствовалась необходимость в надежном способе определения долготы на море, что можно было бы осуществить, имея надежные часы. В свою очередь, для создания маятниковых часов нужно было решить две главные проблемы: сделать колебания маятника изохронными (что приближенно справедливо только при малых амплитудах) и найти способ передачи равномерного хода от маятника к остальному механизму часов. Первая задача была решена Гюйгенсом позднее, важно было решить сначала вторую задачу. Он сделал это в 1657 г., придумав так называемый анкерный спуск, который с той поры повсеместно используется в часах. У Галилея был так называемый крючковый спуск, устройство значительно менее надежное — не известно, ходили ли в действительности часы, построенные по галилеевскому принципу, или нет. Гюйгенс же изготовил в том же 1657 г. часы с применением анкерного спуска и получил на них патент от Генеральных штатов, которые гарантировали ему привилегию в течение 21 года. Он описал их устройство в небольшой книге под названием «Часы» (не следует путать с «Маятниковыми часами», написанными позже), изданной в Гааге в 1658 г. Изобретение имело большой успех, и вскоре были построены первые башенные часы с маятником, установленные в Схевенингене близ Гааги и в Утрехте.

После 1658 г. Гюйгенс продолжает заниматься теорией часов с маятником, пытаясь решить проблему изохронности. После года напряженной работы ему удалось показать, что период маятника будет совершенно независим от амплитуды, если его груз будет двигаться не по окружности, а по циклоиде. Теперь задача состояла в том, как такое движение осуществить. Наиболее естественным решением было как-то ограничить движение маятника с помощью «щек», установленных вблизи точки повеса. Тогда задача видоизменялась: необходимо было найти соответствующую форму «щек». Этот вопрос привел Гюйгенса к разработке математической теории эволют.

Рассмотрим нить постоянной длины, которая разматывается с выпуклой кривой а. Конец этой нити будет описывать некоторую кривую b, которая называется эвольвентой. Соответственно первая кривая a называется эволютой. Следовательно, задача о форме «щек» сводилась к построению эволюты к эвольвенте, являющейся циклоидой. Гюйгенсу удалось найти общий метод построения эволюты к кривой по ее алгебраическому уравнению. Оказалось, что эволютой циклоиды будет также циклоида, это решение определило форму «щек», а размер их определялся длиной маятника. В дальнейшем проблема зависимости периода маятника от его длины и связанная с этим теория центра качаний становится одной из центральных в творчестве Гюйгенса, но решение ее будет дано лишь спустя 13 лет в книге «Маятниковые часы». Промежуток времени, отделяющий «Часы» от «Маятниковых часов», наполнен множеством важных событий в его жизни — это период путешествий, новых знакомств и занятий, время, когда достижения Гюйгенса получают официальное признание, а он сам становится членом двух только что организованных крупнейших научных академий Европы.

Во второй половине XVII в. в научной жизни Европы происходят важные изменения вследствие того, что ученые начинают все больше ощущать давление государства и его вмешательство в их деятельность. Сам факт такого вмешательства наряду с отрицательными моментами имел и положительный, а именно начавшуюся институционализацию науки и связанное с ней улучшение научных связей, равно как и распространение научной информации. Мы видим также повсеместное увеличение числа людей, занимающихся научными исследованиями. Несмотря на то что во Франции спустя лишь 20 лет после смерти Декарта его сочинения были включены в Индекс запрещенных книг, а его философия подвергалась жестоким гонениям со стороны иезуитов, картезианство как философская система и как картина мира получило широчайшее распространение. Вместе с изменениями, произошедшими в жизни европейского общества, изменился и стиль мышления, в первую очередь ученых.

Одной из характерных черт этого сдвига была ощущаемая всеми потребность если не коллективной работы, то коллективного обсуждения научных проблем, причем регулярного обсуждения. Она реализовывалась и раньше в научных кружках, разбросанных по всей Франции, но все-таки занятия таких кружков носили отпечаток дилетантства. Теперь все более ощущалась потребность профессионализма, пусть еще не скоро достижимого, но цели мало-помалу определялись и направление процесса было всем очевидно. Подчеркнем, что процесс этот был общеевропейским, хотя наиболее внушительные результаты были достигнуты в Англии и отчасти во Франции.

Первой ласточкой нового движения было создание во Флоренции Академии опытов (Accademia del Cimento), которая по примеру Академии деи Линчей (Accademia dei Lincei) (распавшейся в 1630 г. после смерти ее организатора и покровителя князя Федерико Чези) замышлялась для пропаганды науки и «должна была способствовать расширению познаний в области физики путем коллективной деятельности своих членов, следуя методу, установленному Галилеем, на работы которого она опиралась» [19, с. 110]. Хотя Академия опытов просуществовала всего десять лет, ее деятельность стала вдохновляющим примером для других стран Европы. Результаты работ Академии были опубликованы в 1667 г. под заглавием «Очерки о естественнонаучной деятельности Академии опытов».

Часы, построенные Гюйгенсом

В Англии знаменитое Лондонское королевское общество возникло из частного кружка, с 1645 г. регулярно проводившего свои собрания в доме одного из членов, а с 1659 г. ― в Лондонском Грешэм-колледже. Членами этого «невидимого колледжа», как называл свой кружок один из его организаторов Роберт Бойль, были многие выдающиеся английские ученые, в том числе (кроме Бойля) Кристофер Рен, Джон Валлис, Вильям Нейл и Вильям Броункер. В 1660 г. частный кружок, получив поддержку и покровительство только что вступившего на престол Карла II, был преобразован в «Лондонское королевское общество для развития знаний о природе» — Royal Society of London for Improving Natural Knowledge.

Организация Общества была четко продумана. Прежде всего Общество стремилось (хотя и под покровительством короля) к независимости. Финансовая независимость определялась тем, что каждый член Общества платил вступительный взнос в полфунта стерлингов и еженедельный взнос в один шиллинг. Для того времени это были немалые деньги, особенно если учесть, что число членов в первый год существования Общества приближалось к сотне, а спустя десятилетие оно возросло вдвое (для сравнения заметим, что стипендия кембриджских аспирантов равнялась 4 фунтам в год [20, с. 100]. С другой стороны, независимость членов Общества определялась тем, что каждый мог свободно избирать тему и предмет своего исследования — они не диктовались ни уставом Общества, ни его патроном, королем. Общество декларировало лишь общие методы и цели исследований, и в этом смысле оно находилось под сильнейшим влиянием идей Бэкона, недаром на гравюре, открывающей первую книгу об истории Общества, написанную Томасом Спретом в 1667 г., мы видим символическую картину, на которой изображены король Карл II, президент Общества Броункер и Фрэнсис Бэкон.

В 1662 г. куратором Общества был назначен Роберт Гук, который выдвинул свою программу деятельности Общества, направленную на экспериментирование и практическое использование результатов научных исследований. Гук прежде всего указывал, что Общество не желает касаться метафизических, богословских и политических проблем, а его деятельность должна иметь своей целью усовершенствование и изобретение машин, механизмов и аппаратов, а также возрождение древних секретов, касающихся различных полезных вещей. Поэтому членами Общества могут быть не только ученые, но также и торговцы, моряки и ремесленники. Особенно подчеркивалась важность участия ремесленников. В значительной мере эти требования остались лишь пожеланиями, ибо в первые несколько лет существования Общества лишь одна десятая исследований была посвящена техническим приложениям, а в последующие годы и того меньше.

Работа Общества проходила в форме заседаний, на которых заслушивались и обсуждались работы его членов, причем все это проходило в обстановке полной свободы высказываний и уважения друг к другу. Вскоре Королевское общество завоевало во всем мире прочный авторитет, а что до самой Англии, то достаточно сказать, что уже в первые годы существования Общества практически все мало-мальски значительные ученые были его членами.

В деятельности Общества весьма важным было то обстоятельство, что начиная с 1664 г. стали регулярно печататься его труды «Philosophical Transactions», т. е. отчеты о работах, представленных на заседаниях, и их обсуждение, а также сообщения о различных научных работах и открытиях.

Philosophical Transactions

На французов, побывавших в Англии, деятельность Общества производила сильное впечатление — таковы, например, свидетельства Сорбиера [1, с. 269], но уже и в самой Франции давно шел тот же процесс институционализации науки. Небольшому кружку в Оксфорде и Лондоне соответствовало во Франции множество аналогичных кружков, обществ и «академий». С другой стороны, и государство уже сделало первые шаги в этом направлении, создав еще во времена Ришелье Французскую академию (1635), обязанности членов которой ограничивались лишь гуманитарной областью, а именно составлением словаря французского языка. При Кольбере, в царствование Людовика XIV, существование Академии рассматривалось как средство пропаганды идей абсолютизма, а также как средство контроля и управления научной деятельностью. Однако она не удовлетворяла в должной мере ни одному из этих требований. Работы по составлению словаря не продвигались должным образом, так как в Академии было немало людей, не имевших к этой работе ни склонностей, ни достаточной квалификации, а управление наукой не могло осуществляться, поскольку в Академии занимались лишь одной филологией. Тогда умный Кольбер решил вмешаться и исправить дело: ограничить функции Французской академии составлением словаря, а наряду с ней учредить «малую Академию» (ее задачей была пропаганда и прославление абсолютизма) и Академию наук, созданную по образцу флорентийской Академии опытов и Лондонского королевского общества.

Академия наук в Париже, как и Королевское общество в Лондоне, возникла, естественно, не на пустом месте. В начале 50-х годов XVII в. после распада Пюитанской академии и смерти Мерсенна научная жизнь столицы начала концентрироваться вокруг группы ученых, собиравшихся в доме Абера Монмора, высокопоставленного судебного чиновника. В эту группу входили многие члены кружка Мерсенна: Гассенди, Сорбиер, Робер-валь, Мариотт и др. Когда в 1666 г. Кольбер объявил об учреждении Академии наук, это было официальным признанием научного сообщества, существовавшего уже много лет — ее членами стали те самые люди, которые входили в кружок Мерсенна, а затем собирались еженедельно в доме Монмора (отметим, что король стал патроном Академии несколько позже — в 1669 г.). В отличие от Лондонского королевского общества работа Академии наук со дня ее основания определялась и направлялась государством. Ее члены получали государственную пенсию, и результаты их исследований оценивались по непосредственной пользе для промышленности и торговли. Примером этому может служить проблема определения долготы на море, а также составление карты Франции. Академия не имела и своего печатного органа, в котором бы публиковались результаты исследований, проводимых ее членами, как это было в Англии. «Journal des Sgavans» был основан в январе 1665 г., незадолго до учреждения Академии, парижским юристом, никак с ней не связанным. К тому же характер публикаций в журнале отличался от содержания «Philosophical Transactions» — он не отражал деятельность Академии, а состоял в основном из рецензий на выходящие книги, которые, впрочем, были написаны изящно и толково, что обеспечило журналу большую популярность во всей Европе.

Несмотря на эти отличия, Парижская академия наук выполняла по существу те же функции, что Лондонское общество. Интересно отметить, что инструкции Кольбера почти дословно повторяли программу Гука — члены Академии не должны были никогда говорить «на заседаниях ни о религиозных таинствах, ни о государственных делах. И если иногда и говорится о метафизике, морали, истории или грамматике, пусть даже мимоходом, то лишь в той мере, в какой это относится к физике и к отношениям между людьми» [19, с. 110].

Journal des Sgavans

В 1660 г. Гюйгенс отправляется в большое путешествие по Европе; он побывал в Антверпене, Брюсселе, Амстердаме и дважды в Лондоне и Париже. Еще в первый свой приезд в Париж в 1655 г. он познакомился с некоторыми из будущих членов Французской академии, теперь он возобновил старые знакомства и завел новые. В Париже он становится желанным гостем кружка герцога де Монмора, встречается с Сорбиером, Каркави, Дезаргом, Роо и Паскалем. Слава Гюйгенса настолько велика, что с ним желает познакомиться сам король — сначала ему дают аудиенцию Анна Австрийская и королева Мария-Тереза, а затем и сам Людовик XIV. Перед отъездом в Англию его принимает английская королева, жившая в то время во Франции. Не менее радушным был прием, оказанный Гюйгенсу на Британских островах, там он участвует в собраниях «невидимого колледжа»— будущего Королевского общества, где на него особенно большое впечатление произвели опыты Бойля с воздушным насосом, и когда Гюйгенс в мае 1661 г. возвратился на родину, работы, связанные с проблемой пустоты, привлекают его пристальное внимание.

7

За исключением телескопа, ни одно научное открытие не вызывало столько любопытства и удивления, как эксперименты с барометром и воздушными насосами. Некоторые намеки на то, что воздух имеет вес, можно обнаружить еще в трудах Аристотеля и Платона, но до Галилея и Торричелли вопрос оставался открытым. Этот вопрос был тесно связан с проблемой существования пустоты. Многие ученые от Аристотеля до Декарта полагали, что пустоты не существует в природе, что «боязнь пустоты» («horror vacui») свойственна природе, как если бы она была наделена способностью чувствовать. Даже Галилей не был вполне свободен от этого представления: он был удивлен, когда узнал, что поршневой насос не может поднять воду на высоту, превышающую 18 локтей, и следовательно, пустота, образующаяся под поршнем, не заполняется после достижения этого предела.

Таким образом, уже Галилею было известно, что «боязнь пустоты» ограничена, причем пределы ограничения определяются высотой подъема жидкости. Кроме того, он хорошо знал, что воздух имеет вес, и считал, что его плотность приблизительно в 400 раз меньше, чем плотность воды. Установить взаимосвязь между этими двумя фактами удалось уже ученику Галилея — Торричелли.

Эванджелиста Торричелли (1608—1647) — один из наиболее выдающихся итальянских ученых первой половины XVII в. Он представлял собой уже второе поколение учеников Галилея — Торричелли изучал математику под руководством ученика Галилея Бенедетто Кастелли — и стал впоследствии профессором математики Римского университета. Кастелли познакомил Галилея с трактатом Торричелли «О движении свободно падающих и брошенных тяжелых тел». Потом Торричелли было предложено переехать к Галилею в Арчетри в качестве помощника. Он согласился, и его общество скрасило последние дни слепого ученого — Галилей умер три месяца спустя «на руках своих учеников, Вивиани и Торричелли», который стал его преемником на посту придворного математика великого герцога Тосканского.

Знаменитый опыт Торричелли по обнаружению атмосферного давления был поставлен по его поручению Вивиани в 1643 г. с целью обнаружить величину «сопротивления образования пустоты», о которой говорил Галилей. Он не был опубликован, однако в письме своему другу Микеланджело Риччи Торричелли его подробно описывает [19, с. 97]. Стеклянную трубку, длиной около метра, запаянную с одного конца, наполняют ртутью и погружают открытым концом вниз в чашу со ртутью, при этом ртуть в трубке опустится, остановившись на уровне «в один локоть с четвертью и еще палец». Торричелли так объясняет полученный им результат: «До сих пор думали, что эта сила, которая удерживает живое серебро [ртуть] от его естественного стремления упасть вниз, обусловлена сосудом, или пустотой, или некоей весьма разреженной субстанцией, но я утверждаю, что она внешняя, что сила приходит извне. На поверхность жидкости в чашке давит тяжесть 50 миль воздуха... В такой же трубке, но значительно более длинной вода поднимается на высоту 18 локтей, т. е. во столько раз выше ртути, во сколько раз ртуть тяжелее воды, для того чтобы уравновесить ту же самую причину, оказывающую давление и в том, и в другом случае» [19, с. 97-98].

Интересно отметить, что Торричелли в это время был поглощен математическими исследованиями циклоиды (которой вскоре заинтересуется Гюйгенс), поэтому он не позаботился о публикации своего поразительного эксперимента. Но тем не менее его опыт стал известен всей Европе благодаря Мерсенну: в 1644 г. Риччи написал ему о нем, и вскоре сообщение о результатах Торричелли стало сенсацией в кругу французских ученых, особенно оно заинтересовало Паскаля.

ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ

Паскаль рассудил, что если столб ртути удерживается просто давлением воздуха, то этот столб должен быть меньше на возвышенных местах. Он пытался это проверить, проводя эксперименты на парижских колокольнях, но для ощутимого результата разница высот была слишком мала. Поэтому он написал своему деверю, чтобы тот проделал этот опыт на Пюи де Дом, самой высокой горе в Оверни, Получилась разница в три дюйма для величины столба ртути у подножья горы и на ее вершине. Паскаль повторил эксперимент Торричелли со стеклянной трубкой длиной 46 футов, наполненной красным вином (очевидно, стеклянные трубки для вина было легче достать). Кроме того, была показано, что пузырь, наполненный воздухом, раздувался на вершине горы и сжимался у ее подножья.

Среди замечательных ученых и мыслителей XVII в. имя Блеза Паскаля (1623—1662) занимает особое место. Слабый и болезненный от рождения, фанатически приверженный идеям религиозного аскетизма, Паскаль лишь малую часть своей короткой жизни посвятил науке, однако то, чего ему удалось достигнуть в математике и физике, создало ему славу одного из гениальных предшественников современного естествознания.

Паскаль родился в маленьком городке Клермон-Ферране на юге Франции. Его отец был президентом податной палаты и довольно известным математиком-любителем (одна из замечательных математических кривых — «улитка Паскаля» названа так в честь Паскаля-отца). В 1631 г. семья переселилась в Париж, где дом Паскаля стал местом собраний кружка выдающихся ученых и мыслителей, из которого вскоре образовалась Парижская академия наук.

БЛЕЗ ПАСКАЛЬ

Блез Паскаль рос необычайно одаренным мальчиком — первое его научное сочинение о свойствах звука было написано, когда ему едва исполнилось 12 лет. Образование он получил дома под руководством отца, немалую роль сыграло тут и общение с такими выдающимися умами Франции, как Мерсенн, Роберваль и Каркави. В возрасте 16 лет он доказывает так называемую теорему Паскаля о шестиугольнике, вписанном в коническое сечение, которая была опубликована в 1641 г. и оказала заметное влияние на развитие современной геометрии.

Другим выдающимся достижением Паскаля в геометрии были исследования, относящиеся к циклоиде. Продолжением этих работ были исследования по интегрированию и исчислению бесконечно малых. Паскаль шел по стопам знаменитого итальянского математика Кавальери; он расширил и углубил его исследования, связав метод неделимых, изобретенный Кавальери, с суммированием рядов. Впоследствии великий Лейбниц признавался, что использовал работы Паскаля при создании дифференциального и интегрального исчисления.

В 19 лет Паскаль изобрел счетную машину, и в 1645 г. им было опубликовано подробное описание устройства этой машины, предназначенной для воспроизводства четырех арифметических действий. В последующее десятилетие им был изобретен «арифметический треугольник», образуемый биномиальными коэффициентами и имеющий применение в теории вероятностей. Трактат об этом треугольнике был написан Паскалем в 1645 г., однако опубликован лишь после его смерти. В частности, в этом трактате впервые был применен для доказательства метод полной индукции, нашедший в дальнейшем широкое применение в математике. Начиная с 1647 г. Паскаль в течение шести лет занимался физическими исследованиями, повторив барометрические опыты Торричелли. В дальнейшем Паскаль показал, что с помощью барометра можно производить измерение высот, а также он открыл существование связи между показаниями барометра и изменением погоды. Главным достижением Паскаля в физике было открытие основного закона гидростатики, известного ныне как закон Паскаля. Эти замечательные результаты были им изложены в двух работах — «Трактате о тяжести воздуха» (1653) и «Трактате о равновесии жидкостей» (1653), которые были опубликованы лишь после его смерти, в 1663 г.

После 1653 г. Паскаль окончательно порывает с занятиями наукой и удаляется в монастырь янсенистов в Пор-Рояле, целиком посвятив себя религии. Принятию такого решения способствовало крайнее неустойчивое психическое состояние, вызванное изнурительной работой, смертью горячо любимого отца (1651) и любовной неудачей. В 1657 г. появились знаменитые «Письма к провинциалу» — религиозный памфлет, направленный против иезуитов, сыгравший выдающуюся роль в борьбе против иезуитов во Франции. После смерти Паскаля были изданы «Мысли», составившие ему славу одного из выдающихся писателей Франции.

В коротком «Трактате о равновесии жидкостей» Паскаль провозгласил закон, гласящий, что давление, оказываемое на жидкость, передается во все стороны равномерно и равно одной и той же силе, действующей перпендикулярно по отношению к площадкам равной площади. С помощью опытов он показал, что давление жидкости на поверхность зависит только от высоты столба жидкости. Несколько сосудов различной формы имели подвижное дно одинаковой площади, которое, как поршень, входило в их нижнюю часть. Дно удерживалось нитью, один конец которой прикреплялся к нему, проходя внутри сосуда, а к другому концу, перекинутому через блок, подвешивался груз. Дно опускалось, когда высота столба воды достигала определенной, одинаковой для всех сосудов, высоты. Паскаль брал также два поршня, запирающие жидкость в замкнутом сосуде, так что площадь поверхности одного была в 100 раз больше площади поверхности другого. Сила одного человека, действующая на первый поршень, уравновешивала силу 100 человек, действующую на второй поршень. «Таким образом, из этого следовало, что сосуды заполненные жидкостью, представляют собой новый принцип механики и новую машину для умножения усилий во сколько угодно раз» {21, III, с. 85].

Доктрина «боязни пустоты» была преодолена благодаря экспериментальным исследованиям во Франции и Италии. Затем они были продолжены в Германии, где изучением проблемы вакуума занялся Отто фон Герике.

Герике (1602—1686) происходил из знатной магдебургской семьи. Он учился в немецких университетах, а также в Лейдене, а затем путешествовал по Англии и Франции. Во время Тридцатилетней войны Магдебург в 1631 г. был разграблен, и Герике со своей семьей едва спасся. Впоследствии он зарабатывал себе на жизнь как инженер в армии Густава-Адольфа. В 1646 г. он стал бургомистром Магдебурга.

Спор относительно вакуума навел его на мысль проверить факты экспериментально. Он говорил, что «красноречие, элегантность выражений и искусство спора ничего не создадут в области естественных наук». В 1663 г. он закончил написание своей книги «О пустом пространстве», которая была напечатана лишь в 1672 г.

Сначала для опытов Герике взял винный бочонок, наполненный водой, и попытался выкачать жидкость с помощью бронзового насоса, приделанного к низу бочонка. Однако обручи и железные винты, крепящие насос к бочонку, пропускали воздух. После того как крепления были сделаны более тщательно, трое сильных мужчин, тянувших за поршень, наконец, добились того> что вода пошла из бочонка. При этом был слышен такой звук, как будто бы оставшаяся жидкость внутри бочонка испытывала бурное кипение, и это продолжалось до тех пор, пока воздух не занял место выкачанной воды.

Затем протекавший деревянный бочонок был заменен медным шаром, воздух и воду начали откачивать, как и прежде. Сначала поршень шел легко, затем двое сильных мужчин едва могли его сдвинуть с места, когда, наконец, «внезапно с громким треском и к ужасу всех присутствующих» шар сплющился. После этого была построена более массивная и геометрически более совершенная сфера. «При открывании запорного крана воздух врывался внутрь шара с такой силой, как будто бы он намеревался втиснуть туда всех, стоящих рядом. Хотя вы и находились на значительном расстоянии, тем не менее у вас перехватывало дыхание и, безусловно, вы не могли протянуть руку над запорным краном без того, чтобы ее не втянуло внутрь» [22, с. 75].

Герике затем изобрел воздушный насос, первая конструкция которого изображена на рисунке. Верхняя часть с запорным краном — съемная, так что испытываемая часть может быть туда подсоединена. Как гарантия того, что воздух не просочится, запорный кран погружался под воду, которая наливалась в конический сосуд. С этим насосом он проводил бесчисленные опыты: у часов, погруженных в вакуум, не было слышно тиканья, пламя угасало, птица широко раскрывала рот и умирала, рыбы погибали, виноград мог сохраняться в вакууме шесть месяцев.

Степень вакуума Герике измерял с помощью водяного барометра — длинной трубки, соединенной с откачиваемым объемом и опущенной снизу в воду. По мере того как из сосуда откачивался воздух, вода в трубке поднималась под действием атмосферного давления. Аналогичный прибор он использовал также и для предсказания погоды.

Наиболее знамениты опыты Герике, обнаруживающие давление воздуха, которые он проводил с различными откаченными сосудами. В одном из таких опытов к поршню, ходившему внутри большого цилиндра, привязывалась веревка, которая перекидывалась через блок, а затем разделялась на концы, за которые могли взяться двадцать или тридцать человек. Как только в цилиндре образовывался вакуум (для чего цилиндр соединялся с заранее откаченным объемом), поршень внезапно уходил вниз под действием атмосферного давления и люди, державшиеся за веревки, срывались со своих мест. При проведении этого эксперимента Герике впервые услышал об опытах Торричелли, поставленных на одиннадцать лет раньше.

ОТТО фон ГЕРИКЕ

Другой знаменитый опыт Герике провел в 1654 г. в Регенсбурге. Это было красочное зрелище, на котором присутствовали император Фердинанд III и депутаты рейхстага. Из сосуда, состоящего из двух плотно пригнанных друг к другу бронзовых полушарий, выкачивался воздух. Затем полушария привязывались к двум лошадиным упряжкам, которые пытались их разъять. Это удалось сделать лишь усилиями шестнадцати лошадей, причем разделение полушарий сопровождалось громовым треском. Это и неудивительно, так как диаметр полусфер составлял около 40 см и, следовательно, при хорошей откачке они сжимались усилием более одной тонны.

Герике сначала и не думал публиковать сообщения о своих опытах, и его книга «О пустом пространстве» была написана «спустя почти десять лет, а опубликована и того позже — в 1672 г. На самом деле книга посвящена главным образом проблемам космологии, а опытом с вакуумом в ней отведена лишь часть третьей главы.

Исследования Герике были продолжены в Англии Бойлем, который узнал о них, по-видимому, из книги Каспара Шотта «Гидравлико-пневматическая механика», опубликованной в 1657 г.

Старший современник Ньютона, Роберт Бойль (1627—1691) внес значительный вклад в развитие естествознания, но в первую очередь надо отметить, что он является основоположником химии как науки. «Химики,— писал он,— руководствовались до сих пор узкими принципами, не глядели на вещи с более высокой точки зрения. Они видели свою задачу в изготовлении лекарств и превращении металлов. Я попытался рассмотреть химию совсем с другой точки зрения — не как врач или алхимик, а как естествоиспытатель» [23, I, с. 194].

Бойль родился в замке Лисмор в Ирландии и воспитывался в привилегированном Итонском колледже. Тем не менее в детстве, как он пишет в своей автобиографии, он привык водить компанию с детьми из простонародья и подражать при этом заиканию одного из своих приятелей. Впоследствии он пытался излечиться от этого приобретенного им недостатка различными способами «столь же усердно, сколь и безуспешно». После обучения в Итонском колледже, в возрасте 12 лет, он отправился вместе со своим воспитателем в заграничное путешествие. Он посетил Францию, Швейцарию и Италию. Бойль хорошо знал итальянский язык, и за время пребывания во Флоренции смог детально познакомиться с работами и инструментами Галилея, которые произвели на него большое впечатление. В 1644 г. он возвратился в Англию, что бы вступить во владение наследством после смерти отца.

Насос Герике
Магдебургские полушария

Его интерес к естествознанию пробуждается в результате участия в научном кружке, который после реставрации Стюартов превратился в Лондонское королевское общество. В 1654 г. Бойль переехал в Оксфорд, построил там химическую лабораторию и взял к себе ассистентом Роберта Гука. Прочитав об опытах Герике, он построил более совершенный воздушный насос; в 1660 г. выходит в свет его работа «Новые физико-механические эксперименты, касающиеся упругости воздуха и ее следствий». Продолжая свои опыты, он обнаруживает в 1662 г. связь между давлением и объемом воздуха в замкнутом сосуде — то, что впоследствии, получив количественную формулировку, стало законом Бойля — Мариотта.

В работе 1661 г. «Скептический химик» Бойль излагает свои взгляды на строение вещества. По его мнению, материальные тела состоят из элементов, под которыми он понимает неразложимые далее части веществ, а не воздух, воду, огонь и землю, как привыкли считать со времен Аристотеля. Химическое соединение по Бойлю — это соединение двух или большего числа элементов. Одним из первых Бойль указал на принципиальную разницу между химическим соединением и смесью веществ.

В 1668 г. он переезжает из Оксфорда в Лондон, где снова организует химическую лабораторию и становится одним из самых деятельных членов Королевского общества. В значительной степени Бойлю обязана своим возникновением и аналитическая химия. До него при качественном способе анализа ограничивались так называемым сухим способом, а Бойль первым показал, что можно определять вещества при помощи жидких реактивов.

Как большинство ученых его времени, Бойль бы разносторонним исследователем. Он живо интересовался вопросами истории, лингвистики и богословия — ревностный христианин, он перевел Евангелие на турецкий язык. В течение последних сорока лет он был очень слаб здоровьем. Его память была столь плоха, что он часто подумывал о том, чтобы бросить науку, и все же он был плодовитый автор, который завоевал признание как на своей родине, так и за рубежом. Незадолго до 1657 г. он намеренно отказался от «серьезного и должного» чтения трудов Гассенди, Декарта или Фрэнсиса Бэкона, «для того чтобы не быть в плену предвзятых мнений, теорий и принципов до тех пор, пока я не потрачу некоторое время на размышление над вещами, которые пришли в голову мне самому».

РОБЕРТ БОЙЛЬ

Бойль приделал барометр к приемнику воздушного насоса и наблюдал вскипание нагретых жидкостей и замерзание холодной воды при откачке.

Бойль, возможно, никогда бы не открыл закон, носящий его имя, если бы не невежественная критика со стороны некоторых его коллег. Фрэнсис Линус, профессор из Голландии, прочитал бойлевские «Новые эксперименты» и заявил, что воздух абсолютно не способен произвести столь ощутимые действия, о которых говорит Бойль, например перемещение ртутного цилиндра длиной 29 дюймов; он утверждал, что ртуть подвешена на невидимых нитях, идущих от верхнего конца трубы, и чтобы почувствовать их, он закрывал верхний конец трубы пальцем.

Титульный лист «Новых физико-механических экспериментов »

Эта критика заставила Бойля возобновить исследования. «Теперь мы попытаемся показать, что в специально поставленных экспериментах упругость воздуха способна производить гораздо больше, чем нам необходимо ей приписывать для объяснения явлений в опыте Торричелли... Мы взяли затем длинную стеклянную трубку, которую с помощью горелки и ловкости согнули на конце так, что закругленная часть вышла почти параллельной остальной трубе, а отверстие в этом коротком отростке... было тщательно герметически закупорено. Длина отростка была разделена на дюймы (каждый из которых был разделен на восемь частей) - это было сделано с помощью бумажной шкалы, которая была аккуратно приклеена на трубку». Аналогичная бумажная шкала была приклеена на длинном отростке трубы. Затем «в колено или закругленную часть сифона, было налито столько ртути», чтобы в обоих отростках ртуть установилась на одинаковой высоте. «После этого мы начинали заливать ртуть в более длинное колено... до тех пор, пока воздух в коротком колене вследствие сжатия не уменьшился в объеме наполовину, тогда мы взглянули на длинное стеклянное колено и увидели не без радости и удовлетворения, что ртуть в длинном колене на 29 дюймов выше, чем в коротком» (т. е. давление на воздух в коротком колене вдвое больше первоначального. - В. К.). Из этого опыта Бойль делает вывод, что «сопротивление сжатию удваивается с удвоением давления» и, следовательно, упругость воздуха (т. е. его сопротивление сжатию) пропорциональна его плотности. Такова формулировка первого варианта закона Бойля.

J-образная трубка Бойля

Но эта формулировка не означает, что получена обратная пропорциональная зависимость между внешним давлением и увеличением объема воздуха. Опыты, которые Бойль проделал для изучения зависимости расширения воздуха с уменьшением внешнего давления, не были им никак интерпретированы. (В этих опытах использовалась торричеллева трубка, сначала полностью погруженная в сосуд со ртутью, а затем постепенно поднимаемая из ртути.) Вместо него интерпретацией опытов занялся физик-любите ль Ричард Таунли. Бойль говорит: «Я не замедлю признать, что я не свел опыты, которые я проделал с измерением расширения воздуха, к какой-либо определенной гипотезе. В то время как искусный джентльмен мистер Таунли... попытался вывести то, чего недоставало у меня». Именно Таунли был тем, кто указал на обратную пропорциональность между объемом и давлением. Бойль говорит далее о «предположении мистера Таунли относительно пропорциональности, определяющей, насколько воздух теряет свою упругость при расширении». «Мой помощник (т. е. Гук.— В. Я.),—заключает он,— сказал мне, что проводил наблюдения с той же самой целью год назад, и они показали довольно хорошее согласие с теорией мистера Таунли» [23, I, с. 100 и далее].

Таким образом, Ричард Таунли является соавтором закона Бойля.

В 1666 г. Бойль опубликовал «Гидростатические парадоксы», в которых стремился опровергнуть старую доктрину, утверждающую, что легкая жидкость не производит давления на более тяжелую жидкость. Что такое опровержение оказалось сделанным столь поздно, показывает, как медленно распространялось правильное представление о давлении жидкостей.

Пятнадцать лет спустя после публикации Бойля «закон Бойля» был переоткрыт (совершенно независимо) выдающимся французским физиком Эдмом Мариоттом (1620—1684). Поэтому он называется теперь также законом Бойля—Мариотта. Мариотт опубликовал закон в своем трактате «О природе воздуха» в 1676 г. Он пишет: «Мы использовали трубку в 40 дюймов, которую заполнили ртутью на 27 ½ дюйма, 12 ½ дюймов осталось для воздуха, будучи погруженной на 1 дюйм в сосуд со ртутью, 39 дюймов оставалось сверху, причем 14 дюймов занимала ртуть и 25 дюймов воздух, расширившийся до двойной величины своего (первоначального) объема». У Мариотта было более ясное представление о важности это-то закона, чем у Бойля.

Мариотту приписывается введение экспериментальной физики во Франции. Как Бойль был знаменит участием в организации Королевского общества в Англии, так и Мариотт был одним из первых и ведущих членов Парижской академии наук, организованной в 1666 г. Тщательными измерениями высоты ртутного столба в глубоком погребе, а затем в астрономической обсерватории (новой), расположенной на одной из возвышенностей Парижа, он получил приближенную формулу для определения высоты с помощью барометра.

ДЕНИ ПАПЕН

В 1674 г. Дени Папен (1647—1714) описал воздушный насос, в котором откачиваемый сосуд с запорным краном был заменен столом и стеклянным колоколом. Заслуга во введении этого усовершенствования обычно приписывается Папену, однако сам он приписывал это Гюйгенсу, который, как теперь известно, сделал это открытие в 1661 г. Папен был учеником и ассистентом Гюйгенса, он познакомился с ним в Париже, и с 1672 г. начались их совместные работы по конструированию пневматических устройств. В первое время они занимались совершенствованием вакуумных насосов, но затем Гюйгенсу, увлекавшемуся тогда опытами с порохом, пришла в голову идея скомбинировать в одном аппарате силу атмосферного давления и силу взрыва. Так в 1673 г. была построена знаменитая пороховая машина, которую Гюйгенс и Папен демонстрировали Кольберу. Ее устройство было весьма простым и представляло цилиндр с поршнем; в пространстве под поршнем взрывалось небольшое количество пороха, в результате в камере образовывалось разрежение и поршень мгновенно втягивался в цилиндр. Машина развивала достаточную мощность, чтобы поднять нескольких человек. Папен всю жизнь продолжал заниматься вопросами пневматики (вскоре он переехал в Англию, где стал ассистентом Бойля, а затем членом Королевского общества), но для Гюйгенса это был всего лишь эпизод.

В том же 1673 году выходит в свет главная книга Гюйгенса «Маятниковые часы» («Horologium oscillatorium»), в которой он свел воедино результаты своих многолетних исследований проблемы колебаний и вращательного движения. В ней впервые опубликовано соотношение между периодом и длиной маятника (сегодня оно записывается формулой T = 2πl√(l/g), дано доказательство таутохронности циклоидального маятника (которую он открыл еще в 1658 г.), а также развита теория центра качаний.

Проблема, которую предстояло решить Гюйгенсу, заключалась в описании колебаний физического тела аналогично тому, как это делается для простого (математического) маятника. Иначе говоря, задача сводилась к тому, чтобы найти характеристики простого маятника, колеблющегося изохронно с данным телом.

Гюйгенс нашел длину такого простого маятника, которая определяется расстоянием от точки подвеса до точки, находящейся на прямой, проходящей через центр тяжести тела и точку подвеса, и названной им «центром качаний». Формула, полученная Гюйгенсом для определения центра качаний, аналогична современной L = I/ml, где L — искомая длина, I — момент инерции, m — масса и l — расстояние от точки подвеса до центра тяжести. Гюйгенс получил также важную теорему об обратимости центра качаний, т. е. если центр качаний и точку подвеса поменять местами, то период колебаний не изменится.

В «Маятниковых часах» Гюйгенс приводит без доказательства зависимость центробежной силы (сам термин тоже принадлежит ему) от скорости и радиуса вращения: Fц.б.~ v2/R. Эту зависимость он получил еще в 1659 г., но дал ее вывод, использующий закон падения Галилея и геометрические построения, позже, в рукописном трактате «О центробежной силе».

В 1681 г. Гюйгенсу приходится покинуть Париж — и, как оказалось, навсегда — главным образом из-за религиозных преследований, связанных с отменой нантского эдикта. Первый академик Франции отказывается от своего звания и возвращается на родину. Вернувшись в Гаагу, в дом своего отца, он вновь начинает заниматься астрономией и оптикой, пытается построить планетарий.

В 1690 г. появляется «Трактат о свете», который составил Гюйгенсу славу основателя волновой теории света. Согласно его представлениям, свет есть результат прохождения через упругий эфир ударных волн с чрезвычайно большой скоростью. Такой эфир состоит из весьма малых упругих частиц, плотно примыкающих друг к другу. Переноса материи при прохождении света через эфир не происходит, речь идет о передаче импульса, или «тенденции к движению». Каждая частица, получившая импульс, передает его соседним частицам, которые, в свою очередь, становятся источниками импульсов света. В результате каждая частица будет порождать сферическую волну. Волны, исходящие от отдельных частиц, слишком слабы, но когда бесконечное число таких волн перекрывается, возникает свет, т. е. огибающая фронтов волн всех частиц. Это и есть знаменитый принцип Гюйгенса. С его помощью Гюйгенс объяснил явления отражения и преломления, связав показатель преломления со скоростью света в различных средах. Триумфом волновой теории было объяснение двойного лучепреломления в исландском шпате.

Говоря об астрономических занятиях Гюйгенса, отметим, что он — автор одной из первых популярных книг по астрономии. Его «Космотеорос», опубликованный посмертно в 1698 г., пользовался большим успехом у читателей и в 1717 г. по указанию Петра I был переведен на русский язык.

Гюйгенс играл важную роль в научной жизни Европы. Его труды получили широкую известность в Голландии, Франции, Англии, Германии и Италии, к его мнению прислушивались все выдающиеся ученые того времени. Гюйгенс был одним из первых, кто прочел и откликнулся на ньютоновы «Начала». Летом 1689 г. он встретился с Ньютоном. Оба они выступили на заседании Королевского общества. «Гюйгенс, установивший закон двойного преломления, излагал свою неверную теорию тяготения, а Ньютон, открывший закон тяготения, докладывал о своих ошибочных измерениях двойного преломления» [14, с. 163— 164].


Загрузка...