Пустыня Карру в центральной части Южной Африки, скорее всего, разочарует любителей «настоящих» пустынь. Когда в одном предложении встречаются слова «Африка» и «пустыня», то воображение в первую очередь рисует знаменитые пески Сахары или Калахари. В Калахари, например, жизни почти нет, потому что пески там постоянно перемещаются, днем там очень жарко, а ночью очень холодно. Растениям и животным нелегко выживать в подобных местах, разнообразие и численность живых организмов там невелики, и неудивительно, что люди в этих пустынях также появляются весьма неохотно. Сельское хозяйство здесь почти отсутствует.
Пустыня Карру, в отличие от Сахары и Калахари, не имеет перемещающихся песков и дюн, в основном она состоит из каменистых пород, на которых хорошо развивается растительность, и кажется, не найти здесь места, где бы не было овечьего помета, что говорит о многочисленности этого завезенного вида. В Карру нет жирафов и слонов, гиппопотамов и крокодилов, буйволов и носорогов. Животные здесь водятся, а в некоторых местах их очень даже много, но это все не очень знаменитые африканские виды. Также здесь есть человеческие поселения — большие ранчо. Другими словами, Карру — не то место, которое может понравиться туристам — любителям пустынного экстрима. Но что здесь точно есть, так это большие отложения осадочных пород возрастом в сотни миллионов лет, а именно относящихся к периоду 270–175 млн лет назад.
Примерно посередине этого отложения находится самый лучший в мире участок разнообразной сухопутной ископаемой жизни, принадлежащей к периодам как до, так и после массового пермского вымирания — наиболее катастрофического из пяти крупнейших. Целые поколения палеонтологов начиная с середины XIX века изучали древние речные русла и долины, которые стали геологической основой пустыни Карру. Животные часто гибнут у реки либо от нападений хищников, либо по другим причинам, потом их останки постепенно погружаются в грязь и становятся окаменелостями. Область пустыни Карру до недавнего времени являлась основным местом исследований указанного геологического периода, однако недавно были обнаружены и другие ископаемые: Майком Бентоном, нашим коллегой из Бристоля, — в России, и Кристианом Сайдором из Вашингтонского университета[165] — в республике Нигер. Впрочем, даже эти новые находки не сравнятся с богатством и качеством сохранности во времени образцов из Карру. При этом, конечно, надо понимать, что только энтузиасты, грезящие когда-нибудь раскопать оскаленный череп здоровенного хищника вроде тираннозавра, находят полевые работы палеонтологов захватывающими и не обращают внимании на трудности. На самом деле все образцы из пустыни Карру приходилось буквально выцарапывать из пород — пустыня Карру отдавала свои сокровища весьма неохотно.
Поездка из Кейптауна в центр Карру занимает весь день. Местность имеет небольшой подъем и постоянно повышается, и если ехать к северо-востоку Карру, то вскоре откроется вся геологическая летопись этого региона: от средней перми до «главы» о динозаврах юрского периода. Не только время проходит перед вашим взором сквозь сотни метров осадочных пород этой области. Также перед вами предстанут и климатические различия эпох — от ледников до, возможно, самого жаркого времени в земной истории, а в промежуточный период продолжительностью в десятки миллионов лет вы станете свидетелями времени, когда содержание кислорода в атмосфере достигло минимума с момента появления первых животных на планете (около 600 млн лет назад). Многое можно понять, читая эти геологические «страницы», но есть среди них одна особая, которую исследуют намного тщательнее, чем все остальные.
Это — несколько сотен метров отложений возрастом 252–248 млн лет, породы, возникшие в течение последних тысячелетий пермского периода (и всей палеозойской эры, которая закончилась пермским периодом) и нескольких миллионов лет после массового вымирания 252 млн лет назад. Вот уже несколько десятилетий исследователи задают себе вопросы, связанные с ископаемыми тех времен, довольно редкими, но очень хорошо сохранившимися Во-первых, как долго длилось это массовое вымирание, начиная с первых признаков того, что данное событие превысило «нормальные» масштабы предыдущих вымираний? Во-вторых, мы хотим выяснить, совпадало ли по времени катастрофическое вымирание на суше с таким же по размаху вымиранием морских обитателей в пермский период. В-третьих (и это, наверное, самое интересное), каковы были причины этого события? Наконец, важно понять, насколько быстро сухопутные экосистемы восстановились, поскольку это поможет понять, как пережить другое, подобное пермскому, вымирание, потенциальная угроза которого намного реальнее, чем мы готовы осознать.
Перефразируя высказывание знаменито палеонтолога XX века Дэвида Раупа из Университета Чикаго, спросим себя: выжившие виды были более жизнеспособны или им просто повезло?
Причина, или, скорее, причины, пермского вымирания не находят единодушного объяснения в ученой среде, но с одним из выводов согласны все: последствия вымирания были настолько ужасны, что экосистемы восстанавливались очень и очень долго. Этим данное вымирание отличается от схожего события в меловом периоде (мел-палеогенового вымирания), когда также вымерло больше половины всех животных на планете, но восстановление биосферы после произошло относительно быстро. Возможно, это связано с различием в причинах этих событий. Уже более десяти лет в качестве причины мел-палеогенового вымирания признают столкновение Земли с астероидом, но гибельное воздействие этого столкновения быстро ослабело. Случай пермского массового вымирания иной. Многие исследователи считают, что пермское вымирание также было вызвано падением небесного тела, но вот его последствия, обусловившие вымирание, продолжали действовать на протяжении миллионов лет. Некоторые признаки восстановления можно наблюдать не ранее среднего триаса, около 245 млн лет назад.
Подобная ситуация, когда экосистемы восстанавливались очень медленно, могла иметь место, если представить, что пермское массовое вымирание было полностью или частично обусловлено снижением уровня кислорода в атмосфере в конце пермского периода. Новейшие модели изменений кислородных уровней Бернера показывают, что в течение триасового периода содержание кислорода в атмосфере оставалось очень низким, и даже есть доказательства, что уровень кислорода не начал подниматься до самого конца первой половины триаса, что вполне может объяснить такую долгую задержку восстановления биосферы.
Многие исследования подтверждают, что гибельные условия, сложившиеся после начала вымирания, продолжали существовать очень долгое время. Если это так и если животные как-то приспосабливались к неблагоприятным условиям, можно предполагать, что в триасе возникли бы многие новые виды, и не только как реакция на освободившиеся экологические ниши, но и как результат воздействия жестких условий самих по себе. Так и произошло: мир наполнили многие новые виды: некоторые из них формой и образом жизни напоминали вымерших животных (реакция на освободившиеся экологические ниши), а некоторые являлись совершенно новыми существами, особенно на суше. Позже мы продемонстрируем, что многие новые виды, возникшие в конце триасового периода, были приспособлены к условиям жизни с низким уровнем атмосферного кислорода, который особо не повышался и в юрском периоде, то есть в течение более 50 млн лет. Триас был временем, в котором сосуществовали существа и из мира, богатого кислородом, и из мира с малым содержанием этого газа в средах.
С конца XX века и до наших дней пермскому массовому вымиранию уделяется все больше внимания в первую очередь потому, что оно было самым опустошительным из всех — новые цифры указывают на исчезновение почти 90 % видов.
Насколько быстро это произошло и что послужило причиной — эти вопросы хорошо освещены палеонтологами из Китая и США в солидных трудах, посвященных ископаемым из отложений известняка возле города Мэйшань в Китае[166]. Геологи соотносили толщину каждого осадочного слоя с его принадлежностью к определенному виду породы. Затем из каждого слоя, идентифицированного со всей тщательностью, были взяты ископаемые образцы. Не менее тщательно было проведено описание каждого образца с учетом его отношения к определенному слою. Палеонтологи использовали новый статистический метод Чарльза Маршалла, основанный на оценке доверительного интервала[167], — данная методика позволяет получить данные о реальном временном интервале, к которому может относиться тот или иной ископаемый образец. У китайских исследователей есть некоторое преимущество в работе — в Китае существует большое количество пепловых отложений, возраст которых можно определить с помощью инструментов, измеряющих показатели изотопов урана/свинца. Именно это и было проделано недавно Сэмом Боурингом из Массачусетского технологического института[168]. Сведения, полученные в результате совместной работы китайских и американских коллег, определяют длительность пермского вымирания не более 60 тысяч лет, что является невероятно точным показателем для пород возрастом более четверти миллиарда лет.
Всего в области Мэйшань было обработано пять различных стратиграфических уровней, образцы брали в интервалах от 30 до 50 см. В результате были найдены и описаны 333 вида морских животных, относящихся к различным группам, например, кораллы, двустворчатые и плеченогие моллюски, улитки, головоногие, трилобиты и многие другие. Таких тщательных исследований в отношении настолько разнообразных образцов фауны из подобных пород до этого никто не проводил.
Помимо прочего, в морских экосистемах — как на мелководье, так и в глубине — в конце пермского периода произошло значительное сокращение содержания кислорода. Об этом пишет, в частности, Юкио Изодзаки из Токийского университета в своей работе 1996 года. В его исследовании показано, что глубоководные кремнистые сланцы, относящиеся к периоду массового вымирания, имеют черный, «траурный», цвет, хотя обычно бывают красного цвета. Дефицит кислорода был, очевидно, так велик, что многие морские организмы погибли быстро и внезапно, подобно тому, как это происходит в современных «красных приливах». Также существуют свидетельства того, что в период пермского массового вымирания происходило глобальное потепление и значительное усиление вулканической активности и эффузии (излияния лавы) в Сибири.
Существует множество гипотез относительно причин данного вымирания.
Во-первых, возможно, сибирские излияния базальта привели к выбросам в атмосферу больших объемов газа, что вызвало изменение климата и кислотные дожди. Это предположение подтверждается специалистом в области геохронологии из Беркли Полом Ренном и его коллегами. Другой возможной причиной различные независимые исследователи считают внезапный выброс метана в атмосферу. Кроме того, хотя непосредственных доказательств этому и не найдено, возможность вымирания вследствие столкновения Земли с астероидом является также очень популярной гипотезой. Например, китайские коллеги утверждают, что воздействие было «очень быстрым». Среди всех предположений о причинах данного массового вымирания только удар астероида мог привести к таким масштабам и интенсивности гибели животных за очень короткое время.
На рубеже прошлого и нынешнего тысячелетия исследователи истории развития Земли и жизни на планете просто влюбились в теории внеземных причин многих, если не всех, массовых вымираний. В 2000 году пермское вымирание казалось чем-то совершенно отличным от всего, что было известно о вымираниях. В геологическом братстве подозревали, что виной тому стало космическое столкновение, но какое-то не такое, как катастрофа, ставшая сенсацией 1980-х, виновником которой и основной причиной гибели динозавров и всего мел-палеогенового вымирания назвали астероид. Возможно, пермское вымирание имело несколько причин, а возможно, один серьезный толчок спровоцировал возникновение цепи гибельных событий. Примечательно, что никто из тех, кто изучал в конце XX — начале XXI века образцы китайских пород, не обнаружил хорошо известные признаки внеземных причин мел-палеогенового вымирания: ни иридия, ни деформации кварца.
Несколько лет подряд начиная с 2001 года команда под руководством геохимика Луанн Беккер[169] сообщала об открытии больших скоплений сложных молекул углерода (у них смешное название — букминстер-фуллерены, которое, к счастью, сократили до «букиболов»). Исследователи утверждали, что их открытия свидетельствуют в пользу той же причины вымирания в пермский период, что и у мел-палеогенового вымирания — столкновения Земли с астероидом, только в этом случае астероид упал 251 млн лет назад.
Букиболы — большие молекулы, содержащие по крайней мере 60 атомов углерода. Они похожи на футбольный мяч или на геодезический купол, поэтому их и назвали букминстер-фуллеренами — в честь Ричарда Бакминстера Фуллера, который этот купол изобрел.
Гипотеза команды геохимиков такова: букиболы внутри своей структуры удерживают молекулы гелия или аргона, и именно данные новые индикаторы падения астероида были найдены в отложениях времен позднего пермского периода в трех географических областях в разных частях планеты. Беккер и ее коллеги считают, что букиболы в этих местах имеют внеземное происхождение, поскольку благородные газы, обнаруженные в них, показывают необычное соотношение изотопов. Например, земной гелий — это в основном гелий-4 с небольшим содержанием гелия-3, однако внеземной гелий (тот, что зафиксирован командой Беккер в букиболах) является в основном гелием-3. Согласно утверждениям исследователей, этот «звездный багаж» мог быть доставлен на Землю только небесным телом, столкнувшимся с нашей планетой в конце пермского периода, и пермский период на нем и закончился.
Это небесное тело — комета или астероид — было 6–12 км в диаметре, а возможно, таких же размеров, что и астероид мел-палеогенового периода, оставивший огромный кратер Чуксулуб на полуострове Юкатан в Мексике 65 млн лет назад. Однако если пермский космический гость был таких больших размеров, то оставил бы и кратер чудовищных размеров, подобный Чуксулубу, поэтому команда Беккер начала искать кратер, который мог быть спрятан глубоко под другими породами.
Спустя два года, в 2003 году, эти ученые объявили, что нашли гигантский кратер в морском дне у берегов Австралии[170]. Казалось, столкновение астероида с Землей в качестве причины пермского вымирания подтвердилось. Но затем начались проблемы, причем как с букиболами, так и с вероятностью того, что найденный кратер является следствием столкновения.
Наука предполагает повторяемость и предсказуемость результатов исследований, однако теория букиболов потерпела поражение по обоим этим показателям (хотя, что любопытно, еще в 2012 году на запрос «пермское вымирание» Google в первую очередь выдавал «букиболы» и «столкновение»). Те, кто работает над раскрытием причин пермского массового вымирания, с самого начала сомневались в верности теории букиболов и столкновения с астероидом.
Первоначально работа Беккер основывалась на образцах, обнаруженных в Китае, Японии и еще нескольких местах. Позднее результаты этой работы не подтвердились сходными исследованиями, а наш приятель Юкио Изодзаки несколькими годами ранее доказал, что изучаемый Беккер и командой слой отложений в Японии недалеко от Осаки на самом деле был сдвинут с пологим смещением — целых три зоны конодонтов по обеим сторонам исследуемого интервала утеряны. Впрочем, они утверждали, что аномальное количество гелия-3 наблюдается именно в том месте, где должна, по их (ошибочному) мнению, находиться граница между слоем, сформированным до вымирания, и слоем, образованным во время вымирания. Что-то было не так. Наконец, наши коллеги из Калифорнийского технологического института выяснили, что гелий-3 покидает букиболы менее чем через один миллион лет, поэтому после 252 млн лет там ничего не могло сохраниться. Кроме того, глубоководная структура, которую принимали за кратер и которая обеспечивала стройность всей теории букиболов, столкновения и гелия-3, в действительности оказалась вулканического происхождения и никакого отношения к космосу не имела.
К изучению морских отложений позднего пермского периода и раннего триаса подключилась еще одна команда исследователей — геологов и специалистов в области органической химии. Они рассматривали не сами по себе окаменелости тел животных, а извлекали из пород останки в поисках определенных химических ископаемых биомаркеров[171], Такие биомаркеры могли появиться только в результате фотосинтезирующей деятельности пурпурных бактерий, обитавших исключительно на мелководье, причем без кислорода, но насыщенном ядовитым сероводородом. По-видимому, океаны были населены огромными биомассами микроорганизмов, производящих сероводород. Это были не отдельные выбросы газа, как в современном Черном море — вероятно, постоянные выделения сероводорода в воду наблюдались почти во всех морях или даже во всем Мировом океане, о чем позволяют судить недавние исследования ученых из Массачусетского технологического института, которые в 2009 году обнаружили этот же биомаркер пермского периода более чем в десятке мест по всему миру[172]. Возможное объяснение тайны самого крупного массового вымирания в истории удалось найти геохимикам из Университета штата Пенсильвания в 2005 году. Группу коллег возглавляли Ли Камп (один из крупнейших специалистов в области химии океана и особенно — углеродного круговорота) и Майк Артур. В их статье говорится, что сероводород, производимый в океанах микроорганизмами (точнее, различными видами пурпурных бактерий), стал в конце пермского периода непосредственной причиной вымирания как на море, так и на суше[173].
Ли Камп и его коллеги предположили, что в периоды большого дефицита кислорода в океанах (времена, когда у дна океана, а возможно и у поверхности, уровень содержания кислорода сильно снизился) концентрация сероводорода на глубине резко увеличилась и превысила некий критический барьер. Далее, в океанах могли возникнуть условия (напоминающие, например, современное состояние Черного моря), когда произошло быстрое поднятие глубинных водных слоев, насыщенных сероводородом, к поверхности. Результат был ужасен: на поверхности воды образовывались большие пузыри сероводорода, они лопались, и токсичный газ устремлялся в атмосферу. Такой новый подход к объяснению глобальных биологических катастроф показывает связь между морскими и сухопутными массовыми вымираниями, поскольку сероводород накапливается в тропосфере до концентраций, смертельных для растений и животных, даже если испарения этого газа из океана относительно невелики. Эта теория может объяснить события не только позднего пермского периода, но также демонстрирует, что могло происходить в другие периоды истории Земли, и возможно, таковы и были основные глобальные изменения в средах обитания, приводившие к массовым вымираниям[174].
Коллеги Кампа сделали некоторые предварительные вычисления и были поражены, обнаружив, что объемы сероводорода, присутствующие в атмосфере позднего пермского периода, почти в две тысячи раз превышали современный объем выбросов этого газа (в основном за счет вулканов) — более чем достаточно, чтобы содержание сероводорода в атмосфере достигло смертельного уровня.
Еще кое-что: озоновый слой, оберегающий все живое от опасных ультрафиолетовых лучей, также, вероятно, пострадал. То, что в конце перми это действительно произошло, можно доказать, например, наличием мутаций в ископаемых того периода, найденных в Гренландии, — такие изменения могли произойти лишь в результате сильного воздействия на организмы ультрафиолета, а значит, существовали явные нарушения озонового слоя.
Сегодня мы наблюдаем озоновую дыру над Антарктидой, под которой быстро уменьшается количество фитопланктона. Если таким образом одно из звеньев пищевой цепи будет уничтожено, то вскоре пострадают и животные более высокого уровня. Полное уничтожение озонового слоя могло произойти и в результате бомбардировки Земли частицами от близкой к нашей планете сверхновой звезды, и это тоже привело бы к массовому вымиранию.
Наконец резкое увеличение объемов метана в атмосфере резко усилило бы парниковый эффект из-за возрастания концентрации углекислоты и самого метана. Сероводород улетучивается в атмосферу и разрушает озоновый слой, одновременно парниковые газы повышают температуру на планете — убийственность сероводорода возрастает вместе с температурой. Массовые вымирания, таким образом, могли возникать как реакция на последствия гибельных, хотя и кратковременных событий в окружающей среде.
До этого момента мы рассматривали лишь те данные, которые получили, исследуя различные породы. Но давайте вспомним теперь и о другом способе получения информации о прошлом — о моделях атмосферы прошлых периодов. Существует несколько типов таких моделей, и многие вполне годятся для прогноза состояния атмосферы в будущем.
Для пермского периода такая модель создана, она показывает концентрации атмосферного кислорода, углекислого газа, а также возможные мировые температуры. Впервые изменения уровня атмосферного кислорода и углекислоты были установлены коллегой из Йельского университета Робертом Бернером. Он и его сотрудники обнаружили, что в конце перми должны были одновременно произойти резкое увеличение уровня углекислого газа и падение уровня кислорода. Затем Ли Камп и его исследовательская группа проделали длительную и сложную работу, чтобы установить возможное распределение выбросов сероводорода на планете. Для этого они использовали модель общей циркуляции (МОЦ). Такие модели первоначально создавались для изучения условий современной погоды и климата. Но поскольку нам известно местоположение континентов для определенного момента в конце пермского периода и триаса, а также температуры и уровни кислорода и углекислого газа в атмосфере и океане, то эти модели можно применить и к условиям пермского периода.
Камп рассудил, что ключевым элементом должен быть фосфор. Это ключевой питательный компонент, и если окажется, что уровень фосфора в океане в конце пермского периода увеличился, то объем сероводорода также можно вычислить, исходя из концентраций тех, кто фосфор потребляет, — серных микроорганизмов.
Выброс сероводорода произошел не один раз, это была последовательность выбросов, совпадающих по времени с границами пород перми и триаса по всему миру. Выводы Кампа довольно мрачны: модель показывает не только места выбросов сероводорода в океан и воздух, но также полностью подтверждает рассчитанные им в 2005 году объемы сероводорода, выброшенного в атмосферу: концентрация данного газа была так высока, что погибла почти вся сухопутная жизнь, уровень сероводорода в морской воде привел к гибели многих организмов, обитавших в верхних слоях океанов, особенно тех существ, которые создают известковые образования: кораллов, двустворчатых моллюсков, плеченогих, мшанок — все они стали жертвами крупнейшего вымирания.
После публикаций работ Кампа и его коллег многие другие исследователи, например, Том Альджо из Университета Цинциннати, дополнили информацию о химических аспектах пермского массового вымирания[175].
Исследования массовых вымираний не являются новым направлением в науке. На самом деле это было первое направление, с которого вообще началась геология как наука в первые годы XIX века. Современная новизна исследований заключается лишь в том, что мы рассматриваем влияние микроорганизмов на самое крупное массовое вымирание — пермское, а возможно, их влияние на все пять крупнейших вымираний в фанерозое.
Вопрос же о последствиях массовых вымираний, напротив, является относительно новой научной проблемой, причем одной из основных для эволюционной биологии и палеобиологии. Мы уже знаем, что чем масштабнее вымирание, тем сильнее отличие жизни после него от жизни до него. И речь идет не только о периоде, непосредственно следующем за событием вымирания, — первые несколько тысяч или миллионов лет. Иной раз возникают новые эволюционные направления, генетические ветви, развитие которых занимает потом десятки миллионов лет, и порой эти изобретения эволюции остаются на планете навсегда.
Изменения уровня кислорода лишь недавно признали как важный фактор миграции видов и межпопуляционной гибридизации. Горные цепи зачастую являются барьерами для обмена генами, а это приводит к образованию различных биосистем по разные стороны горного массива. В конце пермского периода обитателям областей непосредственно на уровне моря приходилось дышать так, как если бы сегодня они находились на уровне пяти тысяч метров над уровнем моря (выше, чем гора Реньер в Каскадных горах в штате Вашингтон). Таким образом, даже небольшие высоты в пермский период усиливали «высокогорный» эффект: скромные по высоте холмы являлись областью, неподходящей для обитания животных. В результате животный мир оказался разграничен на множество областей у морских побережий, где обитали эндемичные организмы.
Высокие плато на континентах, возможно, были вовсе необитаемы, исключение составляли самые стойкие к большим высотам животные. Но эта гипотеза противоречит ожидаемому поведению континентов: 250 млн лет назад континенты были объединены в один гигантский суперконтинент Пангея, и Атлантический океан не должен был мешать свободному перемещению наземных животных с одного края континента на другой. Однако существовал другой барьер — большая высота, которая серьезно препятствовала миграции, и новейшие исследования позвоночных того периода доказывают, что свободного перемещения групп организмов тогда не было, но существовали отдельные экосистемы, по крайней мере на суше.
Работы, проведенные в конце XX и начале XXI века многими исследователями — Роджером Смитом, Дженнифер Бота, Питером Уордом (соавтором данного труда) в пустыне Карру, Майком Бентоном в России, Кристианом Сайдором в Нигере[176], — доказывают существование таких, не связанных друг с другом, экосистем, например, в Африке. Данные биологические сообщества являлись весьма специфичными и не походили друг на друга по видовому составу. Получается, что в период низкого уровня кислорода высота над уровнем моря создавала дополнительное препятствие для миграций и потока генов[177]. Совсем по-другому обстояли дела в периоды с высоким уровнем кислорода: фауна не была привязана к отдельным областям, и изолированные сообщества организмов были немногочисленны.
Дефицит кислорода привел не только к ослаблению миграции, но и к тому, что многие области, находившиеся в поздний пермский период и в триасовый период на высоте более тысячи метров над уровнем моря, оказались необитаемы. Этот эффект — влияние высоты на распространение организмов по суше — мог в значительной степени определять жизнь животных в условиях низкого содержания кислорода в атмосфере. Сокращение мест обитания из-за невозможности заселения высотных областей привело к тому, что многие животные либо мигрировали к морям, либо вымерли. Усилилась борьба за территорию и ресурсы, в прибрежных регионах появились новые хищники, паразиты и болезни, что в свою очередь привело к вымиранию некоторых видов и там. Мы подсчитали, что к концу перми более 50 % земной суши из-за своих высотных характеристик оказалось непригодным для обитания. Возможно, вымирание произошло по причинам, давно изложенным в книге Макартура и Уилсона The Theory of Island Biogeography («Теория биогеографии островов»): разнообразие видов имеет отношение к территории обитания, и если остров или какая-нибудь ограниченная территория становится меньше, животные начинают погибать. Влияние высоты на развитие и распространение жизни подтверждает этот научное положение.
Питер Уорд, один из авторов данного труда, изучал еще один аспект пермского массового вымирания. Результаты его исследований пока не опубликованы, и мы с удовольствием приводим их здесь, тем более что они имеют непосредственное отношение к предмету обсуждения. Фредерик Дули, аспирант Уорда, совместно с Ли Кампом пришел к удивительному выводу. Но сначала небольшое пояснение: Дули занимается вопросом воздействия сероводорода на растения и некоторых животных, а Камп разрабатывает модели состояния океана в конце пермского периода, и ему необходимо делать расчеты объемов сероводорода в верхних слоях Мирового океана. Результаты вычислений Кампа аспирант Дули использовал в экспериментах с одноклеточным океаническим планктоном, включая самый важный вид океанического зоопланктона — похожих на креветок веслоногих ракообразных-копеподов. Уровень сероводорода в эксперименте был недостаточным, чтобы убить водоросли, — наоборот, к удивлению экспериментатора, водоросли стали расти быстрее. Напротив, веслоногие погибли почти мгновенно. Без веслоногих, поедающих фитопланктон и таким образом контролирующих его размножение, эти крошечные растения погружаются на морское дно и там загнивают, уничтожая и без того небольшой запас кислорода в нижних слоях воды. Это приводит к резкому скачку содержания углекислого газа, а также убивает все виды морских животных в верхних слоях океана. В результате планета задыхается среди гниющих растений и остается почти совсем без животных — в конце пермского периода, по крайней мере в океане, так и произошло. Ситуация на суше напоминала две мировые войны одновременно Роджер Смит обнаружил весьма убедительные доказательства необычайной засушливости и неожиданной жары в Южной Африке 252 млн лет назад. Наши собственные изыскания в пустыне Карру (результаты опубликованы в 2005 году) позволяют подробно описать вымирание сухопутных животных в тот же временной период[178]. Роджер Смит считает, что только засухи и жары уже было вполне достаточно, чтобы вымерло большинство позвоночных. Нам же больше нравится аналогия с мировыми войнами: огромные армии погибают в пустыне и, как во времена Первой мировой, задыхаются под действием отравляющего газа. Только в древности это был не хлор, а ядовитый сероводород в атмосфере и океане.