Как это уже было в период 2,5–2,4 млрд лет назад, около 750 млн лет назад на Земле похолодало. Причем похолодало настолько сильно, что, как и в конце архейского эона, океаны начали замерзать, сначала с полюсов, а затем все ближе к экватору, пока весь Мировой океан не оказался подо льдом. Земля вновь стала «снежком». В первый раз такое событие привело к настоящей революции в истории жизни на планете при поддержке насыщенной кислородом атмосферы. И в этот раз протерозойские «снежки» (их на самом деле было несколько) были отмечены не менее важным явлением. Нет, не появлением кислорода — появлением животных. И снова не без опасности для всей жизни на планете. Снова жизнь балансировала на грани смерти и самой себя.
Как было рассказано в предыдущей главе, первая «Земля-снежок» (период начался менее чем 2,5 млрд лет назад) возникла в результате деятельности присутствовавших форм жизни: увеличение количества фотосинтезирующих микроорганизмов привело к ослаблению парникового эффекта из-за уменьшения количества углекислоты в атмосфере. Начало второй серии «снежков» совпадает с началом криогения — одного из геологических периодов в долгой истории Земли (о нем мы упоминали в главе 1).
Оба периода «снежков» (каждый состоял из смен замерзания океана и последующего таяния) привели к мощнейшему ослаблению морской органики, поскольку лед блокировал солнечный свет. Таким образом, объем жизни на Земле (измеряется общей массой, называемой «биомасса») уменьшился до самых незначительных показателей по сравнению с периодами до и после «снежков».
Последовательность оледенений и последующих потеплений в совокупности с ослаблением/усилением парникового эффекта в периоды 2,5–2,4 млрд лет назад и 750–625 млн лет назад должна была стать серьезным фильтром в эволюции жизни. Некоторую информацию об этих периодах дают окаменелости, в качестве свидетелей всегда присутствуют акритархи (планктонные организмы, описанные в предыдущей главе), которые то процветали, то почти полностью исчезали.
Известно, что многие организмы реагируют на стрессовые ситуации окружающей среды значительной реорганизацией генома, а любой период «снежка» был более чем стрессовым. Эволюционная значимость таких геномных изменений является предметом горячих обсуждений в области молекулярной биологии. Разнообразные ископаемые останки указывают на появление более усложненных организмов всякий раз после очередного периода «снежка», и этот факт подтверждает мысль, что «снежки» создавали эдакую эволюционную катапульту для запуска больших изменений в развитии сложных и разнообразных форм жизни.
Диаграмма показывает подъемы и спады температуры в периоды под общим названием «Земля-снежок».
Один из наиболее глубоких вопросов относительно периодов «Земли-снежка» — вопрос об их происхождении. В предыдущей главе мы отмечали, что первые (архейские) «снежки», возможно, были спровоцированы бурной деятельностью самих живых организмов, а именно появлением фотосинтеза, который привел к уменьшению парникового углекислого газа. Но для возникновения второго периода «снежков» могли быть совершенно другие причины, возникшие почти через миллиард лет после первых оледенений. Вторая серия «снежков» могла начаться из-за тектонической активности материков того времени[90].
Неопротерозойские оледенения (как и архейская первая серия, она характеризовалась множеством сменяющихся замерзаний/таяний) произошли спустя около 40 млн лет после того, как суперконтинент Родиния, образовавшийся из-за великого материкового слияния, начал распадаться.
Суперконтиненты обладали засушливым климатом, потому что большая часть суши находилась вдали от океанов. Напротив, когда континенты, а особенно суперконтиненты дробятся, сухие климатические регионы обретают морской климат и создают широкие возможности для повышенного химического выветривания. Химическое выветривание кремниевых пород приводит к быстрому падению уровня углекислого газа в атмосфере. С уменьшением количества CO2 снижается и температура. Возможно, во второй раз «снежки» образовались не из-за жизни, а под воздействием неорганических химических процессов.
Но все могло быть и несколько иначе. Если будет установлено, что в те времена по всему миру быстро и неожиданно распространился какой-либо новый вид растений, то снова придется признать, что падение уровня углекислоты было вызвано фотосинтезом, а не химическим выветриванием. Это вполне может оказаться правдой: новейшие исследования истории развития жизни показывают, что примерно 750 млн лет назад появились сухопутные растения, все еще одноклеточные, но распространенные предположительно на больших пространствах планеты. Это могло бы многое объяснить.
Земля освободилась от снега и льда более 600 млн лет назад, и то, как она выглядела в тот период, очень сильно отличается от ее нынешнего внешнего вида. Но разнообразные силы — как эволюция, так и физика — постепенно сделали ее к позднему протерозою более-менее похожей на сегодняшнюю планету. Океаны кишели жизнью, все еще одноклеточной в основном, но уже во многом усложненной — вроде амеб, инфузорий-туфелек, а также загадочных полурастений-полуживотных типа многоклеточных вольвоксов или одноклеточных эвглен. Побережья и морское дно были покрыты различными типами бурых и красных водорослей, все еще распространенными на Земле. Все было готово для появления первых животных. Около 600 млн лет назад этот процесс начался — так мы, по крайней мере, думаем. Эдиакарий, лишь недавно выделенный, является периодом, который непосредственно предшествует палеозойской эре. Он начался 600 млн лет назад и закончился появлением существ, которые точно были животными. Этот временной интервал назван по имени своих самых важных обитателей, самых сложных на тот момент организмов, — мы называем их вендобионты[91][92].
Эти хрестоматийные окаменелости позднего протерозоя, непосредственным образом переходящего в кембрий, демонстрируют огромное разнообразие любопытных форм, непохожих ни на каких из ныне живущих. Сначала их обнаружили на Эдиакарской возвышенности в Южной Австралии, а теперь находят практически во всех уголках Земли.
Эдиакарская возвышенность — это часть более крупного хребта Флиндерса в Южной Австралии. Подобно многим другим далеким от зеленых побережий местам в Австралии, хребет Флиндерс это песок, скалистые насыпи и редкая растительность, приспособленная к засушливой среде. Наряду с канадскими сланцами Бёрджесс, германскими известняками Зольнхофен и формацией Хелл-Крик в Северной Америке этот австралийский пейзаж знаменит в мире находками окаменелостей. Эти холмы и подобные им того же возраста (около 560–540 млн лет) хранят отпечатки первых тел настоящих животных — с этой точкой зрения солидарны все палеонтологи.
Это открытие было сделано геологом Реджинальдом Сприггом[93] во время осмотра старых шахт на Эдиакарской возвышенности. Спригг, будучи геологом на государственной службе штата Южная Австралия, должен был оценить возможности разработки минеральных ресурсов в этом регионе и определить, имеет ли смысл развивать здесь горнодобывающую отрасль. Однако Спригг, страстный коллекционер-любитель всевозможных окаменелостей во времена студенческой юности, смог распознать в случайно найденных им кусках грубого песчаника, разбросанных в изобилии по всем холмам, следы какой-то жизни.
Спригг держал в руках нечто, напоминающее изображение медузы. Однако он понимал, что это не могла быть медуза по определению. Слои были весьма древними, и Спригг сделал верное предположение: странные ископаемые должны относиться к древнейшим из известных окаменелостей животных — так он выразился, когда через год после первой находки впервые объявил о них. Также в своем первом заявлении Спригг заявил, что окаменелости, по-видимому, принадлежат животным разных родов[94].
Спустя некоторое время Спригг совместно с профессором Дугласом Мосоном и его студентами из Университета Аделаиды собрал еще несколько образцов необычных фоссилий. В том же месте, где были найдены первые окаменелости, обнаружилось еще больше образцов, и в 1949 году Спригг выпустил полный отчет о своем открытии, в котором содержалось подробное описание любопытных фоссилий[95]. Все образцы, которые он описал, происходили из кварцитов. Паунд — геологической формации, возраст которой никак не удавалось достоверно определить: будь это кембрийский период, то он вряд ли бы представлял интерес, но если протерозойский, то странные ископаемые отпечатки оказались бы самым древним свидетельством существования животных на Земле.
В результате тщательного анализа было установлено, что эти окаменелости не похожи ни на одно из ныне живущих существ. Но наиболее таинственной была сама природа отпечатков. Во-первых, организмы, не имеющие твердых частей, очень редко оставляют отпечатки. Если все же это происходит, то только в мелкозернистых породах типа глинистых сланцев, в осадочных слоях, образованных на дне тихих стоячих вод. Но существа Спригга, очевидно лишенные скелета, сохранились в песчанике, а не в мелкозернистой породе.
Чтобы определить, было ли вообще возможно такое окаменение животных, похожих на современных медуз, актиний или морских перьев, провели ряд экспериментов. Одним из исследователей был Мартин Глесснер[96], австралийский геолог и автор книги The Dawn of Animal Life: a bio historical study («Появление животных: биолого-историческое исследование»). Он описал серию экспериментов, в которых использовались очень большие медузы, помещенные на тонкий слой песка. Он отметил, что медузы действительно образуют отложения там, где это позволяют условия среды. Ископаемые, описанные Сприггом, теоретически не могли образовать окаменелостей.
Гранулы песка образуют отложения в местах с относительно высокой энергетикой. Песчаники находят сегодня у морских побережий, в реках, в песчаных дюнах — везде, где эти более-менее тяжелые гранулы могли бы перемещаться водой. В таких местах более мелкозернистые глины или тина никогда не образуют отложений, поскольку они слишком легкие и не задерживаются в проточной воде, а перемещаются в какие-нибудь более далекие места. Однако эдиакарские окаменелости и большие, и многочисленные, и находятся в песчаниках.
Чтобы глубже проработать эту проблему, летом 1987 года Питер Уорд пригласил студентов-палеонтологов Вашингтонского университета в лаборатории на островах Сан-Хуан в штате Вашингтон, чтобы поучаствовать в воссоздании условий, при которых могли формироваться эдиакарские ископаемые. Было проведено несколько видов экспериментов. В морских водах вокруг островов Сан-Хуан обитают разнообразные и многочисленные кишечнополостные организмы — таксономическая группа, очевидно наиболее близкая к формам эдиакарских отложений. Для имитации мелководного морского дна возрастом 600 млн лет большие резервуары различной площади наполнили песком и затем залили морской водой. Эксперименты походили на ранее проведенные Глесснером, но в данном случае использовались более крупные организмы, и, кроме медуз, брали и других представителей типа.
Тела недавно умерших морских перьев, актиний и крупных медуз помещали на песок. Поверх тел животных укладывали слой песка, и всю систему оставляли в таком состоянии на некоторое время, а через несколько дней верхний слой удаляли. Ни один из этих экспериментов не продемонстрировал остаточных следов на песке.
В конце концов один из студентов предложил довольно оригинальную идею. На плотный песок сверху клали кусок легкой капроновой сетки от нейлоновых чулок, а затем на сетку аккуратно помещали очень большую медузу. Сверху все это покрывалось тонким слоем более легкого песка, а потом этот «бутерброд» заливали морской водой. Через несколько недель, когда сняли верхний слой песка и убрали нейлоновую сетку (мягкие части мертвого животного к тому времени уже полностью разложились), оказалось, что под чулком осталось прекрасное изображение организма, который лежал там сверху, включая детально отпечатавшуюся структуру строения внутренних органов.
Возможно, эти эксперименты ничего не значат. Но что, если в древние времена песок был покрыт чем-либо, похожим по толщине и фактуре на нейлоновый чулок, и поэтому не перемещался под действием малейшего движения воды? Мы представляем, что морские мелководья были покрыты тонкой пленкой, или несколькими пленками, микроорганизмов. Хотя они были очень хрупкими и легко разрушались штормами, эти покрывала удерживали осадочные частицы и таким образом сохраняли отпечатки мягкотелых животных, которые лежали на них после своей смерти, медленно покрываясь слоями песка, а это позволяло оздоровить среду для следующих поколений организмов.
На планете больше нет таких природных условий, в которых могли бы сохраняться отпечатки существ, лишенных скелета. Появление организмов, которые свободно передвигаются, привело к тому, что живые покрывала просто съедают. Нечто похожее произошло и со строматолитами после появления травоядных.
Сегодня известно около 30 мест на шести континентах, где была найдена вендская биота. Обнаруженные представители этой фауны относятся к 70 различным видам, и все они жили не позднее неопротерозоя[97] (хотя есть предположения, что некоторые из них захватили ранний кембрий). Предполагается, что эдиакарские организмы достигли пика своей эволюции 575 млн лет назад в результате авалонского взрыва (назван по аналогии с кембрийским взрывом). Это произошло приблизительно через 50 млн лет после последних серий протерозойских «снежков».
По всей видимости, в те времена процветали целые сообщества таких организмов. Затем, 550–540 млн лет назад, вендобиота неожиданно исчезает из ископаемых летописей. На это время приходится появление косвенных свидетельств того, что животные приобрели способность к передвижению. Следы передвижения и пищевой деятельности присутствуют в осадочных породах. Так, большая и разнообразная группа животных исчезла как раз в тот момент, когда стали развиваться другие живые организмы (кембрийский взрыв)[98]. Это исчезновение является первым массовым вымиранием, зафиксированным в ископаемых отпечатках, хотя, разумеется, и не самым первым массовым вымиранием на Земле в принципе. Очевидно, что найденные впервые в Австралии представители эдиакарской (вендской) биоты были распространены по всей планете.
Существует множество еще не получивших подтверждения предположений по поводу того, как происходил энергообмен в сообществах вендской биоты[99]. В современных экосистемах основу пищевой цепи формируют фотосинтезирующие растения, которыми кормятся несколько уровней организмов, а те в свою очередь становятся добычей нескольких уровней хищников. Биомасса каждого из этих уровней составляет лишь 10 % от более низкого уровня пищевой цепочки. Вендобиоты демонстрировали совершенно иное устройство. Не было обнаружено каких-либо челюстей или признаков хищничества, хотя ближайшие родственники большинства эдиакарских организмов относятся к стрекающему типу, а они все хищники! Предположительно представители биоты имели симбиоз с множествами микроскопических водорослей (dinoflagellates — панцирножгутиковые), как это происходит у современных кораллов. Но доказательств этому нет. Поскольку, как кажется, в мире того периода не было хищников, его поэтически называют «эдиакарским садом», ведь он был последним моментом в истории Земли, когда относительно большие многоклеточные животные жили, не боясь нападения. К периоду, датируемому 540 млн лет назад, этот «райский сад» исчез, уступив место огромному разнообразию ползающих и плавающих плотоядных и травоядных.
Почему появление первых подвижных животных произошло так нескоро? Возможно, виной тому были факторы внешней среды, например, низкое содержание кислорода в атмосфере или очень высокие температуры воздуха и воды. Доподлинно известно лишь то, что 600–550 млн лет назад появилась целая категория новых существ: у них имелись внутренние полости, наполненные водой, которые могли служить подобием скелета (гидростатический скелет). Также существовали организмы с мускулами, нервами, специализированными рецепторными клетками, половыми клетками, клетками соединительных тканей и со способностью производить твердые скелетные части. Животные или неживотные, существа эдиакария были первыми, у кого развился скелет. Скелет позволял нарастить мускулатуру, а мускулы предполагают способность к передвижению. Передвижение в свою очередь стало двигать эволюцию дальше, к еще большей усложненности организмов. Со способностью передвигаться у живых существ появилась необходимость развивать рецепторную/чувственную систему, чтобы искать пищу и себе подобных, а также избегать столкновений с хищниками. Чувственная информация предполагает наличие мозга, который порождает такие импульсы. Все эти условия в целом создали основу для такого эволюционного развития, которое привело в конце протерозоя к настоящей революции многоклеточных.
Сейчас можно только фантазировать о том, что представлял собой «базовый» многоклеточный организм, первый предок всех сложных организмов на планете. Он, по всей видимости, был маленьким, состоящим из очень небольшого числа клеток, клеточных стенок не было, имелся внешний покров, защищающий от внешних воздействий, а внутри должны были располагаться полости с коллагеном, который служил скелетной основой организму. Кроме того, должен был существовать «генетический инструмент», позволяющий организму развиваться в размерах и сложности и стать в конце концов миром эукариотов: больших, приспособляемых, двуполых многоклеточных с высокой степенью адаптивности к среде. Ползая, плавая, двигаясь на лапах и даже прикрепляясь к одному месту, они распространяют многообразие жизни по всей Земле. Животные с двусторонней симметрией — как мы с вами — доминируют по численности. Однако в раннем кембрии таких пока еще было очень мало, хотя в дальнейшем им суждено было расселиться по всей планете.
Обычно наука быстро решает проблемы, которые кажутся ей интересными. Однако эдиакарская фауна все еще не до конца изучена, все ее тайны не раскрыты до конца. Впрочем, за последние пять лет проведено много исследований в области, которая незаслуженно находится в тени смежных отраслей знания, — это палеоэкология. Хотя данное научное направление является мощным орудием изучения палеонтологических проблем, в последние десятилетия ей не удавалось сделать серьезных и заметных обобщений, поэтому о ней часто забывают. Но в новом тысячелетии это направление вновь возродили в своих работах Мэри Дрозер из Калифорнийского университета и Джим Гелинг из Музея Южной Австралии.
Палеоэкология помогла им разобраться в особенностях существования более крупных, чем описанные выше, представителей эдиакарской фауны.
Дрозер и Гелинг считают, что вендобионтов необходимо изучать с учетом особенностей их сосуществования с покровными микроорганизмами морского дна. Сообщества микроорганизмов, образующих на поверхностях морского дна целые «полотнища», не могут не иметь большого влияния на экологию тех мест, где они обитают. В первую очередь это касается процессов, связанных с органическими осадками. Поскольку в эдиакарии не существовало еще организмов, которые строили бы норы в морском грунте и осажденных на дно органических останках, то экология морского дна тех времен была совершенно не похожа на современные экосистемы в тех же областях моря.
Экологическую связь с покровными микроорганизмами в эдиакарии могли иметь четыре типа живой природы:
• формы, которые устраивались на поверхностях покровов и, возможно, выделяли особые пищеварительные ферменты, растворяющие покров и обеспечивающие пищевой ресурс;
• формы, которые попросту «паслись», поедая покровные микроорганизмы;
• формы, которые образовывались также на поверхности покровов, но использовали их для движения к поверхности воды — образующиеся покровы разрастались вверх, к свету и теплу;
• формы, которые обитали под покровами.
Некоторые из этих форм могли существовать и в кембрии, но с появлением более крупных травоядных, хищников, а также организмов, которые строили туннели, вид этих экосистем в дальнейшем до неузнаваемости изменился.
Удивительный мир подобных живых сообществ также занимателен с точки зрения их сохранности в ископаемых отложениях. Исследователи сделали предположения, что останки вендобионты, которые можно обнаружить в породах, не столько затвердевали сами по себе, сколько сохранялись благодаря тому, что вскоре после гибели их покрывали своим «полотном» микроорганизмы, которые потом и способствовали окаменению.
Одноклеточная жизнь господствовала на Земле миллиард лет, и окаменелости, оставшиеся от них, — это микроскопические шарики с гладкими стенками. Но в отложениях, относящихся к периоду, который последовал за последним неопротерозойским «снежком», обнаруживаются также микроокаменелости, имеющие усложненную фактуру, в том числе шипы. Период существования форм, давших такие окаменелости, был совсем короток (600–560 млн лет назад), однако значение их велико, поскольку они напоминают скорее переходные формы от одноклеточных к многоклеточным, чем простые одноклеточные ископаемые. Такие «колючие» останки на самом деле могут рассматриваться как стадии развития организмов в состоянии цисты.
Этим необычным ископаемым посвящено несколько работ, в том числе биологов Ника Баттерфильда и Кевина Петерсона[100]. Эти ученые считают, что появление таких микроокаменелостей с фактурными поверхностями в раннем эдиакарии было реакцией на возникновение первых хищников, например, нематод. Шипы, таким образом, были защитным механизмом. Однако группа исследователей во главе с Ноллом предположила, что усложненность строения поверхностных покровов этих ископаемых позволяет считать их формой состояния покоя каких-либо существ. Это предположение ведет к выводу о том, что относительно сложная и ранняя эволюция животных происходила и до того, как в эдиакарии появились существа, оставившие первые более крупные окаменелости. А кроме того, если данное предположение верно, то эдиакарий не был райским садом. Необходимость образовывать цисту возникает в неблагоприятных условиях колебания кислородного уровня, возможно, иногда толщи воды вовсе лишались кислорода и насыщались сероводородом. Ранний период эволюции животных, таким образом, был труден.
Появление тел с двусторонней симметрией было еще одним значимым скачком эволюции. Животное с двусторонней симметрией имеет четко выраженный «перед» и «зад», и внутренние органы располагаются более-менее симметрично по обе стороны этого «передне-заднего» трубкообразного тела. Так, мы полагаем, выглядел предок разнообразного животного мира. Но вот возраст такого ископаемого очень долго не могли определить.
Согласно генетическим исследованиям, он жил 573–656 млн лет назад[101]. Но окаменелости не дают четкого представления о живом организме, который должен был иметь червеобразное тело без скелета, не более миллиметра в длину. Если не упоминать о заслуженной насмешке со стороны дарвинской теории, здесь, в любом случае, даже ископаемая летопись должна иметь явный пробел: очень невелики шансы, что существо без скелета и не более миллиметра длиной могло оставить какие-то следы своего присутствия.
Но тут помогли находки в Китае[102]. В начале XXI века там обнаружили породы, которые по возрасту предположительно относились к периоду, когда должен был появиться первый двусторонне симметричный организм. Образцы очень долго и тщательно анализировали на предмет точной датировки, чтобы определить, именно к тому ли специфическому моменту времени они относятся. Когда эта работа была закончена, начались поиски гипотетического ископаемого. И датировка, и последующий поиск оказались нелегким делом.
Понадобилось три года, в течение которых кусок породы разрезали на 10 тысяч отдельных тончайших пластин (настолько тонких, чтобы через них проходил свет и они, таким образом, могли быть изучены под микроскопом), и было найдено как раз такое животное. Оно было даже меньше миллиметра: его длина равнялась толщине человеческого волоса. Его рассмотрели, изучили и назвали это крошечное чудо Vernanimalcula. Ему было около 600 млн лет.
Недостающее звено нашлось. Маленькие и невзрачные, эти существа были настоящими революционерами — самыми ранними организмами с двусторонней симметрией, которые прокладывали путь остальным. Но это еще не всё: в добавление к ископаемым с двусторонней симметрией в формации Доушаньто в юго-западном Китае обнаружили также яйца и эмбрионы самых древних животных. Это открывает нам путь к пониманию того, как изменялись животные в течение 600 млн лет до сего дня и как они меняли саму природу осадочных летописей.
До животных не существовало «биотурбации»: перемешивания наслаивающихся осадочных материалов под воздействием жизнедеятельности организмов. Это вмешательство животных в образование осадочных пород настолько сильно сегодня, что является распространенным правилом, на фоне которого исключения очень хорошо заметны. Например, дно современного Черного моря (на больших глубинах там нет животных) очень твердое и демонстрирует и четкое расслоение, и очень низкое содержание воды. Контрастом ему является дно любого насыщенного кислородом моря: несколько сантиметров над донным субстратом полны тины, экскрементов и прочего растворенного органического материала. Далее вглубь не обнаруживается и выраженное расслоение, поскольку все перекапывается и поедается, и так без конца: медленно двигающиеся беспозвоночные или едят на ходу (осадочный материал поглощается — осадочный материал выделяется в виде экскрементов), или удирают, или строят норы. Значительная толщина придонных осадочных слоев очень насыщена водой в результате такой жизнедеятельности.
Из всех изменений это было одним из самых важных. В XX веке его прозвали «агрономической революцией», она — главный отличительный признак между состояниями морского дна между протерозоем и фанерозоем и, соответственно, этапами стратиграфической летописи, которую они после себя оставили[103]. Симметричные организмы перемещались не только по поверхности осадочных материалов, которые они быстро заселяли. Они также рыли норы и таким образом производили вертикальное освоение дна. По нашему разумению, такое не могло происходить без достаточной кислородной насыщенности морей: наполняемость кислородом донных отложений осложняется даже при наличии нор и наверняка была невозможной при общемировом содержании кислорода в окружающей среде, скажем, менее 10 %. Раньше считалось, что строматолиты и микробиотный покров морского дна исчезли на рубеже протерозоя и кембрия потому, что их съели появившиеся более крупные животные. Новый взгляд предполагает, что животные с двусторонней симметрией не просто поедали питательные покрывала, состоящие из микроорганизмов, но также создавали твердый субстрат, который способствовал почти полному исчезновению этих покровов.
Самое окончание протерозойского эона, около 600 млн лет назад, ознаменовалось установлением всех условий, пригодных для существования животных. Все необходимые генетические инструменты для развития больших размеров, скелета и разнородных тканей для разнообразной деятельности оказались на своих местах. Не хватало только одного — достаточного количества кислорода. 600 млн лет назад эволюция животных оказалась «на низком старте», но кислорода для нее было мало. Но примерно 550 млн лет назад ситуация изменилась — кислорода прибавилось.
То, как и почему это произошло, самым незамысловатым образом показала группа геологов, которые работали на стыке нескольких направлений: геологии, химии, биологии. Другими словами, самая сладкая ягодка научного прорыва созрела не на одном из традиционных научных полей, а на меже. Группа под руководством Мартина Кеннеди из Университета Аделаиды раскрыла важную для атмосферных изменений роль мельчайших осадочных частиц — микроскопических крупинок глины[104].
Из всех геологических субстанций глина — минерал с наименее романтической судьбой. И тем не менее в больших количествах она способна изменить химический состав воздуха и воды на всей планете — что, собственно, и произошло. Кеннеди с коллегами утверждает, что возрастание количества частиц глины на морском дне по краям континентов спровоцировало изменение в объемах отложений органических останков, поскольку возрастающее количество восстановленных молекул углерода задерживалось на поверхностях микроскопических глинистых частиц. Австралиец Кеннеди вскоре стал первым директором Геологического центра имени Реджинальда Спригга в Университете Аделаиды. Это новое учреждение, названное в честь первооткрывателя эдиакарских ископаемых, ориентировано на развитие недавно появившейся науки — геологической биологии. Работа Кеннеди показывает нам, почему уровень содержания кислорода так быстро вырос во времена эдиакарской биоты в позднем протерозое. Значимость изысканий Кеннеди в том, что если представители этой биоты и исчезли потому, что появились более развитые животные, то кончина их была еще и ускорена простым изменением того, как и где в океанах накопились самые крошечные из всех осадочных частиц.
Как было сказано в предыдущих главах, количество кислорода в атмосфере (и в гидросфере, коль скоро они непосредственно соприкасаются почти по всей поверхности морей) зависит от нескольких факторов, включая биологическое производство кислорода посредством фотосинтеза. Но куда более весомый эффект дает отложение и выветривание органического материала. Органические молекулы, такие как этан и метан, «восстановлены», а значит, и быстро окисляются, если приходят в соприкосновение с кислородом, растворенным в воде. Этот процесс химически изменяет кислород в молекулу (такую как H2O), которая больше не может окислять другие восстановленные молекулы. Но «восстановленные» органические молекулы могут терять контакт со свободным кислородом в воздухе или воде. Это может происходить, например, когда они быстро покрываются осадочными материалами и, таким образом, не имеют контакта с кислородом, растворенным в определенном море или озере. Кислород, постоянно продуцируемый растениями, в таком случае может накапливаться, что приводит к еще большей концентрации его в атмосфере. Если достаточное количество «восстановленных» органических молекул оказывается погребенным под осадочными частицами или, наоборот, вырывается на волю (что означает уменьшение объемов кислорода), то эти процессы могут приводить к существенным изменениям в атмосфере и, таким образом, влиять на жизнь на Земле. Но есть одна большая проблема. В осадочных породах наблюдается относительно небольшая концентрация органических молекул по сравнению почти с любым другим элементом, и если только органика каким-либо образом не удерживается на месте, то она мало накапливается в осадочных породах.
Органические молекулы и в самом деле легки. Бензин, например, представляет собой короткую органическую молекулу: он плавает на поверхности воды и быстро испаряется. Большая часть всего объема органических молекул, обнаруженных в океанах, реках и озерах, получается в результате разложения биологического материала, распада растительной или животной ткани на короткие цепочки углерода, химически связанного с атомами водорода. Единственный способ похоронить такие легкие молекулы под осадочными породами — это дать им какой-нибудь балласт. Вот тут-то и вспомним про глину. Кеннеди и его команда заметили, что глина без труда цепляет органические молекулы с помощью различных химических или даже механических способов. Медленно погружаясь ко дну сквозь толщу воды, маленькие частицы глины по пути подхватывают еще более мелкие органические молекулы и тянут их за собой на дно моря или озера. Словно хлопья снега во время снегопада, падающие частицы покрываются все большим количеством глинистых «снежинок», укрывая — слой за слоем — органические молекулы. Со временем в твердых толщах Земли накапливается большое количество восстановленных органических соединений. В результате повышается уровень кислорода.
Появление глинистых частиц — результат выветривания пород. Если кусок гранита оставить на растерзание стихиям, то он начнет постепенно крошиться. Некоторые из таких разрушений механические (например, процессы замерзания-таяния, когда вода попадает в тончайшие трещинки, замерзает и тает там, в процессе постепенно разрушая породу). Но чаще всего это результат химических реакций дождевой воды с какими-нибудь веществами в самом граните. В минеральном составе возникают значительные изменения, и одним из результатов такого выветривания является глина. Но большая часть глины происходит не из гранита на поверхности почвы, а из самой почвы. Там выветривание маленьких минеральных крупиц происходит в химически сложных, а иногда и кислотных микроусловиях в комбинации с органическими и неорганическими соединениями. И возникают комочки глины.
Почва фактически обеспечивает обе необходимые части уравнения под названием «как увеличить объемы кислорода»: и глину, и органику. Все, что потребовалось в позднем протерозое, это смыть большое количество органики из материковых почв в океан. Там глина и органические молекулы объединились, утонули и укрылись под осадочными породами. Проблема была решена, хотя и есть одно заковыристое обстоятельство: в учебниках-то написано, что на протерозойских материках не было значительного количества почвы, поскольку не было наземных растений.
Чтобы объемы кислорода достигли уровня, необходимого для животных, а это как минимум 10 % от содержания всех газов в атмосфере (для сравнения — сегодня в атмосфере содержится около 21 % кислорода), необходимо было «похоронить» огромное количество органических молекул. И кислорода-то в самом деле стало больше! Это можно объяснить, только предположив, что непосредственно перед появлением животных произошло какое-то весьма радикальное изменение в осадконакоплении. Такое новое видение вопроса, пожалуй, наилучшим образом обобщила группа Кеннеди в конце своего научного труда: «Итак, мы показываем минералогическое и геохимическое свидетельство увеличения глинистых отложений в позднем протерозое, которое непосредственным образом предшествовало появлению многоклеточных животных. Большинство современных глинистых минералов происходят из биологически активных почв, таким образом, первоначальное распространение примитивной сухопутной биоты сильно продвинуло выработку глинистых веществ, а это усилило развитие самих почв („фабрику глины“) и привело к увеличению морских отложений органического углерода посредством их сохранения под минеральными покровами».
Выводы этой работы невозможно переоценить. Самым важным, наверное, является то, что до недавнего времени мы сильно заблуждались насчет датировок и усложненности сухопутных живых сообществ в ранней истории Земли. Оказывается, они существовали намного раньше и имели намного более развитую, усложненную, разнообразную структуру, и у биомассы присутствовала иерархия. Более того, как показано еще в одной статье Кеннеди и его коллег, имеются объективные, прослеживаемые в геологической летописи свидетельства того, что уже в период кембрийского взрыва в пресноводных реках и озерах существовали усложненные живые организмы и сложные экосистемы. Это тоже дает важный вывод для понимания истории развития жизни. Все более и более очевидным становится тот факт, что завоевание суши животными и высшими растениями не обязательно происходило как прыжок из океана в сухопутные среды обитания. В большинстве случаев сперва происходил переход из соленой воды в пресную, а уже потом, на основе освоения пресноводных водоемов, жизнь вышла на сушу. В конечном итоге покорение суши было наиболее логичным следующим биологическим шагом, поскольку пресноводные сообщества уже состояли из животных и растений, строение организмов которых вполне могло такой шаг обеспечить.