До сих пор слово «пептиды» использовалось просто как обозначение одного из многих классов молекул-биорегуляторов — примерно так же, как мы говорим «собака», увидев симпатичное животное, дружелюбно помахивающее хвостом. Однако эксперт-собаковед не согласился бы с таким упрощенным подходом ко всему собачьему племени в целом. Ведь несмотря на то, что все собаки — родственники и относятся к одному и тому же виду Canis familiaris в зоологической классификации, их свойства могут быть совершенно различными.
Для химика аминокислоты, пептиды и белки — тоже родственники, и очень близкие. Их молекулы состоят всего из пяти типов атомов: углерода (С), азота (N), кислорода (О), водорода (Н) и, значительно реже, серы (S). Пептиды и белки представляют собой полимеры, то есть цепочки из нескольких мономерных единиц — как раз эти единицы и называются аминокислотами.
Пептиды, функционирующие в организме, построены, как правило, лишь из вполне определенных аминокислот вида:
Когда аминокислоты соединяются в цепочку (это происходит с выделением молекул воды), образуется типичный пептид:
Элемент CONH, называемый пептидной группой, или пептидной связью, повторяясь, образует остов молекулы (в дословном переводе с английского backbone — «костяк, скелет»), а различные типы атомных группировок, ответвляющиеся от остова и условно обозначенные буквами R1, R2, R3, R4... Rn называются боковыми цепями. Каждая боковая цепь имеет свою индивидуальность: в целом пептидная цепочка напоминает модные в свое время ожерелья из разноцветных и разнокалиберных кусочков пластмассы — тем более что молекула пептида иногда бывает замкнута в кольцо.
Разнообразие аминокислот, из которых образуются природные пептиды, не так уж велико: подавляющее большинство пептидов состоит всего из двадцати типов мономеров. Инструкция по включению в пептидную цепь именно этих двадцати аминокислот записана в молекулах нуклеиновых кислот, обеспечивающих передачу всей генетической информации об организме от поколения к поколению.
Нуклеиновые кислоты представляют собой, как уже говорилось, очень длинные полимеры, построенные из мономеров нуклеотидов. В свою очередь, нуклеотиды состоят из оснований, присоединенных к сахарам одного из двух типов — рибозы и дезоксирибозы. Именно сахара образуют полимерную цепочку — или из рибозы (рибонуклеиновая кислота, РНК), или из дезоксирибозы (дезоксирибонуклеиновая кислота, ДНК). Особые биохимические механизмы «прочитывают» каждые три нуклеотида, стоящие подряд в цепочке ДНК, и воспринимают эту информацию как приказ либо начать синтез белковой молекулы, либо выбрать из запасов организма какую-либо аминокислоту, либо завершить синтез. Соответствие между тройками нуклеотидов и выбираемыми аминокислотами устанавливает генетический код, открытие которого до сих пор можно смело считать самым большим достижением молекулярной биологии. А правилами этого кода предусмотрен выбор только упомянутых выше двадцати аминокислот.
Правда, в природных пептидах и белках иногда встречаются и другие аминокислоты. Но они, как говорят на молекулярно-биологическом жаргоне, не кодируются, а получаются в организме из аминокислот, уже включенных в состав пептидных молекул.
Такое сверхкороткое описание сложнейшей проблемы, официально называемой ни много ни мало «центральной догмой молекулярной биологии», может создать впечатление, что ее решение далось легко и просто. На самом же деле это потребовало многих лет труда, сотен, если не тысяч, изощренных экспериментов и немалых чисто человеческих разочарований, ибо об устройстве, например, генетического кода были выдвинуты десятки остроумнейших гипотез, а уцелела в результате лишь одна.
К тому же превращение этой гипотезы в общепризнанную (на уровне Нобелевской премии) теорию немедленно выдвинуло новую проблему: почему данная тройка нуклеотидов означает выбор именно данной аминокислоты? И тогда пришлось ставить новые эксперименты, придумывать новые гипотезы и так далее. Иными словами, в науке удачный ответ — это только повод для новых вопросов, и в этом смысле творческая жизнь научных работников отличается от бега белки в колесе лишь возможностью в случае успеха расширить размеры колеса.
Итак, пептиды — это цепочки аминокислот, выстроенные в ряд (его еще называют аминокислотной последовательностью). Зная, как организованы пептиды, мы тем самым знаем и химическую структуру белков, веществ, выполняющих в организме множество чрезвычайно важных функций — от обеспечения правильного течения биохимических реакций (например, большинство ферментов — белки) до использования в качестве строительного материала. По представлениям химика, белки — это точно такие же цепочки из тех же двадцати типов аминокислот остатков, но гораздо большей длины, чем пептиды. Обычно считается, что цепочка размерами где-то не более пятидесяти аминокислот — это еще пептид, а сверх того — уже белок.
Если бы эта книга писалась в советскую эпоху, в раздел о белках пришлось бы вставить обязательную цитату из классика марксизма-ленинизма Фридриха Энгельса: «Жизнь есть способ существования белковых тел». Иначе бдительный редактор остановил бы продвижение рукописи по издательскому конвейеру — продемонстрировать знание трудов основоположников было необходимо. В наши дни над их сочинениями принято скорее посмеиваться — а между тем это глубокое высказывание заслуживает внимания и сейчас, через сто с лишним лет после того, как была написана работа Энгельса «Диалектика природы».
Получение химически чистого пептида небольшой длины — пять, шесть, восемь аминокислот — в наши дни задача для студента-старшекурсника. Тем не менее синтез пептидов до сих пор считается одним из труднейших видов химического синтеза. Действительно, чтобы получить нужную последовательность, концевые группы каждой аминокислоты нужно сначала модифицировать (химики говорят «защитить»). Аминокислот — двадцать типов; вариантов групп, подлежащих защите при синтезе — не менее десятка; каждую из них приходится активировать особым образом; освобождать синтезированный пептид от висящих на нем защитных группировок также нужно каждый раз по-разному. Учитывая все это, сравнение химика, ведущего пептидный синтез, с гроссмейстером, разыгрывающим ответственную партию и просматривающим варианты на десятки ходов вперед, вовсе не будет гиперболой.
Такое лестное сравнение правомерно для пептидных химиков даже сейчас, когда уже изучены многие удобные для пептидного синтеза реагенты, защитные группы, условия реакций с участием различных аминокислот и тому подобное. А что же говорить о тех гигантах, которые воздвигли и продолжают строить небоскреб химии пептидов: от немецкого химика Эмиля Фишера, первым предположившего и доказавшего, что белки и пептиды состоят из аминокислот (второй в истории химии нобелевский лауреат — 1902 год), к швейцарскому ученому Винсенту Дю Виньо, осуществившему первый синтез девятичленного пептида окситоцина (Нобелевская премия 1955 года), и американскому синтетику Брюсу Меррифилду, придумавшему революционное усовершенствование — так называемый твердофазный синтез пептидов и белков (Нобелевская премия 1984 года). Здесь названы только трое; но за сто с лишним лет существования химии белков и пептидов на ее небосклоне сияло и продолжает сиять несколько десятков ярких созвездий по-настоящему выдающихся ученых.
Рекорд в длине пептидной цепочки, синтезированной в лаборатории, был поставлен в 1969 году: две группы американских химиков независимо друг от друга объявили о получении полной аминокислотной последовательности белка рибонуклеазы А (сто двадцать четыре аминокислоты) и почти полной последовательности рибонуклеазы S — сто четыре звена. Синтетический препарат рибонуклеазы А обладал 70-80 процентами биологической активности природного белка, но было вполне вероятно, что этот уровень активности обусловлен не «правильной» последовательностью, а несколько искаженными побочными продуктами синтеза (например, цепочками с пропуском одной или нескольких аминокислот).
Поэтому усилия пептидных химиков сосредоточились на разработке таких методов синтеза и разделения его продуктов, которые обеспечивали бы безусловную химическую чистоту и полную биологическую активность синтезируемых пептидов. Поначалу считалось, что в этом отношении твердофазный синтез Меррифилда, основанный на применении особого аппарата — полуавтоматического синтезатора, — уступает традиционным подходам. Первый биологически активный пептид — хорошо известный биорегулятор ангиотензин — был получен с помощью нового метода в 1965 году Гарландом Маршаллом, учеником Меррифилда. И нелицеприятная дискуссия о чистоте продукта началась при первом же выступлении Гарланда в Европе.
Много позже, на рубеже столетий, когда я уже проработал немало лет бок о бок с профессором Гарландом Маршаллом, он признавался мне, что все еще не может забыть ледяной прием, оказанный его давнему докладу грандами пептидной химии. По счастью, среди них нашелся человек, который пригласил молодого аспиранта на чашку кофе и дал понять, что коллеги, в сущности, просто немного завидуют успеху — отсюда и такая реакция. Это был Йозеф Рудингер, легендарный пептидный химик из Праги — он, например, основал существующие до сих пор Европейские пептидные симпозиумы. Рудингер был вынужден бежать из Чехословакии дважды, в 1939 и 1968 годах: в Англию от оккупации гитлеровской и в Швейцарию от оккупации советской. Мне не довелось познакомиться с ним лично, но я не раз слышал рассказы о нем его ближайших сотрудников. Чаще всего вспоминали, как Рудингер, который совсем молодым пареньком служил в британских ВВС во время войны, любил обсуждать за кружкой пива воздушные бои над Ла-Маншем с Эрихом Вюншем, бывшим боевым летчиком люфтваффе, тоже ставшим после войны известным пептидным химиком.
После успеха с рибонуклеазой А сомневаться в принципиальных способностях синтеза пептидов воспроизводить длинные аминокислотные цепи уже не приходилось. Синтез превратился из научной задачи в задачу технологическую, хотя и весьма сложную: в случае с рибонуклеазой А понадобилось провести триста шестьдесят девять химических реакций и еще тысяча сто тридцать одну вспомогательную операцию. Эта ситуация подтолкнула развитие методов аналитической химии, в первую очередь различных видов хроматографии, позволяющих найти и выделить все возможные соединения, содержащиеся в реакционной смеси — буквально отыскать иголку в стоге сена. Кроме того, на помощь пришла новая идея — микробиологический синтез белков. Синтез последовательностей нуклеотидов гораздо проще химического синтеза белков, так что синтезировать последовательность нуклеотидов, кодирующую аминокислотную последовательность какого-нибудь белка, сравнительно легко. Полученную нуклеиновую кислоту внедряют затем в организм бактерии (обычно используют кишечную палочку вида Escherichia coli), которая и начинает синтезировать требуемый белок.
Тем самым пептидные химики, уже болезненно пережившие однажды вторжение в свои ряды роботов-синтезаторов, вынуждены были признать, что в гонке за длиной пептидной цепочки их опередили микроорганизмы. По счастью, научные задачи пептидной химии этим не исчерпываются: всегда интересно провести синтез пептида при каком-нибудь необычном сочетании аминокислот в цепи, придумать новую, более удобную, защитную группу, применить новый эффективный реагент — за сто лет многое еще осталось неисследованным. Но проблему получения практически любой пептидной или белковой молекулы в химически чистом виде сегодня можно считать решенной.
Яйцо издавна служило символом жизни; во многих религиях оно представляется вместилищем силы, которая способна породить все живое. С возникновением христианства яйцо получило дополнительное значение: снаружи яйцо выглядит мертвым, но внутри его находится новая жизнь, которая выйдет из него. Поэтому и появился обычай дарить друг другу пасхальные яйца, зачастую окрашенные красным — цветом пролитой крови Христа. Пасхальное яйцо напоминает о том, что Иисус восстанет из Своего гроба и даст новую жизнь.
Здесь, однако, налицо противоречие: ведь пасхальные яйца сварены вкрутую, что полностью исключает зарождение в них живого организма. Воскресения не произойдет — во всяком случае, из такого яйца. А почему, собственно? Ведь химический состав главных компонентов яйца — белков — при кипячении не изменится. Даже пептидные связи не разорвутся при температуре 100 °С.
Значит, правильно выстроенной в линию последовательности аминокислот еще недостаточно для проявления биологических свойств белков или пептидов. Молекула белка в клетке должна иметь какое-то дополнительное свойство, которое и позволило бы ей выполнять свою биологическую функцию. Это свойство заключается в способности принимать вполне определенную пространственную структуру, называемую также конформацией. Более того, именно конформация молекулы белка определяет его функцию в клетке.
Змейка Рубика: кошка, кобра, собака
Некоторое представление о том, что такое конформация, можно получить на примере распространенной детской игрушки — змейки Рубика. Она составлена из двадцати четырех одинаковых элементов — призм треугольного сечения, — причем соседние призмы соединены шарнирами, которые позволяют поворачивать разные части змейки друг относительно друга. При определенном навыке из линейной змейки, вытянутой в длину, можно построить более сотни различных двумерных и трехмерных фигурок: кота, кобру или, скажем, собаку.
Каждая из этих фигурок — специфическая пространственная структура змейки Рубика. И каждая имеет свой смысл, несет свою информацию: кошку не спутаешь с коброй или с собакой. В линейной цепочке эта информация содержится лишь в скрытом виде; чтобы она проявилась, одномерную змейку надо свернуть в трехмерную структуру, притом организованную вполне однозначным образом.
В белковых последовательностях не двадцать четыре, а сотни элементов-аминокислот, и не одинаковых, а разных — двадцать возможных типов. И различных фигурок-конформаций из них можно представить себе десятки тысяч. Но удивительным образом в живой клетке для всех молекул белка с одной и той же аминокислотной последовательностью реализуется только одна уникальная пространственная структура. Именно по этой конформации данный белок «узнают» другие молекулы в клетке, и с этого узнавания начинаются все биохимические реакции с его участием.
Конформация, о которой идет речь — ее называют нативной, то есть естественной, — существует в определенных условиях: в водном растворе заданной кислотности при температуре обычно не выше 42-45 °С и нормальном давлении. Если же условия изменяются — например, температура повышается до уровня кипения воды, — изменяется и эта конформация; точнее, она ломается. Белковая цепочка принимает другие пространственные структуры, но они уже не способны выполнять биологические функции белка, потому что остальные молекулы клетки их не узнают. Налаженная система взаимодействий внутри клетки прерывается, и жизнь прекращается: из крутого пасхального яйца цыпленок не вылупится.
Рассказ о том, что биологические функции белков и пептидов связаны с их пространственной структурой, можно было начать еще раньше, когда речь шла об основах химии пептидов. Для этого схематическую формулу аминокислоты пептидной цепочки следовало переписать вновь, но уже чуть-чуть по-другому:
чтобы стало понятней, что центральные атомы углерода (С) обладают, как говорят химики, четырьмя заместителями, причем все заместители у них разные. Каждый из них присоединен к атому С стерженьком, символизирующим валентную связь.
Но расположены заместители вокруг центрального углерода не так, как это изображено в «плоской» схематической формуле. На самом деле они размещены не в плоскости, а в пространстве, по вершинам тетраэдра — четырехгранника с треугольными гранями, — в центре которого находится атом углерода. Если теперь, с учетом сказанного, представить себе, что треугольник H2N—С—СООН лежит в плоскости книжной страницы, то боковая цепь R и атом водорода Н неизбежно должны выходить из нее. При этом возможны два варианта, которые выглядят как показано на рисунке ниже.
Эти варианты строения аминокислоты не отличаются друг от друга ни молекулярной массой, ни химическими особенностями, ни затратами энергии, необходимыми для их синтеза, — решительно ничем, кроме оптических свойств. И тем не менее в живой природе синтезируется исключительно одна из этих пространственных форм, именно первая из изображенных, называемая «левой» аминокислотой. Ее энантиомер, «правая» аминокислота, хоть и встречается изредка в природных пептидах и белках, но только как результат действия ферментов, меняющих местами группы R и Н уже после включения аминокислоты в пептидную цепь.
«Левые» и «правые» аминокислоты
Явление подавляющего преобладания в живых организмах одного из двух возможных энантиомеров молекул (помимо аминокислот, таким же свойством обладают, например, сахара, только они не «левые», а «правые») впервые было обнаружено великим микробиологом Луи Пастером еще в 1848 году и известно как молекулярная асимметрия. Это открытие поставило целый ряд вопросов, затрагивающих основы естествознания. Дело прежде всего в том, что молекулярную асимметрию в организме невозможно объяснить, исходя только из представлений физики и химии: успешное функционирование в живых системах лишь «левых» аминокислот (или «правых» сахаров) обусловлено эволюционным отбором, сугубо биологическим фактором, аналога которому не найти ни в физике, ни в химии. То есть молекулярная асимметрия есть одно из характернейших свойств живого; можно даже сказать, что лишь система, способная различать зеркальные энантиомеры молекул (по рисунку легко убедиться, что «правая» аминокислота есть зеркальное отражение «левой»), достойна того, чтобы считаться по-настоящему живой.
С другой стороны, первоначальные элементы живого, в том числе и аминокислоты, могли образоваться сами собой в мелководных лагунах при разряде молний в первичной атмосфере Земли; эксперименты, моделирующие такие «доисторические» условия, вроде бы подтверждают это. Однако аминокислоты, получающиеся в подобных опытах, представляют собой так называемый рацемат, смесь равных количеств «левого» и «правого» энантиомера. Чтобы отобрать какой-либо один сорт из этой смеси, необходимо использовать молекулярную систему не менее сложную, чем простейший живой организм. Такая необходимость окончательно замыкает порочный круг типа «для зарождения живого требуется наличие живого», который может быть разорван теперь только за счет дополнительного предположения. Но какого: о чем-то или все же о Ком-то?
Вот в какие дебри, и вовсе не только биологические, а общефилософские, может завести упоминание об асимметрии биологических молекул. Но мы лишь еще раз подчеркнем, что молекулярная машина организма использует для своего нормального жизненного цикла энантиомеры строго определенного типа, то есть является, как принято говорить, стереоспецифичной. При этом стерео-специфичным в ней оказывается также и чрезвычайно эффективное воспроизводство энантиомеров. А между тем жесточайшим врагом пептидных химиков считается высокая степень самопроизвольного перехода тщательно отобранных «левых» энантиомеров аминокислот в их «правую» форму просто как следствие их включения в пептидную цепь.
Короче говоря, пространственное строение белковой молекулы играет важную роль для проявления ее биологических функций уже в силу наличия в ней асимметрических центров — атомов углерода, принадлежащих «левым», а не «правым» аминокислотам. Но это не единственный и даже не самый главный источник трехмерности структуры белков и пептидов. Основной вклад в создание пространственных форм их молекул вносит возможность внутримолекулярного вращения отдельных частей молекулы друг относительно друга, причем осями вращения могут служить так называемые одинарные валентные связи. Допустимы, например, внутренние вращения вокруг трех валентных связей, исходящих из центрального углеродного атома (N — С; С — С и С — R). Валентные структуры различных типов боковых цепей R тоже содержат одинарные связи, и, соответственно, подобные вращения происходят и в боковых цепях.
Понятно также, что эти рассуждения справедливы только по отношению к довольно примитивной модели молекулы, где атомы представлены шариками разного диаметра, а одинарные валентные связи — твердыми стерженьками. В действительности — то есть в модели следующего, квантового уровня — атомные ядра окружены электронными «облаками», которые, перекрываясь, создают связи между атомами в молекуле. Разрыв этих связей — необходимое условие химической реакции, создающей новую молекулу. Но если ограничиться изучением процессов узнавания молекулами в клетке друг друга, упрощенная модель белковой молекулы оказывается достаточной.
Такая модель действительно напоминает змейку Рубика, «молекулярный шарнир», способный изгибаться в пространстве, образуя разнообразнейшие трехмерные структуры. Длинная белковая цепочка, как уже говорилось, существует в клетке лишь в одной стабильной конформации, которая необходима для выполнения биологической функции белка. Однако для сравнительно коротких пептидов это не так: они могут принимать несколько устойчивых пространственных форм. Тем не менее пептидам удается играть роль природных биорегуляторов — а ведь молекулы в клетке узнают друг друга именно по вполне определенной пространственной структуре. Разрешение этого и многих других противоречий оказалось невозможным без использования теоретического конформационного анализа — подхода, в развитии которого приняла когда-то участие и наша группа молодых энтузиастов.