Глава 6 Хоминговые и навигационные способности птиц

В предыдущих главах показано, что многие птицы проявляют верность дому, с которым в определенный период их жизни образуется прочная связь. Перелетная птица может иметь несколько таких домов, расположенных в сотнях и тысячах километров друг от друга: в одном доме она размножается, в другом зимует, в третьем линяет, в других может останавливаться на отдых во время миграции. Как же птицы находят все эти дома?

Гнездовой хоминг перелетных птиц

Многими последователями было показано, что если гнездящуюся птицу увезти и выпустить в другом месте, даже удаленном на значительное расстояние от ее гнезда, то она вернется обратно. К настоящему времени накоплено много данных по гнездовому хомингу разных видов. В табл. 1 приведены некоторые наиболее впечатляющие факты. При изучении хоминга исследователей обычно интересует, какая доля из перевезенных птиц вернется, какова скорость возврата и в каком направлении птицы стартуют после выпуска. Значительно реже удается проследить сам маршрут, которым птицы возвращаются домой.

Таблица 1. Способность к хомингу у некоторых перелетных птиц в гнездовой период (по: Мэтьюз, 1955, Карри-Линдал, 1984).


Доля птиц, вернувшихся к гнезду, может существенно варьировать не только у разных видов, но и в разных выпусках птиц в зависимости от места, времени, погодных условий и т. д. Важно иметь в виду, что нередко эти различия указывают не столько на способность птиц к хомингу, сколько на разную степень мотивации (побуждения) их к возвращению. Об этом свидетельствует и относительно низкая скорость возвращения птиц (табл. 2), если учесть, что за час они могут пролететь 50–70 км. Часто при возвращении домой птицы передвигаются короткими перелетами, много времени тратят на кормежку, отдых и т. п. Летят они всего 1–2 ч. в день. Например, радиопрослеживание за семью большими американскими дроздами, снабженными передатчиками, проведенное К. Эйблом с коллегами в штате Нью-Йорк, показало, что выпущенные утром птицы (на расстоянии 6,5–17 км. от гнезда) сначала кружились у места выпуска, потом начали двигаться в направлении дома короткими перелетами (в среднем 2 км/день), преимущественно вечером. Днем они держались среди древесной растительности. Двигались как в ясную погоду, так и при сплошной облачности и даже дожде. Направление перемещений у них было четко ориентировано в сторону дома. Весь путь при таком медленном перемещении занял около недели. Вернулись только три птицы, остальные либо потерялись из зоны слежения, либо прекратили перемещения в 6 км. от места поимки.

В других случаях перевезенные птицы демонстрируют достаточно высокую скорость возвращения — от 14 до 60 км/ч. (табл. 2).

Таблица 2. Примеры быстрого хомингового полета птиц (по: Мэтьюз, 1955).


Иногда хоминговая скорость бывает удивительной, как, например, у черного стрижа, когда птица за 4 ч. преодолела 241 км., или у обыкновенного буревестника, когда 6 птиц пролетели 378 км. со скоростью 35–56 км/ч. А. Б. Кистяковский и Л. А. Смогоржевский, завозя деревенских ласточек и обыкновенных скворцов в районе Киева на разные расстояния (от 1 до 60 км.), выяснили, что скорость возвращения птиц с малых расстояний достоверно ниже, чем с более дальних. Например, с расстояний до 5 км. ласточки возвращались со скоростью около 6 км/ч., тогда как с 45 км. — около 24 км/ч. У скворца с расстояний до 5 км. скорость возвращения около 4 км/ч., а с расстояния 35 км. — 27 км/ч. Обычно скорость возвращения, а также доля возврата выше у тех птиц, которых завозили по одному и тому же маршруту несколько раз. По данным Кистяковского и Смогоржевского, средняя скорость хоминга у деревенских ласточек при первом завозе составила 16,5 км/ч., при последующих выпусках — 21–24 км/ч.

Рекордсменами сверхдальнего хоминга считаются морские птицы (альбатросы, буревестники, качурки). Так, темноспинный альбатрос, завезенный с о-ва Мидуэй в Тихом океане в штат Вашингтон (США) и на Филиппины, вернулся обратно с расстояния 5120 и 6400 км. Первое путешествие он проделал за 10 сут., второе — за 12. Обыкновенные буревестники, перевезенные с о-ва Скокхолм (Англия) в Бостон (США) на расстояние около 5000 км., вернулись назад к своим гнездам через 12 сут. С увеличением расстояния завоза доля вернувшихся птиц обычно падает. Более детальный анализ возвращаемости птиц с разных расстояний позволил выделить так называемую «мертвую зону», находящуюся у некоторых видов в пределах 50–200 км. от цели, из которой птицы возвращаются хуже, чем с более дальних и более близких расстояний. Было высказано предположение, что в этой зоне птицы не могут уже осуществлять ближнюю навигацию по знакомым ориентирам, но еще не имеют возможности использовать механизм дальней навигации. Однако последующие опыты, преимущественно на почтовых голубях, не подтвердили существование такой зоны.

Направление старта выпущенных птиц исследователи всегда старались регистрировать (с помощью бинокля), и это понятно. Ведь если птица сразу способна выбрать правильное направление «на дом», это может дать важную информацию о работе механизма навигации. Результаты, полученные разными исследователями, часто бывают довольно противоречивыми. В одних случаях птицы сразу берут правильное направление «на дом», в других показывают иное, иногда противоположное направление. Такую ориентацию, когда движение птиц при старте не направлено к дому, стали называть «нонсенс»- (бессмысленной) ориентацией. Г. Мэтьюз, анализируя феномен «нонсенс»-ориентации у кряквы, пришел к выводу, что суть этого явления состоит в единообразии стартовых азимутов, проявляемых при хоминге птицами одной популяции. Во многих случаях направления «нонсенс»-ориентации значительно отличаются от хоминг-азимутов (направления к дому), но всегда постоянны для определенного района. Они лишь незначительно изменяются под влиянием ландшафтных ориентиров, не являются следствием магнитной ориентации и лучше всего проявляются при ясной солнечной погоде.

Мэтьюз предполагает, что постоянство «нонсенс»-ориентации осуществляется путем коррекции солнечного азимута в течение дня. В ночные часы эта коррекция осуществляется в противоположном направлении по программе обратного перемещения солнца с запада на восток, которая предполагается у птиц (например, у уток). Некоторые авторы, в частности А. Б. Кистяковский, предполагают, что «нонсенс»-ориентация представляет собой компасную ориентацию, характерную для миграционного периода, поскольку ее направленность часто совпадает с направлением миграции исследуемых видов. Очутившись в незнакомой обстановке, птица, считает Кистяковский, проявляет то направление движения, которое привело ее на место гнездования. Однако другие исследователи, в частности В. Р. Дольник, с такой точкой зрения не согласны, поскольку азимут «нонсенс»-ориентации птиц не всегда совпадает с направлением их миграции. Возможно, что прямолинейный полет в определенном компасном направлении в первые минуты после старта отражает определенную стратегию поиска птицей каких-то факторов, например геофизических градиентов, которые позволят ей сориентироваться и выбрать правильное направление. Опыты с почтовыми голубями нередко показывают, что после старта в «ложном» направлении птицы меняют направление на «правильное». В. и Р. Вилтчко предполагают, что отклонения при старте у почтовых голубей связаны с особенностями местного распределения факторов, используемых для навигации.

В некоторых опытах с перелетными видами птицы сразу при старте выбирали правильное направление «на дом». Например, Н. Балдачини с коллегами в Северной Италии изучали стартовую ориентацию и хоминг у береговой ласточки. Всего с разных расстояний и в разном направлении от гнездовой колонии было выпущено 396 птиц. Каждая особь проверялась только один раз. На коротких дистанциях (менее 10 км.) птицы возвращались очень хорошо. Стартовые азимуты концентрировались вокруг направления на колонию. При выпуске ласточек на расстояние 28–126 км. на стартовую ориентацию сильно влияло существование у птиц предпочитаемого компасного направления на запад. С этих дистанций птицы возвращались лучше всего, когда направление к дому совпадало с предпочитаемым компасным направлением. Успешность возвращения варьировала от 22 до 85 %. Отмечено стремление птиц лететь в сторону типичных для вида стаций. Предполагается, что «правильная» стартовая ориентация ласточек с коротких расстояний в первую очередь объясняется знакомством птиц с топографическими ориентирами в пределах 10 км.

Рис. 30. Отклонение направления стартовой ориентации у береговых ласточек (А) и почтовых голубей (Б) в районе выпуска в 130 км. от Итаки в США (по: Китон, 1983).

Темные кружки — направление старта отдельных птиц. Линия указывает направление на «дом». Стрелка — усредненное направление — азимут стартовых направлений всех птиц.


У. Китон наблюдал за стартом береговых ласточек в месте выпуска, расположенном в 143 км. от их колонии в штате Нью-Йорк. У 16 птиц из 23 стартовое направление было близким к азимуту «дома». Отклонение от «дома» у этих птиц составило в среднем 56° (рис. 30). Предполагается, что это место обладает каким-то «отклоняющим эффектом», поскольку и почтовые голуби здесь показывают сходное смещение в стартовом направлении.

Наиболее интересные результаты по хомингу деревенских ласточек получил А. Настаси в штате Пенсильвания (США). Он отловил в начале гнездового сезона во время откладки яиц или насиживания 96 птиц (38 самцов и 58 самок) и выпустил их на разных расстояниях (от 16 до 96 км.) от колонии в четырех основных компасных направлениях. Успех возвращения в колонию не зависел ни от расстояния завоза, ни от направления. С расстояний 16–40 км. вернулось 58 % из 48 выпущенных птиц, а с 48–96 км. — 52 % из 48 особей. Из выпущенных к северу от колонии вернулось 62 %, к югу — 50, к востоку — 54, к западу — 54 %. Самцы дали 47 % возврата, а самки 60 %. Наблюдения за стартом ласточек после выпуска с помощью сильного бинокля показали, что большая часть птиц (в среднем 60 %) взяли направление «на дом» независимо от того, на каком расстоянии и в каком направлении их выпускали. Например, при выпуске с расстояния 16 км. направление к дому при старте взяли 58 % птиц, а с расстояния 96 км. — 67 %. Не было обнаружено различий в стартовой ориентации к дому у самцов (60 %) и самок (59 %). Данные Настаси не подтверждают предположения Мэтьюза о существовании «мертвой зоны», в пределах около 50 км. от дома, из которой птицы плохо возвращаются. Ласточки с любых расстояний возвращались в свою колонию в течение 2 сут., многие вернулись к вечеру в тот же день. Р. Войтучик и Б. Ференс, изучавшие хоминг деревенской ласточки в Польше, обнаружили, что птицы, выпущенные на расстоянии до 153 км. от колонии, возвращались в тот же день. Скорость возвращения возрастала по мере увеличения дистанции и достигла максимального значения (35 км/ч.) в пределах 121–153 км. Эти исследователи также показали, что при выпуске ласточки сразу правильно находят направление на дом. Результаты этих исследований свидетельствуют о том, что ласточки, как и почтовые голуби (см. дальше), способны сразу после выпуска выбирать правильное направление на дом, даже если находятся более чем в сотне километров от него в совершенно незнакомой им местности.

Ухудшается ли способность к хомингу у птиц к концу гнездового сезона? Взрослые мухоловки-пеструшки, перевезенные в период откладки яиц, способны возвращаться обратно, даже если расстояние смещения составляет около 1000 км. Позже перевезенные птицы (во время насиживания яиц) предпочитают оставаться в районе выпуска, хотя часть птиц и возвращается на прежнее место. Во время выкармливания птенцов перевезенные родители, как правило, возвращаются к гнезду. Дж. Хатч, исследуя способность к хомингу во время гнездования у буревестника Лерминьера на островах в Карибском море, первую партию в 18 особей завез на расстояние 209–645 км., когда птицы имели яйца. Вторую партию (17 особей) перевезли на 194–368 км., когда уже были птенцы. Из первой партии к своим норам вернулось 67 % особей, из второй — 41 %. Большинство птиц (68 %) вернулись в течение четырех суток: 5 % в первую ночь, 21 % во вторую, 26 % в третью и 16 % в четвертую. Стартовое направление у 10 особей, выпущенных в солнечную погоду в 78 км. от побережья Венесуэлы, было близким к направлению на дом. Г. Мэтьюз обнаружил, что у обыкновенного буревестника хоминг осуществляют быстрее птицы, взятые в более ранний, инкубационный период, чем в птенцовый. В опытах же Хатча не обнаружено различий в скорости возвращения домой у птиц, имевших яйца и птенцов.

По данным Д. С. Люлеевой, взрослые ласточки на Куршской косе хорошо возвращаются на протяжении всего гнездового периода. Только непосредственно перед отлетом (в конце июля) их возвращаемость после завоза резко падает. В первых числах августа из завезенных взрослых птиц вернулись только те особи, у которых были поздние кладки или птенцы. Интересно, что способность к хомингу проявляли не только взрослые птицы, но подросшие молодые. Так, 16 июля все выпущенные в заливе в 20 км. к северо-востоку от гнездовой колонии (9 взрослых и 5 молодых ласточек) вернулись через 1–3 ч. Возможно, что молодые просто последовали за взрослыми, но не исключено, что к этому времени молодые ласточки уже запомнили родную колонию.

Мы проверяли способность к ближнему хомингу у самцов мухоловки-пеструшки разного возраста и происхождения на Куршской косе преимущественно в начале гнездового сезона. Главной целью исследования было сравнение способности к хомингу у местных птиц (первогодков и уже размножавшихся птиц) и иммигрантов, которые осели в нашем районе для гнездования. Всего было поймано и перевезено на расстояние от 1 до 80 км. 52 взрослые птицы, 26 местных первогодков и 70 первогодков-иммигрантов. Выяснилось, что лучше всего возвращаются взрослые самцы (как местные, так и иммигранты), которые уже гнездились ранее в нашем районе (рис. 31). Хорошо возвращаются местные первогодки в отличие от иммигрантов, впервые размножавшихся в районе исследования. Из этих иммигрантов около 50 % особей остались гнездиться в районе, где мы их выпустили. Однако к моменту появления у них птенцов они стали возвращаться после завозов к гнезду. Мы пришли к выводу, что иммигранты, которые впервые размножаются в нашем районе исследования, в начале гнездового сезона имеют значительно более слабую мотивацию к хомингу, чем местные птицы (первогодки и взрослые) или же иммигранты, которые уже размножались здесь в прошлом году. Кроме того, в начале гнездового сезона эти птицы могут хуже ориентироваться в нашем районе, где они впервые осели для гнездования. К моменту же появления у них птенцов они уже хорошо знают свою территорию и имеют сильную мотивацию к хомингу.

Рис. 31. Успешность возвращения самцов мухоловки-пеструшки на гнездовую территорию после их перевозки на Куршской косе.

I — взрослые, уже гнездившиеся в районе исследования птицы, II — местные первогодки, III — иммигранты первогодки до начала гнездования, IV — иммигранты первогодки во время кормления птенцов.

Темная часть круга — доля (%) вернувшихся птиц из числа перевезенных (цифры под кружками).


Взрослые — мухоловки, которые уже гнездились здесь ранее, успешно возвращались как с небольших, так и со значительных расстояний. Первогодки (местные) несколько хуже возвращались с 10 км. и более. Птицы, завезенные к северо-востоку и юго-западу, возвращались одинаково успешно (82 и 79 % особей соответственно). Точность возвращения как взрослых, так и первогодков была высокой: в те же дуплянки вернулось 39 % особей. Птицы, выпущенные на расстоянии до 2 км., были обнаружены в среднем через 46 ч., до 3 км. — 30, до 4 км. — 27, до 5 км. — 24 и 11 км. — через 20 ч. Минимальное время возвращения составило для двух птиц 5 км. за 2 ч. и 18 км. за 10 ч. Мы предполагаем, что птицам, перевезенным на небольшое расстояние (1–2 км.), труднее определить направление к дому, чем завезенным на более дальние расстояния.

В свое время было много споров, влияет ли сплошная облачность на способность птиц к хомингу. Это было связано с принципиальной дискуссией относительно того, способны ли птицы к невизуальной ориентации или же нет. Еще совсем недавно (в 70-х годах) подавляющее большинство исследователей ставили под сомнение такую способность. И только группа западногерманских исследователей (Ф. Меркел, Г. Фроме и В. Вилтчко) доказывали с конца 50-х годов, что у перелетных птиц существует способность к невизуальной ориентации по магнитному полю Земли. Известно, что способность птиц к магнитной ориентации предполагал еще в прошлом веке выдающийся русский ученый А. Миддендорф. Благодаря немецким исследователям это предположение было экспериментально доказано. К настоящему времени не вызывает сомнения, что птицы могут осуществлять хоминг в условиях сплошной облачности не только днем, но и ночью.

Польские исследователи во главе с Р. Войтучиком провели серию выпусков деревенских ласточек из Кракова с расстояний 136–225 км. от гнезда. Экспериментальным птицам надевали алюминиевые шлемы, препятствующие восприятию радиоволнового излучения Солнца. Контрольных птиц выпускали в шлемах из плексигласа или без них. Сравнительный анализ не выявил существенных различий в хоминговых способностях у птиц из этих групп, правда, при сплошной облачности контрольные птицы ориентировались несколько лучше экспериментальных. Опыты А. Б. Кистяковского и Л. А. Смогоржевского по завозу ласточек и скворцов показали, что многослойная облачность не мешает им ни в выборе стартового направления к дому, ни в скорости хоминга.

Итак, способность к гнездовому хомингу имеется у многих, если не у всех перелетных птиц. Они возвращаются непосредственно к гнезду как с малых, так и с больших расстояний. Эту способность к хомингу птицы могут проявлять на протяжении всего гнездового периода. Возвращаются птицы как в ясную погоду, так и при сплошной облачности. В ряде случаев птицы способны выбрать правильное направление к дому в течение первых минут сразу после выпуска.

Способность к хомингу у оседлых птиц

Исследований, посвященных изучению хоминговых возможностей у оседлых птиц, за исключением почтовых голубей, проведено немного, поскольку, вероятно, многие орнитологи априорно считают, что они такими способностями не обладают.

К. Хансен провел эксперимент по перемещению больших синиц из оседлой популяции в Дании. Большинство перемещенных птиц вернулись к месту поимки с расстояний менее 5 км., из завезенных на большие расстояния вернулись только единицы.

В 1989 г. мы с В. Г. Высоцким проверяли способность к хомингу у больших синиц, гнездящихся на Куршской косе. Из 10 самцов, пойманных в дуплянках с птенцами и завезенных на расстояния от 4 до 30 км. к северо-востоку и юго-западу, вернулись 9 (90 %). Большинство из них вернулось на следующий после завоза день. Популяция большой синицы на Куршской косе в целом является перелетной, хотя часть особей остается на зимовку в районе рождения.

В. Нолан с коллегами изучали способность к гнездовому хомингу в штате Виргиния (США) у 11 серых юнко, принадлежащих к оседлой популяции. Самцов, пойманных в начале насиживания у гнезд, выпустили после завозов на расстояния 55–563 км. в различных направлениях. Экспериментаторы пришли к выводу, что серые юнко демонстрируют способность к навигации, успешно возвращаясь из незнакомых им районов на гнездовые участки.

Проверка способности к хомингу у домового воробья А. Б. Кистяковским и Л. А. Смогоржевским показала, что возвращаемость птиц к дому с расстоянием заметно уменьшается: с 3,5 км. вернулось 85 % птиц, с 5 км. — 47, с 12 км. — 32, с 15 км. — 27 и с 18 км. — 14 %. Уменьшалась с расстоянием и скорость возврата: с 1–5 км. — 0,6 км/ч., с 5–10 км. — 0,7, с 10–15 км. — 0,5, с 15–20 км. — 0,3 и с 20–25 км. — 0,2 км/ч.

Из 359 диких голубей, отловленных в центре Флоренции и выпущенных на расстоянии 5,5–108 км. от места поимки, только 12 % птиц выбрали направление к дому. В большинстве случаев стартовая направленность сильно варьировала и не соответствовала хоминг-азимуту. Результаты этих опытов свидетельствуют, что худшие способности к хомингу у диких голубей по сравнению с почтовыми, вероятно, обусловлены в значительной степени меньшей силой мотивации у них к возвращению домой.

Исходя из приведенных выше данных, можно предположить, что у оседлых птиц способность к хомингу имеется, но она не так совершенна, как у перелетных птиц. Они хуже возвращаются с больших расстояний. Однако в случае с почтовыми голубями при наличии постоянного отбора на хоминг оседлые птицы достаточно быстро становятся способными возвращаться с любых дальних расстояний.

Хоминговые способности почтовых голубей

Почтовые голуби являются излюбленными объектами для многих исследователей, пытающихся разгадать загадочный феномен навигации птиц. В первую очередь это связано с тем, что с почтовыми голубями удобно работать. Их можно выращивать для экспериментов в достаточном количестве и в любых заданных условиях. Они обладают выраженной склонностью к возвращению домой, удобны для визуальных наблюдений и для радиослежения. Скорость возвращения обычно высокая — около 70–80 км/ч. Наиболее способные голуби могут пролетать за день до 1000 км. Неудивительно, что прогресс в изучении навигационных способностей птиц в первую очередь обязан «голубиным» работам. Что же на сегодняшний день ученые знают о хоминговых способностях голубей? Коснемся только самых важных открытий.

В 1953 г. английский исследователь Г. Мэтьюз высказал предположение, что голуби могут использовать солнце не только для определения компасного направления, но и для навигации, т. е. определения направления к цели («дому»). Согласно его гипотезе перевезенная на расстояние более 100 км. от дома птица способна установить, сместили ли ее к югу или северу, по положению солнца на его дугообразном пути (экстраполируя при этом положение солнца в полдень) путем измерения его полуденной высоты в месте выпуска и сравнения ее с высотой в районе «дома», которую она должна помнить. Чтобы понять, сместили ли ее к западу или к востоку, птица должна выяснить местное солнечное время по точке восхода солнца и сопоставить его с показаниями своих внутренних часов, настроенных дома. Таким образом, если птица выяснит, что, например, в полдень солнце в точке выпуска выше, чем дома, то она решит, что ее сместили к югу, поэтому надо двигаться к северу. Если при этом местное время будет отставать от ее «внутреннего» времени, то значит она попала к западу. В результате, согласно гипотезе Мэтьюза, птица полетит на северо-восток, чтобы вернуться домой. Однако последующие эксперименты с голубями, которым путем изменения светового режима были «сдвинуты» их биологические часы, не подтвердили эту гипотезу. В результате этих экспериментов было установлено, что солнце голуби используют только для определения компасного направления, т. е. для выяснения, где находится север или юг, запад или восток.

Положение же свое относительно дома птицы определяют другим путем, предположительно по некой «навигационной карте», которую они составляют в определенный период жизни (см. гл. 5). Гипотеза «карты и компаса» была выдвинута выдающимся немецким орнитологом Г. Крамером, который первым доказал, что перелетные птицы (скворцы) способны осуществлять ориентацию относительно стран света, используя солнце. Крамер предположил, что голуби, попавшие в новое место, ведут себя аналогично человеку, который пользуется картой и компасом, чтобы выбрать правильное направление к дому. Сначала они по «карте» выясняют свое положение относительно «дома», а затем используют солнечный компас, чтобы найти выбранное по ней направление. Интересно, что солнечным компасом, как показали опыты У. Китона и других исследователей, голуби пользуются даже будучи выпущенными менее чем в полутора километрах от «дома», окрестности которого прекрасно знали, поскольку ежедневно летали в пределах этого района. Китон считает, что только вид собственной голубятни имеет для них большее значение, чем показания навигационной системы. Даже ближайшие постройки или деревья, по его мнению, не являются для них ориентирами. Малое значение ландшафтных ориентиров для нахождения дома голубями подтверждают и опыты немецких исследователей К. Шмидт-Кёнига и Г. Шлихте, которые укрепляли на глазах птиц матовые контактные линзы, не позволяющие им видеть какие-либо объекты, находящиеся дальше 6 м. Голуби с такими линзами не только верно определяли направление к дому сразу после выпуска с расстояний до 130 км., но и возвращались домой. Китон, наблюдавший за возвращением этих голубей, описывает это удивительное зрелище так: птицы появлялись на очень большой высоте и опускались на поле в окрестностях голубятни. Не видя самой голубятни, они сидели и ждали, пока их подберут и перенесут последние несколько метров. Следующий эксперимент, проведенный этими исследователями, показал, что голуби с контактными линзами, так же как и без линз, используют солнце как компас. Через матовую линзу голуби видели солнце как яркое пятно. Птицы со «сдвинутыми часами» отклонились при старте на определенный угол, тогда как контрольные особи тоже с линзами на глазах взяли верное направление на дом. Хоминговый же успех был одинаковым в обеих группах: вернулось соответственно 20 % (из 71 контрольной птицы) и 25 % (из 69 экспериментальных).

Опыты В. и Р. Вилтчко подтверждают, что солнце используется голубями только для нахождения компасного направления и для поддержания выбранного направления в полете. Ими было показано в опытах с молодыми голубями, что солнечная ориентация не является полностью врожденной системой, так как для ее развития необходимо, чтобы птицы имели возможность совершать свободные полеты. При обучении ориентации по солнцу птицам необходимо, как показали опыты, наблюдать его на протяжении всего дня, а не короткое время, как предполагалось раньше. Частичного наблюдения солнечного пути недостаточно для нормального функционирования солнечного компаса. Предполагается, что солнечный компас настраивается (калибруется) по магнитному компасу. В течение первых месяцев, считают Вилтчко, навигационная система голубей и других птиц претерпевает большие изменения: первоначальный механизм возвращения к дому с помощью магнитного поля («реверсия курса») превращается в более сложный механизм, включающий солнечный компас и «навигационную карту». Благодаря такому комплексному, мультифакторному механизму, который не может быть задан генетически из-за сложности его и локальной изменчивости, птице необходимы определенное время и условия для его развития.

Тот факт, что голуби способны возвращаться домой в условиях сплошной облачности, исследователи заметили давно. Но долгое время не могли получить убедительных доказательств использования птицами при хоминге невизуальных факторов. Обратившись к старой гипотезе о том, что птицы могут определять направление по магнитному полю Земли, и проверив свои ранние опыты с прикреплением к голубям магнитных пластин для искажения окружающего магнитного поля, американские исследователи У. Китон и его коллеги поставили новые эксперименты и получили убедительные доказательства использования голубями при хоминге магнитного поля. Вместо магнитных пластин К. Уолкот и Р. Грин укрепили на голове голубя наподобие колпачка маленькое кольцо Гельмгольца, такое же кольцо одели на шею голубю. Батарейка, прикрепленная к спине, служила источником электроэнергии. Это устройство позволяло создавать относительно однородное магнитное поле в области головы птицы и менять его направление на противоположное.

Рис. 32. Стартовая ориентация почтовых голубей в нормальном (А) и измененном (Б) магнитном поле (по: Китон, 1983).

Темные кружки — азимут старта птицы. Стрелка — усредненный азимут стартовых направлений всех птиц, Пунктирная линия указывает направление на «дом».


Исследователи установили, что в солнечную погоду направление магнитного поля не влияло на способность голубей ориентироваться. Но в условиях сплошной облачности изменение направления магнитного поля приводило к смене направления полета птиц на противоположное (рис. 32). Было сделано предположение, что магнитное поле играет определенную роль в навигации птиц. В дальнейшем было показано, что голуби обладают высокой магнитной чувствительностью. В опытах, длившихся три года, У. Китон с коллегами обнаружили, что отклонения земного магнитного поля от нормы менее чем на 10-3 Гс., вызванные солнечными вспышками и пятнами, по-видимому, оказывают достоверное влияние на выбор направления голубями при старте. Недавно П. Сэмм и К. Демаин сообщили, что магниточувствительные нейроны, реагирующие на изменение магнитного поля, были обнаружены у голубей в базальном зрительном тракте. До этого «магнетит» находили только в области между носовыми полостями и глазницами, в оболочках вокруг обонятельного нерва.

Несколько позже Вилтчко обнаружили, что молодые голуби (моложе 80-суточного возраста) которые еще не совершали тренировочных полетов вокруг голубятни, способны возвращаться домой после завоза только в ток случае, если имели возможность во время перевозки получать нормальную информацию в геомагнитном поле. В том случае, если их перевозили в нарушенном геомагнитном поле, после выпуска у них наблюдалась дезориентация. Вилтчко предположили, что молодые нетренированные голуби собирают информацию во время перевозки и после выпуска используют ее для возвращения домой, совершая путь, обратный маршруту завоза. Однако если перевозили при нарушенном магнитном поле голубей более старшего возраста, уже имевших опыт тренировочных полетов, они правильно определяли направление к дому после выпуска. Вилтчко пришли к выводу, что опытные голуби переходят к использованию «навигационной карты», устанавливая направление к дому по параметрам точки выпуска, чего не могут делать необученные голуби.

Какие же факторы или параметры используют птицы для построения «навигационной карты»? На сегодня это самый важный и трудный вопрос во всей проблеме навигации птиц. Многие исследователи на протяжении почти 40 лет пытаются получить ответ на него, но, к сожалению, пока безрезультатно. Орешек оказался очень крепким. Ни орнитологам, ни физикам, ни ученым других специальностей не удалось его пока расколоть. Конечно, эту сложную проблему рано или поздно ученые решат, но пока приходится обходиться только гипотезами. В настоящее время наиболее интересной является бикоординатная гипотеза, согласно которой для навигации птицы используют вертикальную составляющую магнитного поля Земли и изолинии сил притяжения, которые сходятся к разным полюсам, магнитному и географическому, удаленным друг от друга примерно на 2 тыс. км. В результате образуется координатная сетка, которую птицы могут использовать при навигации (см. рис. 29). Недоказанной остается способность птиц измерять различия в силе земного притяжения и земного магнетизма. Доказана пока только способность птиц к ориентации (выбору компасного направления) с использованием магнитного поля Земли. При этом они ориентируются не по его полюсам, а по направлению склонения. Показано, что способность к магнитной ориентации у птиц врожденная и проявляется в онтогенезе независимо от других ориентирующих факторов, например астроориентиров (Солнца и звезд).

Косвенным подтверждением тому, что магнитное поле Земли может использоваться птицами для навигации, служат результаты опытов, свидетельствующих о том, что в районах магнитных аномалий способность к хомингу у них существенно нарушается. В большинстве исследований отмечено достоверное нарушение ориентации как в районах слабых, так и сильных аномалий. Ухудшение хоминга происходит также при флуктуациях естественного магнитного поля, вызванных усилением солнечной активности.

Однако не все исследователи согласны с гипотезой магнитной навигации. Итальянские исследователи во главе с Ф. Папи и западногерманский орнитолог Г. Вальраф считают, что основной информацией для навигации голубей и других птиц является ольфакторная информация. Находясь в голубятне, птицы связывают приносимые ветром запахи с его направлением и составляют таким образом «ольфакторную карту» окрестностей. При завозе они анализируют запахи в месте выпуска и определяют направление к дому. Запечатление «ольфакторной карты» может быть блокировано или искажено защитой от ветра голубятни экранами. В таких случаях голуби при завозах не могут выбрать правильного направления на «дом» и плохо возвращаются. Эти исследователи считают, что искусственно у голубей можно развить добавочные не ольфакторные способы ориентации (по топографическим ориентирам и магнитному полю), которые улучшают ориентацию стартового направления, но не способствуют коррекции курса полета. Однако большинство других исследователей не обнаруживают в своих опытах таких нарушений при выключении обоняния у голубей и считают, что турбулентность и непостоянство перемещения запахов существенно ограничивает возможность использования их для навигации. Использование ольфакторного градиента возможно лишь при временном постоянстве подходящих субстанций. Однако даже постоянно действующие ольфакторные параметры обычно не обладают достаточными градиентами, поэтому различия не могут быть восприняты на расстояниях в несколько сот километров. Кратковременные источники запаха с сильными градиентами варьируют во времени и пространстве и не представляют собой стабильной информации. П. Джеймс провел наблюдения и эксперименты по выяснению способности малых буревестников находить свои норы в гнездовой период. Он обнаружил, что, несмотря на подлет к суше против ветра, движение к гнезду после посадки осуществляется по случайным азимутам, что свидетельствует, по его мнению, против использования птицами обоняния. Обнаружение гнезда затруднялось при нарушении видимой микроландшафтной обстановки вокруг норы. Поиск норы, видимо, осуществлялся с помощью зрения, а не обоняния.

В свое время была выдвинута гипотеза инерциальной навигации, согласно которой птица при перемещении способна воспринимать и регистрировать все угловые ускорения, а затем после выпуска лететь обратно по тому же маршруту. Однако опыты, когда голубей перевозили на крутящихся подставках или во вращающихся барабанах, не подтвердили эту гипотезу: птицы правильно определяли направление к дому, как и контрольные особи, не подвергавшиеся подобному воздействию. В других опытах голубей перевозили в состоянии глубокого наркоза, и они тоже успешно возвращались домой.

Таким образом, почтовые голуби обладают совершенной системой навигации, включающей в себя несколько механизмов, которая претерпевает существенные изменения в процессе становления. Молодые птицы, не имевшие полетного опыта, возвращаются домой, используя информацию, собранную во время перемещения, т. е. осуществляют «реверсию курса». С увеличением возраста и опыта они переходят на использование «навигационной карты» и «солнечного компаса», что позволяет им использовать информацию для определения направления к дому непосредственно в месте выпуска.

Зимний хоминг птиц

Имеются работы, в которых показало, что способность перелетных птиц к хомингу зимой выражена не в меньшей степени, чем в гнездовой период. К. Ральф и Л. Мэвалд осуществили серию завозов беловенечных и черноголовых зонотрихий, прилетающих на зимовку в Калифорнию из Канады и с Аляски. Птиц (418 взрослых и 487 молодых) перевозили на расстояние от 5 до 160 км. Результаты контрольных отловов их в месте выпуска и вывоза показали, что лучше всего с коротких и длинных дистанций возвращались взрослые птицы, перевезенные в ноябре и декабре (52 из 189 особей). Завезенные же в январе и феврале хорошо возвращались только с коротких расстояний. Авторы предполагают, что в эти зимние месяцы с больших расстояний птицы просто не рискуют отправиться на поиски своего «дома». Перевезенные в марте птицы вообще не пытались вернуться на свою территорию. Первогодки в целом возвращались хуже взрослых птиц (5 % против 24 %). Наибольшую скорость возвращения показали две особи (40 км/день) с расстояния 160 км. Птицы, завезенные на средние дистанции (60–100 км.), возвращались хуже, чем с более коротких и более дальних расстояний.

С. Бенвенути и П. Иоале проверяли способность к зимнему хомингу у 5 видов (зарянка, славка-черноголовка, лесная завирушка, крапивник, ополовник), зимующих в Италии возле Пизы. Всего было перевезено и выпущено 390 особей на расстоянии 5, 8 и 16 км. Из 174 перевезенных зарянок вернулось: с 5 км. — 16 % особей, с 8 км. — 20 % и с 16 км. — 12 %. В среднем птицы были обнаружены в течение 29 сут. с момента выпуска их на расстоянии 5 км., 18 сут. — 8 км. и 16 сут. — 16 км. Взрослые зарянки лучше возвращались, чем молодые. Причем птицы, перевезенные осенью (в октябре-ноябре), возвращались лучше (19 %), чем перевезенные в зимние месяцы (7 %). Перевезенные лесные завирушки возвращались лучше зарянок: 62 % особей с 5 км. и 50 % с 8 км. Славки-черноголовки возвращались плохо: с 5 км. — 5 % особей и с 8 км. — 6 %. Из 47 перевезенных ополовников ни одна птица не вернулась с 5 и 8 км. Из 69 крапивников с 5 км. вернулось 8 % птиц, а с 8 км. — 3 %.

Черноголовка, крапивник и ополовник в районе исследования не совершают выраженных миграций, поэтому возможно, что это были местные птицы. Завирушка — перелетный вид, который только зимует здесь. Зарянки тоже прилетают сюда зимовать. Вероятно, что разная успешность хоминга у этих видов связана с разной степенью их оседлости. Авторы предполагают, что птицы вряд ли используют для нахождения «дома» при зимнем хоминге ландшафтные ориентиры, поскольку исследованные виды, особенно зарянка и завирушка, живут всю зиму на очень ограниченной территории, которую занимают сразу после прилета. В другой серии опытов эти исследователи завозили черного дрозда, средиземноморскую славку, королька и синиц (большую и лазоревку), Наилучшая способность к хомингу была зарегистрирована у черного дрозда, минимальная — у синиц. Все виды птиц, кроме славки-черноголовки, демонстрируют высокую степень привязанности к ограниченным зимовочным территориям.

В. Винкел перевез в феврале 194 больших синиц и 45 лазоревок на расстояние от 6 до 24 км. Он обнаружил, что взрослые птицы возвращались чаще (59 % у большой синицы и 13 % у лазоревки), чем молодые (36 и 5 %).

Ф. Кнопф в шт. Оклахома (США) в январе отловил 24 сосновых чижа и выпустил их на расстоянии от 0,5 до 10 км.: 12 птиц выпущены по отдельности и 12 — в стаях по 3 особи. Птицы, выпущенные в 0,5 км. от места, отлова, вернулись туда спустя 30 мин, остальные — через разное количество времени, в среднем 8 суток для выпущенных поодиночке и 7 для выпущенных стаями. На расстояниях 2 км. и менее одиночные птицы возвращались быстрее, чем стайные, а свыше 2 км. — в равной степени.

Таким образом, способность к зимнему хомингу, также как и гнездовому, лучше всего выражена у перелетных птиц. Оседлые птицы тоже возвращаются, но хуже, особенно с больших расстояний. Взрослые птицы возвращаются лучше молодых, особенно в начале зимовки, что скорее всего, объясняется тем, что в начале зимы еще не все первогодки установили связь с территорией (см. гл. 5). Есть основания предполагать, что при поиске зимнего «дома» птицы используют те же механизмы навигации, что и при возвращении в гнездовой «дом».

Ориентация и навигация птиц во время миграции

Во время миграции птицы преодолевают огромные расстояния, чтобы попасть в район зимовки или гнездования, часто расположенные на другом материке. Как птицам удается в сложнейших условиях, когда их постоянно сносит с курса ветром, ночью, нередко при полной облачности, когда не видно ни звезд, ни земли, находить правильную дорогу, трудно представить. Но они находят ее, даже будучи молодыми и неопытными. Вначале думали, что молодые летят со взрослыми птицами, которые указывают им путь. В качестве примера «семейных» перелетов обычно приводили стаи лебедей, гусей или аистов, состоящие из родителей и детей, которые нередко держатся вместе не только во время осенней миграции, но и на зимовке вплоть до гнездового сезона. Потребовались специальные эксперименты по задержанию молодых птиц в районе гнездования, чтобы доказать, что молодые способны самостоятельно находить правильную дорогу к зимовке. Такие опыты провел Э. Шюц с белыми аистами. Он отловил молодых аистов из восточной популяции, из которой птицы обычно летят зимовать в Африку в юго-восточном направлении, огибая Средиземное море с востока, и выпустил их, после того как взрослые птицы улетели, в западной части Германии, откуда аисты летят юго-западным путем. Как показали находки окольцованных аистов, в тот же год молодые полетели своим юго-восточным путем, который для них является врожденным.

Рис. 33. Результаты эксперимента по завозу молодых и взрослых обыкновенных скворцов с трассы осенней миграции из Голландии в Швейцарию.

Светлые кружки — места находок взрослых птиц после выпуска, темные кружки — места находок молодых птиц.

Тонкие стрелки указывают направление завоза птиц; светлая и темная стрелки — направление перемещения взрослых и молодых птиц после выпуска на свободу.


Позже А. Пердек в конце 50-х годов перевез около 15 тыс. скворцов во время осенней миграции из Голландии в Швейцарию и Испанию. В первом эксперименте он выпустил в трех местах Швейцарии (в 750 км. к юго-востоку от места поимки) 11 тыс. скворцов. В тот же год было получено 354 возврата, 131 из них с расстояний более 50 км. от места выпуска. Эти находки смещенных скворцов показали, что молодые птицы, которые впервые совершали миграцию, продолжали лететь после выпуска в стандартном для европейских популяций этого вида направлении — на запад и юго-запад (рис. 33). В результате они зазимовали в необычном для них районе (в Южной Франции и Испании). Возвраты в последующие годы показали, что птицы возвращались в эти районы и в дальнейшем. Взрослые птицы показали после выпуска двойное распределение: одна группа продолжала лететь как и молодые птицы, но другая дала возвраты из характерных для них районов зимовки (Англии и северной Франции). Третья группа (19 особей) дала возвраты из северных районов, с традиционной трассы миграции скворцов. В следующем эксперименте 3600 скворцов, отловленных осенью в Голландии, перевезли в Барселону (Испанию). Вновь молодые птицы продолжали мигрировать в компасном юго-западном направлении, а взрослые сместились в сторону зимовки.

На основании этих данных Пердек пришел к выводу, что молодые птицы в свою первую миграцию придерживаются врожденного направления, а взрослые осуществляют навигацию в то место, где они уже зимовали прежде. Исходя из этого предположения было интересно выяснить, как поведут себя после смещения первогодки весной, поскольку они уже должны были знать, как и взрослые, где находится их гнездовой район.

Пердек провел такой опыт. Около 3 тыс. молодых скворцов, пойманных в Голландии, в феврале и марте он выпустил в Швейцарии. В тот же год часть птиц была обнаружена в районе их гнездования, как и следовало ожидать. Однако часть птиц осталась гнездиться в районе выпуска, некоторые из этих птиц вернулись сюда для гнездования и в последующие годы. Это говорит о том, что в некоторых случаях первичная информация о гнездовом районе, полученная птицей в ювенильном возрасте, может быть «заблокирована» другой, более поздней информацией о новом месте гнездования. Как все же находят район зимовки молодые птицы при первой миграции? Выдвигались разные предположения: 1) что птицы имеют врожденное знание местоположения зимовки, 2) что они летят в направлении зимовок, пока не израсходуют всю энергию, «предназначенную» для миграции, 3) что они руководствуются изменением соотношения длины дня и ночи (фотопериодом) и биологическими часами для своевременного окончания миграции и даже 4) что они используют температурный градиент, т. е. летят в направлении повышения температуры осенью. Ни одно из этих предположений не было подтверждено в экспериментах. В настоящее время наиболее доказанной является гипотеза «эндогенного временного контроля» миграции, выдвинутая П. Гвиннером и Э. Бертольдом. Согласно этой гипотезе, продолжительность миграции у птиц, так же как и направленность, является врожденной, т. е. при первой миграции птица летит строго определенное время, выдерживая стандартное направление, в результате чего попадает в тот район, где расположена зимовка вида, даже если она находится на другом континенте. Кажется невероятным, что таким способом можно попасть, например, из Сибири в небольшую область в Африке, но тем не менее это пока единственный из способов, который имеет экспериментальное подтверждение. В многочисленных экспериментах по проверке длительности миграционного беспокойства в клеточных условиях у выращенных в неволе птиц разных видов и популяций были получены доказательства, что уровень и продолжительность миграционной активности врожденны и является специфичной для вида, популяции и даже для разных особей из одной популяции.

Недавно Г. Бибахом было показано в опытах по гибридизации мигрирующих и оседлых особей у зарянки, что в группе потомков от родителей-мигрантов родилось больше особей с миграционной активностью (89 %), чем в группе потомков от оседлых родителей (53 %). Аналогичные данные были получены и по славке-черноголовке. Таким образом было установлено, что даже явление частичном миграции в популяции контролируется генетически.

Сравнивая продолжительность миграционного состояния осенью у молодых и взрослых зябликов и обыкновенных чечевиц в лабораторных условиях, я обнаружил, что у молодых особей снижение жировых запасов и миграционной активности происходит в строго определенные сроки, когда закапчивается миграция у этих видов в природе, в то время как у взрослых особей окончание миграционного состояния в неволе затягивается примерно на 10–14 сут. (рис. 34). Это связано с тем, что у молодых птиц первое миграционное состояние контролируется только врожденной эндогенной программой, поэтому и в неволе заканчивается вовремя. Взрослой же птице для окончательного прекращения миграции необходимо получить информацию, что она достигла своего места зимовки. В клеточных условиях она этой информации получить естественно не может. Весной же окончание миграционного состояния у зяблика затягивается как у взрослых, так и первогодков, если они задержаны на трассе миграции, но вовремя завершается, как показали М. Е. Шумаков и Н. В. Виноградова, если птиц содержать в их гнездовом районе.

Рис. 34. Сроки окончания миграционного состояния у молодых (1) и взрослых (2) обыкновенных чечевиц (А) и зябликов (Б) задержанных во время осенней миграции на Куршской косе.


Позже Е. Кеттерсон и В. Нолан, регистрируя осенью интенсивность ночной миграционной активности и жироотложения у трех групп юнко в штате Индиана (США), в пределах зимовочного ареала этого вида обнаружили, что в группе, состоявшей из птиц, которые рже здесь зимовали в прошлые годы, жироотложение и ночная активность были достоверно ниже, чем в двух других группах, куда входили птицы, доставленные в район исследования из Канады, из мест гнездования. В весенних же опытах по этим показателям у всех трех групп не было заметных расхождений. Авторы пришли к выводу, что нахождение птиц на знакомых зимовках перед началом осенней миграции может подавлять развитие миграционного состояния.

В другом эксперименте исследователи анализировали факторы, определяющие окончание весенней миграции у ранее размножавшихся индиговых овсянок. С этой целью они отловили в гнездовой период 46 взрослых самцов, из них 22 на их индивидуальных территориях. До окончания послебрачной линьки птиц держали в открытой вольере непосредственно в районе поимки, после чего перевели их в закрытый авиарий, где автоматически поддерживался фотопериод, соответствующий районам миграции и зимовки данного вида. Перед началом весенней миграции 22 самца, пойманные на индивидуальных территориях, были разбиты на две равные группы. Одну группу (экспериментальная) птиц выпустили непосредственно на их прошлогодних гнездовых участках, другую (контрольная) перевезли и выпустили на следующий день в 1000 км. к югу от района исследования. Остальных 24 самца посадили в клетки (где регистрировалась двигательная активность птиц), расположенные в павильоне с естественным фотопериодом, но исключающими обзор окружающей местности. Сам павильон находился непосредственно в районе, где птицы были пойманы во время гнездования. После всех этих операций была произведена серия контрольных отловов самцов, приступивших к гнездованию в районе исследования. Из экспериментальной группы были пойманы 4 самца, причем на своих прошлогодних гнездовых участках. Из контрольной группы, завезенной на 1000 км., было поймано 5 самцов. В то же время птицы, содержавшиеся в клетках, проявляли ночное миграционное беспокойство, несмотря на то что находились в своем гнездовом районе.

Авторы этого любопытного эксперимента пришли к выводу, что индиговым овсянкам для прекращения весенней миграции необходимо попасть непосредственно на запечатленную ими ранее гнездовую территорию. Если птиц выпустить на эту территорию до начала весенней миграции, то развитие миграционного состояния, несмотря на его эндогенную программу, блокируется (контрольная группа). Если же птиц содержать в районе их гнездования в помещении, то миграционное состояние у них развивается нормально. Не исключено, что птицы, находясь в помещении, просто не могут определить координат своего местонахождения, для этого им необходимо иметь свободу перемещения в пределах определенной территории аналогично тому, как они это делают во время запечатлевания района будущего гнездования (см. гл. 5). Однако ясно как из наших, так и этих экспериментов, что время окончания весенней и осенней миграции у взрослых птиц в первую очередь определяется тем, достигли ли они знакомого им района гнездования (зимовки) или нет.

В последнее время появились факты, свидетельствующие о том, что генетически запрограммирована не только общая продолжительность миграции, но и ее стратегия на разных участках трассы. Гвиннер и Бертольд обнаружили, что у дальних мигрантов (славок и камышевок) наиболее интенсивная ночная активность осенью в клеточных условиях проявляется в то время, когда их свободные сородичи пересекают Средиземное море и Сахару на максимальной скорости. Затем миграционное беспокойство птиц в клетке постепенно уменьшается, как раз тогда, когда птицы на свободе тоже снижают скорость перелета. Такое совпадение навело их на мысль, что временной график первой осенней миграции у этих видов определяется, по крайней мере частично, эндогенной врожденной программой.

Врожденная программа определяет не только продолжительность миграции у птиц, но и ее направленность. В. Нойззер проверял направленность миграционной активности в круглых клетках Эмлена у выкормленных в неволе славок-черноголовок из двух популяций — из ФРГ, мигрирующих осенью на юго-запад, и из Австрии, отлетающих на юго-восток. Получены достоверные различия в ориентации этих групп птиц (241° —у птиц из ФРГ и 185° — из Австрии), соответствующие врожденным направлениям миграции этих популяций. Однако многие перелетные птицы не достигнут своих зимовок, если будут лететь только в одном стандартном направлении. Например, европейские птицы, зимующие в Африке, сперва летят на юго-запад, как показали находки окольцованных птиц, а затем во Франции или Испании поворачивают на юг или юго-восток.

Рис. 35. Изменение направления осенней миграции и ориентации в круглой клетке у молодых садовых славок, выращенных в неволе в ФРГ.

Заштрихованная часть Африки — область зимовки этого вида.


Встает вопрос, как молодые птицы, впервые мигрирующие, определяют, что им пора менять направление полета? Оказалось, что даже такая информация находится в генетической программе. Проверяя в круглых клетках миграционную направленность на протяжении всей осени у выкормленных в неволе молодых садовых славок, Гвиннер обнаружил, что в августе-сентябре птицы выбирают юго-западное направление, а в октябре-декабре — юго-восточное (рис. 35). Дальнейшие эксперименты с выкормленными славками показали, что смена направленности прыжков у птиц в круглой клетке наблюдается даже в том случае, когда птицы не могли видеть неба. Гвиннер и Вилтчко предположили, что смена ориентации происходит по магнитному полю Земли.

В настоящее время доказано, что для выбора направления миграции в первую осень птицы используют магнитное поле Земли. В. и Р. Вилтчко показали на нескольких видах (зарянке, садовой славке, мухоловке-пеструшке и др.), что способность к определению миграционного направления формируется без астрономической информации, на основе магнитного компаса — основного механизма реализации генетически фиксированного миграционного направления. Причем ориентируются птицы не по полюсам магнитного поля Земли, а по направлению склонения: север для птицы там, где угол между магнитным наклонением и вектором гравитации меньше. Магнитный компас такого рода пригоден только в пределах одного полушария. На экваторе он действовать не будет, а за экватором будет давать противоположное направление. По магнитному компасу, считает В. Вилтчко, настраивается компас астрономический. Звездный компас, существование которого было доказано С. Эмленом, и вращение небесного свода используются, по мнению Вилтчко, только ночными мигрантами во время перелетов. Солнечный компас, включающий определение направления по закату, тоже является дополнительной системой ориентации, которая настраивается в первые месяцы жизни птицы по первичной, т. е. магнитной, системе. Вилтчко считает, что роль солнечного компаса в миграционной ориентации в настоящее время переоценивается.

Другие исследователи с такой точкой зрения не согласны. В частности, К. Эйбл считает, что солнечный компас развивается у перелетных птиц независимо от магнитного. Звездный компас тоже формируется самостоятельно путем визирования оси вращения звездной сферы. Полярная точка дает эталонное направление, относительно которого реализуется врожденный азимут миграции. Ф. Моор, Е. Б. Кац и другие исследователи доказывают, что определение направления перелетными птицами происходит преимущественно по солнцу во время заката. Звезды используются лишь для сохранения этого направления. Какая из этих точек зрения более правильная, покажут дальнейшие исследования.

На направление полета птиц во время миграции могут влиять другие факторы: ветер, наземные ориентиры, магнитные аномалии и т. д. Могут ли птицы корректировать свой путь после воздействия такого рода факторов? П. Эванс проанализировал осенний курс ночных мигрантов скандинавского происхождения, которые покидают Норвегию в юго-юго-западном направлении, проходят через южную Англию и западную Францию. Если при пересечении Северного моря птицы попадают под действие сильных восточных ветров, то их может снести и они пройдут вдоль северо-восточного побережья Британии. Продолжают ли птицы мигрировать в стандартном направлении, или они переориентируются к югу или юго-востоку, чтобы выйти на нормальный миграционный путь? Эванс проверил на ориентацию в круглых клетках смещенных с курса птиц, которых поймал северное Йоркшира. В этих опытах многие птицы проявили южную и юго-восточную направленность, т. е. пытались компенсировать смещение. Позже Эванс сравнил осенние и зимние находки обыкновенных горихвосток и мухоловок-пеструшек, окольцованных севернее Йоркшира, с отловленными на побережье южнее Йоркшира. Возвраты от смещенных птиц показали тоже географическое распределение как у несмещенных птиц. Эванс пришел к выводу, что эти два вида обладают способностью корректировать смещение.

Радарные наблюдения показывают, что летящие птицы компенсируют около ⅓ — ¾ влияния ветра на миграционный полет, изменяя скорость. Подсчеты Г. Кляйна показали, что у дальнего мигранта — садовой славки максимальное смещение достигает 900 км., которое составляет всего 1/10 миграционной дистанции для крайне дальних мигрантов, тогда как у черноголовой славки (ближнего мигранта) такая ошибка составляет около трети дистанции при условии, что птицы наполовину компенсируют влияние ветра. Вероятно, по этой причине, предполагает Кляйн, ближние мигранты избегают мигрировать в штормовую погоду, так как это может привести к большим ошибкам в миграционной дистанции.

Имеются данные, что во время осенней миграции молодые птицы имеют больший разброс направлений, чем взрослые птицы. В частности, Ф. Моор обнаружил это у саванной овсянки при сравнении ориентационного поведения в эмленовских клетках у молодых и взрослых птиц в Северной Дакоте. Он предположил, что различия в ориентации взрослых и молодых птиц отражают важность миграционного опыта. Молодые могут совершить больше ориентационных ошибок, они не имеют информации о конечной цели миграции. Более того, взрослые птицы могут знать некоторые участки трассы, где они останавливались в предыдущую миграцию.

В третьей главе показано, что некоторые виды птиц, в частности водоплавающие, имеют постоянные места остановок на трассе миграции, которые они знают и ежегодно используют для отдыха и восстановления жировых резервов. Таких мест на трассе может быть несколько. Поэтому вполне возможно, что взрослые птицы, имеющие миграционный опыт, применяют иную, чем обычно предполагают, стратегию перелета из гнездовых районов в зимовочные и наоборот.

Рис. 36. Гипотетическая схема «поэтапной» миграции перелетных птиц при первом и последующих перелетах между гнездовым и зимовочным районами.

1 — район гнездования (цель весенней миграции), 2 — район зимовки (цель осенней миграции), 3 — основные места остановок птиц во время миграции (промежуточные цели осенней и весенней миграций), 4 — случайное место остановки при миграции (целью миграции не является).

Сплошная линия — путь первой осенней и весенней миграций, прерывистая линия — путь последующей миграции взрослой птицы.


Я думаю, что птицы, в первую очередь водоплавающие, могут осуществлять «поэтапную» стратегию миграции, которая заключается в том, что птицы летят от одного знакомого им места на трассе к другому и так до конечной цели (рис. 36). Если по какой-либо причине они сбиваются с курса (например, сносятся ветром), то они стремятся выйти в ближайшую знакомую им точку на трассе. Имеются факты, что смещенные птицы (см. описание опытов А. Пердека) стремятся выйти в тот район на трассе, где прервался их миграционный путь. Молодые птицы, которые впервые проходят трассу миграции, при выборе мест для остановки могут реагировать на поведение взрослых птиц, осевших для отдыха. У водоплавающих, аистов, журавлей, которые нередко летят семейными группами, взрослые птицы могут просто приводить молодых в традиционные места остановок. Иначе не объяснить, как сохраняются десятилетиями и даже столетиями эти места, иногда расположенные далеко в стороне от основного маршрута миграции, в качестве постоянных остановок (см. гл. 3). Попав в эти места, молодые птицы, вероятно, определяют их координаты и при последующих миграциях находят их без особого труда. Нередко птицы совершают петлеобразный перелет, когда осенний путь миграции не совпадает с весенним. В таком случае птицы могут иметь несколько фиксированных остановок на осенней и весенней трассе миграции (рис. 36). Таким образом, я предполагаю, что перелетный птицы могут осуществлять навигацию не только по отношению к основным целям, находящимся в гнездовой и зимовочной областях, но и по отношению к дополнительным целям, расположенным на трассе миграции, в районе линьки и др.

Как птицы находят свой дом после миграции?

В свое время была высказана гипотеза, что птицы, завершая миграцию, переходят с компасной ориентации на навигацию, которая обеспечивает им попадание в район около 100 км. (см. гл. 5). После попадания в этот район птицы начинают, используя определенную стратегию (например, движение по спирали), искать знакомый им район по ландшафтным ориентирам. Считалось, что на меньших чем 100 км. расстояниях от цели птицы не способны использовать навигационные механизмы. Теперь же известно, что птицы, по крайней мере некоторые виды (почтовые голуби, ласточки, зяблики), осуществляют навигацию с небольших расстояний (20–30 км., а возможно, и с меньших). Выпущенные на этих расстояниях птицы часто берут правильное направление на «дом» сразу после выпуска, даже если они выпущены в незнакомом им районе. Ландшафтными ориентирами («мозаичной картой»), по всей видимости, птицы пользуются только в окрестностях дома, которые хорошо знают. Наши опыты по завозу молодых зябликов показывают, что для возвращения в локальный район рождения птицам достаточно знать территорию диаметром около 1 км. Прилежащие территории, по крайней мере в радиусе 30 км., знать им не надо, чтобы успешно вернуться в этот район на следующий год. Анализируя прилет мухоловок-пеструшек в район рождения или гнездования мы установили, что птицы начинают интересоваться дуплянками только тогда, когда до знакомой им территории (цели весенней миграции) остается долететь несколько километров. Ранее латвийские орнитологи, наблюдая за прилетом мухоловок-пеструшек, установили, что взрослые самцы не посещают дуплянок, которые им встречаются на подходе к своей территории. При возвращении на свое прежнее место гнездования птицы либо летят высоко над кронами деревьев, либо двигаются через лес, не посещая встречающиеся на их пути гнездовые убежища.

Есть данные, что птицы находят свое прежнее место гнездования или даже рождения, несмотря на то, что ландшафт в этом месте существенно изменился. Так, Ю. А. Исаков наблюдал, что после заполнения Рыбинского водохранилища, когда сотни квадратных километров были залиты водой, перелетные птицы появились именно в тех местах, где они гнездились в прошлые годы. Жаворонки пели над открытым водным пространством в тех местах, на которых у них раньше были гнезда, а — ракушки токовали на верхушках затопленных деревьев, грачи пытались устраиваться на своих грачевниках, хотя гнезда их возвышались над поверхностью воды не более чем на метр; зяблики продолжали петь в затопленных сосновых лесах, и гнезда их висели над водой. Деревенские ласточки гнездились под крышей затопленных сараев, оставшихся на месте снесенных деревень. Городские ласточки, стрижи и скворцы продолжали селиться на церквах и колокольнях, возвышающихся над водой в нескольких километрах от берега.

Л. Бест приводит данные, что после пожара, когда выгорела большая часть лугов с кустарниками на площади 24 га. в штате Иллинойс (США), ни один из 17 ранее помеченных самцов овсянки-крошки не покинул своей территории, границы участков остались практически такими же. Г. Фишер проверял способность взрослых темноспинных альбатросов возвращаться в разрушенную колонию на Гавайских островах. После отлета взрослых и молодых птиц с острова Фишер с коллегами нанесли на план положение каждого гнезда в колонии, срубили в районе колонии все деревья и кустарники, перепахали землю в колонии, уничтожив старые гнезда. На следующий год птицы не только нашли свою разрушенную колонию, но и загнездились рядом (в пределах нескольких метров) с прошлогодней территорией.

Почтовые голуби с контактными линзами на глазах, не позволяющими видеть ландшафт, подлетают к голубятне после завоза на несколько десятков километров почти вплотную (см. гл. 5).

Все эти данные дают основание предполагать, что птицы способны осуществлять «точечную» навигацию, без использования ландшафтных ориентиров. Вероятно, для поиска «дома» птицы даже на близких расстояниях используют какие-то геофизические параметры, которые имеют градиент. Предполагается, что эти параметры включены в некую «навигационную карту», которую птица запечатлевает в первые месяцы жизни (см. гл. 5). Считается, что такая «карта градиентов» может распространяться на несколько сот километров от любой точки Земли. Но пока это только гипотезы. Нужны новые исследования, новые факты и идеи, чтобы наконец решить эту сложную проблему, над которой бьются ученые уже почти полвека.

Загрузка...