Элемент № 74 причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности вольфрам может поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» — так называли тогда наиболее распространенные минералы вольфрама — вольфрамит и шеелит. А элементный вольфрам был открыт в последней четверти XVIII в.
Очень скоро этот металл получил практическое значение — как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали[9], элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость — позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые — нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2–7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700–800°C, в то время как обычная сталь начинает размягчаться при нагреве всего до 200°C. Еще большей твердостью обладают «стеллиты» — сплавы вольфрама с хромом и кобальтом (без железа) и особенно карбиды вольфрама — его соединения с углеродом. Сплав «видиа» (карбид вольфрама, 5–15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000–1100ºC. Резцами из этого сплава можно снимать за минуту до 1500–2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200°C и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».
Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeWO4∙nMnWO4). Этот раствор — тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше гюбнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит — коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит — вольфрамат кальция CaWO4. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью — способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд геологически связаны с областями распространения гранитов. Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита — большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы — средняя концентрация вольфрама в итоге оказывается в лучшем случае 1–2%. Поэтому извлечь вольфрам из руд очень трудно.
Первая стадия — обогащение руды, отделение ценных компонентов от основной массы — пустой породы. Методы обогащения — обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями — магнитной сепарацией (для вольфрамитных руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение — вольфрамат натрия. Другой способ получения этого вещества — выщелачивание: вольфрам извлекают
содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама — через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементный металл.
Превращение окислов или хлоридов в металл — следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама — водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с WO3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450–600°C) и в «горячих» (750–1100°С) зонах; в «холодных» — до низшего окисла WO2, дальше — до элементного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура — до 1300–1400°C. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид — WCl6, который разлагается на вольфрам и хлор при 1600°C. В присутствии водорода этот процесс идет уже при 1000ºС.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100–1300ºС) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней — пластичность и ковкость.
Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее — в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.
По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410°C, а кипит лишь при 6690°C. Такая температура — на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам — блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок — серый, темно-серый и даже черный.
Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, еще 24 изотопа вольфрама получены в различных ядерных реакциях искусственным путем. Впрочем, некоторые из них образуются вполне естественным путем — при самопроизвольном или вынужденном делении ядер урана. Все эти изотопы, естественно, радиоактивны и, как правило, не долгоживущи.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое — они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню — d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспаренные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама.)
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим большинством элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко — в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400–500°C на поверхности металла образуется устойчивый низший окисел WO2; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W4O11 синего цвета, а затем лимонно-желтая трехокись вольфрама WO3, которая возгоняется при 923°C.
Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 — вещество, которое плавится при 2,5°C и кипит при 19,5°C. Аналогичное соединение — WCl6 — получается при реакции с хлором, но лишь при 600°C. Сине-стального цвета кристаллы WCl6 плавятся при 275°C и кипят при 347°C. С бромом и иодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииодид.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO)6. Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50°C возгоняется, а при 100°C полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.
Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы или весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона.
Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.
С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) — смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10–15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот — азотной, серной и соляной — даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.
Мировое производство вольфрама — примерно 30 тыс. т в год. С начала нашего века оно не раз испытывало резкие взлеты и столь же крутые спады. На диаграмме (с. 187) видно, что пики на кривой производства в точности отвечают кульминационным моментам первой и второй мировых войн. И сейчас вольфрам является сугубо стратегическим металлом.
Из вольфрамовой стали и других сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей.
Вольфрам — непременная составная часть лучших марок инструментальной стали. В целом металлургия поглощает почти 95% всего добываемого вольфрама. (Характерно, что она широко использует не только чистый вольфрам, но главным образом более дешевый ферровольфрам — сплав, содержащий 80% W и около 20% Fe; получают его в электродуговых печах.)
Вольфрамовые сплавы обладают многими замечательными качествами. Так называемый тяжелый металл (из вольфрама, никеля и меди) служит для изготовления контейнеров, в которых хранят радиоактивные вещества. Его защитное действие на 40% выше, чем у свинца. Этот сплав применяют и при радиотерапии, так как он создает достаточную защиту при сравнительно небольшой толщине экрана.
Сплав карбида вольфрама с 16% кобальта настолько тверд, что может частично заменить алмаз при бурении скважин.
Псевдосплавы вольфрама с медью и серебром — превосходный материал для рубильников и выключателей электрического тока высокого напряжения: они служат в шесть раз дольше обычных медных контактов.
О применении вольфрама в волосках электроламп говорилось в начале статьи. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т. е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.
В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, фосфорно-вольфрамовая гетерополикислота применяется для производства лаков и ярких, устойчивых на свету красок. Раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных метал лов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.
Прошлое и настоящее вольфрама дают все основания считать его металлом-тружеником.
ПОЧЕМУ «ВОЛЬФРАМ»? Это слово немецкого происхождения. Известно, что раньше оно относилось не к металлу, а к главному минералу вольфрама — вольфрамиту. Есть предположение, что это слово было чуть ли не бранным. В XVI–XVII вв. «вольфрам» считали минералом олова. (Он действительно часто сопутствует оловянным рудам.) Но из руд, содержащих вольфрамит, олова выплавлялось меньше, кто-то словно «пожирал» его.
Так и появилось название, отразившее «волчьи повадки» вольфрама, — по-немецки Wolf — волк, а древнегерманское Ramm — баран.
«ВОЛЬФРАМ» ИЛИ «ТУНГСТЕН»? В известном химическом реферативном журнале США или в справочных изданиях по всем химическим элементам Меллора (Англия) и Паскаля (Франция) тщетно было бы искать металл под названием «вольфрам». Элемент № 74 называется в них иначе — тунгстен. Даже символ W (начальная буква слова Wolfram) получил всеобщее распространение лишь в середине XX века; в Италии и Франции еще недавно писали Tu (начальные буквы от слова tungstene).
Откуда такая путаница? Ее основы заложены историей открытия элемента № 74.
В 1783 г. испанские химики братья Элюар сообщили об открытии нового элемента. Разлагая саксонский минерал «вольфрам» азотной кислотой, они получили «кислую землю» — желтый осадок окиси какого-то металла, растворимый в аммиаке. В исходный минерал эта окись входила вместе с окислами железа и марганца. Братья Элюар предложили назвать новый элемент вольфрамом, а сам минерал — вольфрамитом.
Итак, кто открыл вольфрам? Братья Элюар? И да, и нет. Да — потому, что они первые сообщили об этом открытии в печати. Нет — потому, что за два года до этого — в 1781 г. — знаменитый шведский ученый Карл Вильгельм Шееле обнаружил такую же точно «желтую землю», обрабатывая азотной кислотой другой минерал. Его называли просто «tungsten», т. е. «тяжелый камень» (по-шведски tung — тяжелый, sten — камень). Шееле далее нашел, что эта «земля» отличается от аналогичной молибденовой по цвету и некоторым другим свойствам, а в минерале она связана с окисью кальция. В честь Шееле минерал тунгстен переименовали в «шеелит».
Остается добавить, что один из братьев Элюар был учеником Шееле и в 1781 г. работал в его лаборатории…
Кто же открыл вольфрам?
Обе стороны проявили в этом вопросе должное благородство: Шееле никогда не претендовал на открытие вольфрама, а братья Элюар не настаивали на своем приоритете.
НАЗВАНИЕ «ВОЛЬФРАМОВАЯ БРОНЗА» ОБМАНЧИВО. Нередко приходится слышать о вольфрамовых бронзах. Что это за металлы? Внешне они очень красивы. Золотистая вольфрамовая бронза имеет состав Na2O∙WO2∙WO3, а синяя — Na2O∙WO2∙4WO3; пурпурно-красная и фиолетовая занимают промежуточное положение — соотношение WO3 к WO2 в них меньше четырех, но больше единицы. Как видно из формул, эти вещества не содержат ни меди, ни цинка, ни олова, т. е., строго говоря, они вовсе не бронзы. Они вообще не сплавы, так как здесь нет чисто металлических соединений: и вольфрам, и натрий окислены. Бронзу они, однако, напоминают не только цветом и блеском, но и твердостью, устойчивостью к химическим реагентам и большой электропроводностью.
ПЕРСИКОВЫЙ ЦВЕТ. Приготовить эту краску было очень трудно: она не красная и не розовая, а какого-то промежуточного цвета и с зеленоватым оттенком. По преданию, для того чтобы ее открыть, пришлось провести около 8000 опытов с различными металлами и минералами. В XVII в. в персиковый цвет окрашивали наиболее дорогие фарфоровые изделия для китайского императора на заводе в провинции Шаньси. Когда секрет изготовления этой краски был открыт, оказалось, что ее основу составляет окись вольфрама.
ПОХОЖЕ НА СКАЗКУ. Это случилось в 1911 г. В провинцию Юньнань приехал из Пекина студент по имени Ли. Целыми днями пропадая в горах, он искал какой-то камень, по его словам — оловянный. Но ничего не находил.
У хозяина дома, где поселился студент, была молодая дочь Сяо-ми. Девушка жалела неудачливого искателя особых камней и вечером, подавая ему ужин, рассказывала незамысловатые истории. В одной из них речь шла о необыкновенной печи, построенной из темных камней, срывавшихся со скалы прямо на задний двор их дома. Печь оказалась очень удачной — она исправно служила хозяевам многие годы. Сяо-ми даже подарила студенту один из этих камней — коричневый, обкатанный, тяжелый, как свинец. Оказалось, что это был чистый вольфрамит…
ОБ ИЗОТОПАХ ВОЛЬФРАМА. Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами 180, 182, 183, 181 (самый распространенный, его доля 30.04%) и 186. Из довольно многочисленных искусственных радиоактивных изотопов элемента № 74 практически важны только три: вольфрам-181 с периодом полураспада 145 дней, вольфрам-185 (74,5 дня) и вольфрам-187 (23,85 часа). Все три эти изотопа образуются в ядерных реакторах при обстреле нейтронами природной смеси изотопов вольфрама.
ВОЛЬФРАМ И ГЕЛИОТЕХНИКА. В конце 1975 г. было обнаружено еще одно весьма полезное свойство вольфрама. Как оказалось, поверхность вольфрамовой пленки, осажденной из газовой фазы, отлично поглощает солнечную энергию, испуская при этом совсем немного тепла. В гелиотехнических установках вольфрамовая пленка может работать даже в условиях поверхности Меркурия, раскаленной до 300–400°C. Большинство материалов в таких условиях теряет с инфракрасным излучением большую часть поглощенной энергии, но вольфрамовая пленка надежно работает и при более высокой температуре (около 500°C). Как оказалось, это свойство объясняется своеобразным строением такой пленки. Она покрыта тончайшими волосками-дендритами, и в этом «мехе» хорошо задерживаются солнечные лучи. Он же препятствует инфракрасному излучению.
В ВИДЕ МОНОКРИСТАЛЛА. Практически все вещества в виде физически совершенных монокристаллов демонстрируют неожиданные, непривычные свойства. Тугоплавкие металлы в этом смысле — не исключение, и металловеды издавна стремились получить в виде монокристаллов и молибден, и рений, и вольфрам. Первые такие кристаллы были получены методом электроннолучевой зонной плавки, о котором подробно рассказано в статье «Германий». Однако крупные монокристаллы этим методом получить не удавалось. Лишь в начале 70-х годов в Институте металлургии Академии наук СССР методом плазменно-дугового нагрева были выращены крупные, весом до 10 кг, монокристаллы вольфрама. Интересно, что монокристаллический вольфрам, в отличие от обычного, вполне технологичен. Он настолько пластичен, что его можно ковать и прокатывать без нагрева.