ВИСМУТ

Среди элементов периодической системы висмут — последний практически не радиоактивный элемент. И он же открывает шеренгу тяжелых элементов — естественных альфа-излучателей. Действительно, тот висмут, который мы знаем по химическим соединениям, минералам и сплавам, принято (и не без оснований) считать стабильным, а между тем, тонкими экспериментами установлено, что стабильность висмута — кажущаяся. В действительности же ядра его атомов иногда «гибнут», правда, очень нечасто: период

полураспада основного природного изотопа висмута 209Bi — более 2∙1018 лет. Это примерно в полмиллиарда раз больше возраста нашей планеты…

Кроме висмута-209, известны еще 26 изотопов элемента № 83. Все они радиоактивны и короткоживущи: периоды полураспада не превышают нескольких суток.

Двадцать изотопов висмута с массовыми числами от 189 до 208 и самый тяжелый 215Bi получены искусственным путем, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

Таким образом, несмотря на то что на практике мы встречаем лишь практически стабильный висмут-209, не следует забывать о важной роли элемента № 83 во всех областях знания, так или иначе связанных с радиоактивностью. Не будем, однако, впадать в другую крайность. Практическую важность приобрел прежде всего стабильный (или правильнее — псевдостабильный) висмут. Поэтому именно ему быть главным «героем» дальнейшего повествования.


Почему «висмут»

Очень долго висмут не давался в руки. Впрочем, в руках-то его, несомненно, держали еще в древности, и неоднократно. Только тогда не понимали, что красивые белые самородки с чуть красноватым оттенком — это по сути дела элементный висмут.

Долгое время этот металл считался разновидностью сурьмы, свинца или олова. Первые сведения о металлическом висмуте, его добыче и переработке встречаются в трудах крупнейшего металлурга и минералога средневековья Георгия Агриколы, датированных 1529 г. Представление же о висмуте как о самостоятельном химическом элементе сложилось только в XVIII в.

Происхождение названия этого элемента трактуют по-разному. Одни исследователи склонны считать его производным от древнегерманского слова «Wismuth» (белый металл), другие — от немецких слов «Wiese» (луг) и «muten» (разрабатывать рудник), поскольку в Саксонии висмут издревле добывали на лугах округа Шнееберг.

Есть еще одна версия, согласно которой название элемента произошло от арабского «би исмид», что означает «обладатель свойств сурьмы». Висмут действительно на нее очень похож.

Какая из этих точек зрения наиболее близка к истине, сказать трудно… Нынешний символ элемента № 83, Bi, впервые введен в химическую номенклатуру в 1819 г. шведским химиком Берцелиусом.


Висмут — среди металлов

В отличие от сурьмы в висмуте металлические свойства явно преобладают над неметаллическими. Висмут одновременно хрупок и довольно мягок, тяжел (плотность 9,8 г/см3), легкоплавок (температура плавления 271°C). Ему свойствен сильный металлический блеск и белый розоватого оттенка цвет. Среди прочих металлов висмут выделяют малая теплопроводность (хуже него тепло проводит только ртуть) и, если можно так выразиться, предельная диамагнитность. Если между полюсами обычного магнита поместить стержень из висмута, то он, отталкиваясь от обоих полюсов, расположится как раз посередине. Для кристаллов висмута характерно сложное двойниковое строение, которое можно увидеть только под микроскопом.

У висмута есть еще одно редкое свойство: затвердевая, он значительно расширяется в объеме (на 3,32% при 271°C). Этим свойством пользуются, когда нужно получить очень точные и сложные по форме литые изделия.

Предполагают, что способность уплотняться при плавлении объясняется изменением типа связи между атомами. Для твердого висмута характерны связи ковалентно-металлические, при плавлении же ковалентные связи разрушаются, и атомы остаются связанными лишь металлическими связями. Гетерогенный (разнородный) характер связей в твердом висмуте препятствует плотнейшей упаковке атомов в кристаллической решетке.

Одна необычность влечет за собой другую. Давление влияет на висмут иначе, чем на «нормальные» металлы. С ростом давления температура плавления висмута понижается, а у большинства металлов растет. Это необычное свойство считают следствием способности висмута расширяться при твердении и уплотняться при расплавлении. И это не удивительно: для всех физических тел характерна определенная корреляция изменений, происходящих под действием температуры и давления.

Двойниковое строение кристаллов самородного висмута. Снимок полированного шлифа под микроскопом с увеличением в 500 раз.
Образец из редкоземельного месторождения Кара-Оба в Центральном Казахстане

Висмут — химическая индивидуальность

Основные химические свойства любого элемента определяются, как известно, его положением в периодической системе и, следовательно, строением его электронных оболочек, особенно внешней. Среди элементов V группы, точнее ее главной подгруппы (N, Р, As, Sb, Bi), висмут — самый тяжелый и «самый металлический». Как и положено элементу V группы, он проявляет валентности 3 + и 5+ (а также 3-, 1+, 2+, 4+), но, поскольку висмут ближе к «полюсу металлических свойств», нежели любой из его аналогов, три электрона отрываются от его атома намного чаще и легче, чем пять. Практически важны лишь соединения трехвалентного висмута (3+), трехвалентны и все природные соединения этого элемента.

Внутреннее строение атома Bi роднит его не только с мышьяком и сурьмой, что естественно, но и со многими другими металлами. В атоме висмута есть предпоследний 18-электронный слой (слой типа «купро»), который характерен для свинца, а также меди и ее аналогов (Au, Ag). Интересно, что с этими же элементами висмут нередко бывает связан в рудных месторождениях.

Ионный радиус трехвалентного висмута (1,20 Аº) мало отличается от ионных радиусов серебра (1,13 Аº) и золота (1,37 Аº).

В бескислородных кислотах висмут нерастворим, хорошо растворяют его лишь азотная и концентрированная серная кислоты. Атом висмута обладает довольно большим сродством к электрону (окислительно-восстановительный потенциал системы Bi3+/Bi равен всего +0,226 в), поэтому ион Bi3+ сравнительно легко восстанавливается до нейтрального атома. Вот почему в природе висмут нередко можно встретить в самородном состоянии, иногда даже в концентрации, представляющей практический интерес.

При обычной температуре на воздухе висмут устойчив и лишь слегка покрывается характерной красноватой побежалостью, но при температуре красного каления он легко сгорает, превращаясь в Bi2O3. Это соединение, нерастворимое в воде, легко растворяется в кислотах, но очень трудно — в щелочах, даже концентрированных.

В природе Bi2O3 можно наблюдать в виде землистых скоплений желтого и бурого цвета. Это минерал бисмит. Вместе с другим природным соединением — карбонатом висмута, получившим название бисмутита, он считается главным кислородсодержащим минералом висмута.

Но для геохимиков особенно важны соединения висмута с серой, селеном и теллуром. Среди минералов висмута (а их насчитывается больше 70) больше всего сульфидов и теллуридов. Такие минералы имеют большое практическое значение. В последние годы все более уверенно начинают говорить о сульфидах висмута как о типично комплексных соединениях, а иногда и как о неорганических полимерах. В самом деле, один из самых распространенных минералов элемента № 83, висмутин Bi2S3, легко представить как сочетание ионов [BiS]+ и [BiS2]-. В природных условиях висмутин встречается в виде хорошо ограненных серебристых кристаллов.

Вкрапления самородного висмута (светлые полосы). Снимок полированного шлифа под микроскопом с увеличением в 500 раз

Висмут — редкий элемент

Это утверждение может показаться странным, особенно после упоминания о 70 минералах элемента № 83. Тем не менее содержание висмута в земной коре составляет лишь 2∙10-5%; это значит, что па тонну вещества земной коры приходится лишь 0,2 г висмута. Его меньше, чем драгоценного серебра, меньше, чем многих элементов, прочно и давно зачисленных в разряд редких и рассеянных, — таллия, индия, кадмия.

Обратите внимание на двойственность поведения висмута в природе. С одной стороны, он может концентрироваться в минералах, а с другой — рассеиваться в рудах (особенно сульфидных) так, что содержание его в них можно определить лишь одним словом — «следы». Ярко выраженная способность висмута к образованию собственных минералов не позволяет отнести его к рассеянным элементам в общепринятом значении этого слова. В «чужие» кристаллические решетки он, как правило, не входит. Исключение — свинцовый минерал галенит PbS, в решетке которого при определенных условиях висмут может удерживаться без образования собственных минералов.

Тем не менее, скопления богатых висмутовых руд встречаются очень редко. Они крайне ограниченны в пространстве и отличаются неравномерностью распределения, что, конечно, доставляет огорчения геологам и горнякам, занимающимся разведкой и эксплуатацией висмутовых месторождений.

Минералы висмута как бы прячутся в рудах других элементов: вольфрама, олова, меди, никеля, молибдена, урана, кобальта, мышьяка, золота и других элементов — разных и непохожих.

Трудно назвать рудное месторождение, в котором не было бы висмута, но еще сложнее назвать такое месторождение, в котором концентрация его была бы столь высокой, что оно могло бы с выгодой разрабатываться только ради висмута. Как же быть? Поступают просто: висмут берут отовсюду, где извлечение его экономически (или технологически) оправдано. Вот перечень сырьевых источников висмута, обеспечивающих около 3/4 мирового (без СССР) спроса: медные, свинцовые и серебряные рудники Перу, свинцовые месторождения Мексики, медные и свинцово-цинковые руды Японии, медные, свинцовые и серебряно-кобальтовые месторождения Канады, вольфрамово-оловянные и оловянно-серебряные руды Боливии.

Может быть, все эти источники очень богаты висмутом? Нет, за исключением боливийских, все перечисленные руды висмутом бедны. Основной производитель висмута — свинцовая промышленность — извлекает его из концентратов, в которых не больше сотых, реже десятых процента висмута, а в исходных рудах полиметаллических месторождений от 0,0001 до 0,01% Bi. Ta же примерно картина наблюдается и в медной промышленности. Обычно висмут здесь извлекают из анодных шламов, образующихся при электролитическом рафинировании меди.

Константин Автономович Ненадкевич (1880-1963) — советский химик и минералог, член-корреспондент АН СССР. Им была разработана технология производства висмута и выплавлен первый советский металлический висмут

Источником висмута может быть и вторичное сырье. Например, в ФРГ значительное количество висмута извлекают при переработке пиритных огарков и из металлического лома. Мировое производство висмута измеряется тысячами тонн — не очень много, особенно если сравнить с соседом по таблице Менделеева — свинцом.

Предполагают, что мировая потребность в висмуте в 2000 г. составит 5–6 тыс. т. На что идут эти тысячи тонн, ответит последняя глава нашего рассказа.


Применение висмута

Традиционные потребители висмута — металлургическая, фармацевтическая и химическая промышленность. В последние десятилетия к ним прибавились ядерная техника и электроника.

Чтобы спаять стекло с металлом, используют легкоплавкие сплавы на висмутовой основе. Подобные же сплавы (с кадмием, оловом, свинцом) применяют в автоматических огнетушителях. Как только температура окружающей среды достигает 70°С, плавится пробка из висмутового сплава (49,41% Bi, 27,07% Pb, 12,88% Sn и 10,02% Cd) и огнетушитель срабатывает автоматически.

Легкоплавкость висмута стала одной из причин прихода его в ядерную энергетику. Но были и другие. Только бериллию (из всех металлов) уступает висмут по способности рассеивать тепловые нейтроны, почти не поглощая их при этом. Висмут используют в качестве теплоносителя и охлаждающего агента в ядерных реакторах. Иногда в «горячей зоне» реактора помещают уран, растворенный в жидком висмуте.

Самым первым способом извлечения плутония из облученного урана был метод осаждения плутония с фосфатом висмута. Совместно с фтористым литием LiF эта соль работала в первых промышленных установках по производству плутония. Облученный нейтронами уран растворяли в азотной кислоте, а затем в этот раствор добавляли H2SO4. С ураном она образовывала нерастворимый комплекс, а четырехвалентный плутоний оставался в растворе. Отсюда его осаждали с BiPO4, отделяя тем самым от массы урана. Сейчас этот метод уже не применяют, но о нем стоило упомянуть хотя бы потому, что опыт, полученный благодаря этому методу, помог создать более совершенные и современные способы выделения плутония осаждением его из кислых растворов.

С помощью висмута получают изотоп полоний-210, служащий источником энергии на космических кораблях.

Применение висмута в металлургии тоже довольно широко. Кроме упоминавшихся уже легкоплавких сплавов и припоев, висмут (примерно 0,01%) используют в сплавах на основе алюминия и железа. Эта добавка улучшает пластические свойства металла, упрощает его обработку.

Некоторые висмутовые сплавы обладают уникальными магнитными свойствами. Сильные постоянные магниты делают из сплава, состав которого определяется формулой MnBi. А сплав состава 88% Bi и 12% Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

Многие сплавы висмута при низкой температуре приобретают свойство сверхпроводимости.

Широкому применению висмута в металлургии и электронике способствовало и то обстоятельство, что висмут — наименее токсичный из всех тяжелых металлов.

Из соединений висмута шире всего используют его трехокись Bi2O3. В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.

В производстве полимеров трехокись висмута служит катализатором; ее применяют, в частности, при получении акриловых полимеров. Bi2O3 употребляют также в производстве эмалей, фарфора и стекла — главным образом в качестве флюса, понижающего температуру плавления смеси неорганических веществ, из которой образуются эмаль, фарфор или стекло.

Соли висмута находят применение в областях, весьма далеких друг от друга. Это, к примеру, производство перламутровой губной помады и производство красок для дорожных знаков, которые «загораются» в лучах автомобильных фар…

Далеко в прошлое ушло то время, когда висмут считался малоценным металлом с ограниченной сферой применения. Сейчас он нужен всем странам с высокоразвитой промышленностью. Поэтому и спрос на него продолжает расти.


ПЕРВЫЙ ВИСМУТ В РОССИИ. «Захваченный трестом, главным образом германским, висмут является сейчас продуктом, для получения которого мы находимся всецело в зависимости от Германии. А между тем мы имеем указания на возможность нахождения его. соединений, например, в Забайкалье». Так писал Владимир Иванович Вернадский в 1915 г. в своей «Записке в Комиссию по исследованию естественных производительных сил России». Он был прав и очень дальновиден. Пройдет всего три года, и в 1918 г. другой русский ученый — К.Л. Ненадкевич — выплавит первые десятки килограммов отечественного висмута. Выплавит именно из забайкальских руд — из сульфидных концентратов вольфрамового месторождения Букука.

КРАСАВИЦАМ ЭПОХИ ВОЗРОЖДЕНИЯ. Азотнокислый висмут BiNO3∙5Н2O обычно получают выпариванием раствора висмута в азотной кислоте. В водном растворе эта соль легко гидролизуется и при нагревании выделяет основной нитрат висмута (висмутил-нитрат) (BiO)NO3. Эта соль была известна еще в XVI в. и пользовалась большой популярностью у красавиц эпохи Возрождения. Ее применяли в качестве косметического средства, которое называли испанскими белилами.

НА СВЕТУ — ТЕМНЕЕТ, В ТЕМНОТЕ — СВЕТЛЕЕТ. Среди соединений висмута с галогенами наибольший интерес представляет, пожалуй, треххлористый висмут. Это — белое кристаллическое вещество, которое можно получить разнообразными способами, в частности обработкой металлического висмута царской водкой. BiCl3 имеет необычное свойство: на свету он интенсивно темнеет, но, если его поместить после этого в темноту, он снова обесцвечивается. В водном растворе BiCl3 гидролизуется с образованием хлорида висмутила BiOCl. Треххлористый висмут используют для получения водостойких висмутовых смол и невысыхающих масел.

РАЗНОЧТЕНИЯ В РЕЦЕПТУРЕ. Из легкоплавких сплавов самый популярный, определенно, сплав Вуда. Но вот беда: в разных справочниках и пособиях под названием сплава Вуда нередко фигурируют сходные, но не совсем идентичные по соотношению компонентов сплавы. В 1975 г. в редакцию журнала «Химия и жизнь» пришло письмо студента из Ростова-на-Дону, который набрал по литературе целую дюжину сходных рецептур: в шести случаях из двенадцати эти составы назывались сплавом Вуда, по одному разу сплавом Липовица, Розе или Гутри, один раз — просто эвтектикой, еще в двух случаях рецептура приводилась без названия. Произведенное «расследование» показало, во-первых, что сплав Вуда и сплав Липовица — одно и то же. Сплав Розе, в отличие от сплава Вуда, не содержит кадмия: 50% Bi, 25% Pb и 25% Sn; Tпл = 94°C. Сплав Гутри с Tпл ниже 45°C, напротив, кроме четырех названных компонентов, содержит легкоплавкие галлий и индий. Сплавом же Вуда следует, очевидно, считать композицию из четырех элементов: висмута (от 44 до 57%), свинца (25–28), олова (13–14) и кадмия (6–14) с температурой плавления около 70°C. Правда, известна и бессвинцовая разновидность этого сплава: 70% Bi, 18% Sn и 12% Cd с Tпл = 68,5°C.


Загрузка...