В 1955 г. была заполнена 101-я клетка таблицы Менделеева. Следующим, естественно, должен был стать синтез 102-го элемента. Создатели новых химических элементов стремились быть последовательными: шаг за шагом, ступень за ступенью. Но каждый последующий шаг за уран давался все труднее.
В 1956 г. к этой работе почти одновременно приступили исследователи из Нобелевского института физики в Стокгольме (в группе работали английские, шведские и американские ученые) и из Института атомной энергии в Москве. Вслед за ними в работу по синтезу 102-го элемента включились ученые Радиационной лаборатории Калифорнийского университета (Беркли).
Не прошло и года, как в научных журналах появились статьи, из которых следовало, что элемент № 102 синтезирован.
Эти сообщения подхватили газеты, о новом элементе узнал весь мир. Но ясности, необходимой для окончательного утверждения нового элемента в периодической системе, не было еще долгие годы. Объясняется это не только трудностями, возрастающими с каждым новым шагом в трансурановую область, но и в какой-то мере поспешностью заключений.
В итоге для окончательного ответа на вопрос: «Что же такое элемент № 102?» — понадобилось десять лет. Десять лет работы исследователей разных лабораторий и разных стран.
Исторически все работы по получению и исследованию 102-го элемента можно разделить на два периода: к первому относятся работы 1956–1959 гг., выполненные в лабораториях Стокгольма, Москвы и Беркли, ко второму — работы в Объединенном институте ядерных исследований в Дубне (1963–1966 гг.).
Общее, что объединяет все эти работы, — метод синтеза. Получить изотопы 102-го элемента можно было только в ядерных реакциях с участием тяжелых ионов, бомбардируя такими ионами мишени из урана и некоторых трансурановых элементов.
Ученые социалистических стран, работающие в Дубне доказали, что все ранние работы по синтезу элемента № 102 были ошибочны. Пользуясь своим правом первооткрывателей они предлагают переименовать этот элемент и назвать его жолиотием — в честь Фредерика Жолио Кюри (1900—1958) — физика, открывшего искусственную радиоактивность, и борца за мир
Вообще говоря, существует несколько способов получения новых элементов. В одном из них используется облучение урана или плутония мощными нейтронными потоками в стационарных или импульсных (взрыв ядерного устройства) условиях. При этом образуются переобогащенные нейтронами изотопы, подверженные бета-распаду. В результате серии таких распадов они превращаются в элементы с большими порядковыми номерами.
Другой метод основан на облучении ближайших тяжелых трансурановых мишеней заряженными частицами. При обстреле ядра протонами его заряд (а следовательно, и помер элемента) может увеличиться на единицу, при бомбардировке ускоренными альфа-частицами — па две. В частности, этим методом был впервые получен менделевий.
И наконец, третий метод заключается в использовании не очень тяжелых мишеней (уран, плутонии, кюрий и др.) и тяжелых бомбардирующих частиц (ионы азота, углерода, неона и других элементов вплоть до ксенона сейчас и до урана в будущем). Реакции с участием тяжелых ионов позволяют увеличить заряд ядра на несколько единиц.
Для синтеза 102-го элемента первый и второй способы непригодны, единственно приемлемым был метод тяжелых ионов. Изотопы 102-го элемента могут образовываться в нескольких реакциях, в таких например:
Проведение подобных реакций, улавливание и регистрация их продуктов связаны с огромными экспериментальными трудностями. Силы электростатического отталкивания между ядрами заставляют увеличивать энергию бомбардирующих частиц до десятков мегаэлектронвольт — иначе ядра не смогут слиться.
Образованные ядра оказываются очень сильно «нагретыми» (энергия их возбуждения достигает нескольких десятков мегаэлектронвольт) и стремятся «остыть», выбрасывая различные частицы. Но новый элемент будет образован лишь в том случае, когда ядро выбросит только ней- троны. Если оно выбросит хоть один протон, новый элемент не удастся зарегистрировать никакими способами: его попросту не будет, ведь номер элемента определяется числом протонов в ядре. Этим объясняются исключительные требования, предъявляемые и к мишени, и к пучкам тяжелых ионов. Все это, конечно, крайне усложняет эксперименты, однако иного пути синтеза 102-го элемента у физиков не было.
Трудно получить атомы новых трансуранов, но когда имеешь дело с элементами второй сотни, не легче бывает доказать, что тебе действительно удалось получить их изотопы и какие именно.
Ожидалось, что время жизни изотопов 102-го элемента будет очень малым: в лучшем случае минуты, чаще секунды и доли секунд. Поэтому исследователям не приходилось рассчитывать на традиционный метод химической идентификации этого элемента. Нужны были новые методы — очень быстрые (экспрессные, как говорят исследователи), чувствительные и точные. По-видимому — физические.
Если вспомнить, что элемент есть совокупность атомов, состоящих из ядра и электронных оболочек, то легко понять разницу в химическом и физическом подходах к изучению элемента. Химики изучают электронные оболочки атома, его способность отдавать или присоединять электроны при взаимодействии с другими атомами. Они устанавливают порядковый номер элемента и его место в периодической системе по особенностям строения внешней части атома. Физики определяют то же самое, но исследуют при этом сами ядра и идентифицируют элемент по его ядерным свойствам.
Химические свойства актиноидов (элементов № 90–103) настолько близки, что различить их можно только с помощью очень тонких аналитических методов, сравнительно медленных, требующих большего времени, чем периоды полураспада элементов второй сотни.
Химические методы идентификации элементов были приемлемы при синтезе изотопов, жизнь которых измерялась десятками минут и более (а также 104-го и 105-го элементов, которые по химическим свойствам значительно отличаются от соседних). Но для 102-го и 103-го элементов разработка надежных «быстрых» методов химической идентификации потребовала больших и длительных усилий.
Физические методы позволяют установить заряд ядра и массовое число синтезированного изотопа и изучить его радиоактивные свойства. Они основаны на быстром улавливании ядер — продуктов реакции, на выносе их из зоны облучения и переносе к детекторам излучения для регистрации радиоактивного распада. Эти методы неразрывно связаны с анализом закономерностей ядерных реакций.
Например, при определенных значениях энергии возбуждения из образовавшегося ядра могут «испариться» несколько нейтронов. Каждый нейтрон уносит часть энергии возбуждения — примерно 10–12 Мэв. Для «охлаждения» и относительной стабилизации ядра обычно необходим вылет 4–5 нейтронов. Кривая зависимости выхода ядер нового изотопа (или нового элемента) от энергии налетающих ионов имеет вид колоколообразной кривой: ее вершина соответствует энергии наибольшего выхода ядер, а ширина «колокола» на половине высоты составляет 10–12 Мэв. Эта кривая называется кривой выхода; изучение ее формы дает достаточно оснований для распознания изотопа. Для проверки применяют так называемые перекрестные облучения, цель которых показать, что исследуемый изотоп появляется только в одной определенной комбинации мишень — частица, при определенной энергии бомбардирующих ионов. Если же условия опыта меняются (замена мишени пли частицы, изменение энергии ионов), то этот изотоп не должен регистрироваться.
Но тут важно еще одно обстоятельство: нужно знать, какому виду радиоактивного распада подвержены новые ядра. Физик должен предвидеть, какие продукты образуются при радиоактивном распаде новых ядер, и иметь мужество вносить необходимые поправки в расчеты и в эксперимент, если «улов» окажется не тем, что ожидалось.
Изотопы 102-го элемента, которые могут образоваться в реакциях с тяжелыми ионами, подвержены трем видам радиоактивного распада. Это — альфа-распад, спонтанное деление и захват орбитальных электронов. Первый вид наиболее вероятен.
При альфа-распаде ядро любого изотопа элемента № 102 превращается в ядро одного из изотопов фермия (элемент № 100) и ядро гелия (альфа-частицу). Энергия альфа- частиц при этом будет строго определенной. Следовательно, зарегистрировать искомое ядро можно двумя способами: либо измерением энергии образовавшихся альфа-частиц (Eα) и периода полураспада (T1/2), либо наблюдением дочерних продуктов распада — ядер атомов фермия. Однако в первом случае существенной помехой определения будет фон, обусловленный альфа-распадом короткоживущих изотопов других элементов. При этом образуются альфа-частицы, энергия которых близка к энергии альфа- частиц, возникших при распаде ядер 102-го элемента. В частности, «густой» фон появляется, если в материале мишени или других деталей установки, подвергающихся облучению, есть примеси свинца, висмута, ртути. Вероятность фоновых реакций значительно больше (иногда в миллионы раз) вероятности реакции, приводящей к образованию 102-го элемента. Поэтому тщательная очистка вещества мишени от микропримесей свинца и близлежащих элементов и сверхчистые материалы для изготовления установки — обязательные условия чистого опыта по синтезу 102-го элемента.
Помехи и трудности неизбежны и при определении дочерних продуктов альфа-распада ядер 102-го элемента.
К сожалению, многие из перечисленных трудностей и серьезнейшие требования к условиям эксперимента стали очевидными уже после того, как появились первые сообщения об открытии 102-го элемента.
Первая статья «Получение нового элемента 102» была направлена в редакцию «Physical Review» в июле 1957 г. и опубликована в сентябрьском номере этого журнала. Объединенная американо-англо-шведская группа сообщала об опытах по облучению мишени из смеси изотопов кюрия (244Cm — 95%, 245Cm — 1% и 248Cm — 4%) ионами углерода-12 и углерода-13, ускоренными на циклотроне Нобелевского института физики. Ядра — продукты реакции — вылетали из мишени, получив энергию налетающего иона. Их улавливали на специальную фольгу-сборник, которую потом сжигали на платине. Радиоактивный остаток смывали с платины и подвергали химическому анализу методом ионного обмена. После двенадцати получасовых облучений во фракции, соответствующей элементу № 102, было зарегистрировано около 20 альфа-частиц с энергией 8,5±0,1 Мэв. Период полураспада составлял примерно 10 минут.
Многое в этой статье вызывало недоумение, и прежде всего то, что авторы не смогли точно указать массовое число изотопа (оно определяется суммой протонов и нейтронов в ядре). Объяснялось это двумя причинами. Во-первых, не удалось выяснить зависимость выхода продукта от энергии ионов из-за неопределенности этой характеристики потока. Вторая причина — довольно сложный изотопный состав материала мишени.
Сомнение в правильности выводов вызывал и тот факт, что эффект, приписанный элементу № 102, наблюдался лишь на трех из шести использованных мишеней, да и эти три мишени не давали эффекта после трех недель работы. Почему — непонятно. В чистом опыте так быть не должно.
Настораживала и большая величина сечения реакции (большой выход нового излучателя), поскольку пучки ионов были маломощными (0,03–0,1 мка). Но особенно сомнительным было большое время жизни изотопа — период полураспада около 10 минут. Тем не менее авторы работы заявили об открытии элемента № 102 и предложили назвать его нобелием (символ No) в честь Альфреда Нобеля.
Не прошло и года, как американские ученые из Беркли опубликовали статью «Попытки подтвердить существование десятиминутного изотопа элемента 102», в которой сообщили о безуспешных поисках долгоживущей активности с указанными в Стокгольме свойствами. Эта работа была выполнена очень тщательно и более точно, чем в Швеции. Использовались кюриевые мишени того же изотопного состава, те же самые ионы 12C и 13C, однако интенсивность пучка была больше, а энергетический спектр пучка был монохроматическим (т. е. пучок состоял из строго одинаковых по энергии ионов).
Выход всех изотопов более легких элементов в этом эксперименте оказался гораздо больше, чем в стокгольмском, но активность, приписанная элементу № 102, не наблюдалась…
Примерно в то же время, что и в Швеции, в Москве также были проведены опыты по синтезу короткоживущих изотопов 102-го элемента. Для получения нового элемента изотопы плутония 241Pu и 239Pu облучали ионами кислорода-16 с энергией около 100 Мэв. Изучался альфа-распад продуктов ядерных реакций классическим методом ядерных фотоэмульсий. В спектре альфа-частиц наряду с группами, обусловленными распадом известных элементов, была отмечена группа с энергией 8,9±0,4 Мэв. Было показано, что период полураспада этого изотопа меньше 40, но больше 2 секунд. На основании теоретических оценок предполагалось, что наиболее вероятна реакция с «испарением» четырех нейтронов:
Через несколько месяцев в Беркли были поставлены опыты по синтезу еще одного изотопа — 254102. Американские физики бомбардировали мишени из кюрия-246 ионами углерода-12. Они установили, что период полураспада изотопа 254102 близок к 3 секундам, а энергия альфа- частиц равна 8,3 Мэв. В опубликованной ими статье указывалось также, что ядра изотопа 254102 испытывают спонтанное деление примерно в 30 случаях из 100.
Для идентификации 254102 авторы разработали оригинальный метод, которым доказывалось, что дочерние ядра фермия-250 с хорошо известными свойствами могут появляться на вторичном сборнике ядер отдачи только в результате альфа-распада изотопа 254102. А фермий-250 регистрировали химическими методами.
О синтезе еще одного изотопа — 255102 та же группа сообщила в 1961 г. Главные характеристики этого изотопа: период полураспада — 15 секунд, энергия альфа-частиц — 8,2 Мэв.
На этом по существу и закончился первый этап истории 102-го элемента. Началом второго этапа стал пуск большого циклотрона многозарядных ионов в Дубне. Это произошло в начале 1961 г. Тогда же была намечена программа получения на этом ускорителе многих неизвестных изотопов трансурановых элементов начиная от 99-го и далее. Но прежде чем приступить к новым синтезам, сотрудники Объединенного института ядерных исследований провели большую серию опытов по изучению закономерностей образования трансурановых элементов в ядерных реакциях, создали экспрессные методы физической идентификации короткоживущих новых изотопов, разработали детекторы альфа-излучения с очень хорошими характеристиками. Эти работы заняли почти три года.
В 1963 г. сотрудникам Лаборатории ядерных реакций удалось синтезировать наиболее тяжелый в го время изотоп 102-го элемента — 256102. Его получили в результате бомбардировки мишени из урана-238 ионами неона-22 с энергией 112 Мэв. Были изучены два вида радиоактивного распада этого изотопа — альфа-распад и спонтанное деление. Оказалось, что время жизни изотопа 256102 составляет около 4 секунд, доля спонтанного деления — всего 0,5%.
Результаты этих экспериментов сильно расходились с теоретическими оценками, основанными на данных американских ученых о свойствах изотопа 254102 (синтез 1958 г. в Беркли).
В связи с этим было решено еще раз экспериментально проверить свойства изотопов 254102 и 256102 двумя методами. В одном из них свойства изотопов определяли по характеристикам альфа-частиц, в другом — по дочерним ядрам. Результаты экспериментов с изотопом 256102 оказались такими же, как раньше. Но в другой серии опытов экспериментаторы с удивлением обнаружили, что изотоп 254102 обладает свойствами, сильно отличающимися от указанных калифорнийской группой. Выяснилось, что этот изотоп живет не 3, а 65 секунд; энергия альфа-частиц, образующихся при распаде его ядер, составляет не 8,3, а 8,11 Мэв; и наконец, спонтанное деление он испытывает не в 30% случаев, а примерно в одном случае из 1800. А ведь эти результаты казались самыми достоверными!
Стало ясно, что необходимо повторить опыты по синтезу и изучению свойств других изотопов элемента № 102. Эти опыты и были поставлены в Дубне в 1965–1966 гг.
Здесь необходимо упомянуть о том, что за годы, прошедшие после первых работ по синтезу элемента № 102, ядерная физика ушла далеко вперед. Да и техника эксперимента совершенствовалась все эти годы. Поэтому тем, кто начинал исследования в 60-х годах, много было и понятнее, и доступнее, чем участникам работ 1956–1958 гг.
Сравнить данные, полученные в Дубне, с результатами первых синтезов вы можете, ознакомившись с приведенной здесь таблицей. (Желая подчеркнуть какое-то важное различие, иногда говорят, будто бы по примеру одесситов, «две большие разницы». В нашей таблице «больших разниц» уже не две, а четыре.) Сравнение данных показывает, что практически во всех ранних работах были допущены большие или меньшие ошибки.
Массовое число изотопа | Реакция синтеза | Период полураспада, сек | Энергия α-частиц, Мэв | Доли спонтанного деления по отношению к α-распаду | Место и год открытия |
251 | 239Pu(16O, 4n)[31] | 0,5–1,0 | 8,6 | Дубна, 1967 | |
244Cm(12C, 5n) | 0,8±0,3 | 8,6 | Беркли, 1967 | ||
252 | 239Pu(16O, 5n) | 4,5±1,5 | 8,41 | Дубна, 1966 | |
253 | 242Pu(16O, 5n) | 95±10 | 8,01 | Дубна, 1966 | |
239Pu(18O, 4n) | |||||
254 | 239Am(15N, 4n) | 65±10 | 8,11 | 1/1800 | Дубна, 1963–1966 |
242Pu(16O, 4n) | |||||
238U(22Ne, 6n) | |||||
255 | 238U(22Ne, 5n) | 180±10 | 8,09 | Дубна, 1966 | |
242Pu(18O, 5n) | |||||
256 | 238U(22Ne, 4n) | 3,7±0,5 | 8,42 | 1/200 | Дубна, 1963 |
242Pu(18O, 4n) | |||||
257 | 248Cm(12C, 3n) | 23±0,2 | 8,23 (50%), 8,27 (50%) | Беркли, 1967 | |
248Cm(13C, 3n) | |||||
258 | 248Cm(13C, 3n) | 1,2∙10–3 | — | 100% | Беркли, 1968 |
259 | 248Cm(18O, α, 3n) | 1,5+0,5 часа | 7,5 | 20% | Ок-Ридж, 1970 |
Группа, работавшая в Нобелевском институте, считала, что, скорее всего, ею был получен изотоп 253102 (период полураспада T1/2 равен примерно 10 минутам и энергия альфа-частиц Eα около 8,5 Мэв). Оказалось, что этого изотопа составляет всего 95 секунд, a Eα — 8,01 Мэв. Тогда стали поговаривать о изотопе 251102. Но в 1967 г. в Дубне и Беркли смогли получить и этот изотоп. Период полураспада его ядер оказался 0,8±0,3 секунды, Eα — 8,6 Мэв. Опять не сходились концы с концами…
Московский синтез 1958 г. Изотоп 253102; T1/2 = 2–40 секунд, Eα = 8,9 Мэв. Эти цифры тоже отличаются от результатов проверочных экспериментов. Правда, когда в 1966 г. в Дубне был получен более легкий изотоп — 252102, оказалось, что его характеристики (T1/2=4,5 секунды, Eα=8,4 Мэв) близки к указанным в московской работе. Вполне вероятно, но в 1958 г. в Институте атомной энергии были действительно получены первые атомы элемента № 102, но уровень техники того времени не позволил точно определить массовое число и энергию альфа-распада изотопа. О разнице в характеристиках калифорнийского изотопа 254102 рассказывалось выше.
В 1961 г. в Беркли был получен изотоп 255102, и этот эксперимент был воспроизведен в Дубне. И здесь выяснилась разница в характеристиках. По американским данным, период полураспада ядер 255102 составил примерно 15 секунд, a Eα=8,2 Мэв. В Дубне были получены совсем другие цифры: T1/2=3 минуты, Eα=8,09 Мэв.
Пятый изотоп — 256102 был впервые получен в Дубне.
Естественно, может возникнуть вопрос: насколько точны новые данные? Ответ: советские ученые не абсолютизируют свои результаты, не выдают их за истину в последней инстанции. Но достоверность этих результатов, бесспорно, намного больше, чем результатов первых работ. К началу новых синтезов в реакторах были накоплены достаточные количества изотопов плутония и америция, необходимых для изготовления высококачественных мишеней. Прецизионные детекторы альфа-излучения и экспрессные методы физической идентификации изотопов, которыми мы располагали, были разработаны уже после окончания ранних работ. Все это позволило делать выводы на основании наблюдения уже не десятков, а сотен и тысяч атомов.
Наконец, участники дубненской работы лучше знали закономерности образования новых ядер в реакциях с тяжелыми ионами, чем ученые, ставившие свои опыты в конце 50-х годов. Для ядерной физики пять — семь лет — срок немалый.
О результатах работ по синтезу и исследованию в Дубне пяти изотопов элемента № 102 впервые было сообщено на Международной конференции по физике тяжелых ионов в октябре 1966 г. А в декабре из Америки пришли первые сообщения о точном воспроизведении этих результатов.
Позже (в 1967–1970 гг.) в США, в лабораториях Беркли и Ок-Риджа, были получены еще три изотопа элемента № 102 с массовыми числами 257, 258 и 259. Последний изотоп оказался не только самым тяжелым, но и самым долгоживущим: его период полураспада 1,5±0,5 часа.
Коротко о химии элемента № 102. Первые опыты по химии этого элемента были предприняты в Дубне в 1967 г. Методом фронтальной хроматографии определялись свойства соединения элемента № 102 с хлором. Использовали ту же установку, что и для первых опытов по химии 104-го элемента (она подробно описана в статье «Курчатовий»). О свойствах хлорида (или хлоридов) 102-го элемента судили по распределению в хроматографической колонке фермия-252 — дочернего продукта изотопа 256102.
Опыты показали, что элемент № 102 образует нелетучий хлорид. Его фронт двигался по колонке очень медленно, подобно фронту фермия, кюрия и прочих типичных представителей семейства актиноидов. В тех же опытах, первых опытах по химии 102-го элемента, было установлено, что степень окисления этого элемента хлором не выше III.
Позже опыты по химии 102-го элемента проводились и в Калифорнийском университете. Здесь работали со сравнительно долгоживущим изотопом 255102. Американские химики установили, что в водных растворах наиболее устойчиво валентное состояние 2+ и что окисление до состояния выше 3+ крайне сложно.
Вот, пожалуй, и все, что известно сейчас о химии элемента № 102. Оттого ядерно-физические характеристики его изотопов остаются главными «показателями» при синтезе и исследовании этого элемента.
Тот факт, что во всех ранних работах по 102-му элементу были допущены неточности и ошибки, теперь абсолютно бесспорен, и есть все основания считать элемент № 102 открытием ученых социалистических стран, работающих в Объединенном институте ядерных исследований. Им и принадлежит право дать имя этому элементу. От нобелия, как шутят физики, остался только символ, а No по-английски означает «нет»…
По этой причине физики из Дубны предлагали переименовать 102-й элемент и назвать его в честь Фредерика Жолио-Кюри жолиотием. Однако Международный союз теоретической и прикладной химии (IUPAC) пока сохранил старое название.