Часть I. Как стать математиком в Польше

Глава 1. Детство

1909–1927

Мой отец, Джозеф Улам, был юристом. Он родился в 1877 году в Польше, в городе Львове, тогда еще столице провинции Галиция, входящей в Австро-Венгерскую империю. Впрочем, Львов сохранял этот статус и в 1909 году, когда на свет появился я.

Его отец, мой дед, был архитектором и строительным подрядчиком, а мой прадед, насколько мне известно, перебрался во Львов из Венеции.

Моя мама, Анна Ауэрбах, родилась в маленьком польском городке под названием Стрый, расположенном примерно в шестидесяти милях к югу от Львова вблизи Карпатских гор. Ее отец был промышленником: торговал сталью и управлял заводами в Галиции и Венгрии.

Вот одно из моих самых ранних детских воспоминаний: я сижу на подоконнике рядом с отцом и смотрю на улицу, по которой проходит большой парад в честь коронованного принца, посетившего наш город. Мне не было и трех лет.

Я помню, как родилась моя сестра. Мне сказали, что на свет появилась маленькая девочка, и тогда я испытал странное, не поддающееся описанию чувство — словно я повзрослел. Мне было три года.

Помню, как в четыре года я резвился на восточном ковре, разглядывая дивную вязь его узора. Помню высокую фигуру отца, стоящего рядом, и его улыбку. Помню, что подумал: «Он улыбается, потому как думает, что я еще совсем ребенок, но я-то знаю, как удивительны эти узоры!» Я не утверждаю, что тогда мне пришли в голову в точности эти слова, но я уверен, что эта мысль возникла у меня именно в тот момент, а не позднее. Я определенно чувствовал: «Я знаю что-то, чего не знает мой папа. Возможно, я знаю больше, чем он».

В моей памяти сохранился и еще один эпизод из моего раннего детства — путешествие в Венецию с семьей. Мы плыли по каналу в вапоретто, и я уронил за борт свой воздушный шарик. Он покачивался на поверхности воды у борта лодки, и отец безуспешно пытался выловить его загнутым концом своей трости. Тогда в утешение мне разрешили самому выбрать сувенирную модель гондолы, сделанную из венецианского бисера. До сих пор помню, какую гордость я испытал, получив столь ответственное поручение.

Я помню начало Первой мировой войны. Я был мальчишкой и искренне восхищался Центральными державами — союзом Австрии, Германии и Болгарии, выступающим против Франции, Англии, России, Италии. Большинство поляков придерживалось националистических, антиавстрийских взглядов, но все же я в свои восемь лет не удержался от того, чтобы написать маленькое стихотворение, посвященное великим победам австрийской и немецкой армий.

В начале 1914 года русские войска вошли в Галицию и заняли Львов. Наша семья обрела убежище в Вене. Там я выучил немецкий, однако мой родной язык, на котором мы говорили дома, — польский.

Мы жили в гостинице напротив собора св. Стефана. Как ни странно, впоследствии, неоднократно приезжая в Вену, я словно не замечал этот собор. И только в 1966 году, прогуливаясь по Вене со своей женой, я вдруг вспомнил о нем и тут же показал его ей. Возможно, это произошло потому, что мы говорили о моем детстве.

Вместе с этим на поверхность всплыли и другие воспоминания, хранившиеся в глубинах моей памяти более пятидесяти лет.

Так, когда я, во время этого же пребывания в Вене, прогуливался в парке Пратер, вид одного из открытых кафе совершенно неожиданно восстановил в моей памяти еще один эпизод из детства — я вспомнил, как когда-то, как раз перед тем самым кафе, у меня случился приступ, сродни астматическому, повторившийся лишь многие годы спустя в Мэдисоне (штат Висконсин). Но, что удивительно, ощущения, пережитые мною повторно во время второго приступа, почему-то не заставили меня вспомнить о том давнем случае. Лишь когда я вновь, по прошествии многих лет, оказался на том же месте, это «сенсорное» воспоминание вернулось благодаря зрительной ассоциации.

Я не стану останавливаться на подробном описании Вены, какой она предстает перед глазами шестилетнего ребенка. Я разгуливал по городу в военной фуражке и, очень ясно это помню, пришел в неописуемый восторг, когда на Кэрнтнер Штрассе (одной из главных улиц Вены) какой-то офицер отдал мне честь. Однако позже, услышав от кого-то, что у США будет целых десять тысяч военных самолетов (ходил одно время такой слух), я начал сомневаться в победе Центральных держав.

Примерно в то же время я начал учиться читать. Подобно многим из моих начинаний на протяжении всей моей жизни, это занятие поначалу было мне в тягость — нелегкое, в какой-то мере мучительное приобретение опыта. Через некоторое время все встало на свое место и стало легким. Я помню, как шел по городу и, испытывая явное удовольствие, громко читал все вывески подряд, что, наверное, немало досаждало моим родителям.

Мой отец был офицером Австрийской армии, приквартированной к военному штабу, поэтому нам приходилось часто переезжать с места на место. Какое-то время мы жили в Мэриш-Острау, где я посещал местную школу. Там нам приходилось учить таблицу умножения, и я нашел изучение арифметики не таким уж трудным занятием. Однажды, когда мы проходили уже «шестью семь», я схватил простуду, и меня оставили дома. Я был уверен, что к тому времени, когда я вернусь в школу, наш класс будет проходить что-нибудь вроде «двенадцать на пятнадцать». Думаю, до «десятью десять» я тогда дошел уже сам. Остальное время со мной занимались домашние учителя, поскольку посещать школу регулярно в условиях наших постоянных переездов было невозможно.

Помню также, как иногда отец читал мне отрывки из детского издания «Дон Кихота» Сервантеса. Некоторые эпизоды, которые сейчас едва вызывают у меня улыбку, казались мне в то время безумно веселыми, а сражение Дон Кихота с ветряными мельницами я вообще считал самой смешной из всех вообразимых историй.

Эти воспоминания запечатлелись в моей памяти в виде разнообразных зрительных образов, которые, не вызывая ностальгии, заставляют меня испытывать совершенно особые ощущения, чувствовать, как в памяти рождаются ассоциации. Они приносят с собой понимания разной глубины, разных красок, разных сочетаний, смешиваясь со смутным чувством благополучия или, быть может, сомнения. Они определенно оказывают одновременное воздействие на различные области мозга, вызывая ощущение, похожее на мелодию. Это воссоздание моих детских ощущений. Часто люди запоминают эти беспорядочные образы, и, как ни странно, они сохраняются на протяжении всей их жизни.

Некоторые события вспоминаются легко, но есть и другие, которые, продолжая жить в нашем подсознании, остаются недоступными нашей памяти. Известен случай, когда во время экспериментов в сознании пациента удалось воссоздать некоторые забытые им события из прошлого, когда во время операции игла задела его мозг. Ощущения событий, которые при желании всегда можно «запросить» из своей памяти, с течением времени, видимо, не изменяются. Их воссоздание при воспоминании не изменяет и не освежает их. По своему опыту я могу сказать, что, когда я пытаюсь проследить за последовательностью силлогизмов, вызванных в моем сознание детскими впечатлениями, то нахожу, что с годами эта последовательность ничуть не изменилась по сравнению с той, что была у меня в детстве. Стоит мне посмотреть сейчас на стул, дерево или телеграфный провод — вид предмета вызовет определенный ход мыслей. И, по моему, последовательность связных воспоминаний будет аналогична той, какой, как я помню, я обладал в пяти-шестилетнем возрасте. Так, когда я смотрю на телеграфный провод, то сразу вспоминаю, как когда-то он стал для меня своего рода абстрактным, или математическим импульсом. Мне захотелось узнать, где еще он может быть полезен. Это была попытка обобщения.

Можно предположить, что большая часть объема памяти формируется у человека уже в очень раннем возрасте, и с этого момента внешние раздражители начинают процессы записи и распределения впечатлений по соответствующим каналам, которые в огромных количествах существуют уже в очень раннем детстве.

Очевидно, что зная, каким образом в памяти хранится информация, гораздо легче проанализировать свои мысли. Чтобы понять, как человек постигает содержание текста, суть нового метода или математического доказательства, интересно попробовать осознано представить временный порядок и внутреннюю логику. Однако, судя по тому, что я читал о природе памяти, ни профессионалы, ни любители не преуспели в исследовании этой области. Мне кажется, что намного больше для понимания природы ассоциаций можно сделать с помощью компьютеров как средства проведения экспериментов. Такой подход предусматривал бы градацию отдельных понятий, символов, классов символов, классов классов и т. д. так же, как это происходит при оценке сложности математических или физических структур.

Должно быть, в ходе мыслей есть некий «секрет», рекурсивная формула. Группа нейронов начинает работать автоматически, иногда без воздействия внешнего импульса. Это своего рода повторяющийся (итерационный) процесс с растущим узором. Группа нейронов перемещается в мозге, причем это перемещение зависит от воспоминания о подобных узорах.

Об этих процессах известно еще мало. Но, быть может, не пройдет и столетия, как эта проблема станет частью новой, захватывающей науки. Не так давно ученые, например Джон фон Нейман, стали исследовать сходство между действием человеческого мозга и компьютера. Раньше местом нахождения мысли люди считали сердце; со временем все более очевидной становилась роль мозга в процессе мышления. А, может быть, в действительности процесс мышления вообще зависит от всех чувств.

Мы привыкли считать мышление линейным процессом, недаром мы говорим о «ходе» мыслей. Однако мышление на подсознательном уровне может оказаться гораздо более сложным. Быть может, подобно тому, как на сетчатке глаза существуют одновременные зрительные впечатления, в человеческом мозге тоже могут находиться одновременные, параллельные, имеющие независимое происхождение, абстрактные впечатления? В нашем мозге протекают процессы, которые невозможно представить в виде линейной последовательности. Возможно, в будущем появится целая теория, посвященная поиску в памяти, но не с помощью одного сенсора, а с помощью сразу нескольких, подобно тому, как это происходит, когда несколько спасателей ищут заблудившегося в лесу человека. Эта проблема поиска — один из самых крупных разделов комбинаторики.

Что происходит, когда человек неожиданно вспоминает забытое слово или имя? Или когда он пытается вспомнить его? Что-то поворачивается в подсознании. Человек пробует разные пути: он перебирает один за другим звуки, буквы, длинные или короткие слова. Следовательно, слово хранится в памяти, состоящей из множества отсеков. Если бы оно хранилось целиком в одном месте, вспомнить его было бы просто нереально. Время — это тоже параметр, и, несмотря на то, что в нашем сознании существует, как нам кажется, только одно время, в подсознании может существовать много таких времен. Кроме того, присутствует механизм синтезирования или суммирования. Можно ли вообще ввести систему автоматического поиска, хитроумную систему, которая не перебирает абсолютно все, а бегло просматривает только нужные элементы?

Однако, я уже достаточно отвлекся на рассуждения о памяти, и пора вновь вернуться к своему рассказу. Добавлю только, что мне хотелось бы обладать хотя бы отчасти способностями Владимира Набокова, который лишь по нескольким образам из прошлого мог воссоздавать целые панорамы воспоминаний. В самом деле, можно сказать, что художник, имея перед собой великое множество разнообразных впечатлений, «зарисовывает» на сетчатке своих глаз только самые ценные, самые существенные их фрагменты, которые его мозг суммирует для последующего хранения в памяти. Вероятно, именно таким способом карикатурист передает наиболее характерные черты лица всего-навсего несколькими штрихами. Еоворя математическим языком, эти штрихи являются глобальными характеристиками функции или фигуры, состоящей из множества точек. В этом более прозаичном повествовании я тоже опишу лишь более формальные моменты.

В 1918 году мы вернулись во Львов, который к тому времени вошел в состав новой Польской республики. В ноябре того же года город осадили украинские войска, встретив сопротивление лишь немногочисленного отряда солдат и вооруженного населения. Наш дом располагался в относительно безопасной части города, хотя и там время от времени раздавались взрывы артиллерийских снарядов. Как в более безопасное место, к нам стали перебираться наши родственники — кажется, около тридцати человек, причем половина из них — дети. Кроватей, конечно, не хватало, и многие спали прямо на полу на свернутых коврах. Во время бомбежки нам приходилось спускаться в подвал. До сих пор помню, как в один из таких дней моя мама торопила меня спускаться вниз, а я упрямился, желая сначала зашнуровать свои ботинки. Должно быть, для взрослых те времена были, мягко говоря, трудными, но только не для нас, детей. Как ни странно, я запомнил их полными веселья от наших детских забав, игр в прятки, а также в карты, которым я вместе с другими детьми научился за две недели до снятия осады прибывшей из Франции польской армией. Для детей воспоминания о военном времени не всегда бывают тяжелыми.

Новая угроза нависла над городом во время польско-русской войны 1920 года. Кавалерия Буденного пересекла границу Польши и продвинулась в глубь страны примерно на пятьдесят миль. Однако победа, одержанная Пилсудским на Варшавском фронте, спасла южный фронт и положила войне конец.

В 1919 году, когда мне исполнилось десять лет, я сдал вступительный экзамен и был зачислен в гимназию. Это была средняя школа на манер немецкой гимназии и французского лицея, с восьмилетним курсом обучения. Я был отличником по всем предметам, за исключением чистописания и рисования, хотя особым усердием в учебе не отличался.

Одним из пробелов в моих знаниях была химия, которой в школе уделялось очень мало внимания, и теперь, спустя уже полвека, когда я интересуюсь биологией, это весьма затрудняет мое изучение элементарной биохимии.

Примерно в то же время я обнаружил, что у меня есть проблемы со зрением — оно не было как у многих людей бинокулярным. Я узнал об этом в школе. Шла проверка зрения учеников, и я вместе с другими мальчиками из нашего класса ждал своей очереди читать таблицы. В ожидании я просто так прикрыл рукой один глаз и с ужасом заметил, что своим правым глазом я могу видеть лишь самые большие буквы таблицы. Я испугался, подумав, что если об этом узнают, меня заставят остаться после занятий, поэтому я решил запомнить расположение всех букв в таблице. Думаю, тогда я в первый раз сознательно сказал неправду. Когда подошла моя очередь, я успешно «прочел» буквы таблицы и меня отпустили. Но с тех пор я знал, что мои глаза видят по-разному. Один из них близорукий, другой, нормальный, позже стал дальнозорким.

Явление это довольно редкое, но хорошо известное медицине и, видимо, передается по наследству. Я до сих пор не ношу очки, хотя, чтобы прочесть своим близоруким глазом печатный текст, мне приходится наклоняться к листу бумаги как можно ближе. Конечно, я не отдаю себе отчета в том, какой именно глаз «трудится» в данный момент. Позже, уже в Мэдисоне, доктор сказал мне, что такое зрение имеет свои преимущества перед нормальным, т. к. оно позволяет глазам поочередно отдыхать. Иногда я задумываюсь над тем, могла ли эта особенность зрения, повлиявшая на мою манеру читать, воздействовать и на склад моего ума.

Размышляя о том, когда и как я вдруг стал интересоваться наукой, я всегда вспоминаю одну популярную книгу по астрономии, а точнее, некоторые иллюстрации из нее. Это был учебник «Астрономия неподвижных звезд» («Astronomy of Fixed Stars») Мартина Эрнста, профессора астрономии из университета Львова. В нем я увидел репродукцию портрета Исаака Ньютона. В то время мне было девять или десять лет — возраст, в котором ребенок еще не способен сознательно оценить привлекательность лица. Однако я хорошо помню, что этот портрет показался мне необыкновенно красивым, особенно глаза. Он сочетал в себе физическую привлекательность и некую таинственность, исходящую от лица. Позднее я узнал, что автором этого портрета Ньютона в молодости, с волосами до плеч и в рубашке с открытым воротом, был художник Г. Неллер.

На других хорошо запомнившихся мне рисунках были изображены кольца Сатурна и пояса Юпитера. Рисунки эти вызывали во мне чувство удивления, аромат которого сложно описать, поскольку он иногда ассоциируется с впечатлениями невизуального происхождения, подобными чувству, внушаемому изысканным примером научного рассуждения. Это ощущение появляется время от времени на протяжении всей жизни так же, как знакомый аромат, который чувствуешь временами. И вместе с этим ароматом приходят сопутствующие ему воспоминания детства или юности.

Сегодня, когда я читаю описания астрономических явлений, ко мне возвращаются эти зрительные воспоминания. Они приходят, сопровождаемые чувством ностальгии (не меланхоличным, но, напротив, очень приятным), и тогда во мне начинают созревать какие-то новые идеи или внезапно появляется желание с новой энергией предаться умственному труду.

Мой интерес к астрономии достиг высшей своей точки, когда мой дядя Шимон Улам подарил мне маленький телескоп. Я испытал тогда незабываемые эмоции. Это был рефрактор с двухдюймовым объективом и медной или бронзовой трубой.

С тех пор, стоит мне увидеть в антикварном магазине инструменты подобного рода, как мною овладевает ностальгия, и, по прошествии всех этих десятилетий, мне вновь хочется быть в курсе новых открытий и современных проблем астрономии.

В то время меня притягивало все непонятное, например, я очень интересовался вопросом уменьшения периода обращения кометы Энке. Давно уже было установлено, что каким-то загадочным образом трехлетний период обращения этой кометы вокруг Солнца неравномерно уменьшается. Астрономы девятнадцатого века пытались объяснить это явление воздействием сил трения или присутствием в пространстве какого-то нового невидимого тела. Меня очень взволновало то, что никто не знал точного ответа. Я стал задумываться над тем, может ли знаменатель r2 в ньютоновой формуле всемирного тяготения быть не совсем точным, и начал прикидывать, как изменится период обращения кометы при различных значениях расстояния, если степень слегка отличается от двойки. Эта была весьма любопытная умственная попытка — ведь тогда я пытался произвести вычисления, руководствуясь скорее своим внутренним чутьем в совокупности с рассуждением, чем оперируя числами и символами.

Ни одна из звезд не могла удивить меня своей величиной. Тогда уже были рассчитаны параллаксы многих звезд, Бетельгейзе и Антарес считались намного больше Солнца (хотя точных данных по этому поводу не было), были известны расстояния до них. Я выучил названия созвездий, арабские названия некоторых звезд, расстояния от Земли до этих звезд и значения их светимости. Я также знал двойные звезды.

По сравнению с замечательной книгой Эрнста, другая книга, которая называлась «Планеты и условия жизни на них» («Planets and the Conditions of Life on Them»), была несколько необычной. Постепенно я пополнил свою библиотеку до восьми или десяти книжек по астрономии, в числе которых была замечательная книга Ньюкома — Энгельмана «Астрономия» на немецком языке. В довершении всего, правило Тициуса-Боде, позволяющее определить расстояние от планет до Солнца, внушило мне такой энтузиазм, что я решил стать астрономом или физиком. Одну из своих тетрадей я так и подписал: «С.Улам, астроном, физик и математик». Мне было тогда одиннадцать. С тех пор меня никогда не покидала любовь к астрономии. Думаю, что она была одной из тех тропинок, что привели меня в математику.

Сегодня Львов может показаться вам простым провинциальным городом, но это далеко не так. Многие ученые часто читали здесь публичные лекции, посвященные новым астрономическим открытиям, новой физике и теории относительности. Лекции эти собирали очень широкую аудиторию: их слушали юристы, врачи, бизнесмены и просто любопытные.

Популярностью пользовался и психоанализ Фрейда. Однако теория относительности была, несомненно, гораздо сложнее.

В 1919–1920 годах в газетах и журналах о теории относительности писали так много, что я решил выяснить, что она собой представляет. С этой целью я посетил ряд популярных лекций по этой теме. Конечно, в том возрасте я не мог понять деталей, однако я все же получил довольно ясное представление о самой идее теории. Когда маленький ребенок начинает учиться говорить, процесс его овладевания речью проходит без какого бы то ни было знания грамматики языка. Но, оказывается, и в точных науках можно уловить суть, не обладая при этом полным пониманием их фундаментальных положений. Так, я понял схему специальной теории относительности и даже некоторые из ее следствий, хотя не знал их математического обоснования. Я считаю, что вопрос о так называемом понимании не имеет ничего общего с однозначно положительным или отрицательным ответом, хотя мы и не располагаем пока специальным методом определения уровней понимания или глубины знания причин явлений.

Об этом интересе узнали друзья моего отца, который заметил, что я действительно «разбираюсь» в теории относительности. Отец часто повторял: «Да этот маленький мальчик, кажется, понимает самого Эйнштейна!» Так у меня появилась «репутация», и я чувствовал себя обязанным сохранить ее, хоть и знал, что, на самом деле, я не понимаю деталей этой теории. С этого времени обо мне заговорили как об «одаренном ребенке», что стало для меня стимулом к дальнейшему изучению популярной научной литературы. Я уверен, что это ощущение стимула знакомо многим детям, которые впоследствии становятся учеными.

Каким образом ребенок приобретает привычки и интересы, предопределяющие его будущность — вопрос малоизученный. Одно возможное объяснение — «плагиат», непостижимая способность ребенка к подражанию, копированию внешних впечатлений, к примеру, улыбки матери. Другое объяснение я усматриваю в его врожденном любопытстве. Как иначе объяснить то, что мы сами по собственной инициативе стремимся обогатить свой опыт новыми ощущениями, вместо того чтобы просто реагировать на раздражители?

Склонности, вероятно, являются частью унаследованной системы связей в мозге, генетической особенностью, которая, может быть, даже не зависит от физического расположения нейронов. Ведь очевидно, что происхождение головных болей связано с тем, насколько свободно кровь циркулирует в мозге, что, в свою очередь, зависит от того, расширены или сужены кровеносные сосуды. Возможно, важна именно «водопроводная система», а не расположение нейронов, которое обычно ассоциируется с местом протекания мыслительного процесса.

Другим определяющим фактором может быть случайность начального успеха или неудачи в новом поиске. Я думаю, что и качество памяти развивается подобным образом — в результате случайностей, которые имели место в начале, или беспорядочных внешних воздействий, а, быть может, благодаря удачному сочетанию первого со вторым.

Взять, к примеру, талант шахматиста. Хосе Капабланка обучился игре в шахматы в шесть лет, наблюдая за игрой отца и дяди. Поэтому его способности к шахматной игре развивались без всякого приложения к тому усилий, с той же естественностью, с какой ребенок учиться говорить, и которая так не свойственна взрослым в их начинаниях. У многих других знаменитых шахматистов первый интерес к игре также возник при наблюдении за игрой их родственников. Когда же они сами попробовали сыграть и с первого же раза выиграли партию, возможно, совершенно случайно, в них утвердилось желание продолжить это занятие. Ведь, как известно, нет лучшего стимула, чем успех, особенно в юности.

Меня игре в шахматы обучил отец. У него была брошюра по игре в шахматы, и он часто разбирал со мной наиболее известные из описанных в ней партий. Меня приводил в восхищение ход коня, в особенности, тот оригинальный способ, каким конь мог угрожать сразу двум фигурам соперника. Хотя это была всего лишь простая хитрость, я находил ее особенно замечательной и с тех пор полюбил эту игру.

Нельзя ли подобным же образом объяснить талант математика? Ребенок, скажем, делает успехи в арифметике; возможно, это лишь чистое везение. Однако они побуждают его идти дальше, накапливая все больше опыта и тем самым расширяя границы своей памяти.

Я заинтересовался математикой в довольно раннем возрасте. В библиотеке отца имелась замечательная серия книг на немецком языке под названием «Reklam». В нее входила «Алгебра» Эйлера. Я часто листал ее страницы, и книга эта внушала мне чувство некой таинственности. Все символы казались мне, десятилетнему мальчишке, магическими знаками, и я очень хотел знать, смогу ли когда-нибудь понять их. Вполне возможно, что это способствовало дальнейшему развитию моей любознательности. Например, я сам научился решать квадратные уравнения. Я отдавался этому занятию с невероятной сосредоточенностью и каким-то болезненным, не вполне осознанным напряжением. То, что я делал, было равносильно мысленному возведению в квадрат какого-либо числа без бумаги и карандаша.

В старших классах очередным стимулом для меня стала задача о существовании совершенных нечетных чисел. Как известно, целое число называют совершенным, если оно равно сумме всех своих делителей, включая единицу, кроме делителя, равного данному числу. Так, числа 6 = 1 + 2 + 3 и 28 = 2 + 4 + 7 + 14 являются совершенными. Вы спросите: бывают ли нечетные совершенные числа? К сожалению, вопрос об их существовании остается открытым до сих пор.

Школьные уроки математики меня по большей части не удовлетворяли. Я считал их скучными, и у меня совсем не лежала душа к заучиванию определенных формальных операций. Поэтому мне больше нравилось изучать математику самостоятельно.

Где-то в пятнадцать лет мне попался трактат по исчислению бесконечно малых величин, написанный Герхардтом Ковалевским. Мои знания аналитической геометрии и тригонометрии были слишком малы, однако идея пределов, определения вещественных чисел, понятия производных и интегрирования заинтриговали меня, захватили целиком. Тогда я принял решение ежедневно читать одну или две странички из этой книги и попытаться узнать необходимые факты по тригонометрии и аналитической геометрии из других книг.

Еще две книги я купил в комиссионном магазине. Могу с уверенностью сказать, что не помню, чтобы какая-то другая из прочитанных мною впоследствии книг заворожила бы меня так сильно, как эти две, написанные Серпинским — «Теория множеств» и монография по теории чисел. В результате в семнадцать лет я знал о теории элементарных чисел столько же, а быть может, и больше, чем знаю сейчас.

Я прочитал также книгу Гуго Штейнгауза «Что является и что не является математикой» («What Is and What Is Not Mathematics») и замечательные работы Пуанкаре «Наука и гипотеза» («La Science et la Hypothèse»), «Наука и метод» («La Science et la Mèthode»), «Ценность науки»(«La Valeur de la Science») и «Последние мысли» («Dernieres Pensees») в польском переводе. Их язык, не говоря уже о научной ценности, приводил меня в восхищение. Я должен сказать, что Пуанкаре, несомненно, повлиял на формирование моего научного мышления. Если прочесть одну из его книг сегодня, то сразу увидишь, как много замечательных истин науки прошлого остается важным для науки настоящего, несмотря на то, сколь потрясающие произошли за это время перемены и в математике, и, тем более, в физике. Я восхищался и Штейнгаузом, рассмотревшим в своей книге множество истинно математических задач.

В соответствии со школьной программой из всех математических разделов нам полагались лишь алгебра, тригонометрия и начала аналитической геометрии. В седьмом и восьмом классах, когда всем нам было не больше шестнадцати — семнадцати лет, мы прослушали курс элементарной логики и обзорные лекции по истории и философии. Эти предметы нам читал профессор Завирский. Истинный ученый, преподаватель университетской кафедры, он просто заражал своим энтузиазмом. На его занятиях мы узнавали о последних направлениях в перспективных областях современной логики. Самостоятельно изучив книги Серпинского, я даже смог вызвать его на обсуждение некоторых аспектов теории множеств, обычно во время перемен или же в его кабинете. Меня тогда интересовали вопросы, связанные с трансфинитными числами и гипотезой континуума.

Другим моим собеседником, с которым я мог до полного изнеможения обсуждать математические вопросы, выдвигать обширные новые проекты, придумывать новые задачи, теории, методы, граничившие с фантастическими, был Мецгер. Этот юноша был старше меня на три-четыре года и увлекался математикой так же страстно, как и я. Поэтому друзья моего отца, знавшие Мецгера, решили познакомить нас. Мецгер жил в еврейском квартале, бывшем гетто. Он был невысоким, полным мальчиком со светлыми волосами. Как-то мне довелось увидеть портрет Гейне в молодости, и он напомнил мне лицо моего товарища. Людей такого склада можно встретить и сейчас, но реже. Они демонстрируют дилетантский подход ко всему, даже к самым основам математики. С Мецгером мы обсуждали «итерационное исчисление»[1], не имея практически никакого понятия о его математических основах. Он был просто безумцем и проявлял поразительную безудержность в своем стремлении переделать все и вся, столь типичном для еврейской нации. Стефан Банах отметил как-то, что подобное свойство характера — настойчивое желание перевернуть все традиционные устои было присуще некоторым евреям — Иисусу, Марксу, Фрейду, Кантору. Оно было присуще и Мецгеру, хоть и не проявлялось в нем с таким размахом. Если бы он получил лучшее образование, то наверняка добился бы успехов. Но семья Мецгера была очень бедна, а его польский при отталкивающем акценте и гортанной речи был безнадежен. Спустя несколько месяцев он неожиданно исчез, и я больше никогда не видел его. Только сейчас я в первый раз за эти годы вспомнил о нем. Возможно, он еще жив. Как бы то ни было, это воспоминание о Мецгере и наших дискуссиях воскрешает в памяти цвет и аромат «абстракций», которыми мы обменивались.

Как ни странно, даже в том юном, незрелом возрасте я иногда пытался проанализировать ход своих мыслей. Я считал, что смогу понять их лучше, если в процессе своих рассуждений буду регулярно, через каждые несколько секунд возвращаться от текущей мысли к предшествующей и отслеживать таким образом формирование всей цепочки умозаключений. Однако я, разумеется, прекрасно осознавал, насколько чреваты слишком длительные и частые занятия подобным самоанализом.

В те годы мое представление об астрономах и ученых, в частности математиках, формировали исключительно книги. Первые «живые» впечатления я получил, посетив в 1926 году ряд популярных лекций по математике. Несколько дней подряд с докладами выступали Гуго Штейнгауз, Станислав Рузевич, Стефан Банах и другие ученые. Прежде всего меня поразила их молодость — немало прочитав и услышав об их достижениях, я ожидал увидеть бородатых, видавших виды корифеев науки. Я слушал их с жадным любопытством. Тогда же сложилось мое самое первое впечатление о Банахе, такое же молодое, как я сам в те годы, — меня впечатлил его самобытный талант. Став со временем глубже, ярче, «повзрослев», это впечатление оставалось во мне на протяжении всего нашего длительного знакомства, сотрудничества и, наконец, дружбы.

В 1927 году в Львове проходил конгресс математиков, для участия в котором были приглашены многие иностранные ученые. Я узнал об этом от профессора Завирского, который добавил также, что с докладом выступит молодой, блестящий математик Джон фон Нейман. Именно тогда я впервые услышал это имя, но, к сожалению, я не смог тогда посетить ни одной лекции, поскольку в то время в гимназии была пора выпускных экзаменов.

И все-таки интерес к науке не отнимал все мое время. Я с упоением читал самых разнообразных авторов: как польских писателей, так и зарубежных — Толстого, Жюля Верна, Карла Мэя, Г. Д. Уэллса и Анатоля Франса. Когда я был помладше, то любил читать биографии и приключенческие рассказы.

Наряду с умственной деятельностью я активно занимался спортом. В четырнадцать лет вместе со своими одноклассниками я стал играть в футбол, был вратарем, правым форвардом, да кем только я не был! Я также играл в теннис и активно занимался не только футболом, но и бегом.

После занятий мы с одноклассниками нередко оставались играть в карты, чаще всего в бридж и наиболее простой вид покера, делая маленькие ставки. Как правило, в покер выигрывали старшие ребята. Я объяснил бы это самым элементарным проявлением проницательности, которая, как известно, с годами не только не ослабевает, но становится все глубже. Кроме того, два или три раза в неделю я играл в шахматы. Я был одним из самых лучших игроков в своем классе и, несомненно, владел чувством расклада при игре, хотя и не обладал выдающимися способностями. Ведь в шахматах, как и в математике, необходимыми условиями достижения мастерства являются постоянная практика, постоянная тренировка ума и способность предвидеть события.

В 1927 году я сдал выпускные экзамены, и для меня наступил период неопределенности. Мне было нелегко выбрать будущую профессию. Отец, который всегда хотел, чтобы я стал юристом, и собирался передать мне всю свою обширную практику, теперь признал, что мои интересы имеют совсем иную направленность. Кроме того, юристов в Львове хватало. Мысль о карьере в стенах университета была привлекательной, но достичь звания профессора было нелегко, особенно людям с еврейским происхождением, которое имел и я. Поэтому я связывал свои надежды с таким учебным заведением, учеба в котором позволила бы мне иметь в будущем какую-то практическую профессию и одновременно была бы связана с наукой. Родители настояли на том, чтобы я стал инженером, и тогда я подал заявление в Львовский политехнический институт о зачислении на факультет машиностроения или электротехники.

Глава 2. Студенческие годы

1927–1933

Осенью 1927 года я начал посещать лекции в политехническом институте на факультете общих исследований[2], поскольку набор на факультет электротехники уже был завершен. Уровень обучения был заметно более высоким, чем в средней школе, хотя, прочтя Пуанкаре и несколько специальных математических трактатов, я с наивностью ожидал, что каждая лекция будет шедевром стиля и изложения. Конечно же я был разочарован.

Поскольку многие разделы математики я изучил самостоятельно, я начал посещать занятия второго курса в качестве слушателя. Это были лекции по теории множеств, а читал их Казимир Куратовский, молодой профессор, только приехавший из Варшавы, ученик Серпинского, Мазуркевича и Янишевского. Я был студентом-первокурсником. Он же, так сказать, профессором-первокурсником. С первой же лекции я был очарован изысканностью, лаконичностью и четкостью его объяснения и даваемого им материала. С самого начала я участвовал в дискуссиях с Куратовским активнее, чем большинство старших студентов, так как, прочитав книгу Серпинского, я более или менее разбирался в этом предмете. Думаю, он быстро отметил меня как одного из наиболее способных студентов, и после занятий он часто уделял мне индивидуальное внимание. Так, поощряемый Куратовским, я начал карьеру математика.

Вскоре я мог ответить на некоторые наиболее сложные вопросы по курсу теории множеств и начал ставить перед собой другие задачи. С самого начала я не мог не ценить то великодушие и терпение, с которыми Куратовский уделял столько времени новичку. Несколько раз в неделю во время обеденных перерывов я сопровождал его до дома, до которого было минут двадцать ходьбы, и успевал за это время задать ему несметное количество вопросов, касающихся математики. Спустя годы Куратовский сказал мне, что эти вопросы были иногда действительно важными, а иногда оригинальными и интересными.

Курсы, которые я слушал, включали математический анализ, исчисление, классическую механику, начертательную геометрию и физику. Перерывы между занятиями я обычно проводил в кабинете одного из преподавателей математики. В то время я как никогда в своей жизни стремился заниматься только математикой и ничем другим.

Именно там я впервые встретил Станислава Мазура, молодого преподавателя из Львовского университета. Он приходил в политехнический институт, чтобы поработать вместе с Орличем, Никлиборцем и Кацмарцем, которые были на несколько лет старше его.

Беседуя с Мазуром, я начал вникать в вопросы анализа. Я помню, как целыми часами сидел за партой, размышляя над вопросами, которые он ставил передо мной или же обсуждал с другими математиками. Мазур познакомил меня с перспективными идеями теории функций вещественной переменной и нового функционального анализа. Мы обсуждали некоторые из последних задач Банаха, разработавшего новый подход к этой теории.

Время от времени появлялся и сам Банах, хотя основная его работа проводилась в университете. Я встретил его впервые во время своего первого года учебы, но наше знакомство в более точном, близком и интеллектуальном смысле состоялось год или два спустя.

В этих преподавательских комнатах можно было часто увидеть и других математиков. Стоцек, жизнерадостный, круглолицый, невысокий и совершенно лысый, был деканом факультета общих исследований. На польском слово «stozek» означает конус, он же скорее походил на сферу. Всегда в хорошем настроении, вечно шутя, он любил уплетать сосиски, щедро приправленные хреном — блюдо, которое, как он утверждал, излечивает от меланхолии. (Стоцек был одним из профессоров, убитых немцами в 1941 году.)

Здесь работал и Энтони Ломницкий, математик с аристократическими чертами, который специализировался по теории вероятностей и ее приложениям к картографии. (Он тоже был убит немцами во Львове, в 1941 году.) Збигнев Ломницкий, его племянник, стал впоследствии моим хорошим другом и соратником.

Высокий и худощавый Кацмарц (погиб в 1940 году при исполнении воинского долга) и Никлиборц, низкий и полный, заведовали практической частью курса исчисления в целом и курса дифференциальных уравнений. Их часто можно было увидеть вместе, и они напоминали мне Пата и Паташона, двух комических киноактеров того времени.

Я не был образцовым студентом, если понимать под таковым студента, способного заниматься предметами, которые его не интересуют. С другой стороны, после стольких лет я все еще не могу назвать себя состоявшимся математиком-профессионалом. Я люблю пробовать новые подходы и, будучи оптимистом по натуре, всегда надеюсь, что в итоге они окажутся успешными. Мне никогда не приходило в голову, что мое умственное усилие пропадет впустую или что нужно «экономить» свой умственный капитал.

В начале второго семестра первого курса Куратовский рассказал мне об одной задаче в теории множеств, которая касалась преобразования множеств. Она была связана с известной теоремой Бернштейна: если 2А = 2В, то А = В в арифметическом смысле бесконечных кардиналов[3]. Это была первая задача, над которой я провел напряженные часы размышлений. То, как я размышлял над ней, сам не зная толком, что я хочу получить в результате, сейчас мне кажется загадкой. Я был настолько погружен в отдельные моменты, что был не способен осмысленно представить себе всю картину в целом. И все же мне удалось в структурной форме показать решение этой задачи, придумав свой метод представления разложения множеств и соответствующих преобразований с помощью графов. Невероятно, но тогда я подумал, что изобрел саму идею графов!

Свою первую научную работу я написал на английском языке, который знал лучше, чем немецкий или французский. Куратовский проверил ее, и в 1928 году моя небольшая статья появилась в «Fundamenta Mathematicae», ведущем польском математическом журнале, редактором которого он был. Это придало мне уверенности в себе.

Но и тогда я все еще не решил, какую профессию или род деятельности выбрать. Реальные шансы стать профессором математики в Польше были ничтожно малы — вакансий в университете было мало. Моя семья хотела, чтобы я обучился какой-нибудь профессии, на втором курсе я собирался перевестись на факультет электротехники. Возможность зарабатывать на жизнь, работая в этой области, казалась мне намного реальнее.

Ближе к концу первого курса Куратовский упомянул на своей лекции еще об одной задаче в теории множеств. Это была проблема, связанная с существованием субтрактивных, т. е. не вполне счетно-аддитивных функций в теории множеств. Помню, что размышлял над этим вопросом недели напролет. Я все еще словно ощущаю то напряжение, с каким я обдумывал его, и то количество попыток, которые я сделал. Я поставил самому себе ультиматум — если я смогу решить эту задачу, то останусь математиком, в противном случае стану заниматься электротехникой.

Через несколько недель способ решения был найден. Я в волнении поспешил к Куратовскому, чтобы рассказать о нем — о своем решении с применением трансфинитной индукции. Математики уже не раз использовали трансфинитную индукцию, но в целях иного рода. То применение, которое нашел ей я, было, на мой взгляд, новым.

Я думаю, Куратовскому мой успех доставил удовольствие, и он одобрил мое намерение продолжать занятия математикой. До окончания первого курса я успел написать свою вторую работу, которую Куратовский также опубликовал в «Fundamenta». Жребий был брошен. Я сосредоточился на «непрактичных» возможностях карьеры ученого. В известном смысле большая часть процесса, который люди называют принятием решения, происходит в силу определенных причин. Однако я считаю, что само решение, к которому приходят в конечном итоге, — это своего рода голосование, которое происходит на уровне подсознания, где верх одерживает большинство доводов в его пользу.

Летом 1928 года я поехал на балтийское побережье Польши, и Куратовский пригласил меня заехать по пути в его загородный дом, недалеко от Варшавы. Это была элегантная вилла с теннисным кортом. Куратовский в то время довольно хорошо играл в теннис, и это меня очень удивляло, так как его фигура была какой угодно, но только не атлетической.

Во время шестичасовой поездки на поезде из Львова в Варшаву я практически беспрестанно думал о проблемах теории множеств, желая представить Куратовскому что-нибудь, что заинтересовало бы его. Я размышлял над тем, как опровергнуть теорию континуума — одну из самых известных нерешенных задач из основ теории множеств и математики, которую сформулировал Георг Кантор, создатель самой теории множеств. Однако все мои соображения были весьма туманными, и Куратовский это очень скоро обнаружил. Тем не менее, мы обсудили отдельные стороны этой проблемы, и я уехал в Сопот с более или менее не потревоженной уверенностью в себе.

Альфред Тарский, ныне знаменитый логик и профессор в Беркли, был варшавским другом Куратовского и иногда приезжал во Львов. Как логик он уже был известен за рубежом, однако его работа по основам математической логики и теории множеств также имела немаловажное значение. Он был кандидатом на вакантную должность профессора философии в Львовском университете. Вместо него эту должность отдали тогда другому логику, Леону Хвистеку — признанному художнику, автору философских трактатов, шурину Штейнгауза, человеку, хорошо известному своей эксцентричностью. (Он умер в Москве во время войны.) Спустя годы, в Кембридже, я случайно упомянул о Хвистеке в разговоре с Альфредом Нортом Уайтхедом. В ходе нашей беседы я заметил: «Странно, что и он был художником», на что Уайтхед разразился громким смехом и, зааплодировав, воскликнул: «Как это по-английски говорить, что быть художником — это странно!», и миссис Уайтхед тоже рассмеялась. Недавно в Польше вышла в свет биография Хвистека, замечательно изложенная Эйстрейхером. Это увлекательное повествование о его карьере и творческой деятельности Хвистека в Кракове и Львове в период с 1910 по 1446 год.

Один из первых моих контактов с Тарским возник в связи с моей второй научной работой. Я доказал в ней теорему об идеалах множеств в теории множеств. (Позже Маршалл Стоун доказал другую версию этой же теоремы). В своей статье в «Fundamenta» я также раскрыл возможность определения конечно-аддитивной меры с двумя значениями (0 и 1) и установил максимальный простой идеал для подмножеств в бесконечном множестве. К тому же самому результату пришел и Тарский в очень длинной работе, которая появилась через год. Куратовский обратил его внимание на то, что этот результат следовал из моей теоремы, и Тарский отметил это в сноске. Ввиду моей молодости, я расценил это как маленькую победу, как признание моего присутствия в математике.

В то время среди некоторых математиков было распространено мнение, что логика в действительности не является математикой, а представляет собой лишь некое подготовительное и даже чуждое математике занятие. Сегодня это убеждение исчезает перед лицом множества реальных успехов, достигнутых в математике, благодаря методам формальной логики.

На втором курсе я решил прослушать курс теоретической физики, который читал профессор Войцек Рубинович, ведущий польский теоретик, бывший студент и сотрудник знаменитого физика Зоммерфельда из Мюнхена. Я посещал его образцовые лекции по электромагнетизму и принимал участие в семинарах по теории групп и квантовой теории, которые он проводил для способных студентов. Мы занимались по учебнику Германа Вейля «Теория групп и квантовая механика» («Gruppen theorie und Quantum Mechanik»). Весьма впечатляющим был высокий уровень математики, на котором мы изучали уравнения Максвелла и теорию электричества, составлявшие первую часть этого учебника. Хотя многое было выше моего понимания, я умудрялся много читать самостоятельно. Читал популярные доклады по теоретической физике, статистической механике, теории газов и теории относительности, не забывая также про электричество и магнетизм.

Зимой Рубинович заболел и попросил меня (хотя я был самым молодым студентом в группе) провести несколько занятий во время его отсутствия. До сих пор помню, как я корпел над незнакомым и трудным материалом учебника Вейля. Это было моим первым активным занятием в области физики.

Математические кабинеты политехнического института продолжали оставаться местом моего постоянного пребывания. Каждый день я проводил там утренние часы, в том числе и по субботам (суббота тогда не считалась выходным днем; по утрам в субботу проводились занятия). Нередко в институте появлялся Мазур, и мы начали активно работать вместе над проблемами функциональных пространств. Мы нашли решение задачи о бесконечномерных векторных пространствах. Теорема, которую мы доказали, — о том, что преобразование, сохраняющее расстояние, является линейным — входит сейчас в стандартный курс геометрии функциональных пространств. Написанная нами научная статья была опубликована в «Compte-Rendus» Парижской Академии наук.

Именно Мазур (наряду с Куратовским и Банахом) познакомил меня с некоторыми наиболее значительными этапами развития математических подходов и мышления. Я многое узнал от него о психологии исследования и различных отношениях к нему. Иногда мы часами сидели в кафе. На клочке бумаги или мраморной поверхности стола он писал один символ или строчку типа у = f(x), и, подавая или обсуждая различные идеи, мы оба таращились на эту надпись. Словно хрустальный шар, эти символы, которые стояли у нас перед глазами, должны были помочь нам сконцентрироваться. Спустя годы в Америке я часто практиковал подобный метод со своим другом Эвереттом, только происходило это не в кафе, а в кабинете, где висела доска.

Мазур, по его же собственным словам, был мастером «наблюдать и замечать». Это позволяло ему формулировать, обычно в краткой и точной форме, некоторые свойства понятий. Как правило, проверить их не составляло труда, поскольку иногда они граничили с традиционными формулировками и потому оставались незамеченными, однако часто именно им принадлежала решающая роль при решении задач.

Во время одной из бесед в кафе Мазур предложил первые примеры бесконечных математических игр. Я помню также (это было, скорее всего, в 1929 или 1930 году), что он поднял вопрос о существовании автоматов, которые обладали бы способностью к копированию самих себя при наличии некоторого наполнителя. Мы обсуждали это весьма отвлеченно, но некоторые из наших идей, которые мы никогда не записывали, практически предопределили будущие теории, такие, как теория абстрактных автоматов фон Неймана. Часто мы размышляли над возможностью создания компьютеров, способных выполнять числовые операции, связанные с исследованиями, и даже формальные алгебраические вычисления.

Я уже упомянул о том, что впервые увидел Банаха, посетив серию математических лекций во время учебы в средней школе. В то время Банаху было за тридцать, но, вопреки впечатлению, которое обычно складывается у молодых о людях, которые на пятнадцать или двадцать лет старше их, мне он показался очень моложавым. Он был голубоглазым блондином, высоким, с довольно тучной фигурой. Его манера говорить впечатлила меня своей открытостью, убедительностью и явной бесхитростностью (особенность, которая, как я заметил, была в какой-то мере напускной). Выражение его лица обыкновенно выдавало хорошее расположение духа в сочетании с определенной долей скептицизма.

Банах происходил из бедной семьи и почти не получил того общепринятого школьного образования. Он был по большей части самоучкой, когда пришел в стены Политехнического института. Говорили, что Штейнгауз совершенно случайно узнал о таланте Банаха, подслушав разговор двух молодых студентов, сидевших на скамейке в парке и обсуждавших математические вопросы. Одним из них был Банах, другим — Никодим, который недавно ушел с поста профессора математики Кеньонского колледжа. Впоследствии Штейнгауза и Банаха ожидало очень тесное сотрудничество и совместное основание Львовской математической школы.

Познания Банаха в математике были обширными. Он внес свой вклад в теорию функций вещественных переменных, теорию множеств, функциональный анализ, теорию бесконечномерных пространств (точки этих пространств являются функциями или бесконечными числовыми рядами). Некоторые его результаты были воистину изящны. Как-то он сказал мне, что в молодости знал все три тома «Дифференциальной геометрии» Дарбу.

Я побывал лишь на нескольких лекциях Банаха. Особенно мне запомнились его доклады на тему вариационного исчисления. В основном его выступления не были как следует подготовлены. Иногда он ошибался или пропускал что-то. Наиболее увлекательно было наблюдать за тем, как он работал у доски, пытаясь устранить свою оплошность и неизменно справлялся с этим. Я всегда находил такие выступления гораздо более увлекательными по сравнению с теми безукоризненными лекциями, во время которых мое внимание, бывало, окончательно переключалось на другие вещи и возвращалось к докладчику, лишь когда я чувствовал, что тот попал впросак. Начиная с третьего курса учебы, почти все идеи моих работ по математике созревали под влиянием бесед с Мазуром и Банахом. Банах говорил, что некоторые из моих работ отличались «необычностью» в постановке задач и обзоре возможных доказательств. Однажды, несколько лет спустя, он сказал мне, что его поражало то, насколько часто эти «необычные» подходы оправдывали себя. Слова эти из уст великого ученого в адрес молодого человека двадцати восьми лет были, наверное, величайшей из всех когда-либо заслуженных мною похвал.

Что же касается способностей Банаха, то будь то математическая дискуссия или короткое замечание на какую-то общую тему — во всем почти сразу можно было почувствовать огромную силу его ума. Он трудился с огромным напряжением, но в какие-то моменты прекращал работу и некоторое время пребывал в кажущемся бездействии. Но и в эти промежутки времени его мозг продолжал работать над отбором тех утверждений — своего рода пробных шаров — которые могли бы наилучшим образом послужить в качестве основных теорем в какой-нибудь последующей области изучения.

Он любил вести длинные математические дискуссии с друзьями и студентами. Я вспоминаю одно наше «заседание» в Шотландском кафе с Мазуром и Банахом, продолжавшееся семнадцать часов подряд, когда мы прерывали нашу беседу лишь для того, чтобы перекусить. Более всего меня вдохновляло то, как он мог обсуждать математические вопросы, обосновывать их и находить доказательства в ходе таких бесед.

Поскольку дискуссии эти чаще всего проходили в соседних кафе или маленьких харчевнях, некоторые математики часто там же и обедали. Сейчас мне кажется, что еда там была так себе, но напитков было великое множество. У столов были белые мраморные поверхности, на которых можно было писать карандашом и, что не менее важно, с них было легко стирать надписи.

Проливался внезапный и непродолжительный поток речи, на столе писалась пара строчек, иногда слышался смех одного из собеседников, а затем наступало длительное молчание, во время которого мы пили кофе, уставившись друг на друга отсутствующим взглядом — вот так это обычно бывало. Должно быть, посетителей, сидевших за соседними столиками, озадачивало столь странное поведение. Однако именно такое упорство и умение сконцентрироваться являются самыми важными условиями истинно плодотворной работы в области математики.

Когда отдаешь много сил размышлению над какой-то одной задачей несколько часов подряд, это может вызвать сильную усталость, граничащую с полным упадком сил. Я сам никогда не испытывал полного упадка сил, хотя два или три раза за свою жизнь мне все же довелось почувствовать себя несколько «странно внутри». Однажды я усиленно размышлял над несколькими математическими построениями, переходя от одного к другому, но в то же время пытаясь сознательно удержать их всех в голове одновременно. Эта сосредоточенность и умственные усилия привели мои нервы в состояние сильнейшего стресса. Внезапно все вокруг пошло кругами, и я вынужден был остановиться.

Эти долгие собрания в кафе с Банахом, а чаще с Банахом и Мазуром были в своем роде уникальны. Сотрудничество наше разворачивалось с таким размахом, равного которому я уже нигде никогда не встречал, возможно только в Лос-Аламосе в годы войны.

Банах признался мне как-то, что еще с самой юности его особенно привлекал сам поиск доказательств, т. е. демонстрация предположений. В его подсознании была заложена способность отыскивать скрытые пути — отличительное свойство его особого дара.

Через год или два Банах перенес наши ежедневные заседания из Римского кафе в Шотландское кафе, что находилось как раз через улицу. Стоцек проводил там ежедневно пару часов, играя в шахматы с Никлиборцем за чашкой кофе. Другие математики, окружив их, давали непрошенные советы. Изредка там появлялись Куратовский и Штейнгауз. Обычно они посещали более изысканные места, славящиеся лучшей выпечкой во всей Польше.

Было трудно оказаться выносливее Банаха или «впитать» в себя больше, чем он во время этих заседаний. Мы обсуждали на них задачи, которые обычно прямо там же и ставились, и зачастую не находили решения даже после нескольких часов размышлений, а на следующий день Банах появлялся, держа в руках несколько маленьких листочков с основными пунктами доказательств, которые он успел закончить накануне. Если же они были не завершены или даже не совсем правильны, то Мазур, как правило, приводил их в более удовлетворительный вид.

Нет нужды говорить, что помимо этих математических дискуссий, мы подолгу разговаривали о науке вообще (особенно о физике и астрономии), университетских новостях, политике, положении дел в Польше, или, выражаясь одной из любимых фраз Джона фон Неймана, об «остальной части Вселенной». Тогда уже приобретала свои зловещие очертания тень грядущих событий, скорого возвышения Гитлера в Германии, и зарождалось смутное предчувствие мировой войны.

В юморе Банаха присутствовала ирония и время от времени слышались нотки пессимизма. В течение некоторого времени он был деканом факультета естественных наук, и ему приходилось посещать разного рода собрания. По возможности он всегда старался избегать эти мероприятия. Как-то он сказал мне: «Wiem gdzie nie bȩdȩ»[4], и по его тону было ясно, что он намеревался пропустить какое-нибудь скучное собрание.

Банах имел потрясающую способность к постановке задач, охватывающих целые разделы математических дисциплин, и его публикации лишь частично отражают его математические пристрастия. Его интересы в математике были гораздо разнообразнее, чем можно было себе представить по его опубликованным работам. Очень велико было его влияние на других математиков во Львове и в Польше. Он, без сомнения, является одной из выдающихся фигур этого примечательного периода между двумя войнами, во время которого было так много сделано в области математики.

У меня нет достоверных сведений о его жизни и работе на период от начала войны и до его преждевременной смерти осенью 1945 года. По обрывочной информации, полученной позднее, мы узнали, что во время немецкой оккупации он все еще оставался во Львове и претерпевал большие лишения. Выжив, чтобы увидеть поражение Германии, Банах умер в 1945 году от болезни легких, возможно от рака. Я часто видел, как он выкуривал по четыре-пять пачек сигарет в день.

В 1929 году Куратовский попросил меня принять участие в конгрессе математиков из славянских стран, который должен был пройти в Варшаве. Что мне особенно запомнилось, так это прием во дворце президиума Совета Министров и робость, которую я испытывал в окружении такого множества великих математиков, правительственных чиновников и влиятельных людей. Отчасти мне удалось побороть ее, когда другой математик, Ароншайн, который был на четыре-пять лет старше меня, обратился ко мне со словами: «Kolego (так обычно польские математики обращались друг к другу), давайте пройдем в другую комнату, там подают превосходные пирожные». (Сейчас Ароншайн — профессор Канзасского университета в Лоренсе.)

Львовское отделение Польского математического общества проводило заседания по субботам в вечернее время. Обычно в течение часа зачитывалось три или четыре небольших доклада, после чего участники собрания отправлялись в кафе, чтобы продолжить обсуждение там. Не раз я заранее объявлял о своей готовности сообщить о некоторых результатах своей работы на одном из ближайших собраний, хотя доказательство, над которым я работал, еще не было завершено. Это было самонадеянно, однако мне сопутствовала удача, потому что я всегда успевал закончить доказательство до своего выступления.

Мне было девятнадцать или двадцать лет, когда Стоцек попросил меня занять место секретаря Львовского отделения математического общества, обязанность которого состояла, главным образом, в рассылке извещений о предстоящих заседаниях и написании кратких аннотаций обсуждаемых вопросов для «Society’s Bulletin». Разумеется, между нашим отделением и другими отделениями в Кракове, Познани и Вильно велась активная переписка. Серьезные проблемы возникали в связи с намерением перенести административный центр общества из Кракова, старинного королевского города Польши, в столицу Варшаву, где, в конце концов, он и разместился.

Однажды из Кракова пришло письмо, ходатайствующее о поддержке Львовского отделения в этом вопросе. Я сказал Стоцеку, президенту нашего отделения: «Сегодня утром пришло важное письмо», и его ответ — «Спрячь его так, чтобы ни одна душа его не увидела» — нанес серьезный удар по моей юношеской наивности.

Второй конгресс, на котором я побывал, проходил в 1931 году в Вильно. Я поехал в Вильно поездом через Варшаву вместе со Стоцеком, Никлиборцем и еще одним или двумя математиками. Всю дорогу они что-то ели и пили, но когда я вытащил из кармана фляжку с бренди, Стоцек разразился смехом и сказал: «Это мама позаботилась на случай, если ему вдруг станет дурно!» Это заставило меня остро почувствовать, насколько молодо я выглядел в глазах других. В течение многих лет я был самым молодым среди своих друзей-математиков. И теперь мне грустно сознавать, что сейчас почти в любой из групп ученых я самый старый.

Вильно был изумительным городом. Отличаясь от других городов австрийской части Польши, он создавал определенно восточную атмосферу. Он казался мне экзотичным и куда более примитивным по сравнению с той частью Польши, где жил я. Улицы все еще были вымощены булыжником. Когда я приготовился принять ванну в номере отеля, оказалось, что из крана гигантской ванны не бежит вода. На мой звонок явился крепкий парень в русских сапогах с тремя большими ведрами горячей воды, которую нужно было вылить в ванну.

Я побывал в церкви св. Анны, той самой, что привела Наполеона, направлявшегося через Польшу в Москву, в такое восхищение, что тот захотел перевезти ее во Францию.

Это было мое первое и последнее посещение Вильно. Стоит отметить здесь, что один из самых выдающихся математиков Польши Антони Зигмунд занимал в Вильно должность профессора до Второй мировой войны. В 1940 году он уехал в Швецию, а оттуда в Соединенные Штаты. Сейчас он профессор Чикагского университета.

На конгрессе я докладывал о результатах нашей с Мазуром работы над геометрическими изометрическими преобразованиями банаховых пространств, показывающими, что последние являются линейными. Некоторые из введенных тогда нами дополнительных замечаний так и остались неопубликованными. Львовские математики вообще публиковали свои работы с какой-то неохотой. Был ли это какой-то психологический комплекс или напускное пренебрежение? Не знаю. Особенно это касалось Банаха, Мазура и меня самого, но, к примеру, не было свойственно Куратовскому.

Развитие математики исторически связано с конкретными центрами. Эти центры, большие или маленькие, формировались вокруг одной или небольшого числа личностей, а иногда рождались в результате работы нескольких людей — группы, внутри которой бурно развивалась математическая деятельность. Такая группа обладает чем-то большим, чем просто общностью интересов, ей свойственны определенное настроение и определенный характер как при выборе интересов, так и в методе мышления. Это может показаться странным в этимологическом смысле, поскольку математическое достижение, будь то новое определение или доказательство проблемы, кажется достижением сугубо личным, почти как музыкальное сочинение. Однако выбор определенных сфер интересов — это часто результат общности интересов. Зачастую этот выбор обуславливается взаимным влиянием вопросов и ответов, которое намного естественнее развивается, когда соприкасаются несколько мнений. Геттинген, Париж, Кембридж — все эти великие центры XIX века оказали свое особое влияние на развитие математики.

Достижения польских математиков за период между двумя мировыми войнами составили значительную долю во всемирной математической деятельности и предопределили ход математических исследований во многих областях.

Это, отчасти, было обусловлено влиянием Янишевского, одного из инициаторов развития математики в Польше и автора учебников по математике, к сожалению, очень рано ушедшего из жизни. Янишевский отстаивал мнение о том, что молодое польское государство должно готовить специалистов скорее в нескольких четко обозначенных областях, чем во множестве направлений, и приводил два следующих аргумента: во-первых, в Польше не так уж много людей, которых можно вовлечь в науку; во-вторых, гораздо лучше, чтобы одна область объединяла некоторое количество людей так, чтобы они имели общие интересы и могли стимулировать друг друга во время дискуссий. Но стратегия эта, если посмотреть с другой стороны, в чем-то все же ограничивала масштаб исследований.

Хоть Львов и был замечательным центром математики, многие профессора как из университета, так и из института находились в чрезвычайно стесненных обстоятельствах, получая очень маленькие жалования. Чтобы увеличить свой мизерный заработок от работы ассистентом или лектором, люди, такие как Шаудер, вынуждены были преподавать в средней школе. (Шаудер был убит немцами в 1943 году.) Збигнев Ломницкий подрабатывал экспертом по теории вероятностей в Правительственном институте статистики и страхования. Но между тем, если бы меня попросили назвать какое-то одно свойство, характеризующее развитие этой школы — школы математиков Львовского университета и политехнического института — я сказал бы, что оно заключается в занятии самыми фундаментальными задачами математики. Я имею в виду следующее: если рассматривать математику в виде дерева, то львовская группа была склонна исследовать скорее его корни и ствол, чем ветви, веточки и листья. Опираясь на надежную теоретическую и аксиоматическую основу, мы исследовали сущность пространства в общетопологическом смысле, общий смысл непрерывности, общие множества точек в евклидовом пространстве, основные функции вещественных переменных, проводили общее исследование пространств функций, понятий длины, площади и объема, т. е. общего понятия меры, и также определений теории вероятностей.

Бросая ретроспективный взгляд, удивляешься тому, что в алгебре понятия не рассматривались в подобном общем направлении. Не менее удивительно и то, что до сегодняшнего дня таким образом не изучены фундаментальные положения физики, особенно теории пространства и времени.

Львов часто и оживленно взаимодействовал с другими математическими центрами, особенно с Варшавой. Из Варшавы время от времени приезжали Серпинский, Мазуркевич, Кнастер, Тарский. Во Львове они часто выступали с небольшой речью на собраниях Математического общества, проходивших по субботним вечерам. Серпинский особенно любил неформальную атмосферу Львова, походы в харчевни и таверны и веселые попойки с Банахом, Рузевичем и другими (Рузевич был убит немцами 4 июня 1941 года).

Как-то Мазуркевич провел во Львове семестр лекций. Точно так же, как Кнастер в топологии, Мазуркевич был мастером по отысканию контрпримеров в анализе — примеров, демонстрирующих ложность какого-либо предположения. Иногда его контрпримеры были очень сложными, но всегда остроумными и изящными.

Серпинский, который сам непрерывным потоком выдавал результаты то в абстрактной теории множеств, то в теоретической топологии, никогда не обделял вниманием новые задачи, даже самые незначительные, и серьезно обдумывал их. Часто из Варшавы приходили его готовые решения.

Бронислав Кнастер был высоким, лысым и очень худым, с блестящими черными глазами. Он и Куратовский опубликовали много совместно написанных работ. Будучи воистину математиком-любителем, он проявлял большую изобретательность при построении множеств точек и континуумов с патологическими свойствами. Во время Первой мировой войны он изучал в Париже медицину. Отличаясь необычайным остроумием, он обычно развлекал нас рассказами о международной группе студентов-полиглотов на том неописуемом языке, на котором они разговаривали. Как-то он процитировал фразу одного студента, подслушанную в ресторане: «Kolego, pozaluite mnia ein stückele von diesem faschierten poisson» — амальгаму польского, русского, идиш, немецкого и французского!

Борсук, который был скорее моим сверстником, приезжая из Варшавы, оставался на более длительное время. С самого начала мы стали сотрудничать. От него я узнал о чисто геометрических, более наглядных и почти «осязаемых» приемах и методах топологии. Наши результаты были изложены в нескольких научных статьях, которые мы посылали в польские и некоторые заграничные журналы. Фактически моя первая публикация появилась в Соединенных Штатах, когда я был во Львове. Это была наша совместная с Борсуком работа, опубликованная в «Bulletin of the American Mathematical Society». Вместе мы дали определение понятию «эпсилон гомеоморфизм» (один из видов приближенного гомеоморфизма) и описали поведение некоторых топологических инвариантов под действием этих более общих преобразований — непрерывных, но необязательно взаимно однозначных. В другой совместной работе, посвященной симметричным произведениям, вводилось понятие, видоизменяющее определение декартова произведения и приводящее к построению некоторых любопытных многообразий. Возможно, некоторые из них когда-нибудь найдут применение в физических теориях. Они соответствуют новой статистике (не в привычном классическом смысле, а скорее в духе статистики неразличимых частиц квантовой теории или же частиц, поведение которых подчиняется статистике Бозе — Эйнштейна или Ферми-Дирака). Я не могу позволить себе вдаваться на этих страницах в объяснения, однако упоминание об этой работе, возможно, все же заинтересует некоторых читателей.

Куратовский и Штейнгауз, каждый по-своему, демонстрировали в математике изящество, строгость и незаурядный ум. Куратовский был истинным представителем варшавской школы, которая, начиная с 1920 года, процветала с потрясающим размахом. Он приехал во Львов в 1927 году, уже знаменитый благодаря своей работе в области классической теории множеств и аксиоматической общей топологии. Будучи редактором «Fundamenta Mathematicae», он стал организатором и руководителем многих исследований, которые освещались в этом известном журнале. Его стилю в математике было присуще нечто, что я определил бы как латинскую лаконичность. Его взвешенному выбору задач, при всем изобилии математических определений и интересов (сейчас еще более обескураживающем, чем в то время), было присуще свойство, которое сложно определить — что-то вроде здравого смысла в абстракциях.

Штейнгауз был одним из немногих польских профессоров еврейского происхождения. Он происходил из известной, вполне ассимилированной еврейской семьи. Его двоюродный брат, который был великим патриотом и сражался в рядах армии Пилсудского, был убит на Первой мировой войне.

Его понимание анализа и прочувствованный подход к задачам в области вещественных переменных, теории функций, ортогональных рядов подтверждали его глубокое знание исторического развития математики и ее понятий, непрерывно сменяющих друг друга. Вполне возможно, что Штейнгауз сам, не имей он такого интереса и понимания сугубо абстрактных разделов математики, направил бы какие-нибудь новые математические идеи в русло практического применения.

Он обладал талантом применять математические формулировки к вопросам, сходным по своей простоте с проблемами повседневной жизни. Он склонялся к выбору таких геометрических задач, которые можно было бы рассматривать с точки зрения комбинаторики, да и любых других, лишь бы они представляли видимый, осязаемый вызов математическому подходу.

Он обладал тонким чувством лингвистики, которое временами граничило с педантизмом, и настаивал на применении абсолютно правильного языка в отношении математики или областей науки, поддающихся математическому анализу.

Ауэрбах был невысокого роста, сутуловатый и ходил, как правило, с опущенной вниз головой. Несмелый с виду, он часто обнаруживал очень едкий юмор. Его знание классической математики было, возможно, глубже, чем у большинства других профессоров. Он, к примеру, прекрасно знал классическую алгебру.

С его подачи Мазур, я и еще несколько математиков начали систематическое исследование групп Ли и других теорий, которые выходили за пределы той математики, которую сейчас принято называть польской. Ауэрбах обладал большими познаниями и в геометрии. Я часто обсуждал с ним теорию выпуклых тел, которой Мазур и я посвятили несколько совместных работ.

В Римском кафе Ауэрбах и я играли в шахматы, и часто мой дебют (тогда я еще не знал о теориях шахматных дебютов и в игре полагался лишь на интуицию) сопровождался следующим маленьким ритуалом: я делал ход пешкой и он обыкновенно говорил: «Ah! Ruy Lopez». Я спрашивал его: «Что это значит?», а он мне отвечал: «Испанский слон».

Ауэрбах умер во время войны. Насколько я знаю, он и Штернбах приняли яд, когда немцы везли их на допрос, однако мне ничего не известно ни об обстоятельствах их ареста, ни об их жизни до и во время фашистской оккупации.

Мое сотрудничество со Шрейером началось, я полагаю, когда я учился на втором курсе университета. Из всех математиков университета и политехнического института только Шрейер был действительно моим сверстником, т. к. он был старше меня всего лишь на полгода или год, и был тогда еще студентом университета. Мы встречались в аудитории для семинаров на лекциях Штейнгауза и обсуждали задачи, которыми я занимался. Почти сразу у нас обнаружилось много общих интересов, и мы стали регулярно встречаться. Результатом нашего сотрудничества явилась целая серия совместно написанных работ.

Мы встречались почти каждый день, иногда в кафе, но чаще у меня дома. Сам он жил в Дрогобыче — небольшом городке, нефтяном центре к югу от Львова. Какие проблемы и методы мы только не обсуждали вместе! Работа наша, несмотря на влияние действовавших тогда во Львове методов, распространялась на новые области: группы топологических преобразований, группы перестановок, теорию абстрактных множеств, общую алгебру. Я считаю, что некоторые наши научные статьи входят в число самых первых работ, рассматривающих приложения к более широкому классу математических объектов современных методов теории множеств с использованием более алгебраического подхода. Еще мы начали работу над теорией группоидов, как называли ее мы, или теорией полугрупп, как называют ее сейчас. Сейчас некоторые результаты этой работы можно найти в соответствующей литературе, а некоторые, насколько мне известно, так и остались ненапечатанными.

Шрейер был убит немцами в Дрогобыче, в апреле 1943 года.

Другой математик, Марк Кац, который был моложе меня на четыре или пять лет, был студентом Штейнгауза. Он только перешел на последний курс, но уже тогда в нем обнаружился исключительный талант. Позднее, когда я начал учиться в Еарварде и приезжал во Львов на летние месяцы, наше знакомство стало более близким. Как и мне, ему выпала удача приехать в Соединенные Штаты, но только несколькими годами позже, и именно в этой стране мы по-настоящему подружились.

В 1932 меня пригласили выступить с небольшим сообщением на Международном математическом конгрессе в Цюрихе. Это была первая встреча на международном уровне, на которой мне довелось побывать, и я был очень горд тем, что меня пригласили. В отличие от некоторых знакомых мне польских математиков, восхищавшихся западной наукой, я был убежден в не меньшей значимости польской математики. Эта уверенность распространялась и на то, что делал я сам. Фон Нейман однажды сказал моей жене, Франсуазе, что никогда ни в ком не встречал подобной самоуверенности, добавив, что у меня, скорее всего, имеются на то основания.

На Запад я ехал вместе с Куратовским, Серпинским и Кнастером, к которым присоединился в Вене, куда все они приехали из загородного дома Куратовского близ Варшавы; на пути в Цюрих профессора решили задержаться в Инсбруке. Мы провели там пару дней вместе с несколькими математиками из других стран, которые также ехали на конгресс. Я помню экскурсию к горе Хафелекар на фуникулере. Впервые в жизни я оказался на высоте свыше двух тысяч метров, и мне открылся потрясающий вид. Помню, что в течение нескольких минут у меня кружилась голова, и я тогда сравнил это ощущение с чувством, которое не раз испытывал прежде, постигая смысл ключевых моментов в доказательствах теорем, некогда изучаемых мною в средней школе.

По сравнению с любым другим конгрессом, на котором мне случалось бывать раньше, конгресс в Цюрихе был огромным событием, но все же он был весьма скромным, если сравнивать с конгрессами, которые проводились после Второй мировой войны. У меня сохранилась фотография всех его участников, стоящих на фоне Высшей технической школы. Там я в первый раз увидел зарубежных математиков и даже познакомился со многими из них.

Встреча была интересной, и для меня стало стимулом узнать о многих других формах и областях математики, отличных от тех, что культивировались в Польше. Разнообразие математических областей открыло для меня новые перспективы и навело на новые мысли. В те дни я посещал почти каждую общую беседу.

Многие математики из Германии и Западной Европы показались мне нервными; у некоторых были лицевые судороги. В целом, по сравнению с поляками, которых я знал, они держались менее раскованно. И, несмотря на то, что в Польше глубоко восхищались Геттингенской школой математиков, я вновь испытал, быть может, не вполне оправданное чувство самоуверенности.

Во время своего собственного небольшого выступления я тоже нервничал, но в меру. Смотря в прошлое, я думаю, что причиной этого относительного отсутствия волнения послужило мое отношение, вызванное некоторым опьянением математикой и постоянными занятиями ею.

Кто-то показал мне на невысокого пожилого человека. Это был Гильберт. Я встретил также Дикштейна, старого польского математика, которому было уже за девяносто, прогуливавшегося в надежде найти кого-нибудь из своих современников. Учитель Дикштейна был студентом Коши в начале девятнадцатого века, а он сам до сих пор считал Пуанкаре, умершего в 1912 году, талантливым молодым человеком. Для меня это был словно экскурс в предысторию математики, и я был преисполнен философского благоговения. Я также познакомился с первым в своей жизни американским математиком и будущим своим коллегой Норбертом Винером. Фон Неймана не было, и это стало разочарованием: я был наслышан о его приезде во Львов в 1929 году.

У бассейна отеля я познакомился с прославленным физиком Паули, профессором Фавром и Адой Хальперн. Фавр, наставник Ады, был швейцарским математиком, известным, кроме всего прочего, своими исследованиями знаменитой классической проблемы о фигурах равновесия вращающихся планет и звезд. Ада была родом из Львова. Она была очень хорошенькой девушкой, изучавшей математику в Женевском университете. Несколько лет нас связывал непостоянный роман. На глазах у всей этой компании я тогда повернулся к Паули и скаламбурил: «Это Pauli Verbot!» (дело в том, что согласно физическому принципу Паули, две частицы, обладающие одинаковыми характеристиками, не могут занимать одно и то же место), намекая на то, что мы оба, Фавр и я, находимся в компании одной молодой хорошенькой леди.

Еще одна интересная встреча произошла как-то днем в лесу, окружавшем знаменитый отель Долдер. Заблудившись, я натолкнулся на Павла Александрова и Эмми Нетер, которые гуляли и беседовали о математике. Александров знал о некоторых моих работах, так как я посылал ему оттиски, одно время мы вели переписку по вопросам математики. Одним из самых радостных моментов моей жизни было получение его письма на имя профессора С.Улама. В ту встречу Александров неожиданно сказал мне: «Улам, вы хотели бы съездить в Россию? Я мог бы все устроить и был бы очень рад видеть вас у себя». Как поляку, да еще из капиталистической семьи, мне польстило его приглашение, но все-таки поездка эта все же казалась нереальной.

Конгресс закончился, и после маленькой экскурсии в Монтрё вместе с Куратовским и Кнастером я вернулся в Польшу как раз ко времени сдачи экзаменов на степень магистра.

К экзаменам у меня было почти патологическое отвращение. Более двух лет я вообще пренебрегал сдачей экзаменов, которые обычно были обязательными для перевода на последующий курс, а профессора, знавшие о моих оригинальных работах, смотрели на это сквозь пальцы. И вот я, в конце концов, все же должен был сдать их — все за раз.

Я проучился несколько месяцев, сдал что-то вроде всестороннего экзамена и написал диссертацию на степень магистра, тему которой придумал сам. Я работал над ней неделю, и еще одна ночь, часов с десяти вечера до четырех утра, ушла на то, чтобы оформить ее на бумаге — на длинных листах отцовой бумаги форматом 33 х 40, 6 см. У меня до сих пор сохранилась та рукопись (она не опубликована по сей день). В этой работе освещены общие идеи об операциях с произведениями множеств и, в общих чертах, то, что сейчас носит название теории категорий. Она содержит также мои собственные результаты с очень абстрактной трактовкой понятия о теории многих переменных в различных разделах математики. Все это произошло осенью 1932 года по моему возвращению из Цюриха.

В 1933 году я защитил докторскую диссертацию. Она была напечатана издательством Ossolineum, выпускающим львовское периодическое издание «Studia Mathematica». В ней были объединены несколько моих предыдущих работ, теорем и обобщений в теории мер.

Я был первым, кому присудили докторскую степень на факультете общеобразовательных дисциплин Львовского политехнического университета, основанном в 1927 году. Это был единственный факультет, где можно было получить степень магистра и доктора, на всех других факультетах присваивались «инженерные» степени.

Церемония была весьма официальной и проходила в просторном холле института в присутствии семьи и друзей. Мне пришлось надеть белый галстук и перчатки. Каждый из моих поручителей, коими были Стоцек и Куратовский, произнес небольшую речь о том, что я сделал и какие написал работы. Сказав также несколько слов о диссертации, они вручили мне пергаментный документ.

«Аула» — большой холл, в котором проходила церемония — был украшен традиционными фресками, очень похожими на те, что через двадцать лет я увидел на стенах кафетерия МТИ[5]. На последних были изображены парящие женщины в убогих одеждах, символизирующие науку и искусство, и крупная женская фигура какой-то богини, нависшей над отпрянувшим в ужасе стариком. Обычно я в шутку говорил, что это военно-воздушные силы, предлагающие контракты физикам и математикам. В Фалд Холл, здании Принстонского университета, также есть одна старая картина, которая висит в кафетерии, где днем для беседы часто собирается народ. Там тоже изображен старик, который старается укрыться от ангела, спускающегося с небес. Когда мне сказали, что никто не знает, что именно предполагалось передать в этой картине, я предположил, что это может быть изображение Минны Рис, женщины-математика (которая в то время возглавляла Управление морскими исследованиями), предлагающей Эйнштейну, отшатнувшемуся в ужасе, контракт на работу консультантом в военно-морском флоте.

После защиты диссертации и всех церемоний я опубликовал еще несколько работ и затем был вынужден взять передышку до самого конца 1933 года из-за паратифа, на несколько месяцев отнявшего у меня все силы — один из тех редких случаев в моей жизни, когда я был действительно серьезно болен.

Однако нельзя утверждать, что в моей жизни была только серьезная работа без минуты развлечения. В начале тридцатых в наше кафе заглядывал Хирняк, преподаватель естественных наук в средней школе, маленький морщинистый человечек. Обычно он сидел в нескольких столиках от нас, потягивая по очереди то водку, то кофе, и что-то царапал на клочке бумаге с озабоченным видом. Время от времени он поднимался и пересаживался за наш столик, чтобы поболтать или дать пару-другую непрошеных советов, когда Никлиборц и Стоцек играли в шахматы. И Никлиборц тогда твердил с ликованием: «Gehirn (по-немецки «мозг») Гехирник!»

Хирник, который преподавал математику, физику и химию, пытался решить знаменитую теорему Ферма[6]. Это одна из самых известных в математике нерешенных задач, которая уже давно привлекает и чудаков, и дилетантов, регулярно предъявляющих либо неверные, либо очень неполные доказательства.

В кафе Хирник был общеизвестной личностью, его речь была поразительно колоритной и изобиловала высказываниями, которые из его уст звучали весьма забавно. Обычно мы запоминали и пересказывали их друг другу; у меня же вошло в привычку наклеивать их на стены своей комнаты.

Как оказалось, мой отец знал Хирника, жена которого владела большим заводом по производству содовой воды, так как его контора вела их юридические дела. Отец считал Хирника до смешного глупым человеком. Когда же он увидел мою коллекцию с изречениями Хирника, то, как я полагаю, он очень удивился и, возможно, даже затревожился о моем психическом здоровье. Поэтому мне пришлось разъяснить ему некоторые тонкости юмора и особые его стороны, привлекательные для математиков.

Хирник, к примеру, иногда говорил Банаху, что в его доказательстве теоремы Ферма есть некоторые пробелы. При этом он добавлял: «Чем больше мое доказательство, тем меньше дыра. Дыра тем меньше, чем длиннее и толще доказательство». Для математика такая формулировка звучала весьма забавно. Он делал также странные заявления, касающиеся физики. Например, говорил, что половину элементов периодической таблицы составляют металлы, а другую — неметаллы. Когда же кто-то замечал ему, что это не совсем так, он отвечал: «Ага, ведь по определению мы можем отнести к металлам даже еще несколько элементов!» Он замечательным образом позволял себе вольности в определениях.

Он рассказывал, как в Геттингене, где он учился, он бывало пил вино, разливаемое монетным автоматом. Однажды что-то случилось с машиной, и вино продолжало литься. Хирник же продолжал его пить, пока не очутился на земле в окружении толпы людей. Он расслышал чей-то вопрос: «Vielleicht ist etwas los?» (Должно быть, что-то случилось?) И он ответил: «Vielleicht nicht» (Должно быть, нет), после чего толпа торжественно доставила его домой на своих плечах.

А вот история о Хирнике, которую я рассказал фон Нейману несколько лет спустя в Принстоне и которая весьма его позабавила. Как-то Хирник сказал Банаху, Мазуру и мне, что он уже почти доказал гипотезу Ферма и что американские репортеры, узнав об этом, приедут во Львов и скажут: «Где этот гений? Дайте ему сто тысяч долларов!», и Банах откликнулся эхом: «Дайте ему!» Однажды в Лос-Аламосе, уже после войны, Джонни сказал мне: «Помнишь, как мы смеялись над той «сотней тысяч долларов»? Так вот, прав был он, он был настоящим пророком, а мы, глупцы, над ним смеялись.» Джонни, конечно, имел ввиду представителей Министерства Обороны, военно-воздушных сил и Военно-морского флота, разъезжавших в то время по всей стране, щедро предлагая ученым контракты на исследовательскую работу. В среднем, такой контракт оценивался где-то в сотню тысяч долларов. «Он не только не ошибся, — сказал тогда Джонни, — он даже предсказал точную сумму!»

В 1933 или 1934 году Банах принес в Шотландское кафе большой блокнот, чтобы мы могли записывать в него формулировки новых задач, а также результаты наших дискуссий. Эта книга всегда хранилась в кафе. Официант приносил ее по нашему требованию, и мы вписывали туда задачи и комментарии, после чего он церемонно уносил ее обратно в секретное место. Впоследствии этот блокнот обрел известность под названием «Шотландской книги» («The Scottish Book»).

Многие задачи относились к периоду до 1935 года. Указанные имена принадлежат тем, кто принимал самое большое участие в их обсуждении. Многим поставленным вопросам, прежде чем «официально» занести их в книгу, уделялось немало времени. Иногда проблемы решались сходу, и ответы записывались тут же, на месте.

За несколько лет от начала ведения Шотландской книги городу Львову, да и самой книге суждено было прожить очень бурную историю. В начале Второй мировой войны город оккупировали русские. Из нескольких пунктов ближе к концу книги явствует, что в город, по-видимому, приезжали русские математики. Они записали в ней несколько задач с обещанием вручить премию тому, кто решит их. Последняя указанная в книге дата — 31 мая 1941 года. Пункт № 193 содержит набор довольно загадочных численных результатов с подписью Штейнгауза, связанный с задачей о распределении количества спичек в коробке. Записи прекращаются после начала войны между Германией и Россией, когда летом 1941 года Львов оккупировали немецкие войска. Мне не известно, что стало с книгой в последующие годы войны. Штейнгауз говорил, что сын Банаха, который сейчас работает в Польше нейрохирургом, привез этот документ в Вроцлав (прежде Бреслау).

Когда летом 1939 года я в последний раз приехал во Львов, за несколько дней до моего отъезда мы с Мазуром обсуждали вероятность наступления войны. Люди тогда ожидали начала еще одного кризиса, вроде того, что был в Мюнхене, но никак не надвигающейся мировой войны. Однако Мазур сказал мне: «Должно быть, начнется война. Что мы будем делать с Шотландской книгой и нашими совместными неопубликованными работами? Ты уезжаешь в Соединенные Штаты и, вероятно, будешь в безопасности. Если город будут бомбить, я положу рукописи и книгу в ящик и зарою его в землю.» Мы даже условились насчет места — недалеко от ворот вратаря на футбольном поле, прямо за чертой города. Не знаю, случилось ли все так на самом деле, но книга сохранилась, причем в хорошем состоянии, так как после войны Штейнгауз даже выслал мне копию. В 1957 году я перевел ее и разослал многим друзьям-математикам, живущим в США и за рубежом.

Многие уцелевшие математики из Львова продолжают работать сейчас во Вроцлаве. Традиция Шотландской книги продолжается. С 1945 года были выдвинуты и записаны новые задачи, и уже начат новый том.

Глава 3. Поездки за границу

1934

К 1934 году я представлял из себя скорее математика, чем электротехника. Дело даже не в том, что я занимался математикой, скорее она сама завладела мною. И сейчас, возможно, самое подходящее время, чтобы на минуту остановиться и поразмыслить над тем, что же это значит — быть математиком.

Мир математики обязан своим существованием человеческому мозгу, и его можно представить без какой бы то ни было помощи извне. Математик может работать над интересующим его вопросом без всякого оборудования или реквизитов, которые необходимы другим ученым. Физикам (даже теоретикам), биологам, химикам нужны лаборатории — математики же могут работать не имея ни мела, ни карандаша, ни бумаги, и продолжать думать во время ходьбы, еды и даже разговора. Это объясняет, почему, занимаясь какими-то другими делами, многие математики кажутся ушедшими в себя, поглощенными какими-то мыслями. Такое поведение очень заметно и во многом отличается от поведения ученых, работающих в других областях. Безусловно, оно зависит и от личности. В некоторых, например Поле Эрдеше, эта особенность проявляется в высшей мере. Его сосредоточенность на математическом построении или рассуждении заполняет собой очень большую часть времени его бодрствования, что исключает для него любые другие занятия.

Что касается меня, то с тех пор, как началось мое увлечение математикой, я, забывая о любой другой деятельности, отдавал в среднем два-три часа чтению или беседе на математические темы. Когда мне уже было двадцать три, я бывало раздумывал над одной и той же задачей по нескольку часов подряд без карандаша и бумаги, прилагая немыслимые усилия (что, между прочим, несказанно труднее, чем проведение вычислений, когда символы, которыми оперируют, находятся перед глазами).

В целом, я все же считаю, что беседовать или слушать — это более простой и приятный способ получения знаниий, по сравнению с чтением. И я по сей день не могу заставить себя прочесть напечатанные указания относительно того, как и что нужно делать.

Некоторые люди предпочитают учить языки по грамматическим правилам, а не на слух. Есть такое и в математике — одни изучают ее с помощью «грамматики», другие черпают знания «из воздуха», как это делал я.

Так, я, сам того не осознавая, учился от Мазура сдерживать свой природный оптимизм и проверять детали, учился не спеша и скептически совершать промежуточные шаги, не позволяя себе увлечься. Темперамент, характер и «гормональные» факторы имеют, должно быть, очень важное значение в чисто «умственной» деятельности. В интеллектуальном развитии человека «нервным» характеристикам отведена огромная роль. Вполне возможно, что к двадцати годам, когда развитие, как принято считать, полностью завершается, некоторые из приобретенных нами качеств по существу консервируются и становятся неотъемлемой частью нашей натуры.

Считается, что математика является по сути не более чем очень обобщенным точным языком, но это справедливо лишь отчасти. Существует множество способов выразить свои мысли. У человека, который начинает делать это рано, организация памяти происходит неким особым образом, он, иначе говоря, изобретает свою особую систему хранения впечатлений. «Подсознательное брожение» (или подсознательное мышление) порой приводит к лучшим результатам, чем принудительное систематическое мышление, так же как планирование целой программы более эффективно, чем следование одной определенной линии рассуждения. Когда человек заставляет себя упорно продолжать свое логическое исследование, это самопринуждение становится привычкой, после чего оно вообще перестает таковым быть, так как происходит уже автоматически (словно подпрограмма, как любят говорить компьютерщики). Должно быть, даже в оригинальности, хоть и нельзя сказать, что именно ее составляет, в какой-то степени присутствует систематичность исследования путей — почти автоматический отбор тех попыток, определенный процент которых поможет достичь успеха.

Мне всегда больше нравилось пытаться открыть новые возможности, чем просто держаться намеченных линий рассуждения или выполнять конкретные вычисления. У некоторых математиков это качество доминирует над всеми другими. Но надо сказать, что открытие новых возможностей куда более трудное занятие по сравнению с проведением математических вычислений, и оно не может продолжаться слишком долго.

То, насколько плодотворна работа отдельной личности, разумеется, обуславливается тем, что ей под силу, и это, по всей вероятности, сужает поле ее деятельности. За собой я замечал привычку «вертеть» задачу и так и эдак, отыскивая те моменты, в которых может крыться затруднение. Некоторые математики приходят в уныние, когда не остается ни трудностей, ни препятствий, о которых можно было бы переживать. Нет нужды говорить, что одни при этом задействуют большее воображение, чем другие. Так, Поль Эрдеш постоянно находится в состоянии сосредоточенности, но как правило, на тех рассуждениях, которые либо уже были кем-то начаты, либо были связаны с тем, о чем он ранее уже размышлял. У него нет привычки что-нибудь «стирать» из своей памяти как с магнитофонной пленки, чтобы начать что-то заново.

У Банаха была одна излюбленная польская пословица: «Надежда — удел глупцов». И все-таки полезно испытывать надежду и верить, что удача принесет успех. В то же время упорный поиск законченных решений математических задач — занятие менее благодарное, чем неоднократные попытки, которые в результате приводят к неполным решениям или, во всяком случае, дают опыт. Это сравнимо с исследованием неизвестной местности, в которой для того, чтобы открыть новые земли, совсем не обязательно сразу доходить до самого конца тропы или взбираться на все вершины.

Самое главное в творческой науке — не отступать. Если вы оптимист, то наверняка захотите сделать больше попыток, нежели этого захочет пессимист. То же самое происходит в игре. Например, в шахматах. Действительно, хороший шахматист склонен верить (иногда ошибочно), что он находится в лучшем положении, чем его соперник. Это, конечно же, поддерживает игру и сдерживает усталость, которую вызывают сомнения в себе. Физические и умственные ресурсы решающе важны и в шахматах, и в творческой научной работе. Только в последнем случае избежать ошибок легче, так как всегда можно вернуться назад и начать размышление сначала; в шахматах же пересматривать уже сделанные ходы не позволяется.

Умение концентрироваться и отвлекаться от окружающей обстановки приобретается молодыми с большей естественностью. Математиком можно стать будучи очень молодым, даже подростком. Для математиков-европейцев раннее развитие характерно даже в большей степени, чем для математиков-американцев, так как европейское среднее образование на несколько лет опережает более теоретическое образование в Соединенных Штатах. Нет ничего необычного и в том, что математики добиваются своих лучших результатов в очень раннем возрасте. Правда, бывают и исключения, например, Вейерштрасс, который был учителем в средней школе, достиг наивысших результатов в возрасте сорока лет.

А Норман Левинсон не так давно доказал очень красивую теорему, и ему при этом было шестьдесят один или шестьдесят два года.

В двадцать пять лет я получил несколько результатов в теории меры, которые в скором времени стали широко известными. Они представляли собой решения некоторых любопытных задач теории множеств, которые ранее пытались решить Хаусдорф, Банах, Куратовский и другие. Спустя годы эти задачи теории меры приобрели значение в связи с работой Геделя и недавней работой Пола Коэна. Я также занимался исследованиями в топологии, теории групп, и теории вероятностей, однако с самого начала я не специализировался в какой-то конкретной области. Много занимаясь математикой, я никогда не считал себя математиком и только. Возможно, это одна из причин, по которой позднее я стал заниматься и другими науками.

В 1934 году международная обстановка становилась все более угрожающей. В Германии к власти пришел Гитлер, и его влияние косвенно ощущалось и в Польше, выражаясь в участившихся вспышках национализма, массовых выступлениях правых экстремистов и демонстрациях антисемитов.

Не могу утверждать, что тогда я видел в этом предзнаменования грядущих событий, однако смутно я чувствовал, что, если я хочу сам зарабатывать себе на жизнь, а не продолжать неизвестно сколько еще времени принимать помощь отца, мне следовало ехать за границу. В течение многих лет мой дядя Кэрол Ауэрбах твердил мне: «Изучай иностранные языки!» Другой мой дядя, Майкл Улам, который был архитектором, убеждал меня попробовать сделать карьеру за границей. Сам же я, не осознавая истинного положения дел в Европе, испытывал соблазн устроить продолжительную поездку за границу. Причиной этого было, главным образом, мое желание познакомиться с другими математиками, обсудить с ними какие-нибудь задачи и, учитывая мою крайнюю самоуверенность, попытаться впечатлить мир своими новыми достижениями. Мои родители согласились оплатить эту поездку.

Я планировал поехать на Запад (поезжай на Запад, юноша!). Сначала я хотел провести несколько недель в Вене и встретиться с Карлом Менгером, знаменитым геометром и топологом, с которым Куратовский познакомил меня еще в Польше. Была осень 1934 года, и только что было совершено убийство австрийского премьера Дольфуса. В Вене происходил переворот, но я был настолько поглощен, почти беспробудно «пьян» математикой, что по-настоящему не осознавал этого.

Проведя пару дней в одном из венских отелей, я переехал в частный пансион. В то время это было обычным делом. Пансион находился на улице, названной именем Больцмана, величайшего физика девятнадцатого века, одного из главных создателей кинетической теории газов и термодинамики.

Когда я навестил Менгера, то познакомился в его доме с молодым блестящим испанским топологом Флоресом, который уже успел достигнуть отличных результатов. Мы очень много рассуждали о математике. Он был популярной личностью в ночных клубах города и познакомил меня с образом жизни венской молодежи.

Из Вены я отправился в Цюрих, чтобы встретиться с топологом Хейнцем Хопфом. Он был профессором в знаменитой Высшей политехнической школе, мы вели переписку. Хопф кое-что знал о моих результатах в топологии и пригласил меня прочитать в институте две лекции. Одна из лекций посвящалась нашей совместной с Борсуком работе над «антиподальной теоремой», являющейся интересной топологической задачей. Я говорил на немецком в аудитории, закрепленной за кафедрой сельского хозяйства. Помню, что вдоль стен было развешено множество картинок с коровами-рекордсменками, которые, казалось, взирали на меня с выражением печали и соболезнования.

Моя поездка в Цюрих была весьма плодотворной. Я также встретил там физика Гроссмана, бывалого путешественника, который был на несколько лет старше меня. Он порекомендовал мне отели в Англии и Франции, которые были мне по карману. Вместе мы рассуждали о философии и роли математики в физике.

После двух недель, проведенных, в Цюрихе, я отправился в Париж, где пробыл пять недель. Этот город привел меня в абсолютное восхищение. Мне уже случалось бывать во Франции, однако это был первый мой приезд в Париж.

Так случилось, что в Париже в то время жила жена дяди Майкла. Она любезно пригласила меня в гости и даже предложила прислать за мной к дверям моего скромнейшего отеля лимузин с шофером, чтобы показать мне достопримечательности. Но я пришел в такое замешательство при мысли о том, что кто-нибудь увидит меня, подъезжающего к Лувру или какому-нибудь другому музею на Роллс-Ройсе или Дьюзенберге; вещи эти показались мне такими несовместимыми, что я решил отказаться от ее предложения.

В институт им. Пуанкаре я пришел с рекомендательным письмом к старому и знаменитому математику Эли Картану. Его написал один из моих профессоров. Войдя в кабинет Картана, я сходу пустился в математическую дискуссию и начал объяснять ему, как я представляю себе простое и общее решение пятой задачи Гильберта по непрерывным группам. Сначала он сказал мне, что не вполне уловил последовательность моих рассуждений, но затем добавил: «А! Да-да, теперь я понимаю, что вы хотите сделать.» Маленькая светлая козлиная бородка Картана, его живая улыбка и лучистые глаза создавали образ, с которым у меня мысленно ассоциируются все французские математики. Он был выдающимся человеком по множеству причин и, далеко не в последнюю очередь, потому, что многих своих лучших результатов он достиг, когда ему было уже за пятьдесят — в возрасте, знаменующем спад творческой деятельности математиков.

Я побывал на нескольких лекциях и семинарах в институте им. Пуанкаре и Сорбонне. Случилось так, что на первом же семинаре один молодой француз по имени де Поссель заговорил об одном из моих собственных достижений. Это преисполнило меня гордостью. (Де Поссель и по сей день преподает в Париже.) Меня пригласили прочитать лекцию в зале, носившем имя математика Эрмита, и еще одну в зале им. Дарбу. Залы эти и улицы, названные в честь Лапласа, Монжа, Эйлера и других, явно свидетельствующие о той дани, что воздавалась абстракциям — плодам трудов математиков, — еще более, словно крепленое вино, усилили мое общее состояние эйфории. И я, по своей молодости, думал: «Если бы только когда-нибудь, сотню лет спустя, какая-нибудь маленькая улочка или аллея была названа моим именем.»

В октябре я решил поехать в Англию, в Кембридж. Штейнгауз снабдил меня письмом к профессору Г. X. Харди — настоящей легенде математического мира. Во Львове его открытия в теории чисел были хорошо известны, а мой друг Шрейер обычно делал обзор его работ на семинарах. Об эксцентричных выходках Харди ходили целые истории.

В Англии, как я обнаружил, принадлежность к крупнобуржуазному обществу упрощала многие вещи. Так, в Дувре, когда я, покидая корабль, вышел по ошибке не через ту дверь, двое британцев в штатском преградили мне путь и спросили, куда я направляюсь. Должно быть, я выглядел моложе своих двадцати пяти лет, потому что один из них поинтересовался, чем занимается мой отец. Когда же я ответил им, что он адвокат, тот повернулся к своему товарищу и сказал в типично британской манере: «Все в порядке, его отец — адвокат.» Я тогда нашел очень комичным, что они так доверчиво отнеслись к сказанному мной.

После нескольких часов в Лондоне я сел на вечерний поезд до Кембриджа. Каждые несколько часов поезд останавливался на станциях, названия которых в темноте было не разглядеть. Тогда я обратился к своему соседу по купе, молодому человеку: «Вы не знаете, как можно определить, когда мы приедем в Кембридж?» С минуту он думал, а потом ответил: «Боюсь, что это невозможно.» Помолчав еще немного, я попытался возобновить разговор, спросив, что он думает о сложившейся политической ситуации и считает ли он, что Англия все же вмешается в дела Рура и поможет Франции. И вновь минуту или две он размышлял о чем-то и наконец ответил мне: «Боюсь, что нет!» Да, я был сражен наповал этими, как мне казалось, истинно британскими высказываниями, а поскольку все мои знания об англичанах были вынесены, главным образом, из романов Дороти Сэйерс и Агаты Кристи, я довольно легко привык к этим выражениям.

Я сошел на станции Кембридж и направился в гостиницу Гарден Хауз, которую в Цюрихе мне порекомендовал Гроссман. Поскольку отец оплачивал мою поездку, каждую неделю я получал по пять-шесть фунтов, которые приходили на счет в банке Барклея из банка моего дяди во Львове. В те дни это было почти богатством. Я гулял по Кембриджу, восхищаясь университетскими зданиями и заглядывая в книжные магазины. (Уже тогда мною владела явная мания покупать книги или, во всяком случае, листать их.) Царившая во многих местах атмосфера мира Шерлока Холмса и Конан Дойля просто очаровала меня.

Я искал здесь встречи с несколькими математиками. Безикович, русский эмигрант, покинувший Россию во время Русской революции, был одним из математиков, с кем я переписывался. Он решил одну из моих задач, напечатанную в Fundamenta и написал по ней работу. Это был действительно первый нетривиальный пример «эргодического преобразования» — отображения плоскости на саму себя, для которого последовательные образы точки всюду плотны на плоскости.

Безикович пригласил меня в свою квартиру при Тринити-колледже. Когда я зашел к нему, он небрежно обронил: «Здесь, кстати, жил Ньютон.» Это потрясло меня настолько, что я был близок к обмороку. И до самого отъезда из Англии я оставался в состоянии глубокого волнения, в которое меня повергла близость с подобными вехами в славной истории науки.

С Безиковичем мы говорили о математике. Вообще говоря, меня всегда интересовало, было ли для представителей старшего поколения привычным делом, когда к ним врывались молодые люди и, без всякого обмена приветствиями и объяснения цели визита, сходу устремлялись в обсуждение научных проблем. Эрдеш, мой друг, все еще такой, хотя ему уже шестьдесят. То же было и с фон Нейманом, который, будучи исключительно цивилизованным человеком, интересующимся политикой и слухами, мог резко оборвать светскую беседу и заговорить о науке.

По нескольким причинам мое пребывание в Кембридже было одним из самых приятных моментов в моей жизни — как для души, так и для тела. Безикович пригласил меня на обед за Высоким столом Тринити-Колледжа. Этот обед стал одним из самых ярких событий в моей к тому времени уже весьма насыщенной жизни. Среди присутствующих были Г. X. Харди, Дж. Дж. Томсон, Артур С. Эддингтон и другие знаменитые ученые, и всего лишь в нескольких футах от них сидел я. Беседа была захватывающей, и я ловил каждое слово. На стене висел старинный портрет Генриха VIII. Еда подавалась на старинных серебряных блюдах. Я отметил, что у Безиковича был превосходный аппетит. После обеда мы перешли в другую комнату, где он налег на бренди, осушая рюмку за рюмкой, в то время как другие украдкой бросали в его сторону взгляды, которые, впрочем, были не лишены восхищения.

Харди рассказывал о некоторых смешных случаях из своей жизни, один из которых мне запомнился. Однажды, еще в молодости, он шел со священником в густом тумане, и на пути им встретился мальчик, который держал в руках намотанную на палку веревку бумажного змея. Священник сравнил эту сцену с незримым присутствием Бога, которого можно почувствовать, но нельзя увидеть, сказав: «Ты можешь не видеть парящего в небе змея, но ты чувствуешь, как натягивается нить в твоих руках.» Однако Харди знал, что в туманную погоду ветра не бывает, и потому бумажные змеи не могут летать. Еще Харди считал абсурдом сдачу кембриджских экзаменов «трайпоз»[7] по математике. Чтобы доказать это, он убедил Джорджа Пойа (который был, если угодно, настоящим специалистом по вычислениям и манипуляциям в классическом анализе) сдать такой экзамен без предварительной подготовки. И Пойа, по слухам, с треском провалился.

Я познакомился с Субрахманьяном Чандрасекаром, блестящим молодым астрофизиком из Индии. Несколько раз мы вместе обедали в Тринити, где он состоял членом ученого общества. Он сотрудничал с Эддингтоном, который вызывал у него чувство восхищения и в то же время соперничества. Год спустя мне предложили вакантное место члена ученого общества Гарварда, которое освободил Чандрасекар, занявший место старшего преподавателя в Чикаго.

Мы встретились вновь гораздо позже, когда он был консультантом в Лос-Аламосе и работал над теорией турбулентности и другими гидродинамическими задачами. Кроме того, Чандра, как называют его друзья, — один из самых блестящих и плодовитых математиков-астрономов с мировым именем. Его книги стали классикой в своей области.

Тогда же, во время семестра 1934 года, университет или, вернее, начальство отдельных женских гимназий Гиртона и Ньюнхэма отменило старое правило, запрещавшее проведение лекций в стенах колледжа представителям мужского пола. Меня пригласили провести семинар по топологии. И, если я не ошибаюсь, я был первым мужчиной за всю историю гиртона, переступившим его порог, чтобы прочитать лекцию.

Из всех известных мне польских ученых единственным, кого я встретил, пока был в Кембридже, был Леопольд Инфельд, доцент из Львова. Я знал его по нашим сборищам в кафе. В Кембридже мы встретились несколько раз.

Инфельд был высоким, намного выше шести футов, довольно грузным, с крупной головой и широким лицом. Он был евреем из простой православной семьи. В своей автобиографии он отвел немало страниц под описание того, как он боролся, чтобы получить образование и ученую степень, что было не так-то легко.

Он был весел и остроумен. Я помню одно замечание (показавшееся мне блестящим), которое он сделал через месяц своего пребывания в Англии в связи с различием между английской и польской «интеллектуальной» беседой. Он сказал, что в Польше люди глупо рассуждают о важных вещах, а в Англии с умом говорят о глупом и тривиальном.

Инфельд был очень честолюбивым человеком и сделал яркую карьеру. Однако я не думаю, что его талант как физика или математика в полной мере соответствовал его амбициям. Так, еще в Польше у меня были некоторые сомнения насчет истинного понимания им математики наиболее сложных разделов общей теории относительности. Возможно, причиной этого было его весьма ограниченное знание основ математики. Популярные статьи, написанные им для одной из варшавских газет, были выдержаны в хорошем стиле, но, по моему мнению, не всегда точны с математической точки зрения. Я в то время имел высокие запросы и считал, что даже газетные статьи научного характера должны соответствовать уровню замечательных работ Пуанкаре, посвященных популярной науке, или объяснений теории относительности для широкого круга читателей Эддингтоном.

В Принстон Инфельд приехал несколькими неделями позже меня и начал работать с Эйнштейном над известной книгой Эйнштейна — Инфельда о физике, которая стала бестселлером. В своей биографии Инфельд рассказывает о том, насколько глубоко его впечатлили дружелюбие Эйнштейна, с которым он познакомился в Берлине, и его способность позволять людям чувствовать себя непринужденно в его компании. В Принстоне мы почти не встречались; он не входил в команду фон Неймана.

Архитектура Кембриджа, средневековые сооружения, прелестные дворики и прогулки по городу, иногда с Л. Юнгом, ныне профессором Висконсинского университета — все это до сих пор остается среди сильнейших зрительных впечатлений моей жизни. Подобно моим прогулкам по Парижу, сохранившему дух Французской революции, они по-своему повлияли на мои вкусы, ассоциации, предпочтения в литературе и исследования.

В начале 1935 года я вернулся из Кембриджа в Польшу. Пришло время серьезно подумать о научной карьере, хотя в тот момент было сложно получить даже скромную должность «доцента». Нескольким случайным письмам было суждено изменить сложившуюся ситуацию; в одном из них, к своему удовольствию, я получил приглашение посетить Соединенные Штаты.

Загрузка...