Инерция мышления

Размышляя о возможном, люди пользуются примерами прошлого и предвосхищают будущее с воображением, занятым прошедшим. Этот путь рассуждений часто является ошибочным, так как реки, вытекающие из истоков природы, не всегда укладываются в старые русла.

Френсис Бэкон

Что может быть подвижнее мысли? Что может столь резко менять свое направление, доказывая безынерционность? В одно мгновение мысль может оказаться у каналов Марса, в глубинах океанов на Земле, промчаться по картинам жизни динозавров и унестись на сотни лет вперед. И вместе с тем задумались ли вы, что мы привязаны к привычным мнениям, суждениям, понятиям?

Что может быть бурнее и безынерционнее, чем мысль писателя-фантаста! Фантаст легко придумает, как при помощи анабиоза законсервировать человека на века и тысячелетия. Легко может заключить планету в ракету или переделать планету в ракету и погнать ее в другую галактику. Фантаст может создать мужчину из хлора, кремния и плавиковой кислоты и соединить с женщиной из водорода, кислорода и воды. Нет преград для мысли фантаста. Она мгновенно меняет направления. Но… Мысль фантаста почти всегда привязана к современным знаниям, современным успехам науки. И без инерции она меняет направления лишь вслед за новым научным достижением.

Вспомним Жюля Верна. Какие сногсшибательные идей! И на Луну, и под воду, и в воздух. Но все эти достижения все-таки из того, что было известно науке. На Луну — из пушки, под воду уходит электрический корабль, в воздухе либо воздушные шары, либо корабли, похожие на морские лайнеры того времени.

Ему не пришла и не могла прийти в голову идея ракеты. Даже писателю-фантасту трудно оказаться фантастичнее науки. Трудно преодолеть инерцию привычного. И все-таки это случается. Вспомним Савиньена Сирано де Бержерака — поэта, драматурга, бретера, солдата, философа. Дуэлянт, храбрец, вольнодумец. Хочется написать про него все. Он ненавидел чванство, тупость… Сирано, ударившись в фантастическую утопию, предложил еще в первой половине XVII века добираться до Луны на колеснице, начиненной ракетами. Фейерверк должен толкать колесницу. У Сирано мысль оказалась сильнее инерции.

А вот у ученых? Есть ли она? И если есть, нужна ли она, инерция мышления?

Да, есть и в науке. Это и хорошо и плохо. Хорошо потому, что дает опору для исследования природы дальше и глубже. И именно инерция заставляет критически относиться ко всему новому, непривычному, требуя бесспорных доказательств правоты этого нового. Именно инерция мышления помогает разрушать необоснованные научные спекуляции. Иногда грандиозные и вредные спекуляции. Не без участия инерции мышления разлеталась в пыль теория, опровергающая ведущую роль генов в передаче наследственных признаков, целый ряд спекулятивных теорий медицины и методов лечения: например, лечения микробной болезни дизентерии сном.

Инерция мышления может и ослепить ученого, лишить его объективности, заставить отвергать новое, несмотря ни на что. В этом, пожалуй, самое большое зло инерции научного мышления. И если бы меня спросили: «Чего в ней больше — зла или добра?», я бы ответил: «Все-таки зла». Ученый опирается на установленное ранее, но вовсе не должен следовать ему слепо и безрассудно. Ученый идет одним научным путем, но вовсе не должен считать все другие пути бесплодными. Ученый уважает и даже преклоняется перед авторитетами прошлого, но вовсе не должен считать их мнение абсолютным и для наших дней. Благодаря инерции мышления хирурги, несмотря на блестящие результаты венского акушера Игнаца Земельвейса, продолжали еще 20–30 лет мыть руки не до операции, а после, чтобы отмыть кровь. Именно благодаря инерции мышления кибернетика осуждалась как идеалистическое мракобесие. Именно благодаря инерции мышления многие ученые держатся за какую-нибудь догматическую цитату, отбрасывая кажущийся на первый взгляд нелепым, противоречащим здравому смыслу, а точнее, неожиданным результат эксперимента.

Часто поступательное движение вперед требует отбросить старое, привычное понятие или распространить его на совершенно необычные новые явления. И вот тут-то как злейший враг научного прогресса выходит на сцену она, инерция научного мышления. Выходит и запирает те каналы нашей мысли, в конце которых и лежит долгожданный ответ. Мысль не течет по этому каналу, так как у входа, у истока стоит привычное «невозможно» или «еще великий Пастер показал…».

Последние годы XIX и первые годы XX века были годами триумфа молодой микробиологии и молодой иммунологии. Это были годы «охотников за микробами», как назвал ученых того времени Поль де Крайф — автор известной книги с таким названием. В эти годы иммунитет, как волшебный «Сезам, откройся!», открывался все новою добротой к людям. Уже научились делать прививки против бешенства, сибирской язвы, готовятся вакцины против холеры, туберкулеза, детей спасают от дифтерии, вводя им противодифтерийную иммунную сыворотку. Слово «иммунитет» звучит как спасение. Иммунитет — это невосприимчивость к заразным болезням. Иммунитет — это защита от микробов. Иммунитет — это клетки, пожирающие болезнетворных возбудителей, и антитела, которые появляются в крови, чтобы разрушать все тех же возбудителей и их яды.

Среди триумфов открытий все новых способов создания иммунитета против вновь открываемых микробов остаются незамеченными несколько ученых, которые шагают не в ногу, которые увидели нечто другое. Они разглядели второе лицо иммунитета. Они увидели, что иммунитет не всегда друг. Он может быть к врагом.

Мало кто обратил внимание на этих ученых в то время. Осмысливание добытых ими фактов пришло позже, уже в наши дни. А в те годы инерция мышления несла всех по руслу создания иммунитета против инфекционных заболеваний. И они были правы: инфекции в те годы были главным злом человечества. И все-таки несколько исследователей преодолели инерцию и уже тогда сорвали маску со второго лица иммунитета.

А ведь инерция действует до сих пор!

Обратитесь с вопросом к вашим знакомым и друзьям, даже биологам или медикам. Спросите их: «Что такое иммунитет?» Я проводил такой эксперимент и в девяти из десяти случаев получал примерно такой ответ: «Это невосприимчивость к инфекционным болезням». Больше того, так по инерции до сих пор пишут в учебниках. Боюсь, что и вы, дорогой читатель, так ответите на этот вопрос. Тем более если вы прочитали предыдущие главы. Ведь именно это я в них и написал. Но обратите внимание на даты — такое понимание иммунитета выкристаллизовалось в конце прошлого века. С тех пор иммунологами проведена бездна наблюдений, сделано много открытий. Древо их науки дало десятки прекрасных плодоносных побегов, не имеющих отношения к инфекциям. А инерция мышления действует. И даже в медицинских институтах продолжают учить студентов, что «иммунитет — невосприимчивость к инфекционным болезням». Инерция мышления действует.


Жюль Борде и Николай Чистович

Трактовать иммунитет только как способ защиты организма от возбудителей инфекционных болезней в наши дни непростительная инерция мышления. И не безобидная. Если так думает неспециалист — это всего лишь заблуждение. Если же так пишет автор книги об иммунитете или преподает педагог — это уже не просто заблуждение, это невежество. Автор или педагог усугубляют инерцию научного мышления, запирая продуктивные каналы мысли своих читателей или слушателей. Это непростительно. Ведь прошло больше 70 лет с тех пор, как эти каналы впервые были открыты учеными — бельгийцем Жюлем Борде и русским Николаем Чистовичем. Это произошло в самые последние годы прошлого столетия. Оба молодых ученых работали тогда в Париже, в Пастеровском институте, в лаборатории Ильи Ильича Мечникова.

Им выпала честь победить инерцию мышления. Большинство исследователей были увлечены изучением иммунитета против микробов.

Обнаруживались возбудители все новых и новых болезней. Изучались механизмы невосприимчивости к ним. Создавались вакцины.

И вот среди этого захватывающе интересного потока исследований 28-летний Жюль Борде задумывается… Он задумывается над проблемами иммунологии, но без особой связи с микробами и невосприимчивостью к заразным болезням. Жюль Борде ставит вопрос наперекор инерции научного мышления.

Вопрос: вырабатываются ли антитела только в ответ на введение бактерий и бактерийных токсинов? Или они появляются в крови и после попадания в организм немикробных клеток, например после попадания чужеродных красных кровяных шариков — эритроцитов?

В предыдущей главе был описан опыт введения кролику холерного вибриона. В ответ в крови животного появились антитела, склеивающие, а затем и растворяющие холерного вибриона. Ни с какими другими микробами антитела не взаимодействовали. В 1898 году Жюль Борде сделал точно такой же опыт. Только ввел кролику не микробные клетки, а эритроциты из крови барана. Через несколько дней сыворотка крови кролика стала склеивать и растворять эритроциты барана. Именно барана! И только барана! Эритроциты других животных, в том числе и человека, чувствовали себя в иммунной кроличьей сыворотке великолепно. Там были строго антибараньи антитела. Если вводить кролику человеческие эритроциты, появятся антитела античеловечьи, то есть эти антитела склеивают и растворяют только человеческие эритроциты и никакие другие. Специфичность как и в отношении микробов.

Одновременно Николай Чистович описывает появление антител в крови животных после введения им под кожу или в вену тоже немикробных и даже неклеточных, конечно, чужеродных белковых веществ. А именно — белков кровяной сыворотки. Поставим точки над «і»: он иммунизировал животных бесклеточной частью чужеродной крови — сывороткой. После этой акции Чистович обнаружил в организме своих животных антитела против введенной сыворотки. Эти антитела, прибавленные к чужеродной сыворотке, вызывали укрупнение ее белковых молекул, их склеивание. А говоря проще, возникало помутнение прозрачной сыворотки. Феномен назван преципитатией, то есть осаждением. А антитела названы преципитинами. Они тоже строго специфичны. Введите кролику человеческую сыворотку — получите преципитины, реагирующие только с ней. Введите мышиную — получите антимышиные, антисывороточные преципитины.

Еще в конце прошлого века было показано, что иммунитет — это борьба не только с микробами. Это борьба против различных — а вернее, любых — агентов чужеродного, но обязательно биологического происхождения. Организм начинает бороться, начинает вырабатывать оружие против всего чужеродного, что попадает в его внутреннюю среду. И в конце концов какая разница ему, организму, что этот чужеродный агент несет в себе: холерное, тифозное, гриппозное начало или чужую кровь, чужую ткань, чужие белковые вещества, пусть и не вызывающие определенных болезней. Организм борется со всем чужим, что в него попадает. А средства борьбы почти всегда одни и те же. Эти-то средства и являются основой иммунитета, как инфекционного, так и неинфекционного, того, который нас сейчас интересует больше всего.

Жюль Борде, Николай Чистович и их учитель Мечников как раз и являются создателями неинфекционной иммунологии, о которой пойдет в основном речь и благодаря которой могли появиться сфинксы XX века.


Теобальд Смит

Подчас открытие нового явления выглядит случайностью, «свалившейся с неба», или, как любил говорить Флеминг, удачей, «залетевшей в окно». Не случайно ли Пастер открыл метод получения вакцин? Счастливой случайностью объяснял Кальметт свой успех в создании туберкулезной вакцины.

Однако все это удачи особого рода, удачи ученого-искателя.

Издревле на Руси говорят: «На ловца и зверь бежит». Но надо быть ловцом, причем ловцом умелым. И чем больше трудишься — тем больше удач. Правда, кроме труда и удачи, необходимо еще одно качество. Вот как говорил Флеминг перед студенческой аудиторией об успехе ученого:

«Луи Пастер достиг невиданного успеха. А как он его добился? Ответ, насколько мне кажется, прост: он упорно трудился, кропотливо вел наблюдения, у него был светлый ум, энтузиазм и чуть-чуть удачи. Многие люди трудятся упорно, некоторые из них кропотливо ведут наблюдения, но, не обладая светлым умом, они не умеют правильно оценить сделанные ими наблюдения и ничего не достигают».

Случайность помогла Теобальду Смиту открыть феномен, который впервые проиллюстрировал, что иммунитет не всегда друг, иногда он может быть причиной смерти. Смит определял антитоксическую силу лошадиной противодифтерийной сыворотки. Для этого лошадиную сыворотку нужно было внутривенно вводить морским свинкам. Для опытов требовалось много этих отнюдь не дешевых животных. И экспериментатор решил сэкономить свинок. Было решено использовать свинок, которым за несколько недель до этого уже вводили лошадиную сыворотку.

Сэкономленные свинки выглядели совершенно здоровыми. Да это так и было на самом деле. Можно было провести детальное клиническое обследование, которое не выявило бы никаких отклонений от нормы. Поэтому Смит взял шприц и уверенно ввел одному из животных исследуемую сыворотку. Не прошло и минуты, как свинка выразила необыкновенное беспокойство, стала бегать по клетке, учащенно дышать, садиться на задние лапки, а передними чесать нос, стараясь как бы освободиться от чего-то мешающего дыханию. Ей явно не хватало воздуха. Еще через полминуты начались чихания, потом резкий, лающий кашель. Животное задыхалось, через 2–3 минуты наступила смерть.

В чем дело? Может быть, при инъекции в вену попал воздух, пузырек которого закупорил какой-нибудь важный сосуд мозга?

Экспериментатор взял вторую свинку, третью… Картина повторялась, наступал шок. Когда же он взял свежую несэкономленную свинку, не получавшую ранее лошадиной сыворотки, никаких неблагоприятных последствий инъекция не вызвала. Следовательно, предыдущая инъекция сделала животных сверхчувствительными к последующему введению той же сыворотки. Именно той же! Это явление, как и выработка антител, отличается сугубой специфичностью.

Первичное введение чужеродной сыворотки иммунизирует особым образом. В отличие от реакции на микробы организм вырабатывает не устойчивость к повторному введению, а повышенную чувствительность. Состояние повышенной чувствительности получило название анафилаксии (от слов «ана» — «против», «филаксис» — «защита»), а смерть при описанных проявлениях называют анафилактическим шоком. Обратите внимание, никаких микробов, никаких ядов, ничего вредоносного. Просто повторное введение чужеродной сыворотки. И смерть. Но только той же самой сыворотки. Если первый раз вводили лошадиную, то и второй раз должна быть лошадиная. Кроличья не вызовет анафилактического шока. Второе введение ее приведет к шоку только при условии первичной инъекции сыворотки кролика. Впоследствии оказалось, что анафилактический шок может быть воспроизведен не только у морских свинок, но и у других животных. Оказалось также, что анафилаксия — это не просто интересные последствия специально поставленного эксперимента. Это частое и неприятное осложнение в клиниках. У человека при повторном введении ему чужеродной сыворотки тоже может развиться анафилактический шок со смертельным исходом. А ведь введение сывороток — важная лечебная процедура. При ранениях обязательно вводят противостолбнячную сыворотку и, если необходимо, противогангренозную. При дифтерии — противодифтерийную. И почти всегда эти сыворотки готовят, иммунизируя соответствующими токсинами лошадей.

Если же шок не наступает, а его легко избежать, вводя препарат дробно, малыми дозами, то в ряде случаев развивается затяжное осложнение — так называемая сывороточная болезнь с лихорадкой, сосудистыми расстройствами, зудящими кожными сыпями.

Я рассказал об опытах Теобальда Смита, которые были опубликованы в 1904 году. А годом позже в журнале «Русский врач» были опубликованы наблюдения Г. П. Сахарова, который также описал сывороточную анафилаксию у морских свинок. Свои опыты он проводил тогда, когда еще не знал о «сэкономленных свинках» Теобальда Смита. Еще через год появилось очень подробное исследование этого явления. Его провел Отто — ученик Эрлиха. Отто уже знал о наблюдениях своих предшественников. Интерес к анафилаксии возрос. Стало ясно, что это иммунологическая реакция. Что это одна из гримас второго — коварного — лица иммунитета. Что иммунитет может быть не только другом, но и врагом. Появилась серия работ, демонстрирующих опасность повторного введения немикробных белков.


Алексис Каррель

Алексис Каррель, выпускник Лионского университета 1896 года, хорошо знал историю медицины, очень хорошо — историю хирургии. Он собрал все достоверные описания пересадок тканей и органов. Он собрал все документы и стал искать причины неудач. Вот документы о древних индусских жрецах. В X веке до нашей эры они успешно использовали для воссоздания поврежденных ушей, носов и губ лоскуты кожи с других мест тела того же больного. А вот рассказ сицилийского врача Бранки. В 1503 году он пытался пересадить кожу раба, чтобы восстановить нос хозяина. Но Бранка был менее удачлив, чем его древние, давно умершие индусские коллеги.

Описаний много. Часть из них очень достоверна, а часть маловероятна. Можно найти описания об успешных пересадках. Но больше… убедительные случаи безуспешных попыток. Стало совершенно ясно, что врачи не умели и не умеют пересаживать ткани от одного человека к другому. Это не получалось, это не получается и сейчас. Индусские коллеги Бранки не более удачливы. Они просто пересаживали ткани того же человека. А Бранка пытался пересадить кожу от одного к другому. И даже такой мощный фактор, как «рабская кожа», не помог.

Но на это Каррель не обратил внимания. Каррель верит в хирургию. Каррелю ясно: хирургия существует сотни лет, но все еще несовершенна. Хирурги не умеют даже сшивать сосуды. Инструменты примитивны. Методы ограниченны. Безграничны лишь возможности. Особенно безграничны надежды и уверенность. В этом сомневаться не приходится.

Во всемогущество хирургии привыкли верить все — и врачи и больные.

Алексис Каррель — хирург. И как всякий хирург, он считает причиной неудач недостаточность мастерства, несовершенство хирургической техники. В этом не сомневались и другие. Так привыкли думать все. Да и почему думать иначе? Почему бы пересаженной ткани не приживать? Ткань такая же. Кожа, например, у всех людей одинаковая. Даже если раб и хозяин. Даже если побежденный и победитель. И даже… если белый и африканец. Ну, чуть больше пигмента в коже, а так — совершенно одинакова. А если взять почки или печень, то и вовсе не видно никаких различий. Значит, если хорошо сшить сосуды (которые, кстати, тоже одинаковые) и по ним к пересаженным тканям или органу пойдет питающая эту ткань кровь (которая тоже одинаковая), все будет в порядке. Ткань ли, орган ли — все равно должны прижить. Так думал Каррель. Так думали все.

В ближайшее время — естественный ход мысли Карреля — хирургия достигнет потолка совершенства в своей технике. Но основной ее метод — отрезание больного органа — невероятно ограничен. Так не может продолжаться дальше. Хирургию варварскую, разрушительную надо заменить созидающей, заместительной, реконструктивной. Надо удалять больной орган и на его место ставить здоровый.

Так надо.

Это главное. Этому можно и нужно посвятить жизнь. Медики прошлого и хирурги наших дней не научились этого делать. Но это возможно! Просто они не достигли еще совершенства, не достигли еще нужной быстроты оперирования. Не умеют еще сшивать сосуды. Ключ к решению проблемы — хирургическая техника. Чужая ткань должна быть точно пригнана. Надо хорошо пришить слой к слою, сосуд к сосуду, нерв к нерву. Техника оперирования должна быть отточена до совершенства.

Так думал Алексис Каррель, не обращая внимания на то, что, когда древние индусские врачи выкраивали лоскут у самого больного, — успех был. Когда итальянец Бранка «одалживал» кусок ткани у другого — неудача. Алексис Каррель посвятил свою жизнь технике пересадок органов и тканей.

Вера в успех, вера в хирургическое мастерство не покидали Карреля. Инерция мышления звала его к действиям. Самое главное — обеспечить нормальное питание пересаживаемого органа. Иначе говоря, обеспечить нормальный приток и отток крови, то есть главное — хорошо сшить сосуды.

Алексис Каррель окончил медицинский факультет в 1896 году. Известным хирургом-экспериментатором он стал уже через несколько лет после окончания университета. Он разработал сосудистый шов. На разработку этой тончайшей хирургической методики ушло два года. Сосуды сшивались слой к слою, стенка в стенку. Создатель сосудистого шва стал известен не только во Франции. Сшивать сосуды не умели во всем мире. В 1900 году Каррель получил степень доктора медицины. Ему было 27 лет.

В 31 год молодой хирург был приглашен на работу в Чикагский университет.

В 32 года он совершил чудо.

Это было в 1905 году.

В операционной стояли два стола. На одном, укрытая стерильными салфетками, лежала собака. Наркотизатор следил за пульсом и дыханием. На втором, тоже в стерильных салфетках, лежала нога. Лежала собачья нога. Ее только что ампутировали. Каррель рассматривал разрезанные ткани, искал артерии, вены, Впереди главное — конечность должна быть пришита на свое старое место. Впереди успех! Вот уже соединены кости, мышцы. Сшиты сосуды, нервы (слой в слой, стенка в стенку!). Зашита кожа.

Прошел день, неделя, месяц, год.

Сомнений не было. Мастерство победило!

Да здравствует хирургия!

Алексис Каррель — первый в истории медицины хирург — приживил полностью отделенную от туловища конечность. Нога прижила навсегда. Собака пользовалась ею почти так же непринужденно, как и до операции. В этом же году Каррель повторил чудо с почкой. Удаленный орган приживлен вновь той же собаке. Приживлен навсегда. Эти операции принесли Каррелю еще большую известность.

В 33 года его приглашают в Рокфеллеровский институт в Нью-Йорке. Там он работает с 1906 года.

Алексис Каррель видел, что он пошел по пути индусских жрецов. Собаке — отрезанную ногу. И не какой-нибудь другой собаки, а именно этой, именно ту же ногу, которую отрезали. Он еще не пошел путем Бранки. Впереди еще годы работы. План работы ясен. Цель ясна. Задачи поставлены.

Алексис Каррель выступает с сообщениями, дает интервью журналистам. Ученый считает: эти попытки только начало пути, только апробация хирургической техники. Ученый заявляет: в ближайшее время будут пересажены чужие органы. Ученый уверен, что в методах сомневаться не приходится — они совершенны. Главная экспериментальная модель — пересадка почки.

Первый «почечный» эксперимент, который Каррель опубликовал совместно с Гутри, был посвящен пересадке этого органа собаки с его обычного места на шею. Почка прижила и хорошо функционировала. Через год они опубликовали результаты эксперимента, которому суждено было повториться тысячи раз в руках сотен и сотен хирургов. Эта экспериментальная модель для изучения проблем пересадки органов широко используется и в наши дни. Их новая статья называлась «Успешная трансплантация обеих почек от одной собаки другой с удалением у последней обеих нормальных почек».

Обратите внимание на то, как верит Каррель в успех. Он называет трансплантацию «успешной». В статье он пишет о том, что на восьмой день собака бегала и прыгала, но он не говорит читателям, что на девятый день у собаки началась рвота, что ее пришлось повторно оперировать, что почки перестали работать и собака погибла. Он считает, что об этом можно не говорить. Раз одна прожила восемь дней, другая проживет восемь лет.

Алексис Каррель продолжает работать. Ученый ищет, и, стало быть, он должен пройти через годы испытания мужества. Эти годы начались. Все успехи, когда он приживлял ампутированные органы, позади. Как только он пытается приживить чужой, хотя и совсем такой же, орган, но взятый от другой собаки, — успеха нет.

Тот же сосудистый шов, та же блестящая хирургическая техника. Тот же успех… но лишь в первые дни после операции.

Проходит 10–20 дней… Чужой орган отторгается. Так проходит один опыт, другой, третий…

То разошелся шов. То закупорился сосуд. То развилась у собаки сердечная недостаточность.

Но разве могут единичные неудачи поколебать привычную веру во всемогущество хирургии, во всемогущество хирургической техники?

Опыты продолжались. Их уже десятки, сотни…

Опыты стали делать не только на собаках, но и на кошках. Был разработан новый прием пересадки сразу двух почек «в целом», в виде единого комплекса вместе с отрезками аорты и полой вены выше и ниже почек. Некоторые кошки доживали до 16-го дня. Но не дольше.

Шли годы. И ни одного случая полной удачи. Ни одного!

Мужество веры в свои убеждения казалось неисчерпаемым. Оперативная техника для каждого случая совершенствовалась и разрабатывалась артистически. Ни одного лишнего движения. Ни одного неоправданного повреждения пересаживаемого органа. Ни одной лишней секунды. И как часто бывает, даже в науке, причины ищут в знакомом, в уже известном. А это было время победного шествия микробов по всем теориям и причинам болезней. В хирургии всякое нагноение приписывают микробам. Всякое отторжение сопровождается неблагополучием в самом месте операции. Экспериментаторы грешат на микробов. Усовершенствуются методы борьбы с микробами.

Ни одного успеха!

Орган пересаживался мгновенно после его изъятия от донора.

Отторжение.

Орган сохранялся в питательных растворах, прежде чем его пересадить.

Отторжение.

Специальная обработка противомикробными растворами — антисептиками.

Отторжение.

Никакие ухищрения не давали положительных результатов — ткани и органы, взятые от другого организма, отказывались приживать.

Вот он, путь Бранки!

Каррель разрабатывает метод сохранения органов в питательных средах. Каррель открывает способ культивирования тканей в пробирках.

В 39 лет, в 1912 году Каррелю присуждают Нобелевскую премию за разработку сосудистого шва и создание метода культивирования органов и тканей.

Но первоначальная идея не оправдалась. Инерция мышления — вера в бесконечные возможности хирургии — питала исследователя многие годы. Вера эта дала силы провести сотни экспериментов. И все-таки через инерцию мышления пришлось перешагнуть.

Темпераментный исследователь и блестящий хирург вынужден признать — пересадка тканей и органов между двумя, казалось бы, совершенно одинаковыми организмами (казалось бы!..) невозможна. Причина этой невозможности лежит за пределами хирургического мастерства.

Стоило ему решить, что это его недостаточное совершенство, и… впереди были бы еще многие годы бессмысленной работы. Мужество его сказалось в том, что он понял — задача не под силу не ему, а хирургии в целом. Всемогущая хирургия не всемогуща.

В 1910 году в статье «Отдаленные результаты пересадок почки и селезенки» он писал: «Коль скоро орган, извлеченный из животного и реплантированный ему же посредством определенной техники, продолжает нормально функционировать и коль скоро этот орган прекращает функционировать, если он трансплантирован другому животному посредством той же самой техники, физиологические расстройства не могут быть следствием хирургических факторов. Изменения, которым подвергается орган, могут быть вызваны влиянием хозяина, т. е. биологическими факторами».

Каковы эти биологические факторы, Каррель не знал. Да и не мог он в те годы знать, в чем причина несовместимости. И не дело это хирурга. Слишком мало еще знали об иммунитете даже иммунологи. Да и у иммунологов действовала тяжеловесная инерция мышления. В иммунитете видели только силы, защищающие от микробов. Должно было пройти немало лет, чтобы стало ясно — иммунологическая армия вступает в бой не только с микробами, но и с любыми другими чужеродными клетками, тканями, органами.

Алексис Каррель был хирургом, который не случайно, а продуманно, сознательно занялся пересадкой. Он был первым хирургом, который разбил свои идеи и мечты о барьер несовместимости. Он был первым хирургом, который понял, что эту проблему не решить хирургу. Он преодолел инерцию мышления, потратив годы на безуспешные эксперименты.

Любопытно заметить, что «бессмысленная» работа родила сосудистый шов, создала методы культивирования тканей.

Но главный успех этой «безуспешной» работы — преодоление инерции мышления: хирургия с самым нечеловеческим хирургическим мастерством в одиночку не сумеет разрешить проблемы пересадки органов.


«Под интегралом»

В апреле 1965 года я приехал в Академгородок под Новосибирском, во владения Сибирского отделения Академии наук СССР. Цель — курс лекций по иммунологии, который я должен был прочитать студентам четвертого курса биофака Университета Академгородка. Конечно же, я начал первую лекцию вопросом:

— Кто мне скажет, что такое иммунология?

— Мне кажется, это наука о предупреждении инфекционных болезней, — ответила одна из студенток.

— И о тех процессах, которые происходят в организме при попадании микробов, — добавил юноша.

— Так вот, — продолжал я, — мои двенадцать лекций будут посвящены тому, чтобы рассеять это ваше заблуждение и показать, что учение о защите от инфекций лишь небольшая часть современной иммунологии.

Академгородок не обычное место. Этот город науки наполнен молодежью. Молодые ученые, аспиранты, студенты, как и везде, общительны и неравнодушны. Как нигде, их объединяет дух познания и исканий, дух научного неравнодушия и заинтересованности во всем. Биологи хотят знать математику, физику, кибернетику. Физики и математики находят захватывающе интересными биологию и медицину. Химики и генетики, экономисты и энергетики находят интересное, полезное в работах и научных увлечениях друг друга.

В результате всего этого в Академгородке возник клуб «Под интегралом». Молодые ученые отвоевали у местных властей дом, предназначавшийся для кафе. Здесь собирается молодежь. Здесь интегрируются интересы. Здесь удовлетворяется взаимное неравнодушие к знаниям. Здесь обсуждаются злободневные научные вопросы. Здесь знакомятся с новыми научными отраслями. Здесь проводятся диспуты о способах научного мышления, о математизации биологии, о биологизации техники и о многом другом. Клуб любят посещать и зрелые ученые, профессора, академики. Но не всех принимают одинаково, уживаются только самые одержимые. Клуб молодежный.

После одной из лекций, в которой я рассказал об иммунологических проблемах, связанных с освоением космоса, ко мне подошла девушка. Отрекомендовалась просто Ирой. Сказала, что она член совета клуба «Под интегралом», и по поручению совета пригласила меня рассказать в клубе об иммунологии.

— Только, — добавила она, — там почти все не биологи. Рассказывать придется главным образом физикам, инженерам, математикам. И они любят поспорить. И просили затронуть какую-либо из проблем космической иммунологии.

После этого мне ничего не оставалось, как придумать форму рассказа об иммунитете. Эта форма должна быть научно достоверной, доступной и интересной для специфической аудитории клуба. Она должна вызвать дискуссию. Наконец, и это абсолютно обязательно, рассказ должен отмести инерцию представления об иммунитете только как о невосприимчивости к возбудителям инфекционных болезней, преодолеть инерцию узкого отношения к иммунологии.

В клубе два зала. В одном буфет, эстрада, столики, место для танцев. Над эстрадой висят две бронзовые стилизованные маски. Одна — глубокомысленная, другая — смеющаяся. Гул… Пьют кофе или вино, играют в шахматы или беседуют, танцуют. Организованный «научный треп» происходит в другом зале. Там тоже столики, но мало. Много стульев. Сидят и на подоконниках. Никакой сцены, трибуны. Доска с мелом. Обстановка непринужденной беседы.

— Давайте представим себе некое кибернетическое устройство, — начал я, расхаживая между стульями. — Это довольно совершенная машина с обратной связью. Она весьма точно и целесообразно реагирует на внешние условия. Целесообразность определяется самосохранением в меняющихся условиях внешнего мира. Для внутренней и внешней связи она пользуется словами, составленными, предположим, из латинских букв. Наша машина знает сто слов. Ими она была запрограммирована при рождении. Этими словами она пользуется и даже может сочинять стихи. Но однажды использованное слово навсегда исчезает из ее словаря. Его уже нет. А без этого слова какая-то команда не сможет быть передана одной из частей машины. Стихи тоже перестанут получаться.

Рассказывая, я наблюдал за аудиторией, которая никак не ожидала от меня подобных рассуждений. Особенный интерес, как мне показалось, проявили два молодых человека. Один из них, как потом выяснилось, работал в Институте вычислительной техники, другой был аспирантом лаборатории бионики.

— Можно представить такую машину? — обратился я к ним.

— Конечно, можно, — ответил молодой кибернетик. — Только она не сможет поддерживать своего «активного существования» сколько-нибудь долго. Ведь мы не можем вложить в нее бесконечного количества копий каждого из ста слов. Их число должно быть конечным. А машина тратит каждое слово после однократного использования. Как только кончится запас любого из ста слов, выключится управляемый данным словом узел или блок. Машина станет. Она не сможет «разумно» реагировать и, как вы предлагаете, писать стихи.

— Отлично! Но у нашей машины есть специальный канал, по которому из внешнего мира поступают целые фразы — конгломераты слов. Назовем их табличками со словами. В этом канале таблички разбиваются на отдельные буквы. Получается котел, наполненный всеми буквами латинского алфавита. Из этих букв машина строит свои сто слов и тратит их на всевозможные «жизненные» нужды.

— А для чего такая сложность? — спросил тот же юноша. — Не проще ли машине заимствовать из внешнего мира готовые слова?

— Видите ли, — пояснил я, — во-первых, это была бы ненадежная система. Нужного слова можно долго не услышать. А во-вторых, в машину не должны проникать посторонние слова, не входящие в ее сотню. Это строжайшее правило. Посторонние слова будут создавать шумы. Посланное в качестве команды лишнее или неправильное слово будет в лучшем случае не воспринято той или иной реагирующей частью машины. В худшем случае реакция будет неправильной. Стихи утратят смысл. Машина погибнет.

В процессе рассказа я старался все в большей мере говорить о нашей фантастической машине как о живом существе. В этом мне помог аспирант-бионик.

— Ну, а если посторонние слова и фразы, или, как вы назвали, таблички, все-таки будут проникать в машину? — спросил он. — Если они будут проникать, минуя «естественный» путь — канал, в котором эти таблички разбиваются на составляющие их кирпичики-буквы? Они могут проникнуть случайно, или мы можем индуцировать их извне. Так сказать, введем чужие слова во внутреннюю среду машины, минуя канал обработки.

— В машине предусмотрена такая возможность, — поспешил сказать я. — В каналах связи по всему телу машины расположены специальные устройства. Они распознают свое и чужое. Распознающий механизм абсолютно строг и не выключается никогда. Любая проплывающая табличка внутреннего или внешнего происхождения подвергается «цензуре». Таблички прочитываются. И если в них хоть одно слово чужое или в своем слове стоит не та буква, дается команда, и табличка выкидывается из машины. Это правило строжайше соблюдается, так как оно жизненно обусловлено. Чуждая информация может вывести из строя важную часть или всю машину.

— Следовательно, если мы искусственно введем в каналы связи машины табличку с любыми из ее ста слов, эту табличку «цензура» пропустит? — спросил кто-то из слушателей.

— Конечно.

— А если с отдельными буквами, не сложенными в слова?

— Тоже пропустит. Ведь чужой информации не проникает. Если на табличке ничего не будет написано, она тоже не будет выброшена. Она не представит опасности и может быть использована для собственных записей, — закончил я характеристику нашего кибернетического существа. Теперь осталось только вызвать активное обсуждение его «жизни».

— Ответьте мне на вопрос, — начал я развертывать боевые действия. — Допустим, мы ввели в нашу машину, минуя естественный путь, табличку, записи на которой сделаны не латинским шрифтом, а китайскими иероглифами. Пропустит ее «цензура» или отдаст команду и машина ее выбросит?

— Выбросит! Пропустит! Пропустит! Выбросит! — раздалось одновременно несколько мнений.

— Почему вы считаете, что выбросит? — спросил я кибернетика.

— Да потому, что там написаны незнакомые знаки.

— Но ведь, — вмешался бионик, — китайские иероглифы настолько отличны от латинского шрифта, что «цензура» ничего не увидит. Она примет эту табличку за пустую и пропустит в машину.

В спор включились другие. Начались непонятные для меня рассуждения о возможностях современных машин и способах считывания. Тем не менее к единому мнению не пришли. Одни утверждали, что такая табличка, заполненная коренным образом отличающимися письменами, будет расценена как пустая и пропущена в каналы связи машины. Другие настаивали на том, что эта табличка будет выброшена. Я уселся в сторонке и молча слушал дискуссию. Наконец кто-то обратился ко мне:

— К чему мы, собственно, спорим? Ведь таких машин нет, и мы не собираемся их строить. Да и зачем вся эта фантазия?

— Вы сказали, таких машин нет, — встал я. — Ошибаетесь. Их необыкновенно много. Эта машина не выдумка. Ее прототипы, если угодно, мы с вами. И все другие млекопитающие планеты Земля, и птицы, и земноводные, и рыбы. Наша машина — это модель живого существа, обладающего иммунитетом. Слова — это основной жизненный субстрат. Для всего живого на Земле этим субстратом являются белки. Сто слов — это сто условных белков живого организма. Буквы, из которых складываются слова, — аминокислоты, из которых построены все белки. Самые разнообразные белки человеческого тела и тела кролика, кошки, лошади и лягушки, орла и окуня составлены из двадцати основных аминокислот — алфавита белковых слов. И как из малого количества букв алфавита складывается бесконечное число совершенно различных по смыслу слов и фраз, так из двадцати аминокислот получается бесконечное число разнообразных по форме и свойствам белковых молекул земных организмов.

Каждый организм строит свои «сто слов», типичные только для него белки. Белки он строит по матрицам-генам. Матрицы-гены находятся в ядрах клеток. Набор генов каждого организма-индивидуума уникален и неповторим. Уникален и неповторим и «узор» белковых молекул каждого индивидуума. Итак, у каждого организма свои «сто слов». Он их тратит на свое существование, на осуществление своих жизненных функций, а поистратив, строит снова. Канал, по которому в нашу машину поступают буквы из внешнего мира, — аналогия с пищеварительным каналом животных. В нем, как и в машине, поступающие извне с пищей чужеродные белки-слова, или как мы их назвали, таблички, разбиваются на составляющие их буквы-аминокислоты. Это необходимо потому, что «узор» чужих белков иной. Они построены под влиянием чужеродной генетической информации, тоже уникальной, а следовательно, иной. Построены по чужим чертежам, чужим матрицам. Их сначала необходимо разбить на составляющие буквы-аминокислоты, чтобы построить свои слова.

Если же ввести животному или человеку чужеродные белки-таблички, минуя пищеварительный канал, например, прямо в кровь, то вступит в действие страж внутреннего постоянства — иммунитет. Система цензуры в нашей машине — это иммунологическая система организма. Введем в кровь животному не белки, а их составные части — аминокислоты, то есть таблички, состоящие из одних только букв. Иммунологическая система цензуры их пропустит: разрозненные буквы не несут признаков чужой информации. Если ввести табличку из белков, то цензура прежде всего прочтет эту табличку и сравнит все ее белки-слова со своей сотней слов, чтобы распознать свое от чужого. Теперь представим, что один белок является незнакомым словом — словом, которое не могло быть написано под влиянием собственной генетической информации. Иммунологическая цензура в тот же миг отдаст приказ иммунологической армии уничтожить и выкинуть из организма данную табличку. Начинается выработка антител, фагоцитирование и отторжение чужеродного пришельца. Будь то микроб, или чужеродные клетки крови, или чужеродные белки, или пересаженные чужие ткани и органы.

Итак, что же самое главное? То, что иммунитет — это не только способ защиты от микробов. Иммунитет — это способ защиты внутреннего постоянства организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации. А уж поскольку микроб тоже чужеродный биологический агент, то действие иммунных механизмов распространяется и на него. Вот и все.

— А загадка с китайскими иероглифами? — спросил аспирант-бионик.

— А это как раз и есть одна из проблем космической иммунологии. Иммунитет как способ защиты от всего биологически чужеродного возник в результате развития жизни на Земле. Основа жизни на нашей планете — белки. Вспомним опять таблички машины, исписанные белковыми словами, состоящими из букв-аминокислот. Наша цензура знает лишь этот земной аминокислотный алфавит. И охрана порядка строится в соответствии со знакомыми явлениями.

Если жизнь на других планетах построена на других принципах, если жизнь на других планетах строит иной тип генетической информации — не аминокислоты и белки; если человек столкнется с мельчайшими, может быть, микроскопическими, наверняка непонятными обитателями такой планеты, то сможет ли иммунологическая «цензура», веками обученная лишь аминокислотному алфавиту, распознать чужаков? Это мы и должны выяснить. Она может пропустить их, приняв эти таблички с «китайскими иероглифами» за пустые. А тогда они размножатся в крови и тканях и могут погубить человека.

Помните, в «Войне миров» Герберта Уэллса пришельцы с Марса гибнут от невинных, неболезнетворных земных бактерий? Сейчас это уже не фантазия. Это существующая научная проблема.

Мы долго беседовали, обсуждая эту проблему космической биологии. Я рассказывал о достоверных фактах, свидетельствующих о реальности этих опасений. В дискуссию включились химики; их больше волновал вопрос: может ли жизнь быть построена на иных, чем на Земле, принципах? Потом говорили о путях изучения этой проблемы. Потом пили кофе и вино. Потом танцевали. Со стены смотрели две бронзовые маски: одна глубокомысленная, другая — смеющаяся.

Загрузка...