Я прекрасно знаю, что такое время, пока не думаю об этом. Но стоит задуматься — и вот я уже не знаю, что такое время.
…Каждый отрезок времени возникает сразу как целое, подобно кванту света, излучаемому атомом. Внутри такого «кванта времени» не имеют смысла понятия «раньше» и «позже». Из начальной космологической сингулярности время истекало не сплошным потоком, а как бы отдельными толчками. Космическое время — это время нашей Вселенной, оно возникло и существует вместе с ней…
В предыдущих главах мы попытались обрисовать, как самым невероятным образом преображается течение процессов и само пространство за гранью сверхмалых масштабов реальной действительности. Теперь настала пора задаться вопросами об еще одном фундаментальном понятии нашего мира — времени. Квантовая механика полностью поменяла представление о поведении объектов микромира, а также свойствах самого пространства на сверхмалых уровнях. Несколько в стороне осталось только четвертое измерение континуума Минковского — время. Между тем именно время в микромире может быть ответственно за решение древних логических загадок — апорий эллинского философа, о которых мы уже рассказывали в первой главе.
Одними из первых предложили решение для апорий Зенона знаменитые древнегреческие мыслители Левкипп и Демокрит, создавшие и развившие античную школу атомистики. Они и их последователи считали, что апории Зенона просто не учитывают дискретную природу материи и времени, которые на определенном этапе всего лишь не допускают дальнейшего деления. Таким образом, древняя атомистика две с половиной тысячи лет назад предвосхитила не только современную атомную физику, но и новейшие теории о дискретном пространстве-времени. Ну а теперь пришло время выполнить обещание, данное в начале нашей книги, и рассказать о том, каким удивительным образом идеи античного философа Зенона Элейского воплощаются в современном квантовом мире.
Рассмотрим систему радиоактивных атомов, подчиняющихся законам квантовой механики, и попробуем ответить на вопрос: будет ли изменяться вероятность распада нестабильного изотопа в зависимости от частоты проводимых нами измерений?
Но прежде напомним нашим читателем, что такое радиоактивность (от лат. radio — излучаю и activus — действенный). Это физическое явление состоит в спонтанном превращении неустойчивых изотопов химических элементов в результате радиоактивного распада. Радиоактивность была открыта в 1896 году известным французским экспериментатором Анри Беккерелем, который обнаружил проникающее излучение солей урана, действующее на фотоэмульсию. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Через два года Мария и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты новые радиоактивные элементы полоний и радий.
Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро, а последовательность возникающих при этом нуклидов называется радиоактивным рядом.
Янус двуликий
Божественный древнеримский пантеон включал два персонажа, ответственных за ход времени: Сатурна (греческий Хронос), пожирающего своих детей в неумолимом беге времени, и двуликого Януса — бога начала и конца, прошлого и будущего, молодости и старости. Образ последнего подходит и на роль современного символа проблемы физического времени с молодым лицом квантовой физики и старческим — классической науки.
Трехуровневая атомная энергетическая система
При небольших временах после начала распада, когда амплитуда еще мала, так как частица в основном локализована внутри распадающейся системы, скорость изменения амплитуды, которая определяет скорость распада, также будет малой. Этот удивительный результат, имеющий чисто квантовую природу, можно сформулировать следующим образом: для обеспечения заметной скорости радиоактивного распада необходимо, чтобы волновая функция частицы за пределами распадающейся системы была достаточно велика. В начальные моменты времени, когда волновая функция частицы локализована в основном внутри распадающейся системы, скорость распада близка к нулю. Наблюдения за частицей во внешней области, дающие отрицательный результат, локализуют частицу внутри распадающейся системы, что понижает скорость распада, составляя суть квантовых эффектов Зенона (КЭЗ).
Мы знаем, что в квантовой реальности результат измерения параметров микрообъекта определяется самим измерительным прибором и процедурой измерения. Таким образом, теория утверждает, что состояние микрочастицы действительно зависит от порядка и частоты измерения ее состояния, — естественно, с точки зрения классической физики это кажется невозможным и парадоксальным. Подобные эффекты изменения вероятности радиоактивного распада в зависимости от частоты контрольных измерений и носят название квантовых эффектов Зенона (КЭЗ).
Здесь вспоминается парадоксальная ситуация с котом Шрёдингера, ведь в квантовом пределе, при непрерывных измерениях состояния радиоактивного изотопа, начальное (нестабильное) состояние как бы «замерзает» и многострадальный кот наконец-то обретает вечную жизнь. Правда, надо признать, что пока еще КЭЗ в распадах нестабильных состояний атомов, ядер и элементарных частиц экспериментально не были обнаружены.
Однако КЭЗ для вероятности переходов между атомными уровнями экспериментально наблюдался в конце прошлого столетия для атомной системы с тремя энергетическими уровнями. Суть опытов состояла в том, что время жизни уровня В было выбрано очень малым, так что атом, возбужденный из основного состояния уровня А на уровень В, практически сразу же возвращается обратно, излучая при этом фотоны определенной энергии. Исследователи измеряли число фотонов с энергией обратного перехода, получая при этом число атомов, находящихся в основном состоянии. Затем лазерным облучением атомы, находившиеся в начальном состоянии А, переводились в состояние С. Одновременно измерялось число фотонов с энергией обратного перехода и фиксировалось число атомов основного состояния в определенные моменты времени. При этом наблюдалась удивительная зависимость величины интервалов наблюдения числа атомов в начальном состоянии и вероятности переходов в возбужденное состояние С.
Здесь не совсем понятно, как измерение, при котором, казалось бы, нет никакого взаимодействия между частицей и детектором, может оказать влияние на процесс распада. Для ответа на этот непростой вопрос надо вспомнить, как и почему измерение оказывает влияние на квантовые процессы.
Обратимся к известному мысленному эксперименту с двумя щелями, через которые проходит пучок частиц. Известно, что, если эксперимент ставится так, что в принципе невозможно выяснить, через которую из щелей прошла частица, на экране, расположенном позади щелей, возникает интерференционная картина. Наоборот, если, хотя бы в принципе, это возможно выяснить, интерференции нет. Часто для объяснения причины исчезновения интерференции ограничиваются ссылкой на соотношение неопределенностей Гейзенберга, согласно которому пространственная локализация частицы неизбежно вызывает появление дополнительной неопределенности ее импульса.
Обобщая, можно постулировать, что первопричиной нарушения когерентности различных квантовых состояний микрочастицы является не сам акт макроскопического наблюдения над ней (измерения), а предшествующие ему микропроцессы, в ходе которых рассматриваемая частица взаимодействует неупругим образом с окружающими частицами, изменяя состояния последних. Такое изменение фактически означает, что микрочастица оставляет след в окружающей среде и в соответствии с известными квантовыми принципами не может более принимать участия в формировании интерференционной картины. Если возникшее изменение микроскопического состояния среды в результате последующих процессов в ней вызывает наблюдаемый макроскопический эффект, мы будем иметь дело с реальным измерением, если нет, макроскопическое измерение не будет иметь места. Однако в обоих случаях первичное микроскопическое неупругое взаимодействие между исследуемой микрочастицей и окружающей средой влияет на частицу аналогично, нарушая когерентность ее различных состояний, так как в обоих случаях при рассеянии частицы в среде остается микроскопический след, помечающий атом, на котором произошло рассеяние.
Разница между случаями, когда измерение произведено и когда оно не произведено, но изменение микроскопического состояния среды имеет место, состоит в следующем. В первом случае мы получаем точную информацию о том, какое изменение в среде произошло и в какое именно состояние редуцировалась волновая функция рассеивающегося нейтрона. Во втором же случае мы такой информации не получаем, но понимаем, что суперпозиция когерентных состояний нейтрона, возникших при рассеянии на разных атомах в среде, за счет неупругих взаимодействий нейтрона с этими атомами превратилась в смесь некогерентных состояний, заведомо неспособных интерферировать друг с другом.
Сказанное снимает многие вопросы при обсуждении проблемы влияния наблюдения на квантовые процессы. На самом деле на эти процессы оказывает влияние не сам акт наблюдения, а реальные микроскопические неупругие взаимодействия между исследуемой частицей и частицами окружающей среды, нарушающие когерентность состояний частицы, испытавшей такие взаимодействия. Последнее обстоятельство определяет одно из главных отличий квантовой физики от классической: в классической физике предполагается возможным неограниченное уменьшение силы взаимодействия между физическими системами, что позволяет, по крайней мере в принципе, получать информацию об исследуемой системе, не возмущая ее. В квантовой физике любое измерение, поскольку оно начинается с микроскопического возбуждения в активной среде измерительного прибора, неизбежно влияет на исследуемый квантовый процесс, нарушая когерентность различных состояний исследуемой микросистемы.
Приведенные соображения, однако, еще недостаточны для понимания природы КЭЗ, поскольку реальных неупругих взаимодействий между вылетающей частицей и окружающей средой в условиях возникновения КЭЗ нет. Согласно квантовой теории, микроскопические возбуждения, возникающие в среде при взаимодействии с ней частицы, могут быть как реальными, так и виртуальными. В первом случае состояние среды изменяется необратимым образом, во втором среда возбуждается на короткое время, а затем возбуждение полностью исчезает и среда восстанавливает свое исходное состояние. Виртуальное взаимодействие между микрочастицей и средой ведет к упругому рассеянию частицы в среде. Это рассеяние не разрушает интерференцию, но ведет к уменьшению волновой функции частицы. Так, можно предположить, что виртуальные взаимодействия квантовой частицы с окружающей средой могут оказывать влияние на эффекты, связанные с интерференцией различных квантовых состояний частицы. Этот вывод и позволяет полностью понять природу КЭЗ.
В результате мы вновь приходим к утверждению о невозможности радиоактивного распада при условии осуществления такого непрерывного контроля над вылетающей частицей, в ходе которого частица регистрируется немедленно после ее вылета за пределы распадающейся системы. Теперь мы, однако, понимаем, что причиной возникновения такого парадоксального эффекта является реальное взаимодействие между рассматриваемой частицей и активной средой детектора, которое должно быть очень сильным, если мы хотим обеспечить режим идеального измерения, при котором вылетающая частица имеет нулевую длину свободного пробега в активной среде детектора. При таком взгляде на КЭЗ он теряет таинственность.
Остается только понять, начиная с каких длин свободного пробега вылетающей частицы в активной среде детектора можно наблюдать уменьшение скорости радиоактивного распада. Оценки показывают, что эти длины должны быть очень маленькими, порядка размеров распадающейся системы. Обеспечить такие длины свободного пробега для случая реальных систем, испытывающих радиоактивный распад, практически невозможно.
Таким образом, для физики радиоактивного распада КЭЗ является эффектом принципиально возможным, но труднодостижимым. История обнаружения и исследования КЭЗ свидетельствует, что в современной науке возможны неожиданные явления, для понимания которых требуются новые подходы к известным проблемам. Тем не менее КЭЗ можно считать одним из наиболее оригинальных эффектов, рассматриваемых в квантовой физике за последнее время.
Видимо, вероятностный характер квантовых теорий не соответствует статическим моделям времени, воплощавшимся в теоретической физике прежде. Что касается эмпирического уровня научного познания феномена времени, то с созданием квантовой физики и теории относительности приходит понимание того, что необходимо рассматривать синтетический образ темпоральных процессов. Это было выявлено и подчеркнуто в результате анализа роли прибора и системы отсчета в научном познании. Например, в квантовой физике соотношение неопределенностей накладывает дополнительные ограничения на процедуру измерения времени, с которыми классическая физика не сталкивается. Исходя из вероятностного характера квантовой физики, можно строить потрясающие модели той же суперсимметричной М-теории, однако представления о времени оказались довольно устойчивыми даже для «транссингулярных бран». А стандартная квантовая теория вообще использует время как самую настоящую классическую переменную, не приписывая ей какие-то новые сущности. Тем не менее течение времени в микромире имеет свои особенности. Прежде всего это, конечно же, наличие соотношения неопределенности «время — энергия»: ΔtΔE ≥ ħ, гласящее, что мы можем уточнить либо изменение энергии, либо время, за которое оно произошло. Во вторых, весь квантовый мир пронизан колебаниями, определяемыми через частоту опять-таки временными характеристиками. Ну и, в конце концов, само выражение для планковского кванта действия из соображений размерности распадается на «энергетическую» и «темпоральную» части.
Связано ли направление течения времени с направлением большей части процессов во Вселенной?
Камера Вильсона
Реальные эксперименты по проверке КЭЗ, как и в случае ЭПР-парадокса, довольно сложны в исполнении. В качестве упрощенной модели можно принять, что исследуемая радиоактивная система находится внутри детектора элементарных частиц (в переохлажденном паре в камере Вильсона или в перегретой жидкости в пузырьковой камере). Тогда продукты радиоактивного распада будут фиксироваться по своим трекам через характерное время их жизни в среде детектора. При этом для обеспечения идеального непрерывного измерения необходимо, чтобы длина свободного пробега частиц стремилась к нулю. В предельном случае при бесконечно частых сверхкратких — «нулевых» актах измерения радиоактивный распад должен прекратиться.
График интенсивности радиоактивного распада образца вещества в зависимости от времени
Картина времени
Также и времени нет самого по себе, но предметы
Сами ведут к ощущенью того, что в веках совершилось,
Что происходит теперь и что воспоследствует позже.
И неизбежно признать, что никем ощущаться не может
Время само по себе, вне движения тел и покоя.
Видный английский астрофизик Артур Эддингтон, известный своими поисками доказательств релятивистской природы окружающей нас действительности, в свое время высказал замечательное предположение, что направление течения времени связано с расширением Вселенной, назвав это явление «стрела времени». Он предполагал, что если наша Вселенная эволюционирует циклически и в определенный момент ее расширение сменится сжатием, то тут же изменит свое направление полета и стрела времени.
И хотя чаще всего парадоксы квантовой физики связаны с распространением обыденных макроскопических понятий пространства и времени на квантовые объекты, какой-то аналог «стрелы времени» должен существовать и в микромире. Впрочем, микрочастицы вовсе не обязаны принадлежать только к знакомому нам частному случаю пространства-времени (математики называют его гладким топологическим многообразием Минковского) в виде обычного евклидова пространства трех измерений из школьных учебников, дополненного координатной осью времени. Вполне возможно, что они «обитают» в своем специфическом микропространстве, в которое переходит многообразие Минковского на «планковских дистанциях», выражаемых в миллиметрах дробными числами с тридцатью нулями. В этой таинственной глубине могут происходить совершенно невероятные вещи, предсказываемые формальными математическими моделями, и далекие, даже астрономические расстояния «здесь» могут соответствовать неразличимой близости «там». Вот, кстати, и еще один вариант разгадки ЭПР-парадокса, причем несравненно более «физичный», чем чудотворное квантовое сознание наблюдателей и «разумные потенциалы» микрочастиц, встречающиеся у отдельных современных исследователей.
Фантастика? Однако вспомним некоторые факты из жизни современной квантовой теории поля, описывающей элементарные частицы. Общепризнано (насколько подобное можно заявить сегодня), что в основе всех физических явлений лежат квантовые поля, дискретными составляющими которых выступают элементарные частицы. Эти частицы постоянно участвуют в сложных процессах взаимопревращения, возникновения и исчезновения. Для любопытствующих я весьма бы рекомендовал пару лучших книг по данной тематике: «Атомную физику» моего учителя Александра Ильича Ахиезера и «Физику элементарных частиц» Льва Борисовича Окуня, крупнейшего мирового авторитета в данной области. Удивительно, но пространственно-временные представления, которые использует квантовая теория поля, по своей сути являются макроскопическим миром Минковского!
Мировая линия в континууме Минковского
Отныне понятия пространства самого по себе и времени самого по себе осуждены на отмирание и превращение в бледные тени, и только своего рода объединение этих двух понятий сохранит независимую реальность.
В свое время создание классической механики способствовало формированию такого идеала научного знания, согласно которому теория должна объяснять явления как четко причинно обусловленные, происходящие в пространстве и времени, на основе однозначных законов механики Галилея — Ньютона. Высшее развитие принцип классической предопределенности явлений, или детерминизма, получил в работах знаменитого французского физика и философа Пьера Симона Лапласа. Он писал: «Все явления — даже те, которые по своей незначительности как будто не зависят от великих законов природы, суть следствия столь же неизбежные этих законов, как обращения Солнца. Не зная уз, соединяющих их с системой мира в ее целом, их приписывают конечным причинам или случаю, в зависимости от того, происходили ли и следовали они одно за другим с известной правильностью, или же без видимого порядка, но эти мнимые причины отбрасывались по мере того, как расширялись границы нашего знания и совершенно исчезли перед здравой философией, которая видит в них лишь проявления неведения, истинная причина которого мы сами. Всякое имеющее место явление связано с предшествующими на основании того принципа, что какое-либо явление не может возникнуть без производящей его причины». Детерминизм Лапласа предполагал однозначность и предопределенность будущего, это вытекает из признания жесткой причинно-следственной связи между событиями и явлениями и отрицания объективной случайности.
Модель времени Лапласа была органично связана с представлениями об однозначной предопределенности физических явлений. Оказалось, что и теоретикам очень удобно оперировать понятиями четырехмерного пространства с тремя геометрическими координатами и одной временной.
В простейшем случае движение тела можно изобразить на плоскостной диаграмме, откладывая по одной координате значения времени, а по другой — пройденного пути. Если тело движется с некоторой скоростью, то через определенные интервалы времени после начала движения оно сместится от начала своего пути на соответствующую дистанцию. На диаграмме эти события отобразятся точками, через которые можно провести линию. Эта линия, образуемая из множества событий-точек, в истории тела называется мировой линией.
В первой четверти координатной плоскости, где и время, и значения пути положительны, мировая линия ведет себя вполне логично. В какой-то мере можно представить себе физически и движение вдоль мировой линии во второй четверти, где время положительно, а путь — отрицателен. В нашем обыденном мире это может означать возвращение в исходную точку. В этом смысле путь может показаться величиной отрицательной: двигаясь по нему, мы удаляемся от нужного нам пункта, вместо того чтобы приближаться к нему.
Но уж совсем необъяснимы с позиций обыденного мира случаи с отрицательным временем (нижняя полуплоскость на нашей диаграмме). Что это означает? Принципиальную возможность движения в прошлое? Но ведь время, насколько нам всем известно, не может течь вспять…
Мировая линия может изменять свое положение в пространстве в зависимости от того, с какой скоростью происходит движение. Если бы мы были способны двигаться мгновенно, то она могла бы попросту встать вертикально. Но физически это невозможно, самая большая скорость, физически достижимая на сегодняшний день, — это скорость света. Значит, мировая линия на нашем рисунке должна быть ограничена прямыми, показывающими распространение света, это будут так называемые «световые конусы».
Все это время мы рассматривали двухмерный случай, но наш мир, как уже говорилось, имеет четыре измерения. Значит, мировая линия может помещаться внутри некоторого светового конуса, очерченного мировыми линиями света. Особенно интересна поверхность конуса прошлого, лежащего в той области, где время отрицательно. Ведь на этой поверхности находится то, что мы можем увидеть. В самом деле: видеть — это, говоря иначе, воспринимать световые лучи. Но пока они донесут информацию от источника до нашего глаза, пройдет какое-то время, значит, видеть мы можем только то, что уже произошло.
Следующие интереснейшие парадоксы физического времени можно встретить в микромире, рассматривая античастицы и обращение времени. Античастица — это частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, но отличающаяся от нее знаками некоторых характеристик взаимодействия (зарядов, таких, как электрический и цветовой заряд, барионное и лептонное квантовое число). Элементарная частица — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие элементарных частиц основывается на факте дискретного строения вещества. Ряд элементарных частиц имеет сложную внутреннюю структуру, однако разделить их на части невозможно. Другие элементарные частицы являются бесструктурными и могут считаться первичными фундаментальными частицами. Начиная с тридцатых годов прошлого века было уже открыто несколько сотен элементарных частиц.
Само определение того, что называть «частицей» в паре частица — античастица, в значительной мере условно. Однако окружающая нас природа состоит именно из «частиц», и соответствующие им античастицы определяются совершенно однозначно. Знаменитые физики-теоретики двадцатого века Ричард Фейнман и Джон Уилер построили оригинальную модель античастиц как обычных частиц, живущих «вспять во времени». Парадоксально, но этого оказалось вполне достаточно для определения их свойств. Следуя идеям Фейнмана — Уилера, можно представить, что если античастица участвует в некотором процессе — скажем, испускания кванта электромагнитного поля, то его вероятность будет в точности равна вероятности обратного процесса поглощения точно такого же фотона обычной частицей.
Это, конечно, еще далеко не обратный поток времени, однако если существуют антимиры, то и макроскопические процессы в них будут происходить «обратным образом». Вообще же говоря, подобная операция обращения времени носит название темпоральной (временной) инверсии (Т-инверсии, или обращения времени).
Таким образом, действие Т-инверсии на состояние с определенным импульсом и энергией дает исходное состояние с начальными параметрами и координатами. Это объясняется тем, что после обращения времени следует пространственная инверсия (Р-инверсия или пространственное обращение), изменяющая знаки у пространственных переменных и возвращающая микросистему в исходное состояние.
А вот как сам Р. Фейнман применял концепцию темпоральных инверсий ко вполне обычному процессу рассеяния электрона в веществе: «…Обычным способом такой процесс может быть описан следующим образом… В некоторый момент t < t(1) имеется только начальный электрон. В момент t(1) внешний потенциал рождает электрон-позитронную пару. В момент t(2) > t(1) позитрон аннигилирует с начальным электроном, так что при t > t(2) остается только рассеянный электрон…»
Далее Фейнман продолжает анализировать рассеяние электрона и выдвигает новую версию рассеяния:
«…Вместо такого рассуждения мы хотим обобщить идею рассеяния и считать, что электрон рассеивается назад во времени от t(2) к t(1). Поэтому обычный позитрон проявляется как электрон, движущийся во времени вспять…»
В заключение Фейнман делает вывод: «…Эти два случая соответствуют частицам и античастицам…»
Приведенный отрывок из работы Фейнмана конца пятидесятых годов прошлого века со всей определенностью свидетельствует о том, что знаменитый физик считал античастицы частицами, движущимися из будущего в наше настоящее и дальше в прошлое. Уилер же, в развитие идей Фейнмана, считал, что подобная «антитемпоральная» природа античастиц позволяет успешно объяснить космологический парадокс видимого отсутствия антиматерии в доступных наблюдению частях Метагалактики.
В общей теории относительности, разработанной Эйнштейном, вблизи массивных тел пространство и время искривляются. Это явление известно нам как всемирное притяжение. Но вместе с искривлением пространства-времени могут искривляться и все мировые линии, становясь замкнутыми. Двигаясь по таким замкнутым линиям, объект из будущего неминуемо встретится с самим собой в прошлом и сможет повлиять на уже прошедшие события.
Существование в природе замкнутых мировых линий в свое время исследовал немецкий математик Курт Гедель. Замкнутые мировые линии, известные в научно-популярной и фантастической литературе как «петли времени», появляются в окрестности массивных черных дыр. Так, из предыдущего параграфа мы знаем, что Кип Торн показал возможность образования петель времени в туннеле, соединяющем систему замороженных звезд. Другой английский космолог, Ричард Готт, развивая теорию суперструн (о которой мы уже много рассказывали), доказал, что прохождение таких струн сквозь друг друга должно порождать петли времени. Убедившись, что петли времени не противоречат теории относительности, физики попробовали избавиться от логических парадоксов путем ввода неизвестного нам закона природы, запрещающего вмешиваться в собственное прошлое.
Более радикальное объяснение невозможности парадоксов предложил Стивен Хокинг. Используя сочетание теории гравитации с квантовой механикой, описывающей движение элементарных частиц, он показал, что квантовые эффекты должны вызвать разрушение тех петель времени, которые предсказываются уравнениями Эйнштейна. Поэтому теория замкнутых мировых линий должна обязательно учитывать квантовые эффекты.
Мы уже рассказывали про кипение физического вакуума, именно на этом самом элементарном уровне пространства-времени квантовая физика указывает на возможность возникновения петель времени. По квантовой теории пространство-время здесь имеет «пенистую» структуру, включающую множество микроскопических замкнутых мировых линий. Впрочем, это не единственный космологический парадокс, ответы на который дает физика времени.
Подавляющая часть звезд и галактик находится от нас на расстоянии, с которого свет придет только через несколько миллиардов лет. За прошедшие десяток или больше миллиардов лет с момента вспышки первой звезды в нашей Вселенной их свет еще не успел достигнуть нашей планеты. Эти звезды находятся как бы за «берегом реки нашего времени». Те звезды, свет которых успел прийти в Солнечную систему, по расчетам астрономов, составляют лишь незначительную часть всех существующих звездных объектов. Именно поэтому яркость их света ничтожно мала и ночью на окраине нашей Галактики — Млечного Пути бывает темно. Так физика времени со своей точки зрения разрешила еще один знаменитый астрономический «парадокс Ольберса», названный так по имени сформулировавшего его немецкого астронома позапрошлого века.
Одной из самых интригующих проблем физики является поиск возможностей изменения направления полета «стрелы времени» или, в более широком смысле, приложение вектора хода времени в окружающих нас физических процессах. В начале двадцатых годов прошлого века, воодушевленный новыми теориями относительности и квантов, выдающийся отечественный геолог, геохимик и минералог Александр Евгеньевич Ферсман писал: «Поставить время в зависимость от скорости, от пространства, от движения тела, создать часы для его измерения в давно прошедшем прошлом, научиться считать его вне настоящего и овладевать его течением в будущем — разве все это не детские фантазии, недопустимые для ученого, естествоиспытателя и физика?»
Ответом на риторические вопросы академика Ферсмана может служить вся история развития современной теоретической и квантовой физики, наглядно показывающая, что известные законы, по-видимому, не противоречат принципиальной возможности создания машины времени (Т-агрегата), позволяющей путешествовать в прошлое и будущее. Существуют даже многовариантные схемы такой машины. При этом общим здесь является необходимость предварительного создания в общем-то фантастических конструкций, сжимающих и скручивающих окружающее нас пространство. Подобные трудновообразимые «фокусы» с привычным нам окружением физики и математики называют «сложной топологией евклидового многообразия» или «изменением топологии трехмерного континуума». Интуитивно смысл этих загадочных фраз понятен, топология — это наука о самых общих геометрических свойствах пространств с различной размерностью, а многообразие и континуум — это все то же окружающее нас пространство.
Естественно, любая теория перемещения во времени пока еще является лишь «голой теорией» или чистой «научной спекуляцией». Чаще всего, когда речь заходит о зримом образе времени, школьные учителя и университетские профессора, следуя классической теории, рисуют на доске стрелку и говорят, что существует лишь одно временное измерение, составляющее единственное одномерное временное пространство.
В соответствии с этой точкой зрения, изменение событий прошлого автоматически меняет образ настоящего. При этом возникают любопытные парадоксы «временных петель». К примеру, что случится, если вы перенесетесь в прошлое и предотвратите встречу своих родителей? Популярный фантастический фильм «Назад в будущее» утверждает, что вы просто прекратите свое существование, навсегда исчезнув из реальности настоящего.
Сегодня считается установленным, что течение времени зависит от скорости перемещения тел, характера их движения и структуры окружающего пространства. На очереди построения реальных с точки зрения современной физики схем перемещения во времени. Какова же здесь может быть роль квантовой физики?
С помощью квантовой теории можно решить много трудных вопросов строения Т-агрегатов. Можно сконструировать «вход» и «выход» машины времени, а также канал межвременного перехода, при этом можно радикально «развязать» все петли времени, применив многомировую интерпретацию квантовой механики. «Хрононавт», путешествуя во времени, никогда не сможет внести каких-либо изменений в исходную реальность, поскольку он всегда будет находиться в иных мирах. При этом вообще можно представить занятную ситуацию, когда независимые миры выстраиваются во временную последовательность, где каждый из них в своем развитии абсолютно копирует ушедших в будущее соседей. Вот в таком Многомирье можно было бы путешествовать и в прошлое и в будущее, не опасаясь каких-либо петель времени и наблюдая при этом неискаженную реальность истории собственного мира.
Мы уже рассказывали про кипение физического вакуума, именно на этом самом элементарном уровне пространства-времени квантовая физика указывает на возможность возникновения петель времени. По квантовой теории пространство-время здесь имеет «пенистую» структуру, включающую множество микроскопических замкнутых мировых линий.
Петли времени на квантовых стрингах
Кинофильм «Назад в будущее»
В этом американском блокбастере можно встретить самые разные временные парадоксы. Все они строятся по схеме «петель времени», когда путешественник во времени переносится в прошлое и меняет его синхронно с соответствующим изменением настоящего, возвращаясь затем в исходную историческую точку. Аналогично, переносясь в будущее, он контролирует дозу воздействия на настоящее для формирования грядущего.
Белая дыра — гипотетический выход из подпространственной червоточины
Выдающийся отечественный астрофизик и космолог, исследователь черных дыр и «конструктор» Т-агрегатов на их основе академик Игорь Дмитриевич Новиков полагает, что одним из компонентов внепространственного перехода может быть «античерная» белая дыра, генерирующая материю.
Остается главный вопрос: если временные парадоксы могут быть успешно разрешены, сами по себе путешествия во времени возможны или нет? Тот же Стивен Хокинг говорит по этому поводу следующее: «Лучшим доказательством невозможности таких путешествий является тот факт, что нас до сих пор не навещают толпы подобных визитеров из будущего». Но сторонники теории Мультивселенной отвечают на это так: «Путешествия во времени вполне могут быть самым обычным делом во Вселенной. Но это вовсе не значит, будто на нас должны валиться „толпы визитеров“». Петли времени вряд ли являются частым явлением в космосе, а у внеземных цивилизаций могут быть свои, куда более важные приоритеты, кроме посещения нашего забытого провинциального уголка Млечного Пути. А кроме того, они давно уже могли побывать на одной из бесчисленных копий Земли и встретиться там с землянами — только не с нами, а с нашими копиями.
Почему в нашем мире не два, не три, а только одно время?
Почему оно одномерно?
У пространства три измерения — длина, ширина, высота, а у времени всего лишь одно — длительность?
Может, такое только в нашем участке бесконечно разнообразной Вселенной, а в других как-то иначе?
Интересно, как выглядят многомерные миры?
А может, наш мир тоже многовременной, только мы этого не замечаем — родившись в чудовищном катаклизме Большого взрыва, он вместе со всеми скрытыми измерениями движется вдоль одной временной траектории, по которой мы отсчитываем время?
Но если это так, то можно ли «активировать» скрытые возможности времени и пустить окружающую реальность по новым временным путям и что при этом произойдет?
Возможно, это будет связано с поглощением и выделением таких огромных количеств энергии, что будет сравнимо с космологическим коллапсом — Большим «хлопком» или Большим «разрывом», ожидающим, по некоторым сценариям, нашу Вселенную?
Чем больше мы с вами узнаём про удивительное четвертое измерение в нашей реальности, тем больше возникает вопросов и тем сложнее они становятся. Правда, время — настолько глубинная, фундаментальная особенность окружающего нас мира, что всякая попытка хотя бы немного выйти за пределы уже известных его свойств неминуемо выводит нас в новую реальность совершенно фантастических и трудновообразимых явлений.
Точно сказать, что такое время, очень непросто. С точки зрения философии это самая общая характеристика любых происходящих вокруг нас изменений. В этом его суть и смысл; в абсолютно неизменном мире времени нет. С точки зрения математика время — всего лишь параметр, нумерующий последовательности следующих друг за другом событий. Однако в обоих случаях возникает вопрос — почему все последовательности многообразных событий определяются только одной укладывающейся на линию величиной? Почему не может быть, например, плоскости с двумя временными или объема с тремя?
Можно было начать построение сказочной реальности с несколькими временами с простейших построений — было четыре мировых оси — три пространственных, одна временная, теперь стало больше. С точки зрения математики тут нет проблем, но как при этом изменятся физические свойства мира?
Прежде всего, сколько должно быть дополнительных временных осей?
Однозначно ответить на этот вопрос очень трудно, ведь никаких ограничений на число пространственных и временных «сторон света» формально не существует. Замечательный ученый — академик Андрей Дмитриевич Сахаров, развивая теорию с бесконечным числом временных переменных, различающихся по виду их проявления в материальном мире, в одной из своих статей писал, что природа настолько многообразна, что в принципе позволяет существовать, например, мирам с одной или двумя пространственными и несколькими временными переменными. Конечно, все эти миры будут сильно различаться по своим свойствам — в одних могут существовать устойчивые атомы и образовываться сложные молекулы — основа жизни, в других будет своеобразная мешанина из элементарных частиц или какие-либо еще неизвестные нам формы материи и ее организации…
Есть и более глубокие соображения, основанные на изучении явлений в ультрамалых областях, где частицы, по-видимому, могут перемещаться быстрее света и противопоставление пространства и времени утрачивает смысл — в зависимости от точки зрения пространство может стать временем, а время приобрести свойства пространства.
Единственный мысленный зонд, который может проникнуть в подобную фантастическую реальность, — это сложнейшие математические формулы. Только с их помощью можно нарисовать картины новой Вселенной. Если писатели и художники-фантасты путешествует по мнимым мирам с помощью своего воображения, то математики и физики-теоретики используют для этого интеллектуальные приемы на основе математических законов и физических принципов. Конечно, мы не будем продираться сквозь частокол математических символов и воспользуемся уже готовыми результатами, стараясь понять их с помощью нестрогих, но зато наглядных аналогий.
Ученые столетиями исследуют различные свойства окружающей нас материальной реальности, все дальше отодвигая границы Метагалактики. Вообще говоря, за все время научных исследований из всех окружающих нас предметов, включая сотни новых элементарных частиц, физикам не попался ни один, у которого бы наблюдались признаки дополнительных временных измерений. Можно предположить, что вектор времени, с которым в чудовищных процессах Большого взрыва родился ограниченный участок Вселенной, раздувшийся затем в окружающий нас мир, с высокой степенью точности одинаков у всех заполняющих его материальных тел. Объекты с иным ходом времени могут залететь к нам лишь с далеких окраин Метагалактики.
Размеры только что родившейся в квантовой неоднородности Вселенной были невообразимо малы — порядка элементарной частицы или даже еще меньше. Естественно, что ее отдельные участки вначале интенсивно взаимодействовали между собой и их вещество бурно перемешивалось. Следовательно, и время, во всей нашей Вселенной сформировавшись как процесс в самом начале, далее течет везде одинаково. Если это так, то объекты с отличными временными векторами могут рождаться лишь в процессах, протекающих внутри нашего мира.
Итак, какое же впечатление произведет на нас многомерный мир, существуй он в реальности? Вначале он должен показаться похожим на наш четырехмерный. Однако, внимательно приглядевшись, мы бы заметили, что некоторые тела движутся непривычно быстро, почти мгновенно перемещаясь в пространстве. Зная расстояние между точками и определив время движения по земному хронометру, мы бы обнаружили, что скорость некоторых тел превосходит световую. Это настораживает, поскольку физики уже давно установили, что сверхсветовые тела, существуй они действительно в природе, можно было бы заставить двигаться вспять по времени — из настоящего в прошлое. Направление их движения зависит от точки зрения наблюдателя. Неподвижный наблюдатель увидит, что сверхсветовые осколки взорвавшегося снаряда, как им и положено, разлетаются в стороны и, замедлившись, падают на землю. А движущиеся увидят все в обратном порядке: лежавшие на земле осколки поднимаются в воздух, летят навстречу друг другу и собираются в целый снаряд, который стремительно втягивается в ствол орудия! Картина явно абсурдная, тут нарушено одно из основных свойств материального мира — причинно-следственная связь, а попросту говоря — причина и следствие поменялись местами.
С похожим эффектом мы уже встречались в теории относительности, там ход времени зависит от того, по каким часам его измерять. Со сверхсветовыми иллюзиями мы иногда встречаемся и в повседневной жизни. Например, скорость, с которой скользит по стене отраженное зеркалом пятно света, может принимать любые значения, стремящиеся к бесконечности, но ни энергия, ни вещество при этом не перемещаются и никаких нарушений причинности не происходит. Еще один пример — неоновая реклама, в которой буквы вспыхивают независимо одна от другой и нам кажется, что каждая из них зажигает следующую. Неоновый сигнал также может бежать с любой скоростью, ограничиваемой только техническими возможностями электрической цепи.
Итак, для того чтобы выяснить, многовременная ли у нас Вселенная, нужно искать где-нибудь в космосе или в микромире среди элементарных частиц объекты, скорость которых выглядит как сверхсветовая. И такие объекты, оказывается, давно уже известны астрономам! Некоторые светящиеся тела на звездном небе и вправду движутся быстрее света. В том, что это так, сегодня нет никаких сомнений — это не ошибка наблюдений, а твердо установленный факт. Вот только экспериментальная информация о свойствах этих тел пока еще невелика, и все их удается объяснить оптическими иллюзиями, не связанными с многомерностью времени.
Можно, конечно, с успехом использовать для этого и гипотезу многовременного мира, однако, пока в науке работают известные законы, не следует вводить новых гипотез — иначе наука превращается в научную фантастику.
Вообще говоря, тело с иной, чем у нас, временной траекторией может находиться в нашем времени только мгновение — в момент пересечения его и нашей траектории. Чуть раньше оно было еще в нашем прошлом, мгновение спустя оно окажется в нашем будущем. Если тело обладает необходимым устройством, то, находясь в прошлом, оно может послать нам радиограмму или просигналить световым зайчиком о своем прибытии — и, в частности, сообщить нам время и координаты точки пересечения траекторий, чтобы не вынырнуть из прошлого внутри какого-либо другого материального тела, ведь тогда может произойти настоящая космическая катастрофа.
Правда, так будет, если наше временная траектория параллельна или не сильно отличается от хода времени, установившегося после возникновения Вселенной в Большом взрыве. Последнее становится несколько понятнее, если учесть, что расстояние во времени и расстояние в пространстве — это совсем разные вещи. Объект может находиться в соседней комнате, даже на соседнем столе, но оставаться для нас невидимым, пребывая где-то в каменном веке. Посланный им сигнал пересек нашу временную траекторию в момент времени, который является для нас далеким прошлым. Сигналы из временного далеко мы получим лишь при условии, что передающий их объект и в пространстве находится достаточно далеко от нас, в глубинах космоса…
В нашем мире мы привыкли видеть астрономические источники света — Солнце и звезды — столько времени, сколько они светят. Солнце вспыхнуло задолго до рождения нашей планеты и будет светить еще миллиарды лет, поэтому мы уверены, что оно никуда не исчезнет на протяжении космического мига нашей жизни.
В многовременном мире это выглядит совсем не так. Светящийся объект внезапно появляется в поле нашего зрения, выныривая «из ниоткуда», когда достаточно близко подойдет к временному перекрестку, а затем, удалившись от него, становится невидимым и вообще исчезает.
Если бы временной вектор Солнца отличался от нашего на несколько сотых долей процента, оно освещало бы Землю всего несколько сотен тысяч лет. Из этого следует, что потоки времени Солнца и Земли практически параллельны, ведь наша планета пользуется солнечным теплом и светом не менее пяти миллиардов лет.
Все эти кажущиеся исчезновения и появления предметов, прежде всего, привлекают внимание к вопросам баланса энергии в многовременном мире.
Дело в том, что в теории с несколькими временами энергия имеет направление распространения в пространстве, являясь вектором. А раз так, то может случиться, что его компоненты будут компенсировать друг друга — вещества будет рождаться все больше и больше, а энергия останется неизменной.
Например, в абсолютно пустом пространстве, из вакуума, могут родиться две частицы с противоположно направленными по отношению друг к другу векторами энергии и общим балансом, равным нулю. Это может происходить в каждой точке бесконечного пространства — физики называют подобные явления распадом вакуума. Для внешнего наблюдателя такие процессы выглядели бы как неудержимый мгновенный взрыв пустоты с выделением бесконечно большого количества вещества.
Ученые уже очень давно обратили внимание на тот удивительный факт, что уравнения физических теорий построены таким образом, что прошлое и будущее в них абсолютно равноправны. Так что с помощью одних и тех же уравнений можно рассчитать как взрыв с разлетом осколков, так и процесс их слияния. Но однако же каждый из нас хорошо знает из собственного опыта, что в реальной жизни время течет только в одном направлении.
Поскольку вектор энергии направлен вдоль времени, изменение временной траектории тела должно сказаться на его энергии — и наоборот. Увеличивая или уменьшая наклон временных траекторий, мы можем получать энергию с помощью своеобразных Т-конверторов и, используя специальные агрегаты из иного времени в качестве сверхмощных аккумуляторов, сохранять ее.
Сегодня мы естественно воспринимаем глубочайший атомизм явлений и предметов окружающей нас физической реальности. Из предыдущих глав ясно, что параметры микрообъектов, вообще говоря, вводятся больше для удобства расчетов. На самом деле и импульс, и положение частицы довольно неопределенны. Причем чем более определенна одна величина, тем более неопределенна будет другая.
Физики-теоретики даже сумели выразить количественно соотношение определенности и неопределенности и реально им пользуются при описании различных событий в микромире. Так обстоят дела с описанием электронов, фотонов и других частиц, о которых на сегодняшний день физики знают достаточно много. Ну а как же быть со временем?
Многовременье
Многие времена в одном мире легко представить на примере полета звена фантастических самолетов. Пусть одно время определяет высоту полета, второе — скорость, третье — взаимное расстояние, а четвертое — количество топлива.
Туманность «Песочные часы»
Песчинки часов чем-то напоминают кванты времени, они так же неделимо отсчитывают его отрезки, и так же неопределенен момент времени, пока песчинка находится «в полете».===
Давайте вспомним, какой энергией может обладать электрон, обращающийся вокруг атомного ядра. В рамках классической физики — любой, но квантовая механика допускает только определенные, строго фиксированные дискретные значения энергии. Различие такое же, как между измерением объема жидкости, образующей непрерывный поток, и определением количества воды, атомы которой можно сосчитать.
Иными словами, пространство не непрерывно и состоит из определенных квантовых единиц площади и объема. Возможные значения объема и площади измеряются в единицах, производных от длины Планка, которая связана с силой гравитации, величиной квантов и скоростью света. Длина Планка невообразимо мала; и она определяет масштаб, при котором геометрию пространства уже нельзя считать непрерывной.
Самая маленькая возможная площадь, отличная от нуля, примерно равна квадрату длины Планка, а наименьший объем, отличный от нуля, — кубу длины Планка. Квант объема настолько мал, что в кубическом сантиметре таких квантов больше, чем кубических сантиметров в видимой Вселенной.
Любопытно, что движение частиц и полей в пространстве на таком глубочайшем уровне материи будет представлять собой скачки по силовым петелькам. Это чем-то похоже одновременно на прыжки кенгуру на батуте и движение шахматного коня. Частицы и поля — не единственные движущиеся объекты в таком парадоксальном мире. По общей теории относительности, перемещение материи и энергии обязательно изменит само пространство, и по нему побегут волны, подобно мертвой зыби на морской глади.
В теории квантовой гравитации такие процессы изображаются ступенчатыми сдвигами на некоторой условной поверхности, при которых шаг за шагом изменяется сам рельеф пространства. Все это очень напоминает картины природных катаклизмов из научно-фантастических фильмов, когда по земной поверхности бегут трещины, при этом она вспучивается и проваливается. Вспомним, что в теории относительности пространство и время неотделимы друг от друга и представляют собой единое пространство-время. В теории петлевой квантовой гравитации такое пространство-время чем-то напоминает поверхность мыльной воды, покрытой шапкой особой спиновой пены.
В процессе разработки теории квантовой гравитации группа американских исследователей предсказала удивительное явление, а именно:
фотоны различных энергий должны перемещаться с разными скоростями и достигать наблюдателя в разное время. Пока еще точность современных приборов в сотни раз ниже необходимой, но уже в недалеком будущем планируется запустить спутниковую обсерваторию, оборудование которой позволит провести долгожданный эксперимент.
Очень интересно ведет себя на уровне ячеистого пространства время, будучи также дискретной величиной. Время не течет, как река, а тикает, как часы. Интервал между «тиками» примерно равен особому «времени Планка», совершенно непредставимой по своей малости величине, описываемой дробью с несколькими десятками нулей. Точнее говоря, время в нашей Вселенной на субмикроскопическом уровне квантовых величин отмеряют мириады часов: там, где в спиновой пене происходит квантовый шаг, часы делают один «тик».
Тут надо в очередной раз вспомнить вариант соотношения неопределенности Гейзенберга для энергии и времени: ΔEΔt ~ ħ. Оно показывает, что на сверхмалых промежутках времени Δt возможно самопроизвольное изменение энергии микрочастицы ΔE. Подобные квантовые флуктуации энергии могут порождать виртуальные (возможные) частицы. В квантовой теории поля считается, что виртуальные частицы принципиально прямо не наблюдаемы. Это очень странное качество частиц, но в принципе ожидаемое, поскольку оно логически вытекает из исходного принципа неопределенности — квантовые объекты невозможно наблюдать непосредственно, нужен некий агент — посредник, изменяющий их состояние. Тем не менее в квантовой электродинамике все процессы взаимодействия предполагают наличие виртуальных частиц.
Какова же возможная природа виртуальных частиц? Тут есть несколько вариантов ответов. Можно предположить, что они являются новым видом физической реальности, открытым в квантовой теории поля, или же считать их некоторыми абстрактными объектами, не имеющими реальных аналогов и лишь приближенно моделирующими механизмы взаимодействия элементарных частиц.
А можно вообще перейти на самые общие категории пространства и времени, сопоставив виртуальные частицы и некую «потенциальную реальность пространственной локализации», существующую лишь в возможности выйти за границы времени жизни. Это время жизни виртуальной частицы, подобно энергии и пространству, будет уже не квантуемо, а хроноквантуемо, включая в себя целое количество элементарных «атомов времени» — хроноквантов. Тогда само по себе превращение виртуальных частиц в реальных опытах можно рассматривать как косвенное подтверждение «движения» виртуального объекта по шкале времени. Получается, что за гранью сверхмалого скрывается еще один тип бытия — реально-временное «там» и пространственно-потенциальное «здесь». Нечто подобное описывал при воображаемом путешествии в бездну провала застывшей звезды — коллапсара видный российский астрофизик и блестящий популяризатор науки академик Игорь Дмитриевич Новиков.
Мы еще встретимся с квантовой космологией мира Минковского, заключающего в себе «зерно» хроноквантовой реальности, а пока заметим, что еще Бор в своем принципе дополнительности предполагал, что любому процессу и явлению присущи взаимодополняющие противоположности — «возможность» и «действительность», переходящие друг в друга. Рассмотрим пример поступления абитуриента в университет. Действительно, возможность поступления в вуз определяется желанием, упорством и трудолюбием, а также конкурсом аттестатов и стажем трудовой деятельности по выбранной специальности, следовательно, она заложена в самой действительности развития ситуации.
Вообще говоря, в некоторых областях стандартных теорий и в большинстве неустоявшихся инноваций довольно часто встречаются не только «принципиально ненаблюдаемые» объекты в виде виртуальных частиц и тех же кварков, но и всяческие сингулярности, бесконечности, расходимости. В последнее время здесь появился еще целый класс «принципиально квантово нелокальных систем и объектов», причем эта квантовая нелокальность материальных тел распространяется даже не на Метагалактику, а на весь сущий мир, захватывая еще и иррациональную область индивидуального сознания. Тут необходимо отметить и серьезную проблему квантовой теории поля, связанную с возникновением при теоретических расчетах «духов» — состояний микрообъектов с отрицательной вероятностью. Вообще говоря, вероятность событий может быть любым числом от нуля до единицы. Для невозможного события вероятность равна нулю, а для полностью достоверного — единице («стопроцентная вероятность»). В чем же может состоять физический смысл отрицательной вероятности? Этот вопрос в немалой степени занимает внимание теоретиков.
В свое время Эйнштейн писал:
«Однако мы должны помнить, что та идеализация, которая состоит в утверждении, что в природе действительно существуют неизменяемые масштабы, может потом оказаться либо совсем неприменимой, либо оправдываемой только по отношению к некоторым определенным явлениям природы. Общая теория относительности уже доказала неприменимость этого понятия ко всем областям, размеры которых не могут считаться малыми с точки зрения астрономии. Быть может, теория квантов будет в состоянии показать неприменимость этого понятия на расстояниях порядка размеров атомов. И то и другое считал возможным Риман».
Мысли Эйнштейна дополняют рассуждения патриарха отечественной космологии Абрама Леонидовича Зельманова о том, что сверхбольшое и сверхмалое может смыкаться в своей природе. А поскольку сверхпространство, в котором, собственно говоря, и происходит расширение нашей Вселенной, вполне может быть неметрическим, то и в инфрамикромире планковских масштабов метрические отношения могут неузнаваемо измениться или даже совсем исчезнуть. Профессор Зельманов указывал, что существование эталонов длины и времени связано с миром атомов и молекул, где длина соизмерима с периодом кристаллической решетки, а длительность — с колебаниями молекул и атомов. Но переход к планковским масштабам аналогичен сравнению Метагалактики с атомом! Естественно, что при этом все метрические эталоны могут потерять свой смысл вместе с самими понятиями длины и времени. Собственно говоря, метрические отношения на данном уровне реальности могут иметь просто иной качественный характер, например содержать своеобразные атомы пространства — планкионы, или максимоны, и времени — хрононы, или хронокванты. Существуют ли они на самом деле? Пока мы еще очень далеки от исследования таких глубин материи, но принципиальная возможность здесь существует, и связана она с новыми поколениями ускорителей элементарных частиц. Однако и здесь потребуются иные экспериментальные методики, иначе для насыщения энергией подобных опытов не хватит всех планетарных ресурсов!
Еще в середине прошлого столетия создатель новой квантовой физики Бом писал: «Кванты, связывающие объект и окружающую его среду, образуют неисчезающее звено, которое в любой момент зависит в равной мере от обеих частей». Чем-то это перекликается с еще более давней позицией Гейзенберга, считавшего, что физическое пространство и время носят сугубо макроскопический характер и отсутствуют в «фундаменте» материи.
Ну а теперь вспомним, что, рассуждая о возможных проявлениях ячеистой структуры пространства-времени, мы забыли о самом главном событии в истории Мироздания — его рождении в пучинах Большого взрыва. Элементарная логика подсказывает, что если атомы пространства и времени существуют, то они должны были проявиться в самом начале эволюции Вселенной. Именно тогда и должна была возникнуть космологическая стрела времени, управляющая течением всех процессов и явлений нашего мира.
Чтобы представить себе течение квантового времени в нашем мире, давайте обратимся к давней традиции физики создавать сказочных существ, наделенных сверхъестественными способностями, таких, как демон Максвелла из школьной термодинамики. Однако у нас ситуация сложнее, и нам придется создать целый сонм потусторонних наблюдателей во главе с обер-демоном Баалом, разглядывающим строение нашего Мультимира из бесконечной глубины вселенского «ничто». Структура Мультиуниверсума предстанет перед всепроникающим взором демиурга наподобие «луковицы миров», где каждая из множественных Вселенных представляет собой замкнутую оболочку изолированного мира. Ну а в центре луковицы Мультимира демиург с любопытством зафиксирует призрачные сполохи главной вселенской тайны — космологической сингулярности Большого взрыва, о которой мы много уже говорили.
Впрочем, он тут же вспомнит полученный накануне свыше указ считать космологическую сингулярность обычным катастрофическим процессом во Вселенной, ну… разве что сопровождающимся не совсем понятным изменением размерности пространства. Довольно почесав кончиком хвоста за ухом и полистав пудовый фолиант формул с горящими литерами «М-теория суперструн», демиург решит, что в высших сферах наконец-то приняли дельное решение, ведь иметь дело с сингулярными бесконечными плотностями материи и энергии и нечистой силе не очень-то приятно… Ну а теперь, поскольку понятие главной сингулярности волевым решением аннулировано, можно и попристальнее вглядеться в феерический процесс рождения новых миров, с немыслимой хроноквантовой частотой возникающих в катаклизме квантовых флуктуаций колеблющегося марева инфлатона.
Но уже через несколько миллиардолетий, устав от непрестанного мелькания возникающих, растущих и лопающихся пузырей вакуумной пены дочерних вселенных, наш руководящий демон впадает в сладостную дремоту. Во сне ему, конечно же, привиделся образ Многомирья, так напоминающий пышную шапку пены над запотевшей пивной кружкой (образ известного английского теорфизика Ричарда Готта), что, проснувшись, он тут же решает передать эстафету наблюдения своим младшим собратьям — демонам, рассаженным по отдельным мирам, а самому отправиться несколько освежиться в одну из наиболее подходящих вселенных, славящуюся осенним элем, романами Клиффорда Саймака и заповедниками гоблинов.
В то время каждый из внутренних демонических наблюдателей уже успел вообразить себя кондуктором вагончика-Мироздания, стремительно летящего по стреле — монорельсу времени в неизвестность. Внутри своего мира демон чувствует себя вполне комфортно, здесь течет свое время, рождаются и гибнут галактики и, в общем-то, идет нормальная эволюция локальной вселенной. Однако скоро демону начинает досаждать периодическое хриплое мяуканье полуживого шрёдингеровского кота, клетка с которым вместе с портативной системой кошачьего полуумертвителя входит в обязательный набор демонического научного инструментария. Пошикав на вредное создание великого теоретика и подумав в очередной раз о том, чем же так досадило Шрёдингеру в свое время кошачье племя, демон тычет кочергой в кошачью клетку, отчего мяуканье переходит в хриплый пульсирующий вой.
Не выдержав оглушительного кошачьего концерта, младший бес садится писать длинную жалобу демиургу, сетуя на невозможные условия работы в присутствии кошмарного порождения одного из основателей квантовой механики, очень досаждающего своим шумным оживлением через каждый хроноквант потока времени. Скучающий в «небытии» демиург, только что вернувшийся с третьей планеты, вращающейся вокруг звезды — желтого карлика на окраине Млечного Пути, незамедлительно присылает ответ по сверхпространственной почте, от которого шерсть демона становится торчком, а хвост закручивается в спираль Мебиуса. Забыв о вредном коте, бес стремительно летит в тамбур своего вагончика-Мироздания и распахивает дверь вселенского тамбура…. Тут его изумленному взору и предстает весь состав Мультиверса с клацающими буферами запутанных квантовых состояний и практически бесконечным количеством стрелок на каждом хроноквантовом стыке монорельса стрелы времени. С трудом придя в себя и отдышавшись, демон начинает осознавать, что не только мерцающая жизнь квантового кота, но и его личная судьба в реальности данного мира решается каждый хроноквант времени, локализуясь в полном соответствии с квантовой теорией в новую историческую последовательность хроноквантовых вселенных.
Постепенно демон успокаивается и даже проникается неким сочувствием к замолкнувшему в очередной раз коту, размышляя при этом над фатальностью судьбы, и тут к его копытам падает следующий толстый конверт сверхпространственной почты с печатями самого демиурга. Пораженный столь непривычным вниманием начальства, демон дрожащими когтями разрывает пакет и обнаруживает целую кипу научных статей Эверетта, Уилера, Новикова, Линде, Старобинского, Киржница пр. и пр. и пр…. Зачитавшись удивительными физическими фантазиями теоретиков прошлого, демон не замечает, как вселенский маятник отсчитывает еще одно многомиллиардолетие мгновения вечности… Наконец сверхъестественное существо прерывает чтение на какой-то статье неизвестного украинского физика под названием «Миры Мультиуниверсума» и, задумчиво почесывая заметно подросшую бородку, начинает усиленно размышлять над параллелизмом удивительных миров Эверетта — Уилера, последовательных Универсумах Виленкина, возникновением объективной реальности в инфляционном пароксизме Большого взрыва и многих других, очень странных вещах, даже на сверхъестественный взгляд потустороннего разума….
Тут надо отвлечься от научной демонологии и заметить, что и с достаточно зыбкой философской точки зрения окружающий нас материальный мир, как бы он ни был сложен, органически един и понятие времени неразрывно связано с происходящими в нем явлениями. Таким образом, нет ничего необычного в том, что всеобщий принцип атомизма должен распространяться и на длительность событий в нашей Вселенной. Так что в этом смысле мы вполне можем говорить о возможности существования неких ячеек времени, частиц времени и даже поля времени — хронополя.
Однако если мы хотим реально говорить о возможности путешествий во времени, а тем более о Т-аппаратах, преобразующих время, то, конечно, необходимы эксперименты, которые бы позволили отыскать признаки существования квантов времени. Некоторые расчеты показывают, что дискретность времени должна проявиться в экспериментах с микрочастицами, разогнанными до энергий в десятки миллиардов джоулей. Это очень большая величина, сравнимая с энергонасыщеностью всей современной промышленности, и даже самые мощные ускорители, которые планируется построить в ближайшее время, вряд ли смогут обеспечить хотя бы мизерную долю требуемой энергии. По всей вероятности, для проведения подобных экспериментов понадобятся принципиально новые источники энергии, иначе подобный ускоритель очень быстро истощит все планетарные ресурсы нашей цивилизации.
Давайте здесь все же остановимся, пока мы полностью не увлеклись «темпоральными фантазиями» в духе неподражаемого американского выдумщика Уолтера Брейдена Финнея (Джека Финнея), и обратимся к творчеству блестящего популяризатора физических и математических парадоксов, математика и писателя, хорошо известного по книгам «Математические чудеса и тайны», «Математические головоломки и развлечения», «Математические досуги», «Математические новеллы», «Путешествие во времени», «Крестики-нолики», «Есть идея!», «А ну-ка, догадайся!» Мартина Гарднера, который попытался ответить на очень любопытный вопрос.
Время описывалось многими метафорами, но нет более древней и более навязчивой, чем образ времени как реки. «Вы не можете войти дважды в одну и ту же реку, — говорил греческий философ Гераклит, — потому что всегда вокруг вас текут новые воды». «Вы не можете даже один раз войти в нее, — добавлял его ученик Кратил, — потому что, пока вы в нее входите, и вы и река уже успеваете в чем-то измениться».
У Джеймса Джойса в «Поминках по Финнегану» великим символом времени является река Лиффи, протекающая через Дублин. Ее «бесцельно блуждающие воды», достигающие океана в последних строках романа, затем возвращаются в «русло», чтобы опять начать бесконечный цикл изменения. Однако река — символ не только яркий, но и сбивающий с толку. Ведь течет не время, а мир. «В каких единицах надо измерять скорость потока времени? — спрашивает австралийский философ Дж. Смарт. — В секундах за …?» Говорить «время движется» — это то же самое, что сказать «длина протягивается».
Но вернемся к избитому сравнению. Если рыба может плыть по реке против течения, то мы бессильны проникнуть в прошлое. Изменяющийся мир, по-видимому, больше напоминает магический зеленый ковер, развертывающийся прямо под ногами и свертывающийся сразу же позади (этот образ также взят из литературы, из произведений американского фантаста Фрэнка Баума, в одном из которых королева страны Оз пересекает пустыню Смерти, двигаясь всегда в одном направлении по узкой ковровой дорожке «теперь»). Но почему магический ковер никогда не развертывается обратно? Каков физический базис этой странной непреодолимой асимметрии времени? По этому поводу среди физиков имеется так же мало согласия, как и среди философов. А ныне, в результате недавних экспериментов, замешательство еще более усилилось.
До 1964 года все фундаментальные законы физики, в том числе теория относительности и квантовая механика, были «времени-обратимыми». Другими словами, можно было заменить t на — t в любом основном законе, и он оставался так же применим к миру, как раньше: независимо от знака перед t закон описывал нечто, что могло происходить в природе.
Но физики все-таки стремились найти разницу между наконечником и оперением «стрелы времени». Они обратили свои взоры к таким событиям, а их немало, которые хотя и возможны теоретически, но в действительности никогда или почти никогда не происходят. Лучи звезды, например, распространяются во всех направлениях. Никогда не наблюдается обратное — они не приходят с разных сторон и не сходятся в звезду, нет обратно протекающих ядерных реакций, которые делали бы звезду поглотителем излучения, а не его источником. Однако в основных законах ведь нет ничего такого, что делало бы такую ситуацию невозможной в принципе! Непрерывное расширение всего космоса представляет еще один пример таких событий. Здесь опять нет причины, почему бы этот процесс в принципе не мог идти в обратную сторону. Если бы удаление галактик друг от друга сменилось их сближением, красное смещение превратилось бы в голубое смещение, и общая картина не нарушала бы никаких известных физических законов.
И хотя, как говорит наш опыт, эти процессы расширений и рассеяний всегда однонаправлены, но и они не помогают нам различать два конца стрелы времени.
Многие философы и даже некоторые физики считали, что объяснение стрелы времени можно найти только в человеческом сознании, в однонаправленной деятельности нашего ума. Однако их аргументы не были убедительны. Например, Земля претерпела долгую эволюцию, перед тем как на ней возникла какая-либо жизнь, и все доводы говорят за то, что события на Земле были раньше так же однонаправлены, как и теперь. В конце концов большинство физиков пришли к выводу, что все события природы в принципе времени-обратимы. Все, кроме тех, что связаны со статистическим поведением большого числа взаимодействующих объектов.
Пусть удар кия разрушит треугольник из восемнадцати шаров на бильярдном столе. Шары рассеются во все стороны, и, скажем, восемь из них попадут в лунки. Предположим, сразу после этого движение всех участвовавших в событии объектов стало бы совершаться в обратном направлении с теми же скоростями. Молекулы в лунках, куда попали шары, сконцентрировали бы свою полученную при падении шара тепловую энергию таким образом, чтобы в результате шары втолкнулись бы обратно на бильярдный стол. Попутно молекулы, переносящие теплоту трения, должны возвратить свою энергию шару и подтолкнуть его на прежний путь. Подобным же образом должны двигаться и другие шары. Восемь шаров, вытолкнутых из лунок, и шары, катающиеся на поверхности стола, будут перемещаться по столу до тех пор, пока они в конце концов не образуют треугольник. При этом не будет слышно никаких звуков соударений, потому что звуковая энергия молекул, участвовавших в возникновении колебаний воздуха во время первоначального разрушения треугольника, должна возвратиться к шарам и совместно с энергией их движения добиться того, чтобы шары сошлись в треугольник и к тому же оттолкнули кий в исходное положение. Картина движения любой индивидуальной молекулы, участвующей в этом событии, не представляла бы собой абсолютно ничего необычного. По-видимому, не был бы нарушен ни один фундаментальный закон механики. Но если рассматриваются миллиарды «бесцельно блуждающих» молекул, участвующих в общей картине, то вероятность, что все они будут двигаться по пути, требующемуся для воссоздания исходного треугольника, является слишком малой.
А как же быть со столкновением объектов, притягивающихся друг к другу, — например, с падением метеоритов? Несомненно, уж это-то событие не является времени-обратимым. Но и это не так! Когда большой метеорит сталкивается с Землей, происходит взрыв. Миллиарды молекул рассеиваются во все стороны. Обратите направления движения всех этих молекул, и их соударение в одной точке даст точно такое количество энергии, чтобы запустить метеорит обратно по орбите. И при этом ни один фундаментальный закон не был бы нарушен — кроме статистических законов!
Именно здесь, в законах вероятности, большинство физиков девятнадцатого века искали обоснование стрелы времени. Вероятность объясняет такие необратимые процессы, как растворение кофе, таяние мороженого, взрыв бомбы и все другие знакомые однонаправленные события, в которых участвует большое число молекул. Она объясняет второй закон термодинамики, согласно которому теплота всегда передается от более нагретого к более холодному телу, увеличивая энтропию — меру беспорядка системы. Этот закон объясняет, почему перетасовка делает беспорядочной колоду карт.
«Без какого-либо мистического призыва к сознанию, — констатировал Артур Эддингтон (в лекции, в которой он впервые ввел образ „стрелы времени“), — возможно найти направление времени… Произвольно направьте стрелу. Если, следуя за стрелой, мы найдем в состоянии мира все больше и больше беспорядка, значит, стрела указывает в будущее; если же, наоборот, беспорядок уменьшается, значит, стрела указывает в прошлое. Таково единственное различие между прошлым и будущим, известное физике».
Но к настоящему моменту выяснилось, что есть более фундаментальное, чем с помощью статистических законов, обоснование «стрелы времени». В 1964 году группа физиков Принстонского университета открыла, по-видимому, времени-необратимость некоторых слабых взаимодействий частиц. «По-видимому», — так как данные косвенные и спорные. Из них следует лишь, что если справедливы некоторые предпосылки, то симметрия времени нарушается.
Наиболее важная предпосылка известна как CPT-теорема. C — соответствует электрическому заряду (плюс или минус), P — четности (левое или правое зеркальное отображение) и T — времени (прямому иди обратному). Еще десять лет назад физики полагали, что каждая из этих трех основных симметрий справедлива во всей природе. Если вы замените заряды частиц камня на противоположные так, что положительные заряды станут отрицательными, а отрицательные положительными, камень все же останется камнем. Точнее говоря, камень превратится в камень из антиматерии, но нет никаких причин, почему антиматерия не может существовать. Антикамень на Земле мгновенно бы взорвался (материя и антиматерия аннигилируют друг с другом при соприкосновении), но физики могут вообразить галактику из антиматерии, в точности похожую на нашу собственную галактику — за исключением лишь знака C.
Считалось, что такая же универсальная симметрия справедлива относительно P (четности). Если вы измените на обратную четность камня или галактики — или, что то же самое, отразите в зеркале всю их структуру вплоть до последней волны и частицы, — в результате получится совершенно такой же камень или галактика. Но в 1957 году Ч. Янг и Т. Ли получили Нобелевскую премию по физике за теоретическую работу, которая привела к открытию несохранения четности. В мире элементарных частиц имеются события, в том числе некоторые слабые взаимодействия, которые не могут происходить, будучи отраженными в зеркале!
Не успели физики привыкнуть к этой новооткрытой симметрии, как принстонские экспериментаторы обнаружили несколько слабых взаимодействий, в которых и CP-симметрия, по-видимому, нарушалась. Другими словами, они нашли несколько событий, для объяснения которых пришлось допустить нарушение знака T — вдобавок к перемене знаков C и P. Хотя данные еще косвенные и частично спорные, многие физики теперь убеждены, что в мире элементарных частиц существуют события, идущие во времени только в одном направлении. Если это справедливо по всей Вселенной, то, установив связь с учеными в удаленной галактике, мы сможем отныне узнать, живут ли они в мире из материи или антиматерии. Для этого надо просто сказать им, чтобы они провели один из экспериментов с нарушением CP-симметрии. Если их описание точно совпадет с нашим собственным описанием того же эксперимента, то мы не взорвемся, когда прилетим к ним. Вполне может случиться, что во Вселенной нет галактик из антиматерии. Но физики любят уравновешивать все на свете, и если во Вселенной имеется столько же антиматерии, сколько материи, то могут существовать области космоса, в которых все три симметрии меняют знак. События в нашем мире, однозначные относительно CPT, будут все идти противоположным путем в CPT-обращенной галактике. Материя такой галактики должна быть зеркально отраженной, противоположной по заряду и двигающейся назад во времени.
Но что значит сказать — события в галактике идут назад во времени? Об этом никто не знает ничего реального. Новые эксперименты указывают всего лишь на преимущественное направление времени для некоторых взаимодействий частиц. Однако имеет ли эта «стрела» какую-либо связь с другими «стрелами времени» наподобие тех, которые определяются процессами излучения, законом возрастания энтропии и психологическим временем живых организмов? Указывают ли все эти «стрелы» в одну и ту же сторону, или они могут независимо указывать разные направления?
Наиболее популярный способ придать какой-то смысл «обратному времени» издавна заключался в том, чтобы вообразить мир, в котором процессы «перетасовки» идут наоборот — от беспорядка к порядку. Людвиг Больцман, австрийский физик прошлого века, один из основателей статистической термодинамики, сознавал, что, после того как молекулы газа в замкнутом изолированном сосуде достигнут состояния теплового равновесия — то есть будут двигаться в полном беспорядке, а значит, с максимальной энтропией, — в нем все-таки всегда будут образовываться небольшие области, где энтропия кратковременно уменьшается. Эти области должны уравновешиваться другими областями, где энтропия увеличивается, так что усредненная энтропия остается неизменной.
Больцман представлял себе космос безбрежным, возможно бесконечным в пространстве и времени, средняя энтропия которого максимальна — то есть в нем царит полный беспорядок. Но в этом же космосе есть области, где энтропия иногда уменьшается. («Область» может охватывать миллиарды галактик, а «иногда» может растянуться на миллиарды лет.)
Возможно, разбегающиеся волны нашей части бесконечного океана пространства-времени представляют область, в которой произошло такое отклонение: когда-то в прошлом, возможно во время первоначального Большого взрыва, энтропия вдруг уменьшилась; теперь она увеличивается.
В вечном и бесконечном потоке возник кусочек порядка; теперь этот порядок опять рассыпается, и наша «стрела времени» летит по обычному направлению увеличения энтропии. Есть ли иные области пространства-времени, задал вопрос Больцман, в которых «стрела» энтропии указывает в другую сторону? И если они есть, то будет ли правильным говорить, что время в таких областях течет вспять, или надо просто считать, что энтропия там уменьшается, а сама область продолжает развиваться вперед во времени?