ГЛАВА ШЕСТАЯ МНОГОМИРЬЕ

Я до сих пор помню потрясение, которое испытал, впервые ознакомившись с теорией множественности миров. Идея о том, что каждое мгновение из меня появляется 10 в 100-й степени слегка отличающихся друг от друга двойников и каждый из них продолжает беспрестанно делиться, пока не изменится до неузнаваемости, не укладывается в рамки здравого смысла. Вот уж поистине картина бесконечно прогрессирующей шизофрении.

Виктор Вит, лауреат премии М. Планка, известный английский астрофизик

ФАНТАСТИЧЕСКАЯ ФИЗИКА

Идея множественности миров, окружающих обитаемую Вселенную — Ойкумену, известна с времен ранней античности. Затем подобные взгляды изредка возникали в трудах самых различных философов-метафизиков, исчезнув на время под пеленой средневекового религиозного мракобесия и возродившись уже в творчестве фантастов первой половины прошлого века. Тогда же возникло и определение Мультиверса (Мультивселенной, multiverse, meta-universe) как множества возможных вселенных, существующих параллельно нашему миру. Представления о структуре воображаемого Мультиверса, природе каждой составляющей его вселенной и отношениях между ними сильно различаются в различных космологических моделях.

В физику идея многомирности впервые вошла в совершенно ином контексте парадоксальной интерпретации квантовой теории измерений, которую в 1957 году предложил аспирант выдающегося астрофизика Д. Уилера Хью Эверетт.

Эверетт обратился к анализу одного из основных принципов квантовой теории, согласно которому любой макроскопический измерительный прибор мгновенно «схлопывает» волновой вектор микрочастицы при ее наблюдении. Это явление называют коллапсом волновой функции или редукцией волнового пакета (рис. 14 цв. вкл.).

Публикация статьи Эверетта, поддержанная Нильсом Бором, породила целый новый раздел квантовой механики, часто называемый ее «многомировой интерпретацией». В последующем гипотезу Эверетта о «многомировом» механизме редукции волновой функции разрабатывали такие видные теоретики, как Дж. Уилер, Де Витт, М. Гелл-Ман, С. Хокинг, С. Вайнберг, М. Тегмарк, М. Риса, А. Линде, А. Сахаров, М. Марков и др.

Сегодня понятие Мультиверса чаще всего включает практически стремящееся к бесконечности количество параллельных физических миров с различными геометриями, метриками и топологиями. Параллельные миры могут описываться картиной абсолютно независимых от нашей действительности сущностей.

Взаимодействие между ними может заключаться в наличии неких «склеек-порталов», по которым при определенных обстоятельствах можно проникать из одного мира в другой. В этих гипотетических местах пересечения и слияния миров должны были бы происходить разные «чудеса», такие, как появление или исчезновение физических предметов. Еще одним любопытным понятием многомирья является «ветвление» Мультиверса в динамических процессах квантовой механики.

Б. Грин в своей «Структуре реальности» так характеризует принципы ввода образа Мультиверса:

«Слово „вселенная“ традиционно использовали для обозначения „всей физической реальности“. В этом смысле может существовать не более одной вселенной. Придерживаясь этого определения, мы могли бы сказать, что то, что мы привыкли называть „вселенной“, а именно: вся непосредственно ощутимая материя и энергия вокруг нас, все окружающее нас пространство, — далеко не вся вселенная, а лишь небольшая ее часть. В этом случае нам пришлось бы придумать новое название для этой маленькой реальной части. Но большинство физиков предпочитает продолжать пользоваться словом „вселенная“ для обозначения того, что оно всегда обозначало, несмотря на то что сейчас эта сущность оказывается лишь маленькой частью физической реальности. Для обозначения физической реальности в целом создали неологизм — мультиверс».

Рождение еще одного мира

Нет ничего удивительного в том, чтобы в большом магазине готового платья подобрать костюм себе по плечу. Аналогично в великом множестве Вселенных, в каждой из которых реализуется какой-то определенный набор космологических параметров, вполне может найтись хоть одна, где существуют предпосылки для возникновения жизни. В такой Вселенной мы и находимся.

Мартин Рис, президент Королевского общества (Академии наук) Великобритании

МИРЫ ЭВЕРЕТТА

По мысли Эверетта, при измерении какого-либо эффекта в микромире имеется столько миров, сколько возможно альтернативных результатов. В каждом из этих миров имеется и измеряемая система, и прибор, и наблюдатель. И состояние системы, и состояние прибора, и сознание наблюдателя в каждом из этих миров соответствует лишь одному результату измерения, но в разных мирах результаты измерения различны. Проще всего эту головокружительную картину можно понять на примере того же поляризованного фотона из опытов профессора Зайлингера. Если такой фотон проходит поляризатор, который отсеивает частицы только со строго одним направлением поляризации, то он оказывается в одном мире Эверетта — Уилера, а если не проходит — то в другом. Любопытная ситуация, не правда ли? Как здорово было бы реализовать в одном мире надоедливую тещу, в другом сварливую жену, в третьем оболтусов-студентов, а самому в четвертом (лучшем из миров) с приятелями-теоретиками обсуждать за кружкой пива хитросплетения Мультиверса, изредка (чтобы контролировать ситуацию) реализуясь в первых трех Вселенных. Прекрасная, но, увы, судя по всему, абсолютно недостижимая мечта… Дело в том, что в интерпретации Эверетта проблема выбора результата измерения все же существует, она лишь иначе формулируется. Вместо основного вопроса квантовой физики: «Какой из возможных результатов реализуется в ходе процедуры измерения?» — возникает новая задача: «В каком из эвереттовских миров локализовалась лаборатория наблюдателя?» Так что ни управляющего воздействия на выбор мира, ни тем более связи между альтернативными вселенными не существует даже в теории, а жаль…

Возможность существования Мультивселенной порождает различные научные, философские и теологические вопросы. Данная идея активно используется, например, в теории струн. В теории бесконечной вложенности материи под одной вселенной можно понимать ряд уровней материи, доступных прямому наблюдению и эксперименту (от уровня элементарных частиц до скоплений галактик и метагалактик).

Тогда более мелкие или более крупные уровни материи будут входить в другие вселенные, образуя в совокупности Мультивселенную. Предположение о существовании Мультивселенной используется также в одной из интерпретаций квантовой механики.

В современной многомировой интерпретации квантовой механики подразумевается, что любой квантовый объект может находиться сразу в нескольких состояниях. Это состояние объекта продолжается до физического измерения, после которого мы можем наблюдать объект только из одной вселенной в определенном состоянии.

Несмотря на то что статью Эверетта с его первоначальным вариантом многомировой интерпретации к опубликованию рекомендовал сам Бор, большинство физиков не приняло такую фантастическую идею. Ситуация изменилась только после того, как к ней проявили интерес такие крупные физики, как Брюс де Витт и Джон Уилер. Особенно много для популяризации новой теории сделал Уилер, и именно после его работ термин «многомировая интерпретация Эверетта — Уилера» получил широкое распространение. Вообще-то, такое название неточно и уже ввело в заблуждение множество журналистов, литераторов и философов, правильнее было бы говорить «многопроекционная интерпретация», однако менять что-то уже было поздно — терминология «устоялась».

Несмотря на шокирующую экзотику построений Эверетта — Уилера, сама по себе гипотеза множественных Вселенных оказалась довольно продуктивной, вызвав еще один поток работ в области квантовой космологии. В их основе лежит удивительная модель инфляционного Большого взрыва. Согласно инфляционному сценарию, наш мир родился 13,7 миллиарда лет назад из неизвестно чего под названием космологическая сингулярность (иногда, чтобы поставить на место излишне любопытствующих об этом совершенно непонятном состоянии материи, ученые весомо добавляют: «Это была квантовая космологическая сингулярность!»). По истечении 10-43 секунды постсингулярного развития Вселенная «приобрела свое тело», мгновенно расширившись до наблюдаемых размеров. Это кратковременное сверхбыстрое (инфляционное) расширение и дало название данной теории (рис. 15 цв. вкл.). Что же «сдетонировало» в ходе Большого взрыва, породившего наш мир?

Мультиверс

Модель Эверетта была призвана преодолеть серьезную внутреннюю логическую рассогласованность квантовой механики. Ведь чтобы обнаружить микрочастицу в определенной точке пространства, необходимо знать ее волновую функцию, а для этого надо решить знаменитое уравнение Шрёдингера, описывающее поведение волновой функции во времени и пространстве. Однако все дело в том, что уравнение Шрёдингера просто не имеет соответствующих «редукционных» решений. Так что же происходит с волновой функцией в процессе измерения и как правильно описать это на языке квантовой механики?


Железнодорожная аналогия Уилера

В свое время Уилер предложил оригинальный образ многомировой модели, получивший название «железнодорожная аналогия Уилера». Он представил, что в момент квантового измерения перед наблюдателем как бы оказывается железнодорожная стрелка, и его поезд может пойти в одном из нескольких направлений. В зависимости от того, в каком направлении пойдет поезд, наблюдатель увидит тот или иной результат измерения. Возможные направления движения поезда соответствуют альтернативным результатам измерения или различным эвереттовским мирам.

ИНФЛЯЦИЯ ВСЕЛЕННОЙ

Приверженцы инфляционной теории раздувающейся Вселенной во главе с нашим бывшим соотечественником Андреем Дмитриевичем Линде считают, что на изначальном этапе существовал только физический вакуум, пронизанный неким первичным полем, параметры которого сильно менялись из-за квантовых флуктуаций, «вспенивающих» изначальное пространство-время. Квантовая флуктуация — это неопределенность параметров какого-то процесса, его «размазанность», и если одна из таких флуктуаций достигнет надкритического размера («размытость» параметра пересечет своим краем некоторую критическую границу), это может привести к острому локальному экстремуму интенсивности поля. Этот полевой «подскок» параметров и может создать условия для выхода на инфляционный режим. В итоге возникает молниеносно расширяющийся пузырек — зародыш нашей Вселенной, за невообразимо малый «квантовый» срок заполняющий как минимум объем Метагалактики. Так, по крайней мере умозрительно, рождается вселенская сцена, на которой материя и энергия по тщательно и не очень тщательно выписанным сценариям теорфизиков-космологов начинают разыгрывать грандиозный спектакль под названием «Наша физическая реальность»! Тут надо заметить, что режущее вначале слух слово «сценарий» ученые, работающие в области космологии — науки о Вселенной в целом, — любят применять к любым «глобальным» процессам. Приятно хоть изредка чувствовать себя этаким всемогущим демиургом — сверхъестественным существом, создающим иные миры!

Хотя в квантовой инфляционной космологии еще очень много белых пятен, да и сам по себе механизм инфляции малопонятен, теоретики уже разработали инновационный сценарий вечной инфляции. Эта парадоксальная концепция предполагает, что квантовые флуктуации, подобные той, которая, возможно, положила начало нашей Вселенной, не исчезли в первые мгновения Большого взрыва, а продолжают самопроизвольно возникать, порождая все новые и новые миры. Не исключено, что и наша Вселенная сформировалась подобным образом в мире-предшественнике. Точно так же можно допустить, что и в нашем мире возникнет флуктуация, которая разовьется в новую вселенную, может быть даже с иными физическими законами и структурой пространства-времени, тоже впоследствии способную к космологической «редупликациии». Конечно же, в подобных сценариях очень много загадок. Так, не совсем ясна роль энергии вакуума (а эту загадочную «пустую» субстанцию теоретики мысленно буквально пересытили энергией!). Существуют предположения, что именно энергия вакуума определяет структуру космической материи. Будь она немного ближе к нулю, Вселенная так бы и осталась безжизненной и бесформенной смесью газа и пыли, равномерно распределенной по космическому пространству. В противном случае чем больше была бы величина темной энергии, тем быстрее первичное вещество сконденсировалось в массивные галактики, которые давным-давно сколлапсировались бы в черные дыры.

Тут надо заметить, что хотя сценарий инфляционного рождения нашего мира находит значительное признание среди космологов, многомировая интерпретация чаще всего упоминается в учебниках по квантовой механике как своеобразный исторический казус. В «Структуре реальности» Брайана Грина мы можем найти этому следующее объяснение:

«Тем не менее теория существования Мультиверса не пользуется особой популярностью у физиков. Почему?

Ответ, к сожалению, окажется нелицеприятным для большинства. … Те, кого устраивают обычные предсказания и у кого нет особого желания понять, как получаются предсказанные результаты экспериментов, могут при желании просто отрицать существование всего, кроме того, что я называю „реальными“ объектами. Некоторые люди, например, инструменталисты и позитивисты, принимают эту линию как сущность философского принципа. Я уже сказал, что я думаю о таких принципах и почему. Другие люди просто не хотят думать об этом. Как-никак, это столь грандиозный вывод, и он вызывает беспокойство, когда о нем слышишь впервые. Но я полагаю, что все эти люди ошибаются. Я надеюсь убедить читателей, которые терпеливо относятся ко мне, что понимание Мультиверса — это предварительное условие наилучшего возможного понимания реальности. Я говорю это не в духе суровой определенности поиска истины независимо от того, насколько неприятной она может оказаться (хотя надеюсь, что приму и такую позицию, если до этого дойдет). Напротив, я говорю это потому, что итоговое мировоззрение намного более цельно и обладает гораздо большим смыслом, чем все предыдущие мировоззрения. Оно возвышается над циничным прагматизмом, который в наше время зачастую является суррогатом мировоззрения ученых».

«Многоликая Вселенная» А. Д. Линде

ОБЛИК НАШЕГО МИРА

Каков же действительный облик нашего мира? Состоит ли он из бесконечного мелькания мириадов зеркальных отображений окружающей нас реальности в «мультиверсном представлении», или же Мироздание едино в своем «одноразовом проявлении»? Давайте прислушаемся к мнению современного апологета многомирья Дэвида Дойча:

«Возможно, из-за споров, возникших среди физиков-теоретиков, традиционно отправной точкой была сама квантовая теория. Сначала теорию формулируют как можно точнее, а затем пытаются понять, что она говорит нам о реальности. Это единственный возможный подход к пониманию мельчайших деталей квантовых явлений. Однако в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен.

Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет равных себе в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений, без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности.

Следовательно, если лучшая теория, имеющаяся в распоряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссылалась бы на параллельные вселенные, чтобы объяснить то, что мы видим».

Ну а подытожить головокружительное жизнеописание нашего мира поможет еще один отрывок из «Краткой истории времени от Большого взрыва до черных дыр» С. Хокинга:

«Попытки построить модель Вселенной, в которой множество разных начальных конфигураций могло бы развиться во что-нибудь вроде нашей нынешней Вселенной, привели Алана Гута, ученого из Массачусетского технологического института, к предположению о том, что ранняя Вселенная пережила период очень быстрого расширения. Это расширение называют раздуванием, подразумевая, что какое-то время расширение Вселенной происходило со все возрастающей скоростью, а не с убывающей, как сейчас. Гут рассчитал, что радиус Вселенной увеличивался в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз всего за крошечную долю секунды.

Гут высказал предположение, что Вселенная возникла в результате Большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась, и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход, и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода — замерзание воды при охлаждении. Жидкое состояние воды симметрично, то есть вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается.

Если охлаждать воду очень осторожно, то ее можно „переохладить“, то есть охладить ниже точки замерзания (0 град. Цельсия) без образования льда. Гут предположил, что Вселенная могла себя вести похожим образом: ее температура могла упасть ниже критического значения без нарушения симметрии сил. Если бы это произошло, то Вселенная оказалась бы в нестабильном состоянии с энергией, превышающей ту, которую она имела бы при нарушении симметрии. Можно показать, что эта особая дополнительная энергия производит антигравитационное действие аналогично космологической постоянной, которую Эйнштейн ввел в общую теорию относительности, пытаясь построить статическую модель Вселенной. Поскольку, как и в горячей модели Большого взрыва, Вселенная уже вращалась, отталкивание, вносимое космологической постоянной, заставило бы Вселенную расширяться с все возрастающей скоростью. Даже в тех областях, где число частиц вещества превышало среднее значение, гравитационное притяжение материи было бы меньше отталкивания, вносимого эффективной космологической постоянной. Следовательно, такие области должны были тоже расширяться с ускорением, характерным для модели раздувающейся Вселенной. По мере расширения частицы материи расходились бы все дальше друг от друга, и в конце концов расширяющаяся Вселенная оказалась бы почти без частиц, но все еще в переохлажденном состоянии. В результате расширения все неоднородности во Вселенной должны были просто сгладиться, как разглаживаются при надувании морщины на резиновом шарике. Следовательно, нынешнее гладкое и однородное состояние Вселенной могло развиться из большого числа разных неоднородных начальных состояний».

Разумеется, вполне естественно было бы считать, что в нашем ускоренно расширяющемся мире свету хватило бы времени для перехода из одной области ранней Вселенной в другую. В то же время расширением Вселенной можно было бы объяснить, почему в ней так много вещества и откуда оно взялось. Здесь просто надо принять как должное, что вокруг нас в диалектическом круговороте материи и энергии постоянно происходят взаимные переходы этих двух основных физических сущностей Мироздания. Вот и в микромире частицы могут рождаться в переходах: энергия — частица — античастица. При этом любопытно, как современная физика объясняет временно возникающий энергетический дефицит. В частности, Хокинг рассуждает так:

«Полная энергия Вселенной в точности равна нулю. Вещество во Вселенной образовано из положительной энергии. Но все вещество само себя притягивает под действием гравитации. Два близко расположенных куска вещества обладают меньшей энергией, чем те же два куска, находящиеся далеко друг от друга, потому что для разнесения их в стороны нужно затратить энергию на преодоление гравитационной силы, стремящейся их соединить. Следовательно, энергия гравитационного ноля в каком-то смысле отрицательна. Можно сказать, что в случае Вселенной, примерно однородной в пространстве, эта отрицательная гравитационная энергия в точности компенсирует положительную энергию, связанную с веществом. Поэтому полная энергия Вселенной равна нулю».

Так ученый постепенно подводит нас к мысли о том, что «поскольку дважды нуль тоже нуль, количество положительной энергии вещества во Вселенной может удвоиться одновременно с удвоением отрицательной гравитационной энергии; закон сохранения энергии при этом не нарушится. Такого не бывает при нормальном расширении Вселенной, в которой плотность энергии вещества уменьшается по мере увеличения размеров Вселенной. Но именно так происходит при раздувании, потому что в этом случае Вселенная увеличивается, а плотность энергии переохлажденного состояния остается постоянной: когда размеры Вселенной удвоятся, положительная энергия вещества и отрицательная гравитационная энергия тоже удвоятся, в результате чего полная энергия останется равной нулю. В фазе раздувания размеры Вселенной очень сильно возрастают. Следовательно, общее количество энергии, за счет которой могут образовываться частицы, тоже сильно увеличивается. Гут по этому поводу заметил: „Говорят, что не бывает скатерти-самобранки. А не вечная ли самобранка сама Вселенная?“

Сейчас Вселенная расширяется без раздувания… Затем Вселенная опять начнет расширяться и охлаждаться, так же как в горячей модели Большого взрыва, но теперь мы уже сможем объяснить, почему скорость ее расширения в точности равна критической и почему разные области Вселенной имеют одинаковую температуру».

Стивен Хокинг в невесомости

Загрузка...