ГЛАВА ПЯТАЯ РОЖДЕНИЕ НАШЕГО МИРА

Хотя действие известных ныне физических законов и невозможно экстраполировать в прошлое до самого начального момента или даже в область, где вступает в силу квантовая теория гравитации… тем не менее можно построить модель Вселенной начиная почти с первой микросекунды ее существования с достаточной уверенностью, что ее физическая сущность понимается правильно. Проследить развитие Вселенной на протяжении этих первоначальных удивительно кратких мгновений — бесспорно, одно из самых величайших, буквально захватывающих дух дерзаний, которые когда-либо предпринимались наукой. Поистине невероятно, что удается осмысленно описать состояние Вселенной в «возрасте» менее одной секунды.

П. Девис, «Пространство и время в современной картине Вселенной»

САМАЯ ВСЕОБЩАЯ НАУКА

Одной из самых жгучих тайн современного естествознания является физика происхождения нашего мира. Этой загадочной проблемой занимается специальная наука, изучающая Вселенную как единое целое, — физическая космология. Выводы космологии основываются и на законах физики, и на данных наблюдательной астрономии. От других наук космология отличается своей структурой, являясь в значительной степени умозрительной и гипотетической дисциплиной. Развитие современной космологии основывается на положении, по которому все законы природы, установленные на нашей планете и в ближайшем космическом окружении, безусловно, распространяются на всю видимую Вселенную — Метагалактику (см. рис. 8 цв. вкл.). Это, конечно же, не означает, что где-то в глубинах космоса ученые не смогут открыть новые поразительные физические закономерности, но они никогда не отменят уже открытые законы природы в пространстве и времени, а будут расширять и развивать их на новом уровне.

На протяжении веков величайшие умы человечества — Коперник, Кеплер, Галилей и Ньютон считали окружающий мир однородным и неизменным. На эти же свойства Вселенной изначально опирался в своих построениях Эйнштейн. Создатель теории относительности считал, что Вселенная в целом не эволюционирует, пребывая в застывшем состоянии, и никак не подвластна ходу времени. Правда, в отдельных местах Метагалактики могут возникать и гаснуть звезды и даже целые галактики, но общая картина мира остается принципиально неизменной. Однако реальная Вселенная оказалась совершенно иной, не статически застывшей, а динамичной и развивающейся. Вещество Вселенной не может находиться в покое. Оно должно либо расширяться, либо сжиматься.

Сейчас Метагалактика ускоренно расширяется, и если вернуть этот процесс в прошлое, то мы окажемся у очень загадочной точки вселенского сжатия, носящей название космологическая сингулярность. Эта во многом мнимая точка (ведь указать ее координаты просто невозможно — нет подходящей системы отсчета!) и будет являться моментом «начала начал» расширения нашей Вселенной. Сам астрономический термин «сингулярность» можно перевести как «особенность», «необычность» или «исключительность», ведь начальное состояние материи характеризовалось совершенно непонятными плотностями материи и энергии, стремящимися к бесконечности.

Понятие космологической сингулярности тесно связано с кривизной окружающего нас трехмерного пространства, которое может быть и разомкнутым и замкнутым. Каким именно оно станет, зависит от многих обстоятельств. Например, если плотность материи в таком мире будет ниже некой критической величины, то он окажется незамкнутым, сможет расширяться до бесконечности. Тогда луч света, выпущенный из какой-либо точки внутри него, никогда не вернется назад, разве что отразится, натолкнувшись на какую-либо преграду. Если же плотность вещества превысит некоторое критическое значение, то пространство окажется замкнутым. Оно будет то расширяться, то сжиматься, не выходя все-таки за некоторые пределы.

Наглядно такой пульсирующий замкнутый мир можно представить в виде резинового шара, который то раздувается, то спускает воздух. Само собой разумеется, что при всем старании нам вряд ли удастся раздуть камеру больше критического объема поверхности, так как произойдет ее разрыв. В данном замкнутом пространстве свет, направленный в одну сторону, может облететь всю полость и вернуться с другой стороны, так и не вырвавшись наружу.

После создания теории относительности, в двадцатых годах прошлого века, замечательный петербургский математик Александр Александрович Фридман одним из первых получил оригинальные решения уравнений общей теории относительности для всей Вселенной в целом. Анализируя полученные результаты и применяя их к новой теории гравитации Эйнштейна, профессор Фридман сделал сенсационное открытие. Он обнаружил, что уравнения имеют решения, которые описывают полностью замкнутый мир. Под действием гравитации в отдельных участках Вселенной материя может как бы «схлопнуться», образовав необычное пространство, замкнутое само на себя. Далее ученый получил еще более неожиданный результат, который однозначно показывал, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься. Полученные Фридманом уравнения для развивающейся и увеличивающейся Вселенной лежат в основе всей современной космологии.

Миры Мультивселенной

Простой астрономический факт — расширение нашей Вселенной — привел к полному пересмотру всех космогонических концепций и разработке новой физики — физики возникающих и исчезающих миров.

С. Г. Рубин, «Мир, рожденный из „ничего“»

МИР ФРИДМАНА

Как же можно представить себе мир Фридмана? Давайте возьмем глобус и населим его ползающими по поверхности «плоскунами», ничего не подозревающими о существовании третьего измерения. Поверхность сферы образует особый двумерный мир. Он замкнут и в то же время безграничен, ведь по поверхности шара можно двигаться в любом направлении, не опасаясь наткнуться на какую-то неодолимую преграду.

Представим теперь, что Академия наук плоскунов решила опытным путем проверить, безгранична или же ограниченна их Вселенная. Приступив к измерению длины окружности сферы своего мира, академики плоскунов вскоре пришли бы в большое удивление, ведь длина окружности, все возрастая по мере удаления от того места, где находились плоскуны-экспериментаторы, достигла бы максимума, а затем начала бы неуклонно уменьшаться, вплоть до нуля.

Это однозначно продемонстрировало бы плоскунам, что их мир замкнут. Удивительные вещи должны происходить в таком замкнутом мире. В таком мире действовали бы иные физические законы и сила взаимодействия между двумя зарядами изменялась бы в другой пропорции от расстояния.

Двумерные существа могли бы никогда не узнать, что находится внутри искривленной поверхности сферы, центр которой недоступен для наблюдений их двумерными приборами. Они могли бы построить модель Вселенной как целого, безграничную, но конечную, содержащую конечное количество квадратных километров. Модель охватывала бы все, доступное их чувствам и физическим приборам, но с точки зрения внешнего наблюдателя мир плоскунов составлял бы лишь незначительную часть чего-то более обширного.

Очевидно, вопрос, интересующий двумерных аборигенов, состоит в том, можно ли считать внутренность сферы с центром и охватывающее сферу внешнее пространство реально существующими, если до сих пор они себя никак не проявляли в сферическом мире и, может быть, так никогда и не проявят?

ПОСТОЯННАЯ ХАББЛА

Некоторое время после создания модель Фридмана нестационарной расширяющейся Вселенной казалась многим ученым нереальной. Однако соответствующие решения Фридмана были не только признаны автором теории относительности Эйнштейном, но и получили практическое подтверждение в наблюдениях знаменитого американского астронома Э. Хаббла. В двадцатых годах прошлого века, после внушительной серии астрономических исследований дальних галактик, он пришел к выводу, что галактические объекты удаляются от нас со скоростью, пропорциональной этой удаленности. Следовательно, чем дальше от нас галактика, тем выше ее скорость удаления.

Соответствующий коэффициент пропорциональности является важнейшей космологической величиной, получившей название постоянной Хаббла. Этот вывод Хаббл сделал на основе исследования физического эффекта Доплера — смещения длин волн в спектре излучения источника в сторону красной части диапазона для далеких галактик (рис. 9 цв. вкл.) Открытие Хабблом эффекта красного смещения, разбегания галактик лежит в основе концепции расширяющейся Вселенной. В соответствии с современными космологическими концепциями, Вселенная расширяется, но центр расширения отсутствует: из любой точки Вселенной картина расширения будет представляться той же самой, а именно, все галактики будут иметь свое красное смещение, пропорциональное расстоянию до них. Само пространство как бы раздувается (рис. 10 цв. вкл.).

Оставалось понять, какие физические превращения происходили и происходят на различных стадиях расширения нашего мира. Одним из первых к исследованию данной интереснейшей проблемы рождения вещества нашего мира приступил знаменитый американский физик русского происхождения Георгий Гамов. Именно он в сороковых годах прошлого века заложил основы фундамента современной космологии и космогонии — модели «горячей Вселенной».

Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали очень высокой плотностью и энергией. В ходе расширения Вселенной эта температура неуклонно падала. Затем равновесие образовавшегося водорода и гелия с излучением нарушилось — кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила всего несколько градусов Кельвина. Это излучение сохранилось до наших дней как эхо эпохи бурного рождения Вселенной в катаклизме Большого взрыва.

Новорожденная Вселенная прошла стадию чрезвычайно быстрого расширения (космологической инфляции), которая полностью изменила пейзаж младенческого космоса. До возраста приблизительно 300 тысяч лет Вселенная была кипящим котлом из электронов, протонов, нейтрино и излучения, которые взаимодействовали между собой и составляли единую среду, равномерно заполняющую всю раннюю Вселенную. Общее расширение Вселенной постепенно охлаждало эту среду, и, когда температура упала до значения нескольких тысяч градусов, наступило время для формирования стабильных атомов.

Астрономы предполагают, что важную роль на начальной стадии формирования галактик могли также играть черные дыры, собирая материю вместе посредством своей мощной гравитации. Новые открытия сверхмассивных черных дыр в центрах галактик только прибавляют в этом уверенности. Такая связь, естественно, вызывает вопрос и о том, что появилось сначала — галактика или черная дыра, хотя последние данные в большей степени указывают на то, что именно черные дыры формируют вокруг себя галактики.

Расширение пространства после Большого взрыва

Долгое время Вселенная, остыв после Большого взрыва, оставалась темной и холодной — ничто ее не освещало. Этот период, названный астрономами «темными веками», закончился, когда сформировались первые звезды. Здесь ученые столкнулись с одной из главных проблем современного естествознания — загадкой таинственной «темной материи» и «темной энергии». Очень ранний возраст Вселенной, к которому относят начало формирования первого поколения звезд, привел к идее о том, что таинственный тип невидимой материи гравитационно сконцентрировал вещество Вселенной вскоре после ее рождения, позволив сформироваться первым звездам и галактикам.===

Модели развития нашей Вселенной

Что ожидает наш мир в невообразимо далеком будущем? Ученые — физики, космологи и астрономы исходят в своих прогнозах из кривизны окружающего нас пространства. Так, если кривизна трехмерного пространства отрицательна или (в пределе) равна нулю (мир Ньютона, Лагранжа и Лапласа), то Вселенная бесконечна и мы имеем так называемую «открытую модель». В такой модели расстояния между скоплениями галактик со временем неограниченно возрастают, а в некотором экстремальном варианте ткань пространства начинает «растягиваться» так быстро (экспоненциально), что может произойти некий Большой «разрыв». Что это такое и тем более как выглядит, не знает никто, но вполне возможно, что по своему масштабу этот вселенский катаклизм может сравниться с началом Большого взрыва. В замкнутой модели кривизна пространства положительна, Вселенная конечна (но так же безгранична, как и в открытой модели); в такой модели расширение со временем сменяется сжатием до состояния Большого «хруста», являющегося полной противоположностью Большому взрыву.

ПРОВАЛЫ ЗАСТЫВШИХ ЗВЕЗД

Здесь необходимо остановиться и немного рассказать об этих удивительнейших небесных телах — черных дырах сколлапсировавших застывших звезд. Бездонный провал черной дыры коллапсара — это область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют «горизонтом событий» или просто «горизонтом» черной дыры.

Чтобы поле тяготения могло навсегда «привязать» к себе электромагнитное излучение, масса тела должна сжаться до особого «гравитационного радиуса». Значение гравитационного радиуса чрезвычайно мало по сравнению с привычным размером физических тел. Например, для Солнца гравитационный радиус составляет около трех километров, а для Земли один сантиметр. По этой причине создать коллапсар в лабораторных условиях практически невозможно, ведь чтобы тело любой разумной массы, пусть даже в миллиарды тонн, стало черной дырой, его нужно сжать до размера элементарных частиц, поэтому свойства черных дыр пока изучаются только теоретически. Правда, большие надежды физики возлагают на новые сверхмощные ускорители элементарных частиц — коллайдеры. В них на встречных пучках будут попадаться частицы, движущиеся с огромной скоростью и, соответственно, обладающие гигантской энергией. Теоретики предсказывают, что при определенных условиях в акте столкновения нескольких частиц может произойти микроколлапс с образованием черной микроскопической дыры. Впрочем, большинство ученых сходятся во мнении, что подобные чудеса произойдут не скоро.

Расчеты астрофизиков показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже много десятков лет, и сейчас можно с большой уверенностью указать сотни вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже особо не подвергают сомнению, практическое изучение их свойств еще впереди.

История умозрительного открытия гравитационных коллапсаров тесно связана с именем английского геофизика и астронома Джона Мичелла (1724–1793). Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, он рассчитал, что если бы звезда с массой Солнца имела радиус около трех километров, то даже корпускулы света не могли бы покинуть такую звезду. Такая звезда казалась бы издалека абсолютно темной, вот так и родилась концепция «ньютоновской» черной дыры. Несколько позже подобные идеи высказал в своей книге «Система мира» (1796) великий французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идеи Митчела и Лапласа о гравитационных коллапсарах были забыты.

Во второй раз ученые обратились к концепции черных дыр в начале двадцатого века, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений только что созданной тогда Альбертом Эйнштейном релятивистской теории гравитации — общей теории относительности. Оказалось, что пустое пространство вокруг массивной точки обладает особыми свойствами на расстоянии гравитационного радиуса; именно поэтому данную величину часто называют шварцшильдовским радиусом, а соответствующую поверхность — горизонтом событий или шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования коллапсары еще не рассматривались.

В конце тридцатых годов прошлого века знаменитый впоследствии своим участием в Атомном проекте физик Роберт Оппенгеймер выдвинул гипотезу, что ядро массивной звезды будет безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого описываются поверхностью Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь застывшей звездой коллапсара. Но поскольку такой объект не должен излучать электромагнитные волны, то и обнаружить его в космосе будет невероятно трудно (рис. 11, 12 цв. вкл.).

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, и происходящие внутри застывшей звезды физические процессы не могут влиять на ее окружение. В то же время, вещество и излучение, падающие снаружи на коллапсар, свободно проникают внутрь через его горизонт.

Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин «черная дыра», предложенный в шестидесятых годах прошедшего столетия видным американским физиком и космологом Джоном Арчибальдом Уилером (рис. 13 цв. вкл.).

ИСПАРЕНИЕ ЧЕРНЫХ ДЫР

В связи с этим можно упомянуть о гипотезе квантового испарения черных дыр, предложенной известным английским физиком-теоретиком Стивеном Хокингом. Согласно этой гипотезе, черная дыра излучает как абсолютно черное тело. Излучение черной дыры связано с квантовыми флуктуациями виртуальных частиц вакуума. Эти частицы на мгновение расходятся друг от друга и тут же снова сливаются в пары. В поле тяготения черной дыры эти флуктуации могут резонировать, увеличивая амплитуду расхождения частиц. При этом одна из частиц может оказаться внутри сферы Шварцшильда и будет неудержимо падать к ее центру, а другая — вне сферы Шварцшильда и улетит в космос, унося с собой часть энергии черной дыры. В результате черная дыра будет испаряться, уменьшаться в своих размерах.

Открытие квантового испарения черных дыр произвело сенсацию, правда, в основном среди теоретиков. На практике черные дыры продолжали оставаться такими же ненаблюдаемыми, как и раньше. Объясняется это тем, что черные дыры являются неустойчивыми объектами и при своем образовании попросту исчезают из нашей Вселенной. Другое дело, что в области виртуальной геометрии вакуумные частицы могут резонировать так же, как и на обычной сфере Шварцшильда. Но этот резонанс никак не связан с гравитационным коллапсом звезд. С гораздо большим основанием его можно отнести к обычным квантовым скачкам реальных элементарных частиц из одной точки пространства в другую. А вот выбрасывание остатков вещества коллапсирующей звезды в другие вселенные действительно можно рассматривать как квантовое испарение черной дыры. Но такое испарение не имеет никакого отношения к резонансу вакуумных частиц.

В последние десятилетия развитие космологии и физики элементарных частиц позволило теоретически рассмотреть самую начальную, сверхплотную стадию расширения Вселенной, которая называется инфляционной.

Получается, что Вселенная рождалась в два приема, проходя стадию «увеличения объема», заполненного физическим полем, но не содержащего ни вещества, ни излучения, и стадию появления вещества и излучения и последующего образования из него звезд, галактик, планет и всего прочего.

До момента, который наступил примерно через миллион лет после начала расширения, Вселенная была непрозрачной для квантов света. Поэтому с помощью электромагнитного излучения нельзя заглянуть в предшествующую эпоху. На сегодняшний день это можно сделать только с помощью воображения и теоретических моделей. Очень долго (и окончательно споры еще не утихли) ученые обсуждали вопрос — почему окружающая природа состоит из материи, а не антиматерии и существуют ли антимиры во Вселенной?

В начале расширения Вселенной ее температура была столь высока, что энергии хватало для рождения пар всех известных частиц и античастиц.

Затем температура понизилась, так что почти все частицы и античастицы взаимно уничтожились — аннигилировали, превратившись в излучение. А фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы.

Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную миллиардную долю от их общего числа. Вот именно этих избыточных протонов и нейтронов и хватило на то, чтобы сформировать вещество современной Метагалактики. Так наш мир не превратился в Антимир.

В научном мире считается, что первые шаги в понимании загадки Большого взрыва сделал бельгийский ученый Жорж Анри Леметр. Правда, еще раньше петербуржец Александр Фридман нашел оригинальные решения уравнений теории относительности Эйнштейна, которые описывали удивительные пульсирующие миры, рождающиеся из загадочной точки первичной сингулярности. Однако следует помнить, что Фридман и по образованию, и по стилю научного мышления был прежде всего математиком. Поэтому он не довел свои вычисления до логического окончания — физической картины рождения Вселенной. Так что его можно было бы считать своеобразным предтечей современной космологии расширяющейся Вселенной, а вот титул отца-основателя, без сомнения, принадлежит Леметру.

Вселенная во младенчестве

В результате компьютерного моделирования дозвездный мир предстает нам в виде темных первичных «семян» плотной материи, погруженных в горячую плазму элементарных частиц. Причина, по которой из однородной среды образовались массивные тела (звезды, планеты, галактики и т. д.), кроется в силе гравитации. Там, где плотность была чуть выше средней, сильнее было и притяжение, значит, более плотные образования становились еще плотнее. Изначально однородная масса со временем разделилась на отдельные сгустки материи, из которых сформировались галактики.


Вселенная Большого взрыва

Считается, что наша Вселенная возникла примерно 13 миллиардов 700 миллионов лет назад в результате загадочного Большого взрыва. Его природа до сих пор неизвестна, хотя многие теоретики считают, что зародышем нашего мира могли стать энергетические волнения — флуктуации в «непустой пустоте» вакуума, которые и дали начало всему сущему.

ВЗРЫВ ПЕРВИЧНОГО АТОМА

Леметр предложил в качестве зародыша Вселенной объект конечных размеров, сверхмассивный первичный атом. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять во внимание количество частиц, которое, по современным оценкам, содержит Вселенная, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть несколько сотен делений и на этом остановиться.

Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать максимально устойчивые атомы. А поскольку наиболее стабильными являются ядра атомов железа, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы прошлого века астрономы уже достоверно знали, что Вселенная почти полностью состоит из водорода и гелия. Несомненным достоинством модели Леметра было то, что она предсказала и объяснила закон Хаббла. Но данные об элементном составе Вселенной не согласовывались с теорией первичного атома. В масштабе Макромира концепция бельгийского ученого работала превосходно, а на микроуровне заводила в тупик.

Следующий этап исследования Большого взрыва связан с именем замечательного русского ученого Георгия Антоновича Гамова. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас химических элементов.

Поскольку расширение Вселенной приводит к ее постепенному охлаждению, сжатие должно вызывать обратный эффект. Поэтому, исследуя модель Леметра назад во времени почти до исходного момента, Гамов заключил, что сразу после рождения мира все имевшееся вещество было чрезвычайно нагрето. Это был огромный шаг вперед по сравнению с леметровским атомом, для которого понятие температуры вообще не имело смысла. Однако следовало еще определиться с составом первичной материи.

Гамов предположил, что ранняя Вселенная была заполнена элементарными частицами, включая протоны, нейтроны и электроны. Эту смесь он назвал айлемом, применив термин из средневекового английского языка, означавший нечто вроде первосубстанции, источника всего сущего. И на этот раз интуиция не подвела замечательного физика, ведь, по современным представлениям, к концу первой секунды Большого взрыва все известное нам вещество Вселенной полностью состояло из айлема.

Спустя некоторое время астрофизики, анализируя построения Гамова, пришли к выводу, что Вселенная должна быть заполнена микроволновым излучением, возникшим примерно через триста тысяч лет после ее начала. Это было предсказанием принципиально нового явления, еще неизвестного науке. Регистрация микроволнового излучения, осуществленная в шестидесятых годах прошлого века, оказалась сильным аргументом в пользу теории горячего рождения Вселенной.

Еще совсем недавно у физиков существовало своеобразное «табу» на исследование пространства и времени за границей рождения Вселенной. Сейчас уже возникло довольно много теорий, описывающих, как могло выглядеть то очень таинственное нечто, в чем и возник наш мир. Во-первых, это, конечно же, должно быть не обычное состояние иного пространства-времени. Ведь в нашей повседневной реальности вокруг нас не рождаются новые Вселенные! И даже если бы это происходило, то мы просто бы перенесли вопросы рождения Мироздания в эту старую Вселенную, а потом в еще более старую и так далее. В математике такой процесс хождения по кругу одних и тех же понятий носит название «дурная бесконечность», и он по определению не способен дать чего-либо нового познанию. Поэтому физики и рассматривают среду, где возник наш мир, как суперпространство со многими измерениями.

Тут возникает очень любопытная логическая головоломка. Ведь если геометрического центра Большого взрыва не существует, и он происходил, а по некоторым теориям и происходит, «повсюду», то где-то вокруг нас и спрятано суперпространство. Первые подозрения, как всегда в подобных случаях, вызывают так называемые сугубо квантовые объекты. Если представить наше Мироздание состоящим из этажей-масштабов, то обитать эти удивительные частицы будут на дне подвала, где-то вблизи самого фундамента мира. Этот этаж мы назовем сверхмикроскопической основой Вселенной. Там в кажущейся пустоте вакуума непрерывно бушуют штормы физических полей, периодически заставляя его выплескивать энергию — флуктуировать на более высокие масштабные этажи материи. При этом в сверхпространстве возникает вереница возмущений, чем-то напоминающих пузырьки в пенящейся жидкости. Внутри каждого такого пузырька существует особенный мир и течет собственное время, стрелка которого летит краткий миг от рождения до «схлопывания». Подавляющая доля таких миров-пузырьков имеет невообразимо малый период существования, но при этом они успевают проявить себя как полноценные замкнутые мини-вселенные.

Взрыв первичного атома Леметра

Теория Леметра обосновывала оригинальную концепцию возникновения Вселенной из особого начального состояния с очень высокой плотностью материи. В духе физических знаний своего времени он интерпретировал этот момент как распад некого первичного атома, который существовал вне времени и пространства. Леметр вычислил последующую эволюцию «взорвавшейся» Вселенной на основе уравнений общей теории относительности и теоретически вывел линейную зависимость между радиальной скоростью галактик и их удаленностью от Солнечной системы.


Компьютерная модель эволюции Мироздания (сверху вниз)

ВЗРЫВ ВАКУУМА

Что же удержало в свое время квантовый пузырек нашей Вселенной от практически мгновенного схлопывания? Теоретики считают, что здесь мог проявиться своеобразный эффект «неустойчивости нестабильности», в силу действия которого Вселенные типа нашей являются ярко выраженными аномалиями. Первично неустойчивое состояние вакуума в результате флуктуации топологии (образования пузырька новой Вселенной) могло привести к тому, что внутри возникшего мира вакуум начал неожиданно изменять свои свойства, стремясь к новому устойчивому пределу. Этот процесс перестройки вакуума должен, по теоретическим расчетам, сопровождаться гигантским выделением энергии, результатом чего и явился Большой взрыв. Этот процесс можно представить как своеобразный взрыв вакуума — взрыв непустой пустоты!

Естественно, что грандиозность масштаба таких взрывных процессов, скрывающихся в окружающем нас мире, вызывает очень много вопросов к обсуждаемой новой космологии. Однако исторический опыт науки, особенно последних десятилетий, показывает плодотворность подобных смелых попыток заглянуть за границу известного. В принципе — вопросы расставлены, и ответы на них должны дать будущие исследователи, которые сегодня еще учат физику в школе!

Вероятностная интерпретация событий в микромире в свое время составила основу знаменитой полемики между Эйнштейном и Бором, разделив физиков на несколько спорящих групп. Одни из них, следуя Бору, Гейзенбергу и Борну, считают, что непредсказуемый характер единичных квантовых событий является фундаментальной особенностью окружающей природы и не имеет под собой никакого более глубокого фундамента. Другие, исходя из выводов научных школ Эйнштейна и Шрёдингера, доказывают, что неопределенность хода физических процессов микромира неизбежно приводит к целому ряду логических проблем (кот Шрёдингера) и даже явных противоречий, так что квантовые представления не являются достаточно полными. Третьи, подобно Луи де Бройлю, академикам В. А. Фоку и Д. И. Блохинцеву, занимают свою оригинальную позицию, часто предлагая собственные варианты понимания квантовой теории.

Спор между сторонниками и противниками абсолютной фундаментальности квантовой теории еще далеко не закончен и изредка разгорается с новой силой, вводя в круг обсуждаемых вопросов весьма необычные и даже фантастические предметы, такие, как «сознание наблюдателя». Все это еще раз подчеркивает, насколько далеки от повседневной действительности современные концепции теоретической физики. Во всяком случае, они, так или иначе, во многом противоречат обыденным представлениям об окружающем нас классическом мире. Исходя из этого, многие ученые, особенно занимающиеся другими разделами физики, просто считают квантовую теорию очень удачным математическим образом, позволяющим успешно предсказывать исход тех или иных экспериментов в микрофизике.

Тут пришло время прервать наш рассказ о чудесах квантовой механики и немного рассказать о втором «столпе», на котором сооружен храм современной физики, — теории относительности. Мне кажется, что это прекрасно сделал один из самых знаменитых физиков современности, член Королевского научного общества Великобритании Стивен Уильям Хокинг.

Каждое утро английские студенты из знаменитого Тринити-колледжа в Кембридже, где заведовал кафедрой физики еще великий Ньютон, видят необычный самодвижущийся экипаж — коляску, в которой сидит человек с безвольно склоненной набок головой. Это спешит на лекции нынешний хозяин кафедры Ньютона замечательный физик-теоретик Стивен Хокинг. Страшный недуг поразил его тело, но не смог сломить силу воли и разум. Хокинг посещает все интересные конференции по физике во всех частях света, выступает с лекциями в других университетах и даже читал доклад по приглашению американского президента на лужайке перед Белым домом. А еще профессор Хокинг пишет прекрасные научно-популярные книги.

КРАТКАЯ ИСТОРИЯ ВРЕМЕНИ

В небольшом фрагменте одной из таких книг С. Хокинга — «Краткая история времени от Большого взрыва до черных дыр» — и описывается теория относительности, причем сделано это мастерски, очень образно и доступно.

«Теория Максвелла предсказывала, что радиоволны и свет должны распространяться с некоторой фиксированной скоростью. Но поскольку теория Ньютона покончила с представлением об абсолютном покое, теперь, говоря о фиксированной скорости света, нужно было указать, относительно чего измеряется эта фиксированная скорость. В связи с этим было постулировано существование некой субстанции, названной „эфиром“, которой наполнено все, даже „пустое“ пространство. Световые волны распространяются в эфире так же, как звуковые в воздухе, и, следовательно, их скорость — это скорость относительно эфира. Наблюдатели, с разными скоростями движущиеся относительно эфира, должны видеть, что свет идет к ним с разной скоростью, но скорость света относительно эфира должна оставаться при этом неизменной. В частности, коль скоро Земля движется в эфире по своей орбите вокруг Солнца, скорость света, измеренная в направлении движения Земли (при движении в сторону источника света), должна превышать скорость света, измеренную под прямым углом к направлению движения (то есть когда мы не движемся к источнику). В 1887 году Альберт Майкельсон (впоследствии ставший первым американцем, удостоенным Нобелевской премии по физике) и Эдвард Морли поставили в Кливлендской школе прикладных наук очень точный эксперимент. Майкельсон и Морли сравнивали значение скорости света, измеренной в направлении движения Земли, с ее значением, измеренным в перпендикулярном направлении. К своему огромному удивлению, они обнаружили, что оба значения совершенно одинаковы!

С 1887 по 1905 год был сделан ряд попыток (наиболее известная из которых принадлежит датскому физику Хендрику Лоренцу) объяснить результат эксперимента Майкельсона и Морли тем, что все движущиеся в эфире объекты сокращаются в размерах, а все часы замедляют свой ход. Но в 1905 году никому доселе не известный служащий Швейцарского патентного бюро по имени Альберт Эйнштейн опубликовал ставшую потом знаменитой работу, в которой было показано, что никакого эфира не нужно, если отказаться от понятия абсолютного времени. Через несколько недель ту же точку зрения высказал один из ведущих французских математиков Анри Пуанкаре. Аргументы, выдвинутые Эйнштейном, были ближе к физике, чем аргументы Пуанкаре, который подошел к этой задаче как к математической. Об Эйнштейне обычно говорят как о создателе новой теории, но и имя Пуанкаре связывают с разработкой важной ее части».

Здесь Хокинг обращает наше внимание на то, что фундаментальный постулат теории относительности состоит в том, что абсолютно все известные на сегодняшний день физические законы, так или иначе, должны быть абсолютно одинаковы для всех стоящих, шагающих, едущих или даже летящих с околосветовой скоростью наблюдателей, причем совершенно независимо от скорости их движения. Эта важнейшая основа всей современной физики, да и науки в целом приводит к совершенно парадоксальному и многими до сих пор так и не понимаемому выводу о скорости света: скорость света совершенно одинакова вне зависимости от движения самого наблюдателя!

Вот как разъяснял этот удивительный парадокс сам А. Эйнштейн:

«В двух далеко друг от друга удаленных местах железной дороги А и В ударила молния. К этому я присоединяю, что оба удара последовали одновременно. Если я спрошу тебя, любезный читатель, имеет ли какой-либо смысл это утверждение, то, конечно, ты ответишь мне убежденным „да“. Но если я буду настаивать на более точном разъяснении смысла этого утверждения, то после некоторого раздумья ты заметишь, что ответ на этот вопрос не так прост, кок кажется на первый взгляд.

После некоторого размышления ты предложишь мне следующим образом установить одновременность. Соединяющий оба места отрезок АВ будет измерен по рельсам, и в середине его будет поставлен наблюдатель. Последний снабжен приспособлением, позволяющим ему одновременно видеть оба место — А и В. Если теперь наблюдатель одновременно воспримет оба удара молнии, то, значит, они одновременны.

Пусть по рельсам идет очень длинный поезд с постоянной скоростью. Пассажиры его с удобством примут свой поезд за то твердое исходное тело (систему координат), к которому они будут приурочивать все события. Всякое событие, совершающееся вдоль полотна железной дороги, происходит также у определенного пункта поезда. Возникает следующий вопрос. Два события (например, два удара молнии — А и В) будут ли также одновременны по отношению к поезду? Мы сейчас убедимся, что ответ будет отрицателен.

Когда мы говорим, что удары молний одновременны по отношению к насыпи, то это означает следующее: лучи света, выходящие из мест удара молнии А и В, встречаются в середине М участка насыпи АВ. Но событиям А и В соответствуют также места А и В в поезде; М* есть середина участка АВ поезда. Пункт М* в момент удара молнии (если судить с полотна дороги) совпадает с пунктом М, но он движется со скоростью поезда. Если бы наблюдатель, сидящий в поезде в пункте М* не подвигался с той же скоростью, а все время оставался в пункте М, то оба световые луча от молний А и В достигли его одновременно, то есть встретились бы как раз у него. Но в действительности наблюдатель движется (если судить с полотна дороги) навстречу лучу света, идущему из В, и удаляется от луча, нагоняющего его из А. Поэтому он раньше увидит луч из В, чем луч из А. Следовательно, пассажиры, для которых вагон служит исходным телом, должны будут прийти к заключению, что удар молнии в В произошел раньше, чем в А. Мы приходим, таким образом, к следующему важному выводу.

События, которые одновременны в отношении к железнодорожному полотну, не одновременны в отношении к поезду, и наоборот (относительность одновременности). Каждое исходное тело (система координат) имеет свое особое время. Указание времени только тогда получает смысл, когда указано исходное тело, к которому оно относится».

Из этого простого принципа — продолжает С. Хокинг, — вытекает ряд замечательных следствий:

«Самые известные из них — это, наверное, эквивалентность массы и энергии, нашедшая свое выражение в знаменитом уравнении Эйнштейна E= mc2 (где E — энергия, m — масса, а c — скорость света), и закон, согласно которому ничто не может двигаться быстрее света. В силу эквивалентности массы и энергии энергия, которой обладает движущийся объект, должна теперь добавляться к его массе. Другими словами, чем больше энергия, тем труднее увеличить скорость. Правда, этот эффект существенен лишь при скоростях, близких к скорости света. Если, например, скорость какого-нибудь объекта составляет 10 % скорости света, то его масса лишь на 0,5 % больше нормальной, тогда как при скорости, равной 90 % скорости света, масса уже в 2 раза превышает нормальную. По мере того как скорость объекта приближается к скорости света, масса растет все быстрее, так что для дальнейшего ускорения требуется все больше и больше энергии. На самом деле скорость объекта никогда не может достичь скорости света, так как тогда его масса стала бы бесконечно большой, а поскольку масса эквивалентна энергии, для достижения такой скорости потребовалась бы бесконечно большая энергия. Таким образом, любой нормальный объект в силу принципа относительности навсегда обречен двигаться со скоростью, не превышающей скорости света. Только свет и другие волны, не обладающие „собственной“ массой, могут двигаться со скоростью света.

Другое замечательное следствие из постулата относительности — революция в наших представлениях о пространстве и времени. По теории Ньютона, если световой импульс послан из одной точки в другую, то время его прохождения, измеренное разными наблюдателями, будет одинаковым (поскольку время абсолютно), но пройденный им путь может оказаться разным у разных наблюдателей (так как пространство не является абсолютным). И поскольку скорость света есть пройденное светом расстояние, деленное на время, разные наблюдатели будут получать разные скорости света. В теории относительности же все наблюдатели должны быть согласны в том, с какой скоростью распространяется свет. И коль скоро у них нет согласия в вопросе о расстоянии, пройденном светом, у них не должно быть согласия и в том, сколько времени шел свет. (Время прохождения — это пройденное светом расстояние, относительно которого нет согласия у наблюдателей, деленное на скорость света, относительно которой все согласны.) Иными словами, теория относительности покончила с понятием абсолютного времени! Оказалось, что у каждого наблюдателя должен быть свой масштаб времени, измеряемого с помощью имеющихся у него часов, и что показания одинаковых часов, находящихся у разных наблюдателей, не обязательно согласуются».

Тут надо вслед за британским физиком отметить, что если пренебречь гравитационными эффектами, то мы придем к одной из красивейших концепций современной физики — специальной (или частной) теории относительности. Для каждого события в пространстве-времени можно построить световой конус (представляющий собой множество всех возможных путей, по которым распространяется свет, испущенный в рассматриваемой точке), а поскольку скорость света одинакова для любого события и в любом направлении, все световые конусы будут одинаковы и ориентированы в одном направлении. Кроме того, согласно этой теории, ничто не может двигаться быстрее света. Это означает, что траектория любого объекта во времени и пространстве должна представляться линией, лежащей внутри световых конусов.

Рассказывая о специальной теории относительности, Хокинг делает акцент на том, что именно она позволила объяснить постоянство скорости света для всех наблюдателей (установленное в опыте Майкельсона и Морли) и правильно описывала, что происходит при движении со скоростями, близкими к скорости света. Но при этом он замечает, что новая теория противоречила ньютоновской теории гравитации, согласно которой объекты притягиваются друг к другу с силой, зависящей от расстояния между ними. Последнее означает, что, если сдвинуть один из объектов, сила, действующая на другой, изменится мгновенно. Иначе говоря, скорость распространения гравитационных эффектов должна быть бесконечной, а не равной (или меньшей) скорости света, как того требовала теория относительности.

Переходя к понятию гравитации, С. Хокинг пишет:

«Это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределенными в нем массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривленным орбитам гравитационной силой; они движутся по линиям, которые в искривленном пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими. Геодезическая — это самый короткий (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли есть искривленное двумерное пространство. Геодезическая на Земле называется большим кругом и является самым коротким путем между двумя точками. Поскольку самый короткий путь между двумя аэропортами — по геодезической, диспетчеры всегда задают пилотам именно такой маршрут. Согласно общей теории относительности, тела всегда перемещаются по прямым в четырехмерном пространстве-времени, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям.

Лучи света тоже должны следовать геодезическим в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке. Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света, или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется.

Еще одно предсказание общей теории относительности состоит в том, что вблизи массивного тела типа Земли время должно течь медленнее. Это следует из того, что должно выполняться определенное соотношение между энергией света и его частотой (числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх в гравитационном поле Земли, то он теряет энергию, а потому его частота уменьшается. (Это означает, что увеличивается интервал времени между гребнями двух соседних волн.) Наблюдателю, расположенному на большой высоте, должно казаться, что внизу все происходит медленнее».

Таким образом, общая теория относительности представляет пространство и время самосогласованными величинами. Действительно, любое движение материи изменяет кривизну пространства-времени, и в то же время сам «рельеф» пространства-времени влияет на движение тел и действие сил. Получается, что как без представлений о пространстве и времени нельзя говорить о событиях во Вселенной, так и в общей теории относительности стало бессмысленным говорить о пространстве и времени за пределами Вселенной.

Стивен Хокинг в тоннеле ВАКа (ЦЕРН, Швейцария)

Загрузка...