Склонный к математике читатель должен отметить: по сути, специальная теория относительности утверждает, что законы физики должны быть инвариантными относительно преобразований Лоренца, т. е. инвариантными относительно SO(3,1)-преобразования координат пространства Минковского. Следовательно, квантовая механика будет согласована со специальной теорией относительности, если её можно сформулировать так, что она будет инвариантна относительно преобразований Лоренца. В настоящее время релятивистская квантовая механика и релятивистская квантовая теория поля далеко продвинулись по направлению к этой цели, но пока ещё нет полного согласия в том, решается ли в них проблема квантового измерения инвариантным относительно преобразования Лоренца образом. Например, в релятивистской квантовой теории поля можно рассчитать амплитуды вероятности и вероятности исхода различных экспериментов полностью Лоренц-инвариантным способом. Но стандартная трактовка спотыкается на описании, каким же образом конкретный результат измерения возникает из всего спектра квантовых возможностей — т. е. что же происходит в процессе измерения. Это особенно важная проблема для запутывания как явления, которое зависит от того, что делает экспериментатор, — от акта измерения характеристик одной из запутанных частиц. Более детальное обсуждение можно найти в книге: Maudlin T. Quantum Non-locality and Relativity. Oxford: Blackwell, 2002.