посвященная самым возвышенным чудесам и до крайности загадочная, ибо хотя в ней снова толкуется о сырах, но сыры эти до такой степени замысловаты, что тех, кто их придумал, неоднократно и совершенно всерьез обзывали безумцами, а так как это делалось печатно, то отчасти напоминало ругань. Речь идет всего лишь о том, как купить себе полчасика сыру, да кстати еще и о том, как поступил бы король Альфонс Кастильский, если бы он присутствовал при сотворении мира. Затем вслед за таинственным появлением дивных древних теней мы видим одну забавную веревочку двухтысячелетней давности, одну особу весьма несложного устройства и аппарат, который понимает положительное и отрицательное совершенно по-своему и в особом смысле, хотя речь идет всего лишь о фисташковой скорлупе и самых обыкновенных кавалерийских седлах, а также о том, каким именно гигиенически-геометрическим телом надлежит пользоваться по утрам благонравным малюткам, и о некоем мире, где нет надобности в мерах длины.
Справедливость, однако, заставляет старательного автора этой правдивой книжки сообщить читателю еще следующее: дело в том, что — внимание! внимание! внимание! говорит ВОЛШЕБНЫЙ ДВУРОГ! — необыкновенные, неслыханные чудеса этой ослепительной схолии суть чудеса не простые, а особые. А особенность их заключается в том, что их сразу трудно разглядеть, они сперва кажутся совершенно неуловимыми! По этой причине всякий из наших прилежных
— 254 —
и усидчивых читателей, кто столкнется с этим странным явлением, должен поступить очень просто: прочесть эту трогательную схолию еще раз и еще раз, дабы наконец разобраться, как идут дела в том самом удивительном мире, где никогда ничего подобного не бывает!
Илюшины приятели и наставники так громко спорили друг с другом, с таким жаром доказывали, что врать не должно, но ставить в тупик в высшей степени похвально, что Илюше стало скучно, и он потихоньку выбрался из домика Асимптотоса. Пахучий воздух, красивые купы вечнозеленых растений и тишина словно обступили его со всех сторон. Неподалеку снова раздались знакомые звуки флейты, и козлоногий Фавн выскочил из-за кустов. Наконец он опустил свои флейточки и оглянулся на домик Асимптотоса, откуда в то время донесся крик доктора У. У. Уникурсальяна: «А я, напротив того, буду утверждать, что то, что не невозможно, тем самым и является основным и даже единственным прототипом общеобязательного!..» Фавн поманил Илюшу немного подальше и, нагнувшись к самому его уху, торопливо начал шептать:
— У них еще есть! Что есть — боюсь сказать. Но то же… вроде… Тесс! Молчок! Дело в том, что у них, видишь ли, есть еще… особые сорта голландского. Один называется альмагестическим сыром. Это давнишний сыр, традиционный, легендарный, многозвездный, покровитель мореходов, любимый сыр звездочетов, пока, разумеется, они еще не знали того, шотландского сыра. А сверх того еще один сыр, необыкновенный, якобы круглый… Называется — казанский.
— Казанский? — переспросил Илюша с удивлением.
— В этом городе сварили такой сыр, что самые серьезные люди называли этого дивного сыровара Коперником геометрии! Это был второй Евклид. И представь себе, что эти сыры измеряют не на килограммы, потому что это и устарелый и неостроумный способ. На километры тоже неудобно — очень длинно! Долго они думали над этим вопросом. Пробовали мерить мегомами, атмосферами, люксами, кулонами, лошадиными силами, грамм-молекулами, большими калориями — и все как-то не получалось. Но когда Коникос умножил одну секунду на шестьдесят в квадрате, то вышло в самый раз.
— Шестьдесят в квадрате секунд? — сказал Илюша. — Да это ведь час? Как же это так? Приходишь в магазин и говоришь: «Будьте так добры, дайте-ка мне полчасика сырку!»
— 255 —
— Ну почему час? — возразил козлоногий его собеседник. — Не час, а градус! Даже и градус-то не особенно удобная мера для сыров. Они меряют сыр, умножая градус еще на девяносто, то есть, попросту сказать, меряют его прямыми углами. Когда ты попросишь: «Отпустите мне альмагестического сыру три прямых», тут уже все ясно и никаких недоразумений быть не может.
Илюша никак не мог сообразить, как это можно измерять сыр прямыми углами, однако он заинтересовался этим, потому что только что убедился, что все, что в прошлой схолии ему рассказывали о различных сырах Фавн, Дриада и громкоговоритель, хотя на первый взгляд это и была чушь непролазная, в дальнейшем получило вполне понятное объяснение. Поэтому он и сейчас подумал, что, наверно, Фавн, рассказывая ему об альмагестическом и казанском сырах и отвешивании оных при помощи прямых углов, имеет в виду что-то необыкновенно интересное. В это время занавесь домика Асимптотоса широко распахнулась, оттуда выскочил покрасневший, как свекла, Коникос и крикнул:
— Молодой человек! Куда ты девался?
Илюша, недовольный тем, что его оторвали от такого интересного разговора, вышел потихоньку из-за кустов. А из домика показался очень взволнованный Асимптотос.
— Справедливые боги! — воскликнул он, воздевая руки ввысь. — Вот благодарность за мои красноречивые рассказы! Убежать от меня в лес и там начать болтовню с какой-то бессловесной скотиной! Клянусь плавающим параболоидом Архимеда, ведь ты же неведомо чего от него можешь набраться! Идем скорей!
— Я не знал, — сказал смущенный Илюша. — Но у вас там такой крик стоял…
— Не крик, а чисто принципиальное недоумение! — строго ответил ему Магистр Деревьев, высунувшись из-за занавеси.
Илюша не осмелился вступать с ними в пререкания и снова вошел в домик.
Стоявший в уголке Радикс досадливо погрозил ему пальцем. Илюша поспешно подошел к нему.
— Послушай, Радикс, — сказал он еле слышным шепотом, — я просто вышел на минутку. А этот Фавн, тот самый — помнишь?..
Но не успел Илюша докончить этой фразы, как около него словно из-под земли вырос всепроницающий Командор О. С. М.
— Это что такое? — строго вопросил он. — Кто это тебе позволил, гадкий мальчик? А не хочешь ли, я прикоснусь к тебе при помощи касательной так, что ты у меня улетишь на такую бесконечно удаленную точку, что тебе оттуда архи-
— 256 —
медово число с квадриллионами нулей с единичку покажется?
И не успел еще Илюша рта раскрыть, как Доктор Четных и Нечетных воскликнул гневно, мрачно и торжественно:
— Молчание!
И вдруг лопнул, рассыпавшись разноцветными искрами.
Радикс, Асимптотос и Коникос стояли озадаченные, оторопевшие.
— Н-н-ну-с… — произнес слегка вздрагивающим голосом Коникос, — кажется, обошлось… Но, пожалуйста, не шали больше! Приступим к дальнейшему.
И в тот же миг перед нашими друзьями вырос громадный шар, метров трех в диаметре. Коникос снова взял в руки свой широченный нож, подошел к громадному шару и начал:
— Если взять поверхность обыкновенного шара, то есть сферу, то из нее возможно получить некоторый своеобразный треугольник.
Тут Коникос разрезал сферу своим широченным ножом ровно пополам, по экватору, и толкнул нижнюю половинку; она сдвинулась, откатилась и исчезла, а верхняя половина медленно опустилась на пол. Коникос снова разрезал ее пополам. А затем получившуюся четвертинку сферы он рассек еще раз надвое.
— Ну, вот-с! — сказал он, поглядывая на эту восьмую часть сферы. — Я утверждаю, что я получил треугольник. И я попрошу тебя, Илюша, выяснить, чему равняется сумма его углов.
— Мне кажется, — отвечал Илюша, — что вот этот угол, который поближе, очень похож на прямой… Но только я не уверен, что его можно называть прямым, просто потому, что не знаю, как измеряется угол между двумя кривыми.
— Измеряется он довольно просто, — отвечал Коникос. — Мы в таком случае меряем угол не между самыми кривыми, а между двумя их касательными, касающимися наших кривых как раз в той точке, которая есть вершина нашего угла. Ясно?
— Да, как будто ясно, — отвечал мальчик.
Илюша внимательно осмотрел получившийся у Коникоса кусок сферы, но сперва не обнаружил во всем этом ничего интересного. Разрезали шар на восемь частей — что же тут особенного? Иной раз так и арбузы режут…
— Я думаю, — заявил Илюша приглядевшись, — что этот кусок сферы образует с плоскостью, на
— 257 —
которой он лежит, только прямые углы. Угол А прямой (смотри на картинку!), угол В прямой, и угол С тоже прямой! Следовательно, поверхность шара- сфера, — разрезанная таким образом, дает треугольник, сумма углов которого равняется трем прямым углам. Но как же это может быть? Ведь в настоящем треугольнике сумма углов равна двум прямым углам!.. Впрочем, это треугольник кривой, а если его растянуть на плоскости…
— А ну попробуй растяни! — сказал Асимптотос, приподняв свой треугольник и подавая его Илюше. — Только не рвать!
Илюша начал растягивать, но оказалось, что этот странный треугольник не хочет растягиваться. Когда Илюша нажал на него покрепче, он выгнулся в другую сторону, как зонтик под сильным ветром, но растягиваться не соглашался.
— Вот как, Илюша! — сказал Радикс. — Учил ты, учил планиметрию, а как до трех прямых дошло, так и запутался!
Ты прими во внимание: все, что ты учил о треугольниках, правильно, пока они на плоскости. И там все евклидовы теоремы правильны. Так и говорится: «евклидова геометрия».
А на шаре мы получаем не-евклидову геометрию. Если взять огромный шар и рассматривать маленькие треугольники, то чем шар больше, тем ближе их геометрия приближалась бы к евклидовой. Если бы радиус шара был безгранично велик, тогда бы и на его поверхности Евклид оказался прав. А на данной сфере в таком треугольнике сумма углов зависит от его площади, тогда как на плоскости это величина постоянная и равна 2d. А это сферический треугольник, но не плоский.
— И существует, — добавил Коникос, — особая сферическая тригонометрия, которая весьма необходима мореплавателям и астрономам. Она даже появилась на свет ранее обычной в одном астрономическом сочинении Клавдия Птолемея, так называемом «Альмагесте», написанном около сто тридцатого года вашей эры в Александрии.
«Так, так, так! — подумал Илюша. — Вот почему Фавн говорил об альмагестическом сыре и прямых углах!»
— До Коперника, — продолжал Коникос, — это было самое серьезное и самое авторитетное сочинение по астрономии. Европейцы узнали его в арабском переводе, и под этим араб-
— 258 —
ским названием «Альмагест» оно и стало известно. Именно там и изложена геоцентрическая теория Птолемея. Настоящее заглавие этого сочинения — «Великое построение математическое». Оно несомненно заслуживает такого названия, ибо долгое время служило на пользу людям.
— Но ведь это же было неверно, — сказал Илюша, — раз он считал, что в центре нашей системы находится Земля, а не Солнце? Мне вспоминается, что у Ломоносова есть даже стихи по этому поводу…
— Какие такие стихи? — спросил Гадикс.
— Постой-ка, сейчас вспомню, — отвечал мальчик. — Ага… вот как:
Случились вместе два астронома в пиру
И спорили весьма между собой в жару.
Один твердил: Земля, вертясь, круг Солнца ходит;
Другой — что Солнце все с собой планеты водит.
Один Коперник был, другой слыл Птолемей.
Тут повар спор решил усмешкою своей.
Хозяин спрашивал: «Ты звезд теченье знаешь?
Скажи, как ты о сем сомненье рассуждаешь?»
Он дал такой ответ: «Что в том Коперник прав,
Я правду докажу, на Солнце не бывав.
Кто видел простака из поваров такого,
Который бы вертел очаг кругом жаркого!»
— Возможно, это и так, — отвечал Асимптотос, — в том смысле, что с физической точки зрения естественней считать центром системы Солнце, а все-таки службу «Альмагест» сослужил немалую. И без него было бы не так-то просто построить современную систему. Но система «Альмагеста» уже тем нехороша, что она чересчур сложна. Планета двигалась у Птолемея вокруг Земли не просто по кругу, а по некоторому небольшому кругу, а центр этого круга, в свою очередь, катился по другому, большому кругу, в центре которого находилась Земля. Круги вертелись в разные стороны, да еще с переменной скоростью. Если составить карту звездного неба и нарисовать на ней путь движения какой-нибудь планеты на фоне неподвижных звезд («планета» ведь и значит «блуждающая звезда»), то окажется, что он представляет собой кривую, которая образует петли. Планета двигается в определенном направлении, затем начинает опускаться, потом как бы идет назад, в «обратном направлении», снова поворачивает и, описав таким образом петлю, вновь начинает двигаться в том же примерно направлении, с которого мы начали.
— Можно сказать еще, — добавил Коникос, — что греческим ученым казалось, что все планетные движения можно
— 259 —
объяснить равномерными движениями по кругам. Но это не удавалось. Поэтому и была создана система Птолемея, то есть сложная система кругов (так называемых эпициклов и деферентов), которая имела в виду воссоздать теоретически эти петли планетных движений, что ей и удалось. Это придумал Аполлоний Пергейский, наш великий покровитель. Однако даже и эта сложная система не всегда давала правильные решения при отыскании места планеты на небе в тот или иной момент, и приходилось иногда вводить еще и третий круг. Рассказывают, что король Кастилии Альфонс Мудрый (XIII век нашей эры), твердо веривший, что еврейский бог некогда из ничего «сотворил» мир в шесть дней, ознакомившись с системой Птолемея, воскликнул: «Если бы я присутствовал при сотворении мира, я бы посоветовал господу богу устроить его как-нибудь попроще!» Александрийские астрономы, впрочем, не задавались целью определить, как двигаются планеты в трехмерном пространстве. Эта мысль пришла людям в голову много позже. Александрийцы были довольны и тем, что с календарем у них на небесном своде выходит все правильно. Коперник, однако, подошел ко всей задаче с точки зрения пространственной. И тогда ему не так уж было трудно объяснить, что на самом деле планета никаких Птолемеевых петель не описывает, а мы их видим потому, что смотрим на планету из различных точек в мировом пространстве. Если же смотреть на планету не с Земли, а с Солнца, то никаких петель мы не заметим.
— Понял? — спросил Радикс.
— Не-не… очень… — признался Илюша.
— 260 —
— А мы сейчас тебе расскажем. Ты смотришь с Земли на Солнце и на планету. Солнце за год обойдет окружность вокруг тебя, — тут все просто. Но ведь планета ходит не вокруг тебя, а вокруг Солнца. Следовательно, когда ты смотришь с Земли, ты видишь, как планета, двигаясь вокруг Солнца, вместе с ним двигается вокруг тебя. И выходит, что она совершает вокруг тебя нечто вроде винтовой линии. Ты смотришь на нее сбоку — вот и получаются петли. Ну как? Дошло?
— Как будто дошло, — отвечал Илюша. — Но ведь мы считаем, что не Солнце ходит вокруг Земли, а Земля вокруг Солнца…
— Чтобы понять, что ты будешь «видеть», нет нужды становиться на эту «точку зрения».
— Ведь дело-то не так уж хитро, — добавил Коникос, — если исходить из движения Земли по орбите. И все это легко выяснить на опыте.
— 261 —
Он махнул рукой, и в домике стало темно. Перед стеной повис в воздухе небольшой еле светящийся шарик, а в руке у Коникоса оказался другой, испускавший довольно яркий свет, так что слабо светящийся шарик отбрасывал тень на стену.
— Допусти, — сказал Коникос, — что я наблюдаю с Земли за этим светящимся шариком, который есть не что иное, как планета. А стена у нас будет тем самым фоном неподвижных звезд, который виден с Земли и по которому мы и судим о движении планеты.
Коникос поднял свой ярко светящийся шарик и пошел справа от Илюши, затем назад к нему, а потом снова от него и снова к нему, изображая движение Земли по орбите. Тень слабо светящегося шарика, висевшего в воздухе, ровно ходила по стене туда и сюда как раз в противоположную сторону тому, куда двигался Коникос.
— Я, — сказал Коникос, — двигаюсь в пространстве, а планета моя не двигается. Ты видишь, что делается с тенью ее?
— Вижу, — отвечал Илюша.
— Теперь пусть наш слабо светящийся шарик идет вперед, параллельно стене.
Слабо светящийся шарик двинулся медленно вперед, а Коникос по-прежнему продолжал ходить из стороны в сторону.
Теперь тень светящейся точки сперва пошла назад, потом повернула и бросилась вперед, но спустя некоторое время снова повернула назад, а потом опять бросилась вперед.
— Ну, теперь я понял, — сказал Илюша.
— Надо еще не забывать о том, — добавил Радикс, — что наука о звездном небе с самых древних времен была необходима человеку в его путешествиях. Мореход в открытом море определяет свое положение по звездам. Так же поступает и кочевник в пустыне, где тоже нет ориентиров. Знания о звездах накапливаются и постепенно превращаются в науку. Наш русский путешественник-естествоиспытатель В. К. Арсеньев рассказывает[18], как зимой в тундре, среди необозримых снегов он кочевал с одним племенем тунгусов. Однажды ему сказали, что дня через два они сойдутся с другим кочующим народом. Наконец кочевники выбрали себе какое-то место, которое, по мнению Арсеньева, ничем не отличалось от других.
К вечеру старики стали наблюдать небо, но жаловались, что густая облачность не дает рассмотреть то, что им надо, и из-за этого они не совсем уверены, так ли выбрали место стоянки, ибо их родичи придут на определенное место. Прошло
— 262 —
два дня, и утром, проснувшись, Арсеньев с изумлением обнаружил, что другие кочевники пришли на то же место. A в дальнейшем ему неохотно и не очень толково объяснили, что старики определили место по звездам, причем очевидно, что старики в обеих группах кочевников руководствовались одними и теми же признаками. Значит, астрономии человека учила сама жизненная необходимость!
— Ну теперь, — сказал Асимптотос, — вернемся еще к нашему сферическому треугольнику. Лучше сказать — к геометрии на сфере. Выясним, какие линии играют на сферической поверхности роль прямых. Архимед в сочинении «О шаре и цилиндре» вводит допущение, что прямая есть кратчайшее расстояние между двумя точками, откуда мы приходим к заключению, что «прямой» на сфере будет дуга большого круга, то есть такого круга, который получится при сечении сферы плоскостью, проходящей через центр сферы. Если это так, то очевидно, что на сфере не может быть параллельных «прямых», ибо две «прямые» обязательно пересекаются в двух точках (как меридианы на полюсах). Площадь треугольника на сфере тем больше, чем более превышает сумма его углов плоскостную меру, то есть два прямых угла. Что касается до «прямых» на сфере, то это очень просто можно проверить на глобусе при помощи резиновой нитки. Попробуй-ка на глобусе поехать по тридцать девятой параллели из Лиссабона в Нью-Йорк или из Иокогамы в Сан-Франциско.
— Обязательно попробую! — сказал Илюша.
— И хорошо сделаешь, — отвечал Радикс. — Знай, что это обстоятельство крайне затрудняет черчение географических карт на плоскости и что над разрешением вопроса о том, как начертить карту, чтобы искажение масштабов было наименьшим, работал крупнейший русский математик Пафнутий Львович Чебышев, живший в девятнадцатом веке, а также и ученики его. Я тебя вот еще о чем спрошу: если мы начертим какую-нибудь геометрическую фигуру на плоском листе бумаги, а потом изогнем этот кусок бумаги как-нибудь, то что сделается с теми линиями, которые у нас на плоскости были прямыми?
— Они уже не будут прямыми, — отвечал Илюша.
— Правильно, — согласился Коникос. — Но кратчайшими расстояниями среди линий, соединяющих две точки на поверхности и целиком лежащих на поверхности, они останутся. Такие линии называются геодезическими. Геодезическими на сфере, очевидно, являются большие круги.
— Самое интересное, — добавил Радикс, — это то, что на сфере совсем не может быть параллельных линий.
— Н-да, разумеется… — задумчиво и неопределенно про-
— 263 —
тянул Асимптотос. — Однако ведь у нас есть еще один необычайнейший треугольник. Сумма его углов не больше 2d и не равна 2d, а меньше двух прямых углов.
— Это уж что-то совсем непонятное! — сокрушенно заявил Илюша.
— Разумеется, — промолвил Радикс, — геометрия, в которой можно построить такой треугольник, есть тоже не-евклидова геометрия. Ее открыл и разработал великий русский геометр Николай Иванович Лобачевский, профессор Казанского университета. Он жил с тысяча семьсот девяносто третьего года по тысяча восемьсот пятьдесят шестой год. Его труды, опубликованные в тридцатых годах девятнадцатого столетия, были настолько поразительны и вели к таким необычным и неожиданным последствиям, что лишь немногие его современники могли понять и оценить эти труды.
— Надо тебе сказать, — продолжал вслед за другом Коникос, — что теорему Евклида, которая гласит, что сумма углов плоского треугольника равна двум прямым, можно вывести на основании одного из двух положений:
1) из одной точки можно провести только одну параллельную линию к данной линии или 2) всегда можно построить фигуру, подобную данной, но больше ее.
Таким образом, все эти положения тесно связаны друг с другом, так что если справедливо одно из них, то оправдываются и два других.
— Как это? — спросил Илюша.
— Слушай дальше: положение, или постулат, о параллельных принимается у Евклида за аксиому, однако, так как оно не кажется столь же очевидным и столь же простым, как другие аксиомы Евклида, то на протяжении долгих веков не прекращались попытки доказать этот постулат так, как доказывают теорему. Между прочим, одна из этих попыток — разумеется, не более удачная, чем все остальные — принадлежит автору «Альмагеста», Птолемею, который был незаурядным математиком. Однако теперь мы знаем, что большинство этих попыток свелось к тому, что допущение Евклида о параллельных бессознательно заменялось либо допущением о возможности построить подобную фигуру, либо допущением о том, что сумма углов треугольника есть величина постоянная и равна двум прямым. Существует, правда, кроме этих, еще несколько равнозначных положений, но их уж я касаться не буду. Наконец, все эти работы повели к тому, что геометры заметили (после работ Лобачевского) связь этих положений друг с другом и убедились, что «доказать» этот постулат Евклида невозможно. Однако этот постулат — или одно из перечисленных мной допущений — является необходимым, без него нельзя построить евклидову геометрию. До Лобачевского очень
— 264 —
многие полагали, что никакой другой геометрии, кроме евклидовой, не только нет, но и не может существовать. Мнение это было общепринятым. Иные утверждали, что евклидова геометрия есть наша «естественная» геометрия, которую человек всасывает чуть ли не с молоком матери. Но крупнейший немецкий математик Карл Гаусс на это возразил: «Мы не имеем права путать то, что нам кажется странным, с тем, что и на самом деле невозможно». Лобачевского на его труды натолкнули такие соображения: чтобы убедиться в том, что нет возможности доказать постулат Евклида о параллельных, следует попробовать построить геометрию, где бы этот важный постулат был вообще отброшен. Ход размышлений Лобачевского ты легко можешь усвоить, вспомнив, как доказываются геометрические теоремы «от противного». Мы, вместо того чтобы искать прямое доказательство, делаем противное допущение, и тогда, если в конце наших рассуждений мы сталкиваемся с противоречием, это опровергает наше противное допущение, тем самым подтверждая и доказывая то прямое положение, доказать которое нам и было нужно. Если постулат о параллельных необходим, то (так рассуждал наш великий геометр), мы, отбросив его, не сможем получить строгой системы геометрии и неминуемо придем к логическим противоречиям.
И таким образом мы проверим и необходимость и справедливость пятого (таков его порядковый номер в «Началах» Евклида) постулата. И вот Лобачевский строит новую геометрию, «воображаемую» геометрию, как он сам ее называл, где вместо постулата Евклида вводится иной, утверждающий, что из одной точки можно провести не одну, а две параллельные линии к данной. Наконец он получает результаты своего изумительного прилежания и труда, и решение этой задачи пятого постулата. Но решение это оказалось таким, которого не ожидал и к которому не был готов почти никто из современных математиков, не говоря уже о философах, а еще менее о людях, не имевших специальных математических или философских знаний. Первое, к чему пришел Лобачевский, было утверждение, что пятый постулат никоим образом из всех иных положений геометрии выведен быть не может, а следовательно, его невозможно доказать как теорему, опираясь на иные, ранее доказанные положения или допущения. Однако гораздо более важным оказалось то, что Лобачевский, развив свою новую геометрию до тех же пределов, до которых развил свою геометрию Евклид, нигде ни с какими противоречиями не встретился. Дальнейшие работы очень крупных математиков в конце прошлого века раскрыли этот вопрос до конца и полностью подтвердили выводы Лобачевского. А важнейший вывод «воображаемой» геометрии гласит следующее:
— 265 —
потому-то и невозможно доказать пятый постулат Евклида, что наряду с евклидовой геометрией может существовать иная, где этот постулат не имеет силы!
— Ну, а как же люди примирились с этой странной геометрией, которая сначала всем не нравилась?
— Сперва, — отвечал Радикс, — работы Лобачевского не только не нашли признания, но даже были встречены насмешками. Гаусс писал об одном из таких отзывов своему другу Герлингу (в 1844 году), что он видел «весьма отрицательный» отзыв о работе Лобачевского, но по словам Гаусса, для каждого сколько-нибудь осведомленного читателя ясно, что писал это «совершенно невежественный человек». Гаусс сам работал над этой темой, но не решился опубликовать свои результаты именно из-за страха перед неосведомленной критикой… Однако нашлись математики, которые дали себе труд подумать и разобраться в «воображаемой» геометрии. Одним из таких людей был итальянский математик Бельтрами, который в конце шестидесятых годов прошлого века выпустил в свет сочинение, где дал такое наглядное истолкование не-евклидовой геометрии Лобачевского, что всем стало ясно, что эти построения действительно представляют собой геометрическую систему, в известном смысле равноправную с обычной, а не только «воображаемую» геометрию. Бельтрами показал, что в обычном трехмерном евклидовом пространстве можно построить такое тело, на частях поверхности которого будет осуществляться планиметрия Лобачевского, откуда ясно, что геометрия его не может заключать в себе внутренних противоречий.
— Как же так? — с удивлением спросил Илюша. — или это вроде этих сферических треугольников, не похожих на наши обыкновенные, плоскостные?
— Да, это в некотором смысле то же самое. На сфере тоже осуществляется не-евклидова геометрия, но это будет геометрия Римана, для которой, в отличие от геометрии Лобачевского, сумма углов треугольника больше двух прямых, а кроме того, там прямая линия безгранична, но не бесконечна…
— Что это значит? — спросил Илюша.
— Припомни, что такое экватор на глобусе. Ведь он границы не имеет, но он и не бесконечен. Не правда ли?
— Ах да, совершенно верно! — спохватился Илюша.
— Итак, — продолжал Радикс, — Бельтрами нашел такую поверхность, на которой «воображаемая» геометрия Лобачевского, по крайней мере в части планиметрической, осуществлялась, хотя и не совсем полностью. Эта поверхность напоминает стеклянную воронку и называется псевдосферой, или, если сказать более по-русски, это будет якобы сфера. Ее можно лег-
— 266 —
ко построить, и мы ее сейчас тебе покажем при помощи нашей Центрифуги. Таким образом Бельтрами, а за ним и многие другие ученые доказали, что «воображаемая» геометрия занимается вещами вполне реальными. Изучение и развитие неевклидовых геометрий оказало нашей науке громадные услуги, о которых ты, если будешь учиться дальше, узнаешь очень много. А если коснуться просто повседневной жизни, то и тут стоит сказать: то, что люди называли «естественной» геометрией, — это просто геометрия на плоскости. А когда землемер меряет поверхность горы или оврага, когда портниха шьет платье, то им нередко приходится иметь дело с «неестественными» геометриями, ибо оба они встречаются с седлообразными поверхностями, напоминающими ту же псевдосферу. Недаром замечательный русский математик Пафнутий Львович Чебышев занимался портняжьей проблемой кройки платьев и сделал в тысяча восемьсот семьдесят восьмом году доклад на эту тему в одном французском ученом обществе и даже представил при этом собравшимся его слушать ученым мяч, обтянутый двумя кусками материи в некотором, совершенно точном, смысле слова «наилучшим» образом.
— Вот странно! — воскликнул Илья, — вот уж я никогда бы не подумал, что землемер или портниха занимаются не-евклидовой геометрией! Впрочем… я и о фонтанах китов тоже не догадался бы.
— Вот то-то и оно! — сердито возразил Радикс. — Имей в виду, кстати, что сам Бельтрами был геодезист, то есть именно землемер. Есть основания думать даже, что и великий Гаусс, который много занимался задачами практического землемерия, натолкнулся на неевклидову геометрию Лобачевского, именно размышляя о своеобразии геодезических задач. Кстати тебе сказать, все споры О «воображаемой» геометрии только тогда и закончились, когда была опубликована наконец перепис-
— 267 —
ка Гаусса, где он откровенно говорит своим друзьям о своих открытиях в области геометрии Лобачевского. Это случилось уже в шестидесятых годах прошлого века, а работы Лобачевского начались с двадцатых годов.
Илюша посмотрел на Радикса и подумал: «Псевдосфера! Вот почему Фавн говорил о псевдокруглом сыре. Понятно».
— Ну, а теперь, — сказал, усмехаясь, Асимптотос, — надо нам вспомнить еще Илюшиного друга — Пифагора.
— Кстати, — подхватил Коникос, — слышал ли ты легенду о «египетском мерном шнуре» с двенадцатью узлами? Греки даже называли египетских землемеров «арпедонапты», то есть «вервиетягатели».
Египетский мерный шнур для построения прямого угла. В точках В и С вбиваются колышки. Получается прямой угол в точке с при одновременном натяжении ВА и СА.
— Нет, — отвечал мальчик.
— Двенадцать, — продолжал Асимптотос, — легко разбить на три слагаемых: три, четыре и пять…
— Пифагоровы числа! — воскликнул Илюша.
— Они самые! Вот поэтому-то при помощи шнура с двенадцатью узлами очень легко построить прямой угол, который нужен и землемеру и строителю. Египтяне знали это правило чуть не за три тысячи лет до вашей эры. У нас здесь есть тоже треугольник — некий волшебно-математический аппарат, который показывает, куда мы попали — в знакомую страну или в незнакомую, где евклидовы и пифагоровы правила не годятся.
— Я как будто догадываюсь. Этот аппарат проверяет, плоская эта поверхность или нет?
— Он не только это проверяет, он еще указывает, далеко ли отклоняется от плоскости данная поверхность и как именно она это делает. А стоит тебе это узнать, и ты сейчас же сообразишь, какая там геометрия годится. Вот и все.
Илюша осмотрел ап-
— 268 —
парат, который представлял собой прямоугольный треугольник, сделанный из оловянного листа, а сбоку был циферблат со стрелкой. В середине стояла большая буква «Е», и на нее указывала стрелка. С одной стороны было написано «Положительная кривизна», а с другой — «Отрицательная кривизна».
Когда Илюша приложил аппаратик к сфере, тот немедленно ответил: «Положительная кривизна». Когда же он приложил аппаратик к стене, то стрелка осталась стоять против буквы «Е», а буква «Е», конечно, напомнила об Евклиде.
— А это что значит? — спросил Илюша. — Ты, Радикс, ведь говорил, что если взять очень большой шар, то там геометрия будет почти такая же, как евклидова.
Значит, чем меньше я буду брать шар, тем будет «более кривая» поверхность с точки зрения этого аппаратика?
— Правильно! — отвечал Радикс. — Если, например, ты на поверхности земного шара будешь брать треугольник со сторонами менее ста километров, ты можешь смело считать его совершенно плоским.
— Ну, а что может значить «отрицательная» кривизна?
Асимптотос с сомнением покачал головой и принес две кривые: одна была эллипсом, другая гиперболой.
— Наша Центрифуга есть поистине дивный аппарат для получения поверхностей вращения.
Затем он взял эллипс и прикрепил его вдоль и посредине (то есть по его большой оси — смотри на картинке!) к стержню, пустил в ход Центрифугу, а потом сиял получившееся тело со стержня.
— Это эллипсоид вращения, — объяснил он.
Эллипсоид вращения
— 269 —
Тут он взял две ветви гиперболы и повесил их симметрично в воздухе на равных расстояниях от стержня.
— Простите, пожалуйста! — взмолился Илюша. — Вот когда вы снимаете с Центрифуги конус или эллипсоид, которые, собственно, состоят из ничего, и ставите на пол, ведь это волшебство?
— Мы все друзья и слуги ВОЛШЕБНОГО ДВУРОГА! — отвечал Асимптотос, торжественно подняв ввысь палец.
— А когда вы вешаете эти кривые в воздухе, это тоже волшебство?
— Не совсем! Я прикрепляю гиперболу к стержню при помощи со мнимой оси. Ну, а так как она мнимая, то ее, разумеется, довольно плохо видно. Вот и все! Если мы рассекаем два конуса с общей вершиной, мы получаем две ветви гиперболы.
Они симметричны в двух направлениях. Во-первых, они симметричны относительно действительной, или вещественной, оси гиперболы, параллельной оси нашего конуса. А во-вторых, они симметричны относительно воображаемой линии, перпендикулярной к оси конуса. Эта линия называется мнимой осью гиперболы. Вот я ее и надел на стержень.
Затем Асимптотос пу-
— 270 —
стил в ход быстролетную Центрифугу. Вскоре из двух ветвей гиперболы образовалась поверхность вращения, средняя часть которой представляла собой кольцо с загибающимися краями.
— Это однополостный гиперболоид вращения.
Однополостный гиперболоид вращения.
Если бы мы вращали гиперболу по вещественной оси, мы получили бы двуполостный гиперболоид, то есть две отдельные чаши. Ну, теперь все.
Он поставил гиперболоид на пол рядом с эллипсоидом.
— Начнем с эллипсоида. Замечаешь ли ты, что в длину он согнут не так, как в ширину? Ясно, что и в ширину он в сечении даст круг, но дело в том, что в длину, то есть по своей большой оси, если мы будем рассматривать точку над самой ее серединой, он гнется не так сильно, как гнется в том же месте по направлению малой оси.
— Конечно! — отвечал Илюша.
— Следовательно, в одном направлении у него одна кривизна, в другом — другая. Теперь я разрежу эллипсоид пополам и возьму два круга — один побольше, другой поменьше.
Асимптотос разрезал эллипсоид вдоль. Оказалось, что он внутри совершенно пустой. Получилось такое эллиптическое корытце, вроде половинки скорлупы фисташкового ореха, если бы, конечно, орех был в точности симметричен.
— Смотри! — сказал Коникос. — Маленький круг я могу в него вставить и по направлению малой оси и по направлению большой. Маленький круг совпадает с сечением эллипсоида по малой оси и измеряет его кривизну в этом направлении.
А большой круг по малой оси в это эллиптическое корытце не влезает, но зато он очень хорошо входит в корытце по большой оси. Конечно, круг не совпадает с сечением по большой оси, ибо это сечение есть эллипс, а не круг, но он соприкасается с этим сечением как только возможно тесно. Этот круг измеряет кривизну эллипсоида по большой оси, однако только в данной точке. Ясно, что круги становятся друг к другу перпендикулярно, потому что ведь и сами оси перпендикулярны.
Самое важное в этом случае то, что центры обоих кругов находятся с одной и той же вогнутой стороны эллипсоида. Понял? Вот когда центры кругов, измеряющих кривизну, оказываются с одной стороны поверхности, то такая кривизна
Центры кругов кривизны находятся по одну сторону поверхности — положительная кривизна.
— 271 —
называется положительной.
Откуда идут эти названия, сразу не расскажешь, и на этих тонкостях я останавливаться не буду. А теперь перейдем к гиперболоиду.
Асимптотос разрезал и гиперболоид вдоль.
Получились две седлообразные поверхности, похожие на горный перевал.
— Смотри внимательно! — сказал Асимптотос. — Я беру снова среднюю точку и буду измерять кривизну опять теми же кругами и по таким же двум взаимно перпендикулярным осям.
Когда Асимптотос начал приставлять круги к этой седлообразной поверхности, то оказалось, что эта поверхность в продольном направлении вогнутая, а в поперечном — выпуклая.
Поэтому центр большого круга оказался вне гиперболоида, а центр маленького — по другую сторону поверхности гиперболоида. Центры кругов оказались с разных сторон поверхности.
Центры кругов кривизны находятся с разных сторон поверхности — отрицательная кривизна.
— Ну вот! — сказал Асимптотос. — Когда центры кругов кривизны оказываются с разных сторон поверхности, то это и называется отрицательной кривизной. Геометрия Лобачевского осуществима только на поверхности с отрицательной кривизной. Однако слушай далее внимательно, ибо это еще не все. Сфера имеет во всех своих точках одну и ту же кривизну. Мы говорим, что эта поверхность постоянной положительной кривизны. Ясно, что хотя эллипсоид имеет тоже положительную кривизну, но она отнюдь не постоянна. Однополостный гиперболоид, наоборот, имеет отрицательную, но тоже непостоянную кривизну. Спрашивается: имеются ли поверхности постоянной отрицательной кривизны? Такие поверхности были открыты еще до Бельтрами. Отличительной особенностью поверхностей постоянной кривизны является то, что кусок такой поверхности может скользить по ней самой без разрывов и сжатий, как футляр шара по поверхности шара или кусочек бумаги по гладкой поверхности стола либо цилиндрической колонны. Важнейшее открытие Бельтрами состояло вот в чем: он обнаружил, что треугольники, сторонами которых являются кратчайшие линии на поверхности постоянной отрицательной кривизны, подчиняются «воображаемой» геометрии Лобачевского. Таким образом, выяснилось, что плоская геометрия Лобачевского осуществляется на одной из простейших поверхностей с постоянной отрицательной кривизной (именно такой поверхностью и является псевдосфера), и тогда уже не оста-
— 272 —
валось больше никаких сомнений в том, что в этой геометрии, как и в геометрии Евклида, нам нечего бояться противоречий.
— Ну, как Илюша? — сочувственно спросил Радикс. — Способен ли ты после этого соображать дальше или нет?
— Сейчас! — ответил Илюша. — Я только еще попробую.
Мальчик взял волшебно-математический аппаратик, измеряющий кривизну, и как только он приложил оловянный листик к поверхности гиперболоида, немедленно стрелка аппаратика пошла от буквы «Е» в другую сторону — это была самая настоящая отрицательная кривизна.
— Ясно? — спросил Коникос.
Илюша кивнул и сказал:
— Трудновато. Но мне кажется, я все-таки кое-что понял. А теперь я хочу наконец про Архимеда послушать!
— Ну что ж! — раздумчиво промолвил Коникос. — Теперь-то, пожалуй, уж можно… Да, постой-ка! Я вот еще что хотел тебе сказать, чтобы ты не забыл. Дело в том, что наш эллипсоид вращения можно еще сжать сверху вниз так, чтобы его круглое сечение тоже обратилось из круга в эллипс. И тогда из эллипсоида вращения получится трехосный эллипсоид, у которого все три оси но всем трем измерениям, то есть и в длину, и в ширину, и в вышину, разные или по крайней мере могут быть разные. Ясно, что как ни рассекай его по всем этим трем перпендикулярным направлениям, в сечении получишь эллипс. Например, кусочек туалетного мыла, который в просторечии нередко называют обмылочком, обычно как раз и имеет форму трехосного эллипсоида! Или морские камушки, обкатанные морскими волнами…
Трехосный эллипсоид.
— Как хорошо, — сказал Илюша, — что все эти ваши математические чудеса так легко встретить! Подумаешь, какое чудо обмылочек, а оказывается, он родственник самим коническим сечениям! (А про себя подумал: «Вот, значит, почему этот козлоногий человечек с флейтами говорил о морских камушках!») Постойте-ка, — продолжал он, — вы мне обещали показать, как делается псевдосфера.
— Совсем из головы вон! — сокрушенно сказал Асимптотос. — А ведь и вправду обещали! Поди-ка, Коникос, поищи-ка, где у нас там трактриса завалилась.
Не прошло и минуты, как Коникос вернулся весьма смущенный и раздосадованный.
— Пропала, скажи на милость! Истинное наказание!
— Ничего, — успокоил Асимптотос. — Подумаешь, какое горе! Возьмем да и новую сделаем.
Коникос принес довольно большую цепь с тяжелыми звеньями, вроде корабельной, и повесил ее за два конца на стену.
Цепь угрюмо повисла, образуя почти дугу, открытую сверху.
— 273 —
— Похоже на параболу, — шепнул Илюша Радиксу.
— Неверно. Впрочем, подобную ошибку в свое время сделал даже сам Галилей, так что тебе и подавно простительно.
Однако все же ты должен запомнить, что это вовсе не парабола, а так называемая цепная линия. Она только на маленьком участке у вершины очень похожа на параболу.
— К этой цепи у нас, — сказал Асимптотос, — прилажена особая ниточка, гибкая, нерастяжимая. Сейчас я ее отделю от цепи. Это особый способ чертить кривые — при помощи такой ниточки. Ты умеешь чертить по линейке, умеешь чертить циркулем, а это еще один способ чертить. Смотри внимательно! Я отщипну эту ниточку в самой точке вершины цепи, то есть цепной линии, и буду, крепко все время натягивать нить, следить за тем, какую кривую опишет конец нити в той плоскости, в которой находится кривая. Так вот эту кривую, которую опишет конец нити, мы называем эвольвентой данной исходной, начальной кривой. А кривая, с которой надо сматывать нить, чтобы получить некую требуемую кривую, называется эволютой этой последней.
При этих словах Асимптотос отщипнул что-то от цепи в самой нижней ее точке. В руках его оказалась тонкая блестящая нить, которую наш ученый старичок начал как бы сматывать с цепи, все время крепко натягивая нить вниз и направо. И конец
— 274 —
нити послушно начертил новую своеобразную кривую, совершенно непохожую на ценную линию.
— Ну вот тебе и трактриса! — радостно воскликнул Коникос. — Сам Лейбниц дал ей это имя.
— Так что трактриса есть эвольвента цепной линии? — спросил Илюша.
— Точно! — отвечал Коникос. — Оказывается, ты кое-что соображаешь!
— Но если, — снова начал Илюша, — это особый способ чертить кривые, то должен ведь быть какой-нибудь общий прием, чтобы начертить так любую кривую?
— Это не так уж сложно, — вмешался Асимптотос. — Ты вот посмотри на перпендикуляры к касательным, которые именуются нормалями данной кривой.
— Радиус окружности и есть ее нормаль? — спросил Илюша.
— Справедливо! — отвечал Асимптотос. — Посмотри и заметишь, что касательные эволюты суть не что иное, как нормали эвольвенты. Поэтому, если тебе задана эвольвента, то построй к ней побольше нормалей: все они будут касательными к эволюте, которую эти касательные очень ясно обозначат на чертеже. Это будет кривая, плавно огибающая все эти прямые, касаясь их.
— Эволют у нас девать некуда, — заметил Коникос, — целая кладовая. Но можно еще и по-другому все это проделать.
Возьми отрезок прямой, приложи его в одной точке к шаблону эволюты и кати его по кривой, только чтобы он не скользил.
Вот ты и получишь эвольвенту безо всякой нити, потому что какая-нибудь заранее отмеченная точка на катящемся отрезке вычертит эвольвенту.
Радикс сейчас же объяснил Илюше, что он на досуге и сам все это может проделать. Надо взять тонкую и нежесткую нитку примерно в сорок сантиметров длиной, намочить ее и мокрую повесить на стену на два гвоздика, которые вбиваются на расстоянии около пятнадцати сантиметров друг от друга.
А на то место, куда мы повесим нить, надо заранее прикрепить кнопками лист белой бумаги. Затем следует аккуратно начертить кривую, которую образует мокрая нитка, — это и будет приблизительно цепная линия. По этому чертежу надо изготовить картонный или фанерный шаблончик. В верхнем его углу следует закрепить нитку, обвести се по краю шаблона, а у вершины сделать петельку. Если теперь взять карандаш (сделав предварительно маленькую зарубку на графите) и вставить в эту петельку, то карандаш — если осторожно сматывать нитку — вычертит трактрису.
Коникос взял кривую и приладил ее, кряхтя и ворча,
— 275 —
к диаграмме с картезианскими осями, повернув ее на девяносто градусов.
— Трактриса, — сказал он, передохнув после своей нелегкой работы, — это кривая весьма древнего происхождения. Одно из замечательных свойств ее заключается в том, что если к ней провести касательную в любой точке, то расстояние по касательной от точки касания до некоторой прямой будет постоянным (удаляясь от своей вершины, трактриса неограниченно приближается к этой прямой, и на нашем чертеже эта прямая будет перпендикулярна к оси цепной линии). Если поместить конец нити на расстоянии а от горизонтальной прямой, а потом другой ее конец тянуть вдоль этой прямой, то первый конец и опишет трактрису. Отсюда и название ее (от латинского слова «тянуть»). Если же теперь мы прикрепим трактрису по ее горизонтальной оси к Центрифуге, то мы и получим искомую поверхность вращения, то есть именно псевдосферу.
Псевдосфера
И действительно, как только прикрепили трактрису к Центрифуге и пустили последнюю в ход, получилась псевдосфера, каковую Асимптотос спокойно снял со станка и разрезал пополам, затем добыл откуда-то резиновую нитку и влез внутрь того вогнутого конуса, похожего на опрокинутый бокал, который представляла собой полупсевдосфера. Поверхность была довольно прозрачная, и Асимптотоса было отлично видно. Намазав резиновую нитку сажей, он натянул ее на поверхность полупсевдосферы и, щелкнув ниткой, получил одно ребро треугольника снизу вверх, направо от основания к вершине —
— 276 —
ровную темную черту. Затем он так же обозначил другое ребро треугольника сверху, от вершины вниз направо, подмигнул Илюше и сказал:
— Так как я имею дело с поверхностью отрицательной кривизны, то, для того чтобы провести основание треугольника, я должен, очевидно, выбраться из-под псевдосферы снова наружу.
Илюша внимательно поглядел на псевдосферу и сообразил, что если натянуть резиновую нитку горизонтально, стоя внутри седлообразной псевдосферы, то нить окажется в воздухе, а не будет вся целиком лежать на поверхности, как полагается лежать геодезической линии.
Асимптотос выбрался наружу и, лихо щелкнув начерненной ниткой, провел основание треугольника.
— Ну, Илюша, — сказал Коникос, — если ты внимательно посмотришь на этот треугольник, ты и сам заметишь, что углы его много меньше, чем им полагалось быть, если бы это был плоскостной треугольник.
Коникос вырезал псевдосферический седлообразный треугольник и положил на стол, а потом прикрепил три крепко натянутые нитки к его вершинам. Рассматривая углы, которые были образованы нитками, и собственные не-евклидовы углы треугольника, Илюша мог убедиться, что последние меньше, нежели плоскостные.
— Ясно? — спросил Радикс.
— Как будто ясно, — отвечал мальчик. — Ну, а как получается с параллельными? Я все-таки никак не пойму, как через одну точку провести две параллельные к третьей прямой?
— С параллельными, — отвечал Радикс, — не так-то просто. Давай сравним, как ведут себя два перпендикуляра к одной и той же секущей на выпуклой, плоской и седлообразной поверхности. На плоскости они идут на одном расстоянии друг
— 277 —
На выпуклой поверхности два перпендикуляра сходятся.
На плоскости два перпендикуляра не сходятся и не расходятся.
от друга, то есть не сходятся и не расходятся. Но на выпуклой поверхности, как, например, на Земле, они будут вести себя так, как два меридиана, перпендикулярных к экватору, то есть будут приближаться друг к другу по обе стороны секущей и пересекутся на полюсах. На седлообразной поверхности наоборот: два перпендикуляра к одной и той же секущей будут расходиться по обе стороны, удаляясь друг от друга. Поэтому можно уменьшить углы их наклона к секущей, и полученные наклонные все еще не будут пересекаться. Если продолжать уменьшать угол наклона, то в конце концов мы дойдем до такого крайнего положения, при котором дальнейшее уменьшение угла наклона вызовет появление точки пересечения. В этом крайнем положении две прямые и называются, по Лобачевскому, параллельными друг другу «в ту сторону», в какую они образуют острые углы с секущей. Наши прямые «в сторону параллельности» еще не пересекаются и уже не расходятся, а сходятся друг с другом, так сказать, «в бесконечности», как обычные параллельные. На полупсевдосфере можно это очень хорошо представить себе, если взять два уходящих в бесконечность меридиана этой поверхности. Ты, может быть, возразишь, что это два перпендикуляра к параллели полусферы, но не забудь, что параллель (то есть сечение псевдосферы плоскостью, перпендикулярной к оси) не будет линией кратчайшего расстояния (геодезической) на этой поверхности и потому не может нами рассматриваться как «прямая».
На седлообразной поверхности два перпендикуляра расходятся.
— 278 —
— Я понимаю, — сказал Илюша. — Если я представлю себе, что полупсевдосфера лежит передо мной узкой частью вправо, то концы натягиваемой поперек поверхности нити придется оттягивать влево, иначе нить будет соскальзывать вправо.
На полупсевдосфере два «параллельных» мередиана образуют острые углы с секущей геодезической.
— Поэтому, — продолжал Радикс, — два меридиана будут образовывать с пересекающей их геодезической острые углы (с параллелью они образуют прямые), как видно на чертеже. Несмотря на это, они не будут справа пересекаться, как бы далеко ты их ни продолжал на полупсевдосфере. Но отклони один из них чуть-чуть внутрь, по направлению к другому, и наверху появится точка пересечения. Это и означает, что два меридиана, по Лобачевскому, параллельны «в правую сторону» (нашей полупсевдосферы).
— А как же будут вести себя перпендикуляры к этой поперечной геодезической? Куда они денутся на псевдосфере? — спросил Илюша.
— Видишь ли, — ответил Радикс, — на небольшом участке псевдосферы хорошо видно, что два перпендикуляра расходятся, но дальше они начнут даже огибать поверхность снизу и где-то с нижней стороны пересекутся. Но не оттого, что они сходятся, а, наоборот, оттого, что они расходятся. Вообще надо иметь в виду, что только геометрия «куска» поверхности псевдосферы отвечает геометрии соответственного «куска» подлинной «плоскости Лобачевского»; вдобавок еще мешает «ребро» псевдосферы с нижней стороны. «Плоскость» же Лобачевского, как и наша обычная, простирается неограниченно во все стороны, и все направления на ней равноправны. Поэтому на плоскости Лобачевского получается такая картина.
Если взять секущую MN и в точке N провести к ней перпендикуляр АВ, а в точке М наклонять второй перпендикуляр, уменьшая его угол с секущей со стороны точки В, то наклонная, проходящая через точку М, начнет пересекать прямую АВ, только когда угол наклона станет меньше некоторого острого угла φ. Этот острый угол (он тем ближе к прямому, чем меньше расстояние MN) Лобачевский назвал углом параллельности, а наклонную в том крайнем положении, когда она еще не пересекается с перпендикуляром АВ, он назвал проходящей через точку М параллельной к АВ в сторону В. С другой стороны секущей получается та же самая картина. Крайнее положение наклонной, при котором точки пересечения еще нет, и будет второй «параллельной»
— 279 —
Лобачевского — параллельной в «другую сторону». Поэтому на нашем чертеже все прямые Лобачевского, проходящие через точку М, разделяются двумя параллельными — «в сторону A» и «в сторону В» — на две категории. Одни, образующие с перпендикуляром NM угол, меньший «угла параллельности» φ, пересекают прямую АВ. Другие, образующие с перпендикуляром прямой или хотя и острый, но больший угла параллельности угол, проходят между двумя «параллельными» и не пересекают прямой АВ ни с той, ни с другой стороны. Они называются расходящимися с прямой АВ. Параллельные, конечно, тоже не пересекаются с АВ, но они выделяются из числа всех не пересекающихся с АВ прямых, проходящих через точку М, как раз тем, что положение параллельности — крайнее, при котором нет точки пересечения: две параллельные отделяют, таким образом, все пересекающие прямые от расходящихся. В отличие от геометрии Евклида, сумма внутренних односторонних углов, образованных параллельной в данную сторону с секущей, меньше двух прямых, так как угол параллельности φ острый. Величина этого угла зависит от расстояния MN. Еще греки, по всей вероятности, догадывались о таких возможностях.
— Значит, — решил Илюша, — это гораздо хитрее того, что мы учим в школе о параллельных?
— Ну еще бы! — отвечал Радикс. — Если бы это было то же самое, так ведь тогда и говорить было бы не о чем.
— Какая же она, однако, удивительная, эта геометрия! — задумчиво произнес Илюша.
— Если хочешь знать, — отозвался Радикс, — сферическая геометрия еще удивительнее «воображаемой», только мы
— 280 —
к ней более привыкли благодаря тому, что глобус стал нам приятелем со школьной скамьи, если не раньше. А если подумать, то нетрудно убедиться в этом. Сравни хотя бы такие обстоятельства. Прямая у Евклида безгранична, у Лобачевского тоже, а на сфере она (например меридиан) не только не безгранична, но еще и замкнута.
— Да! — отвечал Илюша. — А ведь действительно так!
— Насчет же всяких неожиданностей в «воображаемой» геометрии, так я могу тебе подарить на память еще один такой случай. Если ты возьмешь на плоскости Лобачевского окружность, разделишь ее на несколько равных частей и в точках деления проведешь касательные к этой окружности, то они образуют многоугольник только в том случае, если радиус окружности очень невелик, а в противном случае они вовсе не встретятся и не пересекутся.
— Мы можем, — добавил Асимптотос, — показать тебе еще кое-что по поводу треугольников Лобачевского, но только это будет потруднее. И нам кое в чем придется с тобой условиться.
— Как это условиться? — спросил Илюша.
— Вот как. Мы знаем, что роль «прямых» на сфере играют дуги больших кругов. А теперь мы условимся считать «прямыми» на сфере не дуги больших кругов, а дуги некоторых других кругов. Мы начнем с того, что рассечем сферу пополам. Положим полусферу на плоскость сечением вниз. А далее согласимся считать дуги кругов, плоскость которых перпендикулярна к той плоскости, на которой лежит наша полусфера, прямыми. Надеюсь, что ты понял меня?
— Но ведь можно «условиться» о чем угодно! — сказал в недоумении Илюша. — Захочу и «условлюсь», что у меня семь равняется нулю. Так что ж, так и будет?
— Мне кажется, — отвечал Радикс, — что не так уж трудно придумать случай, когда такое равенство будет иметь смысл. Например, допустим, что ты будешь различать числа только по остаткам, которые они дают при делении на семь. Ясно, что в этом смысле 1, 8, 15 и так далее будут равны между собой; 2, 9, 16 и так далее будут также равны между собой, а 7 окажется равным числам 0, 14, 21 и прочим. Тебе может показаться, что это бессмыслица. Но допусти, что некоторый месяц начинается в воскресенье и мы обозначим этот день нулем, понедельник — единицей, вторник — двойкой и так далее. Тогда, если мы интересуемся только днями недели, а «нуль», «семь» и «четырнадцать» — все будут обозначать воскресенья, то в этом смысле ты можешь не делать между ними различия. Так что уже не столь бессмысленно «условиться», что семерка равна нулю. Имей в виду, что при изучении известных вопросов вполне возможно поставить некоторое осо-
— 281 —
бое условие, и это может даже сделать для нас доступными такие вопросы, которые без этого трудно было бы исследовать[19].
— Пожалуй, — сказал Илюша, — я с таким рассуждением готов согласиться, но вот чего я боюсь: если мы условимся считать какие-то линии на сфере «прямыми», смогут ли эти «прямые» сохранить свои обычные свойства? А если не сохранят, то разве это будут «прямые»?
— Видишь ли, — отвечал Асимптотос, — все свои свойства наши «прямые», разумеется, сохранить не смогут, но ведь мы как раз и хотим рассмотреть на примере такую геометрию, в которой некоторые свойства прямых таковы же, что и на плоскости (например, две «прямые» пересекаются только в одной точке, через две точки проходит одна и только одна «прямая» и так далее). Однако в отношении свойств параллельности или величины суммы углов треугольника наши новые линии должны подчиняться не обычным законам геометрии, а законам геометрии Лобачевского. А если это так, то совершенно очевидно, что такие «прямые», поскольку мы их рассматриваем в нашем обычном евклидовом пространстве, должны и по внешнему виду отличаться от обыкновенных прямых. Сейчас нам даже придется отказаться и от того свойства, которое мы сохраняем на сфере при пояснении римановой геометрии: «прямые» уже не будут линиями кратчайшего расстояния на полусфере. Однако, чтобы ты не очень уж задумывался над смыслом таких «условий», мы сейчас придумаем самый животрепещущий пример…
— Я бы полагал… — перебил нашего оратора Коникос.
— А именно? — вопросил Радикс.
Коникос задумчиво сказал:
— Необходимо соорудить при помощи волшебства…
— Да что именно? — спросил Асимптотос. — Уж не томи ты нас, говори прямо!
— Начнем с полусферы, — уклончиво ответствовал загадочный Коникос, — ну, а потом… посмотрим.
Действительно, тотчас перед Коникосом выросла громадная, трехметровая полусфера тонкого, прозрачного синеватого стекла, под колокол которой он немедля и забрался. Из-под своего халата Коникос тут же извлек громаднейшую кремневую пистолю, самую старозаветную, у которой один только курок весил до полукилограмма, и с торжеством показал свое удивительное оружие Илюше.
— Вот мое восхитительное изобретение! — сказал он. — Эта волшебно-не-евклидова пистоля имеет изумительные свойства. Пуля этой пистоли и будет описывать не-евклидовы
— 282 —
«прямые»! Я буду стрелять, но не прямо, а так, чтобы ее круглая нуля скользила точно, «в притирку» но внутренней стороне моей полусферы. Стекло это очень крепкое, и пробить его пуля не может, она только его поцарапает. Ясно?
— Ясно! — отвечал Илюша.
— Но только вот что! — добавил наставительно Асимптотос. — Запомни раз и навсегда: пуля этой казанской — или, что то же, не-евклидовой — пистоли, скользя по внутренней поверхности полусферы, все время остается в той же вертикальной плоскости, в каковой находился и пребывал ствол этой пистоли в момент выстрела.
Затем Коникос начертил внутри полусферы, на полу, равносторонний треугольник, почти вписанный в круг, который образовывал на полу край полусферы, как нарисовано на следующей странице.
— Ну, уж в этом-то треугольнике никак не может быть больше или меньше двух прямых! — торжествующе заявил Илюша.
Асимптотос и Радикс только чуточку усмехнулись в ответ на это заявление Илюши, а Копикос сказал:
— Ты, юноша, не спорь, а следи как можно внимательнее за тем, что я буду делать.
С этими словами Коникос стал в левом углу при оснований начерченного на полу треугольника (угол С) и обернулся лицом прямо к углу при вершине его. Он поднял над головой свою пистолю, вплотную прижал ее почти совершенно вертикально к внутренней стороне сферы и выпалил. Раздался
— 283 —
страшный грохот, целое облако дыма вырвалось из широкого дула пистоли, по, несмотря на все эти пиротехнические эффекты, пуля летела так медленно, что Илюша видел, как она мелькнула по внутренней стороне полусферы, оставив за собой тонкий след в виде царапины по стеклу.
— Попал! — крикнул Коникос. — Какая меткость! С первого раза!
Илюша удостоверился, что пуля, обогнув полусферу, прошла как раз над вершиной треугольника (В) и ушла в пол.
Затем Коникос снова зарядил пистолю, подсыпал пороху на полку, стал опять на то же место, но повернулся теперь лицом в сторону другого угла (А), который был с правой стороны основания треугольника. Снова бах! Пуля прошла как раз над вершиной справа у основания.
Затем Коникос перешел в тот самый угол, над вершиной которого только что прошла пуля. Теперь он стал в этот правый угол (А) и лицом обратился снова к углу в вершине (В).
Снова он поднял пистолю над головой, так что она стояла почти вертикально, то есть почти перпендикулярно к полу, а затем опять трах! Снова целое извержение порохового дыма, и опять мелькнула пуля, царапая стекло.
Вот такой треугольник начертил на полу Коникос, стоя под полусферой.
— Вот выстрел! Поищи-ка, где пересекаются оба следа.
Илюша обошел сферу, подошел к углу при вершине и убедился, что оба следа пересеклись в точке, лежащей как раз над вершиной В треугольника.
Затем Коникос выполз из-под полусферы и сказал:
— Я полагаю, что пули летели «совершенно прямо», в неевклидовом смысле слова, как это им и свойственно. Они бы, разумеется, летели иначе, если бы им стекло не мешало и они не были бы обязаны сохранять вертикальную плоскость полета, но тут уж им при всей их любви к прямолинейности и краткопутности ничего другого не оставалось! Теперь я попрошу полусферу уменьшиться до полуметра в диаметре, дабы мы имели возможность обозреть результаты моей неподражаемой стрельбы в цель.
— 284 —
Полусфера сейчас же послушалась, и Илюша увидел, что пули начертили на стекле своеобразный треугольник. Тогда Асимптотос взял свой широченный нож и сказал мальчику:
Срез полусферы (экватор)
— Смотри: плоскость моего ножа, то есть секущая плоскость, стоит сейчас перпендикулярно к той плоскости, на которой лежит половина сферы. Ясно?
— Ясно.
— Я сделаю три сечения. Каждый раз нож будет стоять перпендикулярно к плоскости, на которой лежит полушар.
Затем Асимптотос аккуратно провел разрез так, что линия его шла от точки А к точке В. Второй разрез соединил точки В и С, а третий — точки С и А. И все разрезы шли в точности по царапинам, оставленным пулями. Затем он вынул из середины сферы получившийся кусок и дал его Илюше.
— Заметь, — сказал Асимптотос, — что если вершины треугольника будут лежать на самом срезе полусферы, то есть на ее экваторе, то все дуги «прямых», то есть вертикальных сечений сферы, проходящие через эту точку, будут иметь общую касательную вертикаль, а угол, образованный этими дугами, поэтому будет
— 285 —
равен нулю. (Вспомни, как Коникос учил тебя измерять угол между кривыми!) Но если немного сдвинуть вершину треугольника вверх по полусфере, как мы это сделали, то касательные наклонятся и разойдутся: это и даст нам возможность применять нашу пистолю. Но так как мы сдвинулись немного вверх, то и угол между двумя положениями ствола пистоли Коникоса, то есть угол треугольника, будет очень мал, и он будет тем меньше, чем ближе вершина к экватору. Я вырежу еще такой же треугольник, только расположенный повыше и площадью поменьше.
Снова Асимптотос начертил круг, затем снова вписал в него равносторонний треугольник ABC, а затем начертил внутри этого треугольника еще один — А1В1С1, поменьше, подобный первому и симметрично расположенный. (Смотри на картинке, стр. 284{11}.)
После этого он взял нож и вырезал еще один треугольник, уложив, разумеется, предварительно на чертеж еще одну половину сферы.
— А теперь, — заявил Коникос, — мы будем утверждать, что данные два треугольника по своим свойствам суть не что иное, как треугольники Лобачевского! Доказать тебе, наш юный друг, это обстоятельство было бы хлопотливо, однако это так. Поверь на слово. Был один француз-математик в истекшем столетии, который нашел это и доказал довольно-таки точно и неоспоримо.
Нахмуренная физиономия доктора У. У. Уникурсальяна немедленно появилась среди почтенной компании.
— Не следует, — сказал он, — утверждать того, чего ты не можешь доказать.
— Докажи, что я неправ! — предложил Коникос.
Но в ответ на это Доктор Четных и Нечетных почему-то отвернулся да и растаял втихомолку.
— Теперь далее! — наставительно произнес Асимптотос. — Слушай-ка хорошенько да мотай на ус. Тебе, я думаю, совершенно ясно, что эти два плоскостных треугольника, которые у меня были чем-то вроде выкроек для не-евклидовых треугольников, подобны друг другу?
— Абсолютно ясно! — заявил Илюша.
— А ну-ка, — продолжал словоохотливый старичок, — проверим-ка, подобны ли эти два удивительных не-евклидовых треугольника.
Сперва Илюша не мог сообразить, как ему взяться за эту проверку подобия, но затем придумал. Он положил оба треугольника на половинку сферы. Большой треугольник кое-как закрепил (кажется, кнопками), а малый стал передвигать так, что он скользил по сфере и по большому треугольнику. Он
— 286 —
рассуждал: если эти треугольники подобны, то углы у них равны, а следовательно, можно вдвинуть один из углов малого треугольника в один из углов большого, а если углы равны, то две стороны малого должны совпасть с двумя сторонами большого. Сказано — сделано! И вот, представьте себе, когда он пододвинул один из углов малого треугольника к одному из углов большого, то стороны малого не только не пошли по сторонам большого, не только не совпали с ними, а даже закрыли стороны большого, так что Илюша должен был заключить, что углы малого треугольника больше — и заметно больше! — углов большого треугольника.
— Вот тебе и раз! — сказал Илюша. — Не подобны, нет… И, честное слово, я не понимаю, как это выходит!
— Дело вот в чем, — серьезным тоном проговорил Коникос. — Мы уже тебе говорили, что сумма углов в не-евклидовых треугольниках не есть величина постоянная, в противоположность евклидовым треугольникам, где сумма углов всегда постоянна и равна, как тебе известно, ста восьмидесяти градусам. Мало этого, в не-евклидовых треугольниках сумма углов связана с их площадью. Причем если ты имеешь дело со сферическими треугольниками, то там чем больше площадь треугольника, тем больше и сумма его углов, и ты сам видел треугольник, сумма углов которого доходила до трех прямых углов. В треугольнике Лобачевского дело обстоит в некотором отношении так же, а в некотором — как раз наоборот. Там тоже сумма углов треугольника связана с площадью, но в обратном отношении, то есть чем больше сумма углов треугольника, тем меньше его площадь, и обратно, пока сумма углов не дойдет до своего естественного предела, то есть станет равной нулю для треугольников, все вершины которых лежат на экваторе сферы. Но уж это в геометрии Лобачевского, собственно, не треугольники, а фигуры, образованные тремя попарно параллельными прямыми. В силу именно этих обстоятельств ты и видишь сейчас, что каждый из взаимно равных углов равностороннего малого не-евклидова треугольника больше любого угла такого же большого треугольника, и так должно быть! А отсюда следует вывод чрезвычайно в данном случае значительный: никаких подобных фигур в не-евклидовых геометриях не существует, и там невозможно построить фигуру, подобную данной, но имеющую иные размеры. Если нам с тобой повстречаются два треугольника с соответственно равными углами, то нетрудно будет убедиться, что эти треугольники равны. Любопытно еще и то, что площадь такого треугольника ограничена и не может превысить некоторой определенной величины, как бы мы ни увеличивали его стороны, ибо площадь эта прямо пропорциональна разности
— 287 —
[180°— (α + β+γ)], где α, β и γ суть углы треугольника. А наше выражение в квадратных скобках, очевидно, не может быть больше ста восьмидесяти градусов. Однако и этого еще мало, и этим не исчерпываются необычайные чудеса этой геометрии. В ней мы имеем возможность определить отрезок через угол. Ибо коль скоро треугольник вполне определяется своими тремя углами, то я могу точно определить отрезок, указав, что он является стороной равностороннего треугольника с заданным углом (меньшим, разумеется, нежели две трети прямого угла). Отсюда можно сделать один удивительный вывод. Тогда как в обычном мире необходим эталон (то есть образчик) меры длины — метр, ярд, сажень, — в мире «воображаемой» геометрии в таковом эталоне нет надобности. Там с помощью геометрического построения, как бы исходя из свойств самого пространства, мы строим единицу длины наподобие того, как в евклидовой геометрии строится прямой угол (то, что мы потом его делим на девяносто градусов, к его величине касательства не имеет.)
— Сумма углов равностороннего треугольника Лобачевского, — промолвил Асимптотос, — поистине меньше двух прямых, ибо каждый из них меньше чем шестьдесят градусов. Мы можем тебе показать это.
Снова перед Илюшей выросла полусфера высотой в один метр. Линии, которые провели по стеклу круглые пули Коникоса, были прекрасно видны. Асимптотос подошел к полусфере и лёгонько толкнул ее пальцем. Полусфера закачалась, перевернулась своим срезом (основанием) вверх.
Асимптотос взял ниточку и, нагнувшись над опрокинутой полюсом вниз полусферой, закрепил один конец нитки в одной из трех точек внутри полусферы, где пересекались два следа пуль. Илюша внимательно следил за всеми этими приготовлениями. Затем Асимптотос, туго натянув нитку, повел ее к другой точке пересечения следов не-евклидовой пальбы и закрепил во второй точке, а затем и в третьей точке. Наконец он потянул ниточку из третьей точки снова в первую и закрепил ее там, где она вся и кончилась. Таким образом, внутри полусферы в воздухе повис туго натянутый ниточный равносторонний треугольник. Он висел, разумеется, так, что плоскость его была параллельна полу.
— Теперь это будет тот самый треугольник, который Коникос чертил на полу и о котором ты еще высказал такое авторитетное мнение… насчет суммы его углов, помнишь?
Илюша очень хорошо помнил свое «авторитетное мнение», только ему совсем не хотелось, чтобы и другие об этом вспоминали…
Асимптотос похлопал рукой по краю полусферы, и она тут
— 288 —
же превратилась в целую сферу, то есть на лежащей ее половине тотчас же выросла и вторая (верхняя) половина шара. Теперь у этой сферы было два полюса — южный (старый) и северный (новый, верхний). Коникос принес откуда-то маленькую ярко светящуюся точку и положил ее на северный полюс сферы. В светлице стало темно, и лучи ярко светящейся точки северного полюса бросали резкие тени. На полу под сферой эти лучи сейчас же отчетливо нарисовали тень экватора, которая, конечно, оказалась правильным кругом. А внутри этого круга, разумеется, нарисовалась, отступя на некоторое расстояние от окружности, и тень ниточного треугольника.
— Смотри хорошенько! — произнес Коникос. — Видишь, как легли на полу тени тех следов, которые нацарапали на стекле полусферы пульки.
Это, конечно, и было самое интересное в этом волшебном опыте! Илюша заметил без особого труда, что следы пуль Коникоса рисуются на полу, как дуги кругов, перпендикулярных к тени экватора. Они и образовывали на полу своеобразный треугольник с вогнутыми внутрь сторонами. А треугольник этот был как бы «вписан» в самый обыкновенный евклидов равносторонний треугольник, который был тенью ниточного треугольника.
— Ну-с? — произнес Радикс.
И в тот же миг стало опять совершенно светло, а сфера и сияющая полярная точка исчезли. На полу остался лежать очень четкий чертеж круга и двух треугольников внутри его. Теперь уж не было никаких сомнений в том, что эти не-евклидовы углы много меньше евклидовых. Сумма углов равнялась 110°.
— Хорошо! — сказал Илюша. — На этом-то чертеже совершенно ясно, что углы не-евклидова треугольника гораздо меньше. Но разве тени следов пуль образуют те же углы, как и самые следы?
— Видишь ли, — терпеливо отвечал ему Радикс, — вообще, разумеется, не те же. Однако, если по отношению к лучу света плоскость угла отклонить в одну сторону, а плоскость, на кото-
— 289 —
рую ложится тень, — в другую, так, чтобы обе эти плоскости образовали с лучом светящейся точки равные углы, то тени дадут тот же самый угол, который и был у тебя. Попробуй-ка начерти сечение нашей сферы по меридиану и выясни, какие получатся углы. Ты без особого труда, я полагаю, убедишься, что в нашем случае углы будут в точности одинаковые… Следует еще помнить о том, что, имея дело с геометрией сферы, необходимо принимать во внимание ее размеры: именно это и определяет ее кривизну, как и для псевдосферы, то есть и для «воображаемой» геометрии. Сам Лобачевский полагал, что только физико-астрономические опыты могут дать нам материал для суждения о том, какая именно геометрия свойственна нашему пространству, в котором мы существуем. Поэтому тот, кто скажет, что великий русский геометр подходил к геометрии «как естествоиспытатель», будет очень близок к истине. Современные ученые полагают, что Лобачевский был прав в своих догадках: действительно, в некотором смысле геометрия нашего мирового пространства — это не-евклидова геометрия, хотя она и не совсем такая, как геометрия Лобачевского. А теперь, чтобы ты мог себе уяснить с помощью некоторой особой аналогии этот взгляд на геометрию, а вместе с тем познакомился и с другим примером осуществления геометрии Лобачевского, вспомним прежде всего, что геометрии на малых участках будут очень мало отличаться друг от друга, на чем бы они ни были — на плоскости, сфере или псевдосфере.
— Конечно, — отвечал мальчик, — небольшой кусочек сферы или псевдосферы трудно было бы отличить от плоскости.
— Вот, — продолжал Радикс, — если ты сообразишь, что измеряемые нами обычно расстояния слишком малы и не дают вообще возможности отличить свойственную нашему миру геометрию от евклидовой, то тебе станет ясной идея Лобачевского — решить вопрос о нашей геометрии с помощью астрономических опытов. Это раз. А затем скажи мне: сумеешь ли ты отличить дугу окружности от прямой?
— Еще бы! — отвечал, улыбаясь, Илюша. — Дуга имеет кривизну, а прямая нет.
— Ясно. Но вот представь себе: я начерчу на протяжении тридцати сантиметров дугу окружности радиусом длиной в несколько километров. Что ты тогда скажешь?
— На таком маленьком участке, пожалуй, никак не отличишь, — согласился Илюша. — Но ведь если дугу эту сделать не в тридцать сантиметров, а побольше, то сразу станет видно.
— Постой! — прервал его Радикс. — Именно этого мы сейчас делать и не станем. Будем рассматривать геометрию на небольшом участке плоскости, но вместо прямых будем проводить окружности очень больших радиусов. Для примера пусть
— 290 —
радиусы будут длиной около пяти километров, а мы будем при помощи таких радиусов чертить фигуры на обыкновенной классной доске. Вряд ли ты заподозришь, что они не проведены с помощью самой обыкновенной линейки.
— Наверно, нет! — усмехнулся Илюша.
— Сверх этого, мы будем все эти окружности чертить не как-нибудь, а с соблюдением некоторого особого условия: возьмем какую-нибудь очень далеко отстоящую от нас прямую и будем все центры окружностей выбирать на этой прямой.
— Очень далеко, — сказал Илюша, — то есть около пяти километров?
— Пусть так, — согласился Радикс. — А потом вот еще что. Чтобы подчеркнуть, что эти окружности заменяют нам прямые (они у нас так и будут называться «прямые», в кавычках), будем называть линию их центров «бесконечно удаленной» в нашей геометрии.
— Ну да, — подхватил Илюша, — ведь, вероятно, потому, что дуга окружности тем больше похожа на прямую, чем больше ее радиус, иногда и говорят, что прямая — это окружность бесконечного радиуса?
— Именно поэтому! — отвечал Радикс. — А теперь давай рассмотрим, какая геометрия получится на большом расстоянии от нашей «бесконечно удаленной» прямой. Начнем с того, что выясним, можно ли в таких условиях провести через две данные точки одну «прямую», и только одну.
— Да ведь это сводится к задаче провести через две данные точки окружность, центр которой лежал бы на данной прямой? Это очень просто сделать.
— Ну, а будет ли в нашей геометрии «прямых» правильно, что две прямые пересекаются в одной точке?
— Если, — сказал, подумав, Илюша, — мы будем рассматривать все только по одну сторону от линии центров, то есть только полуокружности, да еще без их крайних точек, потому что они ведь тоже попадают на эту «бесконечно удаленную» прямую (я думаю, мы можем ее считать просто для нас недоступной), то, разумеется, две полуокружности могут пересечься только в одной точке.
— Видишь, ты и сам замечаешь, что наши «прямые» этими своими свойствами, как, впрочем, и многими другими, не будут отличаться от обыкновенных евклидовых прямых, а на малом участке вдали от центров ты и по виду их от прямых не отличишь. Тебе будет казаться, что ты имеешь дело с обыкновенной геометрией Евклида. Там можно строить треугольники, восстанавливать и опускать перпендикуляры и так далее. Однако если спросить, сколько «прямых», не пересекающих данную, можно провести через точку вне этой прямой,
— 291 —
Через всякие две точки М и N можно провести одну, и только одну, «прямую».
Две «прямые» могут пересекаться только в одной точке.
то хотя на глаз на малом участке будет казаться, что все обстоит так же, как обычно, но на самом деле именно здесь-то и обнаружится, что в действительности наши «прямые» подчиняются не законам Евклида, а законам геометрии Лобачевского.
— Как же это так получается? — спросил удивленный Илюша.
— Посмотри внимательно на чертеж! Вспомни, что мы с тобой условились рассматривать только часть площади по одну сторону от линии центров, которую мы к нашему пространству не причисляем, считая ее геометрическим местом «бесконечно удаленных» точек нашей геометрии. Если дана «прямая» АВ, то есть полуокружность с центром в точке С «бесконечно удаленной» линии, и точка М, не лежащая на АВ (скажем для определенности, расположенная на большем расстоянии от С), то получится вот что: кроме полуокружности радиусом СМ, можно провести через точку М любое количество «прямых», не пересекающихся с «прямой» АВ, слегка смещая центр из точки С по горизонтали и соответственно изменяя радиус.
— Хорошо, — сказал Илюша, — это я теперь понимаю. А какие же «прямые», проходящие через точку М, будут параллельными по геометрии Лобачевского к «прямой» АВ?
— Припомни, что параллельные отделяют непересекающиеся, то есть «расходящиеся» с данной, «прямые» от пересекающих ее. Такими, очевидно, и будут «прямые», изображаемые теми двумя полуокружностями, которые встречают данную полуокружность именно на «бесконечно удаленной» прямой.
То есть это будут те именно полуокружности, которые касаются данной полуокружности слева и справа на линии центров, образуя с ней в точках касания нулевые углы. Если ты построишь два перпендикуляра к какой-нибудь «прямой» АС, то легко убедишься, что они будут «расходящимися».
— 292 —
Прямоугольный треугольник ABC.
— Так, — сказал Илюша. — Действительно не очень-то все это просто! А как же насчет суммы углов треугольника?
— Возьми чертеж, на котором две полуокружности равных радиусов почти касаются друг друга. Угол, образуемый ими в их невысоко расположенной точке пересечения, будет невелик, хотя и больше нуля. В остальных же двух точках пересечения, образованных третьей полуокружностью, получаются углы, близкие к шестидесяти градусам. Таким образом, сумма углов будет немногим больше ста двадцати градусов вместо ста восьмидесяти градусов. На маленьком треугольнике этого нельзя заметить так отчетливо.
Через точку М проведено несколько «прямых», не пересекающих «прямую» АВ.
— 293 —
«Прямая» А′В′ параллельна АВ, в сторону А; «прямая» А′′В′′ параллельна АВ в сторону В. «Прямые», проходящие внутри углов А′МА′′ и В′МВ′′, «расходятся» с АВ. «Прямые», проходящие внутри углов А′МВ′′ и В′МА′′, пересекают АВ.
— Потому что они похожи на евклидовы и в них сумма углов почти равна ста восьмидесяти градусам! — воскликнул Илюша. — Кажется, я начинаю наконец разбираться понемногу…
Тут Илюша снова откуда-то услыхал звуки флейты Фавна.
Обернувшись, он увидел, что его хитрая рожица выглядывает из-за уголка цветной занавеси домика. Он протягивал Илюше правую руку и манил его к себе левой.
Два перпендикуляра — АВ и CD — к одной «прямой» «расходятся» — угол параллельности φ острый
— 294 —
— Ты только попробуй! — произнес Фавн шепотом. — Никогда никто не кушал ничего вкуснее!
— Может быть, это и стыдно, — сказал Илюша, отломив втихомолку добрый кусочек казанского сыра и делая вид, что он никакого Фавна и в глаза не видел, — но я должен сознаться, что я тоже до сих пор думал, что геометрия Евклида единственная.
— Стыдного тут ничего нет, — отвечал Асимптотос. — Ты просто не знал, вот и все. Но спорить с построенной системой — это уже совсем другое дело.
— Значит, я уже узнал здесь, кроме евклидовой, три новые геометрии: геометрию лабиринтов, потом геометрию Лобачевского и геометрию Птолемея…
Угол между двумя окружностями одного радиуса, из которых каждая проходит через центр другой, равен 60 градусам.
— То есть сферическую, — заметил Копикос. — Однако я могу тебе показать еще одну геометрию. Это будет геометрия теней. Ты увидишь сейчас удивительные тени. Слышал ли ты такой стишок:
Вот пройдут любые тени
По стене,
Странных очерки видений
При огне…
Неужели ты его не знаешь? Почитай, голубчик! Его написал прекрасный русский поэт Александр Блок. Это почти эти самые тени и есть.
— 295 —
В треугольнике ABC углы А и В близки к 60 градусам, а угол С очень мал, поэтому сумма углов этого треугольника немногим больше 120 градусов.
Асимптотос притащил откуда-то лампочку очень странной и красивой формы, немножко похожую на чайник, в носик которого был вставлен фитиль. Лампа горела не очень ярко, но все-таки светила. В ней было налито нечто вроде оливкового масла. Говорят, будто это была та самая лампа, из-за которой начались несчастья бедной Душеньки в той самой поэме Богдановича, которую так любил юный Пушкин, потому что Aпyлей (сочинивший книгу «Золотой осел», где изложена история Душеньки) ему нравился гораздо больше рассудительного Цицерона[20]. Масло для этой лампы Коникос зачерпнул из фонтана. Затем Коникос сделал какой-то странный жест, и в светлице стемнело. Только и было света, что от масляной лампы.
Асимптотос поставил ее на стол и вырезал круглый кусочек плоскости.
— Смотри теперь на тень этого кружка. Если я поставлю мой диск вертикально параллельно стене на одном уровне с источником света, то и тень на стене получится…
— Круглая, — отвечал Илюша.
— Справедливо. Теперь смотри, что будет с тенью, если я буду поворачивать кружок вокруг его вертикального диаметра. Если я поверну кружок на некоторый угол так, чтобы диск у меня стоял наклонно к плоскости стены, то тень будет…
— 296 —
— Эллипсом! -отвечал Илюша.
— А теперь, — продолжал Коникос, — смотри, какие тени будут получаться от кружка на столе. Если я опущу диск ниже пламени, то на столе получится… На-ка, возьми диск, попробуй сам!
Илюша взял диск, опустил его немного ниже пламени лампы и получил две тени: эллиптическую и круговую, которые он уже видел на стене.
— Теперь, — сказал Асимптотос, — слушай мою команду! Поставь диск вертикально так, чтобы самая высокая его точка находилась на уровне пламени.
Илюша поставил. Тень от кружка стала с одной стороны овальной, а с другой — уходила прямо по столу, и казалось, что две стороны тени уходят вдаль, стремясь сделаться все более и более параллельными.
— Эта тень похожа, — сказал Илюша, — пожалуй, опять на кривую квадратного уравнения.
— Справедливо, — отвечал Коникос. — Ты получил параболу. А теперь подними кружок еще немного повыше, так, чтобы его горизонтальный диаметр был на уровне пламени.
Илюша приподнял кружок. Теперь на стол падала тень только от нижней части кружка. С одной стороны она тоже была похожа на овал, но с другой стороны тень уходила до самого края стола. Однако ее стороны не стремились к параллельности, а шли почти прямо в разные стороны.
— А это что такое?
— Н-не знаю, — сказал Илюша. — Но так как мы видели все конические сечения, кроме гиперболы, это, наверное, она и есть?
— Она самая. А скажи, пожалуйста, не встречал ли ты гиперболу вечером на улице?
— На улице? — удивился Илюша. — Нет, кажется, не встречал.
— А видал ли ты вечером на улице такую картину: у подъезда дома стоит автомобиль с одной зажженной фарой, и свет от фары падает на мостовую?
— 297 —
—Это я, конечно, видал, — ответил Илюша.
— Так вот имей в виду, что освещенный кусок мостовой и рисует на асфальте самую настоящую гиперболу, то есть одну из ее ветвей. Почему? Потому что световой пучок выходит из фары конусом, а мостовая в данном случае является секущей плоскостью по отношению к этому конусу. Когда увидишь эту гиперболу в следующий раз, кланяйся ей от меня… Эта геометрия теней называется проективной геометрией. Вот тебе и пятая геометрия! Учи только, не ленись, у нас геометрий хватит!
— Хорошо, — сказал скромно Илюша, — постараюсь.
— Эта геометрия, — пояснил Радикс, — имеет самое непосредственное отношение к искусству живописи, ибо только она может научить нас, как нарисовать некий предмет на плоскости так, чтобы зрителю казалось, что он видит перед собой настоящий предмет в трехмерном пространстве. Во времена Возрождения эта наука развивалась в трудах крупнейших живописцев того времени: таковы были знаменитый Аьбрехт Дюрер, живший в начале шестнадцатого века, крупнейший архитектор-итальянец Альберти (конец пятнадцатого века) и один из величайших художников всех времен, разносторонний гений Леонардо да Винчи (родился в тысяча четыреста пятьдесят втором году, скончался в тысяча пятьсот девятнадцатом), тоже итальянец по происхождению, который недаром сказал, что глаз человеческий — это «князь математики». Далее ее разрабатывал Паскаль (о нем ты уже слышал), а также и другой француз, Понселе, который был офицером наполеоновской армии, участвовал в походе на Россию, был тяжело ранен в сражении под Красным и подобран русскими войсками на поле боя. После этого он попал в плен к русским и почти целый год прожил в Саратове: там-то он и написал свое знаменитое сочинение по геометрии. Кстати сказать, развитие этой ветви геометрии способствовало
— 298 —
правильному истолкованию математиками геометрии Лобачевского.
— Конечно, — заметил Илюша, — эта проективная геометрия теней очень красива, но геометрия Лобачевского мне как-то больше нравится.
— С тобой можно согласиться, — ответил Радикс. — Открытие Лобачевского вызвало сначала полное непонимание…
И при этом не только со стороны людей, которые были заведомо невеждами, а даже со стороны тех, которые, казалось бы, могли разобраться… Но слишком для них все это было неожиданно и непонятно. У себя на родине Лобачевский подвергался жестоким издевательствам в продажной печати времени императора Николая Первого. В то время как великий Гаусс учился русскому языку, чтобы прочесть сочинения Лобачевского в подлиннике, русские журналы, руководимые известным гонителем Пушкина, царским шпионом — Булгариным, глумились над Лобачевским, уверяя, что такую геометрию может выдумать только человек, поставивший себе цель — издевательство над наукой. Даже угрюмый реакционер, тогдашний министр народного просвещения, Уваров пытался защитить Лобачевского, но безуспешно. Булгарин спрятал его возражения «под сукно». Все, что мог сделать Уваров для Лобачевского, который был все-таки ректором Казанского университета, — это напечатать в официальном ученом «Журнале министерства народного просвещения» в ежегодном списке трудов русских ученых против имени Лобачевского: «Ректор Казанского университета, занимался сочинением статьи для журнала Крелле». Это кое-что значило для людей понимающих, ибо в то время математический немецкий журнал, издаваемый Крелле, был самым авторитетным журналом в мире. В дальнейшем выяснилось, что Уваров рассчитал не так плохо, ибо статью Лобачевского в журнале Крелле заметил и похвалил сам Гаусс! А гордость родины, математик Лобачевский, так и умер, даже не удостоенный звания доктора наук за свои труды, ставшие краеугольным камнем для всей новой математики девятнадцатого века[21].
— Страшно слушать!.. Но мне все-таки хотелось бы узнать, в чем самая суть этих удивительных трудов Лобачевского?
— Видишь ли, — задумчиво произнес Радикс, — попросту
— 299 —
и коротко рассказать все это трудно. Но попробуем все-таки!
Древняя математика оставила нам замечательные достижения. Недаром некоторые историки науки говорили о «греческом чуде». Но кроме того, от древности нам в наследство осталось немало нерешенных вопросов, научных загадок. И некоторые из них были трудности непомерной. С квадратичными иррациональностями греки сами справились. Удивительные труды Архимеда и Аполлония затронули более сложные вопросы, которые дождались своего разрешения только уж в Европе в шестнадцатом и семнадцатом веках. Но вопросы, связанные с самыми основаниями евклидовой геометрии, смущавшие ученых еще в древности (как это видно из трудов Птолемея), получили свое разрешение только в девятнадцатом веке в работах Лобачевского. Когда это наконец было сделано, осознано и разработано, наша наука вступила в новую стадию. Это уже не было прямой разработкой творений Архимеда, а чем-то совершенно своеобразным, что дало науке новые великие силы. Ибо наука получила после Лобачевского возможность не только исследовать те или иные задачи, но научилась изучать и понимать свою собственную сущность и все свое своеобразие.
— Собственную сущность… — повторил Илюша неуверенно, — то есть самую суть? Так я говорю?
— Да, в общем так. Но самое главное заключается в том, что великая система не-евклидовой геометрии, построенная Лобачевским, постепенно привела людей к полной уверенности, что математика есть наука опытная.
— 300 —