Когда вы узнаете о том, что давным-давно, в середине XVIII века, мальчик Блез Паскаль самостоятельно читал «Начала» Евклида, а девочка Софья Ковалевская[1] не так давно, в прошлом веке, ухитрилась разобраться в основах математического анализа по разрозненным листам учебника Остроградского, которыми случайно оклеили стены детской комнаты, то не удивляйтесь и не думайте, что это просто занимательные рассказы или поразительные исключения.
Что-нибудь в этом роде было в детстве у всякого, кто любил математику и затем всю жизнь работал в какой-либо ее области. Именно так, в самостоятельной работе, и проявляются первые начатки подлинного интереса к науке, именно так и растут будущие труженики на славном поприще научной деятельности.
Есть немало хороших книг, которые могли бы помочь любознательному школьнику, если он увлекается математикой.
Но нередко эти книги трудны и требуют от читателя большого напряжения, которое не всегда по силам учащемуся средней школы.
В этой книжке юным читателям дается такой материал по математике, который будит их интерес к знанию, раскрывает перед ними некоторые перспективы, позволяет представить себе, что такое математика. С другой стороны, здесь есть ма-
— 3 —
териал для самостоятельной работы, то есть не просто рассказы о математике, а нечто большее, что даст нашему читателю радость научного труда, радость небольшого, но все-таки заработанного собственными трудами познания.
Книга рассчитана на подростка, кончившего семь классов, и поэтому очень много в ней дать нельзя. Для примера укажем, что почти невозможно дать обзор научной деятельности Софьи Ковалевской, не говоря уже о более поздних ученых.
Однако все-таки возможно на ряде любопытных примеров ввести читателя в мир научной математической мысли. Некоторые из этих примеров принадлежат к исторически чрезвычайно важным, другие представляют собой не слишком трудные вещи, а иной раз это просто загадка, но за ней кое-что таится, и над этим стоит подумать.
А кроме того, эта книжка для того и написана, чтобы читатель понял, что математика — не только не скучная, но даже очень увлекательная наука! Если кто ее совсем не любит — пусть хоть заглянет в книгу. И даже он найдет здесь кое-что интересное…
Наш рассказ представляет собой фантастическое путешествие по волшебным странам математического мира, но читатель и сам довольно скоро разберет, что все те добродушные, веселые и шутливые фигуры, с которыми он повстречается, только для того и появились на белый свет, чтобы помочь ему поразмыслить над тем, что он найдет на страницах книги.
Читатель узнает, как человек изобрел и усовершенствовал такую великую вещь, как математический анализ, то есть то самое, что называется «высшей математикой». Рассказ наш доводится до примеров определенного интеграла и производной. А ведь это и есть тот самый крепкий и надежный фундамент, на котором покоится вся огромная современная техника.
Вторая наша тема, которой отдано гораздо меньше внимания, — это не-евклидова геометрия. Попутно и по необходимости мы касаемся и других вопросов. В частности, у нас есть обычные разделы занимательной математики — лабиринты, уникурсальные фигуры, игра в «Дразнилку». Есть и задачи-шутки, но некоторые из них совсем не так просты и касаются вещей серьезных.
Но если доктор У. У. Уникурсальян, с которым вы познакомитесь через несколько страниц и, надеемся, подружитесь, — великий мастер говорить длинные речи, причем иной раз довольно затейливо, то из этого еще не следует, что все, о чем здесь говорится, так уж просто и легко.
Впрочем, если уж читатель не сразу разберется в древней прекрасной легенде о царевне Ариадне и ее путеводной нити, то он не должен пугаться. Наоборот, он должен запастись тер-
— 4 —
пением и перечесть эту историю еще разок. Ничего не будет страшного, если он вернется к ней и третий раз. Надо все так хорошо разобрать, чтобы потом об этом понятно рассказать тому, кто совсем не читал этой книги. А как же достигнуть этого?
Да очень простым способом. Надо не просто перечитывать, а делать это в приятном обществе карандаша и бумаги. Втроем разобрать любую из наших историй гораздо легче. Не надо только забывать о том, что если всякий понимает, что школьная парта сделана из дерева, то далеко не всякий сумеет пойти в лес, срубить там дерево и сделать из него эту самую парту.
А нам с вами, чтобы научиться работать, надо непременно попробовать что-то сделать собственными руками, а не только знать понаслышке. А то ведь есть на свете такая обидная поговорка: «Слышал звон, да не знает, откуда он…» А узнать-то не так уж и трудно: подумать не торопясь, взяться и не бросать, пока не выйдет то, что надо.
Некоторые наши темы очень просты и касаются вопросов почти что шуточных. Но и в них, если как следует разобраться, есть немало интересного и очень полезного. Можно просто пообещать читателю: если ты проработаешь всю эту книгу, ты кое-что серьезное о математике узнаешь!
Таково мнение доктора У. У. Уникурсальяна, и мы вполне к нему присоединяемся. Он сам и все его друзья будут говорить с вами весело и любезно и терпеливо будут стараться навести вас на правильную мысль. А иной раз и подразнят немножко! Да ведь это любя, обижаться не стоит!..
Нет никакой нужды читать сразу всю книжку подряд.
Тот, кто сперва прочтет то, что полегче, а потом возьмется за более непослушные задачки, ничего не потеряет.
Может быть, прочитав эту книгу, захочется познакомиться и с другими книгами по математике. Сейчас у нас есть много хороших книг для самостоятельного чтения. Целый ряд их упоминается у нас в примечаниях. Большинство из них немного потруднее, чем эта книжка. Но ничего не поделаешь, надо привыкать работать с книгой. Если в примечании книга отмечена звездочкой в скобках (*), значит она повышенной трудности. Такую книгу лучше разобрать вместе с товарищами или с руководителем.
Есть еще очень полезные книжки, где рассказывается, как жили и трудились крупные ученые. Почитаешь и увидишь, что и им не все и не всегда легко давалось, но их горячая любовь к знаниям и упорство превозмогали трудности. Есть очень хорошие книги академика С. И. Вавилова о Ньютоне, профессора В. С. Кагана — о Лобачевском, французского ученого Дальма — о математике Галуа, революционере и ученом. Интересен
— 5 —
целый том «Воспоминаний и писем» Ковалевской. Можно порекомендовать несколько хороших книг по истории математики:
Н. Бурбаки «Очерки по истории математики» (*), а особенно надо посоветовать прочесть книгу Д. Я. Стройка «Краткий очерк истории математики».
Впрочем, если среди наших читателей найдутся такие, которым всего этого покажется мало, то в таком особенном случае можно посоветовать заняться очень полезной и сравнительно не очень трудной книгой Я. Б. Зельдовича «Высшая математика для начинающих». В этой книжке очень много хороших примеров из физики.
А вообще не надо робеть перед наукой. Конечно, не всякий будет в дальнейшем Ньютоном или Ковалевской. Но ведь в наши дни математика нужна повсюду — не только в инженерии, не только в космонавтике, а даже и в медицине, и в изучении литературы. У нас много больших научно-исследовательских институтов, где нужны математически образованные люди: ведь работа там идет коллективная и нередко совместные усилия дают плоды исключительной ценности. Наш дорогой Пушкин говорил, что надо «в просвещении быть с веком наравне». Это не очень легко, но и не так уж трудно, если любить это дело и понимать, до какой степени оно в наши дни нужно Родине.
Первое издание «Волшебного двурога» вышло в 1948 году.
Научным редактором книги был замечательный ученый Игорь Владимирович Арнольд, безвременно скончавшийся. Он не дожил двух месяцев до выхода в свет нашей книги.
В 1959 и в 1962 годах пишущий эти строки выпустил еще две книги по общедоступной математике — два томика «Архимедова лета», на которые мы будем ссылаться время от времени. Чтобы не писать каждый раз название этих книг, мы будем сокращенно обозначать таким образом: АЛ-II, XVIII, 4.
Это значит: «Архимедово лето», том II, глава XVIII, раздел 4.
Знай, дорогой мой читатель, что немало славных русских имен вписано золотыми буквами в книгу развития науки математической! Таковы — Остроградский, Лобачевский, Ляпунов, Чебышев, Марков, Вороной, Золотарев, Федоров, Ковалевская и многие другие. И из ныне здравствующих наших математиков есть немало таких, которые обогатили мировую науку поистине высокими достижениями. Назовем хотя бы Виноградова, Бернштейна, Колмогорова… Да ведь вот беда: за редкими исключениями, для того чтобы хотя бы разобраться в том, какими вопросами они занимались, надо знать во много-много раз больше того, чем говорится в этой книге!
Теперь уж, кажется, все ясно, только надо сказать еще два
— 6 —
слова тому, кто совсем не любит математику. Всякий понимает, что хочешь не хочешь, а считать-то надо уметь! Без этого не проживешь. А кто же такие эти ученые-математики? Чем они занимаются?
Каждый из нас слышал имя великого ученого Исаака Ньютона. Однажды он сказал, что геометрия, «будучи искусством точного измерения», была придумана людьми для того, чтобы мы, пользуясь чертежами, могли избегать утомительных вычислений. Другими словами, великий математик уверяет, что его наука дает нам возможность поменьше мучиться с вычислениями, а это ведь как раз и есть то, чего хочет человек, который не любит математики! Но когда наука идет вперед, постоянно упрощая для нас все более трудные задачи, она в то же время дает человеку гигантские силы, и он обретает возможность делать то, чего прежние поколения не могли изучить, попять и одолеть! Вот в чем самая сила, дорогой мой читатель, не забывай об этом.
Теперь, когда все самое главное уже высказало, читатель может еще спросить: «А почему же в этой книжке рассказывает о математике не ученый, а писатель?» Действительно, почему? Но, на этот вопрос давным-давно ответил великий писатель Земли Русской ЛЕВ ТОЛСТОЙ, который в своей работе «Что такое искусство?» 1897 г.) говорит: «Дело искусства состоит именно в том, чтобы делать понятным и доступным то, что могло быть непонятным и недоступным в виде рассуждений».
Автор считает своим приятным долгом выразить признательность научному редактору книги проф. И. Н. Веселовскому за целый ряд ценных указаний и поправок при редактировании.
— 7 —