Схолия Девятнадцатая

особенно примечательна тем, что в ней наш доблестный путешественник знакомится с историей мнимых человечков, узнает, что произошло в городе Болонья в XVI веке, как павиан умеет бросать камни, и что об этом думали математики. Илюша в этой схолии не раз попадает в затруднительное положение, и только — его закадычные друзья спасают его от снежной бури, а затем Илюша снова встречает своего старого знакомого Дразнилку, который и помогает нашему герою решить трудную задачу.

Голубоватое поблескивание откуда-то сбоку неожиданно оказалось снова симпатичной фигуркой Мнимия Радиксовича.

Он очень любезно улыбнулся и заметил:

— Чудесные звезды, не правда ли?

— Мне очень хотелось бы, — сказал Илюша, — чтобы вы еще как-нибудь показали мне подробно, как вы, мнимые человечки, возникаете из квадратного уравнения?

— Вы ведь знаете, — начал свой рассказ Мнимий, — что, когда квадратное уравнение «не решается», мы получаем два комплексных корня, причем они таковы, что действительные части их равны, а мнимые отличаются по знаку:

а + bi; аbi.

Такие комплексные числа называются сопряженными.

Сопряженные комплексные числа обладают одним замечатель-

— 414 —

ным свойством: их сумма так же, как и их произведение, является действительными числами. Это нетрудно проверить!

— Знаю! — откликнулся Илья. — Я уж пробовал. Мне кажется, как будто, что при перемножении мнимых чисел разные знаки дают плюс, а одинаковые минус…

— Ученые, — продолжал Мнимий, — сперва, в семнадцатом веке, догадались, а через два века и доказали, что если принимать в расчет все корни уравнения, и действительные и комплексные, то вместе их будет всегда столько же, сколько единиц в показателе степени старшего члена уравнения. Это положение, чрезвычайно важное для алгебры, обычно называется основной теоремой алгебры[34]. Попутно выяснилось, что комплексных корней всегда бывает четное число, и у каждого такого корня имеется сопряженный комплексный корень. А то, что вы хотите узнать, можно показать на геометрическом примере. Сначала мы возьмем обычную декартову плоскость, затем еще одну, которая будет комплексной, и она же будет полупрозрачной… А вы, юноша, дайте мне квадратное уравнение поудобней!

— Пожалуйста! — не задумываясь, ответил наш герой, —

х2 — 8х + 15 = 0.

Три и пять. Лучше не придумаешь.

— Сойдет, — ответил Мнимий. — Дальше так: пусть перед нами встанет первая плоскость, на ней оси деления и парабола. А комплексная плоскость пусть станет перед первой вплотную. Она полупрозрачная, и через нее мы отлично увидим первую.

Так все и случилось. Сперва возникла обычная плоскость, причем ось абсцисс была голубая, а ось ординат розовая, потом возникла и темно-синяя парабола. А на делениях (+3) и (+5), там, где были корни квадратного уравнения, где парабола пересекла ось абсцисс, ярко горели две блестящие оранжевые точки.

— Вот и корни! — сказал Илюша.

— А теперь мы сотворим и комплексную.

И действительно, тут же, поправей, возникла еще одна плоскость, не очень заметная, матовая. На ней были тоже две взаимно перпендикулярные оса, действительная и мнимая,

— 415 —

только они были совсем тоненькие. В начале координат сияла зеленая точка.

— Подвиньтесь! — вежливо попросил Мнимий.

И тут комплексная плоскость подвинулась налево и стала так аккуратно, что оси на том и на другом чертеже почти слились (они ведь были в одном масштабе!), но все было очень хорошо видно через вторую полупрозрачную плоскость.

— А зеленая точка на нуле, — сообразил мальчик, — означает, что ничего мнимого пока еще нет?

— По-видимому, так… — раздался торжественный шепот прямо из самого экрана: волшебные чертежи, оказывается, отлично умеют говорить!

— Итак, — продолжал Мнимий, — следите за мной хорошенько, и вскоре все станет ясно. Вот перед вами парабола! Она, как вы знаете, прекрасная гречанка, и от роду ей очень много лет. Для того чтобы все было не так хитро, мы будем рассматривать ее в таком виде, что коэффициент при иксе во второй степени будет равен единице.

— То есть, — подхватил Илья, — мы берем выражение

ах2 + + с

и делим все члены на а.

Теперь перед Илюшей сиял график квадратного трехчлена, то есть чертеж параболы, обращенной вершиной вниз, ее ось стояла вертикально, и вершина параболы была ниже оси абсцисс (которая, как мы знаем, горизонтальная). Парабола пересекала ось абсцисс дважды. Недалеко засветилось и само уравнение:

х2 — 8х+ 15 = 0.

— А какие у нас корни? — спросил Мнимий.

— Два действительных корня, потому что парабола пересекает ось абсцисс два раза, — отвечал мальчик.

— Справедливо. Теперь я попрошу параболу подняться немножко повыше.

Парабола охотно послушалась, и две оранжевые точки на горизонталях стали сближаться; и вот уже вершина параболы только касалась оси абсцисс в одной точке. Две оранжевые точки сошлись в одну.

— А теперь? — спросил Мнимий.

Рядом уже светилось и уравнение:

х2 — 8х + 16 = 0.

— А теперь, — отвечал Илья, — два одинаковых действительных корня, оба равны (+4).

— 416 —

— Так. Согласен. Попрошу еще вверх немного.

Послушная парабола согласилась и на это. И теперь вся она поднялась выше оси абсцисс, не касаясь ее. Вершина параболы по-прежнему висела над делением оси абсцисс, равным четырем. Однако как только вершина параболы вздумала оторваться от горизонтали, немедленно оси на полупрозрачной комплексной плоскости стали еще ярче, а зеленая точка в начале координат вспыхнула посветлее. Едва лишь горизонталь и вершина параболы расстались друг с другом, эта точка немедленно раздвоилась. И теперь уже две зеленые точки медленно поползли: одна вверх по мнимой оси, а другая по той же оси вниз. Затем обе эти точки остановились против деления три, только одна стояла против (+3), а другая против (—3).

— Ну-с, — произнес Мнимий, — я вас слушаю.

— Тут, — сказал Илюша, — оба корня комплексные. И они, конечно, сопряженные. Один будет равен (4 + 3i), а другой (4 — 3i). Если теперь открыть скобки в выражении

[x — (4 + 3i)] [х — (4 — 3i) ] = 0,

то получится вот что:

х2 — 8х + 25 = 0.

Этому уравнению соответствует парабола вот такая, как сейчас на нашем чертеже. А почему это так, сообразить нетрудно.

Ведь если написать:

[x — (a + bi)] [х — (abi) ] = 0,

то открой скобки и получишь:

х2 — 2ах+ (а2 + b2) = 0.

Вот и все! Проверить — одна минута.

— Точно! — подтвердил Мнимий. — А больше вы ничего не замечаете?

И вот только тут наш герой усмотрел, что парабола отразилась ниже действительной оси и висит там вершиной вверх.

Так что теперь уже перед ним были как бы две параболы… А из самого начала координат (там, где пересекались обе оси) ползет яркий лиловый пунктир со стрелочкой на конце. Он добрался до точки с координатами (4, 3), и стрелочка его остановилась, как только коснулась этой точки. Илюша обернулся к Мнимию, но, к своему удивлению, обнаружил, что его

— 417 —

приятель… исчез бесследно! Но когда он невольно слова перевел глаза на чертеж, он с удовольствием заметил, что лиловая стрелочка уже превратилась в самого Мнимия, который очень весело ему кивает из глубины чертежа!

— Вот я каков! — крикнул Мнимий из чертежа. — Могу вырасти, если парабола поднимется вверх…

Парабола стремительно рванулась ввысь, Мнимий, ринувшись за ней, вытянулся, стал длинный-длинный и страшно важный, ибо вершина параболы ушла куда-то очень высоко, а Мнимий остановился на 92-м делении по мнимой оси. Пока Мнимий удлинялся, в записи сверкающего уравнения значение свободного члена начало быстро увеличиваться (а коэффициент при неизвестном в первой степени оставался тем же).

И в конце концов вот что получилось:

х2 — 8х + 8480 = 0.

— А если вам так уж хочется, я могу стать и поскромнее!

Парабола стала, не торопясь, опускаться и остановилась против деления 19 на вертикальной оси.

Тут же засветилось и уравнение:

х2 — 8х + 377 = 0.

— Могу и вовсе исчезнуть!

Парабола опустилась до самой оси абсцисс, коснулась ее, и Мнимий исчез.

Илюша обернулся, и оказалось, что Мнимий уже снова стоит рядом с ними.

— Теперь вам ясно, как мы возникаем? Но вы, надо полагать, уже заметили, что, как только парабола оторвется от оси абсцисс, сейчас же снизу, как говорят, на нижней полуплоскости (потому что ось абсцисс делит плоскость пополам!), возникает ее отображение, а вместе с ним и мой сопряженный братец-близнец. Вот и все. Очень просто!

Парабола на чертеже снова поплыла вверх, а внизу опять засияло ее отображение, и тут же появилась еще одна лиловая стрелочка, направленная из начала координат вниз.

— Понятно, — сказал Илюша, — если сложить эти два вектора, то мнимые их части с разными знаками уничтожат друг друга и получится удвоенная величина действительной части. Раздели пополам, и получишь точку, над которой находится вершина параболы. Все в порядке!

— Рад стараться! — отвечал Мнимий. — Конечно, парабола может выше оси абсцисс стоять и вершиной вверх, а не вниз, но, в общем, это безразлично.

— 418 —

— А почему вы говорите «отображение», а не «отражение»?

— Да так уж повелось от тех времен, когда вместо «отразилось» говорили «отобразилось». Это не так уж давно было, примерно во времена Лобачевского. Это слово встречается и у Гоголя. Имейте также в виду, что только под пером великого Эйлера мы получили все права гражданства в математике. С вашего разрешения мы вернемся сейчас еще на некоторое время к решению уравнений. Тут вы и узнаете, как мы появились на белый свет, что мы помогли узнать математикам и как они с нашей помощью стали открывать одну тайну за другой.

— Ну, Илюша, как дела? — спросил с усмешкой Радикс. — Тебе все ясно?

— Не очень! — признался Илья со вздохом. — Нет, не очень. А нельзя ли как-нибудь так придумать, чтобы не было двух разных плоскостей, а то меня путает, что их две? Ведь на самом-то деле это одно уравнение, а вовсе не два?

— Справедливо! — согласился Мнимий. — Действительно, одно.

— Может быть, попробовать еще? — предложил Радикс. — Возьмем еще одну параболу. Уравнение ее напишем так:

z = х2 — 8х + q.

Значит, свободный ее член у нас обозначается теперь буквой q.

Если попробовать решить квадратное уравнение:

х2 — 8х + q = 0,

мы получим…

— …вот что! — сказал Илюша и написал:

Значит, пока наше q меньше шестнадцати, корни будут действительные, а если q больше шестнадцати, то комплексные.

— Разумеется! — согласился Мнимий.

— А когда q равно в точности шестнадцати, парабола только касается оси абсцисс в точке, равной четырем. Если же q равно нулю, то оба корня будут действительные — один равен нулю, а другой — восьми. Но только… как же нам теперь увидать еще и комплексные корни?

— Не спеши, — отвечал Радикс, — сейчас мы все это соорудим. А уж ты следи внимательнее за этим новым тонким и умным волшебством. Нам ведь нужно определить, существуют ли такие комплексные числа, чтобы при подстановке их в левую

— 419 —

часть уравнения мы получили бы действительное число? Существуют ли, а если да, то каковы они?

— Тогда, — отвечал Илья, поразмыслив, — нам придется подставить в левую часть комплексное число (z + iy), а затем посмотреть, что из этого выйдет. Получится, значит, так:

r = (х + iy)2 — 8(х + iy) + q= (x2 y2— 8x + q) + i(2xy8y).

Мне кажется, что это выражение может оказаться действительным единственно только в том случае, если вся скобка, на которую умножается i, будет равна нулю.

— Так! — согласился Мнимий. — Верно. Это дело! А в каком случае так оно будет?

— Если, — отвечал мальчик, — я перепишу эту скобку немного иначе:

2ху — 8у = 2у (х — 4),

то ясно, что это может произойти только в двух случаях, либо игрек равен нулю (ну, тут все и так ясно, говорить нечего!), либо икс равен четырем.

— Хорошо! — сказал Мнимий, улыбаясь. — Теперь уж у нас все готово, и мы можем приступить к нашему волшебству, которое нам все и покажет в полной наглядности, как оно и полагается в нашем волшебном царстве, построенном на поучение самым любознательным и дерзновенным юношам…

— Дерзновенным! — с усмешкой повторил Радикс. — Но я слышал, как друг Пушкина, замечательный русский поэт и мыслитель Евгений Баратынский однажды написал:


Надейтесь, юноши кипящие!

Летите, крылья вам даны…


А ведь так оно и полагается, дружище, в нашем светлом волшебном и вполне серьезном царстве для любознательных ребят!

— Ура! — закричал Илья. — Давайте ваше новое волшебство. Вы уж такие волшебники…

— Потише ты! — возразил Радикс. — Не спеши. Поспеешь!

Это будет штучка довольно затейливая. Начнем с того, что это новое волшебство будет не на плоскости, а в пространстве.

— В трехмерном? — робко пропищал Илья.

— Неужто тебе трехмерного мало? — свирепо огрызнулся Радикс. — Можно и четырехмерное, да ты испугаешься! Ну!

Смотри во все глаза.

Радикс медленно и важно махнул рукой. И тотчас же перед Илюшей возникла плоскость, где были начерчены обыкновенные декартовы координаты (икс, игрек, как оно и полагается!). Направо от начала координат была проведена еще одна пря-

— 420 —

мая, параллельная оси игрек, как раз в том самом месте, где икс равнялся четырем.

— Смекаешь? — спросил Радикс, указав Илье на эту четверку.

— Смекаю… — несмело откликнулся Илья, — то есть это та самая четверка, при которой моя скобка становится равной нулю? Так или нет?

— Именно! — отвечал ему его друг.

Смотри далее… Да смотри в оба! Полагаем твое q равным нулю… А теперь…

Тут Илюшина плоскость потихонечку повернулась и легла горизонтально, повиснув в воздухе примерно в сантиметрах шестидесяти от пола. Да так и застыла. Как только это произошло, из каждой точки креста, образованного осью иксов и новой прямой, которая пересекла ось иксов в точке, равной четырем, начали постепенно расти перпендикуляры к этой самой плоскости, которая и была плоскостью (х + iy), то есть плоскостью комплексных векторов (следи внимательней!).

И тут, опираясь на эти перпендикуляры и пересекая ось иксов (там, где игрек равен нулю), из концов этих перпендикуляров выросла парабола. Самая настоящая парабола с уравнением:

z = х2 — 8х.

А уравнение сейчас же засветилось справа сбоку красным огнем, чтобы Илья не путался! Затем (смотри хорошенько!) из прямой в новой вертикальной плоскости (опять же перпендикулярной к висящей в воздухе плоскости комплексных векторов) возникла еще одна парабола с уравнением:

z = 42у2 — 8 · 4 = — у2 — 16.

— 421 —

Теперь перед Илюшей было уже две параболы. Мнимий подошел совсем близко к этой высоковолшебной модели и мягким прикосновением своих волшебных пальчиков жестко скрепил эти две параболы так, что они оказались соединенными и своих вершинах, а плоскости их оказались перпендикулярными одна к другой.

— Видишь?- спросил Радикс. — Теперь смотри, что у нас будет получаться далее, когда мы начнем увеличивать постоянный член, то есть это твое q. Следи внимательно за этой фигурой из двух соединенных парабол, не отрывая глаз.

Вся эта сложная параболическая механика начала двигаться и прошла вверх на шестнадцать делений. Как только она остановилась, тотчас же сбоку справа засветилось ее уравнение красным огнем:

z2 = x2 — 8x + 16= (х — 4)2.

А слева появилось еще одно уравнение (для другой параболы) — зеленое:

z = —у2.

— Внимание! — громко провозгласил Мнимий. — Если теперь далее мы еще будем увеличивать ваше q, то первая наша парабола уже не будет больше пересекать плоскость (x + iy), но зато нижняя парабола пересечет ее как раз дважды, в двух точках, которые, по мере увеличения вашего q, будут разбегаться в разные стороны по прямой (х = 4). Вот вам, мой юный друг, настоящая, подлинная картина того, как могут возникать комплексные корни квадратного уравнения. Поняли?

— Ох! — произнес Илюша, утирая пот со лба. — Что-то такое я сообразил. Но вы бы хоть еще разок повторили!..

И снова перед Илюшей возникла вся эта волшебно-наглядная математическая интермедия с самого начала до самого конца. Теперь Илюша как будто стал разбираться.

— Но как странно они скреплены, эти параболы, — сказал он, — они ведь зацепились одна за другую, точно они надеты одна на другую, как вот… если взять две дуги… ну, самые обыкновенные, которые на лошадей надевают… да и поддеть их так, чтобы одна висела на другой. Верно я говорю или нет?

— Точно так! — отвечал равнодушно Радикс[35].

— А все-таки, — снова начал Илюша, — я прошу еще мне кое-что разъяснить. Про корни я теперь понял, но кое-что

— 422 —

более общее мне неясно. Вы, Мнимий, помогли открыть тайны… Но ведь вы сами — тоже изобретение математиков?

— Не совсем изобретение. Мы — открытие! Природа царит во всем мире, а у нее свои законы. Труд человеческий в значительной мере определяется этими же законами. Ведь не одни человек трудится — птица вьет гнездо, пчела строит очень точные шестигранные соты, паук плетет многоугольники паутины, крот строит тоннели и так далее. Человек с помощью математики изучает эти законы, и когда он открывает нечто новое в строении этих внутренних связей, неправильно говорить, что он что-то «изобрел». Он открыл то, что всегда лежало в основе некоторых явлений природы.

— Трудно понять, — произнес со вздохом Илюша, — как это такое: уравнение и природа? При чем тут природа?

— А когда вы бросаете камень, ведь он летит по параболе, не так ли? А парабола алгебраически — это квадратное уравнение. А те, кто путешествовал по Африке, рассказывают, что большие обезьяны, павианы, очень хорошо умеют бросать камни. Однако камень не рассуждает, кто его бросил — ученик седьмого класса или павиан, все равно он летит по параболе!

Илюша уставился на Мнимия и не знал, что отвечать.

— Ну как, Илюша? — спросил Радикс. — Долетел до тобя этот камушек?

— Не знаю! — ответил в недоумении Илюша. — С павианом действительно как-то странно получается…

— Крепись! — посоветовал Радикс. И добавил: — Был в древности такой философ, Платон. Он любил пересказывать речи другого философа, своего современника, Сократа. И вот в одном из сочинений Платона Сократ говорит, что человек разумный «будет заниматься астрономией, как и геометрией, для того чтобы ставить задачи разуму», но не будет терять время на прихотливо-изящные разглагольствования о красоте звездного неба. Нет, он будет «искать истину» в явлениях подобного рода. А истина эта, как легко догадаться, заключается именно в математических законах движения небесных светил. Задача оказалась необычайно трудной и, не взирая на все грандиозное развитие древнегреческой математики, грекам полностью одолеть ее не удалось. Решение было получено только в семнадцатом веке нашей эры. Как ты знаешь, эти решения были связаны в первую голову с именем Иоганна Кеплера, одного из великих основателей математического естествознания, на основе которого построена вся современная цивилизация.

— Итак?.. — переспросил Мнимий.

— Не знаю… — с усилием выговорил Илюша. — Как-то все это в голове не укладывается…

— 423 —

— Постой-ка, — сказал Радикс, — пожалуй, я приводу еще один пример, с которым ты уж спорить не станешь. Конечно, и юноша из седьмого класса и павиан — существа, не лишенные некоторого смысла, и, пожалуй, ты будешь колебаться, можно ли назвать их действия просто действиями Матушки Природы. Так вот тебе еще один пример, где одушевленные существа уж совсем не принимают никакого участия: по горе бежит маленький ручеек, наконец добегает до крутого обрыва и низвергается, скажем, метров на двадцать с лишним (высота шестиэтажного дома!) тоненьким водопадом в одну струйку. Ясно ли тебе, что и эта водопадная струя будет иметь строение той же самой параболы? Это ты можешь проверить самым простым опытом с резервуаром, водой и резиновой трубкой. Отсюда ясно, что парабола имеет в мире, независимо от человека и его мыслительных способностей, совершенно объективное существование, независимое от нас. Следовательно, когда человек нашел эту кривую, он сделал открытие- он нашел формулировку важного закона Природы. А обстоятельство, что сама кривая (у Аполлония Пергейского в древности) была найдена путем геометрического рассуждения, умозрительно, и только потом (у Галилея) приняла характер закона Природы, значения не имеет. Одно только можно вывести из этого поучительного сопоставления, что логическое развитие (и расширение) математических образов и истин потому и ведет к открытию орудий математического естествознания, что даже самые первые положения математики непосредственно возникли из человеческого опыта и размышлений над результатами этого многообразного опыта.

— Вот и опять получается, — заявил Илюша, — что математика — это опытная наука…

— … опирающаяся в своих построениях на здравый человеческий рассудок, на логику, — добавил Радикс, — и постоянно проверяющая свои построения на решениях практических задач. Когда-то Аристотель учил, что человеку нужна свобода, но не просто свобода, а обдуманная свобода, разумная, такая, которая ведет к полезным результатам. И вот, обдумывая свои удачные и полезные действия, человек и находит математические орудия, которыми он покоряет Природу. Вот примерно как! Конечно, что ни дальше, тем оно становится сложнее, но, как говорится, чем дальше в лес, тем больше дров! Ну, следует еще отметить, что летит тело по параболе только в пустоте, то есть при отсутствии сопротивления воздуха, в полном безветрии, а иначе получается хотя и близкая к параболе кривая, но все-таки не парабола. Хотя все математические образы, которые мы в рассуждениях считаем абсолютно точными, на практике не могут иметь такую

— 424 —

неограниченную точность, однако самое важное и самое основное в явлении они выявляют с большой силой.

Внезапно откуда-то донесся знакомый мелодичный свист древних флейточек, раздался легкий топот маленьких копытец, и голос небезызвестного Илюше Фавна лукаво произнес:

— А камушки? Морские камушки?

— Что такое? — вопросил Радикс. — Какие это камушки?

— Ах да! — воскликнул мальчик. — Морские камушки, обкатанные волнами, как трехосный эллипсоид!

— Верно! — подтвердил Радикс. — Вот тебе и еще пример довольно сложного геометрического тела, который сооружает сама природа.

— В общем, ясно! — примирительно заявил Мнимий. — И я предлагаю, приняв в общем выводы моего почтенного папаши к сведению и руководству, перейти к нашим очередным делам. Мне хотелось бы обратить ваше внимание на ряд особо значительных фактов из истории нашей науки. Хотите ли вы меня выслушать?

— Очень даже! — отвечал Илюша. — Когда вы мне все здесь рассказываете о развитии нашей науки от древности и чуть ли не до наших дней, то выходит более понятно…

— Хорошо, — заметил Мнимий, — насчет «чуть ли не до наших дней» — это немножко, пожалуй, слишком, ибо «наши дни» в математике — это уж очень трудно! Но кое-что наметить можно[36]. Только вы слушайте внимательно и сейчас же переспрашивайте без стеснения, как только почувствуете, что теряете нить моего рассказа. Согласны?

— Вполне!

— Итак, надо отметить, что в науке время от времени бывают некоторые нежданно разительные перемены. То есть если рассуждать впоследствии, то поймешь, что они не такие уж «нежданные», а, наоборот, подготовлялись издалека, хотя самое решение вопроса сперва кажется совершенно неожиданным. Понимаете вы меня?

Тут уж Илюше пришлось признаться, что он не очень понимает, о чем идет речь.

— Ну вот, — сказал, задумываясь чуть не на каждом слове, Мнимий, — возьмем алгебру. Самую обыкновенную, которую вы в школе учите. Это просто буквенное исчисление, не так ли? А ведь всякий ученик прекрасно знает, какое это облегчение для решения задач.

— 425 —

— Конечно, — согласился Илюша, — алгебраически решать задачи гораздо проще, чем с арифметикой возиться!

— Согласен! Но давайте разберем, как это случилось.

Ведь всякий замечал, что много есть на свете задач очень друг на друга похожих, то есть, как говорится, задач одного типа. Вот на этом-то наблюдении и родилась алгебра. Надо было еще получить некоторый толчок — догадаться, что вместо чисел можно употреблять буквы. Новое в науке родится путем наблюдения над своей собственной работой — то есть над решением разных задач, — а затем путем выводов из этих наблюдений. И, наконец, путем построения такого общего способа (или метода), который помог бы нам воспользоваться тем, что мы нашли наблюдением, а метод этот и был буквенным исчислением.

— А он откуда взялся?

— Он был в зачатках еще у египтян и у греков. Затем индусы, а за ними арабы заметили, что способы решать арифметические задачи могут быть сведены к нескольким типам — ну, хотя бы к уравнениям с одним неизвестным, — и описали это словесно. Возникла так называемая риторическая алгебра, не очень, конечно, удобная, но все-таки более совершенная по сравнению с простой арифметикой[37]. А уж потом пришли и буквы, но путь им был расчищен при помощи риторической алгебры.

— Значит, так, — решил Илюша, — сперва мы наблюдаем, замечаем важные особенности при пользовании старыми способами, а затем на основании этих наблюдений и рассуждений уже строится новая наука, то есть новый ее раздел.

— Правильно, — согласился Мнимий, — такие весьма важные перемены и бывают, как я выразился, «нежданно разительными». Такие нововведения, обобщающие большой опыт, дают огромные результаты и сразу двигают науку вперед.

Проходит несколько десятилетий — и науку уже узнать нельзя, так быстро она развивается на новом рубеже. Арабы построили алгебру, ее узнали в Европе, а затем сразу раздаются мощные голоса Виеты и Декарта. И вот уже та алгебра, которую вы учите в школе, построена. И все становится иным, появляются возможности строить еще нечто совершенно новое.

— А когда это случилось?

— Арабская алгебра родилась примерно в восьмом или девятом веках, а распространять ее в Европе стали примерно с двенадцатого века. Я имею в виду славного Ал-Хорезми.

— 426 —

Прибор Платона.


В это же время появляются сочинения европейцев, уже освоивших алгебру. В начале шестнадцатого века все это было в Европе освоено, развито и вот тут-то Европа встает на новый путь развития. Сочинения Архимеда и Аполлония переведены и напечатаны. Начинаются новые труды. Они как бы вмещают все, что Европа унаследовала от арабов (а стало быть, и от индийцев) и от Древней Греции. И теперь начинаются плодотворнейшие труды по объединению того и другого. Если труды европейцев, которые привели к интегральному и дифференциальному исчислению, были завершением трудов древних, шедших в том же направлении, то с шестнадцатого века началось еще одно движение: новые достижения риторической алгебры были впервые успешно применены к решению алгебраических уравнений высших степеней, например кубических.

— А раньше их совсем не умели решать? — спросил Илюша,

— 427 —

Одна средняя пропорциональная и один прямой угол.


— Опыты и частные решения были. Мы вам рассказывали о способе двух средних пропорциональных и о способе Менехма (в Схолии Пятнадцатой — способ двух парабол). Но все это были геометрические способы, которые не обладали общностью, то есть не могли быть применены для решения любой задачи, которая приводит к кубическому уравнению.

— Мы рассматривали, кажется, тогда, — заметил Илюша, — пропорцию Гиппократа:

а : х = х : у = у : b

и ее алгебраическое решение, а как греки решали, мы как будто не говорили.

— Ну что ж, — сказал Радикс, — можно и это припомнить.

Для решения этой задачи — для удвоения куба — можно пользоваться так называемым «прибором Платона», который легко представить тебе в виде двух плотничьих наугольников, то есть деревянных прямых углов, как бы прямоугольных треугольников без гипотенузы. Начинаем с чертежа, где изображены две прямые, пересекающиеся под прямым углом. Затем берутся два угольника и прикладываются друг к другу так, чтобы они образовывали два прямых угла. Нетрудно рассудить, что если даны длины отрезков а и b, то из двойной пропорции Гиппократа, которую я только что привел, можно получить:

х3 = a2b; у3 = ab2;

и, положивши b = 2а, получаем:

Все это так сложно формулируется потому, что у Евклида в его Началах (книга IX) степени — квадраты, кубы и так далее — так и вводятся, через пропорции, и опираются на известные свойства геометрической прогрессии:

1, x, x2, x3, x4xn

где ясно, что каждый член является средней геометрической

— 428 —

между двумя своими соседями справа и слева, как например:

а четыре последовательных члена связаны двойной непрерывной пропорцией:

1 : х = х : х2 = х2 : х3,

которой и пользуется Гиппократ. Теперь возвращаюсь к построению: циркуль дает одну среднюю пропорциональную, которую мы разбирали в Схолии Пятнадцатой, тогда как два прямых угла действуют словно два объединившихся циркуля, они дают нам разом две средних, как это ясно из другого чертежа. Прямой угол мы всегда можем себе представить опирающимся на диаметр некоторой окружности, не так ли?.. А если у нас имеются два прямых угла, причем их всегда можно сдвигать и раздвигать так, что эти диаметры воображаемых окружностей могут изменяться (и при этом независимо друг от друга), то мы получаем особый прибор вроде двоякого циркуля, который может дать нам сразу две средние пропорциональные, те самые, которые требуются для пропорции Гиппократа.

Принцип прибора Платона.


— 429 —

— По-моему, — сказал Илья, внимательно осмотрев чертежи Радикса, — как будто все правильно. Какой интересный этот способ двух прямых углов! И если а = 1, то икс и будет корнем кубическим из двух. Все верно.

— Прекрасно! — похвалил Мнимий. — Итак, после этого поучительного примера я могу продолжать свой рассказ. Алгебра дала ученым формулу (а формула — это ведь и есть самое значительное завоевание алгебры!) для решения любого квадратного уравнения. В шестнадцатом веке ученые заинтересовались алгебраическим решением кубического уравнения, о котором еще в начале того же века Лука Пачиоли, итальянец, говорил, что эта задача столь же непосильна для науки, как и квадратура круга. Конечно, надо все-таки принимать во внимание, что наука, развиваясь, ставит себе все более и более сложные задачи, а для их разрешения, понятно, требуются все более сложные способы. Вот с одной такой необычайной сложностью ученые и столкнулись в шестнадцатом веке. Понадобилось без малого триста лет, чтобы разгрызть этот орешек! О нем-то и будет идти речь. Задачка была особенная. Древние почти ничего здесь не сделали, европейцам все пришлось изучать и рассматривать заново. Арабы тоже брались за этот вопрос, старательно изучали частные случаи, многое изучили и придумали, но по части именно алгебраической у них не получилось. Пачиоли прямо говорил, что решение таких уравнений невозможно, ибо они «диспропорциональны», то есть невыразимы с помощью пропорций, что, разумеется, неосновательно, как это ясно из Гиппократова решения задачи о двоекубии. Как неосновательны были и сетования Пачиоли насчет квадратуры круга, но Архимед тогда еще очень был мало известен… И, наконец, в городе Болонье в шестнадцатом веке напали на алгебраическое решение. Оно…

— А какое это было решение?

— А вот сейчас его продемонстрируем. Сперва надо сказать еще несколько слов об одном особом способе решать квадратные уравнения, вам хорошо известные. Вы знаете способ, который построен на выделении точного квадрата. Но можно действовать еще и по-иному. Выходит не хуже. Если уравнение представлено в двучленной форме, то есть вот так:

xn = a

то решить его нетрудно (разумеется, мы полагаем, что а больше нуля, то есть положительное число), какова бы ни была его степень. Надо только извлечь корень данной степени, а это вопрос разрешимый…

— 430 —

— С логарифмами… — подсказал Илюша.

— Точно, — отвечал Мнимий, — именно с логарифмами. Следовательно, если мы сумеем данное уравнение привести к такому виду, мы уже никаких особых препятствий не встретим. Уравнение первой степени приводится к двучленному виду проще простого: сделай приведение, перенеси известные в одну сторону, неизвестные в другую — и готово. Посмотрим теперь, как этого достигнуть с квадратным уравнением, которое нам тоже хорошо знакомо. Любое квадратное уравнение можно представить в таком виде:

х2 + рх + q = 0,

ибо, если коэффициент при х2 не равен единице, делим вес уравнение на этот коэффициент — и дело в шляпе! Как быть далее? А что, если уничтожить второй член уравнения с иксом в первой степени? Тогда останется икс в квадрате и свободный член, а нам как «раз и надо получить двучленное уравнение. Введем новую неизвестную, допустив, что наш икс таков:

x = y + h.

— А что такое h? — с удивлением спросил Илюша.

— Пока что h совершенно произвольное число, но мы сейчас выясним точно, в каком виде оно может нам помочь. Подставим в уравнение новое значение икса и сделаем приведение. Это нетрудно! Получаем:

(y + h)2 + p (y + h) + q = 0;

y2 + y (2h + p) + h2 + hp + q = 0.

Теперь становится ясно: чтобы уничтожить второй член уравнения, надо положить, что коэффициент при иксе в первой степени равен нулю, то есть:

2h + р = 0;

h = — p/2

Подставим в полученное уравнение. Получаем:

y2 + y (—2p/2 + p) + p2/4 — p2/2 + q;

после приведения:

y2 = p2 / 4 — q

— 431 —

по так как х + у = h, то находим и решение:

x = — p/2 ± √(p2/4 — q)

Следовательно, наш этот способ — уничтожить один из членов уравнения — вполне целесообразен. Теперь попробуем разобрать, как было решено впервые алгебраически, или, как говорится, «в радикалах», то есть с помощью извлечения корней необходимой степени, кубическое уравнение. Сделано было это в шестнадцатом веке в Италии учеными города Болоньи Ферро, Тарталья и Кардано. Между двумя последними шел долгий спор о том, кто первый сделал это открытие, но мы в эти ненужные споры забираться не будем, тем более что с современной точки зрения все решение не так уж сложно.

— А все-таки, наверно, трудно… — грустно заметил Илюша.

— Не очень! Конечно, поскольку само кубическое уравнение сложнее квадратного, то весь ход решения похитрей. Но тут дело в том, что выясняются некоторые особые подробности… Итак, у нас имеется кубическое уравнение, где коэффициент при старшем члене уже превращен в единицу:

х3 + ах2 + + с = 0.

Цель снова будет та же самая: придумать такие преобразования, чтобы превратить данное уравнение в уравнение с меньшим числом членов, ибо, как мы видели на примере квадратного, этот прием упрощает задачу. Сперва мы будем поступать так же, как с квадратным уравнением. Положим снова:

х = у + h

и подставим это в наше уравнение. Получим после небольших переделок

у3 + (3h + а) у2 + (3h2 + 2ah + b) у + h3 + ah2 + bh + с = 0.

Теперь снова постараемся обратить коэффициент второго члена (при игреке в квадрате) в нуль, то есть положим, что

(3h + a) = 0; h = — a/3,

откуда

у3 + (—3a/3 + а) у2 + (3a2/9 — 2a2/3 + b) у + h3 + ah2 + bh + с = 0.

— 432 —

или, сделав приведение:

у3 + (—a2/3 + b) у + (2a3/27 — ab/3 + с) = 0.

Теперь для сокращения письма положим:

(—a2/3 + b) = p; (2a3/27 — ab/3 + с) ] = q

и запишем окончательно результат в таком виде:

y3 + py + q = 0.

(Если q = 0, то все просто: y1 = 0, у2,3 = ±√—p)

При q ≠ 0 результат, как ты видишь, разумеется, несколько менее утешителен, чем в случае квадратного уравнения, ибо у нас не два, а три члена. Но как-никак определенное упрощение достигнуто. Как же теперь быть далее? Ясно, что нужно придумать способ, который дал бы возможность обратить выражение ру в нуль, после чего мы и получим двучленное уравнение, то есть то же самое, что было получено для квадратного. И вот как раз на этом месте болонцам пришла в голову счастливая мысль сделать еще одну подстановку: положить, что у в последнем уравнении можно представить в виде суммы:

у = u + v.

И опять-таки эти величины ими пока что совершенно произвольные. Мы только одно можем сказать, что сумма их есть корень нашего уравнения, который не равен нулю.

— А почему он не равен нулю?

— Сейчас рассмотрим! Попробуем подставить. Получаем:

(u + v)3 + р (u + v) + q = 0.

Смотрите-ка! Теперь видно, что сумма (u + v) не может быть равна нулю, потому что тогда и число q будет равно нулю, а число q, свободный член уравнения, не равно нулю. Теперь откроем скобки и кое-что сгруппируем:

(u3 + v3) + (u + v) (3uv + p) + q = 0.

Такая форма уравнения уже подает нам некоторые надежды! Может быть, нам удастся уничтожить второй член? Положить,

— 433 —

что u + v = 0, мы, как сказано, не можем, но зато спокойно можем допустить, что

3uv + р = 0;

uv = —p/3

но в таком случае наше уравнение превращается в такое:

u3 + v3 = — q.

Следовательно, мы получили два уравнения. Одно из них дает произведение новых чисел u и v, а другое их сумму. Правда, они в разных степенях, но никто не помешает возвести это произведение тоже в куб. Далее это создаст нам некоторые затруднения, но мы как-нибудь их одолеем. И вот перед нами два уравнения:

u3v3 = — p3/27; u3 + v3 = — q.

А теперь скажите, юноша, как бы вы дальше поступили с этими уравнениями? Отвечайте, куда они просятся?

— В квадратное уравнение! — вдруг выпалил почти в отчаянии Илюша. — Сумма и произведение даны, значит, это квадратное уравнение… по теореме Виеты.

— Очень хорошо! — отозвался Мнимий. — Так вот: теперь должно быть ясно, что болонцы действительно напали на очень счастливую мысль. Разумеется, им не удалось свести кубическое уравнение к линейному (то есть первой степени), как сводили квадратное, но ведь этого и ожидать было бы странно, ибо куб все-таки постарше квадрата и, конечно, поупрямей его! Но вы должны еще иметь в виду, что открытие этого решения кубического уравнения в Италии шестнадцатого века было поистине важным историческим событием! Оно означало, что новая Европа вышла на новый рубеж, она уже освоила наследие древних ученых и теперь сама делает недоступные для древности открытия. Общественные условия настолько изменились, что возникла возможность для новой науки. Разумеется, ученый работает прежде всего в интересах науки. Но он может работать для ее развития только тогда, когда общество, в котором он живет, поддерживает его, другими словами, когда люди верят в необходимость его трудов. Мы уже говорили с вами, как бились древние греки с двоекубием, то есть задачей удвоить куб. И как мы увидим далее, задача трисекции угла тоже сводится к кубическому уравнению. Но так или иначе болонцы все-таки степень кубического уравнения на единицу понизили, а это облегчило задачу — квадратные уравнения мы решать умеем!

— Вавилоняне догадались, — заметил Радикс, — да и нас научили.

— 434 —

— И теперь уже мы можем составить окончательное уравнение, которое будет:

t2 + qtp3/27 = 0

Одно значение корня этого уравнения даст u3, а другое v3. Решим это уравнение!

Илюша схватил мел и сразу написал:

— Вот-вот, — поддакнул Мнимий, — совершенно правильно. На пятерку! Но теперь, поскольку мы знаем, что у = u + v, пишите уж и самое решение.

И наш герой написал следующее:

— Ну вот, — произнес Мнимий, — и появилась эта знаменитая формула Кардана для решения кубического уравнения.

— Так, — сказал Илюша, любуясь своим произведением, — это я теперь как будто сообразил. Но при чем же тут мнимые человечки?

— А-а-а, — важно протянул Мнимий, — вот вас что интересует! Ну что же? Мы постараемся приподнять завесу этой трудной научной тайны.

— Жаль, что в науке есть еще тайны!

— Н-да… — протяпул Мнимий. — В общем, конечно, досадно. Но ведь эти тайны исходят не от науки, они, скорее, принадлежат природе. Человек начинает с самого простого, а затем идет все дальше, все время углубляет свои знания, раскрывает тайну за тайной, похищая их у Природы! И вот вы сами видите в наши дни, как увеличивается могущество человека. А те тайны науки, о которых вы сокрушаетесь, — это уж не совсем тайны, это ее трудности, но опыт показывает, что их можно одолеть. Вы могли видеть сами на примере решения кубического уравнения, как осторожное расширение способа двучленного уравнения позволяет добиться новых результатов. Трудность основная в том, что при всяком таком расширении области, где применяется данный способ, дело усложняется новыми обстоятельствами и обычно такими, которые ранее невозможно было не только предвидеть, но даже и пред-

— 435 —

ставить себе. С развитием науки приходится решать более сложные и запутанные задачи. К примеру: обычное уравнение имеет одно решение; квадратное уже дает два, причем бывает, что оба имеют смысл самый простой, а случается и другое! А кубическое уравнение, вообще говоря, должно давать три решения, но, даже и получив все элементы, из которых легко составить эти решения, надо еще сперва сообразить, как их составлять. Мы недавно любовались на график квадратного уравнения, но ведь график кубического уравнения, то есть кубической параболы, гораздо сложнее и все случаи решения кубического уравнения много хитрее. Кубическое уравнение может иметь три действительных корня, либо один действительный и два комплексных корня. Переходя к графику, мы видим, что кубическая парабола может иметь различные формы: 1) парабола пересекает ось абсцисс однажды (все три действительных корня равны друг ДРУГУ); 2) парабола пересекает ось абсцисс однажды и однажды ее касается (три действительных корня, причем два из них равны друг другу); 3) парабола пересекает ось абсцисс трижды (три разных действительных корня); 4) парабола пересекает ось абсцисс однажды, а кроме того, у нее имеются еще два сопряженных комплексных корня.

— По-моему, я такую параболу видел, — вспомнил Илюша, — в Схолии Шестнадцатой, там еще была и такая, которая у вас здесь под номером третьим.

— Это верно, — подтвердил Радикс, — так и было.

— В этом последнем случае, значит, — продолжал Илюша, — эти комплексные корни будут: один а + bi, а другой, ему сопряженный, аbi.

— Конечно, — подтвердил Мнимий. — Но ведь это еще отнюдь не все. Самое удивительное качество решения кубического уравнения, которое крайне поразило алгебраистов шестнадцатого века, заключается в том, что иногда попадается такое кубическое уравнение, что если мы станем решать его по Кардановой формуле, то, невзирая на то что все три корня его вещественны, формула Кардана выражает эти корни мнимыми радикалам и, и можно доказать, что ничего иного из формулы Кардана вообще получить невозможно. То есть истинное решение словно прячется за мнимостями! Это тот случай, который Кардан называл «неприводимым» (Кардан уже знал, что у кубического уравнения три корня). Тут болонские алгебраисты впервые убедились, что наши мнимые человечки действительно существуют, активно участвуют в алгебраических построениях и при решении самой вещественной задачи невозможно обойтись без того, чтобы с ними не встретиться. Тут надо вот что еще иметь в виду: обычные чи-

— 436 —

сла человек придумал для счета. Всякого рода задачи, которые пришлось решать, привели неизбежно к понятию различных математических образов, которые получаются по крайней мере из пары чисел, как, например, сумма, разность, произведение, частное или дробь. А затем уже пошли еще более сложные построения, как и мы, мнимые человечки, которые выросли из задач, связанных с квадратным уравнением. Счет — одно, а расчет — другое! Но именно для того, чтобы наши расчеты не противоречили простому счету, чтобы правильность счета нигде и никогда не нарушалась, и приходится вводить такие сложные и хитрые построения, где из пары чисел получается одно особенное число. Но ведь зато и результаты получаются обширные и замечательные! Однако самая суть дела в том, что кубическое уравнение с его необычайными сложностями заставило математиков понять, что мы, мнимые хитроумные человечки (от которых до той поры, встречаясь с нами в квадратных уравнениях, просто отмахивались!), вовсе не случайные призраки, а самые настоящие граждане и деятели математического мира!

— Все-таки трудно… — признался Илюша.

— Разумеется, не очень просто, — согласился Мнимий. — Но вы подумайте еще о том, что в те времена все это было еще трудней, потому что нашей удобной алгебры с буквенными знаками еще не существовало. Тарталья, кстати сказать, изложил формулу Кардана в стихах, а потребовалось ему для этого двадцать пять строк!

— Ого, — отозвался Илюша, — целая поэма!

— Вот именно. И что было делать с этой формулой, как рассудить о ее странностях, долгое время не знали. Пока кубическое уравнение таково, что у него только один действительный корень, выражение под квадратным корнем

(q/2)2 + (p/3)3

больше нуля, и тогда вычисления не так трудны. Но в другом случае — и как будто в самом простом, ибо тогда все три корня действительны! — это выражение становится меньше нуля, и как быть с формулой, неясно. Только через четверть века Рафаэль Бомбелли, последователь Кардана, нашел выход из положения. Начал он, как нередко в таких случаях бывает, с частного случая, с численного примера. Он взял такое кубическое уравнение:

x3 — 15x = 4

Решить его ничего не стоит без всякой формулы… Как вы скажете?

— 437 —

Илюша в ужасе уставился на уравнение. Наконец еле выдавил из себя:

— Четыре в квадрате — шестнадцать, а здесь пятнадцать, а четыре в кубе — шестьдесят четыре… Мне кажется, что решение равно четырем, потому что:

64 — 15 · 4 = 64 — 60 = 4.

— Вы совершенно правы! — весело воскликнул Мнимий. — Как видите, решить совсем нетрудно. А теперь попробуйте с формулой Кардана. И тотчас получается:

Как тут быть, неизвестно. Из (+ 121), конечно, квадратный корень извлечь небольшая хитрость, но ведь здесь минус.

Однако попробуем переписать теперь это по-нашему:

Из этого выражения Бомбелли получил (как мы теперь пишем!) такие равенства:

Если вы возведете каждое из этих равенств в куб, пользуясь формулой сокращенного умножения, вам хорошо известной, вы убедитесь, что равенства эти справедливы. Поскольку искомый икс равняется сумме этих двух выражений, то мы получаем…

Илюша немедленно написал ответ:

х = (2 + i) + (2 — i) = 2 + 2 = 4.

— Выходит, — решил он, — что искомый корень представился в виде суммы двух сопряженных комплексных чисел, а эта сумма, как мы уж знаем, есть действительное число! Значит, оно только спряталось за мнимыми числами. Но ведь должны быть и другие корни? Их ведь два еще должно быть как будто? Как их найти? Один корень мы нашли, — рассуждал Илюша, — левая часть уравнения должна состоять из трех

— 438 —

множителей. Но из нашего решения ясно, что один из множителей будет равен

(x — 4);

значит, если я перенесу все члены нашего уравнения влево и разделю затем эту левую часть на этот одночлен, получится квадратное уравнение, а из него можно раздобыть остальные два корня:

(x3 — 15x — 4) / (x — 4) = x3 + 4x + 1

Илюша еще немного покопался с вычислениями и написал:

x1 = 4,000; x2 = —2 + √3; x3 = —2 — √3

или приближенно:

х2 = —0,268; х3 = —3,732.

— По теореме Виеты выходит. И сумма корней равна нулю! Попробую проверить значения корней. Для этого я буду придавать иксу целочисленные значения от минус шести до плюс шести и посмотрю, где кривая пересечет ось абсцисс.

Илюша так и сделал. Получилась табличка, а за ней и кривая, которую можно разглядеть на чертеже[38].

x x3 - 15x Свободый член Сумма
- 6 - 216 + 90 - 4 - 130
- 5 - 125 + 75 - 4 - 54
- 4 - 64 + 60 - 4 - 8
- 3 - 27 + 45 - 4 + 14
- 2 - 8 + 30 - 4 + 18
- 1 - 1 + 15 - 4 + 10
0 0 0 - 4 - 4
+ 1 + 1 - 15 - 4 - 18
+ 2 + 8 - 30 -4 - 26
+ 3 + 27 - 45 - 4 - 22
+ 4 + 64 - 60 - 4 0
+ 5 + 125 - 75 - 4 + 46
+ 6 + 216 - 90 - 4 +122

— 439 —

— Ишь как хорошо вес выходит! — воскликнул Илюша, закончив табличку. — На четверке нуль…

— Сделаешь верно, и получается хорошо, — заметил Радикс.

— А те два других корня по чертежу тоже очень хорошо подходят. В порядке! И действительно, кривая три раза пересекает ось абсцисс.

— Как ей и положено, — закрепил Радикс. — Рафаэль Бомбелли был человек способный, ученый и даже удачливый: говорят, именно ему удалось разыскать на полках громадной Ватиканской библиотеки рукопись творений грека Диофанта Александрийского, с которых и началась теория чисел, высшая арифметика. Возможно, что Диофант в решении с Кардановой формулой навел Рафаэля Бомбелли на кое-какие полезные мысли.

Тут Радикс продекламировал такой стишок:


Вдоль по плоскости кривая

Очень правильно бежит,

Ось абсцисс пересекая,

Где корням быть надлежит!


— Там, где быть им надлежит, там как раз и пробежит! — поддакнул Мнимий.

Радикс проговорил скороговоркой еще стишок:


Как-нибудь уж, в самом деле,

Разберемся еле-еле

И рассмотрим все точь-в-точь,

Если нам синьор Бомбелли Догадается помочь…


И все весело рассмеялись. А Мнимий добавил:

— Надо вам знать еще, что неожиданные и своеобразные разоблачения Бомбелли в те времена скорее привели в недоумение ученых, чем направили их к новым исследованиям. И когда через некоторое время Виета обнаружил, что «неприводимый» случай Кардана можно разрешить тригонометрическим путем (как решение задачи о трисекции угла), то это, наверно, показалось облегчением (впрочем арабские математики нашли это решение примерно еще за целый век до Виеты). Однако трудно сказать, имело ли это какое-нибудь значение, ибо замечательная работа Бомбелли в свое время не была напечатана, хотя была известна и ее изучали крупные ученые. Любопытно, что в те времена были уверены, что

— 440 —

Виета открыл что-то совершенно новое, хотя на самом деле в решении Виеты новыми были только подстановки.

— Но я не знаю, как у Виеты получилось с трисекцией угла и с тригонометрическим решением.

— Неужто? — удивился Радикс. — Так сейчас узнаешь! Виета напал на счастливую мысль привлечь к вопросу о решении кубического уравнения тригонометрические функции. Мы как будто в прошлой схолии рассматривали, что получается, если возвести комплексное число в квадрат. Из этого примера ясно, кстати, что одно равенство комплексных чисел равносильно двум равенствам действительных, ибо действительную и мнимую часть правой части равенства можно рассматривать по отдельности. Согласен?

Илюша задумался.

— Кажется… да!

— Если так, то мы начнем с формулы для косинуса двойного угла. Так или нет? Помнишь?

— Так, как будто. И она будет:

cos 2α = cos2 α — sin2 α.

— Хорошо. Не спорю. А теперь перемножение комплексных чисел (единичных комплексных векторов) из предыдущей схолии повторим еще раз с тем отличием, что наши комплексные множители будут иметь разные аргументы, то есть разные углы. Что мы получим?

Илюша тотчас выполнил это умножение и получил.

cos (α + β) = cos α cos β — sin α sin β.

— Ну, а теперь у нас есть все для того, чтобы на основании этих двух формул написать еще формулу для косинуса троекратного угла, то есть для cos (2α + α), или в результате cos Зα.

На этот раз Илюша не очень долго возился, но все-таки помучился. Радикс напомнил ему, что ведь «без труда и рыбку не вытащишь из пруда», а не то что косинус троекратный!

И наконец получилась вот какая формула:

cos Зα = 4 cos3 α — 3 cos α.

— Вот теперь все, что надо, у нас есть, и мы можем спокойно продолжать наши рассуждения. Попрошу вас только еще заменить cos a на х и написать в обычном для уравнения виде так, чтобы правая часть равнялась нулю, тогда как cos За будет у нас называться а.

— 441 —

Это задание было совсем уж простое, и Илюша написал.

4x3 — 3xa = 0

— Так ведь это получилось кубическое уравнение и как раз такое, какое мы получали, когда уничтожили член с неизвестным во второй степени.

— Совершенно правильно! — отвечал Мнимий. — Представьте, эта же самая блестящая мысль пришла в голову и славному Франциску Виете! У вас, прямо скажу, был довольно способный предшественник!.. Теперь смотрите внимательно. Ведь из этого уравнения мы по данному углу можем найти угол в три раза меньший, а следовательно, перед нами способ для решения задачи древности — трисекции угла, или деления любого угла на три равные части. Заметьте: любого, ибо некоторые утлы, как, например, прямой угол, делятся на три части очень просто, циркулем и линейкой. Правда, обычно берут не косинус, а синус, но перейти от того к другому не так трудно. А в общем, получается доступный способ для решения кубического уравнения, вернее, одного из его видов. Вот какие разнообразные выводы получаются при рассмотрении решения кубического уравнения. При этом очень важно еще и то, что решение Виеты как раз и есть то самое, которое разъясняет этот трудный случай, когда действительные корни скрываются под личиной мнимых (этот случай, как мы уж говорили, Кардан называл «неприводимым»). И отсюда Виета вывел, что либо кубическое уравнение получается наподобие двух пропорциональных (как при двоекубии!), и тогда у него только один действительный корень, либо они сводятся к трисекции угла, и тогда все три корня действительные. Входить в большие подробности я не буду; скажу только, что этим тригонометрическим способом Виеты можно пользоваться именно тогда, когда под квадратными корнями в формуле Кардана стоят отрицательные числа. В таком случае свободный член уравнения q можно выразить через синус некоторого троекратного угла, а затем, пользуясь тригонометрическими таблицами, без особого труда найти и самые корни. Все это, разумеется, на практике не очень удобно, но тут смысл не в том, чтобы добиться решения кубического уравнения (которое с помощью методов высшего анализа находится скорей и проще), а в том, чтобы рассудить о сути соотношений в алгебраических вопросах.

— Хорошо! — сказал Илюша. — Конечно, все это не очень легко… Но все-таки интересно, когда такую историю с разными алгебраическими чудесами разберешь подробно. Только вот еще что: ведь у древних был уже способ трисекции угла?

— 442 —

Невсис Паппа.

DE = 2AB

FH || АС

АН = НЕ


— Да, — отвечал Радикс, — такой способ был, даже не один. Интересен способ так называемого невсиса, или способ «линейки с двумя метками», с которым мы познакомились уже в Схолии Пятой, способ полезный и чрезвычайно поучительный. Архимед в своих трудах нередко пользуется этим способом. И в древности были такие чудаки, которые его за это поругивали! На линейке можно поставить две метки, а вообще при построениях циркулем и линейкой линейка служила только для того, чтобы провести прямую! И этих меток уже вполне достаточно, чтобы получить возможность решать кубическое уравнение. Вот как решает этим способом Папп Александрит задачу на трисекцию. На нашем чертеже дан угол ABC, который надо разделить на три части. Пусть AC _|_ ВС; проведем через А прямую АЕ, параллельную ВС, возьмем отрезок, который, как мы уже знаем, будет вдвое больше АВ (для этого-то и нужны отметки на линейке!), так, чтобы его левый конец D лежал на АС, правый, то есть точка Е, на АЕ, а продолжение его проходило бы через точку В.

В таком случае угол CBD будет равен одной трети угла ABC. Это надо доказать.

— Попробую, — отозвался Илюша. — Для начала найдем середину отрезка DE, поставим там точку F и соединим ее с точкой А. Значит, этот треугольник EAD прямоугольный.

— 443 —

Вокруг него можно описать окружность, рассматривая отрезок DE как диаметр. Но если точка F будет его центром, то все три отрезка, то есть FD, AF и EF, равны друг другу, как радиусы этого описанного круга, и каждый равен половине отрезка DE или отрезку АВ. Дальше: треугольник ABF, очевидно, тоже равнобедренный в силу этого последнего равенства, а значит, его углы ABF и AFD равны друг другу. Треугольник AFE, конечно, тоже равнобедренный, это ясно из тех же равенств отрезков. Но угол AFD по отношению к треугольнику AFE есть его внешний угол, и следовательно…

— Ну хватит, пожалуй!— сказал Радикс. — Я вижу, ты понял. Доказательство не такое уж хитрое. Правильно ты начал рассуждать.

— Так и есть! — согласился Мнивши. — Очень похожее решение этой задачи даст примерно тем же методом и Архимед. Ученые полагают, что именно раздумья над этим невсисом Архимеда[39] и привели Виету к открытию тригонометрического решения кубического уравнения, так что невсис оказал немалые услуги нашей науке. Виета выяснил, что задача трисекции угла, над которой так мучились в древности, тем и трудна, что сводится к кубическому уравнению.

— Хорошо! — сказал с удовольствием Илья, который был в прекрасном настроении, поскольку ему удалось перескочить через длинное доказательство насчет невсиса и трисекции. — Но мне хочется, чтобы вы еще сказали несколько слов насчет этого знаменитого «правила циркуля и линейки».

— Видишь ли, — отвечал Радикс, — один из крупнейших древнегреческих ученых, Аполлоний Пергейский, современник Архимеда, в своем сочинении о конических сечениях говорит о том, что все геометрические построения должны выполняться только с помощью циркуля и линейки. Вообще в Древней Греции этого правила, конечно, не придерживались, но ему придавали очень большое значение в эпоху возрождения наук в Европе. Этот интерес несколько ослаб, когда Виете удалось впервые обнаружить, что именно это требование означает алгебраически: в таком случае нельзя пойти дальше построения корня квадратного, то есть решения квадратного уравнения либо такой задачи, которая сводится к последовательному извлечению ряда квадратных корней. Среди средневековых работ есть одна замечательная трисекция угла, выполненная очень простыми средствами Гиясэддином ал-Каши, талантли-

— 444 —

Трисекция Гиясэддина ал-Каши.

Хорды — двойные синусы. По теореме Птолемея (если четыре вершины четырехугольника лежат на окружности, сумма произведений противоположных сторон равна произведению диагоналей), из четырехугольника AEGH, АЕ = EG = GH и EH = AG, выводим, что AG2 = АЕ2 + АЕ · АН. По теореме Евклида (произведение отрезков хорды равно произведению отрезков диаметра, проходящего через точку пересечения диаметра с хордой), так как AG = GC, получаем AG2 = BG (2RBG), где R — радиус большого круга; затем но теореме Пифагора из треугольника ABG выводим: AG2 = 4 AE2 — (4 AE4: R2).

Приравнивая два выражения для AG, получаем: АЕ2 + · АН = 4 АЕ2 — (4 АЕ4 : R2). Полагая, что АЕ = sin а и что АН = sin За (ибо хорда АН стягивает утроенную дугу), а R = 1, получаем для любого угла выражение 3 sin а — 4 sin3 a = sin За.

Благодаря этому построению замечательные самаркандские математики в XV веке сумели вычислить синус одного градуса с восемнадцатью точными знаками после запятой.


вым математиком, одним из последних ученых исламитского мира, который трудился у знаменитого астронома Улугбека в Самарканде в пятнадцатом веке. Работы Улугбека были уничтожены реакционным духовенством, его обсерватория разрушена, а сам он был убит. Но память о работах ученых его школы осталась, и в шестнадцатом веке Мариам Челеби, внук ар-Руми, астронома, работавшего вместе с Улугбеком, обнародовал решение задачи трисекции угла. В Европе это решение узнали только в девятнадцатом веке. Это решение не дает искомого угла построением, как невсис Паппа. Но при его помощи можно получить нужное кубическое уравнение.

— 445 —

— А как потом решали кубические уравнения?

— К этому труднейшему вопросу вернулись через некоторое время. Сначала Эйлер со свойственной ему наблюдательностью заметил, что по формуле Кардана получается девять значений корней, тогда как ясно, что нужны всего три. И Эйлер показал, как надо комбинировать между собой эти значения, чтобы получить те три, которые нужны. Таким образом выяснилось, что в формуле Кардана таится еще один неожиданный секрет.

— А почему девять значений? — удивился Илюша.

— Да ведь в формуле Кардана два кубических корня, у каждого три значения, и если каждое из трех значений первого комбинировать с тремя значениями второго…

— … то и получим девять! — заключил мальчик. — А как их комбинировать?

— У вас ведь есть уравнение:

uv = — p/3

так вот мы и должны так их соединять, чтобы их произведение давало бы как раз эту величину, то есть — у. Это как раз и заметил Эйлер. Однако вскоре выяснилось, что можно действовать еще и другим способом, очень интересным…

— Как это так?

— Все это можно сделать, опираясь на важные положения, касающиеся извлечения корней из комплексных чисел. Эта операция не очень проста. Она делается при помощи так называемых корней из единицы…

— Не совсем понимаю, — перебил Илья, — запутался!..

— Ничего, смелее! Допустим, что мы извлекаем из комплексного числа корень пятой степени. Переходим к тригонометрической форме комплексного числа и пишем:

где к = 0, 1, 2, 3, 4, как мы уже это выяснили ранее. Но когда мы перемножаем комплексные числа, углы, вернее, аргументы комплексных чисел складываются и ничто не мешает суммы аргументов разъединить и написать извлечение корня пятой степени в таком виде:

— 446 —

Отсюда вытекает утверждение, что все значения корня из комплексного числа можно получить, умножая одно из этих значении на разные значения корпя той же степени из единицы, то есть на вторую скобку правой части. Представляете себе?

— Кажется, теперь представляю, — осторожно признался Илья. — Только разве это так важно, написать в таком виде, а не в другом?

— В таком кропотливом деле, как это, — отвечал Мнимий, — нельзя пренебрегать ни малейшим упрощением. Так и в данном случае, то есть для куба, при решении уравнения

x3 = 1

Первый корень, конечно, равен единице, а другие два…

— Другие два, — подсказал Илюша, — получаются из квадратного уравнения, то есть из такого:

где в правой части неполный квадрат суммы. Решая квадратное уравнение, получаем:

— Правильно… — заметил Мнимий. — Но давайте проделаем еще один поучительный опыт: возведем наш только что полученный икс-второй в квадрат:

— И получился, — сказал Илья, — не кто иной, как сам икс-третий! Ну, а если его еще и в куб?.. Правильно! Единица получается. Все в порядке.

— Так вот, — продолжал Мнимий, — назовем один из корней из единицы, то есть наш икс-второй, греческой буквой альфа. Тогда икс-третий, как вы только что выяснили, будет а2. А теперь я должен еще отметить, что среди всех корней из единицы (для квадратного корня два, для кубического три, и так далее, то есть их число совпадает с числом единиц в показателе корня) имеются такие корни, которые обладают весьма интересным и полезным свойством. Если мы один из таких корней будем возводить последовательно в возрастаю-

— 447 —

щие степени, начиная со второй, то получим все остальные корни данной совокупности. Например, второй и третий корни кубические из единицы (первый, конечно, единица) обладают этим свойством, так что

а22 = а3; а32 = а2; а23 = а1 = 1.

Если же взять для другого примера все корни шестой степени из единицы, от а1 до а6, то из них только два (а именно а1 и а5) обладают этим свойством и называются первообразными корнями. Например, из корней четвертой степени первообразных только два (a2 и а4), тогда как для пятой степени все корни, не считая первого, равного 1, будут первообразными. Если вписать в единичный круг правильный многоугольник, одна вершина которого лежит в точке с координатами 1, 0), то можно заметить, что только те его вершины будут давать первообразные корни, которые принадлежат именно этому многоугольнику, но отнюдь не какому-либо другому — с меньшим числом сторон и одной вершиной к точке с координатами A, 0). Прошу покорнейше запомнить это правило. Оно нетрудное. А теперь мы можем снова перейти и к формуле Кардана. Если у нас есть уравнение кубическое:

y3 + py + q = 0,

а формулу Кардана напишем в таком сокращенном виде:

то корни нашего уравнения будут таковы:

y1 = A + B;

y2 = αА + α2В;

y3 = α2А + αВ.

— Все-таки, — вымолвил опасливо Илюша, — это получается не так-то просто… С квадратным одна минута, а тут…

— Есть и более сложные задачи, а у сложных задач и способы решения довольно хитрые. Да это еще не все! А дальше способен слушать? А то закроем заседание нашей комиссии — и по домам!

— Нет, нет, — взмолился Илюша, — мне хочется все-таки до конца дослушать!

— «До конца»! — повторил ворчливо Радикс. — Ты дума-

— 448 —

ешь, у этой штуки есть конец? Что касается меня, то я в этом отнюдь не уверен. Так еще немножко проползти можно…

— Поползем! — ответил Илюша, вздохнув потихонечку.

— Воля твоя, — отвечал Радикс, — только потом чтобы не жаловаться, что, дескать, замучили!

— Не буду жаловаться! — храбро заявил Илья.

— Тогда слушай дальше, — продолжал Радикс.

— Слушаю!..

— В конце восемнадцатого века замечательный французский математик Лагранж пытался разобраться во всех способах решения уравнений третьей и четвертой степеней. После того как Эйлер нашел сочетания значений двух кубических корней в формуле Кардана, чтобы получить значения всех трех искомых корней, изучение алгебры комплексных чисел сильно двинулось вперед. Лагранж обратил внимание на то, что любой из двух кубических радикалов в формуле Кардана можно выразить через три корня уравнения при помощи следующей формулы (в зависимости от того, какой корень считается первым, какой — вторым, какой — третьим):

⅓(x1 + αx2 + α2x3)

— Совсем я запутался! — с огорчением пробормотал Илья. — Чем эта формула поможет? Откуда взять корни, когда я еще не решил уравнения? Значит, надо сперва воспользоваться формулой Кардана. Какой смысл в этой формуле?..

— Видите ли, — вмешался Мнимий, — вы правы в том отношении, что в деле разыскания корней эта формула помочь не может. Но чтобы представить себе, как связаны корни кубического уравнения с его коэффициентами, она в высшей степени полезна.

— Опять не понимаю! — снова огорчился мальчик. — Ведь мы же знаем, какие для Кардановой формулы делали два раза подстановки! Разве из этого нельзя вывести, какие получаются соотношения между корнями и коэффициентами?

— Того, что мы знаем о наших подстановках, еще мало. Потому что те подстановки, которые годятся для кубического уравнения, не подходят для уравнения четвертой степени, а следовательно, это способ не общий. Кроме того, пока самый способ решения нельзя проверить — или, как говорится, проанализировать, — невозможно подойти и к рассмотрению всего вопроса в целом об алгебраических уравнениях. Ведь мало еще догадаться, каково решение, надо дознаться, почему оно такое, а не иное.

— Возьмем квадратное уравнение, — предложил Радикс, —

— 449 —

хорошо тебе известное. Что ты скажешь, если я предложу тебе для него такую формулу? Ты с ней согласишься?

x = 1/2[(x1 + x2) ± (x1x2)]

— Д-да… — сказал Илюша неуверенно. — То есть если припомнить общую формулу квадратного уравнения

(x1 + x2)(x1x2) = 0,

потом открыть в ней скобки

x2 — (x1 + x2)x + x1x2 = 0,

а затем применить к такому выражению всем известную формулу, для решения квадратного уравнения, то как раз и придешь к твоей формуле. И действительно, она показывает, как формула решения связана с корнями. Но ведь в квадратном уравнении все так просто!

— Боюсь, — вымолвил Мнимий, — что вас пугают эти самые альфы в формуле Лагранжа. Не так ли? А ведь мы о них недавно говорили… Вспомните-ка!

— Говорили…

— А что именно?

— Что с их помощью получаются все значения корней из комплексного числа…

— Разве? — сказал удивленный Радикс. — Как же это возможно? Мыслимое ли это дело?

Илюша посмотрел на своего друга укоризненно.

Что-то очень маленькое и беленькое вдруг упало у ног Илюши, а потом пошел целый снег из этих маленьких беленьких… Одна штучка упала Илюше прямо на руку, и он увидал, что на ладошке у него лежит крохотная беленькая альфа. А кругом так и сыплются все новые и новые маленькие беленькие альфы…

А Мнимий посмотрел на эту альфообразную метель и признался:

— А ведь в самой своей сущности я тоже альфа!

Илюша взглянул на него и сказал:

— Когда мы разбирали пример Бомбелли, я, кажется, понял, что под корнями в формуле Кардана стоят сопряженные комплексные числа… Ну вот, отсюда и альфы, чтобы получать один за другим все значения корня из комплексного числа! Теперь я как будто разобрался. Значит, Лагранж дал

— 450 —

формулу Кардана не просто в виде результата двух подстановок, а так, как она складывается из самых корней.

И тут альфовый снежок стал стихать.

— Так-с… — произнес наставительно Мнимий. — Это похоже на дело. Но теперь на минутку давайте снова вернемся к квадратному уравнению. Вы этого не бойтесь! Поверьте, что все те крупные ученые, которые это разбирали, тоже не раз вспоминали о квадратном уравнении. Так вот вам еще один вывод для формулы решения квадратного уравнения, причем чрезвычайно полезный. Нам ведь хорошо известно, что по формулам Виеты сумма корней квадратного уравнения (х2 + рх + q = 0) равняется коэффициенту при неизвестном в первой степени с обратным знаком, то есть:

х1 + х2 = — р.

Возьмем еще одно выражение, составленное из тех же корней, только не сумму, а разность, и возведем ее в квадрат:

(x1x2)2 = (x1 + x2)2 — 4x1x2 = p2 — 4q

Отсюда сразу можно написать, что

x1 + x2 = — p

x1x2 = ± √( p2 — 4q)

Сложим эти два равенства и сейчас же получим известную формулу решения квадратного уравнения. Не так ли?

— Так, конечно, — отвечал Илюша. — Из суммы этих выражений один корень получаем, а из их разности — другой. Все понятно. Выходит, что мы этим способом получили два уравнения первой степени. Раз нам нужно два решения, то мы можем к ним прийти через два уравнения первой степени… То есть я не знаю, всегда ли так должно получаться, но во всяком случае с квадратным уравнением именно так и получается…

— Допустим… — отвечал Мнимий. — Но лучше сказать, пусть так будет вплоть до первого противоречия с этим предположением либо допущением.

— А если встретится противоречие?

— Тогда посмотрим. Попробуем его обойти, а если не удастся, придется видоизменять наше допущение. Когда Лагранж, пытаясь обнаружить общее правило из разных решений алгебраических уравнений, нашел наконец свою замечательную формулу, он заметил, что три корня в ней надо брать в некотором вполне определенном порядке, а это на-

— 451 —

толкнуло его на новые плодотворные опыты. Если взять все три корпя кубического уравнения, то есть х1, х2 и х3, то, если их брать не только в той последовательности, которая оказалась необходимой — вместе с нашими помощницами, альфами, — но и во всех остальных…

— Интересно, — заметил Радикс, — а сколько будет этих всех остальных?

И оба, Радикс и Мнимий, внимательно посмотрели на нашего героя, Илью Алексеевича.

— Остальных последовательностей корней? — неуверенно повторил мальчик. — Не понимаю вопроса… Или, может быть, о порядке вы говорите? Тогда вы меня о перестановках спрашиваете?..

Не отвечая ни слова, Радикс и Мнимий все так же пристально смотрели на Илюшу, который чувствовал себя под их взглядами не в своей тарелке.

— … и уж если это так, — в полной неуверенности продолжал он, — то раз всего три корня, то, как их ни переставляй, выйдет только шесть различных последовательностей. И все.

Опять полная тишина. Вдруг Илюша почувствовал, что в его левой руке оказалась маленькая коробочка, и действительно, это был просто самый маленький Дразнилка с тремя шашками. Только на шашках были изображены символы корней:

Илюша начал машинально двигать шашечки, но ничего нового или интересного не обнаружил. Да, действительно, всего получалось шесть перестановок! Но он это давно знал:

(x1 x2 x3); (x2 x3 x1); (x3 x1 x2);

затем опять получается то же самое. А если переставить две шашки, ну, скажем, x2 и x2, то получатся еще три случая:

(x2 x1 x3); (x1 x3 x2); (x3 x2 x1);

а потом снова то же.

— Шесть, — согласился Мнимий, — спору нет. Но вам пришлось однажды что-то менять в первом расположении. Это как надо понимать?

— 452 —

— Это как бы два круга Дразнилки; первый можно назвать четным кругом, а второй — нечетным, потому что в первом случае одна шашка постоянно обходит две шашки, как и полагается в Дразнилке, а во втором сначала обходят одну шашку, и порядок меняется. Перейти от одного круга к другому, не вынимая одной шашки из коробочки, нельзя.

При перестановках каждый раз первая шашка попадает в конец направо.

— Все верно, — подтвердил Мнимий. — Итак, два круга, причем один в другой непосредственно не переходят..

— Да, и если отразить какую-нибудь перестановку первого (четного) круга в зеркале, то выйдет перестановка второго круга (нечетного).

— Хорошо, — подхватил Мнимий, — это важное замечание. Мы можем отметить, что названные вами два круга Дразнилки-Малого зеркально симметричны.

— Похоже, что так, — неуверенно произнес Илюша.

— Мы встретились с явлением, которое называют симметрией. Вы ведь знаете, что такое преобразование? — спросил Мнимий.

— Да, конечно, — отвечал Илюша, — например, подобие. Потом еще умножение на комплексный вектор, как мы уже в прошлой схолии рассматривали, подобие и поворот… А еще у нас дома есть подставка для чайника. Она раздвижная — может быть квадратом, а потянешь за уголки, получается ромб. Папа говорит, что это преобразование…

— А по-твоему, это что? — спросил Радикс. — Из квадрата — ромб, и обратно. Чем не преобразование? Такие преобразования называются аффинными. Если бы на квадрате был нарисован круг, что бы ты из него получил при аффинном преобразовании?

— Может быть, эллипс? — неуверенно ответил Илюша.

— А почему бы и нет?

— Я — «за»! — отвечал храбрый Илья.

— Присоединяюсь, — заключил Радикс.

— Так вот, — снова начал Мнимий, — чтобы ответить на вопрос, что такое симметрия, необходимо и ее тоже рассматривать как некоторое преобразование. У нас, например, есть равнобедренный треугольник; пусть его основание не равно одной из его сторон, значит, он симметричен относительно своей высоты; при повороте на 180° вокруг высоты он совместится сам с собой. Разумеется, мы не принимаем в расчет, какой стороной он к нам повернут. Равносторонний треугольник симметричен не только относительно высоты, но относительно каждой из своих высот (они же медианы и биссектрисы). Аналогично мы рассуждаем и о телах…

— 453 —

— Бабочка симметрична!

— Ну конечно! Это уже касается тела в пространстве.

Одним словом, явление симметрии — вещь понятная. Здесь преобразование — во всех наших случаях — сводится к повороту, но самым «процессом поворота» мы но интересуемся (этим делом механика занимается), а смотрим только на то, что из этого поворота получилось. Кроме поворота, еще возможно зеркальное отображение — симметрия относительно плоскости (с настоящим зеркалом) либо относительно прямой (как для сопряженных комплексных векторов) и параллельный перенос в плоскости или вместе со всей плоскостью. Это все геометрическая симметрия. Но возможна еще и симметрия в алгебраическом смысле, симметрия многочленов. Вот как раз в этом-то случае к нам и приходит на помощь понятие перестановки, с помощью которой мы можем уяснить и записать алгебраическую симметрию. Хотя, конечно, на первый взгляд перестановки непосредственно симметрией и не обладают, но, например, мы обнаружили, что все шесть перестановок из трех элементов разделяются на две части (по три), связанные между собой зеркальной симметрией. Если мы теперь возьмем формулы Виеты, известные нам по квадратному уравнению, но которые легко написать и для кубического уравнения, начиная с того, что свободный член всегда равен произведению всех корней, то…

— Значит, — перебил мальчик, — мы получим для уравнения:

х3 + ах2 + + с = 0,

если начать с такой записи уравнения:

(xx1) (хх2) (хх3) = 0,

такие выражения для его коэффициентов через его корни:

c = x1x2x3

b = x1x2 + x1x3 + x2x3

а = х1 + x2 + х3.

Знаки меняются.

— Так-с… Так вот, именно эти выражения Виеты обладают очень важным свойством: они не меняются, если переставлять в них корни. Проверьте!

— Насчет а3 и с, конечно, верно, потому что это сумма и произведение. А как быть с b? Если поменять местами икс-первый и икс-третий?.. Верно! То же самое получается.

— Поэтому математики называют эти функции корней

— 454 —

из формул Виеты симметрическими функциями. Для алгебраических уравнений любых степеней они строятся по одному и тому же правилу, которое вы уже указали. А у кубического уравнения есть еще одно общее свойство с Дразнилкой Малым. Когда мы разбирали пример Рафаэля Бомбелли, вы ведь заметили, что кубические корни, им полученные, суть сопряженные комплексные числа, то есть величины неравные, хотя и геометрически зеркально симметричные. Свойство это заключается в том, что существует такая функция корней кубического уравнения, которая при всех перестановках может принять только два значения — это и будут подкоренные величины кубических корней в Кардановой формуле.

— Вроде, как два круга разной четности у Дразнилки Малого? — осторожно спросил Илюша.

— Похоже, но не больше… Эта функция, найденная Лагранжем, такова:

(х1 + αх2 + α2х3).

Она может принимать только два значения, поэтому появляется возможность приравнять их двум корням квадратного уравнения, что и позволяет нам построить Карданову формулу, то есть найти решение кубического уравнения. Вот как примерно через два века была выяснена сущность Кардановой формулы. Вслед за этим Лагранж рассмотрел и решение уравнения четвертой степени, которое приводится не к квадратному уравнению, а к кубическому, однако теперь это уже не страшно!

— А уж с четвертой степенью, наверно, ужасно трудно… — заметил Илюша.

— Да, не так просто! Но Лагранж и для этого уравнения нашел решение. Он вообще старался найти самый смысл решения, так сказать, ключ к этой удивительной загадке. И ему многое удалось. Он даже предполагал, что именно в перестановках весь секрет этих сложнейших дел и прячется. А потом оказалось, что это верно! Но все-таки даже и этой тонкой догадки еще было мало. Ученые бились над уравнением пятой степени, и Лагранжу с этой загадочной пятой степенью тоже ничего не удалось сделать. Он даже с горя начал поговаривать, что вообще с математикой дела плохи… Так что вы можете убедиться, что не только в средней школе с математикой огорчения случаются!

— Удивительные все-таки перестановки! Такие, мне казалось, простые…

— Сами математики долгое время не знали, какие в них таятся удивительные секреты, — отвечал Радикс, — и до чего полезные секреты! Физики, которые ныне занимаются строе-

— 455 —

нием атома, перестановкам уделяют много внимания. Алгебра теперь занимается главным образом математическими операциями и их соотношениями. Когда-то араб ал-Хорезми поругивал греческие геометрические «премудрости», расхваливая свою алгебру, которая помогает решать житейские арифметические задачи, а в разные отвлеченности, не интересные для торговой практики, не лезет. И оказалось в дальнейшем, что он жестоко ошибся! Как раз в алгебре-то и зародились самые отвлеченные разделы нашей науки. Благодаря этому развитию математика помогла физике осилить задачи, которые раньше казались совершенно недоступными.

— А как же все-таки получилось с уравнением пятой степени?

— Сейчас я разъясню, — отвечал Мнимий — Я снова прошу внимания! Здесь есть один важный и трудный пункт… Тут вот в чем дело: Лагранж, человек редкой наблюдательности и проницательности, когда стал изучать симметрические функции, довольно скоро заметил, что знать только одни симметрические функции еще не достаточно для того, чтобы решить кубическое уравнение. И что в формуле Кардана незаметно запрятан еще какой-то важный секрет, без которого смысл ее все-таки еще остается темен. В чем же тут дело? Самый трудный пункт здесь в том, что самые симметрические функции не позволяют еще отличить один корень от другого, и надо найти еще одну несимметрическую функцию корней, которая, в случае квадратного уравнения, принимает всегда одно-единственное значение (а для кубического уравнения- ровно два и не больше). Приглядитесь сами к решению квадратного уравнения. Там мы получаем две функции симметрические:

x1 + x2 = —p; x1x2 = q.

Но что с ними делать? Ведь чтобы разделить эти два корня, надо опять решать то же самое уравнение? Выходит, что мы мучались-мучались, а все равно не сдвинулись с места! Так вот, в том-то и заключается вся сила, что возможно найти еще одну функцию корней, которая уже не будет симметричной и — а это-то и есть основное! — принимает одно и только одно значение. Это и будет функция (x1x2), о которой мы уже говорили. А зная сумму и разность наших корней, мы их немедленно находим, и при этом из уравнения первой степени, но не второй! Теперь — готово! Степень уравнения мы понизили, все в порядке. Совершенно так же для кубического уравнения мы ищем несимметрическую (знакопеременную) функцию, принимающую только два значения. Для уравнения четвертой степени это будет несимметрическая функция

— 456 —

с тремя значениями. Но дальше уже стоит незыблемая точка. Дальше этого в уравнениях с радикалами двинуться невозможно. Подробности вы когда-нибудь узнаете из учебника высшей алгебры, а ваш милый друг Дразнилка-Малый будет вам помогать изо всех своих крохотных силенок! Не думайте, что вы случайно, на первых же шагах, с ним встретились здесь у нас — в серьезном волшебном царстве для любознательных ребят!

Вы ведь поняли, наверно, что перестановки корней — когда их всего три или четыре — обладают тем полезнейшим свойством, что с их помощью можно отыскать такую функцию корней, для которой число значений меньше числа корней данного уравнения. У кубического уравнения три корня и можно составить шесть перестановок, но можно найти такую функцию корней, которая имеет только два значения, как мы уже говорили. Уравнения четвертой степени имеет четыре корня, их можно переставлять двадцатью четырьмя способами. Есть функция, имеющая только шесть значений, но с ними можно справиться, опираясь на помощь кубического уравнения.

— То есть вроде как мы делаем в наших биквадратных уравнениях?..

— Именно в этом роде. Но вот далее нас и подстерегает разочарование. В 1799 году итальянский врач и математик Руффини, занимаясь систематическим изучением перестановок, нашел и доказал теорему, что от пяти элементов (у которых будет сто двадцать перестановок) не существует таких функций, которые имели бы четыре или три значения. А если так…

— Значит, степень уравнения нельзя понизить?.. — воскликнул Илюша.

— Выходит, — ответил Мнимий, — что дальше уж нельзя.

С уравнением пятой степени было не просто полторы тысячи неудач, а нечто более серьезное: оказалось, что в этом роде задача не только не имеет решения, но и иметь не может. В работе Руффини еще не все было очень гладко, а через сравнительно короткий срок гениальный молодой математик норвежец Абель дал безупречное доказательство положениям Руффини. Затем Абель нашел еще новые подробности насчет алгебраических уравнений. Коротко это можно так изложить: если уравнение таково, что между его корнями существуют некоторые сравнительно несложные отношения, его можно решить в радикалах. Но, к сожалению, для уравнений выше четвертой степени такие свойства имеют многие отдельные виды уравнений, но отнюдь не все. Вскоре этой задачей занялся гениальный юный француз Эварист Галуа, погибший

— 457 —

на поединке с наемным убийцей, подосланным подлой полицией тогдашнего реакционного французского правительства. В ночь перед трагической гибелью юный математик набросал свою работу. А она увидела свет только через четырнадцать лет после того, как ранняя могила поглотила этого замечательного юношу. Ему было всего двадцать лет…

— А его работа была очень сложная?

— Даже весьма сложная! — отозвался Мнимий. — Многие вопросы и решения снова оказались связанными с той же самой симметрией, но в еще более хитроумном виде по сравнению с тем, о чем мы уже говорили. Введены были и некоторые новые крайне важные общие понятия, сыгравшие свою роль не только в алгебре, но обогатившие и другие разделы нашей науки. Самый процесс постепенного упрощения уравнений был изучен во всей сложности. Для целого ряда, казалось бы, неодолимых препятствий были придуманы обходные хитрые пути, а затем и они сами подверглись исследованию, изучению, так что весь этот раздел математики сам превратился в исследование того, как именно строятся методы решения задач и на чем они в сущности своей основаны. Методы Галуа дали результаты удивительные и неожиданные: если мы сейчас не только убедились на опыте, но и знаем, что с помощью линейки и циркуля невозможно решить кубическое уравнение, то доказано это было в точности только после Галуа. Уравнения любой степени, у которых все коэффициенты при неизвестном в любой степени вплоть до нулевой (то есть, значит, до свободного члена) равны единице — а это и есть общее уравнение деления круга (с одним из них мы познакомились в предыдущей схолии), — всегда решаются, потому что они могут быть сведены к целой цепи уравнений низших степеней. Это опять же до конца разъясняется тем же Галуа. Однако я могу привести только отдельные примеры, хотя и они очень убедительны. В этом направлении наука сделада гигантские шаги. И чем дальше ученый забирается в глубь строения своих методов, тем меньше ему служит то, что можно сразу охватить наглядно. Поэтому вопросы рассуждения, то есть логики, получают все большее и большее значение. Ну вот! Это приблизительно все, что мы способны вам рассказать из этой удивительной, но крайне трудной и весьма отвлеченной области науки[40].

— Да, все-таки очень сложные формулы! — вздохнул Илюша.

— 458 —

— Да ими и не пользуются, — отвечал Мнимий, — имеются гораздо более доступные средства в дифференциальном исчислении.

— Ну-с, молодой человек, — выговорил степенно Радикс, — голова на месте?

— Кажется, на месте, — отвечал Илюша. — Трудно ужасно, так длинно!..

— Не так еще ужасно! — отвечал преспокойно Радикс. — А ты, кстати, видел, какую траекторию в пространстве описал тот советский спутник, который умудрился снять фотографию Луны с той ее стороны, которую с Земли не видно? Как ты полагаешь, очень легко было ее вычислить?.. Ну, а громадные турбины на гидростанциях, их рассчитать просто? А скоростные и высотные самолеты? А счетные электронные машины? Ведь это все необходимые и неизбежные устройства в нашем веке! А расчеты, касающиеся атома и всего его строения, так это еще во много-много раз труднее. Но люди, твои современники, одолевают! Да еще каждый день и каждый час идут вперед… Так что хочешь не хочешь, а поспевать всюду надо!

— Конечно, — покорно пробормотал Илья, — я ведь не спорю…

— Тогда чем же ты недоволен?

— Мне ужасно обидно, что я все-таки самого главного не понимаю! Не понимаю, и все!

— Ишь какой сердитый! — заметил Радикс. — Из-за чего ты так раскипятился?

Илюша даже раскраснелся от волнения.

— Не могу поверить, чтобы эти Мнимии были просто открытием. По-моему, они в то же время еще и чье-то изобретение…

— Видишь ли, — отвечал ему Радикс, — всякое открытие если и не изобретение, то путь к нему. Открытие явления электрической индукции кончилось сооружением динамо-машины, то есть изобретением. Оно было основано на использовании открытия об индукции. Здесь, в вопросе насчет Мнимия, дело обстоит несколько сложнее, а в общем довольно похоже. Человек, изучая алгебраические уравнения, натолкнулся на эти «странные» комплексные числа. Оказалось, что анализировать некоторые очень важные вопросы алгебры без них невозможно — это было открытие! Но в дальнейшем, когда ученые постепенно примирились с этими «странностями», оказалось, что эти замечательные орудия научного прогресса крайне важны и для техники (в электротехнике, в самолетостроении, например), и тогда комплексное число стало привычным. Догадка — великое дело в науке! Но ведь

— 459 —

догадку надо обосновать, чтобы знать, где она пригодится, а где нет. И когда начинается обоснование догадки, начинается и самое построение этого образа или понятия, тогда это логическое построение понятия в известном смысле можно назвать изобретением, например, математические обозначения. Понятие интеграла, о котором мы уже говорили, было найдено, то есть открыто, примерно в одно и то же время Ньютоном и Лейбницем. Но Лейбниц придумал такие удобные обозначения в этом новом разделе нашей науки, которые сразу всем очень помогли, и вот это было именно изобретением[41].

— Так вот-с… — промолвил Мнимий, — в заключение я должен буду еще сделать три важных замечания к нашей этой последней беседе. Первое заключается в том, что замечательные труды ученых о решениях уравнений высших степеней привели к выводу, что многие трудные вопросы по части уравнений можно уподобить двум очень простым задачам: 1) извлечению квадратного корня и 2) извлечению корня шестой степени. Первая задача не поддается никакому упрощению, тогда как вторая может быть разбита на две ступени — извлечение кубического корня, а затем из результата — извлечение квадратного. Так вот, общее решение уравнения пятой степени относится именно к первому классу задач. Второе — это то, что все подобного рода задачи очень тесно связаны

— 460 —

с перестановками. Наконец, третье заключается в том, что вся замечательная теория Галуа в дальнейшем разрослась в целую математическую дисциплину, имеющую ныне крупнейшее значение. Хотя она и далека от непосредственной инженерной практики, но она дает математику в руки мощное орудие для решения вопроса о том, разрешима ли данная задача вообще (определенными средствами) или нет. Объектами математической мысли стали не самые числа, но операции над ними.


— Вот как, — сказал Илья, — пожалуй, я теперь больше спорить не буду. Кажется, теперь… ясно!

— Ну и прекрасно! — заключил Радикс. — Тогда давай в честь этого события споем и станцуем. Согласен?

— Еще бы! — обрадовался Илюша.

Они встали рядом, Мнимий им хлопнул в ладоши, и вот они вдвоем пустились в пляс, припевая довольно громко:


Метод двух прямых углов —

Просто превосходный метод!

Прямо вам скажу, что этот

Метод двух прямых углов

Всё без чисел и без слов

Нам про куб расскажет этот.

Метод двух прямых углов —

Просто превосходный метод!

— 461 —

Загрузка...