Инструментарий и ловушки
Возможности механизмов защиты
Известен ряд фундаментальных технических академических печатных материалов, написанных по вопросам использования механизмов защиты и связанных с ними классических проблем. Одним из последних является доклад Вейнгарта (WeingarJ «Устройства физической защиты для компьютерных подсистем: обзор нападений и способов защиты от них» на Симпозиуме по шифровальной аппаратуре и встроенным системам 2000 (Workshop on Cryptographic Hardware and Embedded Systems 2000). Доклад посвящен описанию известных способов физического воздействия на системы: от самых простых до очень сложных. Работа Андерсона (Anderson) и Куна (Kuhn), опубликованная в материалах Второго симпозиума USENIX по вопросам электронной коммерции (The Second USENIX Workshop on Electronic Commerce 1996), разъясняет, почему нельзя доверять заявлениям производителей смарт-карт и других процессоров безопасности по поводу реализации в них средств противодействия вскрытия устройств. Они показали, как, используя некоторые современные способы, можно проникнуть внутрь таких устройств и восстановить зашифрованные данные. Материалы симпозиума расположены по адресу www.cl.cam.ac.uk/~mgk25/tamper.pdf. Работа Кларка «Физическая защита криптографических устройств» (Прогресс в криптологии: Еврокрипт 87 – Advances in Cryptology: EURO-CRYPT 87) является обзором рисков, целей и сценариев нападения, имеющих отношение к механизмам защиты. Статья Чаума (Chaum) «Концепции проектирования защитных систем реагирования» (Tamper Responding Systems), Прогресс в криптологии: материалы Crypto 83 – Advances in Cryptology: Proceedings of Crypto 83, была одной из первых работ, в которой обсуждались идеи датчиков реакции защитных систем на вскрытие устройств и способы атаки на них.
Защита устройства путем противодействия вскрытию
Защита устройства путем противодействия вскрытию главным образом основана на специальной конструкции корпуса, которая затрудняет нанесение устройству тайного ущерба. Конструктивными особенностями подобного корпуса могут быть:
• корпус из закаленной стали;
• замки и блокирующие устройства;
• герметизация и изоляция;
• потайные винты;
• миниатюрные воздушные каналы (другими словами, плотная упаковка компонент и монтажных плат для затруднения визуального исследования устройства с помощью волоконной оптики).
Дополнительным преимуществом защитных механизмов противодействия вскрытию является то, что при их использовании попытки вскрытия устройства очевидны. Это означает, что изменения в корпусе могут визуально наблюдаться, и они являются прямым доказательством попытки вскрытия устройства. Подобная защита создает для злоумышленника дополнительные трудности.
Демонстративная защита устройства
Механизм демонстративной защиты устройства является главным средством устрашения для минимизации риска взлома случайным злоумышленником. Существуют сотни доступных материалов и приспособлений демонстративной защиты. Главным образом это специальные пломбы, печати и ленты, нарушение которых ясно свидетельствует о физическом вмешательстве. Но большинство (если не все) механизмов демонстративной защиты не являются надежной защитой от злоумышленника. В статье Джонстона (Johnston) и Гарсия (Garcia) «Физическая защита и устройства индикации взлома» (Security and Tamper-Indicating Devices), www.asis.org/midyear-97/Proceedings/johnston.html, показано, каким образом, используя быстрые, недорогие и простые в техническом отношении методы, удалось преодолеть пассивную и электронную защиту, которая была реализована при помощи 94 различных видов печатей.
Механизм демонстративной защиты устройства только тогда эффективен, когда предусмотрены постоянные проверки возможных попыток вскрытия устройства или законный пользователь устройства может заметить какие-либо изменения внешнего вида устройства, например сорванную пломбу.
Защитные механизмы обнаружения попыток вскрытия
Защитные механизмы обнаружения попыток вскрытия позволяют устройству узнать о вмешательстве в его конструкцию. Предпримет ли устройство какие-нибудь ответные меры при обнаружении вмешательства одним из этих механизмов, зависит от реализованной в устройстве реакции на подобные действия злоумышленника, которая будет обсуждена в следующем разделе. К механизмам обнаружения попыток вскрытия относятся:
• микровыключатели, электромагнитные переключатели и прижимные контакты – обнаруживают открытие устройства или перемещение его контролируемого компонента;
• температурные и радиационные датчики – обнаруживают изменения окружающей среды, нагревание и замораживание устройства, облучение устройства рентгеновским излучением (используемым для выявления внутреннего содержимого запечатанного или герметичного устройства) или лучами иона (часто используемого в современных атаках для исследования определенных логических элементов интегральной схемы);
• гибкие электрические цепи и волоконно-оптические кабеля, обертывающие важные схемы или компоненты на плате. Они используются для обнаружения в них пробоя или разрыва. Например, при изменении сопротивления гибкой электрической цепи или уменьшении передающейся по волоконно-оптическому кабелю силы света можно предположить наличие попыток физического вмешательства.