Телепортация – в кино, – в науке, в жизни

Пока ученые бьются над материальной телепортацией, любители компьютерных игр прекрасно освоилась с телепортацией виртуальной.

Когда кратчайший путь оказывается самым долгим

Фантастика под скептическим взором науки

В самом конце 1997 года в редакцию поступило короткое сообщение, которое просто просилось на первую полосу журнала под рубрику «Сенсация». Выглядела эта заметка так: «Отправляйте меня. Скотти!..»

Те, кто смотрел американский сериал «Стар Трек», помнят, как при высадке на планету космонавтов перемещали туда при помощи «нуль-транспортировки». Как это ни фантастически звучит, австрийским физикам удалось сделать нечто подобное: они разрушили пучок света в одном месте, передали информацию о нем в другое (на расстояние около метра) и там воссоздали точное подобие этого пучка. Группа под руководством Антона Зелингера опубликовала свои результаты в декабрьском номере журнала «Нейчур».

Эта первая работа, в которой продемонстрирована возможность «квантовой те депортации» – передачи физических характеристик. По мнению Зелингера, весьма скоро можно будет так же транспортировать атомы, а лет через десять – и молекулы. Однако не надо тешить себя тщетными ожиданиями «нуль-транспортировки» живых существ. «Я хочу подчеркнуть, что все надежды на передачу даже простейшей бактерии технологически очень далеки от реальности, пока о них просто рано говорить» – считает Чарльз Беннет, физик из IBM. Именно его группа в 1993 году впервые выдвинула идею квантовой телепортации.



Все, кто так или иначе работал с квантовой телепортацией, отмечают, что не стоит обсуждать беспочвенные фантазии, а лучше сосредоточиться на ином применении эффекта. Дело в том, что подобная методика передачи информации позволяет создать гораздо более быстрый – квантовый – компьютер.

Квантовая механика гласит, что фотоны могут быть связаны друг с другом (еще этот эффект иногда называется «спутыванием»). Австрийские физики наблюдали процесс передачи поляризации от одного фотона к другому, причем независимо от расстояния между ними. Можно сказать и так, что один фотон становится точной копией другого, совершается как бы его телепортация. Есть теоретические расчеты, что подобный эффект может происходить даже при расстоянии между фотонами в километры. Именно в это странное явление и не мог до конца поверить Альберт Эйнштейн.

Скепсис Эйнштейна разделили многие наши ученые современники, поэтому заметку решили отложить. Действительно, при всех оговорках в поступившей информации было что-то сомнительное. «А состоялся ли эксперимент?». «Даже если в этом что-то есть, имеет смысл подождать подтверждений». «Разве нам мало дутых сенсаций?». «О, Господи, какая телепортация – не уподобляйтесь малограмотным журналистам…». «А кто такой этот Зелингер? Он серьезный ученый?» – сито научных, да и житейских аргументов оказалось столь плотным, что сквозь него не смогло просочиться такое претенциозное известие.

Какое-то время мы ждали и, казалось бы, правильно делали, что не спешили, поскольку, как говорится, продолжения не последовало… Однако не прошло и трех лет, как выяснилось, что тема эта вовсе не исчерпала себя, а напротив, «возмужала» и незаметно вошла в обиход обсуждений во вполне солидных научных кругах.

Обсудим же ее и мы, вполне понимая, насколько нелегким может быть восприятие подобного рода идей. Не это ли помешало публикации приведенной заметки и не это ли в свое время имел в виду академик Л.Д. Ландау: «…Триумф познающего человеческого разума заключается ныне в том, что наше сознание оставило далеко позади возможности нашего воображения, и ум физиков свободно работает там, где воображение человека уже бессильно!»?


Александр Волков

Так бывает в кино

Жизнь подражает искусству гораздо больше, чем искусство подражает жизни… Искусство указывает ей те или иные красиаые формы, в которых она может воплотить свое стремление. Оскар Уайльд.

Порой блестящие идеи рождаются от бедности. Так, американский сценарист Джин Родденберри, готовясь к съемкам фантастического сериала «Звездный путь» («Star Тгеек»), сотворил миф лишь потому, что у студии не было денег на нормальные декорации.

Что ж, решив не тратиться на съемки космического корабля «Энтерпрайз», совершающего посадку на далекую неведомую планету, автор переиначил явь. Он выдумал чудесный способ передвижения, позволявший моментально перенестись с одной планеты на другую. В эти мгновения умещались несколько процедур кряду. Сперва аппаратура «сканировала» астронавта, исчисляя все его тело до последнего атома, затем – как это страшно звучит1 . – «дематериализовала» его, то бишь… превращала его бренную плоть в волновое поле. И наконец, «излучала» (to beam) эти волны к месту назначения, или, как чаще говорят. «телепортировала астронавта». Там к нему возвращался его прежний облик. Он возникал из воздуха, буквально из ничего. Вот и вся недолга!

Так научная фантастика пополнилась новым сюжетным ходом, история кино – популярным сериалом, а зрители стали испытывать терпение ученых мужей одним и тем же наивным вопросом: «А правда ли, что со временем люди научатся передвигаться, как в кино?» В кино, действительно, это выглядело блестяще.

«Beam me up, Scotty!» Всякий раз, как только экипаж корабля «Энтерпрайз» после посадки на какую-нибудь планету обнаруживал, что она населена некими гадкими тварями, с коими лучше бы не встречаться, следовала короткая команда, которую напряженно ждал пилот, остававшийся за пультом управления. «Телепортируй меня, Скотти!» И тот послушно дергал пару рычагов. Астронавты растворялись в мерцающем тумане и в тот же миг оказывались в другом, более приятном месте.

Конечно, этот способ передвижения по космическому пространству увлек не только рядовых зрителей, готовых мечтательно смотреть, как их любимые герои переносятся в любую точку мироздания, и понравился не только фантастам, получившим в свое распоряжение еще один способ менять плавное течение сюжета. Он заинтересовал даже серьезных ученых, решивших, благо идея подана, проверить, а так ли она нереальна. (Вот так же, по ту сторону железного занавеса, куда не рисковали пробираться даже герои фантастических фильмов, другой киносериал заставлял верить, что, видимо, и впрямь среди ближайших помощников Гитлера разгуливали обаятельные офицеры, взращенные под крылом ОГПУ – НКВД, ум, честь и совесть безумной, беспросветной эпохи.)

Идея телепортации очень хороша. Для нее нужен лишь какой-то – ну, создадут его ученые! – прибор, с помощью которого можно исчезнуть «здесь и сейчас», чтобы возродиться в тот же миг в совершенно ином месте. Исчезнуть – родиться, а крохотное тире, разделившее эти понятия, есть высшая мудрость физики.

Так способна ли наука и впрямь когда-нибудь повторить это чудесное воскрешение, придуманное прижимистым сценаристом?

Если излагать популярным языком открытия, сделанные физиками XX века, они могли бы сойти за краткие сценарии фантастических фильмов. Немудрено, что ученые порой готовы идти обратным путем, пробуя подвести под эффектный киносценарий теоретическую основу.

Увы, мечтая о кратчайшем пути к далеким планетам, мы обрекаем себя на трудности, масштабы которых тяжело себе представить. Что значит «исчезнуть, чтобы возродиться»? Конечно же, обрести самую точную свою копию! Не потерять в этом молниеносном перемещении ни единой своей частицы, ни одного электрона и атома. Ни здесь, ни на terra incognita, куда вы намерены прибыть! Что же для этого нужно?

Наше путешествие, как мы отметили, состоит из нескольких этапов. Пусть людям не дано познать самих себя, но уж исчислить себя до последнего атома они обязаны, чтобы оказаться в полюбившейся им дали тем, кем они были когда-то, кем они родились, а вовсе не конгломератом неких веществ, какой-нибудь лужицей воды с растворенными в ней минеральными солями.

Итак, исчислить. После этой процедуры память о вас ляжет в файлы компьютера, коему вы на мгновение доверите свое естество, да и всю вашу жизнь. (Любой сбой машины будет смертельно опасен для вас. От компьютерных вирусов мнимые путешественники будущего умрут куда быстрее, чем от неторопливых вирусов во плоти, изводящих нас днями, а то и годами.)

Не будем пока обсуждать происходящее. Все-таки звездный путь нас манит, а возражения критиков мы успеем выслушать позже!

Начинается второй этап нашего полета. Мощнейшие аппараты быстренько разнесут ваше тело даже не по косточкам – по атомам, «дематериализуют» его.

А дальше вступают в действие антенна и декодер. Сигнал принят. Волновое поле вновь превращается в вещество. И вот уже посреди неведомой планеты стоите вы, точь-в-точь такой же, каким зашли в турбюро где-нибудь в Дубне или Стэнфорде, ничуть не изменившийся.

А душа?! Будем считать, что ее нет. Элементов под названием «душевий» или «разумий» в периодической таблице не сышется. И они вряд ли появятся в лабораториях будущего. Человек влачит бремя своих атомов. Это всего лишь двуногая ходячая пробирка с высыпанными туда реактивами.

Если же это не так, то как вы будете путешествовать со скоростью света?

Впрочем, скептики уверены, что время подобных путешествий вряд ли придет, даже если считать человека машиной только с большим числом деталей, которую без труда демонтируют в одном месте и по заказанным чертежам соберут в другом.

А что говорят по этому поводу специалисты? Те, кто по долгу службы своей обязаны изобрести «машину пространства», раз уж «машина времени» им не далась?

Американский физик Лоуренс М. Краус попробовал собрать возражения против столь залихватского обращения с пространством.

Итак, начнем отсчет возражений. Что значит «исчислить фигуру заказчика», всю, до последнего атома? Информация об одном-единственном атоме – о его расположении, атомных связях, уровне энергии – уместится в одном килобайте компьютерной памяти. Казалось бы, пустячок. Проблема в том, что этих атомов у человека 10 в 28 степени штук. Для их описания понадобится такое же количество килобайт!

Подобную цифру можно оценить лишь в сравнении. Все книги мира, собранные вместе, содержат всего- навсего 10 в 12 степени килобайт информации: в десять миллионов миллиардов раз меньше, чем требуется для той – уникальной и неповторимой – книги, чьим содержанием станет некий Иванов или Джонсон, пришедший к физикам грядущих дней с простенькой просьбой: «Зашлите меня куда-нибудь на Марс!»

Чтобы транслировать такой объем информации, самая быстродействующая современная машина будет без устали работать не один миг, как хотелось бы оптимисту, не пару недель, на что заранее согласился бы пессимист, не несколько лет, что способны выдержать друзья убывшего в космический круиз, а 30 тысяч миллиардов лет. Возраст всей нашей Вселенной в две тысячи раз меньше, чем срок, отведенный современной физикой на такой вот перелет, точнее, на передачу данных о путешественнике.

«Машина пространства», если бы удалось ее построить, в действительности стала бы «машиной времени», способной уносить человека лишь в будущее.

За эти миллиарды лет исчезнут и желанный Марс, и родимая Земля. Понятно, что фигура заказчика так и не воскреснет в пыльном марсианском воздухе. Он не увидит у себя над головой темно-фиолетовое, почти черное небо. Не всмотрится в звезды, горящие над Марсом даже в дневную пору. Не увидит, как Земля, подобно привычной нам Венере, вспыхивает на небосводе то вечерней, то утренней звездой. Не разглядит Уран и Нептун, доступные даже невооруженным взорам будущих покорителей Марса. Нет, за то недолгое время, что отведено нашим планетам, он успеет перенестись на Марс разве что… на мизинец.

Продолжим наши рассуждения. Допустим, многие поколения владельцев «незримого тела» окажутся людьми в высшей степени порядочными и щепетильными. Тот самый компьютер, где хранится образ и опись чужого, одолженного заказчиком тела, они будут носить с собой везде: с Земли, выжженной раздувшимся Солнием, на космическую станцию, а оттуда в новый, населенный людьми мир. Что ж, поверим в их удивительную способность везде и всюду не расставаться с компьютером, продолжающим (уже неизвестно куда) транслировать горемычное тело наивного заказчика, который по простоте души своей (или по отсутствию оной) доверил необычной фирме свое «механическое» тело. Допустим, что когда- нибудь, как «бог из машины», из новейшего физического оборудования возникнет живший когда-то человек, «ходячая коллекция атомов».

Но скажите, каким образом эта коллекция когда-то, во время оно, распалась на элементы? Вот вам и возражение номер два.

Чтобы «дематериализовать» человека, то есть разорвать силы, скрепляющие части атомных ядер, нужно, по расчетам ученых, разогреть тело до тысячи* миллиардов градусов, что в миллионы раз выше температуры, царящей в недрах Солнца. Только при этой температуре вещество превратится в излучение. (Что испытает человек, вмиг сожженный на костре научной теории, не беремся сказать. Успокоим себя мыслью о том, что он все же возродится из света, «аки птица феникс, иже из пепла ся воставляет».) Световой луч со скоростью, ему одному присущей, перенесется в любую точку пространства, доставляя туда искателя легких путей, позволившего произвести над собой подобные манипуляции.


Сколько же энергии потребуется, чтобы двигать человеком, словно лучом прожектора? Ответ снова неутешителен для современной науки. В тысячи раз больше того количества энергии, что израсходовано за всю историю человечества! Какой же источник энергии нужен, чтобы исполнить подобный замысел? Нет, похоже, природа и впрямь поставила неодолимый барьер, препятствуя сложным объектам без всякого ущерба для себя переходить из одной формы материи в другую и наоборот.

В особенности нас убеждает в этом третье возражение, гласящее, что все наши попытки с предельной точностью описать составные части человека, то бишь отдельные его атомы, заранее обречены на неудачу. Это – проблема принципиального характера.

Поведение атомов вообще не поддается точному описанию. Этому препятствует принцип неопределенности Гейзенберга. Согласно ему, мы можем знать, например, либо местонахождение частицы, либо ее скорость. Если нам известно, как быстро движется частица, мы не в силах сказать, где она точно находится, и наоборот.

Создатели «Star Тгеск» искусно обошли проблему неопределенности в мире элементарных частиц, придумав так называемый компенсатор Гейзенберга. Когда научного консультанта фильма спросили о том, как действует эта вещица, он ограничился лишь одним словечком: «Хорошо!»

Ученые не могут так просто отмахнуться от этой проблемы. Тем интереснее узнать об опыте, который поставил австрийский физик, профессор Антон Цайлингер из Инсбрукского университета. Впервые в истории науки он сумел телепортировать элементарную частицу! Для этого ему пришлось «поступиться знанием»: он не стал измерять характеристики перемещаемой частицы.

Проблему, стоявшую перед ним и его коллегами, можно образно выразить так: попробуйте-ка перевезти из пункта А в пункт Б мешок… нет, не с котом, а с Протеем, который «разные виды начнет принимать и являться вам станет всем, что ползет по земле, и водою, и пламенем жгучим», стоит лишь вам развязать путы мешка. Где гарантия, что Протей сохранит свой облик неизменным? Как доставить в пункт Б «неведомо что»? Может быть, не развязывать мешок и сдать это «неведомо что» в целости и сохранности, не интересуясь тем, как оно выглядит, ибо облик его превосходит разумение человека? Именно так и поступил австрийский физик, готовя свой опыт.

Человек превратился в компьютер?

Необычайно быстрое развитие компьютерных технологий, пишет американский профессор Александр Болонки н, открывает перед человечеством совершенно неожиданный путь к индивидуальному бессмертию, «Человек как личность – это не более чем память, программы, привычки». Если сохранить эту информацию, записав ее на более стойкие носители (например, чипы), это и будет означать бессмертие. Человек возродится в электронном обличи и. Но ведь у него теперь не останется ничего человеческого? Нет, это только на первый взгляд. Все, что заложено в его мозгу – сознание, память, представления и привычки, – по-прежнему при нем; вот только хрупкие биомолекулы будут заменены чипами. Что касается внешнего вида, то его электронный человек может выбрать по своему желанию.

Уже «в 2020 – 2030 годах бессмертие станет доступным для жителей развитых стран, а еще спустя десять – двадцать лен и для основной массы человечества».

Будет ли подобное существо идентично своему предшественнику с его эмоциями и чувствами? В первый момент – да.

Но дальнейшее предсказать трудно…


Александр Зайцев

Так бывает в науке

Предваряя рассказ об опыте Цайлингера, поговорим еще немного о квантовом мире. В нем вообще много странностей. На наш обыденный взгляд, он фантастичен- Возьмем хотя бы принцип «суперпозиции» – наложения состояний – и поясним его с помошью бытового примера.

В нашем мире зрители, пришедшие на футбольный матч, на какой бы трибуне они ни сидели, видят, что спортсмены играют мячом одного и того же – допустим, белого – цвета. В квантовом мире тот же самый мяч мог бы одним болельщикам казаться белым, другим – черным, например, половина наблюдателей видела бы одно, половина – другое. Предсказать, что увидит некий господин N, нельзя. Мяч, словно мифический Протей, будет без устали принимать один облик за другим, не повинуясь законам, к которым привыкли мы, жители макромира.

Еще одна странность. В квантовом мире одна и та же частица может одновременно пребывать в двух разных точках пространства. Точнее говоря, две разлетающиеся в стороны частицы могут вести себя так. словно это одна и та же частица. Их полная противоположность – «негативные близнецы». Это частицы, которые на любом расстоянии ведут себя наперекор друг другу. Что-то их связывает. Как только на одном конце этой незримой нити возникает некая сущность, на другом появляется ее антипод. Если вернуться к нашим бело-черным мячам, вот что с ними будет происходить. Стоит нам увидеть, что первый мяч окрашен в черный цвет, как в тот же миг другой мяч, летящий в неведомой дали, станет белым, и наоборот.

В свое время эта «странная телепатия», действующая быстрее света, побудила Альберта Эйнштейна назвать квантовую механику ошибочной. Лишь в начале восьмидесятых годов группа французских ученых доказала, что описанная нами «молниеносная» связь частиц является реальным фактом, а вовсе не порождением фантазирующего ума. «Негативные близнецы», или, говоря научным языком, «антисимметрично коррелированные частицы», стали частью научного обихода. Они-то и сыграли главную роль в опыте Цайлингера.


В устройстве для расщепления светового тучно фотоны А и С образуют «антисимметрично коррелированную» пару.


Слева направо: Харольд Вайнфуртер, Дик Баумистер и Антон Цайлингер сидят перед своим рабочим лазером.


Еще в 1993 году группа американских физиков из лаборатории IBM во главе с Чарлзом Беннеттом придумала метод, позволяющий «телепортировать» частицы (или, строго говоря, информацию о них) на любое расстояние. Схема была такова. Чтобы «тедепортировать» частицу С, надо «связать» ее с другой частицей (обозначим ее А) и эту же частицу А «связать» с третьей частицей – В. Тоша свойства частицы С передадутся частице В.

Тут, конечно, нужны подробности.

В принципе, за любой нашей репликой могла бы следовать череда поправок, уточнений, замечаний, пояснений, которая завела бы нас в бесконечный тупик, если бы не одно обстоятельство. Сказанное нами, как правило, и так бывает известно нашему собеседнику, а потому не требует особых комментариев. В данном же случае мы вынуждены вновь и вновь уточнять схему необычного опыта, дополняя ее хоть какими-то подробностями, словно размечая путь в туманном мире квантовой физики.

Итак, чем мы располагаем? У нас есть фотон С (для своих опытов Цайлингер выбрал именно эту элементарную частицу). Мы намерены «телепортировать» его в иную точку пространства. В «доквантовом» мире мы бы переслали, переместили, передвинули наш объект в ту точку со скоростью, меньшей скорости света. Теперь можно сделать по-другому. Если в той точке пространства окажется такая же частица – фотон, то нам достаточно.


Так выглядит устройство для телепортации фотонов.


Лазер излучает фотон О неопределенной поляризации (что помечено скрещенными стрелками). После того как фотон минует кристолл, образуются два новых фотона (А и В) – также неопределенной поляризации. Обе эти частицы являются «антисимметрично коррелированной» парой. Поместив возле кристалла зеркало, мы получим еще одну пару фотонов (С и D). Поляризатор придает фотону С вертикальную поляризацию. В «аппарате Белла» (устройстве для расщепления светового пучка) фотоны А и С встречаются и образуют еще одну связанную друг с другом пору. Поэтому фотон А вынужден принять совершенно иную, противоположную поляризацию, нежели фотон С, – то есть горизонтальную поляризацию. В свою очередь, фотон В также вынужден принять противоположную – вертикальную – поляризацию (как и фотон С).

Счетчик совпадений фиксирует случаи, когда сробатывают детекторы al, а2 и el – но не в2. Подобные случаи означают, что телепортация состоялась: информация, которой располагал фотон С, передана фотону В 1 – детектор al; 2 – детектор а2; 3 – счетчик совпадений; 4 – поляризатор; 5 – телепортируемый фотон; б – устройство для расщепления светового пучка (аппарат Белла); 7 – зеркало; 8 – фотон С; 9 – первая пара детекторов; 10-фотон А; 11 – лазер; 12 – фотон О; 13 – нелинейный кристалл; 14 – связанные друг с другом фотоны; 15 – вторая пара детекторов; 16 – фотон О; 17 – фотон В; 18 – к управляющей электронике; 19 – устройство для расщепления светового пучка; 20 – детектор el; 21 – детектор в2 чтобы она изменила свои характеристики и стала выглядеть точь-в-точь как частица С. Череда мгновенных превращений – вот лучший транспорт квантового мира! Фотон С и безликий фотон В, что воплотит чужой образ, – это начало и конец пути, это старт и финиш. Из пункта С в пункт В путешествует не сам герой, а его «паспорт». В квантовом мире эта «бумажка» воистину важнее любой букашки. Только с ее обретением элементарная частица принимает законченный вид.

Как видите, наша задача изменилась. Мы не частицу собираемся перемещать, мы лишь похитим ее «паспорт» и молниеносно подкинем его другой участнице опыта. В микромире фальшивых документов не бывает. Что записано в них, такова и частица.

Квантовый мир – это мир отрицаний и вычетов. Здесь обретенное «я» непременно означает упущенные возможности – свои и чужие. Вернемся к тому же примеру с мячами. Если мяч, лежащий у вас в руках, окрашивается в черный цвет, значит, в ту же секунду в руках человека, живущего за тридевять земель от вас, точно такой же мяч белеет. Из двух возможностей воплотились обе: одна – здесь, другая – там.

А если продолжить нашу цепочку? В ней появится еще один человек, сидящий с мячом, загадочно меняющим цвет. Тогда срабатывает «закон отрицания отрицания»: черное – белое – черное. Таков результат мгновенных перемен. «Паспорт» передан. Объект, пребывающий в точке В, теперь выглядит так же, как его прототип С.

Для того чтобы это случилось, нужен посредник – фотон А, то есть «негативный близнец» фотонов С и В. Мы можем прибегнуть к еще одному развернутому сравнению. Представьте себе, что в точке С пребывает частица, а в точке А находится зеркало. Что бы ни происходило с фотоном, зеркало А повторит его образ, чуть переиначив его, поменяв местами «левое» и «правое». Где-то в глубине нашей воображаемой лаборатории стоит еще одно зеркало (В). Оно «копирует» копию, оно повторяет ее гримасы и фортели, снова меняя местами «левое» и «правое». Теперь они совпадают, исходная частица и ее образ, отразившийся в одном из зеркал.

Еще раз повторим. В опыте участвуют: исходная частица С, частица В, которой передадутся ее свойства, и, самое главное, частица А – посредник, связанный с обоими фотонами и отрицающий свойства каждого. Чтобы отрицать их, не надо их определять. Не надо развязывать «мешок», в котором спрятан переменчивый Протей! В квантовом мире любые измерения искажают свойства частицы. Буковки в «паспорте» тут же меняются местами, стоит его развернуть. Изображение в «зеркале» тут же оживает, стоит в него вглядеться.

Но как тогда понять, что фотон А, например, противоположен фотону С? Что ж, приборы позволяют обойти эту теоретическую ловушку. Мы можем отметить, что такая-то пара частиц является «антисимметрично коррелированной». Но кому какие свойства принадлежат, нам не дано знать. Под нашими взорами частица становится собственным отражением, а ее отражение – частицей. Все перепутывается в зыбком квантовом мире, и «тень говорит голосом человека, а человек подражает собственной тени, и их фигуры незразличимы».


Лазерный свет минует кристалл. Так возникают эти разноцветные круги (кристалл должен располагаться в центре фотографии, но мы его не видим). Однако «антисимметрично коррелированную» пару образуют лить фотоны, находящиеся в точках пересечения двух зеленых кругов.


Прервем перечень сравнений и символов. Пора переходить от теории к практике. Героями опыта, поставленного в Инсбруке, были незримо связанные друг с другом фотоны. Чтобы их получить, ученые направляли на нелинейный оптический кристалл световые импульсы, длившиеся всего 150 миллионных долей одной миллиардной доли секунды (генерировал их титаносапфировый лазер красного излучения). Видимые световые сигналы преобразовывались в ультрафиолетовые. Цайлингер помешал на их пути еще один нелинейный кристалл, и тогда возникала пара фотонов красного света – А и В. Хитрость заключалась в том, что плоскости колебаний обеих частиц были теперь всегда перпендикулярны друг другу. С этого момента, если одна из них была поляризована в горизонтальной плоскости, другая совершала колебания лишь в вертикальной плоскости и наоборот. Так получили первую пару «связанных» частиц. Ничего более точного об их поляризации не требовалось знать. Фотон В был «чистым листом», на котором ученые собирались записать свойства другого фотона (С), -или же «зеркалом», в котором появится чужое изображение.

Вторую пару фотонов (С и D) тоже получили с помощью нелинейного кристалла. Затем фотон С определенным образом поляризовали – у него появился свой «паспорт». Четвертый фотон (D), посторонний на этом карнавале превращений, ученые использовали, чтобы в нужный момент активизировать измерительные приборы.

Сердцем этой установки стало полупроницаемое зеркало. Оно помогло связать друг с другом фотоны А и С. Эти частицы либо отражались от поверхности зеркала, либо проникали сквозь нее. Возможных вариантов событий было четыре. В любом случае оба фотона были теперь связаны друг с другом. Значит, свойства фотона С (он ведь имел свой «паспорт») автоматически передавались частице В. Теперь та была точь-в-точь такой же, как ее прототип, находившийся в нескольких метрах отсюда. По щелчку детектора определяли, что телепортация состоялась.

Наш рассказ состоит из повторений и уточнений. Опишем еще раз схему этого необычного опыта. Телепортируемая частица движется в левой части установки. Внезапно она исчезает: «теряет свою идентичность». В тот же миг, в том же направлении, но в нескольких метрах отсюда – в правой части установки – начинает двигаться такая же частица, с теми же самыми характеристиками, что и первая. Вот и все. Телепортация состоялась. «Мы имеем дело с совершенно новым способом передачи информации» – говорит Чарлз Беннетт.

Повторимся: в этом опыте не происходит никакого переноса элементарной частицы из одной точки пространства в другую. Нет, в приемном устройстве уже имеется свой фотон. Передается лишь информация о какой-то характеристике этого фотона (в данном случае речь идет о поляризации). Одна из частиц копирует информацию, которой обладает другая частица.

После нескольких лет проб и ошибок Цайлингер и его коллеги научились телепортировать до сотни частиц в час. Тем временем французский физик Серж Харош начал проводить опыты по телепортации уже на атомарном уровне.


Фотоны, атомы… Что дальше?

– Я думаю, что в скором времени мы научимся «связывать» друг с другом даже крупные молекулы, – оптимистично говорит Цайлингер.

Однако проблем слишком много. Чем сложнее квантовый объект, тем труднее изолировать его от внешнего мира. Если же объект контактирует с внешним миром, то его неопределенное состояние тотчас преобразуется в «нечто определенное», и тогда процесс «связывания» прерывается.

Теперь, как отмечает Антон Цайлингер, его интересуют так называемые мультифотонные состояния, когда образуется сразу несколько пар фотонов, которые параллельно «связываются» друг с другом. Инсбрукским физикам уже удалось проделать подобный опьгг с тремя фотонами.

Наконец, участники эксперимента намерены значительно увеличить расстояние, на котором осуществляется телепортация: пока все происходило в пределах лабораторной комнаты, сейчас в планах ученых – передача информации на двадцать и более километров. Ведь еще пять лет назад группа исследователей из Женевского университета доказала, что два «связанных» друг с другом фотона могут телепатически общаться по стекловолоконному кабелю длиной 23 километра, проложенному по дну Женевского озера.

Десятки раз журналисты спрашивали Цайлингера, когда же удастся телепортировать человека. Физик отвечает на это лишь покачиванием головы: «Нам следует раз и навсегда забыть об этом».


Быстрее скорости света?

Увы, ошибается тот, кто думает, что с помощью телепортации можно преодолеть барьер, воздвигнутый скоростью света. Еще Чарлз Беннетт, один из авторов идеи квантовой телепортации, осознал, что сведения, передаваемые с ее помощью, делятся на два сорта: на те, что транслируются квантовомеханическим способом (то есть со сверхсветовой скоростью), и те, что передаются классическим способом (то есть скорость их передачи не превышает скорости света).

Хотя «связанные» друг с другом фотоны, обмениваясь информацией, делают это с бесконечно большой скоростью, однако лицо, передавшее некое сообщение, может узнать от своего адресата о том, что телепортация состоялась (и наоборот), лишь прибегнув к классическому способу – к радио- или кабельной связи. Во время инсбрукского эксперимента специальный счетчик отмечал, все ли три детектора фотонов получили сигнал одновременно или нет. Эти приборы были соединены друг с другом кабелем, значит, они обменивались информацией лишь со скоростью, не превышающей скорости света.


Вместо битов грянут квибиты?

«Мы имеем дело с совершенно новым способом передачи информации» – говорят создатели метода телепортации. Возможно, в будущем появятся и компьютеры нового типа – «квантовые». Вместо нулей и единиц они будут оперировать причудливыми состояниями, характерными для микромира, – квантовыми битами, или, сокращенно, «квибитами» (qubit).

Спрашивается, можно ли построить такой компьютер? И чем он будет хорош? Начнем с первого вопроса. Легко догадаться, что вся проблема в том, что квантовое состояние неопределенно. Его нельзя измерить или хоть как-то зафиксировать. Как же передать эту информацию другому компьютеру?

Представьте себе, перед вами стоит незнакомый прибор. Вы не знаете, как его включить, как им пользоваться. Правда, в соседней комнате лежит инструкция. Она запечатана в конверт, но, увы, стоит вам подойти к этому пакету, как буквы в нем моментально сотрутся. Вы опять останетесь в неведении.

Вся ваша незадача в том, что вы хотели воспользоваться «известной» информацией. В квантовом мире нельзя передавать известные, заранее собранные данные, ибо их нельзя даже собрать.

Здесь можно телепортировать лишь «нечто неведомое». Возвращаясь к нашему примеру, мы можем дагь непривычный (с житейской точки зрения) совет.

Вам нельзя проникать в соседнюю комнату, чтобы выведать тайны прибора.

Если вы окажетесь там, вы ничего не узнаете. Если же вы достанете из ящика стола точно такой же конверт, запечатаете его и положите рядом, то будьте уверены: внутри него лежит интересующая вас инструкция. Но и теперь мы не советуем вам заглядывать в бумаги. Прибор включится сам, ибо ему передастся состояние, описанное на не прочитанных вами листах бумаги, лежащих в конверте.

«Связанные» друг с другом частицы обмениваются информацией, подобно тому как в приведенном примере это проделывали запечатанные конверты.

Если удастся использовать данную технологию при создании компьютеров, то они будут действовать в миллионы раз быстрее нынешних. Впредь никакому чемпиону мира по шахматам уже не обыграть компьютер. Порадуются и спецслужбы: «квантовые вычислительные машины» в считанные минуты разгадают сложнейший код. Некоторые физики-теоретики говорят, что подобные компьютеры в принципе способны решить любую научную проблему.


Николай Николаев

Так будет в жизни?

И все же этот вопрос задают вновь и вновь: «Так можно ли телепортировать человека, подобно частице света?» Теория пока об этом умалчивает, говорит профессор Цайлингер.

«Научная телепортации» подразумевает, что в пункте Б находится точная копия того же фотона, атома и так далее, что и в пункте А. Телепортировать – это передавать сведения о квантовом состоянии объекта и заставлять копию вести себя точь-в-точь как объект. Телепортация не творит двойников, она оживляет их. В тот миг, когда двойник оживает, его прототип теряет свое обличье, развоплошается.

Итак, чтобы телепортировать человека, надо сперва изготовить его… точную копию. Если вы решите молниеносно перенестись на другую планету, заранее доставьте туда «двойника» – перевезите его на обычной, неторопливо летящей ракете.

Увы, пока не верится, что подобную копию удастся сотворить. Для этого надо собрать слишком много информации. Быть может, нас выручат квантовые компьютеры? Ведь по своей эффективности они в миллионы раз превзойдут нынешние медлительные машины.

Следующая, неразрешимая пока, проблема. В опытах Цайлингера одна частица-посредник передает сведения о квантовом состоянии другой частицы. Если следовать схеме «одно квантовое состояние – один посредник», то при телепортации человека потребуется 10 в 31 степени частиц (!), которые должны одновременно передавать сведения обо всех соответствующих им и «связанных» с ними частицах. Любой крохотный сбой приведет к непоправимым последствиям. Прежний человек перестанет существовать («потеряет свою идентичность», как говорят физики), а его двойник окажется химерическим, дефектным созданием, неприспособленным к жизни. «Я бы не рискнул довериться нашей аппаратуре» – говорит один из участников инсбрукских экспериментов Харальд Вайнфуртер.

Но самое главное: неясным пока остается вопрос о том, насколько материальная копия может отличаться от оригинала. Будет ли это точь-в-точь, до последнего атома, до последней болячки тот же самый человек, что и вы? Почему эта «коллекция атомов» будет иметь те же воспоминания, что и вы, будет наделена тем же характером, что и вы? Что отличает эту неподвижную фигуру от вас, если вы точь-в-точь совпадаете с ней? Почему вы наделены жизнью, а эта фигура пока нет? Что такое жизнь? Особое сочетание квантовых состояний? Тогда что такое «Бог, вдыхающий жизнь»? Камертон, заставляющий все частицы некоего тела принимать эти «особые квантовые состояния»? Что такое память? Особое сочетание квантовых состояний? В таком случае память присуща всем частям нашего тела, а вовсе не сосредоточена в головном мозге? Мы помним кожей и руками, затылком и спиной? И что же такое душа? Тоже особое сочетание квантовых состояний? Как только вашей копии будет передана информация о квантовых состояниях всех ваших частиц, в нее неизбежно вселится ваша душа? А что будет с вашим прежним телом? Что значит – оно «развоплотится»? Растает, как морок? Почему? Это же плоть, вешество, «сосуд скудельный»! Оно должно сохраниться! Но будет ли в нем по-прежнему теплиться жизнь? И не обнаружится ли в нем после подобной процедуры какая-то новая душа, ведь как-никак после того как прежняя душа упорхнула из этого сосуда, на месте осталась великолепная копия человека, всем частицам которой присуши какие-то квантовые состояния. И кто гарантирует, что их сочетание не позволит этой фигуре, вроде бы лишенной души, жить своей особой жизнью?

Подобные вопросы воскрешают в памяти легенду о 1олеме – человеческой фигуре, сотворенной мудрецом из праха. Она оживала, потому что «притягивала из Вселенной свободные звездные токи». Тогдашняя «телепортация» окончилась крахом. Голем повел себя, как чудовище, «убивая всех, кто попадался на его пути». Быть может, если даже мы передадим всю информацию о квантовых состояниях исходного объекта, в жившем теле окажется невесть что, а вовсе не душа «развоплощенного человека»?

Ответить на все эти вопросы удастся лишь в далеком будущем. Пока, опираясь на знания, накопленные квантовой физикой, мы можем лишь предположить, как будет выглядеть исходный, «развоплошенный» человек. Помните, что в квантовом мире мяч может быть одновременно и белым, и черным? Он примет какую-то определенную окраску лишь в тот момент, когда мы попытаемся взглянуть на него. «Если бы мы телепортировали человека, то на том самом месте, где только что стояло живое существо, – говорит Антон Цайлингер, – появился бы некий условный человек, которому одновременно были бы присущи все обличья и все характеры людей, живших до него и живущих теперь на Земле». Он воплощал бы одновременно все возможные образы человека, был бы Гитлером и Ганди, Булгариным и Пушкиным, Адамом и Евой в одном лице. Впрочем, такое состояние длилось бы краткий миг. Стоило кому-то взглянуть на эту фигуру, содержащую в себе память о всем человечестве, как она моментально приняла бы какой-то определенный образ, окрасилась в свой «черный» или «белый» цвет. Вот только чей образ она приняла бы? Прежнего человека, стоявшего здесь? Или на месте телепортированного человека внезапно возникла бы какая-то другая личность, быть может, давно уже «почившая в бозе» и лишь теперь вызванная к призрачной жизни злым гением теоретической физики?

Наконец, проблема еще и в том, что даже ученые по-разному пока истолковывают некоторые положения квантовой физики. Так, споры вызывает «принцип суперпозиции», игравший немалую роль в наших рассуждениях. Вернемся к тому же примеру с мячом, который может бьггь одновременно черным и белым и окончательно принимает цвет, лишь когда мы глядим на него, то есть «измеряем его состояние».

Итак, на наших глазах мяч принял одно из возможных состояний.

Допустим, он стал черным. Что это может означать? Что теперь он всегда будет черного цвета? Что он обрел этот цвет лишь на миг и, как только мы отвернемся от него, он вновь возвращается в исходное, «неопределенное» состояние? А может быть, всякий раз, когда возникает подобный выбор, наша Вселенная делится на несколько параллельных миров (по числу возможных состояний)? В одном из них наш «мячик раздора» окрашен в черный, в другом – в белый цвет. В таком случае каждое мгновение рождается бесконечное множество вселенных, в которых происходят все те события, что не успели разыграться на наших глазах.

Английский фантаст Олаф Степлдон еще в тридцатые годы так описывал эту возможность: «В некоем непостижимо сложном космосе всякий раз, когда какое-либо существо встречается с различными альтернативами, оно выбирает не одну, а все… И поскольку в этом мире множество существ и каждое из них постоянно сталкивается со многими альтернативами, то комбинации этих процессов неисчислимы». В пятидесятые годы «размножение вселенных» анализировал уже американский физик Хьюдж Эверетт.

Во всех упомянутых нами гипотезах особая роль неизменно отводится человеку, ибо именно он глядит на окружающий его мир, то есть «измеряет его состояние». Весь мир в таком случае, повторим полюбившуюся В. Пелевину мысль, – это своего рода театр, сотворенный Господом Богом для одного-единственного зрителя, которым являетесь вы. «Мы до сих пор не можем постичь, какое место занимает человек в нашей Вселенной, – сказал в одном из интервью Антон Цайлингер. – Возможно, ему отведена куда более важная роль, нежели могли предполагать создатели классической физики».


Об Эволюции Существ и Представлений

Кирилл Ефремов

Загрузка...