Главная тема

Небесные гости: портрет в интерьере



Когда эта Главная тема еще готовилась к печати, прозвучало сообщение о прекращении всех контактов (кроме касающихся Международной космической станции) между американским агентством НАСА и российскими космическими программами. Нам подумалось, что тем более разговор об астероидных исследованиях; разворачивающихся по все большему фронту; оказывается сегодня важным, демонстрируя спектр общих для всех землян проблем, решать которые предстоит, что называется, «всем миром».

Именно эта, становящаяся все более актуальной и многоплановой, тематика, включающая, помимо угрозы со стороны «небесных гостей», все новые сюжеты, достойна объединения усилий космических держав, прежде всего, России и США. Очень не хотелось, чтобы вернулись времена, когда сотрудничество подменялось противостоянием — об этом вы можете прочесть в материале под рубрикой «Космос: разговоры с продолжением».

А мы попробуем, с надеждой на лучшее, обрисовать состояние дел в области, которая, как мы не раз убеждались, постоянно привлекает внимание наших читателей. Справиться с этой задачей помогли Михаил Вартбург и Александр Волков



Наши опасные соседи

Несколько лет назад президент США распорядился круто изменить национальную космическую программу с тем, чтобы отныне американские космические усилия были направлены не на планировавшееся ранее строительство лунной жилой станции, а на высадку астронавтов на какой-нибудь астероид. Такая высадка будет своего рода репетицией будущей высадки на Марс или, скорее, на один из спутников Марса. Таким образом, космическая программа человечества обогатилась еще одним интересным проектом. Но программа эта и без того не оставляет астероиды своим вниманием.

Вот, к примеру, в июне 2010 года японский космический зонд «Хаябуса» вернул на Землю, пролетая мимо нее, ампулу с материалом, собранным во время посадки на астероид Итокава. Сам зонд сгорел в атмосфере, оставив по себе эффектный фейерверк, но служебный долг выполнил, ампулу вернул, так что про него можно теперь по праву сказать «сгорел на работе». Но он и до того совершенно героически вел себя, этот «космический самурай». Семь долгих лет летел туда и обратно, но задачу свою выполнил, несмотря на многочисленные трудности. Представьте: вопреки тяжелым поломкам все- таки достиг цели и сел на поверхность астероида; потом, преодолев новые и, казалось, совсем уже непреодолимые препятствия, все-таки собрал пробу вещества и взлетел в обратный путь; а под конец, надолго замолчавший и сочтенный уже потерянным безвозвратно, все-таки вдруг отозвался и сообщил ученым, что приближается к матушке-Земле и вот-вот сбросит на нее ампулу с драгоценным грузом.


Японский космический зонд «Хаябуса»


Американский зонд «Dawn»


Американский зонд «Near»


Однако при всем своем героизме, первым в деле изучения астероидов он все-таки не стал. Ибо первым — без всякого драматизма — коснулся поверхности астероида американский зонд «Near». Он еще в феврале 2001 года успешно опустился на довольно крупный астероид Эрос и даже передал некоторую информацию о нем. Но увы — через две недели замолчал и больше на зов Земли никогда уже не отзывался. Однако с тех пор многие другие космические зонды, — правда, запущенные к другим целям, но пролетавшие по пути мимо разных астероидов, — передавали на Землю их фотоснимки. О запущенной Европейским космическим агентством «Розетте» и американском зонде «Dawn», запущенном еще в 2007 году, благополучно пролетевшем мимо Марса и астероида Весты, а ныне летящем к другому астероиду, Церере, мы уже рассказывали (см. «3-С», № 7/13 и № 6/14). А тем временем специалисты НАСА рассчитали, что первый полет людей на астероид, согласно руководящим указаниям президента Обамы, станет возможным уже в 2020 году, когда к Земле приблизится небольшой космический обломок, зарегистрированный в астрономических каталогах как 2009 OS5. Правда, диаметр этого обломка всего каких-нибудь 60 метров, так что астронавтам с их кораблем может оказаться там тесновато, но будем надеяться, что Обама им поможет.

Зачем, однако, они нужны человечеству, все эти пролеты, облеты, фотографии, высадки и вообще изучение астероидов и метеоритов? Ну, летают себе эти миллионы древних обломков по орбитам меж Марсом и Юпитером, — так и пусть себе летают, нет? Да, оказывается, нет. Астероиды могут немало поведать науке и помочь ей решить многие загадки. Вот, например, в одном из них были недавно обнаружены включения таких химических элементов, которые он мог заполучить только при взрыве неподалеку от него какой-нибудь сверхновой звезды. Это позволяет — или даже заставляет — думать, что одна такая звезда взорвалась вблизи того газопылевого облака, из которого некогда образовались Солнце, его планеты и астероиды с метеоритами в качестве неиспользованных остатков. Иными словами, изучение астероидов с метеоритами, прежде всего их химического состава, дает науке бесценные сведения об истории формирования Солнечной системы — потому, что только в астероидах эти сведения и сохранились. Их химический состав иногда включает даже аминокислоты — молекулы, из которых составлены белки, эта основа жизни, и некоторые ученые предполагают, что именно астероиды могли занести на Землю первичные кирпичики жизни. Ну, и потом астероиды интересны науке также сами по себе. Конечно, планеты куда больше и интересней, но и у этих малюток есть своя жизнь, и порой весьма любопытная. Это не просто мертвые куски камня — у них есть своя динамика и своя способность развиваться. И даже — вы не поверите — способность «размножаться»! Да, астероиды могут рождать новые астероиды. Такую гипотезу высказал несколько лет назад американский ученый Даниэль Ширез, и о ней стоит рассказать чуть подробнее.

Дело в том, что подавляющее большинство астероидов (а в промежутке между Юпитером и Марсом, и в околоземном и еще более близком к Солнцу пространстве их число составляет, можно думать, миллионы) — это не те сплошные каменные громадины, какими мы их себе обычно представляем, а скопления не очень больших (размером от метров до сантиметров) камней, удерживаемых вместе гравитационным притяжением. Расчеты Ширеза показали, что такие скопления, если они имеют размер не больше 10 километров в поперечнике, под воздействием солнечных лучей неизбежно претерпевают так называемое центробежное расщепление, а именно: поглощая солнечное тепло с одной стороны и переизлучая его с другой, они постепенно приходят в медленное вращение, которое за миллионы лет может ускориться настолько, что гравитация уже не может удержать внешнюю, слишком быстро вращающуюся часть камней, и они отрываются. Происходит что- то вроде деления клетки, и возникает пара астероидов. Поначалу они держатся рядом, обращаясь вокруг общего центра, который движется вокруг Солнца по прежней орбите. Но если второй астероид достаточно мал, он постепенно удаляется от первого, и тогда они начинают обращаться вокруг Солнца по несколько разным орбитам, лишь изредка сближаясь снова в пространстве. По расчетам Ширеза, это происходит, если масса малого астероида составляет меньше 60 % массы большого.


Пояс Койперо


Заинтересовавшись этой гипотезой, астрономы решили ее проверить и действительно обнаружили несколько таких астероидов, которые порой сближались друг с другом. Тогда решено было провести тщательное изучение таких пар. В этом исследовании приняли участие астрономы из Колорадского университета Булдер в США, ведущие специалисты по астероидам из Чехии, Израиля и другие, в общей сложности 26 ученых из 7 стран. Главные наблюдения проводились на телескопе обсерватории Тель-Авивского университета и чилийском телескопе в Ла-Силья. Изучив яркость астероидов в 35 «парах Ширеза» и определив отсюда их размеры и относительную скорость, ученые нашли полное совпадение отношения масс с предсказаниями гипотезы Ширеза, о чем и сообщили в совместной статье, опубликованной в журнале Nature. «Это исследование позволяет провести прямую связь между вращением астероидов и их распадом, тем самым доказывая, что астероиды не являются статичными, монолитными телами», — так комментировали в ней этот результат. Сам же Ширез выразительно сказал: «Это, вероятно, самое наглядное экспериментальное подтверждение того, что астероиды — это маленькие живые мирки, которые непрерывно меняются по мере старения, порой порождая новые астероиды поменьше, которые затем начинают свою собственную жизнь на собственной орбите вокруг Солнца».

Все это, несомненно, очень интересно и мило, и оставалось бы таким, когда бы астероиды ограничивались своей собственной жизнью, этим вращением-размножением-обращением, — но беда в том, что они очень любят «заглядывать в гости» к своим большим родственникам, планетам, и тогда — беда. Все мы об этом знаем: кто же не помнит о Тунгусском метеорите или об астероиде, который, как считают некоторые ученые, погубил динозавров? А ведь бывало и хуже. Достаточно посмотреть на снимки поверхности Марса или Луны — они буквально испещрены кратерами, свидетельствующими об очень давней, весьма длительной и крайне интенсивной метеоритной бомбардировке. Но метеориты с астероидами забирались и куда ближе к Солнцу: на самой близкой к нашему светилу и самой маленькой из планет, на Меркурии, открыт один из самых больших в Солнечной системе метеоритных кратеров — Калорис диаметром в 1550 километров! И больше того: некоторые геофизические особенности Меркурия наводят ученых на мысль, что в далекой молодости эта планета испытала удар еще большей громадины — астероида диаметром в несколько сот километров, который разом «смел» с Меркурия добрую треть его массы! На одной только Венере этих следов метеоритного «гостевания» нет, но ученые думают, что их попросту затянула недавняя сильнейшая подвижка геологических слоев на этой планете. Вот ведь и на Земле подавляющую часть древних кратеров тоже закрыла тектоника — последующее перемещение континентальных плит.

А следы эти были. Кратеры Марса, Луны и Меркурия неопровержимо свидетельствуют о том, что в процессе планетообразования, на ранних его этапах, все «внутренние» планеты (от Марса и ближе, включая Землю) подверглись длительной и тяжелой метеоритной бомбардировке, начавшейся примерно 4,1 миллиарда лет назад и кончившейся примерно 3,8 миллиардов лет назад. Поначалу к этим датам привели исследования примет «ударного плавления» в древнейших скалах на Земле: времена появления таких примет всюду, где они обнаруживались, поразительно точно сходились к одной и той же эпохе. А совсем недавно появились новые данные того же рода: анализ тщательно исследованных лунных кратеров показал, что эти образования четко распадаются на две группы. Все самые большие и глубокие лунные кратеры покрыты мелкими следами более поздних ударов, причем время перехода от ранней, тяжелой и интенсивной бомбардировки к более поздней, эпизодической и слабой, тоже имеет возраст 3,8 миллиардов лет.

Таким образом, факт продолжавшегося почти 300 миллионов лет подряд вторжения огромного числа метеоритов и астероидов во внутреннее пространство Солнечной системы можно считать надежно подтвержденным, вопрос только в том, какие причины привели к этому. Самое вероятное и подкрепленное строгими расчетами объяснение этой загадки дала новая, недавно предложенная теория образования планет, известная под названием «модель Ниццы» (см. следующую статью).

Несомненно, невероятно длительная и интенсивная метеоритная бомбардировка должна была весьма основательно искорежить поверхность внутренних планет, что уж говорить о живых существах. Правда, некоторые ученые считают, что специфические простейшие микроорганизмы (если они к тому времени уже возникли на Земле) могли выжить и в таких условиях. Вот ведь, в 2009 году шотландские геологи нашли микроорганизмы, живущие даже внутри тлеющего вулкана. Но господствующее мнение сводится к тому, что жизнь на Земле зародилась лишь после окончания интенсивной бомбардировки, то есть не раньше, чем 3,8 миллиарда лет назад (что, понятно, не исключает отмеченной возможности, что первые «семена жизни» этими же метеоритами и были занесены). В любом случае, более или менее сложные живые организмы пережить такую бомбардировку, конечно, не могли. Для них даже удар одного астероида может оказаться совершенно губительным.

И вот этому подтверждение. Тот знаменитый астероид (или метеорит), удар которого произошел 65 миллионов лет назад, имел, как считается, около 10 километров в поперечнике. И в марте 2010 года, подводя итоги 30-летних исследований этого удара, группа ученых в журнале Nature представила нам на обозрение полную картину вызванных им разрушений. Причем картина эта — не плод богатого воображения, а результат строгих расчетов, основанных на расположении вещества, выброшенного ударом из кратера Чикскулуб, на следах ударного плавления скал в разных местах Земли и на многих других «вещественных доказательствах». Как утверждают авторы, удар, который мог образовать кратер размером с Чикскулубский, должен был вызвать землетрясения силой 11 баллов (!), обрушить все побережье в этом районе и вызвать огромные цунами на берегах всех окружающих океанов. Вдобавок, он должен был выбросить чудовищное облако углеродных и сульфидных частиц со скоростями в несколько километров в секунду. Вхождение этих частиц обратно в атмосферу, как показывают расчеты, должно было породить глобальную тепловую вспышку, и хотя она продолжалась всего несколько минут и вряд ли могла зажечь все леса, но ее интенсивность была так велика, что этот мгновенный «ожог» был смертельным для всех наземных животных и большой части растительности. Суммарное воздействие ударного выделения огромных масс воды, пыли, углекислых и сернистых газов должно было оказать драматическое влияние на климат. Обилие субмиллиметровых частиц пыли и сажи, а также выброс примерно 500 гигатонн серы, образующей аэрозоли, поглощающие солнечную радиацию, должно было на долгие десятилетия понизить среднюю глобальную температуру на 10 и более градусов. Все это, вместе взятое, не могло не вызвать биологическую катастрофу беспрецедентных в истории планеты масштабов.

Разумеется, сегодня вероятность столкновения Земли с астероидом таких размеров несравненно меньше, чем во времена интенсивной метеоритной бомбардировки, но она не равна нулю. И не очень-то снижает эту опасность то обстоятельство, что большинство астероидов, как мы говорили выше, представляют собой не один огромный камень, а облако камней поменьше. Столкновение Земли со скоплением камней протяженностью в 10 километров означает лишь, что планета испытает не один чудовищный удар, а десятки или сотни ударов поменьше от столкновения с камнями весом в тысячи, десятки тысяч или сотни тысяч тонн каждый. Этакая интенсивная метеоритная бомбардировка в миниатюре — но с отнюдь не «миниатюрными» последствиями для земной жизни.


Кратер Аполлодор


Такая смертельная угроза, повторим для спокойствия, маловероятна, но, ради истины повторим — не исключена. Однако угрозы поменьше буквально рядом. Сегодня все эти угрозы объединили под названием «околоземные объекты», и сюда входят все достаточно большие (то есть размером от десятков метров и больше) метеориты, кометы и астероиды, орбиты которых, хотя бы частично, проходят в поясе между 0,983 и 1,3 астрономической единицы, в котором лежит орбита нашей Земли. Иными словами, это те небесные тела, которые имеют тот или иной шанс столкнуться с Землей. К счастью, эта угроза давно осознана не только учеными, но и правительствами, и потому за всеми такими небесными телами ведется сегодня непрерывное и тщательное слежение (см. подробнее Главную тему № 12/13). Все это требует, понятно, точнейшего расчета орбиты на многие столетия вперед. А это дело непростое, потому что такой расчет требует не просто знания законов небесной механики, но и учета многих тонких физических сложностей. Взять, например, «эффект Ярковского»*. Оказывается, некоторые особенности воздействия солнечной радиации на вращающееся тело в конечном счете приводят к постепенному (за многие десятилетия или даже столетия) изменению орбиты малых (размером до 10 километров) астероидов и метеоритов. И хотя это изменение невелико, но за столетия оно может привести астероид, считавшийся безопасным, к столкновению с Землей, которого одни лишь законы небесной механики предсказать не могут. И таких сложностей в расчетах метеоритной угрозы много. Так что работы у астрономов и их компьютеров — невпроворот.

Выявление новых околоземных объектов идет, однако, быстрее, чем точный расчет их орбит, а это ведет к неизбежному преувеличению степени угрозы: всякий новооткрытый объект, орбита которого — в первом приближении — кажется опасной, тотчас зачисляется в «угрожающие», пока не будет доказано обратное. А угрозы нужно предотвращать, ни одно правительство не может рисковать жизнью своих граждан. Но все предложенные на сей день способы предотвращения метеоритно-астероидных угроз требуют больших расходов. Впрочем, сейчас предложены новые методы своевременного выявления околоземных объектов (например, запуск специального телескопа на орбиту Венеры, где у него будет лучший обзор), которые, как будто, позволяют уже по первым наблюдениям много точнее определять их орбиты, но реализация этих методов тоже требует дополнительных расходов (недавно НАСА запросила на этот проект около 300 миллионов долларов), и американское правительство уже призывает руководство других стран побыстрее включиться в новую программу.

Ну, что ж, будем надеяться, что мало-помалу Земля все-таки организуется на защиту от незваных космических гостей.

* Этот эффект был открыт русским инженером Ярковским еще в 1902 году, но позднее прочно забыт. Лишь десятилетия спустя о нем вспомнил эстонский астроном Опик, читавший статью Ярковского еще в школе. Эффект вызван тем, что вращающееся тело, которое все время освещается Солнцем, вечером и ранней ночью теплее, чем на рассвете и утром, а потому с его вечерней стороны излучается больше тепла (фотонов), чем с рассветной. «Лишние» фотоны уносят с собой чуть больший вращательный момент, и это приводит к появлению небольшой силы, ускоряющей или тормозящей движение тела по орбите (знак силы зависит от направления вращения). Эллипс орбиты удлиняется или укорачивается, и все ее параметры постепенно меняются. Забавно, что Опик вспомнил прочитанную в детстве статью Ярковского, размышляя над тем, как изменять орбиты угрожающих Земле метеоритов. Воспоминание натолкнуло его на предложение высаживаться на таких метеоритах и красить одну их сторону черной краской — для усиления эффекта Ярковского.

Великая космическая бомбардировка

В полнолуние хорошо видно, что поверхность Луны покрыта громадными темными пятнами. Когда-то люди верили, что там простираются моря, и, может быть, даже есть жизнь. Теперь астрономы знают, что обращенную к нам сторону Луны украшают не водные миры, а мертвенные шрамы. Это — протянувшиеся на сотни километров кратеры, оставшиеся после Великой космической бомбардировки, что началась около 4,1 миллиарда лет назад и продолжалась примерно 300 миллионов лет. Во многом именно тогда сформировался рельеф Луны. В ту пору мощным ударам метеоритов — ледяных и каменных глыб диаметром, как правило, до полусотни километров — подверглась и Земля. Эти события, как полагают некоторые исследователи, сторонники гипотезы панспермии, предопределили само появление жизни на нашей планете (см. «3-С», 9/09 и 12/02).

Впервые внимание ученых к той эпохе было привлечено после того, как в 1969–1972 годах американские астронавты доставили на Землю многочисленные образцы лунных пород. Тогда и обнаружилось, что большинство из примерно пятидесяти расплавившихся и вновь затвердевших когда-то лунных камней претерпели эти превращения за относительно короткий, с геологической точки зрения, период. Очевидно, в ту давнюю пору Луна и, как нетрудно было догадаться, Земля, подверглись ожесточенной метеоритной атаке. Падения самых крупных метеоритов привели тогда к образованию лунных «морей». Потоки магмы, изливавшиеся из потревоженных недр Луны, застывали, превращаясь в обширные базальтовые равнины. Тогда же возникло и большинство крупных кратеров (диаметром до 300 километров), наблюдаемых нами на Луне. А вот на Земле следы той страшной бомбардировки давно стерты вследствие движения континентальных плит и непрестанной эрозии (впрочем, см. статью «Первая рана Земли» в этом же номере журнала).

Лазурный берег, «модель Ниццы»

Да, мы привыкли считать Солнечную систему оплотом стабильности и покоя. Но такой она была не всегда. В ранний период своей истории она пережила бурные изменения. Кажется, что ни один уголок нашей космической обители не уцелел в лихую годину тех потрясений. Планеты, кометы и астероиды срывались с привычных мест и метались по космическим просторам, словно предметы, разметанные землетрясением. Что же заставило небесные тела, сотни миллионов лет кружившие по предначертанным орбитам, внезапно устремиться в центральную часть Солнечной системы? Почему через полмиллиарда лет после возникновения Солнца и планет в их размеренном мирке воцарился хаос?

Лишь в начале 2000-х годов благодаря работам астрономов из Обсерватории Лазурного берега в Ницце и, прежде всего, Алессандро Морбиделли удалось прояснить загадочные события, происходившие тогда. Так родилась «модель Ниццы», опровергавшая многое из того, что мы узнали за последние два с лишним века об эволюции планет. Ведь еще недавно было принято считать, что после своего формирования, завершившегося около 4,6 миллиарда лет назад, наша Солнечная система не претерпела особых изменений. Астрономы априори полагали, что все планеты и теперь еще кружат по тем самым орбитам, по которым двигались в то время, когда они зародились. В центральной части нашей планетной системы извечно располагались каменные шары — планеты земного типа и астероиды, а на ее периферии все это время находились газовые планеты-гиганты и ледяные кометы.

Эта классическая картина уже отжила свое. Как явствует из «модели Ниццы», молодость Солнечной системы была поистине временем «бури и натиска». Планеты тогда, словно бильярдные шары, перекатывались по ее просторам, всюду внося смуту. Этот хаос достиг своей кульминации через 600 миллионов лет после зарождения Солнечной системы, когда, как огромная стая вспугнутых птиц, в сторону Солнца устремились астероиды, один за другим натыкаясь на находившиеся здесь планеты. Лишь после этого в окрестности Солнца воцарилось спокойствие.

В 2005 году Морбиделли и его коллеги опубликовали новую концепцию истории Солнечной системы на страницах журнала Nature. За последние годы эта гипотеза не раз уточнялась и корректировалась, превратившись в достаточно стройную теорию, объясняющую, каким образом планеты, их спутники и астероиды оказались там, где мы видим их теперь.

Итак, в ранней период своей истории Солнце окружал плотный газопылевой диск. По прошествии нескольких миллионов лет подобные диски вокруг молодых звезд исчезают, как свидетельствуют наблюдения, выполненные Космическим телескопом имени Хаббла. Внутренняя часть диска бывает настолько разогрета, что такие вещества, как вода и метан, могут существовать здесь лишь в газообразном виде. Только на периферии диска, на расстоянии примерно трех астрономических единиц от звезды, пролегает граница, за которой вода может существовать в виде снега и льда.

Именно там, полагает Морбиделли, образовались первые четыре зародыша планет. Согласно «модели Ниццы», все планеты-гиганты зародились довольно близко от Солнца — на расстоянии от 5 до 15 астрономических единиц от него. Вероятно, они состояли лишь из одного твердого ядра, которое весило в несколько раз больше, чем Земля. Они все активнее поглощали окружавшие их газовые массы, стремительно разрастаясь. Из этой четверки планет особенно быстро росли две ближайшие к Солнцу. Содержание водорода и гелия в них стремительно увеличивалось. Две внешние планеты прибавляли в размерах гораздо медленнее. Иным был и их химический состав; они содержали преимущественно метан, аммиак и воду. Объединяло все эти планеты то, что они обращались вокруг Солнца по круговым орбитам, которые лежали в его экваториальной плоскости. Если бы их орбиты выглядели иначе, то планеты двигались бы по ним намного быстрее и не успели бы так разрастись и превратиться в настоящих космических гигантов.

Однако под действием силы притяжения газопылевого диска их орбиты постепенно изменились. Самая большая из планет, Юпитер, первой сошла с предначертанного ей круга. Медленно перемещаясь по своей новой — уже спиральной — орбите, она приближалась к Солнцу, а в протопланетном диске по мере ее движения образовалась круговая полоса, очищенная от газа и пыли. Так ледокол движется среди плавающих на его пути льдин, оставляя позади себя чистый фарватер.

Пока астрономы, сторонники этой модели, не знают, насколько далеко Юпитер продвинулся к Солнцу на той ранней стадии развития нашей планетной системы. Возможно, он достиг орбиты, по которой обращается сегодня Марс. В то время планеты земного типа — Меркурий, Венера, Земля и Марс — еще не доросли до своих нынешних размеров. Потребовалось до 100 миллионов лет, прежде чем из глыб метровой и километровой величины и, наконец, небесных тел размером с Луну сформировались эти крупные каменные планеты. Если бы Юпитер подошел ближе к Солнцу хотя бы на расстояние одной астрономической единицы, то все пространство между современными орбитами Марса и Земли было бы подчистую выметено, и планетам земного типа не хватило бы строительного материала, чтобы дорасти до своих нынешних размеров. В свою очередь, это объясняет, почему размеры Марса гораздо меньше, чем того требует теория.

Астрономы, наблюдающие в наши дни за экзопланетами, отмечают поразительное сходство между Юпитером из «модели Ниццы» и многочисленными «горячими Юпитерами», найденными в глубинах космоса, — гигантскими планетами, которые необычайно близко подбираются к своей центральной звезде и период обращения которых составляет всего несколько суток. К этой категории относится примерно каждая пятая из обнаруженных экзопланет. Подобная участь ждала и Юпитер, если бы его не остановил… Сатурн, считают приверженцы «модели Ниццы».

Он тоже перемещался в сторону Солнца, пока не сблизился с Юпитером так, что обе планеты почувствовали силу притяжения друг друга. Периоды их обращения синхронизировались: пока Юпитер трижды обегал Солнце, Сатурн совершал два оборота вокруг него. Подобные — «резонансные» — орбиты играют особую роль в небесной механике. Они могут дестабилизировать движение планет, как это наблюдается порой в поясе астероидов, а могут придать ему особую устойчивость.

Юпитер и Сатурн сохраняли стабильность, хотя расстояние между ними было невелико. Держась все время вдвоем, они пересилили притяжение газопылевого диска и начали понемногу удаляться от Солнца. Компьютерные модели показывают, что две планеты, находящиеся в резонансе, удаляются от центральной звезды только в том случае, когда более дальняя из них весит значительно меньше, чем ближняя. Это и имело место в случае Юпитера и Сатурна. Так самая большая планета Солнечной системы избежала участи стать «горячим Юпитером».

Эти путаные перемещения Юпитера, то устремлявшегося в центральную часть Солнечной системы, то поворачивавшего назад, и объясняют причину, по которой так разнороден состав пояса астероидов, расположенного между современными орбитами Марса и Юпитера. Туда были оттеснены и небольшие каменные астероиды, образовавшиеся в окрестности Земли, и «грязные снежки» — кометы, которые формировались близ планет-гигантов. Одни эти объекты содержат преимущественно кремний и его соединения, другие — в основном соединения углерода. Ранее астрономы полагали, что те и другие образовались в одной и той же зоне, на расстоянии от 300 до 500 миллионов километров от Солнца. Между тем, недавние наблюдения показали, что углеродсодержащие астероиды, находящиеся здесь, действительно, больше напоминают кометы.

Лаун-теннис «уран-нептуном»

Но вернемся в далекое прошлое, когда к этому «балету» двух гигантских планет, круживших по просторам Солнечной системы, присоединилась еще пара участников — Уран и Нептун. Итак, в ту пору, когда газопылевая туманность, обволакивавшая Солнце, рассеялась, эти четыре планеты образовали «мультирезонансную конфигурацию». В то время расстояние между Юпитером и Нептуном составляло всего 7 астрономических единиц (сегодня их разделяет 25 астрономических единиц). Такая система очень стабильна и может просуществовать миллиарды лет благодаря тому, что силы притяжения планет взаимно уравновешиваются. Их ход теперь размерен, словно слаженная работа отдельных частей машины. Но, подобно камешкам, попавшим внутрь машины и ломающим ее, в этом планетарном механизме оказались свои «посторонние предметы». Это было плотное кольцо из планетезималей — ледяных глыб, оставшихся от той эпохи, когда шло формирование планет. Они располагались на расстоянии 13–14 астрономических единиц от Солнца, а их суммарная масса в 30–50 раз превышала массу Земли. Время от времени то одна, то другая из этих глыб сбивалась с привычного пути и приближалась к Урану или Нептуну, возмущая их движение.

Наконец, по прошествии нескольких сотен миллионов лет, накопившиеся деформации орбит стали так велики, что дружный ансамбль планет окончательно рассорился. Иными словами, этот небесный механизм начал просто рассыпаться. При этой «аварии», разыгравшейся на дорогах небес, одна за другой — словно незакрепленные колеса, слетающие на полной скорости с оси, — были выброшены со своих орбит Уран и Нептун. При этом одна из них, — вероятно, Нептун — стала обращаться по очень вытянутой орбите, пересекавшейся с орбитой Сатурна. На протяжении всего нескольких десятков тысяч лет обе планеты не раз оказывались рядом друг с другом, находясь на волосок от столкновения. Возможно, иногда их разделяло всего несколько миллионов километров.

Астрономы не исключают даже того, что Юпитер и Сатурн, словно два теннисиста — мячом, «перекидывались» Нептуном (или Ураном), отправляя его то ближе к центру площадки, именуемой Солнечной системой, то чуть ли не в аут — примерно туда, где он обретается и поныне после одного из «метких ударов», нанесенных Юпитером. Какая из двух планет служила «космическим мячом», непонятно. В половине компьютерных моделей, разработанных астрономами, ей оказывался Уран, в половине — Нептун. Возможно, что последний сформировался ближе к Солнцу, чем Уран, и лишь потом, «в годину смуты», охватившей нашу Солнечную систему, был отброшен к самой ее границе. Впрочем, астрономы затрудняются пока объяснить, что именно заставило Уран и Нептун поменяться местами.

Крупным планом: Земля

На нашу планету и сейчас иногда обрушиваются метеориты. Но эти одиночные коллизии не идут ни в какое сравнение с Великой космической бомбардировкой, разразившейся около 3,9 миллиарда лет назад. Впрочем, на Земле практически нельзя найти непосредственные следы тех событий — кратеры, метеориты, а потому Бернар Марти из Исследовательского центра петрографии и геохимии в Нанси и его коллега Андерс Мейбом попытались доказать сам ее факт иначе. Их аргументом стало содержание инертных газов — неона, аргона, криптона и ксенона — в атмосфере Земли и образцах ее горных пород. Наблюдения показали, что соотношения между содержанием в земной мантии этих четырех газов, а также воды и азота соответствуют тем же показателям для определенного класса метеоритов, а именно хондритов. На основе этого ученые предположили, что подобные соотношения были типичными для того протопланетного вещества, из которого образовались и сами хондриты, и Земля.

В атмосфере же нашей планеты содержится в процентном отношении больше инертных газов, чем в мантии Земли. Увеличиться их концентрация могла только за счет столкновений Земли с кометами, сформировавшимися на расстоянии свыше 15 астрономических единиц от Солнца, при температурах от 220 до 245 градусов ниже нуля, когда летучие инертные газы превращаются в лед. Проанализировав состав атмосферы, Марти и Мейбом пришли к выводу, что во время Великой космической бомбардировки около 1 % снарядов, рухнувших на Землю, составляли кометы. Всего за ту сравнительно короткую эпоху, длившуюся для Земли каких-то 50 миллионов лет, общая масса нашей планеты.

В любом случае, обе дальние планеты нашей системы после этих коллизий стали обращаться по очень вытянутым, эллиптическим орбитам, так и норовя забраться в это ледяное скопление глыб и взбаламутить его. В течение короткого времени они вымели оттуда все глыбы, и тогда град метеоритов устремился на планеты, расположенные в окрестности Солнца. Лишь после этого орбиты планет-гигантов, теперь уже не испытывавших гравитационных возмущений, постепенно сгладились — стали почти круговыми.

Около 3,7 миллиарда лет назад положение планет Солнечной системы, наконец, стабилизируется. Впрочем, теперь они находятся значительно дальше от Солнца, нежели в ту пору, когда наша планетная система только формировалась.

Архитектурное наследие эпохи «бури и натиска»

И все-таки прежняя гармония не вернулась. Тот же Юпитер то приближается к Солнцу на расстояние 741 миллион километров, то удаляется от него на 816 миллионов километров. Немного не совпадают и плоскости, в которых располагаются орбиты гигантских планет. Максимальный угол между этими плоскостями составляет 2 градуса. «Это, конечно, не так много, — отмечает Морбиделли, — но все же существенно больше, чем ожидалось».

«Модель Ниццы» многое объясняет в архитектуре Солнечной системы. Вот несколько примеров.

В окрестности Юпитера обретаются десятки тысяч астероидов — так называемые «троянцы». Ранее астрономы считали, что они образовались одновременно с ним. Однако Морбиделли и его коллеги предположили, что эти планетки были захвачены Юпитером в эпоху «смуты», которая охватила Солнечную систему около 4 миллиардов лет назад. Сформировались же они в разных областях нашей планетной системы. В самом деле, некоторые из троянцев, скорее, напоминают кометы; другие же практически не содержат ни воды, ни органических веществ. Кроме того, орбиты некоторых троянцев наклонены под углом 40 градусов к плоскости орбиты Юпитера, а это тоже хорошо согласуется с «моделью Ниццы».

Многие спутники планет-гигантов обращаются, вопреки правилам, в обратном направлении. Сейчас их насчитывается уже порядка сотни. Если «нормальные» спутники чаще всего возникали вместе со своими планетами, то «ретрограды» пленены ими. В 2007 году американский астроном Дэвид Несворны показал, что подобный захват возможен, когда две планеты вплотную сближаются друг с другом. Но из «модели Ниццы» явствует, что и Юпитер, и Сатурн когда-то оказывались рядом с Ураном или Нептуном.

По ту сторону орбиты Нептуна начинается пояс Койпера. Он включает такую крупную планету, как Плутон диаметром около 2300 километров. Расчеты показывают, что масса пояса Койпера слишком мала, чтобы там могли сформироваться подобные планеты. «Модель Ниццы» помогает разрешить и эту проблему. Согласно ей, пояс Койпера представляет собой жалкий остаток того огромного пояса планетезималей, который был почти уничтожен Ураном и Нептуном. Общая его масса в тысячи раз превышала массу пояса Койпера.

И еще один любопытный аспект «модели Ниццы». Она лишний раз свидетельствует, насколько случайным было возникновение Солнечной системы в том виде, в каком она существует. Исследователям было достаточно лишь немного изменить начальные условия этой «задачи», как они получали очень странные результаты. Планеты то обращались по необычайно вытянутым орбитам, больше напоминавшим траектории комет, то начинали двигаться вокруг Солнца в обратном направлении, то их орбиты неизменно оставались в резонансе друг с другом. И именно такие — экзотические — планетные системы астрономы обнаруживают, наблюдая за отдаленными звездами, увеличилась, согласно расчетам, на 200 квадриллионов тонн. За прошедшие после этого 3,8 миллиарда лет Земля потяжелела лишь на 200 триллионов тонн (1 квадриллион равен 1000 триллионов).

Однако результат, полученный Марти и Мейбомом в 2007 году, противоречит расчету, который проделал ранее бразильский ученый Родни Гомеш. В статье, опубликованной им в 2005 году на страницах журнала Nature, говорится, что космические «бомбы» делились тогда примерно поровну на астероиды и кометы. Подтверждением служат компьютерные модели, составленные им.

Великая космическая бомбардировка. Дубль два

В 2009 году космический телескоп «Спитцер» обнаружил в окрестности звезды HR 8799 молодую планетную систему, где протекают те же бурные процессы, что наблюдались, согласно «модели Ниццы», около 4 миллиардов лет назад в окрестности Солнца. Возникла эта система, состоящая, по крайней мере, из трех планет, которые в десять с лишним раз крупнее Юпитера, совсем недавно. В ее центральной части телескоп «Спитцер» приметил вращающееся газопылевое облако. Оно было необычайно большим, отметили исследователи из Аризонского университета. Они предположили, что это облако постоянно подпитывается мелкими крупицами, образующимися при столкновении таких объектов, как кометы и астероиды. Очевидно, гравитационные возмущения, вносимые планетами-гигантами, так велики, что небольшие небесные тела то и дело отклоняются от своих орбит, сшибаясь друг с другом. Как полагают астрономы, планеты-гиганты в этой планетной системе до сих пор еще не заняли своих окончательных орбит и хаотично блуждают в окрестности звезды, стремясь обрести равновесие.


Первая рана Земли

У нашей планеты была бурная молодость. В ту пору множество метеоритов буквально изрешетили ее поверхность, но до сих пор считалось, что все следы тех катастроф давно изгладились. Различные тектонические и эрозионные процессы стерли раннюю летопись Земли. Так что, нам известны лишь сравнительно недавние примеры метеоритной угрозы — они относятся уже к эпохе, когда метеориты были не такими большими.

Однако летом 2012 года пришла неожиданная весточка из прошлого. На юго-западе Гренландии были обнаружены характерные признаки кратера, образовавшегося около трех миллиардов лет назад. Он почти на миллиард лет старше кратера Фреде — форт в Южной Африке, который удерживал ранее рекорд.

Чтобы отыскать эти признаки, потребовалось поистине детективное расследование в духе Шерлока Холмса, длившееся около трех лет. Его участникам пришлось поочередно исключить всех «подозреваемых» — любые геологические события, которые могли бы объяснить происхождение некоторых необычных образцов пород. И тогда стал очевиден преступник: метеорит.

Фраза «характерные признаки» прозвучала не случайно. Когда-то здесь впрямь находился кратер диаметром от 500 до 600 километров, самый большой кратер на Земле, известный науке. Сейчас этот рекорд принадлежит кратеру Фредефорт. Его диаметр составляет 300 километров.

Всего на сегодняшний день на нашей планете обнаружен 178 кратер, образовавшийся после падений метеоритов. Но как получилось, что самый громадный кратер до сих пор оставался неизвестным? Все объясняется просто. За минувшие три миллиарда лет он был полностью уничтожен. Лишь по отдельным признакам — после трех лет кропотливой работы — ученые сумели доказать, что здесь располагался кратер.

В ту пору юго-западное побережье современной Гренландии представляло собой вулканический архипелаг — цепочку островов, своими очертаниями напоминавшую Японию. Возможно, метеорит упал не на сушу, а в море, рядом с одним из островов, ведь породы, исследованные учеными, носят следы специфических изменений. Когда-то они были залиты кипящей водой, очевидно, захлестнувшей сушу после падения каменной громады, прилетевшей из космоса. Просачиваясь вглубь земли, морская вода растворяла некоторые материалы и выносила их на поверхность, где они вновь выпадали в осадок.


Кратер Фредефорт


В любом случае, где бы ни находился кратер, на дне моря или на суше, время перебороло его: песчинку за песчинкой, крупицу за крупицей. Никаких его очертаний не сохранилось. Эрозия и различные метаморфозы изменили облик здешнего ландшафта до неузнаваемости. Ведь дождь, ветер, движение ледников неустанно шлифуют любые неровности рельефа. Пески засыпают их. Они зарастают травой и деревьями. Особую роль в сокрытии следов давней катастрофы сыграл ледниковый период. Громадные массы льда, сковавшие Гренландию, буквально «выскоблили» эту местность. Не нашлось и выброшенных взрывом пород, что тоже не удивительно, учитывая, сколько времени прошло после того события. Вообще нам известны лишь немногие образцы пород возрастом более трех миллиардов лет.

И все-таки давняя катастрофа оставила определенные следы. Ученые из Геологического ведомства Дании и Гренландии во главе с Адамом Гарде заподозрили, что здесь рухнул крупный метеорит потому, что в этом районе Гренландии была выявлена заметная аномалия магнитного поля. Она охватывала территорию размером с Калужскую область.

Ученые исследовали здешний грунт и обнаружили странно деформированные граниты. Судя по образцам кварцев, те тоже подверглись когда-то невероятному давлению, причем в течение очень короткого времени. Поскольку эти породы обнаруживали на очень большой площади, вряд ли их метаморфоза объяснялась тем, что здесь разразилось землетрясение или произошло какое-то другое событие, охватывающее обычно незначительную территорию, пишет Гарде на страницах журнала Earth and Planetary Science Letters. Все свидетельствует о том, что эти изменения возникли одномоментно — во время какой-то грандиозной катастрофы. Ею мог быть лишь удар метеорита. Оставалось очертить область бедствия. Результаты проделанной работы свидетельствуют о том, что мы можем заглянуть в прошлое на миллиард лет дальше, отыскивая следы событий, которые довелось пережить нашей планете.

Их поиск порожден вовсе не праздным любопытством ученых. Места падения крупных метеоритов интересуют, например, компании, занятые добычей полезных ископаемых. Ведь в районе почти каждого третьего кратера, известного нам, обнаружено ценное сырье: различные минералы, нефть, природный газ, редкоземельные элементы. Не случайно американская фирма North American Nickel уже подала заявку на разведку полезных ископаемых, в частности, никеля, в районе падения гренландского метеорита. Ведь одно из крупнейших месторождений никеля находится в канадском местечке Садбери — там, где около 1,8 миллиарда лет назад упал громадный метеорит. Об этом напоминает кратер диаметром 250 километров.

Диаметр самого астероида, рухнувшего тогда на Гренландию, оценивается в 30 километров. Иными словами, это была небольшая планета размером с Фобос, спутник Марса. Она была в сотни раз крупнее астероида Апофис, который может столкнуться с Землей в 2036 году. Если бы подобный объект врезался в Землю сегодня, то человеческая цивилизация, пожалуй бы, погибла.

Впрочем, мы применяем к этому событию наши сегодняшние представления о нем. На самом деле, в падении подобного метеорита не было ничего ужасного, рокового. Ведь Земля оставалась тогда «безвидна и пуста». Лишь бактерии населяли ее. Как повлияло на них последовавшее затем резкое изменение климата — «метеоритная зима»? Ученые пока не готовы ничего сказать об этом. Единственное, что можно отметить: Чикскулубский метеорит, падение которого 65 миллионов лет назад привело, как многие полагают, к вымиранию динозавров, был в два с лишним раза меньше того, что некогда рухнул на Гренландию.

Итак, у нашей планеты была бурная молодость. Ведь около 4 миллиардов лет назад она подверглась Великой космической бомбардировке (см. предыдущую статью). Традиционно считается, что эта эпоха продолжалась сравнительно недолго: не более 300 миллионов лет. Именно в то время на Луне образовались гигантские кратеры, которые мы привычно именуем «морями».

Однако результаты исследований, опубликованные в начале 2012 года на страницах журнала Nature, свидетельствуют о том, что первые два с половиной миллиарда лет земной истории проходили под непрестанный аккомпанемент космических катастроф. За это время на поверхность планеты рухнули не менее 70 метеоритов, которые не уступали по размерам Чикскулубскому метеориту Выяснить это помогло следующее обстоятельство. Когда метеорит падает на нашу планету, в воздух взметывается огромное количество расплавленной породы. Большая часть ее, застывая и принимая форму крохотных шариков размером с песчинки, вновь просыпается на землю. В месте падения крупного метеорита эти шарики в виде вкраплений встречаются в его обломках, а еще они содержатся в образцах земной породы, относящихся к эпохе, когда произошла катастрофа. Так, когда на Землю упал Чикскулубский метеорит, подобные застывшие капельки — сферулы — рассеялись по всей планете. Их повсеместно обнаруживают в слое, датируемом той эпохой.


«Иридиевая аномалия»


Проанализировав частоту залегания подобных «песчинок» в других геологических слоях, а также содержание в них редких металлов (например, тот же Чикскулубский метеорит оставил после себя «иридиевую аномалию»), ученые попытались восстановить картину бомбардировки Земли метеоритами в те времена, от которых на нашей планете не осталось даже кратеров.

Так, в образцах породы возрастом 3,24 миллиарда лет, исследованных в Южной Африке, толщина подобного слоя вкраплений достигает 25 сантиметров. Неведомый метеорит, который был виновником появления этого слоя, достигал в поперечнике, по оценке ученых, от 40 до 70 километров.

Столь длительная бомбардировка косвенно подтверждает популярную в последние годы у астрономов «модель Ниццы», согласно которой пояс астероидов около 4 миллиардов лет назад располагался гораздо ближе к Земле. Его граница пролегала внутри современной орбиты Марса (см. статью «Великая космическая бомбардировка»). По расчетам исследователей, прошло около двух миллиардов лет, прежде чем астероиды и их обломки, располагавшиеся во внутреннем кольце пояса астероидов, не покинули его. Многие из них при этом рухнули на планеты земной группы, в том числе на Землю.

Два самых древних и крупных кратера, найденных на нашей планете до открытия, сделанного в Гренландии, — уже упомянутые Фредефорт и Садбери — вероятно, являются единственными зримыми напоминаниями о тех космических бомбардировках. Но восстановить хронику тогдашних событий все-таки можно имеющимися у нас средствами — даже несмотря на то, что сами кратеры давно исчезли в горниле земных метаморфоз.


Почему пришли в движение литосферные плиты

Все течет, все меняется, — сказал древнегреческий философ Гераклит. Его слова можно отнести и к нашей планете — к тверди земной. Со временем — за сотни миллионов лет! — облик Земли разительно обновляется. Ведь ее каменная оболочка не представляет собой единого целого. Она состоит из семи крупных и нескольких небольших литосферных плит. Литосфера — это в буквальном смысле слова «каменная оболочка» Земли. Она объединяет земную кору и верхнюю часть мантии. Ее толщина достигает 150–300 километров под континентами и от нескольких километров до 90 километров — под океанами.

Литосфера плавает на астеносфере, то есть «ослабленной оболочке» разогретых и сравнительно пластичных горных пород. Литосферные плиты дрейфуют по вязкой астеносфере. Все эти фрагменты земной оболочки очень медленно, но непрерывно движутся в разных направлениях, перенося с собой целые континенты, которые на протяжении сотен миллионов лет то сливаются воедино, то снова распадаются.

За последние полмиллиарда лет, по меньшей мере, трижды перемещения литосферных плит приводили к образованию громадного суперконтинента, который впоследствии раскалывался на части, и отдельные материки вновь «разбегались» в стороны. По оценкам геологов, пройдет еще примерно четверть миллиона лет, и на Земле вновь образуется суперконтинент (см. Главную тему № 2/14 — «Рождение континентов»).

Кажется, что бег литосферных плит — это естественное свойство таких небесных тел, как Земля. На самом деле, это — ее уникальная особенность. Земля — единственная планета Солнечной системы, чья каменная оболочка состоит из отдельных плит, которые пребывают в движении. Оно началось, когда раскаленная изначально Земля остыла. Что же заставило плиты стронуться с места? Геологи спорят об этом десятилетиями. В последнее время в их дискуссию вмешались и астрономы, которые принялись искать подоплеку происходящего за пределами нашего земного мирка.

Так, Викки Хансен из Миннесотского университета, известная своими исследованиями Венеры, опубликовала на страницах авторитетного журнала Geology свою неожиданную гипотезу, которая убедительно объясняет подоплеку движения литосферных плит. Для этого ей пришлось обратиться к силам небесным, кои время от времени вмешиваются в события, происходящие на Земле. По мнению Хансен, все началось с падения громадного метеорита, который всколыхнул земную кору так сильно, что та не может успокоиться и по сей день.


Движение литосферных плит продолжается потому, что земная кора теперь неоднородна. На континентах она сложена в основном из осадочных пород и гранитов. Их плотность гораздо ниже, чем плотность базальтовых пород, составляющих океаническую кору. В зонах субдукции, где одна литосферная плита подныривает под другую, базальтовые породы за счет своего высокого удельного веса погружаются вглубь мантии Земли, в то время как в зонах спрединга — также на дне океанов — земная кора разрастается. Здесь образуются все новые участки океанической коры. Таким образом, горные породы составляющие земную кору, постоянно пребывают в движении. Как иронично замечает Хансен, «субдукция словно вирус; однажды начавшись, она неудержимо распространяется».

Геофизики давно полагали, что движение литосферных плит началось в архее. Это — одна из древнейших эпох в геологической истории нашей планеты. Ее сроки традиционно ограничиваются следующими временными рамками: 3,8–2,5 миллиарда лет назад. Неясно было только, что запустило этот планетарный механизм. Ведь в более раннюю эпоху вся поверхность Земли была покрыта однородной гранитной корой, которая оставалась неподвижной.

По гипотезе Хансен, вследствие падения метеорита один из участков земной коры — тонкий участок, ослабленный мощными конвекционными (тепловыми) потоками, — был пробит насквозь, и в этот обширный разлом хлынул расплавленный материал мантии. Застыв, он образовал над разломом мощный горный хребет, а по обе стороны от вознесшихся скал из того же застывшего материала мантии сформировались первые литосферные плиты. Они отодвинули земную кору в сторону, к краям кратера, достигавшего не менее тысячи километров в поперечнике. Там она заметно уплотнилась и стала погружаться под не затронутые этим ударом края земной коры. Так начался процесс субдукции.

Как считает Хансен, после этого удара вдоль участков коры, ослабленных конвекционными потоками, протянулись трещины. По-видимому, они соединились с другими кратерами, возникшими после падений метеоритов. Эти трещины и обозначили границы будущих литосферных плит. Сеть трещин охватила весь земной шар…

Так был запущен в работу «вечный двигатель» глобальной тектоники. Однажды начатое движение плит уже не прекращалось. Однако даже этот планетарный механизм не может работать бесконечно, как идеальный «перпетуум мобиле». Когда-нибудь «смазка» закончится, истает. В нашем случае «смазкой» служит вода, пропитывающая горные породы. Она испарится, когда средняя температура на планете превысит 60–70 градусов Цельсия. Предположительно, это произойдет через 1,6 миллиарда лет, когда Солнце будет светить на 15 процентов ярче, чем теперь. Со временем на Земле испарятся даже океаны, и всякая жизнь исчезнет.

Значит, движение литосферных плит в отдаленном будущем затихнет? Земная кора застынет, как это случилось на Марсе? Вот тогда на нашей планете перестанут расти горы, и постепенно — за счет процессов эрозии — земной рельеф сгладится. Прекратятся извержения вулканов, не будет больше землетрясений.

К слову, движение литосферных плит на Земле уже на какой-то период, возможно, приостанавливалось. Например, как показывают расчеты, в ту пору, когда существовал суперконтинент Родиния (1,6–1,1 миллиарда лет назад), процессы субдукции поутихли примерно на 100 миллионов лет. Земная кора остыла, ее толщина все увеличивалась. Литосферные плиты снова пришли в движение, только когда суперконтинент разломился под собственной тяжестью.

Однако даже эта катастрофа была довольно безобидной по сравнению с падением того громадного метеорита, который привел в движение литосферные плиты. Это событие стало важнейшей вехой в геологической истории нашей планеты. Многие ученые полагают, что благодаря движению литосферных плит на Земле образовались океаны, появились месторождения полезных ископаемых, заработали вулканы, решительным образом изменив состав земной атмосферы, — и это явилось главной предпосылкой развития жизни на Земле.

Таким образом, гипотеза Хансен объясняет, на каких именно планетах возможно появление высших форм жизни, и позволяет понять, почему на других планетах земного типа, например, на Марсе и Венере, сейчас не наблюдается движения литосферных плит. Исследовательница полагает, что когда-то на Марсе этот процесс все-таки начался. Об этом напоминают обширные низменности в северном полушарии планеты. Однако Марс по своим размерам значительно уступает Земле. Он быстро остыл, и всякое движение плит прекратилось. Мощная кора сковала Марс словно панцирем.

На Венере же, считает Хансен, важнейшую роль сыграл химический состав коры. Она почти не содержит воду, а потому является куда более хрупкой оболочкой, чем земная кора. Даже при падении на Венеру крупных астероидов ее кора не могла расколоться на отдельные прочные плиты с четко очерченными краями.


Как ускорить ледниковый период

Может ли наступить очередной ледниковый период? Особенно если учесть, что наступление жарких времен мы знаем, как ускорить. Для этого надо сжигать нефть и выбрасывать углекислый газ, что мы и делаем. Недавно группа австралийских геологов дала на этот интересный вопрос неожиданный ответ. Для начала вспомним, что науке известно о причинах великих похолоданий, периодически навещавших планету Земля. Наука называет эти великие похолодания «ледниковыми эпохами» и определяет как времена, когда полярные районы Земли покрыты мощными ледовыми полями. Такие эпохи могут тянуться миллионы лет, и внутри них есть более холодные, так называемые ледниковые, периоды, и более теплые, то есть межледниковые, периоды. Формально говоря, мы и сейчас живем в одной такой ледниковой эпохе, последней по времени. Она началась примерно 2,6 миллиона лет назад и продолжается по сей день.

Наука все еще не знает ни причин наступления ледниковых эпох, ни причин длительных «температурных пульсаций» внутри них, ни причин их конца. Впрочем, точнее было бы сказать, что она знает слишком много возможных причин. Причины земные, вроде изменений состава земной атмосферы (слишком много углекислого газа, или метана, или того и другого сразу), флуктуаций океанских течений (поскольку от них зависит подводный перенос тепла из Тихого океана в Атлантический и холода обратно), подвижки континентальных плит (поскольку они приводят к появлению горных хребтов и высокогорий, которые являются хорошими поглотителями углекислого газа), а также гигантского вулканизма (поскольку он выбрасывает в атмосферу сразу много упомянутых выше газов); и причины космические — вроде вариаций параметров земной орбиты (поскольку эти вариации меняют приходящее на Землю количество солнечного тепла) или вариаций интенсивности солнечного излучения (некоторые климато-скептики именно последней причиной объясняют нынешнее потепление).

Большинство специалистов склоняются к тому, что причин вообще несколько, и они работают во взаимодействии друг с другом, а потом к ним присоединяются вторичные факторы, которые вызывают вышеупомянутые «пульсации». Но эти детали уже не так важны, ибо основной вывод и так понятен: человечество не в силах влиять на все перечисленные выше причины (кроме состава атмосферы) и потому ускорить приход холодов, увы, не может. Оно может, как мы уже сказали, сделать Землю жарче, но для приближения очередного ледникового периода, а тем более эпохи, нужны факторы планетарного масштаба.

Работа австралийских ученых не нацелена на поиски практического «рецепта похолодания». Она привлекла внимание специалистов тем, что предложила возможную причину ускорения прихода последней («нашей») ледниковой эпохи, причем такую причину, о которой никто раньше не думал. Причина эта, по их мнению, тоже космическая, но не связанная ни с вариациями земной орбиты, ни с вариациями солнечного излучения. Все дело — в астероиде.

Столкновений с астероидами за всю историю Земли могло быть много. Но поскольку 70 % поверхности нашей планеты покрыты Мировым океаном, вероятность падения гигантского астероида в воду много больше, чем на сушу. А результат в этих двух случаях разный. Кроме выброса пыли, газов и тому подобного в атмосферу, что должно способствовать резкому похолоданию (из-за усиленного отражения солнечного света), при падении большого астероида в воду возникает еще эффект цунами. Волны, поднятые таким ударом, должны и могут быть высотой даже не в десятки, как в случае гигантских землетрясений, а в сотни метров. Не говоря уже о глобальных разрушениях, такие волны в состоянии забросить далеко вглубь континентов всю ту пыль, обломки и прочие частицы вещества, которые они несут с места катастрофы. Второго кратера Чикскулуб не будет, но следы удара сохранятся повсеместно.

В 1964 году американские исследователи обнаружили на берегах Антарктики мельчайшие частицы оплавленного сильнейшим ударом земного вещества вперемешку с веществом, характерным для метеоритов. Зона распространения этих частиц была достаточно велика, чтобы предположить, что тут когда-то рухнул в океан гигантский метеорит или астероид. Удалось оценить и время катастрофы — 2,5 миллиона лет тому назад. Сегодня ученым известно, что именно в это время в Чили, Австралии, Новой Зеландии и Антарктике, то есть в местах, непосредственно окружающих предполагаемое место падения астероида Эльтанин, возникли большие слои геологических отложений особого рода. Долгое время считалось, что эти слои возникли за счет медленных и длительных геохимических процессов. Никто не связывал их с ударом астероида. Но вот теперь исследователи, тщательно изучив эти слои, пришли к выводу, что их вещество сродни тем частицам, которые были найдены на антарктическом побережье, где Эльтанин упал в Южный океан. По мнению авторов, это вещество было заброшено вглубь южно-американского и австралийского континентов теми гигантскими цунами, которые распространились от места удара.

Если так, то можно думать, что удар астероида Эльтанин имел чудовищную силу, и, стало быть, его последствия тоже были чудовищными — как для геологии планеты, так и для ее атмосферы. И в этой точке своих рассуждений авторы позволяют себе неожиданный и интересный ход мысли. Они напоминают, что, судя по прежним данным, за 100–200 тысяч лет до этого удара на Земле (по каким-то ее причинам) началась нынешняя ледниковая эпоха. И, отметив это многозначительное совпадение, австралийские ученые выдвигают смелую гипотезу: «Не настаивая на том, что вся геологическая и климатическая активность того времени была вызвана ударом астероида Эльтанин, — пишут они, — мы хотим указать, что подобное совпадение во времени двух событий: удара астероида и начала ледниковой эпохи — заставляет задуматься над возможностью влияния этого катастрофического события и ему подобных на ускорение — а может быть, — и на зарождение эпохальных климатических переходов в масштабах всей планеты».

В конечном счете, может оказаться, что и мы, люди, обязаны своим появлением этому астероиду. Кто знает, может, если б не он, когда бы мы еще появились. Ждали бы и ждали еще миллионы лет, пока не похолодает.


Метеориты на вес золота

Когда-то с неба сыпались золото и платина. Драгоценные металлы падали на нашу планету вместе с метеоритами. Возникли же они гораздо раньше — при столкновении нейтронных звезд.

В пору экономических кризисов люди всеми способами пытаются спасти свои сбережения — например, скупают золото. Любопытно, что этот металл, как убедились астрономы, тоже рождается в пору кризисов, но не земных, а небесных. Компьютерные модели, представленные астрофизиками, свидетельствуют, что идеальные условия для синтеза золота возникают при катастрофических событиях в мире звезд. В это время вспыхивают термоядерные реакции, которые порождают в большом количестве тяжелые элементы — в том числе вожделенный металл.

Как известно, многие химические элементы образуются при слиянии более легких атомных ядер. Зачем далеко ходить за примерами? В недрах нашего Солнца при слиянии ядер водорода возникают ядра гелия. При этом выделяются громадные количества энергии. Подобные процессы протекают и в недрах других звезд — с той лишь разницей, что в глубине гигантских звезд рождаются более тяжелые элементы, включая железо. Происходит, правда, это по другой схеме — путем захвата нейтронов у менее массивных атомов. Есть две основные разновидности этого захвата. Одна из них — так называемый «быстрый процесс», r-процесс (от английского слова rapid) — до сих пор вызывала немало вопросов у астрофизиков, поскольку подобный процесс протекает, лишь когда плотность нейтронов очень высока и есть возможность быстрого захвата большого их количества. Результатом этой череды событий становится синтез самых тяжелых элементов, в том числе тория, урана, платины и золота. Но в недрах каких небесных объектов это может происходить?

Долгое время астрофизики предполагали, что золото рождается при взрывах сверхновых звезд. Однако этот сценарий не мог объяснить характер распределения тяжелых элементов во Вселенной. Другое дело — столкновения нейтронных звезд. Прежде чем описать подобное событие, поговорим немного об этих необычных объектах.

Путешествие вглубь нейтронных звезд

Возникают они на месте взорвавшихся звезд (если те не превратились в черные дыры). Нейтронные звезды — поистине рай небесный для физиков. Ни в одной лаборатории мира нельзя воссоздать условия, царящие здесь.

Прежде всего, поражает их плотность. Вещество в них сжато сильнее, чем в атомном ядре. Так что нейтронная звезда диаметром около 20 километров оказывается в 1,4–3 раза массивнее Солнца. Это означает, что чайная ложка звездной пыли будет весить около миллиарда тонн.

Сила притяжения на поверхности нейтронной звезды так велика, что та представляет собой идеальный шар. Если здесь и можно найти какие-то неровности, то их высота — не более миллиметра. Толщина твердой коры, по результатам наблюдений, не превышает полутора километров. Верхний ее слой состоит из железа, погруженного в своего рода океан из электронов.

Слой железа очень тонок. Всего в нескольких метрах от поверхности нейтронной звезды ее плотность резко возрастает. Там теснятся экзотические атомные ядра, которые на Земле можно получить разве что на новейших ускорителях. Пример тому — такой элемент, как никель-78. Если в стабильном атоме никеля его ядро содержит от 58 до 64 протонов и нейтронов, то радиоактивный никель-78 содержит, по меньшей мере, на 14 нейтронов больше. Период полураспада подобного элемента в лабораторных условиях составляет 110 миллисекунд. А вот в коре нейтронной звезды ввиду царящего здесь громадного давления атомные ядра никеля-78 пребывают в стабильном состоянии.

Но продолжим путешествие вглубь нейтронной звезды. Когда плотность в ее коре достигает 400 тысяч тонн на кубический сантиметр, условия резко меняются. Теперь для нейтронов, с энергетической точки зрения, выгоднее находиться вне атомных ядер. Они «просачиваются» сквозь ядра и образуют зоны, состоящие из так называемой «нейтронной жидкости».

Наконец, когда плотность в недрах звезды достигает 150 миллионов тонн на кубический сантиметр, кора нейтронной звезды заканчивается. Все атомные ядра распадаются на свои составные части. В этом месиве из элементарных частиц нейтроны находятся в явном изобилии. Поэтому, когда звезда остынет, в ее недрах может наблюдаться такое явление, как нейтронная сверхпроводимость. Этот феномен аналогичен, например, низкотемпературной сверхпроводимости гелия. Для него характерно полное отсутствие потерь энергии на элекрическое сопротивление.

Итак, по своему строению нейтронная звезда напоминает, скорее, планету земного типа, нежели звезду. Она покрыта твердой корой, под которой простирается обширная жидкая зона. Впрочем, четкой границы между этими двумя областями нет. Мощное магнитное поле связывает их.

На этом аналогии между нейтронной звездой и планетами заканчиваются, поскольку астрономы мало что знают о том, что происходит в ее недрах на глубине всего в несколько километров, когда плотность превысит в 10 раз плотность атомного ядра. Ведь даже на современных ускорителях при столкновении атомных ядер не удается достичь подобной плотности. По некоторым гипотезам, там пребывают в свободном состоянии кварки. А, может быть, там находятся какие-то неизвестные пока науке элементарные частицы?

По оценкам астрономов, только в нашей Галактике расположено около миллиарда нейтронных звезд, но в большинстве своем они еще не обнаружены (подробнее об этих звездах, именуемых также «пульсарами», см. «3-С», 9/05).

Пульсары гибнут за металл

Как показывают модельные расчеты, при столкновении двух нейтронных звезд в окружающее пространство мгновенно — за тысячную долю секунды! — выбрасывается большое количество необычайно раскаленного звездного вещества.

Когда плазма остывает до температуры менее 10 миллиардов градусов, в ней начинаются цепные реакции — тот самый быстрый захват нейтронов. Это приводит к образованию тяжелых элементов.

Ученые соотнесли картину распределения тяжелых элементов, полученную путем моделирования на компьютере, и оценили предполагаемое число столкновений нейтронных звезд. Соотнесли и убедились, что именно эти события, очевидно, и породили большую часть золота, платины, урана, содержащихся во Вселенной. Почти все то золото, ради которого люди гибли веками, — это золото звезд нейтронных.

Когда же оно возникло? Как попало на нашу планету?

Время синтеза золотых запасов Земли можно установить только приблизительно. Например, предполагается, что возраст этого золота — не более 10 миллиардов лет, ведь именно таков возраст Млечного Пути. Незримые «космические фабрики» по производству драгметалла открылись в нашей Галактике лишь после того, как она сформировалась. После того, как звезды в ней старились, взрывались, превращались в черные дыры или нейтронные звезды, а те время от времени сталкивались друг с другом. Под громовой аккомпанемент этой «космической алхимии» различные вещества, содержавшиеся в недрах нейтронных звезд, словно по мановению волшебной палочки, превращались в золото. Так что, возраст земных богатств (хотя бы некоторых) — почти 10 миллиардов лет. Они вдвое старше Земли.


Схематическое изображение пульсара

Великая космическая бомбардировка позолоченными снарядами

Разумеется, атомы золота проделали долгий путь, прежде чем попали к нам на планету. Многие из них достигли наших палестин еще в ту отдаленную эпоху, когда на месте Солнечной системы вращалась обширная туманность из газа и пыли. Постепенно пылинки и небольшие крупицы, содержавшиеся в протопланетном диске, сталкивались и слипались, что вело к образованию твердых сгустков — планетезималей. В них уже содержались крупицы золота.

Планетезимали превращались в прото планеты. Когда, наконец, около 4,56 миллиарда лет назад возникла Земля, она была покрыта океаном магмы. В нем и происходило разделение химических элементов. Жидкое железо опускалось к центру Земли; расплавленные горные породы оставались в верхних слоях молодой планеты. Что же касается «сидерофильных» элементов (от греческих слов sideros — железо и phileo — люблю), то есть металлов, которые, наряду с железом, участвуют в формировании ядер планет — а это не только никель, но и, например, платиноиды, — то они тоже перемещались внутрь Земли. Так, еще около 4,5 миллиарда лет назад, когда земная мантия пребывала в расплавленном состоянии, содержавшиеся в ней тяжелые металлы, в том числе золото, погрузились вглубь и образовали земное ядро. Мантия же сформировалась из более легких элементов — прежде всего, горных пород.


По оценкам ученых, сегодня в недрах нашей планеты, на большой глубине, таится столько золота, что его запасов хватит, чтобы покрыть всю поверхность Земли слоем в четыре метра высотой. Впрочем, немало вожделенного металла залегает довольно близко к поверхности Земли. Мантия нашей планеты и ее кора содержат в десятки тысяч раз больше золота, чем допускает теория.

Здесь также много платины и других ценных металлов. А ведь все они еще 4,5 миллиарда лет назад должны были погрузиться в недра Земли.

История появления золотоносных жил теперь, когда мы узнали, как золото попало на нашу планету, стала вызывать вопросы у ученых. Лишь недавно британские геофизики опубликовали в Nature статью, в которой разгадали этот «алхимический секрет».

Матиас Уилболд и его коллеги из Бристольского университета проанализировали содержание вольфрама в пробах, взятых из мантии Земли. Этот металл также принадлежит к числу сидерофильных элементов. Один из его изотопов — вольфрам-182 — стал для ученых «меткой», позволившей выяснить некоторые подробности геологической истории планеты. Точный анализ содержания изотопа показал, что почти во всех пробах этот показатель одинаков. Исключение составляют разве что древние образцы пород, собранные в Западной Гренландии. Там концентрация вольфрама-182 заметно выше. Самое примечательное, что эти образцы (их возраст — около 3,8 миллиарда лет) относятся к той эпохе, когда молодая Земля еще не подверглась интенсивной космической бомбардировке (см. статью «Великая космическая бомбардировка»).

До этого концентрация вольфрама-182 менялась вот по какой причине. Этот стабильный изотоп вольфрама образуется при распаде другого изотопа — радиоактивного гафния- 182 (у него то же самое массовое число, то есть суммарное количество протонов и нейтронов в атомном ядре, что и у вольфрама; оно равно 182). Гафний — в отличие от вольфрама — не имеет сродства с железом. Поэтому, когда шло формирование земного ядра, гафний оставался в мантии. Период полураспада его радиоактивного изотопа составляет 8 миллионов лет. Уже по прошествии 50 миллионов лет почти весь гафний, содержавшийся в мантии Земли, распался. Зато концентрация вольфрама-182 значительно возросла. Ведь на протяжении этого периода все новые количества вольфрама появлялись в результате распада изотопа гафния.

Почему же потом этот показатель начал снижаться? Дело в том, что вольфрам редко встречается в метеоритах. Когда около 3,8 миллиарда лет назад в сторону Земли устремилось множество астероидов, содержание вольфрама в ее мантии поневоле уменьшилось. Чем больше метеоритов падало на Землю, пополняя ее верхние слои, тем ниже становился этот показатель. Сегодня он почти повсеместно одинаков. Лишь древнейшие образцы пород, относящиеся к эпохе, которая предшествовала «Великой космической бомбардировке», сохранили свой прежний химический состав.

По оценкам геологов, за счет метеоритов, усеявших поверхность Земли, ее масса возросла почти на один процент. Никогда впоследствии наша планета не прибавляла так резко в весе. В этом космическая бомбардировка пошла ей на пользу.

Как и в другом: содержание золота и прочих благородных металлов в верхних слоях планеты вновь увеличилось. Принесенные из космоса вещества, в том числе крупицы золота, платины и других металлов, откладывались на поверхности молодой планеты, со временем смешиваясь с верхними слоями коры. Они не могли погрузиться вглубь Земли, ведь ее внутренняя структура уже окончательно сформировалась. Как отмечает Матиас Уилболд, «те самые благородные металлы, играющие важнейшую роль в нашем хозяйстве и нашей промышленности, по большей части оказались на Земле в результате случайного стечения обстоятельств — когда на планету обрушилось огромное количество метеоритов». Пусть это и была катастрофа — но с золотым отливом!

Загрузка...