Введение

От мечты до воздушных шаров

Стремление человека преодолеть силу земного притяжения и парить в воздухе подобно птице уходит своими истоками в глубокую древность. С давних времен человечеством владела мысль о свободном полете в воздушном океане, который манил своей безбрежностью и величием. Для достижения этой цели людям пришлось пройти долгий и тернистый путь, полный как неудач, так и свершений. Нет ни одного народа древности, который не наделял бы создания своей фантазии способностью перемещаться в воздушном пространстве с помощью облаков, крыльев или крупных птиц. Это нашло свое отражение в религиозных верованиях многих народов, многочисленных мифах и легендах. Но, наряду с божественными существами и героями сказок, древние предания повествуют и об обыкновенных смертных, стремившихся подражать высшим существам или птицам. Так, индийская мифология рассказывает о летающем Ганумане, китайская — о странствующем в облаках Гикве Тсе, германская — о Виланде-кузнеце, греко-римская — о Дедале и его сыне Икаре. Интересна история Симона-волхва, который поднялся в присутствии римского императора Нерона на двух больших крыльях с Капитолийского холма и разбился «по велению святого апостола Петра», усмотревшего в этом бесовское влияние.

Проблемой полета занимались вполне серьезные мыслители, философы и исторические деятели. Наблюдения за полетом птиц вселяли во многих людей уверенность в возможность полета на крыльях с помощью собственной мускульной силы. Одним из таких мыслителей был живший в IV веке в Китае Гэ Хун. В своей работе «Книга учителя, хранящего единство» он говорил: «…Коршун поднимается выше и выше по спирали, а затем ему надо только вытянуть два крыла, не ударяя больше ими по воздуху, чтобы он двигался вперед сам по себе». Это наблюдение вскоре перерастает у него в предположение, что с помощью связки змеев можно «…встретить ветер, оседлать его и, не останавливаясь, подняться на высоту». Между тем известно, что по данным китайской рукописной книги XI века полеты человека на воздушном змее происходили с VI века, однако, в связи с большой опасностью этих экспериментов, в качестве «пилотов» использовали осужденных на смерть преступников или военнопленных.

Еще одним парадоксальным явлением на заре авиации стало практически одновременное изобретение летательных аппаратов в отдаленных друг от друга частях света. Так, в 1898 году в Саккаре (Египет) была обнаружена первая известная конструкция, представляющая, по всей вероятности, летательный аппарат. Эта изящная деревянная модель повторяет форму птицы. Она вырезана предположительно 2300 лет тому назад! Находка не привлекла первоначально никакого внимания и успешно пролежала в забвении до 1972 года, когда и была извлечена из запасников Каирского музея доктором Халилом Мессиха. Модель имеет высокорасположенное крыло с тонким аэродинамическим профилем, узкое эллиптическое сечение задней части тела и ярко выраженный хвост-киль с пазом для горизонтальной плоскости. Но все же, несмотря на этот многоговорящий факт, родиной воздушного змея и местом зарождения исследований в области авиации считается Китай. Именно на Востоке, по мнению большинства историков, в IV–III веках до н. э. произошло изобретение воздушного змея. Китайские воздушные змеи представляли собой плоскую раму из бамбука, обтянутую бумагой (в первых конструкциях вместо нее использовали дерево или ткань). Нередко им придавался облик птиц или сказочных животных. Эти привязные летательные аппараты использовались для военной сигнализации, а также для развлечений во время праздников.

Из Китая воздушный змей распространился в другие страны Восточной Азии, Индию и на острова Океании. В арабской «Книге животных», написанной в IX веке, говорится о запусках воздушных змеев у арабов.

Первые сведения о применении плоского воздушного змея в Европе относятся к XV веку. Но это не значит, что Европа вплоть до этого времени не знала подобных летательных аппаратов. В Европу воздушные змеи перекочевали еще во времена Древнеримской империи. Известно, что тогда они использовались в римском войске как военный штандарт.

Впервые идея летательной машины с могучими крыльями была высказана в общей форме английским философом Р. Бэконом в середине XIII века в труде «О тайных вещах в искусстве и природе» (опубликован в 1542 году). Бэкон писал: «Можно построить машины, сидя в которых человек, вращая приспособление, приводящее в движение искусственные крылья, заставлял бы ударять их по воздуху, подобно птичьим».

И пока ученые умы пытались более или менее научно разработать модель летательной машины, простые романтики и авантюристы прыгали с колоколен, церквей и, естественно, калечились и погибали. Таким был Оливье из Мальмсбери по прозвищу Летающий монах. Ему в 1060 году до определенной степени повезло больше, чем одному из подданных турецкого султана Арслана II, сарацину из Константинополя, прыгнувшему в 1161 году с одним лишь плащом, в который были вшиты ребра жесткости. К несчастью, одно из них сломалось в полете и сарацин погиб. Оливье же отделался переломами ног, когда, нацепив самодельные крылья, совершил прыжок с колокольни монастыря Мальмсбери. Но эта неудача всего лишь убедила монаха в том, что надо было прикрепить к ногам стабилизирующие плоскости. Список подвигов храбрецов можно продолжить: итальянский математик Джованни Батиста Данте и немец Форзингер из Нюрнберга в конце XV века, французский аббат Джон Дамиан в 1507 году, Соломон Идлер в 1660 году, Бернон из Франкфурта в 1673 году.

Подобные происшествия продолжались еще очень и очень долгое время, пока наконец одному из этих тысяч «пилотов» все-таки удалось в XVII веке продержаться какое-то время в воздухе и ничего себе не сломать. Счастливчика звали Хезерфеном Селиби. Прыгнув с башни в Галате, он, прежде чем коснуться земли, по свидетельству очевидцев, пролетел некоторое расстояние по воздуху. Аналогичная история произошла и в России в XVI веке, когда «боярский холоп Никитка» в присутствии царя Ивана Грозного и при большом стечении народа с помощью какого-то крылатого аппарата совершил удачный полет с колокольни. Но царь отрубил Никитке голову, а его летательный аппарат сжег за «содружество» с нечистой силой, так как «человек не птица, крыльев не имеет. А еще же приставит себе аки крылья деревянны, против естества творит. То не Божье дело, а от нечистой силы».

Первый серьезный научный подход к проблеме полета человека можно найти в трудах выдающегося представителя эпохи Возрождения Леонардо да Винчи. Он пришел к правильному выводу, что в полете птица находит опору в самом воздухе, «делая эту жидкость (воздух) более густой там, где она летит, нежели там, где она не летит». Кроме того, великий Леонардо предложил конструкцию аппарата, поднимающегося в воздух с помощью несущего винта большого диаметра, а также описал первый парашют.

Параллельно с попытками поднять в воздух летательный аппарат тяжелее воздуха в Европе начиная с XIV века зарождается идея возможности полета на машине, которая легче воздуха. Однако следует учесть тот факт, что почти 2000 лет назад греческий математик Архимед из Сиракуз открыл общеизвестный закон, гласящий, что тело, погруженное в жидкость, теряет в весе ровно столько, сколько весит вытесненная им жидкость, и доказал, что этот же принцип применим к газам. В итоге в 250 году до н. э. он изобрел летающую хрустальную сферу. Несмотря на кажущуюся простоту этого закона, понадобилось более 1500 лет, чтобы предложить на его основе способ для поддержания тел в воздухе.

Первые идеи о возможности использования для подъема в воздух подъемной силы легких газов можно найти в материалах, относящихся к XIV веку. В работе француза Вассона упоминается запуск воздушного шара, состоявшийся в 1306 году в Пекине во время торжеств по поводу восшествия на престол императора Фо Кина.

В XIV веке монах Альберт Саксонский писал, что дым костра гораздо легче воздуха и вследствие расширения последнего под действием огня поднимается в небо. Английский ученый Скалигер уже в XVI столетии предлагал сделать из тончайшего золота оболочку и наполнить ее горячим воздухом.

Французский писатель и ученый Сирано де Бержерак в книге «Путешествие на Луну», вышедшей в 1650 году, описывал, как путешественник наполнил дымом два больших сосуда, герметически их заклеил и прикрепил под крыльями. «Тотчас дым, стремившийся подняться, но не могущий проникнуть сквозь металл, стал толкать сосуды вверх и таким образом поднял с ними и человека».

Важную роль в дальнейших работах в области воздухоплавания сыграло открытие в 1766 году англичанином Генри Кавендишем водорода, или, как его называли в то время, «горящего воздуха». Уже в 1768 году шотландский химик и физик Джозеф Блэк после изучения свойств водорода пришел к выводу о возможности использования его подъемной силы для будущих летательных аппаратов.

Итак, в 80-х годах XVIII века люди вплотную приблизились к постройке летательных аппаратов, обладающих аэростатической подъемной силой. Во французском городе Виделон-лез-Аннон над решением проблемы воздухоплавания в это время работали сыновья бумажного фабриканта Жозеф Мишель и Жак-Этьен Монгольфье. В отличие от многих своих предшественников, они считали невозможным создание летательного аппарата на основе использования мускульной силы человека. После многочисленных экспериментов в ноябре 1782 года пришел первый успех. Матерчатый куб, наполненный дымом от горящей бумаги, быстро распрямился и поднялся к потолку. Затем Монгольфье наполнили небольшой шар дымом от горящей смеси шерсти и сырых древесных опилок, однако он воспламенился сразу после взлета. Следующая попытка полностью удалась. Шар объемом около 20 куб. м поднялся на высоту примерно 300 м.



Официальная демонстрация полета воздушного шара братьев Монгольфье состоялась 5 июня 1783 года в Аннонэ. Оболочка высотой 11 м имела объем около 620 куб. м. Ее отдельные тканевые полотнища были сшиты и соединялись с помощью больших пуговиц.

С внутренней стороны оболочка была оклеена бумагой и скреплена бечевками. Снизу крепилась решетчатая рама, сплетенная из лозы. Она служила опорой при установке шара на подмостки, под которыми развели огонь из мокрой соломы. Горячий влажный воздух наполнил оболочку. После того как отпустили удерживавшие ее веревки, она устремилась вверх. Шар набрал высоту около 2000 м, продержался в воздухе 10 минут и плавно опустился на землю на расстоянии 2200 м от места подъема. Впоследствии день этого полета начали считать началом практического воздухоплавания, а братьев Монгольфье признали изобретателями первого аэростата. 19 сентября 1783 года со двора Версальского дворца братья Монгольфье запустили еще один шар, имевший диаметр 12,5 м и высоту 17,4 м. Оболочка его была выполнена из хлопчатобумажной ткани, покрытой клеевой краской. Снизу к шару на цепи была подвешена клетка, в которой находились утка, петух и баран. Вследствие чрезмерного натяжения удерживающих веревок, вызванного сильным порывом ветра, непосредственно перед подъемом в верхней части оболочки образовалась трещина. Это сказалось на времени полета: пробыв в воздухе 10 минут, шар опустился на землю в 4 км от места старта. Утка, петух и баран остались невредимыми. Затем изобретатели приступили к тренировочным подъемам людей на привязных аэростатах. Полеты первых аэростатов продемонстрировали правильность и перспективность использования аэростатического принципа поддержания тел в воздухе.

После основательной подготовки 21 ноября 1783 года в Париже состоялся первый свободный полет людей на воздушном аппарате, изобретенном братьями Монгольфье и носившем в дальнейшем имя своих создателей, который совершили физик Пилатр де Розье и маркиз д'Арланд. Поднявшись на высоту около 1000 м, аэростат пролетел 8 км над Парижем и через 45 минут опустился в другом его пригороде. Полет прошел благополучно (за исключением случая, когда на горизонтальном участке полета едва не воспламенилась галерея, на которой находились воздухоплаватели).

Накануне этого события в ученых кругах развернулась дискуссия о возможности жизни на высоте. Многие опасались, что уже на низких высотах люди могут задохнуться от нехватки воздуха. Обеспокоенный король Людовик XVI приказал посадить в воздушный шар двух осужденных преступников. Но Пилатр де Розье и д'Арланд сумели убедить короля, что первые люди, поднявшиеся ввысь с помощью шара, даже в случае неудачи, должны иметь незапятнанную репутацию.

10 декабря 1783 года на заседании французской Академии наук братьям Монгольфье было присуждено звание членов-корреспондентов и выдана специальная премия, предназначенная для поощрения наук и искусств. Одного из братьев — Этьена — наградили орденом св. Михаила, Жозефу назначили пожизненную пенсию, а их отцу за поддержку сыновей была пожалована дворянская грамота.

Академия наук решила повторить опыт братьев Монгольфье в Париже. Подготовку к нему поручили профессору физики Жаку Александру Шарлю. 27 августа 1783 года на Марсовом поле был запущен первый воздушный шар, наполненный водородом. Поднявшись на высоту около 1000 м, оболочка лопнула от расширившегося водорода и упала в окрестностях Парижа. 1 декабря 1783 года состоялся первый полет на шаре, наполненном водородом, который построили искусные механики братья Роберы под руководством Шарля. По сравнению с Монгольфьеровым аэростат Шарля был значительно совершеннее. Гондола подвешивалась не к нижней части оболочки, а более надежно, посредством сетки, охватывающей оболочку в верхней части вплоть до максимального (миделевого) сечения. Это обеспечивало также более равномерное распределение нагрузки по оболочке. С целью регулирования высоты полета в гондоле имелся балласт, в качестве которого использовался мелкий песок, а в верхней части аэростата был предусмотрен клапан для выпуска газа. Чтобы обеспечить более надежный спуск аэростата в условиях ветра, предполагалось использовать сбрасываемый якорь. Кроме того, шар был более безопасным в пожарном отношении. Аэростат имел диаметр 9 м и был значительно меньше монгольфьера, взлетевшего десятью днями раньше. Это объяснялось тем, что наполнявший его водород обладает подъемной силой, почти в 3,5 раза большей, чем нагретый до 100 °C воздух.

Полет Шарля и одного из братьев Робер продолжался 2 ч 5 мин. Пройденное расстояние составило 36 км, максимальная высота подъема — около 460 м. После приземления Робер покинул аэростат, а Шарль впервые в истории воздухоплавания поднялся в воздух один. В полете, продолжавшемся 30 минут, он достиг высоты 3000 м и доказал на практике, что путем сброса балласта и выпуска части газа можно эффективно управлять высотой полета аэростата. Посадка состоялась в 4 км от места подъема. Полеты Шарля продемонстрировали значительные преимущества шарльеров (так стали называть аэростаты, наполненные водородом) как в удобстве управления аэростатом по вертикали, так и с точки зрения возможности выполнения длительных перелетов.

После полета Шарль стал национальным героем. Академия наук избрала его своим почетным членом. Король назначил ему пожизненную пенсию, и по королевскому указу имя Шарля было выбито рядом с именем Монгольфье на медали, изготовленной в честь изобретателей воздушного шара. Вместе с Шарлем почетными членами Академии наук были избраны Пилатр де Розье, д'Арланд и братья Робер.

Парижане охотно участвовали в сборе средств для подготовки воздухоплавательных экспериментов. Академия наук оплатила изготовление аэростата братьев Монгольфье для опытов в Париже. Субсидии поступали и от меценатов. Пилатру де Розье удалось получить 100 000 франков для подготовки перелета через Ла-Манш, который он задумал еще до Бланшара (французский аэронавт, о котором речь пойдет дальше).

Шло время, аэростаты-шарльеры совершенствовались, позволяя совершать все более сложные перелеты. Тем не менее еще некоторое время продолжались подъемы на монгольфьерах. Так, 5 января 1784 года состоялся полет монгольфьера диаметром 35 м и высотой 43 м, в гондоле которого находилось 8 человек. 25 февраля того же года в Милане двухчасовой полет выполнили братья Джерли и Паоло Андреани. 24 сентября 1784 года впервые на аэростате поднялась женщина. Воздухоплавательница Тибль достигла высоты 2700 м и пробыла в воздухе 45 минут. Еще один полет на монгольфьере совершили Пилатр де Розье и химик Пру 23 июня 1784 года. Аэростат поднялся на высоту 4000 м и пролетел наибольшее расстояние, когда-либо пройденное на монгольфьерах.

В дальнейшем практически все полеты выполнялись на шарльерах. 14 сентября 1784 года полет на усовершенствованном шарльере предпринял в Лондоне итальянец Лунарди. В конструкцию своего аэростата он внес следующие новшества. Сетка была увеличена и скроена таким образом, что охватывала около двух третей поверхности оболочки. Кольцо, к которому подвешивалась гондола, располагалось не по периметру шара, а под оболочкой. Это повышало надежность подвески. Гондола имела удобную форму куба.



7 января 1785 года француз Бланшар и американский доктор Джеффрис за 2,5 ч перелетели на шарльере через Ла-Манш из Дувра в Кале. 15 июня того же года Пилатр де Розье и Ромен попытались пересечь Ла-Манш в обратном направлении на аэростате, представляющем собой сочетание монгольфьера и шарльера. Он состоял из шарообразной оболочки, заполненной водородом, и присоединенного к ней снизу цилиндра с нагретым воздухом. Путем изменения температуры воздуха в цилиндре изобретатель этого аэростата де Розье предполагал управлять высотой полета без использования балласта и выпуска газа. Полет проходил в тяжелых метеорологических условиях (поджимал срок его выполнения по условиям договора) и закончился трагически. Оба воздухоплавателя погибли.

Неблагоприятное положение с развитием воздухоплавания сложилось в России в царствование Екатерины II, серьезно затормозившей разработку аппаратов легче воздуха. Эта царственная особа, несмотря на все свои заслуги перед отечеством, после того как д'Арланд и Пилатр совершили свои первые аэростатические полеты, а российский посол в Париже князь Барятинский доносил: «…Вашему Императорскому Величеству уже известно, что здесь изобретено в недавнем времени одним французом, уроженцем губернии Лангедок, провинции Вивара, города Аннонэ по имени Монгольфье, поднятие на воздух великой тягости посредством дыма и что таковую же экспериментацию делает здесь в Париже один профессор…», отнеслась к этим сообщениям Барятинского более чем равнодушно. А несколько позже, когда речь зашла о перенесении французских опытов в Россию, она изрекла: «Здесь отнюдь не занимаются сею и другою подобно аэроманиею, да и всякие опыты о кой яко бесплодные и ненужные да и совершенно затруднены». Такой взгляд царской особы на воздухоплавание привел к тому, что россияне впервые увидели полет на воздушном шаре только в следующем столетии, после смерти императрицы.

В 1803 году в Россию приехал известный французский воздухоплаватель Ж. Гарнерен. Он совершил два полета в Петербурге, где в первый 20 июля взял с собой жену, а во время второго с ним поднимался генерал С. Л. Львов, и один — в Москве вместе с французом Обером. Последний полет продолжался 7 ч 15 мин и стал одним из самых длительных среди предпринятых до этого времени.

Все эти полеты и те, которые происходили в Европе, носили чисто развлекательный характер. Успешные высотные полеты дали основание рассматривать аэростаты как средство проведения научных исследований в атмосфере и астрономических наблюдений. Первые полеты с научными целями были совершены в начале XIX века. 24 июня 1802 года Гумбольт и Бомплан поднялись на высоту 5878 м и впервые провели измерения температуры и давления воздуха в различных слоях атмосферы. Следующий полет был предпринят 18 июля 1803 года в Гамбурге физиком Робертсоном совместно с Лостом, во время которого была достигнута высота более 7000 м, проводились измерения температуры и давления воздуха, исследовались электрические явления в атмосфере. В 1804 году в России Академия наук организовала полет воздушного шара с научными целями. 30 июня академик Я. Д. Захаров поднялся на воздушном шаре, управляемом бельгийским воздухоплавателем Робертсоном. Во время полета были сделаны замеры давления, температуры, взяты пробы воздуха на различных высотах, выполнены опыты со статическим электричеством и магнитом, некоторые простейшие физиологические эксперименты.

Но подобные мирные исследовательские начинания вскоре закончились.

Во время первых подъемов на привязном аэростате в 1783 году возникла мысль приспособить его для военных целей. Один из французских воздухоплавателей Жиру де Вилье писал в «Парижской газете»: «Я убедился, что эта не особенно дорогая машина может оказать значительные услуги армии, позволяя обнаружить позиции, маневры и передвижение неприятельских войск и сообщать об этом своим отрядам с помощью сигналов. Я думаю, что с некоторыми предосторожностями его можно использовать для этой цели и на море».

Известный французский физик Кутелль развил гипотетические рассуждения своего современника физика Гюйтона де Морво об использовании аэростата на привязи для подъема в воздух наблюдателей и в 1793 году отправил в действующую армию первый аэростат для полевых испытаний. В апреле 1794 года особым декретом была организована первая воздухоплавательная рота французской армии.

Уже через одиннадцать лет после подъема братьев Монгольфье, во время Великой французской революции, Комитет общественного спасения решил использовать привязные аэростаты для наблюдения за австрийскими войсками. Их появление над позициями французских войск ошеломило австрийцев. 26 июня 1794 года в ожесточенной битве недалеко от города Флерюса французская армия, которой командовал генерал Журдак, разбила войска коалиции. Эта победа имела решающее значение, устранив опасность вторжения во Францию. Благодаря ей военные действия были перенесены в Бельгию, Голландию и в Рейнскую область. При этом следует отметить, что французы впервые использовали воздушный шар для наблюдения за ходом битвы и корректировки огня артиллерии именно во время этого сражения. Аэростат мог подниматься на высоту 500 м, наблюдатели могли заглянуть далеко в глубь обороны противника. А разведывательные данные передавали на землю в специальных коробках, которые спускались по шнурку, прикрепленному к гондоле. Этот успех послужил основанием для дальнейшего расширения воздухоплавательного парка во французской армии и организации национальной воздухоплавательной школы в Медоне. Однако Наполеон, вернувшийся из Египта, без объяснения причин расформировал воздухоплавательный отряд Кутелля и закрыл школу в Медоне.

Неуправляемые воздушные шары еще не раз сыграли значительную, а порой и решающую роль в военных операциях XIX века.

Именно благодаря использованию, как это ни парадоксально, беспилотных аэростатов с привязанными к тросам бомбами с часовыми механизмами, 22 августа 1859 года австрийские войска смогли захватить последний оплот свободы Италии — Венецию. Три месяца этот город не сдавался неприятелю, но именно «осуществленная мечта человечества» сломила волю защитников. Интересно, что должны были ощущать горожане, когда над их городом величественно поплыли десятки воздушных шаров? Необыкновенное зрелище, манящее своей неизвестностью, неожиданно обернулось другой стороной — пламенем, грохотом, разрушениями и страданиями.

Начиная с франко-прусской войны развитие воздухоплавания во Франции было подчинено военным интересам. Тяжелое положение, в котором оказался окруженный немецкими войсками Париж в 1870 году, заставило вспомнить об успешном использовании аэростатов в период Великой французской революции. Первые же попытки возродить аэростаты для военных целей оказались удачными. В течение четырех месяцев осады Парижа связь с провинциями осуществлялась с помощью специально изготовленных для этих целей аэростатов. За это время было отправлено 64 воздухоплавателя, 91 пассажир и 10 тонн почты. Аэростатом воспользовался министр внутренних дел Леон Гамбетта, что помогло организовать национальную оборону в провинциях. Обратная связь с Парижем велась с помощью почтовых голубей, переправляемых на аэростатах и перелетающих затем через неприятельскую линию с депешами. Таким способом в Париж попало не менее 100 000 депеш.

В России была предпринята попытка применить воздушные шары в Крымской войне (1853–1856). Русский воздухоплаватель поручик И. М. Мацнев проводил практические опыты по использованию аэростатов для бомбометания с воздуха по английскому флоту, приблизившемуся к Кронштадту. Он предлагал подняться на воздушном шаре и сбросить на корабли противника бомбы. Однако император Николай I нашел, что это… «не рыцарский способ ведения войны», после чего проект был запрещен.

Вскоре в русских военных кругах узнали об организации в Англии воздухоплавательного парка. Все чаще в русской печати стал подниматься вопрос о необходимости добиться управляемости аэростатов. Главное инженерное управление, наконец, всерьез приступило к обсуждению организации в России военного воздухоплавания. Генерал-майор Краевский писал 17 октября 1869 года начальнику главного штаба Гейдену, что уже не раз воздухоплавание оказывало услуги армиям воюющих стран, в частности под Флерюсом в 1794 году, при бомбардировке Венеции в 1849 году, в сражении при Сольферино в 1859 году. «Если бы даже получить прежние результаты, то применение воздухоплавания на войне русскою армиею было бы небесполезно; с приспособлением же новых приемов к воздухоплаванию можно ожидать несравненно большего успеха». Он особенно подчеркивал, что «для успеха в современной войне недостаточна уже одна тайна суворовских побед… необходима еще другая, новейшая тайна побед, новое средство ведения войны».

Военно-ученый комитет серьезно занялся изучением вопроса о применении аэростатов для военных целей и пришел к заключению, что «было бы несправедливо пренебрегать таким средством, с помощью которого является возможность своевременно раскрывать силы противника, стягиваемые к полю сражения, или предотвращать скрыто подготовляемые им удары, определять расположение атакуемой крепости или работ осаждающего, наконец, наблюдать на более или менее значительном расстоянии операции противника по переправе через реки, по занятию лесных или пересеченных пространств, по обороне берегов и пр. Во всех случаях воздушные рекогносцировки, произведенные при благоприятных обстоятельствах, могут доставить неоцененные услуги».

Военно-ученый комитет решил возобновить опыты с привязным воздушным шаром. Были выработаны тактико-технические требования, предъявляемые к привязному воздушному шару (высота подъема до 200–300 м, подъем двух-трех человек, оболочка должна держать газ до двух суток). «Между шаром и землей должно существовать электротелеграфическое сообщение», а «так как употребление военных аэростатов находится в самой тесной связи с употреблением военных телеграфов, а сии последние состоят в ведении Главного инженерного управления, то казалось бы соответственным практическую разработку сего вопроса вести при сем же управлении, в особой комиссии, под председательством товарища генерал-инспектора по инженерной части и при участии членов от генерального штаба, инженеров и артиллерии (для химии)». Решение военно-ученого комитета было утверждено военным министром Д. А. Милютиным 6 декабря 1869 года. В соответствии с ним была образована специальная комиссия под председательством генерала Тотлебена. На опыты было ассигновано 12 000 руб. Шар изготовляли на территории Зоологического сада, где находился сарай, «весьма удобный для одевания сети и предварительной пробы оболочки шара».

К лету 1870 года воздушный шар объемом 1500 куб. м построили (полностью из русских материалов и на отечественных заводах, имел оболочку из шелковой материи, изнутри покрытую тонким слоем резины). К веревочной сетке шара была подвешена гондола, представлявшая собой камышовую корзину на железном каркасе, в ней установлен телеграфный аппарат. Соорудили также две специальные повозки для перевозки и запускания шара. 19 июля 1870 года состоялось первое наполнение шара водородом. Газ добывался примитивным способом — воздействием слабого раствора серной кислоты на железную стружку так называемым «бочечным» способом (примененным в 1783 году Жаком Шарлем).

Насколько громоздким и сложным был процесс наполнения шара газом, можно судить по тому, что для этого сделали 3 большие (диаметром 3 м и высотой 2,5 м) и 52 обычные сорокаведерные бочки, соединенные с чанами железными лужеными газопроводными трубами. Бочки располагались по кругу, а в центре помещался наполненный проточной водой промыватель также в виде бочки, выложенной изнутри освинцованным листовым железом. Непрерывно подаваемая насосом вода охлаждала и очищала газ от вредных примесей, главным образом от мышьяковистого водорода и сероводорода. После подсушки газа хлористым кальцием водород поступал в оболочку аэростата. Для того чтобы обеспечить непрерывность процесса, приходилось применять сменные бочки, так как спустя некоторое время нужно было пополнять смесь кислоты с водой. Не менее 60 человек принимали участие в наполнении шара в течение 20 часов. С 23 июня по 1 августа шар наполняли 5 раз, причем в каждом случае расходовали 400 пудов концентрированной серной кислоты, 350 пудов железной стружки и 4000 ведер воды Первый подъем шара состоялся 7 июля. Поднимались полковник Лобко, Церпицкий и телеграфист. Высота подъема составила 450 футов (135 м). При следующем подъеме аэростат достиг уже высоты около 600 футов (180 м). Воздухоплаватели взяли с собой морской бинокль, термометр, барометр, буссоль и рупор. С шара отчетливо была видна местность на 30 верст вокруг. Подъемная сила шара оказалась 70 пудов (включая и массу шара). Даже по истечении трех суток «…шар сохранял настолько своей подъемной силы, что мог свободно поднимать двух человек на 80 сажен». Решено было испытать шар в полевых условиях.

С плаца 1-го военного Павловского училища шар в наполненном состоянии был отведен за 40 км в Усть-Ижорский лагерь. На это потребовалось всего 16 часов. В процессе опытов выявилась необходимость, во-первых, сделать оболочку более стойкой к атмосферным влияниям. Решили изготовить ее из двойной шелковой ткани и для испытания наполнить шар светильным газом. Во-вторых, так как при пользовании ручной лебедкой спуск шара занимал полчаса, воздухоплаватели пришли к мысли, что для наматывания каната на вал требуется большой конный или паровой ворот. Этот первый опыт русских военных воздухоплавателей показал, что привязной воздушный шар может быть использован в разведывательных целях. В 1873–1874 годах удалось значительно усовершенствовать газодобывательные аппараты. Если прежний аппарат состоял из 3 больших чанов, 45 сорокаведерных и 45 десятиведерных бочек, причем только 60 металлических труб весили до 20 пудов, то теперь уже «был собран аппарат, составленный из 5 медных приборов для добывания водорода, из 4 деревянных чанов, в которых разводилось в воде купоросное 66° масло (концентрированная серная кислота. — Сост.), и 2 медных промывальников». Части прибора соединялись между собой уже каучуковыми трубами. Все это сокращало время, необходимое для наполнения шара, до 8-10 часов, вместо прежних 24. Расход материалов для добывания газа также был уменьшен вдвое. Были проведены и опыты по получению водорода (через раскаленные железные стружки пропускали водяной пар), но они не дали желаемых результатов.

Проведенные исследования подтвердили, что аэростат может быть очень ценным средством при обороне крепостей, но, для того чтобы научиться хорошо использовать его в полевой войне, нужно еще много кропотливо и упорно трудиться. К такой работе над новым и сложным делом командование русской армии оказалось неспособно. Поэтому интерес к аэростатам в военном министерстве ослабевал. Во время русско-турецкой войны 1877–1878 годов о воздушных шарах не вспоминали, хотя блокадой Плевны руководил генерал Тотлебен, который был в свое время председателем комиссии по применению воздухоплавания для военных целей.

В 1883 году полковник Лобко вынужден был признать: «…после войны 1870 года мы значительно отстали от прочих держав в отношении аэростатного дела и применения баллонов к военным целям». Действительно, к этому времени в армиях Европы и Америки уже были организованы воздухоплавательные части. Французские военные воздухоплаватели, о которых мы уже писали, добились наполнения шара газом за 2 часа (причем оболочка держала газ в течение нескольких суток). Англия имела военно-воздухоплавательную школу в Вулвиче и несколько воздухоплавательных рот. В Германии была создана рота воздухоплавателей. Кроме того, существовали уже воздухоплавательные общества. В начале 80-х годов XIX века секретные документы военного министерства России говорили уже о «настоятельной необходимости подвинуть воздухоплавательный вопрос немного, чтобы не оказаться ниже своих противников в будущих войнах». Однако только в 1884 году военное министерство вновь серьезно занялось военным воздухоплаванием.

Заметную роль в развитии воздухоплавания сыграл английский воздухоплаватель Чарльз Грин. 19 июля 1823 года в Лондоне Грин запустил первый аэростат, наполненный вместо водорода светильным газом. Он же впервые предложил использовать гайдроп — длинный и толстый веревочный канат, закрепленный одним концом в корзине, который сбрасывался на землю при приземлении, обеспечивая за счет постоянного снижения своего веса плавное уменьшение скорости спуска аэростата. Грин трижды перелетал Ла-Манш, выполнил более 1400 полетов, из них ряд с научными целями в 1852 году вместе с Джоном Уэлшем. В 1861–1863 годах около тридцати чисто научных полетов совершили директор метеорологического бюро в Гринвиче Джеме Глешер и воздухоплаватель Коксуэл.

Первые шаги управляемого воздухоплавания

Но все же аэростаты не отвечали главной цели воздухоплавания — служить средством сообщения они не могли. Для этого необходим был управляемый аэростат, или дирижабль. Уже после первого полета Пилатра де Розье братья Монгольфье занялись изучением возможности управления аэростатом. Проанализировав все известные в то время технические средства, Жозеф Монгольфье пришел к выводу о нереальности динамического способа управления. Он, в частности, писал своему брату Этьену: «Я не вижу действительной возможности управлять шаром, кроме знания воздушных течений, изучением которых следует заняться; редкие из них не меняют направления с высотой».

Попытки управления полетом аэростата с помощью весел и парусов, как это было с кораблями на морских просторах, успеха не принесли.

Первую серьезную попытку в этой области предпринял 2 марта 1784 года Бланшар, который в гондоле своего аэростата установил два весла. 25 апреля 1784 года состоялся подъем физика из Дижона Гюйтона де Морво, который снабдил свой аэростат помимо весел парусами. Альбан и Валье попробовали управлять аэростатом с помощью четырехлопастных, подобных крыльям ветряных мельниц, винтов. Тестю-Брисси применил многолопастные гребные мельничные колеса и т. д.

Но все эти эксперименты еще раз подтвердили, что мускульная сила человека очень слаба и что главным препятствием управляемого воздухоплавания является уровень развития техники того времени. Тем не менее во время этой череды неудач были найдены сопутствующие блестящие технические решения, которые предвосхитили ряд основных идей будущего дирижаблестроения. Витиеватый путь истории освоения воздушного пространства имеет множество парадоксальных примеров, когда гении-самоучки своими устремлениями и изысканиями, создавая вполне совершенные, с современной точки зрения, конструкции машин, намного опережали технические возможности своего времени. Вот некоторые из них. Французский генерал Менье в 1783–1785 годах разработал проект управляемого аэростата, в котором было 2 оболочки: внешняя, изготовленная из прочного холста и подкрепленная веревочной сетью, и внутренняя, газонепроницаемая, в которой находился водород. Пространство между оболочками было наполнено сжатым воздухом и играло роль баллонета, основным назначением которого являлось поддержание неизменной формы оболочки. Кроме того, баллонет мог использоваться для управления высотой полета. При закачивании в него воздуха затяжелениый аэростат начинал снижаться и наоборот. Воздух предлагалось нагнетать мощными мехами. В отличие от других, оболочка этого аэростата имела удлиненную удобообтекаемую форму. С целью повышения надежности подвески и равномерности нагружения оболочки гондола крепилась с помощью нашитого по периметру оболочки пояса.

Для поступательного движения Менье предлагал использовать воздушные течения соответствующего направления при вертикальных перемещениях аэростата. Кроме того, с помощью трех винтов, расположенных между оболочкой и гондолой и приводимых в движение мускульной силой членов команды, Менье надеялся перемещать аэростат в направлении, перпендикулярном направлению ветра.

Еще один пример. Весной 1812 года немецкий механик Франц Леппих обратился к русскому посланнику в Штутгарте с предложением построить для русского правительства управляемый воздушный шар. Как сообщал посланник императору Александру I: «…воздушный корабль может вмещать в себе 40 человек и поднимать 12 000 фунтов». Царь дал свое согласие на постройку управляемого воздушного корабля.

Это изобретение, по мнению генерал-губернатора, должно было «сделать бесполезными войны, освободить человечество от адского разрушения».

Первая «дирижабельная верфь» под началом Леппиха была построена в селе Воронцово под Москвой. В помощь немцу дали кузнецов и слесарей, доставленных из Петербурга. В 1812 году, когда Наполеон со своей армией приближался к Москве, граф Ф. В. Растопчин заявлял о дирижабле в одной из своих знаменитых афиш: «Он сделан к вреду и погибели злодея».

Леппих уверял, что с этого шара можно будет бросать взрывчатые вещества на неприятельскую армию. В предприятии Леппиха принял участие и всесильный в то время военный министр граф А. А. Аракчеев: поэтому в финансировании отказа не было. Растопчин 13 августа 1812 года в письме к Александру I сообщил, что Леппиху уже выдано 163 000 рублей — огромная по тем временам сумма.

По сохранившимся архивным и литературным записям, «воздушный корабль» имел матерчатую оболочку хорошо обтекаемой каплевидной формы. Но постройку первого в мире дирижабля не успели окончить, так как войска Наполеона приблизились к Москве. Часть материалов было решено срочно эвакуировать, а остальные — уничтожить. Мастерскую Леппиха сперва перевезли в Нижний Новгород, а оттуда в Ораниенбаум, где под наблюдением любимца царя А. А. Аракчеева пытались продолжить строительство корабля, но работы затянулись, и дело, к сожалению, не было доведено до конца.

Главная причина неудачи постройки дирижабля заключалась в несовершенстве техники в то время.

Изучив сохранившиеся документы об изобретении «адской машины Леппиха», советский авиаконструктор и историк авиации В. Б. Шавров писал: «Это своеобразный прототип дирижабля полужесткого типа, применяемого и сейчас. Естественно, что в качестве движущих устройств оставались те же крыльчатые весла, управляемые мускульной силой людей. Хотя они себя и не оправдали, надежда на них еще не была. потеряна. Леппих был способным увлекающимся изобретателем, а не шарлатаном. Он построил дирижабль как мог в тех условиях, производил опыты с малыми шарами для проб. В донесении генерала Д. Ф. Вындомского говорилось, что дирижабль поднимался на воздух «на привязях», но его крылья оказались недостаточными для полета «противу ветра». Значит, дирижабль все же был построен и испытывался в воздухе. И если при тогдашнем состоянии технологии он не мог показать лучших результатов, в этом изобретатель неповинен. Вот и выходит, что волею обстоятельств в России впервые сооружался дирижабль полужесткого типа».

Вопросами управляемого воздухоплавания впервые в России занимался в 1805–1807 годах адъюнкт кафедры химии Московского университета А. Х. Чеботарев. В середине XIX века ряд проектов управляемых аэростатов предложили А. Снегирев, Н. Архангельский, М. И. Иванин, Д. Черносвитов. В 1849 году оригинальный проект выдвинул военный инженер Третесский. Дирижабль должен был передвигаться посредством реактивной силы струи газа, вытекавшего из отверстия в кормовой части оболочки. Для повышения надежности последняя делалась секционированной.

В 1856 году проект управляемого аэростата разработал капитан первого ранга Н. М. Соковнин. Длина, ширина и высота этого аппарата составляли соответственно 50, 25 и 42 м. С целью повышения безопасности оболочку предполагалось наполнять негорючим аммиаком. Для передвижения аэростата Соковнин спроектировал своего рода реактивный двигатель. Воздух, находившийся в баллонах под большим давлением, подавался в специальные трубы, из которых истекал наружу. Трубы предлагалось выполнить поворотными, что позволило бы, по утверждению автора, управлять аппаратом без помощи аэродинамических рулей. По сути, Соковнин впервые предложил струйную систему управления дирижаблем.

Однако наиболее законченный проект был создан в 1880 году капитаном О. С. Костовичем. Его управляемый аэростат, названный «Россия», дорабатывался в течение нескольких лет. В окончательном варианте его основой служил жесткий цилиндрический каркас с коническими законцовками, выполненный из легкого и достаточно прочного материала «арборита» (типа фанеры), технологию изготовления которого разработал сам Костович. Каркас обтягивался шелковой материей, пропитанной для уменьшения газопроницаемости специальным составом. По бокам аэростата имелись несущие поверхности. По его оси проходила горизонтальная балка, в кормовой части которой был установлен четырехлопастный воздушный винт. Спереди к балке крепился руль направления. Для управления дирижаблем в вертикальной плоскости служил подвешенный снизу подвижный груз. В миделевом сечении оболочки размещалась вертикальная труба, к ее нижней части присоединялась гондола. Объем оболочки составлял около 5000 куб. м, длина — около 60 м, а максимальный диаметр — 12 м.

Для своего дирижабля Костович спроектировал удивительно легкий для того времени восьмицилиндровый двигатель внутреннего сгорания. При мощности 80 л. с. его масса составляла лишь 240 кг. В 1889 году практически все детали аэростата, в том числе и двигатель, были изготовлены. Однако из-за отсутствия субсидий со стороны правительства его так и не удалось собрать. И все же этот проект дирижабля жесткой системы стал серьезным шагом вперед на пути развития управляемого воздухоплавания, сделанным почти на два десятилетия раньше появления аппаратов Шварца и Цеппелина.

В 1880 году русское военное ведомство заказало дирижабль в Париже Габриелю Иону, но конструкция оказалась неудачной — воздушный корабль, имевший очень небольшую подъемную силу и большой вес, не смог оторваться от земли. В 1892 году Давид Шварц построил в Петербурге за казенный счет дирижабль с алюминиевой оболочкой, но его не удалось наполнить водородом, так как оболочка пропускала газ.

Совершенно особняком стоят работы К. Э. Циолковского, который еще в 90-х годах XIX столетия развил идею жесткой оболочки с расширяющимся объемом. Эта оболочка должна была изготавливаться из гофрированного металла, расширяющегося и сжимающегося благодаря шарнирным соединениям боковых панелей с верхним и нижним поясом.

Следует отметить также работы доктора медицины К. Данилевского из Харькова, построившего в 1897–1898 годах несколько небольших аэростатов, снабженных специальной системой поворотных плоскостей. Передвижение аппаратов в вертикальной плоскости осуществлялось посредством горизонтально расположенных винтов, приводившихся в движение мускульной силой человека с помощью педалей. Горизонтальное перемещение обеспечивалось в процессе подъема и спуска поворотом плоскостей в ту или иную сторону. Реального применения такие аэростаты найти не могли, однако техническая идея управления полетом была оригинальной.

Неудачи первых опытов управляемого воздухоплавания не расхолодили изобретателей. На протяжении многих лет выдвигались самые необыкновенные проекты. Аббат Миолан предлагал воспользоваться реакцией струи горячего воздуха, выходящей из бокового отверстия оболочки, но эта попытка закончилась пожаром. Австриец Кайзерер додумался до идеи запрячь в аэростат дрессированных орлов и даже написал по этому поводу трактат.

Подобных фантастических проектов было множество. Только в 1850 году удачный опыт парижского часовщика Жюльена с большой моделью аэростата, снабженного парой воздушных винтов, приводящихся в действие часовой пружиной, заинтересовал изобретателей и поставил в неловкое положение Парижскую академию наук, приравнявшую ранее проблему управляемого воздухоплавания к проблеме перпетуум мобиле.

Этот эксперимент подтолкнул талантливого французского инженера-механика Анри Жиффара к осуществлению реального проекта по созданию управляемого аэростата. 24 сентября 1852 года в Париже был совершен первый полет. Аэростат имел веретенообразную оболочку объемом 2500 куб. м, оснащен созданным в 1851 году Жиффаром паровым двигателем, который весил вместе с котлом 150 кг, имел мощность 3 л. с. и развивал скорость около 10 км/ч, Оболочка охватывалась сетью с подвешенным к ней деревянным брусом длиной 20 м. К нему сзади крепился треугольный руль, а снизу подвешивалась деревянная гондола, в которой был установлен двигатель, приводивший в движение трехлопастный воздушный винт диаметром 3,4 м. Частота вращения винта составляла 110 об/мин. На оболочке размещался клапан для выпуска газа, им управляли из гондолы с помощью троса.

Паровые машины тех лет имели малую мощность при большой массе и были непригодны для практического использования на воздушных судах. В первом полете Жиффар не смог даже вернуться к месту старта. Сила ветра превышала скромные возможности его двигателя. Однако изобретателю удавалось разворачивать аэростат и перемещаться в направлении, перпендикулярном ветру. Максимальная высота подъема составила 1800 м.

В 1855 году Жиффар построил еще один управляемый аэростат, который во время испытательного полета был потерян. Некоторое время корабль, на борту которого находились Жиффар и Габриэль Ион, успешно противостоял небольшому встречному ветру. Однако при спуске оболочка сморщилась и газ собрался в одном ее конце. Вследствие этого сетка с прикрепленной к ней гондолой соскользнула с оболочки и устремилась вниз, а облегченная оболочка, поднявшись с большой скоростью, исчезла в облаках. Благодаря тому что авария произошла вблизи земли, находившиеся в гондоле аэронавты практически не пострадали. Недостатком этого управляемого аэростата Жиффара так же, как и предыдущего, являлось отсутствие баллонета, в результате чего при выпуске части газа и его сжатии сетка становилась слишком просторной для оболочки. Кроме того, способ подвески гондолы был менее надежным, чем на первом корабле, где она подвешивалась непосредственно к сетке.



С технической точки зрения управляемые аэростаты Жиффара были весьма несовершенными. Они не имели никаких стабилизирующих устройств, в оболочке отсутствовал баллонет. Тем не менее это стало первой, по-настоящему удачной попыткой постройки управляемого аэростата, способного по воле воздухоплавателя перемещаться в заданном направлении. С управляемого аэростата Жиффара, который с полным правом можно называть дирижаблем, начинается новый этап в истории воздухоплавания — этап применения механических двигателей и отработки соответствующих конструкций оболочек.

Во время франко-прусской войны из осажденного Парижа в провинцию было совершено много полетов на воздушных шарах, которые летали туда, куда их нес ветер. Необходимость создания дирижабля в то время чувствовалась особенно остро.

В 1872 году в осажденном городе известный кораблестроитель Дюпюи де Лом построил дирижабль объемом 3500 куб. м. Он имел баллонет и прогрессивную диагональную подвеску гондолы к так называемому катенарному поясу, пришитому к оболочке. Такая подвеска предотвращала продольное перемещение гондолы относительно оболочки и повышала устойчивость дирижабля. Длина последнего составляла 36,1 м, максимальный диаметр — 14,8 м. Но конструктор вернулся к использованию мускульной силы вместо механического двигателя. Двухлопастный винт диаметром 9 м приводился в движение восемью членами экипажа, при этом частота вращения винта составляла 21 об/мин. Дирижабль мог развивать скорость лишь 8 км/ч. Катенарная подвеска, предложенная Дюпюи де Ломом и усовершенствованная с течением времени, применяется в современных мягких аэростатах и дирижаблях.

В 1872 году в Брюнне немецкий техник Генлейн испытал управляемый аэростат с оболочкой из прорезиненной ткани. Двигателем был газовый мотор Ленуара, работавший на светильном газе (который наполнял оболочку аэростата) и развивавший мощность 3,6 л. с. Для поддержания исходной формы оболочки при убыли из нее газа использовался воздушный баллонет, куда воздух нагнетался вентилятором. Особенностью дирижабля выступала жесткая рама длиной 30 м и шириной 4 м, подвешенная на тросах к сети, охватывавшей оболочку. Снизу к раме крепилась гондола. Такой способ подвески существенно повышал жесткость дирижабля в целом. На этом аппарате впервые были установлены автоматические предохранительные клапаны (их было два), которые открывались при критическом перепаде давления в оболочке. Первый полет дирижабля состоялся 13 декабря 1872 года, достигнутая скорость составляла около 19 км/ч. Недостаток средств заставил изобретателя отказаться от продолжения работ.

Во Франции братья Тиссандье построили дирижабль по типу дирижабля Дюпюи де Лома и установили в гондоле динамомашину Сименса мощностью 2 л. с. Оболочка объемом 1060 куб. м имела длину 28 м и диаметр 9,2 м. Ток для двигателя производили 4 аккумуляторные батареи, весившие 200 кг. 8 октября 1883 года дирижабль Тиссандье совершил первый полет, во время которого достиг скорости 4 м/с.

Наконец, значительного успеха добились в 1884 году военные воздухоплаватели инженер Шарль Ренар и Артур Кребс, которым удалось построить дирижабль с электрическим мотором мощностью 9 л. с. и способностью держаться на месте при скорости ветра 6,2 м/с.

Конфигурация оболочки их дирижабля «Франция» была асимметричной, так называемой «рыбообразной» формы, отличающейся меньшим лобовым сопротивлением и большей устойчивостью, чем симметричные веретенообразные оболочки. В ней находился баллонет объемом 438 куб. м, разделенный вертикальными перегородками на 3 части с целью уменьшения перетекания воздуха. Длинная гондола более равномерно распределяла нагрузку на оболочку, а впервые установленные горизонтальные рули позволяли динамически управлять высотой. Еще одним новым техническим решением стала установка перемещаемого вдоль гондолы груза, посредством которого изменялся дифферент дирижабля. Строительство этого летательного аппарата продолжалось более года, а выжидание безветренной погоды для полета — более трех месяцев. 9 августа 1884 года дирижабль впервые совершил круговой полет, т. е. вернулся к месту старта. Достигнутая скорость в 23 км/ч позволяла успешно бороться со слабым ветром, поэтому из выполненных семи полетов воздушный корабль пять раз возвращался к месту старта. Результаты, достигнутые Ренаром и Кребсом, получили высокую оценку военного министерства, и дирижаблями типа «Франция» начали оснащать воздухоплавательные части французской армии.

После опытов Ренара до конца XIX века проводились многочисленные испытания различных конструкций, но все они успеха не имели. В Германии Вельферт в продолжение многих лет, с 1883 по 1896 год, испытывал ряд небольших аэростатов с электрическими двигателями и впервые применил бензиновый, мощностью 8 л. с., созданный Даймлером. Дирижабль, названный «Германия», поднялся в воздух 31 мая 1897 года. В гондоле находился Вельферт вместе со своим помощником Кнаббе. Вначале полет протекал нормально. Дирижабль хорошо противостоял небольшому ветру. Однако на этапе набора высоты наблюдавшие за полетом с земли заметили, что из гондолы к оболочке тянутся языки пламени. Раздался сильный треск, и охваченный пламенем воздушный корабль рухнул на землю. Оба аэронавта погибли… Причиной катастрофы явилось воспламенение газа, выпускавшегося через газовые клапаны, который соприкасался с горячими элементами двигателя. Этому способствовало слишком близкое расположение двигателя относительно оболочки. Кроме того, в оболочке отсутствовал баллонет, так что при выпуске части газа она могла провиснуть и вплотную приблизиться к гондоле и двигателю.

Начиная 1898 года с дирижаблями много экспериментировал богатый бразильский спортсмен Альберто Сантос-Дюмон. Воздухоплавание его привлекало только как спорт. В течение нескольких лет он построил более десяти дирижаблей и потерпел множество аварий. 18 сентября 1898 года его первый дирижабль при подъеме (из-за ошибки пилотирования) зацепился за деревья, и оболочка получила повреждения. Аэронавт не пострадал. 20 сентября того же года после ремонта оболочки Сантос-Дюмон выполнил еще один полет. Дирижабль поднялся на высоту 300 м. Однако при спуске водород в оболочке сжимался быстрее, чем маломощный вентилятор наполнял баллонет воздухом. В результате этого оболочка, удлинение которой было достаточно велико, перегнулась посередине и дирижабль начал быстро падать. В момент касания гайдропом земли он был подхвачен людьми, наблюдавшими за полетом. Все закончилось благополучно.

11 мая 1899 года Сантос-Дюмон вылетел на своем втором дирижабле, который имел несколько больший объем оболочки. Внезапно пошел дождь, газ стал быстро охлаждаться, в результате чего оболочка перегнулась и дирижабль начал падать. Пилот вновь остался жив.

Следующее происшествие случилось с пятым дирижаблем. 13 июля 1901 года во время спуска Сантос-Дюмон не смог удержать его против ветра, оболочка зацепилась за деревья и получила повреждения. 8 августа того же года во время полета пружины одного из автоматических газовых клапанов ослабли, в результате чего из оболочки вышло большое количество газа. Дирижабль стал быстро снижаться и, пролетая над высокими городскими зданиями, зацепился за одну из крыш. Его обломки упали в проем между строениями, а пилоту удалось выпрыгнуть в небольшую нишу в стене здания и спастись.

Но отважный аэронавт не отчаивался, а построил дирижабль № 6, который 6 и 15 сентября 1901 года потерпел аварии при столкновении с различными препятствиями. Однако в конце концов Сантос-Дюмон достиг своей цели. 19 октября 1901 года на отремонтированной шестой модели дирижабля он обогнул Эйфелеву башню и выиграл приз в 100 000 франков, который учредил Деш де ла Мерт.

14 февраля 1902 года состоялся полет дирижабля над Средиземным морем. Качество выполнения оболочки было настолько низким, что объем баллонета оказался недостаточным для поддержания ее формы. Оболочка деформировалась, газ скопился в ее передней части, в результате резко возрос положительный дифферент дирижабля. Проволочные стропы подвески передней части гондолы получили чрезмерную нагрузку и лопнули. При этом они намотались на винт. Двигатель остановился. Неуправляемый аэростат с едва державшейся гондолой был подхвачен ветром. Сантоса-Дюмона спас подоспевший катер.

И все-таки нужно констатировать, что кипучая деятельность бразильца не дала ничего нового воздухоплаванию. Все его аппараты отличались плохой устойчивостью и управляемостью. В 1902 году Сантос-Дюмон реализовал на своем седьмом дирижабле идею секционирования мягкой оболочки с целью уменьшения перетекания газа вдоль нее. Двумя мягкими вертикальными перегородками оболочка была разделена на три отсека.

Эти на первый взгляд скромные достижения, которые продемонстрировали талантливые ученые, инженеры, конструкторы и просто увлеченные идеей полета люди, были более чем убедительным свидетельством возможности практической реализации «управляемого воздухоплавания». Воздушный шар, аэростат или дирижабль открыли дорогу человеку в небо. Герои и романтики после долгих веков ожидания наконец обрели самое вдохновляющее пространство для своих сумасшедших поступков, обескураживая смелостью затей и авантюрных начинаний, порой приводивших к славе и смерти одновременно.

Эпоха воздушного неуправляемого шара заканчивалась. Прогресс науки и техники к концу XIX века ускорился. Происходили коренные изменения и в технике воздухоплавания. На смену аэростату рвался дирижабль, восторженно принятый современниками. Газеты пестрели заголовками: «Пассажирские воздушные корабли!», «Наконец многовековая мечта человечества — воздушный корабль легенд и сказок — осуществлена!».

Конструктивные типы дирижаблей

Начиная разговор об управляемом воздухоплавании начала XX века, есть смысл рассказать об основных конструктивных типах дирижаблей, так как далее будут встречаться понятия, о которых читателю полезно знать уже сейчас.

Дирижабль, или управляемый аэростат, или воздушный корабль — это воздухоплавательный аппарат легче воздуха, в котором вес конструкции и полезного груза поддерживаются в воздухе благодаря подъемной силе газа, заключенного в его корпусе. В кормовой (хвостовой) части корпуса устанавливается горизонтальное и вертикальное оперение. Оно обычно состоит из расположенных крест-накрест неподвижных плоскостей — горизонтальных стабилизаторов и вертикальных килей, к которым прикреплены подвижные рулевые поверхности — горизонтальные (рули высоты или глубины) и вертикальные (рули направления). В нижней части корпуса расположены одна или несколько гондол, в которых размещаются команда и пассажиры, моторы, вооружение, балласт и прочее снаряжение.

По конструкции дирижабли можно разделить на 3 основных типа: мягкие (нежесткие), полужесткие и жесткие или, как их еще называют, дирижабли мягкой (нежесткой), полужесткой и жесткой систем. Принципиальные отличия одного типа от другого заключаются в особенностях конструктивного исполнения оболочки, газовых баллонов и устройств для поддержания внешней формы дирижабля, а также в технических решениях, обеспечивающих крепление жестких элементов и равномерное распределение нагрузки по оболочке.

Основное отличие дирижаблей нежесткой и полужесткой систем от жестких состоит в том, что у первых корпус изготавливается из ткани с малой газонепроницаемостью, которая непосредственно наполняется газом и является для него оболочкой. У жестких дирижаблей корпус образует пространственное жесткое сооружение, так называемый каркас, из дюралевых, стальных или деревянных силовых элементов, обтянутых снаружи тканью. При этом газ содержится в специальных отдельных газовых баллонах (называемых также газовыми мешками, газовыми камерами или газовместилищами), выполненных из ткани с малой газонепроницаемостью. В начале XX столетия в качестве материала для изготовления газовместилищ применялся бодрюш, который делали из слепой кишки крупного рогатого скота, а бодрюшированная ткань состояла из нескольких слоев бодрюша, наклеенного на матерчатую подкладку, затем ткань пропитывалась лаком. Матерчатой подкладкой служил сначала шелк, потом перешли на хлопчатобумажную ткань.

Газовые баллоны помещались внутрь корпуса дирижабля, поэтому непосредственно с наружной оболочкой газ не соприкасался. Так как наружная обтяжка каркаса предназначена только для обеспечения аэродинамической обтекаемости жесткого дирижабля, к ней не предъявляется требование малой газопроницаемости.

Отличие дирижабля полужесткой системы от нежесткой заключается в том, что у первого в нижней килевой части оболочки, вдоль всего корпуса, проходит жесткая металлическая ферма (килевая ферма). Она изготавливается из стальных или дюралюминиевых труб и служит для размещения в ней горючего, балласта и прочего снаряжения, а также в качестве хода сообщения вдоль всего дирижабля: К килевой ферме крепятся мотогондолы и гондола управления. Ферма, проходящая обычно от носа дирижабля до кормы, существенно повышает жесткость оболочки в продольном направлении. Спереди эта ферма переходит в носовое усиление, которое повышает сопротивляемость оболочки аэродинамическим нагрузкам, действующим на ее носовую часть. В хвостовой части дирижабля с килевой фермой иногда стыкуется кормовое усиление.

Во время полета неизменяемость внешней формы под действием сил аэродинамического сопротивления и изменений условий окружающей воздушной среды в нежестком и полужестком дирижаблях достигается за счет того, что газ находится в оболочке под некоторым избыточным давлением, так называемым сверхдавлением. Баллонеты — это мягкие емкости, расположенные внутри оболочки, в которые нагнетается воздух, позволяют постоянно поддерживать избыточное давление в оболочке. Благодаря сверхдавлению газа корпус дирижабля приобретает определенную сопротивляемость в продольном и поперечном направлениях, обеспечивающую неизменяемость внешней формы оболочки. Баллонеты наполняются воздухом с помощью вентиляторов, имеющих привод от бортового источника энергии, либо с помощью воздухоулавливателя, установленного за воздушным винтом.

В жестких дирижаблях сверхдавление газа может быть значительно меньшим, чем в полужестких. Это объясняется тем, что необходимость в поддержании сверхдавления отсутствует, так как неизменяемость внешней формы обеспечивается наличием каркаса; баллонетов для воздуха нет, но зато газовые баллоны могут внутри каркаса изменять свой объем, увеличивая или уменьшая его в зависимости от изменения объема содержащегося в них газа. Обтягивающая каркас жесткого дирижабля ткань не обязана сохранять газ, как это требуется от тканей оболочек нежестких и полужестких дирижаблей, поэтому обтяжка жесткого воздушного корабля может быть значительно более легкой по сравнению с тканью, идущей на изготовление оболочек дирижаблей других систем.

Деление дирижаблей на 3 типа — не вполне удачно, потому что некоторые из современных конструкций только с натяжкой могут быть отнесены к одному из этих типов, занимая как бы промежуточное положение между двумя из них. Мы все же оставим это деление как прочно утвердившееся в мировой литературе.

Основы конструкции дирижаблей рассмотрим на примере дирижаблей нежесткой системы, которая содержит все принципиальные составляющие этого типа воздушных транспортных средств. Они строились обычно небольшого и реже среднего объема. Дирижабль этой системы состоял из корпуса-оболочки и прикрепленной к оболочке при помощи системы подвески гондолы с винтомоторной установкой. В корме оболочки располагалось оперение: горизонтальные и вертикальные неподвижные плоскости с прикрепленными к ним при помощи шарниров рулями высоты и рулями направления. От рулей в гондолу к штурвалам шли тросы управления.

Внутри оболочки размещались баллонеты для воздуха. На поверхности оболочки устанавливались клапаны, которые служили для выпуска из нее части газа. Клапаны могли быть автоматическими (предохранительными) — они находились обычно в нижней части оболочки, ближе к корме, и были рассчитаны на открывание при повышении внутри оболочки сверхдавления газа выше определенной нормы, допускаемой запасом прочности ткани оболочки. Вторая группа клапанов (управляемые) служила для маневрирования. Они располагались наверху или сбоку в передней или средней части оболочки дирижабля. Маневровые клапаны открывались с помощью каната, проходившего внутри оболочки. Пилот пользовался этими клапанами при необходимости выпустить часть газа с целью уменьшения высоты полета в том случае, когда динамический спуск по какой-либо причине был нежелателен или невозможен.

При подъеме дирижабля, вследствие уменьшения атмосферного давления, а также из-за нагрева солнцем, газ в оболочке стремится увеличить свой объем, и если сверхдавление превышает уровень, на который отрегулированы предохранительные клапаны, то они автоматически открывались и выпускали соответствующее количество газа. Предохранительные клапаны обычно размещали в корме для того, чтобы выходящий из оболочки газ не соприкасался с горячими деталями двигателей, что могло бы вызвать воспламенение. Кроме газовых клапанов в оболочке имелись еще и клапаны для выпуска воздуха из баллонетов. Пружины предохранительных воздушных клапанов рассчитывались на несколько меньшее давление, чем у газовых клапанов, для того чтобы воздух из баллонетов выходил раньше, чем газ из оболочки.

При увеличении внешнего давления (по мере спуска) или при понижении температуры окружающей среды газ в оболочке стремится к уменьшению своего объема для сохранения неизменяемости внешней формы и для поддержания определенного сверхдавления газа в оболочке, в баллонеты с помощью вентиляторов нагнеталось необходимое количество воздуха. Он поступал из вентилятора в баллонеты по шлангам. При наличии двух и более баллонетов воздух в них подавался через клапаны по индивидуальным шлангам, а его распределение между баллонетами регулировал пилот. На случай отказа вентилятора была предусмотрена установка сзади воздушного винта специального воздухоулавливателя, посредством которого струя воздуха направлялась в баллонеты.

При расширении газа внутри оболочки воздух из баллонетов уходил через клапаны в атмосферу, а опорожненные баллонеты ложились в нижней части оболочки. Если дирижабль при подъеме превышал рассчитанную для него (по емкости баллонетов) предельную высоту, т. е. продолжал подъем и после того, как весь воздух из баллонетов был стравлен в атмосферу, то открывались предохранительные клапаны, которые сбрасывали в атмосферу часть несущего газа. Однако при спуске баллонеты не могли уже возместить связанные с этим потери газа; оболочка дирижабля теряла упругость с того момента, как баллонеты полностью заполнялись воздухом; при дальнейшем спуске на оболочке образовывались складки и впадины (так называемые «ложки»), значительно уменьшавшие скорость полета и даже делавшие невозможным управление дирижаблем.

Полученный путем теоретических расчетов объем баллонетов обычно был несколько преувеличен. Это делалось для того, чтобы, во-первых, парировать увеличение сверхдавления, которое могло возникнуть при несанкционированном подъеме в интенсивных восходящих потоках воздуха. Во-вторых, могло случиться и так, что на заданной высоте потолка температура воздуха окажется не ниже, а выше, чем температура в более низких слоях воздуха, тогда газ увеличит свой объем и частично выйдет через клапаны, а баллонеты при спуске дирижабля не смогут компенсировать потерю сверхдавления и неизменность внешней формы оболочки. И наконец, в-третьих, пилот должен был иметь возможность летать на предельных высотах, обладая при этом некоторым запасом сверхдавления в оболочке.

При этом следует оговориться, что значительное увеличение объема баллонетов сверх теоретического является нежелательным, так как это приводит к увеличению веса баллонетов и тем самым уменьшает полезную нагрузку, которая может быть взята на борт дирижабля. В дирижаблях системы «Парсеваль» наличие двух баллонетов и клапанов для распределения подачи воздуха позволяло пользоваться ими для динамического управления дирижаблем по высоте во время полета, для чего задний баллонет наполнялся воздухом больше, чем передний, и для спуска — наоборот.

На носу дирижабля устанавливалось носовое усиление, состоящее из деревянных или металлических реек, изогнутых по форме раскроя носовой части оболочки (по меридианам) и вдетых в карманы, которые пришивались или приклеивались к носовой части оболочки. Носовое усиление, развитое к носовой точке, служило также и для причаливания дирижабля к посадочной мачте. В кормовой и носовой частях оболочки имелись матерчатые пояски, или «лапы», от которых свободно свисали веревки — «поясные», предназначенные для удержания дирижабля обслуживающей командой.

Обычно в верхней части оболочки размещалось разрывное полотнище, вклеенное в оболочку. От него через внутреннюю часть оболочки в гондолу шла «разрывная вожжа», или веревка, с помощью которой можно было разорвать оболочку, чтобы быстро выпустить из нее газ в случае аварии. Разрывных полотнищ устанавливали чаще всего 2, и они размещались по обеим сторонам оболочки, иногда одно полотнище в носовой части, другое — в кормовой.

В дирижаблях нежесткой системы, объемом свыше 5000 куб. м, внутри газового пространства, а также и внутри баллонетов устанавливали вертикальные перегородки — матерчатые диафрагмы, имеющие форму сферических сегментов и делящие дирижабль на отсеки. Эти диафрагмы служили для уменьшения эффекта «переливания» газа в оболочке и воздуха в баллонетах, что всегда происходило при дифференте (особенно быстром) продольной оси дирижабля. Кроме того, при нарушении герметичности (пробоине) одного из отсеков оболочки наличие в ней перегородок способствовало сохранению газа в остальных отсеках и тем самым увеличивало шансы на благополучное приземление. Перегородки внутри газового пространства обычно устанавливали на дирижаблях нежесткой системы среднего и большого объема. Перегородки в баллонетах ставились и на дирижаблях небольшого объема (меньше 5000 куб. м), особенно в том случае, если баллонетов было не 2, а только 1. В случае разделения газового пространства вертикальными диафрагмами на несколько отсеков, в каждом обычно помещали отдельный баллонет. Это обстоятельство значительно утяжеляло вес всей системы, усложняло управление дирижаблем и явилось одной из причин того, что дирижабли большего объема нежесткой системы не строились.

Оперение нежестких дирижаблей, как уже указывал ось, располагалось в кормовой части оболочки и состояло чаще всего из четырех неподвижных плоскостей (горизонтальных и вертикальных) и присоединенных к ним рулей высоты и направления. На некоторых дирижаблях на верхней части оболочки устанавливалась только одна вертикальная плоскость без руля. Иногда дирижабли совсем не имели верхней вертикальной плоскости. В управляемых аэростатах ранних конструкций неподвижные и подвижные части оперения часто размещались отдельно друг от друга. Оперение не всегда находилось в корме дирижабля, иногда оно устанавливалось на передней половине оболочки или же монтировалось к гондоле. Например, на дирижаблях «Клеман-Байяр» и на некоторых других употреблялось газовое оперение — матерчатые наполненные газом мешки цилиндрической формы крепились к кормовой части оболочки. Однако эффективность такого оперения была невелика.

На ранних типах нежестких дирижаблей использовали гондолы длиной почти в половину длины оболочки, и даже больше. Преимущество такого варианта (по сравнению с короткой гондолой) заключалось в том, что помещавшийся там груз, а также вес самой гондолы могли быть более равномерно распределены по длине оболочке. Основной недостаток длинных гондол — значительное аэродинамическое сопротивление и большой вес. Это заставило конструкторов стремиться к установке коротких гондол. Все гондолы более поздних нежестких дирижаблей имеют небольшую по сравнению с оболочкой длину.

Обладая простотой изготовления, хорошей весовой отдачей и удобством транспортировки, нежесткие дирижабли имеют один серьезный недостаток — они небезопасны во время полетов на скоростях свыше 100 км/ч. При этом требуется значительное сверхдавление несущего газа для поддержания формы оболочки при восприятии аэродинамических сил и моментов. Решение этой задачи сопряжено со значительным возрастанием мощности силовой установки, применением более прочной (и соответственно более тяжелой) оболочки, что приводит к ухудшению такого важного показателя, как весовая отдача дирижабля. Дирижабли, имеющие скорость менее 100 км/ч, обладают ограниченной областью применения, так как в большей степени зависит от метеоусловий.

У нежестких дирижаблей проблема подвески гондолы к оболочке удовлетворительно не разрешена ни в одной из существовавших до сих пор конструкций. Наличие горизонтальных составляющих натяжения в подвеске заставляет поддерживать в оболочке нежесткого дирижабля некоторое сверхдавление, необходимость в котором вызывается также и отсутствием достаточной жесткости носового усиления. Значительное лобовое сопротивление, вызываемое подвеской гондолы, существенно снижает скорость дирижабля.

Дирижабли полужесткой системы появились в результате стремления ввести между гондолой и оболочкой особый промежуточный конструктивный элемент — киль, который бы препятствовал деформации оболочки и вместе с тем воспринимал горизонтальные составляющие натяжения от подвески. В полужестком дирижабле киль является основным силовым элементом конструкции. Пространственная металлическая килевая ферма воспринимает изгибающие и крутящие моменты, возникающие от различного вида нагрузок, действующих на дирижабль.

Килевая ферма присоединяется к оболочке посредством внутренней подвески, которая состоит из набора продольных поясов, пришитых к оболочке, и тросов, связывающих эти пояса с узлами фермы. К килевой ферме крепится гондола управления, пассажирская гондола, двигатели. В хвостовой части на ферме и кормовом усилении смонтированы горизонтальное оперение с рулем высоты и нижний киль с рулем направления. Верхний киль присоединяется с помощью тросов непосредственно к оболочке. В килевой ферме размещаются основные системы, агрегаты и оборудование дирижабля. В ней также расположен коридор от переднего носового усиления к кормовому, обеспечивающий проход из гондолы управления ко всем жизненно важным агрегатам и системам дирижабля.

Вес одного кубического метра корпуса мягких дирижаблей составляет 0,2–0,26 кг, а полужестких — 0,35-0,48 кг. Существенный недостаток мягких и полужестких дирижаблей состоит в том, что газовая оболочка непосредственно подвергается всем механическим воздействиям и влиянию метеоусловий. Нагрев несущего газа солнечными лучами и последующее его охлаждение приводят к дополнительным деформациям оболочки, расчет которых чрезвычайно труден. Быстрая утечка находящегося под избыточным давлением несущего газа при повреждениях оболочки является серьезным препятствием для перехода к большим объемам оболочек.

Основу дирижабля жесткой конструкции представляет жесткий каркас, воспринимающий все аэростатические, аэродинамические, массовые и инерционные нагрузки. Каркас состоит из ряда шпангоутов — поперечных ферм в форме правильного многоугольника, соединенных по вершинам продольными силовыми балками — стрингерами.

Шпангоуты подразделяются на главные, которые воспринимают основную долю сосредоточенных нагрузок, и вспомогательные. Для повышения жесткости каркаса все вершины главных шпангоутов расчаливаются хордовыми и радиальными (проходящими через центр шпангоута) тросами. Диагональными тросовыми расчалками подкрепляются также клетки, образованные соседними шпангоутами и стрингерами. Каркас обтянут мягкой обшивкой. Несущий газ содержится в изолированных газовых баллонах, расположенных между главными шпангоутами. Аэростатическая подъемная сила газа передается на каркас посредством сети, охватывающей газовые баллоны. Каждый газовый баллон снабжен автоматическим предохранительным клапаном. Имеются также маневровые газовые клапаны. Для организованного отвода газа, сбрасываемого через клапаны, предусмотрены газовые шахты. Непосредственно к каркасу крепятся гондолы, двигатели, горизонтальные и вертикальные стабилизаторы с рулями высоты и направления и другие жесткие элементы. В нижней части корпуса расположен коридор, служащий для прохода из гондолы управления в служебные помещения дирижабля, а также для доступа ко всем жизненно важным агрегатам и системам дирижабля с целью их осмотра, а при необходимости и ремонта в полете.

Загрузка...