TEIL I VERLOREN IM KOSMOS

Sie befinden sich alle in derselben Ebene. Alle kreisen in derselben Richtung ... Es ist vollkommen, wissen Sie. Es ist großartig. Es ist fast unheimlich.

Der Astronom Geoffrey Marcy über das Sonnensystem

1. Bauanleitung für ein Universum

Wir können uns noch so viel Mühe geben - niemals werden wir begreifen, wie winzig, wie räumlich bescheiden ein Proton ist. Dazu ist es einfach viel zu klein.

Ein Proton ist ein letzter Baustein eines Atoms, und auch das ist natürlich kein greifbares Gebilde. Protonen sind so klein, dass ein kleiner Fleck Druckerschwärze, beispielsweise der Punkt auf diesem i, ungefähr 500000000000 von ihnen Platz bietet, das sind mehr als die Sekunden in einer halben Million Jahre.1 Protonen sind also, gelinde gesagt, überaus mikroskopisch.

Nun stellen wir uns vor (was wir natürlich nicht können), eines dieser Protonen würde auf ein Milliardstel seiner normalen Größe schrumpfen und einen so kleinen Raum einnehmen, dass ein Proton daneben riesengroß wirkt. Und in diesen winzig kleinen Raum packen wir nun ungefähr 30 Gramm Materie. Ausgezeichnet. Jetzt können wir ein Universum gründen.2

Natürlich gehe ich davon aus, dass wir ein inflationäres Universum bauen wollen. Wer stattdessen das altmodische Standard-Urknalluniversum bevorzugt, braucht zusätzliches Material. Dann müssen wir sogar alles zusammensammeln, was es gibt - jedes kleine Fitzelchen und Teilchen der Materie von hier bis zu den Rändern der Schöpfung -, und alles in einen so unendlich kompakten Punkt zusammenpressen, dass er überhaupt keine Dimensionen hat. So etwas bezeichnet man als Singularität.

So oder so müssen wir uns auf einen richtig großen Knall vorbereiten. Dabei würden wir uns natürlich gern an einen sieheren Ort zurückziehen und das Schauspiel von dort aus beobachten. Leider können wir aber nirgendwo Zuflucht suchen, denn außerhalb der Singularität gibt es kein Wo. Wenn die Ausdehnung des Universums beginnt, füllt sich damit keine größere Leere. Es existiert nur ein einziger Raum: der Raum, der während des Vorganges erschaffen wird.

Sich die Singularität als eine Art schwangeren Punkt vorzustellen, der in einer dunklen, grenzenlosen Leere hängt, ist zwar eine natürliche, aber auch falsche Vorstellung. Es gibt weder Raum noch Dunkelheit. Um die Singularität herum ist nichts. Dort existiert kein Raum, den sie einnehmen könnte, kein Ort, an dem sie sich befindet. Wir können noch nicht einmal fragen, wie lange sie schon dort ist - ob sie wie eine gute Idee gerade erst ins Dasein getreten ist oder ob sie schon immer da war und in aller Ruhe auf den richtigen Augenblick gewartet hat. Die Zeit existiert nicht. Es gibt keine Vergangenheit, aus der sie hervortreten könnte.

Und so, aus dem Nichts, nimmt unser Universum seinen Anfang.

In einem einzigen blendenden Stoß, in einem Augenblick der Prachtentfaltung, der für jede Beschreibung mit Worten viel zu schnell und umfangreich ist, nimmt die Singularität himmlische Dimensionen an und wird zu einem unvorstellbar großen Raum. In der ersten, lebhaften Sekunde (und viele Kosmologen widmen ihre gesamte Berufslaufbahn dem Versuch, diese Sekunde in noch dünnere Scheiben zu zerlegen) entstehen die Schwerkraft und die anderen beherrschenden Kräfte der Physik. Nach noch nicht einmal einer Minute hat das Universum einen Durchmesser von weit mehr als einer Million Milliarden Kilometern, und es wächst schnell.

Wärme ist jetzt reichlich vorhanden, zehn Milliarden Grad, genug, damit die Kernreaktionen beginnen und leichte Elemente entstehen lassen - im wesentlichen Wasserstoff und Helium mit einem Schuss (ungefähr einem unter hundert Millionen Atomen) Lithium. Nach drei Minuten sind 98 Prozent aller Materie entstanden, die existiert oder jemals existieren wird. Wir haben ein Universum. Es ist ein Ort der erstaunlichsten und lohnendsten Möglichkeiten, und wunderschön ist es auch. Und alles ist ungefähr in der Zeit geschehen, die man zur Zubereitung eines Sandwichs braucht.

Wann sich dieser Augenblick ereignet hat, ist noch ein wenig umstritten. Die Kosmologen haben lange darüber diskutiert, ob der Augenblick der Schöpfung sich vor zehn Milliarden Jahren abspielte, oder vor doppelt so langer Zeit, oder irgendwo dazwischen. Heute bewegt man sich offenbar auf eine Einigung bei ungefähr 13,7 Milliarden Jahren zu, aber die Messung solcher Dinge ist, wie wir noch sehen werden, von berüchtigter Schwierigkeit. Eigentlich kann man nur eines mit Sicherheit sagen: An irgendeinem unbestimmten Punkt in der sehr weit entfernten Vergangenheit kam aus unbekannten Gründen der Augenblick, der in der Wissenschaft als t = 0 bezeichnet wird.4 Von da an waren wir unterwegs.

Natürlich wissen wir vieles noch nicht, und von dem, was wir zu wissen glauben, wussten wir vieles vor kurzem ebenfalls noch nicht, oder wir glaubten noch nicht, es zu wissen. Selbst die Vorstellung vom Urknall ist noch relativ neu. Die Idee als solche geisterte schon seit den zwanziger Jahren des 20. Jahrhunderts herum, als der belgische Priester und Gelehrte Georges Lemâitre sie erstmals vorsichtig äußerte, aber in der Kosmologie spielt sie erst seit Mitte der sechziger Jahre eine größere Rolle. Damals machten zwei junge Radioastronomen eine außergewöhnliche, unerwartete Entdeckung.

Die beiden - sie hießen Arno Penzias und Robert Wilson - wollten 1965 mit einer großen Funkantenne arbeiten, die den Bell Laboratories gehörte und in Holmdel, New Jersey, stand. Dabei störte sie aber ein ständiges Hintergrundgeräusch - ein ununterbrochenes Zischen, das jede experimentelle Arbeit unmöglich machte. Es war ein erbarmungsloser, unbestimmter Lärm, der Tag und Nacht, zu allen Jahreszeiten, von allen Stellen des Himmels kam. Ein Jahr lang versuchten die jungen Astronomen alles, was ihnen in den Sinn kam, um die Ursachen des Geräusches ausfindig zumachen und zu beseitigen. Sie überprüften sämtliche elektrischen Geräte. Sie bauten Instrumente um, prüften Stromkreise, spielten mit Kabeln herum, staubten Stecker ab. Sie kletterten in die Antennenschüssel und brachten Klebeband auf allen Schweißnähten und Nieten an. Sie kletterten noch einmal in die Schüssel, dieses Mal mit Besen und Bürsten, und schrubbten alles ab, was sie in einem späteren Fachaufsatz als »weißes dielektrisches Material« bezeichneten -normalerweise nennt man es Vogelscheiße. Aber was sie auch versuchten, es nützte nichts.5

Was sie nicht wussten: Nur 50 Kilometer entfernt, an der Princeton University, suchte ein Wissenschaftlerteam unter Leitung von Robert Dicke genau nach dem, was die beiden mit so viel Mühe loszuwerden versuchten. Die Forscher in Princeton waren von einem Gedanken ausgegangen, den der in Russland geborene Astrophysiker George Gamow schon in den vierziger Jahren geäußert hatte: Danach musste man nur weit genug in den Weltraum blicken, dann würde man eine kosmische Hintergrundstrahlung finden, die vom Urknall übrig geblieben war. Nachdem diese Strahlung die Weiten des Universums durchquert hatte, sollte sie nach Gamows Berechnungen in Form von Mikrowellen auf die Erde treffen. In einem späteren Fachaufsatz hatte er sogar ein Instrument genannt, das sich für ihren Nachweis eignete: die Beil-Antenne in Holmdel.6 Leider hatten weder Penzias und Wilson noch irgendjemand aus der Arbeitsgruppe in Princeton diesen späteren Artikel gelesen.

Natürlich hatten Penzias und Wilson genau das Geräusch gehört, das Gamow postuliert hatte. Sie hatten den Rand des Universums gefunden, oder zumindest den Rand seines sichtbaren Teils, der 150 Milliarden Billionen Kilometer entfernt ist. Sie »sahen« die ersten Photonen, das älteste Licht des Universums, das allerdings über Zeit und Entfernung hinweg zu Mikrowellen geworden war, genau wie Gamow es vorausgesagt hatte. Wenn wir diese Entdeckung im richtigen Licht betrachten wollen, hilft uns ein Vergleich, den Alan Guth in seinem Buch Die Geburt des Kosmos aus dem Nichts anstellte: Wenn man sich den Blick in die Tiefen des Universums als Blick vom 100. Stock des Empire State Building vorstellt (wobei der 100. Stock die Gegenwart und die Straße den Augenblick des Urknalls darstellt), befanden sich die am weitesten entfernten Galaxien zur Zeit von Wilsons und Penzias’ Entdeckung ungefähr im 60. Stock, und die am weitesten entfernten Objekte überhaupt - die Quasare - lagen ungefähr in Höhe des 20. Geschosses. Mit ihrer Entdeckung erweiterten die beiden unsere Kenntnisse über das sichtbare Universum bis auf einen Zentimeter über dem Bürgersteig.

Wilson und Penzias wussten immer noch nicht, woher die Geräusche kamen; sie riefen Dicke in Princeton an, beschrieben ihm ihr Problem und hofften, er würde eine Lösung vorschlagen. Dicke war sofort klar, was die beiden jungen Männer gefunden hatten. Als er den Hörer aufgelegt hatte, sagte er zu seinen Kollegen: »So Jungs, man hat uns überrundet.«

Kurz darauf erschienen im Astrophysical Journal zwei Artikel: In dem einen beschrieben Penzias und Wilson ihre Erfahrungen mit dem Zischen, in dem anderen erklärte Dickes Arbeitsgruppe, worum es sich dabei handelte. Obwohl Penzias und Wilson nicht nach der kosmischen Hintergrundstrahlung gesucht hatten, obwohl sie sie nicht erkannten, nachdem sie sie gefunden hatten, und obwohl sie auch ihre Eigenschaften in keinem Fachaufsatz beschrieben oder interpretiert hatten, erhielten sie 1978 den Nobelpreis für Physik. Den Wissenschaftlern in Princeton blieben nur freundliche Worte. Dazu schrieb Dennis Overbye in Das Echo des Urknalls, Penzias und Wilson hätten die wahre Bedeutung ihrer Entdeckung erst verstanden, als sie darüber etwas in der New York Times gelesen hätten.

Nebenbei bemerkt: Die Auswirkungen der kosmischen Hintergrundstrahlung hat jeder von uns schon einmal erlebt. Man braucht nur den Fernseher auf einen nicht belegten Kanal einzustellen: Das »Schneegestöber«, das man dort sieht, wird zu ungefähr einem Prozent von diesem uralten Überbleibsel des Urknalls hervorgerufen.9 Wer sich das nächste Mal beschwert, dass es im Fernsehen nichts zu sehen gibt, sollte daran denken, dass man immer bei der Geburt des Universums zusehen kann.

Obwohl alle vom Urknall reden, werden wir in vielen Büchern gewarnt, man solle sich darunter keine Explosion im üblichen Sinn vorstellen. Es war vielmehr eine riesige, sehr plötzliche Ausdehnung von ungeheuren Ausmaßen. Aber wodurch wurde sie ausgelöst?

Eine Vorstellung besagt, die Singularität sei vielleicht der Überrest eines früheren, zusammengebrochenen Universums - danach wären wir nur Teil eines ewigen Kreislaufs, in dem sich Universen ausdehnen und zusammenziehen wie der Blasebalg an einem Sauerstoffgerät. Andere führen den Urknall auf ein so genanntes »falsches Vakuum«, ein »Skalarfeld« oder eine »Vakuumenergie« zurück - in jedem Fall auf eine Qualität oder ein Etwas, das in das bestehende Nichts ein gewisses Maß an Instabilität hineinbrachte. Dass aus dem Nichts ein Etwas hervorgeht, erscheint unmöglich, aber die Tatsache, dass vorher nichts da war und jetzt ein Universum existiert, ist der Beweis, dass es möglich ist. Vielleicht ist unser Universum nur ein Teil vieler größerer Universen, von denen manche in anderen Dimensionen existieren, und vielleicht laufen ständig und überall Urknalle ab. Möglicherweise hatten Raum und Zeit auch vor dem Urknall eine völlig andere Form, die wir uns in ihrer Fremdartigkeit nicht vorstellen können, und der Urknall stellt eine Art Übergangsphase dar, in der das Universum sich von einer unbegreiflichen Form in eine andere verwandelte, die wir beinahe verstehen können. »Das sind schon fast religiöse Fragen«, erklärte der Kosmologe Dr. Andrei Linde aus Stanford im Jahr 2001 der New York Times.

In der Urknalltheorie geht es eigentlich nicht um den Urknall selbst, sondern um das, was danach geschah. Nicht lange danach, wohlgemerkt. Nachdem die Wissenschaftler eine Menge Mathematik betrieben und genau zugesehen haben, was in Teilchenbeschleunigern vor sich geht, können sie heute nach eigenen Angaben bis 10-43 Sekunden nach dem Augenblick der Schöpfung zurückblicken -damals war das Universum noch so klein, dass man es nur mit dem Mikroskop hätte sehen können. Wir brauchen nicht jedes Mal in Ohnmacht zu fallen, wenn uns ungewöhnliche

Zahlen begegnen, aber von Zeit zu Zeit sollten wir vielleicht doch innehalten und uns daran erinnern, wie erstaunlich und unbegreiflich sie sind, 10-43 ist gleichbedeutend mit 0,0000000000000000000000000000000000000000001 oder einer zehn millionstel billionstel billionstel billionstel Sekunde.*11

Was wir heute über die ersten Augenblicke des Universums wissen oder zu wissen glauben, geht zum größten Teil auf die »Inflationstheorie« zurück, einen Gedanken, der erstmals 1979 von einem jungen Teilchenphysiker namens Alan Guth geäußert wurde. Guth - er arbeitete damals in Stanford und ist heute am Massachusetts Institute of Technology tätig - war damals 32 und hatte nach eigenem Eingeständnis zuvor noch nicht viel zuwege gebracht.12 Vermutlich wäre er nie auf seine großartige Idee gekommen, wenn er nicht einen Vortrag

* Ein paar Worte über wissenschaftliche Schreibweisen: Da sehr große Zahlen umständlich zu schreiben undfast unmöglich zu lesen sind, bedient man sich einer verkürzten Form mit Zehnerpotenzen (das heißt mit Vielfachen von 10). Aus 10000000000 wird beispielsweise 1010, und 6500000 wird zu 6,5 x 106. Grundlage sind ganz einfach die Vielfachen von 10: 10x10 (oder 100) wird zu 102, 10 x 10x10 (oder 1000) ist 1&, und immer so weiter. Die kleine hochgestellte Zahl gibt an, wie viele Nullen auf die groß geschriebene Grundzahl folgen. Negative Werte bedeuten eigentlich das Spiegelbild: Dann besagt der Exponent, wie viele Stellen rechts nach dem Dezimalkomma stehen (10"4 bedeutet 0,0001). Ich finde das Prinzip zwar gut, aber es verblüfft mich dennoch immer wieder, dass jemand aus »1,4 x 109 km « sofort 1,4 Milliarden Kubikkilometer herausliest, und nicht weniger wundere ich mich darüber, dass man lieber das erste als das zweite drucken lässt (insbesondere in Büchern für ein Laienpublikum - aus einem solchen stammt das Beispiel). Ich gehe davon aus, dass viele Leser mathematisch ebenso wenig bewandert sind wie ich, deshalb werde ich solche Schreibweisen sparsam verwenden; manchmal sind sie allerdings nicht zu vermeiden, schon gar nicht in einem Kapitel, das von kosmischen Maßstäben handelt.

über den Urknall gehört hätte, den ausgerechnet Robert Dicke hielt. Der Vortrag weckte bei Guth das Interesse für Kosmologie und insbesondere für die Entstehung des Universums.13

Am Ende kam dabei die Inflationstheorie heraus. Sie besagt, das Universum habe einen kurzen Augenblick nach Anbeginn der Schöpfung eine drastische Ausweitung erlebt. Es wurde »aufgeblasen« - eigentlich lief es vor sich selbst davon, und seine Größe verdoppelte sich alle 10-34 Sekunden.14 Die ganze Episode dürfte nicht länger als 10 Sekunden gedauert haben - eine millionstel millionstel millionstel millionstel millionstel Sekunde -, aber in dieser Zeit wurde das Universum von einem Gebilde, das man in der Hand halten konnte, zu etwas mindestens 10000000000000000000000000 Mal Größerem.15 Die Inflationstheorie erklärt die Wellen und Wirbel, die unser Universum möglich machen. Ohne sie gäbe es keine Materieklumpen und damit auch keine Sterne, sondern nur treibende Gase und immerwährende Dunkelheit.

Wenn Guths Theorie stimmt, entstand nach ungefähr einem Zehnmillionstel einer billionstel billionstel billionstel Sekunde die Schwerkraft. Nach einem weiteren lächerlich kurzen Zeitraum kamen der Elektromagnetismus sowie die starken und schwachen Kernkräfte hinzu - das Material der Physik. Einen Augenblick später folgten Schwärme von Elementarteilchen - das Material der Materie. Aus dem Nichts gab es plötzlich Schwärme von Photonen, Protonen, Elektronen, Neutronen und vieles andere - von jedem nach der Standard-Urknalltheorie etwa 1079 bis 1089 Stück.

Das sind natürlich unvorstellbare Mengen. Wir brauchen uns nur zu merken, dass nach einem einzigen entscheidenden Augenblick plötzlich ein riesiges Universum da war - es hat nach der Theorie einen Durchmesser von mindestens 100 Milliarden Lichtjahren, könnte aber auch noch viel größer oder sogar unendlich groß sein. Dieses Universum bot alle Voraussetzungen für die Entstehung der Sterne, Galaxien und anderer komplizierter Systeme.16

Aus unserer Sicht ist besonders bemerkenswert, wie sich für uns alles zum Guten gewendet hat. Hätte das Universum bei seiner Entstehung nur ein kleines bisschen anders ausgesehen - wäre die Schwerkraft geringfügig stärker oder schwächer gewesen oder wäre die Ausdehnung nur ein wenig schneller oder langsamer vonstatten gegangen -, dann hätte es wahrscheinlich nie stabile Elemente gegeben, die dich und mich und die Erde, auf der wir stehen, hätten bilden können. Bei einer geringfügig stärkeren Gravitation wäre wahrscheinlich das ganze Universum wie ein schlecht aufgestelltes Zelt in sich zusammengebrochen, und ohne genau die richtigen Werte hätte es weder die richtigen Dimensionen und Bestandteile noch die richtige Dichte gehabt.

Bei einer schwächeren Gravitation dagegen hätte sich nichts zusammenfinden können, und das Universum wäre für alle Zeiten eine langweilige, gleichmäßig verteilte Leere geblieben.

Das ist einer der Gründe, warum manche Experten glauben, es habe noch viele andere Urknalle gegeben, vielleicht sogar Billionen und Aberbillionen, die sich über die gewaltige Zeitspanne der Ewigkeit verteilen; dass wir gerade in diesem einen existieren, liegt demnach daran, dass es der Einzige ist, in dem wir existieren können. Edward B. Tryon von der Columbia University formulierte es einmal so: »Als Antwort auf die Frage, warum es passierte, unterbreite ich den bescheidenen

Vorschlag, dass unser Universum schlicht und einfach eines von diesen Dingen ist, die von Zeit zu Zeit passieren.« Und Guth fügt hinzu: »Obwohl die Entstehung des Universums äußerst unwahrscheinlich erscheinen mag, hat niemand, wie Tryon betonte, die fehlgeschlagenen Versuche gezählt.«

Nach Ansicht des britischen Astronomen Martin Rees gibt es viele Universen, möglicherweise sogar eine unendlich große Zahl, in denen unterschiedliche Eigenschaften jeweils in anderen Kombinationen vorkommen, und wir leben einfach in demjenigen, dessen Merkmalskombination uns die Existenz ermöglicht. Als Vergleich nennt er ein sehr großes Bekleidungsgeschäft:

»Wenn ein sehr großer Vorrat von Kleidungsstücken vorhanden ist, wundert man sich nicht, wenn man einen passenden Anzug findet. Findet man viele Universen, die jemals von unterschiedlichen Zahlenkombinationen beherrscht werden, dann gibt es auch eines, dessen Kombination sich für das Leben eignet. Und in diesem einen befinden wir uns.« 18

Rees weist darauf hin, dass insbesondere sechs Zahlen unser Universum beherrschen; würde sich nur der Wert von einer davon geringfügig ändern, könnte nichts mehr so sein, wie es ist. Damit das Universum in seiner uns bekannten Form existieren kann, muss Wasserstoff sich ständig in einem genau festgelegten, vergleichsweise großen Umfang in Helium verwandeln - nämlich so, dass sich sieben Tausendstel seiner Masse in Energie verwandeln. Wäre dieser Wert nur geringfügig niedriger -beispielsweise nicht 0,007, sondern 0,006 Prozent -, könnte keine Umwandlung mehr stattfinden: Dann würde das Universum aus Wasserstoff und nichts anderem bestehen. Ein geringfügig höherer Wert - 0,008 Prozent -und die Verschmelzung würde so heftig ablaufen, dass der Wasserstoff schon längst aufgebraucht wäre. So oder so würde die geringste Abwandlung der Zahlen dazu führen, dass es das Universum, wie wir es kennen und brauchen, nicht gäbe.19

Ich sollte sagen: Bisher ist alles genau richtig. Auf lange Sicht könnte sich die Gravitation als ein wenig zu stark erweisen, und eines Tages bringt sie die Ausdehnung des Universums vielleicht zum Stillstand, sodass es in sich zusammenbricht und zu einer neuen Singularität zusammengedrängt wird - möglicherweise beginnt dann das Ganze wieder von vorn. Andererseits könnte sie aber auch zu schwach sein, sodass das Universum für alle Zeiten auseinander strebt, bis alles so weit voneinander entfernt ist, dass keine Aussichten auf MaterieWechselwirkungen mehr bestehen. Dann wird das Universum zu etwas Trägem und Totem, das aber sehr geräumig ist. Die dritte Möglichkeit besteht darin, dass die Gravitation tatsächlich genau richtig ist - die Kosmologen sprechen von der »kritischen Dichte« - und das Universum in den richtigen Abmessungen zusammenhält, sodass alles unendlich weiterlaufen kann. In lockeren Momenten bezeichnen die Kosmologen so etwas manchmal als Goldilock-Effekt: Alles ist genau richtig. (Nur der Vollständigkeit halber: Diese drei Möglichkeiten werden geschlossenes, offenes und flaches Universum genannt.)

Jetzt kommt die Frage, die wir uns alle schon irgendwann einmal gestellt haben: Was geschieht, wenn wir zum Rand des Universums reisen und dort den Kopf durch den Vorhang stecken? Wo wäre der Kopf, wenn er sich nicht mehr im Universum befindet? Was ist dahinter? Die enttäuschende Antwort lautet: Man gelangt nie an den Rand des Universums. Nicht weil es zu lange dauern würde - das natürlich auch -, sondern weil man nie eine Außengrenze erreicht, selbst wenn man sich hartnäckig und unendlich lange in gerader Richtung fortbewegt. Stattdessen wäre man irgendwann wieder am Ausgangspunkt (und dort würde man wahrscheinlich die Lust verlieren und aufgeben). Der Grund: Das Universum ist in Übereinstimmung mit Einsteins Relativitätstheorie (auf die wir zu gegebener Zeit noch zurückkommen werden) gekrümmt, und zwar auf eine Weise, die wir uns nicht richtig vorstellen können. Vorerst reicht die Erkenntnis, dass wir nicht in einer großen, sich ständig ausweitenden Blase schweben. Der Raum ist vielmehr gekrümmt, und zwar so, dass er zwar endlich, aber grenzenlos ist. Eigentlich kann man nicht einmal behaupten, dass der Raum sich ausdehnt, denn wie der Physiker und Nobelpreisträger Steven Weinberg richtig anmerkt, expandieren weder Sonnensysteme und Galaxien noch der Raum selbst. Stattdessen entfernen die Galaxien sich voneinander. Das alles ist für unsere Vorstellungskraft eine echte Herausforderung. Oder, in einer berühmten Formulierung des Biologen J. B. S. Haldane: »Das Universum ist nicht nur merkwürdiger, als wir annehmen; es ist merkwürdiger, als wir überhaupt annehmen können.«

Wenn man die Krümmung des Raumes erklären will, stellt man sich zum Vergleich in der Regel ein Wesen aus einem Universum mit flachen Oberflächen vor, das nie eine Kugel gesehen hat und dann auf die Erde gebracht wird. Ganz gleich, wie weit es über die Oberfläche des Planeten streift, es wird nie einen Rand finden. Schließlich ist es wieder am Ausgangspunkt und kann sich natürlich überhaupt nicht erklären, wie so etwas möglich ist. In der gleichen Lage wie unser verblüffter Flachländer sind auch wir, nur werden wir in einer höheren Dimension an der Nase herumgeführt.

Genau wie man nirgendwo einen Rand des Universums finden kann, so gibt es auch keinen Ort, an dem man sich in die Mitte stellen und sagen könnte: »Hier hat alles angefangen. Hier ist der Mittelpunkt von allem.« Wir sind alle im Mittelpunkt von allem. Eigentlich wissen wir noch nicht einmal das ganz genau; mathematisch lässt es sich nicht beweisen. Die Wissenschaftler nehmen einfach an, dass wir nicht der Mittelpunkt des Universums sein können - man denke nur daran, welche Folgerungen sich daraus ergeben würden -, sondern dass alle Beobachter an allen Orten das gleiche Phänomen erleben würden. Aber letztlich wissen wir es nicht.

Für uns reicht das Universum so weit, wie das Licht in den Jahrmilliarden seit seiner Entstehung gewandert ist. Dieses sichtbare Universum - das Universum, das wir kennen und über das wir reden können - hat einen Durchmesser von 1,6 Millionen Millionen Millionen Millionen (l600000000000000000000000) Kilometern.23 Aber nach den meisten Theorien ist das gesamte Universum - das Meta-Universum, wie es manchmal genannt wird - noch bei weitem geräumiger. Die Zahl der Lichtjahre bis zum Rand dieses größeren, unsichtbaren Universums, so Rees, hat dann »nicht zehn und auch nicht hundert Nullen, sondern viele Millionen«. Kurz gesagt existiert mehr Raum, als man sich vorstellen kann, auch wenn man nicht die Mühe auf sich nimmt, sich ein zusätzliches Dahinter auszumalen.

Die Urknalltheorie hatte lange Zeit eine große Lücke, über die sich viele Fachleute Sorgen machten: Sie konnte nicht einmal ansatzweise erklären, wie wir entstanden sind. Zwar wurden 98 Prozent aller vorhandenen Materie mit dem Urknall erschaffen, aber diese Materie bestand ausschließlich aus leichten Gasen: dem Helium, Wasserstoff und Lithium, von denen bereits die Rede war. Aus dem Gasgebräu der Schöpfung ging kein einziges Teilchen der schwereren Substanzen hervor, die für unser eigenes Dasein so unentbehrlich sind - Kohlenstoff, Stickstoff, Sauerstoff und so weiter. Andererseits aber -und das ist das Beunruhigende - braucht man die Wärme und Energie eines Urknalls, damit sich diese schweren Elemente bilden. Aber es gab nur einen Urknall, und bei dem entstanden sie nicht. Woher also kommen sie?

Der Mann, der die Antwort auf diese Frage fand, war interessanterweise ein Kosmologe, der die Urknalltheorie von ganzem Herzen ablehnte. Er prägte sogar den Begriff »Big Bang« ursprünglich als Ironie, mit der er sich darüber lustig machen wollte. Wir werden in Kürze auf ihn zurückkommen, aber bevor wir uns mit der Frage befassen, warum wir hier sind, sollten wir uns ein paar Minuten Zeit nehmen und überlegen, was »hier« eigentlich bedeutet.

2. Willkommen im Sonnensystem

Die Astronomen vollbringen heutzutage erstaunliche Dinge. Würde jemand auf dem Mond ein Streichholz anzünden, könnten sie die Flamme sehen. Aus dem winzigsten Wackeln und Schwanken weit entfernter Sterne ziehen sie Schlüsse über Größe, Eigenarten und sogar die mögliche Bewohnbarkeit von Planeten, die viel zu weit entfernt sind, als dass man sie sehen könnte - mit einem Raumschiff würden wir eine halbe Million Jahre brauchen, um sie zu erreichen.1 Mit ihren Radioteleskopen fangen sie das Flüstern einer so ungeheuer schwachen Strahlung ein, dass die Gesamtmenge der Energie, die sie alle gemeinsam seit dem Beginn der Beobachtungen (im Jahr 1951) aufgefangen haben, geringer ist als die Energie einer einzigen Schneeflocke, die auf den Boden trifft, wie Carl Sagan es formulierte.

Kurz gesagt, gibt es im Universum nicht mehr viel, was die Astronomen nicht finden könnten, wenn sie es darauf anlegen. Umso bemerkenswerter ist es deshalb, dass bis 1978 niemand den Mond des Planeten Pluto bemerkt hatte. Im Sommer jenen Jahres, bei einer Routineuntersuchung von Fotos des Pluto, fiel dem jungen Astronomen James Christy vom U. S. Naval Observatory in Flagstaff, Arizona, etwas auf - es war verschwommen und unscharf, aber der Pluto war es eindeutig nicht. Nachdem er sich mit seinem Kollegen Robert Harrington beraten hatte, gelangte er zu dem Schluss, dass er einen Mond gefunden hatte. Und es war nicht irgendein Mond, sondern im Verhältnis zu seinem Planeten der größte des Sonnensystems.

Seine Entdeckung stellte sogar die Einstufung des Pluto als Planet, die eigentlich nie besonders hieb- und stichfest gewesen war, in Frage. Zuvor hatte man geglaubt, das von dem Mond und Pluto selbst eingenommene Volumen sei ein und dasselbe - die neue Entdeckung bedeutete also, dass der Pluto viel kleiner war, als irgendjemand bis dahin angenommen hatte, kleiner sogar als der Merkur.4 Sogar sieben Monde im Sonnensystem, darunter unser eigener, sind größer.

Nun stellt sich natürlich die Frage, warum es so lange gedauert hat, bis jemand in unserem Sonnensystem einen Mond fand. Die Antwort: Solche Entdeckungen hängen zum Teil davon ab, wohin die Astronomen ihre Instrumente richten, zum Teil auch davon, für welche Beobachtungen diese Instrumente konstruiert sind; in gewisser Weise lag es aber auch am Pluto selbst. Entscheidend ist vor allem, wohin man Instrumente richtet. Oder, wie der Astronom Clark Chapman es formulierte: »Die meisten Leute glauben, ein Astronom geht nachts ins Observatorium und sucht den Himmel ab. Das stimmt nicht. Fast alle Teleskope, die wir auf der Erde besitzen, sind zur Betrachtung winziger Himmelsabschnitte konstruiert, damit man in weiter Ferne einen Quasar sehen, nach schwarzen Löchern suchen oder eine weit entfernte Galaxie untersuchen kann. Das einzige echte Netz von Teleskopen, das den Himmel systematisch absucht, wurde vom Militär geplant und gebaut.« 5

Künstlerische Abbildungen von Planeten haben uns dazu verleitet, der Astronomie eine Schärfe der Wiedergabe zu unterstellen, die in Wirklichkeit nicht existiert. Der Pluto ist auf Christys Aufnahme sehr schwach und unscharf zu sehen - eine Art kosmisches Stäubchen - und sein Mond ist nicht der romantisch angestrahlte, scharf umrissene Trabant, den man auf einer Zeichnung von National Geographie sehen würde, sondern ein winziges, fast nicht zu unterscheidendes Fleckchen zusätzlicher Unschärfe. Die Unschärfe war sogar so groß, dass noch sieben Jahre vergehen sollten, bis wieder jemand den Mond sah und seine Existenz unabhängig bestätigen konnte.6

Christys Entdeckung hatte einen besonders hübschen Aspekt: Sie ereignete sich in Flagstaff, genau da, wo man den Pluto 1930 überhaupt erst gefunden hatte. Dieses bahnbrechende wissenschaftliche Ereignis war im Wesentlichen dem Astronomen Percival Lowell zu verdanken. Lowell stammte aus einer der ältesten und reichsten Bostoner Familien (sie kommt in einem bekannten kleinen Gedicht über Boston als Heimat von Bohnen und Kabeljau vor, wo die Lowells nur mit den Cabots und die Cabots nur mit Gott sprechen) und finanzierte das berühmte Observatorium, das seinen Namen trägt; unvergessen ist er aber insbesondere wegen seiner Ansicht, es gebe auf dem Mars ein Netz von Kanälen, welche die fleißigen Marsbewohner gebaut hätten, um Wasser aus den Polargebieten in das fruchtbare Land am Äquator zu leiten.

Lowells zweite unabänderliche Überzeugung besagte, es gebe irgendwo jenseits des Neptun einen noch unentdeckten neunten Planeten, den er als Planet X bezeichnete. Seine Ansicht stützte sich auf Unregelmäßigkeiten, die er in den Umlaufbahnen von Uranus und Neptun entdeckt hatte, und die letzten Jahre seines Lebens verwendete er auf die Suche nach dem Gasriesen, der dort nach seiner Auffassung existieren musste. Leider starb er 1916 sehr plötzlich - unter anderem sicher, weil er von der Suche erschöpft war -, und seine Forschungen wurden eine Zeit lang zurückgestellt, weil die Lowell-Erben sich um seinen Grundbesitz stritten. Im Jahr 1929 jedoch entschlossen sich die Direktoren des Lowell-Observatoriums, die Suche wieder aufzunehmen - unter anderem wohl deshalb, weil sie die Aufmerksamkeit von dem Märchen um die Marskanäle ablenken wollten, das zu jener Zeit bereits zu einer schwerwiegenden Peinlichkeit geworden war. Zu diesem Zweck stellten sie Clyde Tombaugh ein, einen jungen Mann aus Kansas.

Tombaugh besaß keine offizielle Ausbildung als Astronom, aber er war gewissenhaft und klug. Nachdem er ein Jahr lang geduldig gesucht hatte, stieß er irgendwie auf den Pluto, einen schwachen Lichtpunkt am funkelnden Firmament. Seine Entdeckung grenzte geradezu an ein Wunder, und noch verblüffender war, dass die Beobachtungen, von denen Lowell bei seinen Aussagen über den Planeten jenseits des Neptun ausgegangen war, sich als vollständig falsch erwiesen. Tombaugh erkannte sofort, dass es sich bei dem neuen Planeten keineswegs um die riesige Gaskugel handelte, die Lowell vorausgesagt hatte, aber wenn er oder irgendjemand anderes im Zusammenhang mit den Eigenschaften des neuen Planeten noch Zurückhaltung übte, so wurde sie schon bald von der Begeisterung hinweggefegt, die in jenem leicht erregbaren Zeitalter fast jede Sensationsmeldung begleitete. Zum ersten Mal hatte ein Amerikaner einen Planeten entdeckt, und da wollte sich niemand mit dem Gedanken aufhalten, dass es sich eigentlich nur um einen weit entfernten Eisklumpen handelte. Den Namen Pluto erhielt er zumindest teilweise deshalb, weil die beiden ersten Buchstaben Lowells Initialen waren. Der Astronom wurde nun posthum als Genie ersten Ranges gefeiert, und Tombaugh geriet weitestgehend in Vergessenheit, außer bei den Astronomen, die sich auf die Planeten spezialisiert haben: Sie verehren ihn noch heute.

Manche Astronomen sind nach wie vor überzeugt, dass es einen Planeten X geben könnte - einen riesigen Brocken, vielleicht mit der zehnfachen Größe des Jupiter, aber so weit entfernt, dass wir ihn nicht sehen können. (Er würde so wenig Sonnenlicht einfangen, dass er fast nichts reflektiert.) Nach dieser Vorstellung handelt es sich nicht um einen normalen Planeten wie Jupiter oder Saturn -dazu ist er viel zu weit weg, wir reden hier über mehr als sieben Billionen Kilometer -, sondern eher um eine Sonne, die es nie ganz geschafft hat. Die meisten Sternsysteme im Kosmos sind Doppelsterne, und das lässt unsere einsame Sonne ein wenig seltsam aussehen.

Was den Pluto selbst angeht, so weiß niemand ganz genau, wie groß er ist, woraus er besteht, was für eine Atmosphäre er besitzt oder was er überhaupt für ein Gebilde darstellt. Viele Astronomen halten ihn nicht für einen Planeten, sondern nur für das größte bisher entdeckte Objekt im Kuiper-Gürtel, einem Bereich mit galaktischen Trümmern. Der Kuiper-Gürtel wurde schon 1930 von dem Astronomen F. C. Leonard theoretisch vorausgesagt;9 seinen Namen aber trägt er zu Ehren des Niederländers Gerard Kuiper, der in den Vereinigten Staaten arbeitete und die Idee weiter ausbaute. Aus dem Kuiper-Gürtel stammen die so genannten periodischen Kometen, die sich in recht regelmäßigen Abständen blicken lassen und deren berühmtester der Halley-Komet ist. Die schwerer fassbaren nichtperiodischen Kometen (unter ihnen Hale-Bopp und Hyakutake, die kürzlich bei uns zu Besuch waren) stammen aus der weiter entfernten Oort-Wolke, mit der wir uns in Kürze noch genauer beschäftigen werden.

Eines ist sicher richtig: Pluto verhält sich in vielerlei Hinsicht nicht wie die anderen Planeten. Er ist nicht nur klein und rätselhaft, sondern in seinen Bewegungen auch so launisch, dass niemand genau weiß, wo er sich in 100 Jahren befinden wird. Während die Umlaufbahnen der anderen Planeten alle mehr oder weniger in derselben Ebene liegen, ist die von Pluto in einem Winkel von 17 Grad gekippt wie die Krempe eines Hutes, den sich jemand verwegen schief auf den Kopf gesetzt hat. Seine Umlaufbahn ist so unregelmäßig, dass er uns während beträchtlicher Abschnitte auf seiner einsamen Kreisbahn näher ist als der Neptun. Während großer Teile der achtziger und neunziger Jahre des 20. Jahrhunderts war Neptun eigentlich der äußerste Planet unseres Sonnensystems. Erst am 11. Februar 1999 kehrte Pluto auf die Überholspur zurück, wo er während der nächsten 228 Jahre bleiben wird.10

Wenn Pluto also wirklich ein Planet ist, dann mit Sicherheit ein sehr seltsamer. Er ist winzig: Seine Masse beträgt nur ein Viertelprozent der Erdmasse. Auf die Vereinigten Staaten gelegt, würde er noch nicht einmal die Hälfte der 48 zusammenhängenden Bundesstaaten bedecken. Schon das macht ihn zu etwas Ungewöhnlichem: Es bedeutet, dass unser Planetensystem aus vier inneren Gesteinsplaneten, vier äußeren Gasriesen und einem winzigen, einsamen Eisbrocken besteht. Außerdem haben wir allen Grund zu der Annahme, dass wir schon bald in der gleichen Raumregion noch andere, größere Eiskugeln finden werden. Dann allerdings werden sich wirklich Probleme ergeben. Nachdem Christy den Pluto-Mond ausfindig gemacht hatte, musterten die Astronomen den fraglichen Bereich des Kosmos eingehender, und schon Anfang Dezember 2002 hatten sie mehr als 600 weitere Trans-Neptun-Objekte gefunden, oder Plutinos, wie sie auch genannt werden.11 Eines davon, Varuna genannt, ist fast so groß wie der PlutoMond. Die Astronomen gehen heute davon aus, dass es Milliarden derartiger Objekte gibt. Die Schwierigkeit besteht nur darin, dass viele von ihnen entsetzlich dunkel sind. In der Regel haben sie nur eine Albedo (Reflexionskraft) von vier Prozent, ungefähr ebenso viel wie ein Stück Kohle - und diese Kohleklumpen sind natürlich rund sieben Milliarden Kilometer entfernt.

Wie weit ist das eigentlich? Man kann es sich fast nicht vorstellen. Der Weltraum ist nun einmal riesig - einfach riesig. Malen wir uns um der Erbauung und Unterhaltung willen einmal aus, wir würden mit einer Rakete eine Reise unternehmen. Wir fliegen nicht besonders weit - nur bis an den Rand unseres eigenen Sonnensystems -, aber wir müssen uns eine Vorstellung davon machen, wie groß der Weltraum ist und welch kleinen Teil davon wir besetzen.

Und jetzt kommt die schlechte Nachricht: Ich fürchte, bis zum Abendessen werden wir nicht zurück sein. Selbst mit Lichtgeschwindigkeit würden wir mehrere Stunden brauchen, bis wir beim Pluto ankommen. In Wirklichkeit können wir natürlich nicht einmal annähernd mit Lichtgeschwindigkeit reisen. Wir müssen mit der Geschwindigkeit eines Raumschiffs vorlieb nehmen, und das ist wirklich ein Schneckentempo. Die höchste Geschwindigkeit, die ein von Menschen gebauter Gegenstand jemals erreichte, ist die der Raumsonden Voyager 1 und Voyager 2: Sie entfernen sich mit rund 57000 Stundenkilometern von uns.

Dass die Voyager-Sonden gerade damals (im August und September 1977) gestartet wurden, hatte einen besonderen Grund: Jupiter, Saturn, Uranus und Neptun standen in einer Linie, eine Anordnung, die sich nur alle 175 Jahre ergibt. Deshalb konnten die beiden Raumfahrzeuge sich mit Unterstützung der Schwerkraft nacheinander von einem Gasriesen zum anderen schwingen. Dennoch brauchten sie neun Jahre, um den Uranus zu erreichen, und erst nach zwölf weiteren kreuzten sie die Umlaufbahn des Pluto. Aber es gibt auch eine gute Nachricht: Wenn wir bis zum Januar 2006 warten (in diesem Monat soll einem vorläufigen Zeitplan zufolge die NASA-Raumsonde New Horizons zum Pluto starten), können wir eine günstige Position des Jupiter ausnutzen, und dann sind wir - auch wegen einiger technischer Fortschritte - in ungefähr zehn Jahren dort. Der Rückweg, so befürchte ich, wird aber wesentlich länger dauern. So oder so ist es eine lange Reise.

Unterwegs würden wir als Erstes erkennen, dass der leere Raum tatsächlich sehr leer und entsetzlich ereignislos ist. Unser Sonnensystem mag auf viele Billionen Kilometer das lebhafteste Gebilde sein, aber die gesamte darin enthaltene sichtbare Materie - die Sonne, die Planeten mit ihren Monden, die vielleicht eine Milliarde treibenden Felsblöcke des Asteroidengürtels, die Kometen und alle anderen schwebenden Trümmerteile -füllen nicht mal ein Billionstel des zur Verfügung stehenden Raumes aus.14 Ebenso wird uns klar werden, dass keine schematische Darstellung des Sonnensystems, die wir jemals gesehen haben, auch nur entfernt maßstabsgerecht gezeichnet war. Die meisten Schulbuchabbildungen zeigen die Planeten als Nachbarn mit regelmäßigen Abständen - in vielen Bildern werfen die äußeren Riesenplaneten sogar Schatten -, aber das ist nur eine notwendige Verfälschung, damit man sie alle auf einem Blatt Papier unterbringen kann. In Wirklichkeit liegt der Neptun keineswegs kurz hinter dem Jupiter, sondern sehr, sehr weit hinter dem Jupiter - fünfmal weiter, als der Jupiter von uns entfernt ist, und so weit weg, dass er nur drei Prozent des Sonnenlichts abbekommt, das auf den Jupiter fällt.

Die Entfernungen sind sogar so groß, dass es unter praktischen Gesichtspunkten völlig unmöglich ist, das Sonnensystem maßstabsgerecht zu zeichnen. Selbst wenn man in Lehrbücher viele Seiten zum Ausklappen einfügen oder ein wirklich langes Stück Plakatpapier verwenden würde, käme man nicht einmal annähernd zurecht. In einer maßstabsgerechten Schemazeichnung des Sonnensystems, in der die Erde ungefähr den Durchmesser einer Erbse hat, wäre der Jupiter mehr als 300 Meter entfernt, und den Pluto würden wir erst nach zweieinhalb Kilometern finden (außerdem hätte er ungefähr die Größe einer Bakterienzelle, das heißt, man könnte ihn ohnehin nicht sehen). Proxima Centauri, unser nächstgelegener Fixstern, wäre im gleichen Maßstab mehr als 15000 Kilometer entfernt. Und selbst wenn man alles so weit verkleinert, dass der Jupiter so groß ist wie der Punkt am Ende dieses Satzes und der Pluto nicht größer als ein Molekül, wäre Pluto immer noch mehr als 100 Meter von uns entfernt.

Das Sonnensystem ist also wirklich riesengroß. Wenn wir den Pluto erreichen, sind wir von der Sonne - unserer geliebten, warmen, bräunenden, Leben spendenden Sonne - so weit entfernt, dass sie auf die Größe eines Stecknadelkopfes geschrumpft ist. Eigentlich ist sie dann nur noch ein heller Stern. Angesichts einer derart einsamen Leere versteht man besser, wie selbst die bedeutendsten Objekte - beispielsweise der Plutomond -der Aufmerksamkeit so lange entgehen konnten. Der Pluto steht in dieser Hinsicht sicher nicht allein. Bis zu den Voyager-Missionen glaubte man, Neptun habe zwei Monde; Voyager fand sechs weitere. Als ich klein war, kannte man im Sonnensystem insgesamt 30 Monde. Heute steht diese Zahl bei »mindestens 90«, und ungefähr ein Drittel davon wurde erst in den letzten zehn Jahren entdeckt.15

An eines müssen wir dabei natürlich immer denken:

Wenn wir das Universum als Ganzes betrachten, wissen wir eigentlich noch nicht einmal, was alles zu unserem eigenen Sonnensystem gehört.

Wenn wir am Pluto vorüberfliegen, bedeutet es nichts anderes, als dass wir den Pluto jetzt hinter uns haben.

Denken wir an unseren Reiseplan: Es soll ein Ausflug an den Rand des Sonnensystems werden, und ich fürchte, dort sind wir noch lange nicht angekommen. Pluto mag das letzte Objekt sein, das in den Schulbüchern eingezeichnet ist, aber das System endet dort noch nicht. Das Ende ist noch nicht einmal absehbar. An den Rand des Sonnensystems gelangen wir erst, wenn wir die Oort-Wolke durchquert haben, eine riesige, himmlische Domäne treibender Kometen. Und die Oort-Wolke erreichen wir erst - tut mir Leid - nach weiteren 10000 Jahren.16 Pluto kennzeichnet also keineswegs den äußeren Rand des Sonnensystems, wie die Schulbücher so schamlos behaupten, sondern er liegt auf einem Fünfzigtausendstel des Weges dorthin.

In Wirklichkeit besteht natürlich keinerlei Aussicht auf eine solche Reise. Schon ein Ausflug von 360000 Kilometern zum Mond ist für uns ein großes Unternehmen. Die bemannte Marsmission, die der erste Präsident Bush in einem kurzen Augenblick der Unbesonnenheit forderte, ließ man stillschweigend fallen, nachdem jemand ausgerechnet hatte, dass sie 450 Milliarden Dollar kosten würde und wahrscheinlich den Tod aller Besatzungsmitglieder zur Folge hätte (weil energiereiche Teilchen von der Sonne, die sich nicht abschirmen lassen, ihre DNA in Stücke reißen würden).

Auf Grund dessen, was wir heute wissen und uns vernünftigerweise ausmalen können, besteht absolut keine Aussicht, dass Menschen irgendwann einmal - und zwar wirklich irgendwann - den Rand unseres eigenen Sonnensystems besuchen werden. Er ist einfach zu weit weg. Selbst mit dem Hubble-Teleskop können wir nicht in die Oort-Wolke hineinsehen, und deshalb wissen wir nicht einmal, ob sie sich wirklich dort befindet. Dass sie existiert, ist wahrscheinlich, aber es handelt sich um eine* reine Hypothese.

Über die Oort-Wolke kann man nur eines mit Sicherheit sagen: Sie beginnt irgendwo jenseits des Pluto und erstreckt sich etwa zwei Lichtjahre weit in den Kosmos. Die Grundeinheit für Entfernungen im Sonnensystem ist die astronomische Einheit (astronomical unit oder AU): Sie entspricht der Entfernung von der Sonne zur Erde. Pluto ist ungefähr 40 AU von uns entfernt, zum Mittelpunkt der Oort-Wolke sind es 50000 AU. Mit einem Satz: Sie ist weit weg.

Aber nehmen wir noch einmal an, wir hätten es bis in die Oort-Wolke geschafft. Als Erstes würde uns wahrscheinlich auffallen, wie friedlich hier draußen alles ist. Wir sind jetzt von allem anderen weit entfernt - so weit von unserer Sonne, dass sie nicht einmal der hellste Stern am Himmel ist. Es ist schon ein bemerkenswerter Gedanke: Dieses winzige, blinzelnde Ding hat so viel Schwerkraft, dass es alle Kometen auf ihren Umlaufbahnen hält. Stark ist die Bindung nicht - die Kometen bewegen sich sehr behäbig mit nur rund 350 Stundenkilometern.18 Von Zeit zu Zeit werden einige dieser einsamen Kometen durch eine leichte Störung der Gravitation - vielleicht durch einen vorüberkommenden Stern - aus der Bahn geworfen. Manchmal werden sie dabei auf Nimmerwiedersehen in den leeren Raum geschleudert, manchmal geraten sie aber auch in eine neue, lange Umlaufbahn um die Sonne. Jedes Jahr durchqueren drei bis vier dieser »lang-periodischen« Kometen das innere Sonnensystem. Auf etwas Festes wie die Erde treffen solche unsteten Besucher dabei nur sehr selten. Das ist der Grund, warum wir hier sind: Der Komet, den wir sehen wollten, hat seinen langen Sturz ins Innere des Sonnensystems gerade begonnen. Sein Kurs zielt ausgerechnet auf Manson im US-Bundesstaat Iowa. Bis er dort ankommt, wird noch viel Zeit vergehen -mindestens drei bis vier Millionen Jahre. Vorerst verlassen wir ihn also, aber viel später werden wir ihm wieder begegnen.

Das ist also unser Sonnensystem. Und was gibt es sonst noch da draußen, jenseits seiner Grenzen? Nun, nichts und sehr viel, je nachdem, wie man es betrachtet.

Auf kurze Sicht ist da überhaupt nichts. Das vollkommenste Vakuum, das Menschen jemals erzeugt haben, ist nicht so leer wie die Leere des interstellaren Raumes.19 Und es ist viel von diesem Nichts, bis man wieder auf ein Stückchen von Etwas trifft. Unser nächster Nachbar im Kosmos, Proxima Centauri, der zu einer aus drei Sternen bestehenden Gruppe namens Alpha Centauri gehört, ist 4,3 Lichtjahre entfernt - nach galaktischen Maßstäben ein winziger Sprung, aber doch 100 Millionen Mal weiter als eine Reise zum Mond. Ein Raumschiff würde dorthin mindestens 25000 Jahre brauchen, und selbst wenn man die Reise überstehen würde, wäre dort nichts außer einem einsamen kleinen Sternenhaufen mitten in einem gewaltigen Nichts. Zum Sirius, dem nächsten erwähnenswerten Meilenstein, müsste man noch einmal 4,6 Lichtjahre reisen. Und so würde es weitergehen, wenn man versuchen würde, von Stern zu Stern durch den Kosmos zu hüpfen. Der Weg zur Mitte unserer eigenen Galaxis würde weit mehr Zeit in Anspruch nehmen, als es der Lebensdauer unserer Spezies entspricht.

Noch einmal: Der Weltraum ist riesengroß. Der durchschnittliche Abstand zwischen den Sternen beträgt 32 Millionen Millionen Kilometer. Selbst bei Geschwindigkeiten, die sich der Lichtgeschwindigkeit annähern, wären solche unglaublichen Entfernungen für jeden Reisenden kaum zu überwinden. Natürlich ist es möglich, dass Außerirdische einen Weg von Milliarden Kilometern zurücklegen, um zu ihrer Belustigung Kreise auf Feldern in Wiltshire zu ziehen oder irgendeinen armen Kerl in einem Lieferwagen auf einer einsamen Straße in Arizona zu Tode zu erschrecken (vielleicht waren es ja außerirdische Teenager), aber es hört sich sehr unwahrscheinlich an.

Dennoch besteht statistisch eine große Wahrscheinlichkeit, dass es im Weltraum andere denkende Wesen gibt. Niemand weiß, wie viele Sterne die Milchstraße enthält - die Schätzungen reichen von rund 100 Milliarden bis 400 Milliarden -, und die Milchstraße ist nur eine von rund 140 Milliarden Galaxien, von denen viele sogar größer sind als unsere. In den sechziger Jahren des 20. Jahrhunderts stellte Professor Frank Drake von der Cornell University unter dem Eindruck dieser frappierenden Zahlen eine berühmte Gleichung auf, mit der er auf der Grundlage einer Reihe immer kleiner werdender Wahrscheinlichkeiten die Aussichten auf hoch entwickeltes Leben im Kosmos berechnen wollte.

In Drakes Gleichung teilt man die Zahl der Sterne in einem ausgewählten Teil des Universums durch die Zahl derer, die wahrscheinlich Planetensysteme besitzen werden; das Ergebnis dividiert man durch die Zahl der Planetensysteme, die theoretisch Leben beherbergen könnten; dieses Resultat dividiert man dann durch die Zahl derer, auf denen ein einmal entstandenes Leben sich bis zum Zustand der Intelligenz weiterentwickelt haben könnte; und so weiter. Bei jeder derartigen Division wird die Zahl ungeheuer viel kleiner - aber selbst unter den vorsichtigsten Annahmen stellt sich am Ende heraus, dass die Zahl hoch entwickelter Zivilisationen in der Milchstraße in die Millionen gehen könnte.

Was für ein interessanter, spannender Gedanke! Wir sind vielleicht nur eine von Millionen fortgeschrittenen Zivilisationen. Da aber leider der Raum so geräumig ist, beträgt der durchschnittliche Abstand zwischen zwei solchen Zivilisationen den Berechnungen zufolge mindestens 200 Lichtjahre, und das ist weit mehr, als die Worte vermuten lassen. Zunächst einmal bedeutet es: Selbst wenn diese Wesen wissen, dass wir hier sind, und wenn sie uns irgendwie mit ihren Teleskopen sehen können, empfangen sie das Licht, das die Erde vor 200 Jahren verlassen hat. Sie sehen also nicht dich und mich, sondern die französische Revolution und Thomas Jefferson und Menschen mit Seidenstrümpfen und gepuderten Perücken - Menschen, die nicht wissen was ein Atom oder ein Gen ist, die ihre Elektrizität herstellen, indem sie einen Bernsteinstab an einem Stück Pelz reiben und sich dabei für sehr schlau halten. Jede Botschaft, die wir von ihnen erhalten, wird mit »Gnädiger Herr« beginnen, und sie werden uns zu unseren hübschen Pferden oder der Errungenschaft des Walfischtrans beglückwünschen. Eine Entfernung von 200 Lichtjahren liegt so weit jenseits unseres Begriffsvermögens, dass sie - nun ja - immer jenseitig bleibt.

Selbst wenn wir also in Wirklichkeit nicht allein sind, sind wir es unter allen praktischen Gesichtspunkten dennoch. Carl Sagan berechnete die mutmaßliche Zahl der Planeten im Universum insgesamt auf zehn Milliarden Billionen - eine Zahl, die unser Vorstellungsvermögen völlig übersteigt. Ebenso unvorstellbar ist aber die Größe des Raumes, in dem sie sich verteilen. Sagan schrieb einmal: »Würden wir aufs Geratewohl in den Kosmos geworfen, stünden die Chancen, dass wir auf oder auch nur nahe bei einem Planeten landeten, nicht einmal eins zu 10 (eine Eins gefolgt von 33 Nullen) .... wie man sieht, haben Welten Seltenheitswert.« 22

Vielleicht ist es deshalb eine besonders gute Nachricht, dass die International Astronomical Union den Pluto im Februar 1999 offiziell in den Rang eines Planeten erhob. Das Universum ist groß und einsam. Wir sollten uns so viele Nachbarn wie möglich schaffen.

3. Das Universum des Reverend Evans

Bei klarem Himmel, wenn das Mondlicht nicht zu hell ist, schleppt der Geistliche Robert Evans ein sperriges Teleskop auf die Dachterrasse seines Hauses in den australischen Blue Mountains, etwa 80 Kilometer westlich von Sydney. Der ruhige, freundliche Mann hat etwas Ungewöhnliches vor: Er blickt tief in die Vergangenheit und sucht nach sterbenden Sternen.

In die Vergangenheit zu blicken ist natürlich das Einfachste dabei. Man braucht nur den Nachthimmel zu betrachten, dann sieht man nichts als Geschichte, und zwar eine Menge davon - die Sterne sehen nicht so aus, wie sie heute sind, sondern wie sie waren, als das Licht sie verließ. Nach allem, was wir wissen, könnte der Polarstern, unser treuer Gefährte, in Wirklichkeit letzten Januar oder im Jahr 1854 oder irgendwann seit Anfang des 14. Jahrhunderts ausgebrannt sein, und die Information darüber ist einfach noch nicht bei uns angekommen. Wir können nur eines sagen - und werden auch immer nur das sagen können: Heute vor 680 Jahren hat er noch geleuchtet. Ständig sterben Sterne. Aber eines kann Bob Evans besser als alle anderen, die es einmal versucht haben: Er macht diese Augenblicke des kosmischen Abschieds ausfindig.

Tagsüber ist Evans ein freundlicher, mittlerweile teilweise im Ruhestand lebender Geistlicher der australischen Vereinigungskirche, der nebenbei ein wenig freiberuflich arbeitet und die Geschichte der religiösen Bewegungen im 19. Jahrhundert erforscht. Nachts dagegen ist er auf seine bescheidene Weise ein Titan des Himmels. Er macht Jagd auf Supernovae.

Eine Supernova entsteht, wenn ein Riesenstern, der viel größer ist als unsere Sonne, zusammenbricht und dann auf Aufsehen erregende Weise explodiert. Dabei wird in einem kurzen Augenblick die Energie von 100 Milliarden Sonnen frei, und der Stern leuchtet eine Zeit lang heller als alle Sterne seiner Galaxis zusammen.1 »Es ist, als würde eine Billion Wasserstoffbomben gleichzeitig losgehen«, sagt Evans.2 Würde sich eine Supernova-Explosion im Umkreis von 500 Lichtjahren um uns herum ereignen, wären wir nach Evans Aussagen erledigt - »es würde die Show kaputtmachen«, wie er es scherzhaft formuliert. Aber das Universum ist riesig, und Supernovae sind normalerweise so weit weg, dass sie uns keinen Schaden zufügen. In den meisten Fällen ist die Entfernung so unvorstellbar groß, dass ihr Licht uns nur als winziges Flackern erreicht. Eine Supernova ist ungefähr einen Monat lang sichtbar, und in dieser Zeit unterscheidet sie sich von den anderen Sternen am Himmel nur dadurch, dass sie eine Stelle besetzt, an der zuvor nichts zu sehen war. Nach diesen anormalen, sehr selten auftretenden Blitzen an der dicht bevölkerten Kuppel des Nachthimmels sucht Reverend Evans.

Um zu verstehen, worin seine Leistung besteht, können wir uns einen ganz normalen Esstisch vorstellen. Er ist mit einem schwarzen Tischtuch bedeckt, und jemand hat eine Hand voll Salz darauf geworfen. Die verstreuten Körner entsprechen der Galaxis. Nun stellen wir uns 1500 Tische vor, die genauso aussehen - genug, um damit einen Supermarkt-Parkplatz auszufüllen oder um sie hintereinander zu einer drei Kilometer langen Reihe aufzustellen -, und auf jedem davon liegt eine zufällige Anordnung von Salzkörnern. Jetzt fügen wir auf jedem Tisch ein einziges Salzkorn hinzu, und dann spaziert Bob Evans zwischen ihnen hin und her. Er erkennt es auf den ersten Blick. Dieses Salzkorn ist die Supernova.

Evans besitzt eine so außergewöhnliche Begabung, dass Oliver Sacks ihm in seinem Buch Eine Anthropologin auf dem Mars einen ganzen Abschnitt widmet; das Kapitel handelt von autistischen Genies - aber Sacks fügt eilig hinzu, das solle nicht bedeuten, dass Evans Autist sei. Der Geistliche selbst hat Sacks nie kennen gelernt und amüsiert sich über die Vorstellung, er sei autistisch oder ein Genie, aber wenn er erklären soll, woher sein Talent stammt, ist er völlig hilflos.

»Anscheinend habe ich den Dreh heraus, wie man sich Sternenfelder einprägt«, sagt er mir mit offenkundig entschuldigendem Blick, als ich ihn und seine Frau Elaine in ihrem Bilderbuchbungalow in einem ruhigen Winkel des Dorfes Hazelbrook besuchte. Hier ist Sydney nun wirklich zu Ende, und der unendliche australische Busch beginnt. »In anderen Dingen bin ich nicht besonders gut«, fügt er hinzu, »ich kann mir zum Beispiel Namen nicht gut merken.«

»Oder wo er etwas hingelegt hat«, ruft Elaine aus der Küche.

Wieder nickt er offenherzig und grinst, und dann fragt er mich, ob ich sein Teleskop sehen möchte. Ich hatte mir vorgestellt, Evans müsse in seinem Garten ein richtiges Observatorium eingerichtet haben, eine verkleinerte Version von Mount Wilson oder Palomar, mit einer beweglichen Kuppel und einem elektrisch beweglichen Stuhl, den zu steuern das reine Vergnügen ist. Aber er führt mich nicht nach draußen, sondern in einen überfüllten Abstellraum hinter der Küche, wo er neben Büchern und Papieren auch sein Teleskop aufbewahrt: Der weiße Zylinder, der in Form und Größe an einen Haushalts-Warmwasserboiler erinnert, steht auf einem selbst gebauten, drehbaren Stativ aus Sperrholz. Wenn er den Himmel beobachten will, trägt er das Ganze in zwei Teilen auf eine kleine Veranda vor der Küche. Zwischen dem überhängenden Dach und den gefiederten Wipfeln der Eukalyptusbäume auf der Böschung unter ihm hat er nur einen briefkastengroßen Blick auf den Himmel, aber das, so sagt er selbst, ist für seine Zwecke mehr als ausreichend. Wenn der Himmel klar und der Mond nicht zu hell ist, findet er hier seine Supernovae.

Der Begriff Supernova wurde in den dreißiger Jahren des 20. Jahrhunderts von einem denkwürdig eigenwilligen Astrophysiker namens Fritz Zwicky geprägt. Geboren in Bulgarien und aufgewachsen in der Schweiz, kam er in den zwanziger Jahren an das California Institute of Technology, wo er mit seinem bissigen Charakter und seinen sprunghaften Begabungen sofort auffiel.

Außergewöhnlich intelligent schien er nicht zu sein, und viele seiner Kollegen hielten ihn eigentlich nur für »einen Spinner und Prahlhans«.4 Er war eine Sportskanone und ließ sich manchmal im Speisesaal oder anderen Räumlichkeiten des Caltech auf den Boden fallen, um mit einarmigen Liegestützen allen, die zu Zweifeln neigten, seine Vitalität zu beweisen. Er war von berüchtigter Aggressivität, und sein Verhalten wurde irgendwann so beängstigend, dass sein engster Mitarbeiter, ein sanfter Mann namens Walter Baade, nicht mehr mit ihm allein gelassen werden wollte.5 Baade war Deutscher, und Zwicky warf ihm unter anderem vor, er sei Nazi - was nicht stimmte. Bei mindestens einer Gelegenheit drohte Zwicky, er werde Baade umbringen, wenn dieser - er arbeitete oben auf dem Berg im Mount-WilsonObservatorium - sich auf dem Gelände des Caltech blicken ließe.6

Aber Zwicky war auch zu verblüffend scharfsinnigen Erkenntnissen in der Lage. Anfang der dreißiger Jahre wandte er sich einer Frage zu, die den Astronomen schon lange Probleme bereitete: Am Himmel tauchten gelegentlich unerklärliche Lichtpunkte auf, neue Sterne. Er kam auf den ungewöhnlichen Gedanken, dahinter könnten Neutronen stecken, subatomare Teilchen, die James Chadwick in England kurz zuvor entdeckt hatte und die gerade völlig neu und in Mode waren. Seine Idee: Wenn ein Stern zusammenbricht und eine Dichte erreicht, wie sie im Atomkern herrscht, würde ein unvorstellbar kompaktes Gebilde entstehen. Die Atome würden buchstäblich zerquetscht, und ihre Elektronen würden in den Atomkern gedrückt, sodass Neutronen entstehen. Das Ergebnis ist ein Neutronenstern. Man stelle sich eine Million wirklich schwergewichtiger Kanonenkugeln vor, die auf die Größe einer Murmel zusammengepresst werden - und selbst das reicht noch nicht annähernd aus. Der Kern eines Neutronensterns ist so dicht, dass ein einziger Löffel von seinem Material 100 Milliarden Kilo wiegt. Wie Zwicky erkannte, würde bei einem solchen Sternenkollaps eine Riesenmenge Energie übrig bleiben, genug, um den größten Knall im Universum zu erzeugen. Solche Explosionen bezeichnete er als Supernovae. In der Tat sind sie die größten Ereignisse im Kosmos.

Am 15. Januar 1934 erschien in der Fachzeitschrift Physical Review eine sehr knappe Zusammenfassung eines Vortrages, den Zwicky und Baade einen Monat zuvor an der Stanford University gehalten hatten. Obwohl er sehr kurz war - er bestand nur aus einem Absatz von 24 Zeilen -, enthielt dieser Artikel eine ungeheure Menge neuer wissenschaftlicher Erkenntnisse: Er sprach zum ersten Mal von Supernovae und Neutronensternen, lieferte eine überzeugende Erklärung für ihre Entstehung sowie eine korrekte Berechnung ihrer Explosionskraft und stellte in einer Art Schlusseffekt eine Verbindung zwischen Supernova-Explosionen und dem neu entdeckten, rätselhaften Phänomen der kosmischen Strahlung her, die, wie man seit kurzem wusste, das ganze Universum durchzog. Es waren, gelinde gesagt, revolutionäre Gedanken. Dass es Neutronensterne tatsächlich gibt, wurde erst 34 Jahre später bestätigt. Und die Gedanken über die kosmische Strahlung gelten zwar als plausibel, ihr Wahrheitsgehalt konnte aber bis heute nicht nachgewiesen werden.9 Insgesamt war der Artikel nach den Worten des Caltech-Astrophysikers Kip S. Thorne »eines der vorausschauendsten Dokumente in der Geschichte der Physik und Astronomie«.10

Interessanterweise begriff Zwicky so gut wie überhaupt nicht, warum das alles geschah. Thorne schreibt: »Nach eingehender Beschäftigung mit seinen Veröffentlichungen jener Zeit bin ich vielmehr zu der Überzeugung gelangt, dass er die physikalischen Gesetze nicht gut genug verstand, um seine Vermutung erhärten zu können.« 11 Zwicky hatte eine Begabung für große Ideen. Die mathematische Kleinarbeit überließ er anderen, insbesondere Baade.

Zwicky erkannte auch als Erster, dass die sichtbare Materie im Universum bei weitem nicht ausreicht, um die Galaxien zusammenzuhalten, und dass die Gravitation demnach noch eine andere Ursache haben muss - heute sprechen wir von dunkler Materie. Etwas anderes aber übersah er: Schrumpft ein Neutronenstern stark genug zusammen, wird er so dicht, dass selbst das Licht seiner ungeheuren Anziehungskraft nicht mehr entkommen kann: Ein schwarzes Loch entsteht. Leider war Zwicky bei den meisten seiner Kollegen so unbeliebt, dass seine Ideen fast nicht zur Kenntnis genommen wurden. Als der berühmte Robert Oppenheimer sich fünf Jahre später in einem bahnbrechenden Aufsatz mit Neutronensternen beschäftigte, erwähnte er Zwickys Erkenntnisse an keiner einzigen Stelle, obwohl dieser jahrelang in einem Büro auf demselben Flur an dem Problem gearbeitet hatte. Zwickys mathematische Ableitungen zur dunklen Materie rückten erst nahezu 40 Jahre später in den Mittelpunkt der Aufmerksamkeit. Wir können nur annehmen, dass er während dieser Zeit eine Menge Liegestütze machte.

Wenn wir den Blick zum Himmel heben, sehen wir vom Universum erstaunlich wenig. Mit bloßem Auge sind von der Erde nicht mehr als 6000 Sterne zu erkennen, davon rund 2000 von einer einzelnen Stelle aus. Mit einem Fernglas steigt die Zahl der von einem Punkt sichtbaren Sterne auf etwa 50000, und mit einem kleinen Zwei-ZollTeleskop liegt sie schon bei 300000. Mit einem 16-Zoll-Teleskop, wie Evans es benutzt, zählt man schon nicht mehr die Sterne, sondern die Galaxien. Von seiner Terrasse aus kann der Geistliche nach eigenen Schätzungen 50000 bis 100000 solcher Milchstraßensysteme erkennen, und jedes davon enthält Zigmilliarden Sterne. Das sind natürlich ansehnliche Zahlen, aber selbst bei einem so umfangreichen Ausgangsmaterial sind Supernovae äußerst selten. Ein Stern leuchtet meist viele Milliarden Jahre lang, aber er stirbt nur einmal, und das schnell; außerdem explodieren nur die wenigsten Sterne bei ihrem Tod. Die meisten hauchen in aller Stille ihr Leben aus wie ein Lagerfeuer in der Morgendämmerung. In einer typischen Galaxie mit ihren rund 100 Milliarden Sternen tritt nur durchschnittlich alle zwei- bis dreihundert Jahre eine Supernova auf. Ein solches Ereignis zu finden gleicht ein wenig dem Versuch, mit einem Teleskop von der Aussichtsplattform des Empire State Building aus die Fenster von Manhattan zu mustern und dabei jemanden zu entdecken, der gerade 21 wird und die Kerzen seines Geburtstagskuchens anzündet.

Als nun ein hoffnungsfroher, sanftmütiger Geistlicher sich an die Astronomengemeinde wandte und anfragte, ob es nützliche Himmelskarten für die Suche nach Supernovae gebe, glaubte man dort, er sei nicht ganz bei Trost. Evans besaß damals ein 10-Zoll-Teleskop - eine ansehnliche Größe für einen Amateur-Sterngucker, aber kaum das richtige Instrument für ernsthafte Kosmologie -und hatte vor, damit ein ungeheuer seltenes Phänomen im Universum aufzuspüren. Bevor Evans 1980 seine Beobachtungen aufnahm, hatte man in der gesamten Geschichte der Astronomie noch nicht einmal 60 Supernovae entdeckt. (Als ich ihn im August 2001 aufsuchte, hatte er gerade über seine vierunddreißigste visuelle Entdeckung berichtet; die fünfunddreißigste folgte wenige Monate später, die sechsunddreißigste Anfang 2003.)

Allerdings hatte Evans einige Vorteile auf seiner Seite. Die meisten Beobachter befinden sich - wie überhaupt der größere Teil der Menschheit - auf der nördlichen Erdhalbkugel, und deshalb hatte er vor allem am Anfang einen großen Abschnitt des Himmels fast für sich allein. Außerdem war er schnell, und er hatte ein ungeheuer gutes Gedächtnis. Große Teleskope sind schwerfällige Instrumente - ein beträchtlicher Teil ihrer Betriebszeit dient nur dazu, sie in die richtige Position zu bringen. Evans konnte sein kleines 16-Zoll-Teleskop hin- und herdrehen wie der Heckschütze im Luftkampf, und er brauchte sich an jedem Punkt des Himmels nicht länger als ein paar Sekunden aufzuhalten. Deshalb konnte er an einem Abend etwa 400 Galaxien durchmustern, während professionelle Astronomen mit ihren großen Instrumenten froh waren, wenn sie es auf 50 oder 60 brachten.

Wenn man nach Supernovae sucht, findet man meistens keine. Von 1980 bis 1996 gelangen Evans durchschnittlich zwei Entdeckungen pro Jahr - nicht gerade eine riesige Ausbeute für mehrere hundert Nächte am Teleskop. Einmal fand er drei Stück in 15 Tagen, ein anderes Mal vergingen aber auch drei Jahre ohne eine einzige Entdeckung.

»Selbst wenn man nichts findet, hat das einen gewissen Nutzen«, sagt er. »Die Kosmologen können auf diese Weise besser feststellen, wie schnell Galaxien sich weiterentwickeln. Es ist eines der wenigen Wissenschaftsgebiete, wo kein Befund auch ein Befund ist.«

Auf einem Tisch neben dem Teleskop liegen Stapel mit Fotos und Fachartikeln, die mit seiner Tätigkeit zusammenhängen, und ein paar davon zeigt er mir. Wer schon einmal populärwissenschaftliche Veröffentlichungen über Astronomie gelesen hat, der weiß natürlich, dass sie in der Regel zahlreiche leuchtend bunte Fotos von Nebeln und Ähnlichem enthalten, magisch beleuchtete Wolken aus Himmelslicht von höchst raffinierter, bewegender Pracht. Ganz anders die Bilder, mit denen Evans arbeitet: Sie sind unscharfe Schwarzweißfotos mit kleinen, von einem Hof umgebenen Lichtpunkten. Auf einem davon erkennt man einen so schwach leuchtenden Sternenhaufen, dass ich mir das Bild ganz nahe vor das Gesicht halten muss, um die Sterne überhaupt zu sehen. Das, so Evans, sei ein Stern im Sternbild Fornax aus einer Galaxie namens NGC1365. (NGC bedeutet New General Catalogue; in diesem »Neuen Allgemeinen Katalog« sind solche Himmelskörper erfasst. Früher war er ein schweres Buch, das bei irgendjemandem in Dublin auf dem Schreibtisch lag; heute - wie könnte es anders sein - ist er eine Datenbank.) 60 Millionen schweigende Jahre lang wanderte das Licht nach dem dramatischen Tod des Sterns unablässig durch das All, bevor es an einem Abend im August 2001 in Form eines Strahlungsschubes, als winziger heller Fleck am Nachthimmel, auf der Erde ankam. Und natürlich war es Robert Evans auf seinem eukalyptusduftenden Hügel, der es entdeckte.

»Das ist irgendwie ein schöner Gedanke«, sagt Evans. »Das Licht wandert Jahrmillionen lang durch den Weltraum, und gerade in dem Augenblick, wenn es auf der Erde eintrifft, richtet jemand den Blick auf das richtige Stückchen Himmel und sieht es. Irgendwie ist es doch richtig, dass jemand Zeuge eines derart gewaltigen Ereignisses wird.«

Aber Supernovae lösen bei weitem nicht nur Staunen aus. Es gibt sie in mehreren Spielarten (eine wurde von Evans entdeckt). Von großer Bedeutung für die Astronomie ist vor allem die so genannte Supernova des Typs 1a: Solche Supernovae explodieren immer auf die gleiche Weise, bei der gleichen kritischen Masse. Deshalb kann man sie als Standard-Lichtquelle nutzen und mit ihrer Hilfe die Ausdehnungsgeschwindigkeit des Universums messen.

Im Jahr 1987 brauchte Saul Perlmutter vom kalifornischen Lawrence Berkeley Lab mehr Supernovae des Typs 1a, als man durch Beobachten allein gefunden hatte. Also machte er sich daran, ein systematischeres Suchverfahren zu entwickeln.14 Perlmutter konstruierte ein raffiniertes System aus hoch entwickelten Computern und CCD-Instrumenten - das sind eigentlich nur richtig gute Digitalkameras. Damit konnte er die Suche nach Supernovae automatisieren. Die Teleskope machten Tausende von Aufnahmen, und darauf suchte ein Computer nach den verräterischen hellen Flecken, durch die sich eine Supernova verrät. Mit dem neuen Verfahren fanden Perlmutter und seine Kollegen innerhalb von fünf Jahren nicht weniger als 42 Supernovae. Heute können sogar Amateure mit CCD-Instrumenten Supernovae aufspüren. »Man braucht das Teleskop mit der CCD-Kamera nur zum Himmel zu richten, und dann geht man fernsehen«, sagt Evans leicht indigniert. »Es hat der Sache die ganze Romantik genommen.«

Ich frage ihn, ob er nicht versucht sei, die neue Technologie zu übernehmen. »Aber nicht doch«, erwidert er, »dazu macht mir meine Methode viel zu viel Spaß. Nebenbei bemerkt« - dabei macht er eine Kopfbewegung in Richtung des Fotos mit der neuesten Supernova und lächelt - »bin ich manchmal immer noch besser als die.«

Natürlich stellt sich die Frage, was geschehen würde, wenn ein Stern ganz in unserer Nähe explodiert. Wie wir bereits erfahren haben, ist Alpha Centauri mit einer Entfernung von 4,3 Lichtjahren unser nächster Sternennachbar. Würde er auseinander fliegen, hätten wir nach meiner Vorstellung 4,3 Jahre Zeit, bis wir sehen könnten, wie das Licht dieses gewaltigen Ereignisses sich über den Himmel ausbreitet, als würde eine riesige Konservendose auslaufen. Was würde geschehen, wenn wir vier Jahre und vier Monate lang zusehen müssten, wie der unausweichliche Untergang immer näher kommt, und wenn wir dabei genau wüssten, dass er uns wie Staub hinwegfegen wird, wenn er bei uns angelangt ist? Würden die Menschen noch zur Arbeit gehen? Würden die Bauern noch Getreide aussäen? Würde jemand noch Lebensmittel in die Läden liefern?

Als ich einige Wochen später wieder in meiner Heimatstadt in New Hampshire bin, stelle ich diese Fragen dem Astronomen John Thorstensen vom Dartmouth College. »Nein, nein«, erwidert er mit einem Lachen. »Die Information über ein solches Ereignis wandert mit Lichtgeschwindigkeit, ebenso schnell wie die Zerstörung. Wir würden also davon erfahren und im gleichen Augenblick sterben. Aber machen Sie sich keine Sorgen, das wird nicht geschehen.« 15

Damit man durch eine Supernova-Explosion umkommt, so erklärt er mir, müsse man ihr »lächerlich nahe« sein -vermutlich in einem Umkreis von höchstens zehn Lichtjahren. »Die Gefahr liegt in der unterschiedlichen Art der Strahlung - kosmischen Strahlen und so weiter.« Sie würde großartige Lichterscheinungen entstehen lassen, schimmernde Vorhänge aus geisterhaftem Leuchten, die den ganzen Himmel einnehmen. Das wäre alles andere als angenehm. Eine Kraft, die solche Erscheinungen entstehen lässt, würde nämlich auch die Magnetosphäre hinwegfegen, jene magnetische Zone hoch über der Erde, die uns normalerweise vor ultravioletter Strahlung und anderen schädlichen Einflüssen aus dem Kosmos schützt. Ohne Magnetosphäre würde jeder, der sich unvorsichtigerweise ans Sonnenlicht begibt, sehr schnell das Aussehen einer zu lange gebackenen Pizza annehmen.

Nach Thorstensens Ansicht können wir aber einigermaßen zuversichtlich sein, dass es in unserem Winkel der Galaxis nicht zu einem solchen Ereignis kommt. Zunächst einmal können nämlich nur Sterne eines ganz bestimmten Typs zu Supernovae werden. Ein Stern komme nur dann dafür in Frage, so Thorstensen, wenn er zehn bis zwanzig Mal so viel Masse habe wie unsere Sonne, und »in unserer Nähe haben wir nicht annähernd etwas von der erforderlichen Größe. Das Universum ist glücklicherweise wirklich groß.« Der nächstgelegene Kandidat, so fügte er hinzu, sei Betelgeuse, der schon seit Jahren durch sein unstetes Verhalten den Verdacht geweckt hat, dass dort eine interessante Instabilität besteht. Aber Betelgeuse ist 50000 Lichtjahre von uns entfernt.

In der gesamten schriftlich aufgezeichneten Menschheitsgeschichte explodierten nur ein halbes Dutzend Supernovae in so geringer Entfernung von uns, dass man sie mit bloßem Auge sehen konnte.16 Eine davon fand im Jahr 1054 statt und führte zur Entstehung des KrebsNebels. Eine weitere im Jahr 1604 war so hell, dass man sie drei Wochen lang sogar tagsüber als Stern sehen konnte. Die letzte ereignete sich 1987: Damals flammte in einem Abschnitt des Weltraums, der als Große Magellan’sche Wolke bezeichnet wird, eine Supernova auf; sie war aber mit bloßem Auge nur gerade eben zu sehen, und auch das nur auf der Südhalbkugel - außerdem war sie beruhigende 169000 Lichtjahre von uns entfernt.

Supernovae sind auch aus einem anderen wichtigen Grund für uns von großer Bedeutung. Ohne sie gäbe es uns nicht. Am Ende des ersten Kapitels war von dem großen kosmologischen Rätsel die Rede: Beim Urknall entstanden zwar riesige Mengen leichter Gase, aber keine schweren Elemente. Die kamen später hinzu - woher, wusste lange Zeit eigentlich niemand. Damit sich Kohlenstoff, Eisen und die anderen Elemente bilden konnten, ohne die wir entsetzlich materielos wären, war etwas wahrhaft Heißes notwendig - heißer als das Zentrum der heißesten Sterne. Die Erklärung lag in den Supernovae, und der englische Kosmologe, der das herausfand, war in seinem Verhalten fast ein ebensolcher Sonderling wie Fritz Zwicky.

Er stammte aus Yorkshire und hieß Fred Hoyle. Ein Nachruf in dem Wissenschaftsblatt Nature - Hoyle starb 2001 - bezeichnete ihn als »Kosmologen und Kontroversen« , und beides war er sicherlich auch.

Weiter hieß es in dem Nachruf, er sei fast sein ganzes Leben lang in Streitigkeiten verwickelt gewesen und habe seinen Namen mit viel Unsinn in Verbindung gebracht. So behauptete er beispielsweise ohne jeden Beleg, das kostbare Fossil eines Archaeopteryx im Londoner National History Museum sei eine Fälschung nach Art des Piltdown-Menschen. Damit löste er bei den Paläontologen des Museums, die nun tagelang Telefonanrufe von Journalisten aus der ganzen Welt beantworten mussten, helle Empörung aus. Außerdem glaubte Hoyle, der Same für das Leben auf der Erde sei ebenso aus dem Weltraum gekommen wie viele Krankheitserreger, beispielsweise die für echte Grippe (Influenza) und Beulenpest. Irgendwann äußerte er sogar die Vermutung, die vorspringende Nase des Menschen mit den unten liegenden Öffnungen habe sich in der Evolution entwickelt, damit Krankheitserreger aus dem Kosmos nicht so leicht hineinfallen können.

In einem Augenblick des schalkhaften Übermuts prägte Hoyle 1952 in einer Radiosendung auch den Begriff »Big Bang« für den Urknall. Er betonte, mit unseren physikalischen Kenntnissen sei nicht zu erklären, warum alles, was in einem einzigen Punkt konzentriert war, sich auf einmal drastisch ausgedehnt haben soll. Hoyle bevorzugte eine Gleichgewichtstheorie, nach der das Universum sich ständig ausdehnte, wobei ununterbrochen neue Materie entstehe.19 Er erkannte auch, dass beim Zusammenbruch von Sternen gewaltige Wärmemengen entstehen müssen - die Temperatur kann auf 100 Millionen Grad oder mehr ansteigen, genug, damit in einem als Nukleosynthese bezeichneten Vorgang die schwereren Elemente entstehen konnten. Im Jahr 1957 wies er in Zusammenarbeit mit anderen nach, wie die schwereren Elemente sich in einer Supernova-Explosion bilden können. Für diese Arbeiten erhielt W. A. Fowler, einer seiner Mitarbeiter, den Nobelpreis. Hoyle ging empörenderweise leer aus.

Nach Hoyles Theorie erzeugt ein explodierender Stern so viel Wärme, dass alle neuen Elemente entstehen und in den Kosmos versprüht werden. Dort bilden sie Gaswolken, die so genannte interstellare Materie, die sich schließlich zu neuen Sonnensystemen zusammenfinden. Mit dieser Theorie konnte man zumindest ein plausibles Szenario zur Beantwortung der Frage entwerfen, wie unser Dasein begann. Nach heutiger Kenntnis sieht es so aus:

Vor ungefähr 4,6 Milliarden Jahren sammelte sich im Weltraum ein großer Gas- und Staubwirbel mit einem Durchmesser von rund 25 Milliarden Kilometern.

Praktisch seine ganze Materie - 99,9 Prozent der Masse des Sonnensystems - bildete die Sonne. Zwei mikroskopisch kleine Körnchen des restlichen Materials näherten sich einander so stark an, dass sie durch elektrostatische Kräfte zusammenhielten. In diesem Augenblick wurde der Grundstein für unseren Planeten gelegt. Überall im Sonnensystem geschah das Gleiche: Staubkörner stießen zusammen und bildeten immer größere Klumpen. Schließlich wurden die Brocken so groß, dass man sie als Planetenvorläufer bezeichnen kann. Diese kollidierten immer und immer wieder, zerbrachen und fanden sich in endlosen Zufallskombinationen ständig neu zusammen, aber bei jeder Begegnung gab es einen Sieger, und einige dieser Sieger wurden so groß, dass sie in ihrer jeweiligen Umlaufbahn zum beherrschenden Element wurden.

Das alles ging bemerkenswert schnell. Von einer winzigen Ansammlung aus Staubkörnern bis zu einem Kleinplaneten von mehreren hundert Kilometern Durchmesser vergingen wahrscheinlich nur wenige zigtausend Jahre. Nach nur 200 Millionen Jahren oder sogar noch weniger war die Erde im Wesentlichen fertig; allerdings war sie noch geschmolzen und dem ständigen Bombardement der Trümmer ausgesetzt, die nach wie vor durch den Weltraum trieben.

Zu jener Zeit, ungefähr vor 4,5 Milliarden Jahren, stieß ein Himmelskörper von der Größe des Mars mit der Erde zusammen und schlug so viel Materie los, dass daraus ein kugelförmiger Begleiter werden konnte: der Mond. Nach heutiger Kenntnis sammelte das Material sich innerhalb weniger Wochen zu einem einzigen Klumpen, und nach einem Jahr hatte sich die Gesteinskugel gebildet, die uns bis heute begleitet. Das Mondgestein stammt zum größten Teil nicht aus dem Erdkern, sondern aus der Kruste unseres Planeten und enthält deshalb nur wenig Eisen, obwohl es auf der Erde viel davon gibt.23 Diese Theorie wird übrigens fast immer als ganz modern bezeichnet, in Wirklichkeit formulierte sie Reginald Daly von der Harvard University aber schon in den vierziger Jahren des 20. Jahrhunderts. Neu ist daran nur, dass man ihr heute mehr Aufmerksamkeit schenkt.

Schon als die Erde erst ein Drittel ihrer endgültigen Größe hatte, dürfte sich eine erste Atmosphäre gebildet haben. Sie bestand vorwiegend aus Kohlendioxid, Stickstoff, Methan und Schwefel - nicht gerade Substanzen, die man mit Lebewesen in Verbindung bringen würde, und doch ging aus diesem giftigen Gebräu das Leben hervor. Kohlendioxid ist ein hochwirksames Treibhausgas. Das war damals etwas Gutes, denn die Sonne leuchtete noch erheblich schwächer als heute. Hätte die Erde nicht vom Treibhauseffekt profitiert, wäre sie wahrscheinlich ständig gefroren gewesen, und das Leben hätte vielleicht niemals Fuß fassen können. Aber irgendwie setzte es sich durch.

Während der nächsten 500 Millionen Jahre wurde die Erde weiterhin erbarmungslos von Kometen, Meteoriten und anderem galaktischen Schutt bombardiert, und mit ihm kamen das Wasser, das die Ozeane füllte, sowie die unentbehrlichen Bestandteile für die Entstehung des Lebens. Es war eine Umwelt von einzigartiger Unwirtlichkeit, und dennoch kam das Leben in Gang. Ein kleiner Beutel voller Chemikalien zuckte und wurde lebendig. Wir waren unterwegs.

Vier Milliarden Jahre später fragten sich die Menschen, wie das alles abgelaufen sein könnte. Damit sind wir bei der nächsten Station unserer Geschichte.

Загрузка...