Звук поцелуя не так громок, как грохот пушки, но эхо от него длится значительно дольше.
На чисто биологическом и, особенно, анатомическом уровне мужчины и женщины очень непохожи друг на друга. Пожалуй, никогда не прекратятся дискуссии о том, определяются ли разнообразные модели поведения — от склонности к агрессии и до пространственного восприятия — гендерной принадлежностью. Но существуют и конкретные физические характеристики, безусловно связанные с полом. Одними из самых фундаментальных различий между женщинами и мужчинами являются их репродуктивные органы. У женщин это яичники, а у мужчин — яички. У женщин — влагалище и матка, у мужчин — пенис.
Этому есть совершенно обоснованные биологические причины, и, пожалуй, не вызовет удивления тот факт, что сводятся они к генам и хромосомам. В клетках человека содержится по 23 пары хромосом, причем по одной хромосоме в паре получено нами от каждого из родителей. Двадцать две из этих пар (изысканно именуемые по своим порядковым номерам от 1 до 22) называются аутосомами, и каждый член определенной пары аутосомов выглядит очень похожим на свою вторую половинку. Слово «выглядит» мы употребляем в его самом прямом значении. На определенной стадии деления клеток ДНК в хромосомах становится предельно туго закрученной. Однако, воспользовавшись соответствующей техникой, мы можем увидеть хромосомы под микроскопом, а также можем их сфотографировать. До наступления цифровой эпохи генетики в буквальном смысле слова ножницами вырезали изображения отдельных хромосом и складывали их в пары, создавая общую упорядоченную картину. В наши дни подобная обработка изображений выполняется компьютером, но в любом случае в результате мы получаем единую картину всех хромосом в клетке. Называется она кариотипом.
Именно анализ кариотипа помог ученым установить, что в клетках людей с синдромом Дауна присутствуют три копии хромосомы 21. Это явление называется трисомией 21.
Когда мы исследуем человеческий кариотип женщины, мы видим, что у нее 23 пары идентичных хромосом. Но, изучая человеческий кариотип мужчины, мы обнаруживаем иную картину, о чем свидетельствует рисунке 9.1. У мужчин мы наблюдаем 22 выраженные пары — аутосомы — и еще две хромосомы, которые вовсе не похожи друг на друга. Одна очень большая, а другая совсем маленькая. Они называются половыми хромосомами. Большая именуется хромосомой X, а маленькая — хромосомой Y. Нормальный хромосомный состав у человеческих особей мужского пола условно записывается как 46, XY. У женщин он имеет вид 46, XX, поскольку хромосома Y у них отсутствует, но зато есть две хромосомы X.
Рис. 9.1. Кариотип всех хромосом в соматической клетке мужчины (слева) и женщины (справа). Обратите внимание, что в женской клетке содержатся две хромосомы X, но нет хромосомы Y; в мужской клетке — одна хромосома X и одна хромосома Y. Также обратите внимание и на существенную разницу в размерах между хромосомами X и Y
Хромосома Y несет очень немного активных генов. На хромосоме Y всего лишь от 40 до 50 кодирующих белки генов, из которых приблизительно половина—специфические мужские. Специфические мужские гены присутствуют только в хромосоме Y, так что у женщин их копии отсутствуют. Многие из этих генов необходимы для специфически мужских аспектов воспроизводства. Наиболее важный из них, если говорить об определении пола будущего ребенка, является ген под названием SRY. Белки SRY обусловливают развитие яичек у эмбриона, что приводит к продукции тестостерона, основного мужского гормона, который и определяет соответствующий пол эмбриона, т. е. маскулинизирует его.
Иногда у индивидуумов, по фенотипу принадлежащих к девочкам, обнаруживается мужской кариотип 46, XY. В этих случаях ген SRYчасто оказывается репрессивным, или же он просто отсутствует, тогда, как следствие, плод развивается по женскому пути[94]. Иногда может иметь место и другой сценарий. Индивидуумы, являющиеся по фенотипу мальчиками, приобретают типично женский кариотип 46, XX. В таких случаях крошечный участок хромосомы Y, содержащий ген SRY, часто переносится на другую хромосому во время формирования сперматозоидов у отца. Этого оказывается достаточно, чтобы инициировать маскулинизацию плода[95]. Перенесенный участок хромосомы Y слишком мал, чтобы быть обнаруженным в процессе создания кариотипа.
Совершенно иначе обстоит дело с хромосомой X. Она чрезвычайно велика и несет около 1300 генов. Огромное количество из числа этих генов ответственно за работу мозга. Многие другие требуются на различных стадиях формирования яичников или яичек, а также для прочих аспектов, определяющих способность к воспроизведению, как у мужчин, так и у женщин[96].
Итак, на хромосоме X около 1300 генов. Это порождает любопытную проблему. У женщин две хромосомы X, а у мужчин только одна. Это значит, что у женщин по две копии этих 1300 генов на хромосоме X, а у мужчин только по одной. На основании этого мы можем выдвинуть предположение, что женские клетки должны вырабатывать вдвое больше белков, регулируемых этими генами (относятся к так называемым Х-генам), чем мужские клетки.
Однако имеющиеся у нас сведения о таких нарушениях как синдром Дауна заставляют усомниться в справедливости нашей гипотезы. Обладание тремя копиями хромосомы 21 (вместо обычных двух) приводит к синдрому Дауна, и именно это отклонение является главным нарушением у людей, родившихся с таким заболеванием. Трисомии большинства других хромосом вызывают настолько тяжелые последствия, что дети с такой патологией никогда не рождаются, так как эмбрионы просто нежизнеспособны (т. е. погибают внутриутробно. Прим. ред). Например, ни разу не был рожден ребенок, который бы имел в своих клетках три копии хромосомы 1. Если 50-процентное увеличение экспрессии генов какой-либо аутосомы способно вызывать настолько тяжелые проблемы в состояниях трисомии, то, как мы объясним сценарий с хромосомой X? Как могут женщины выживать, если у них вдвое больше принадлежащих хромосоме X генов, чем у мужчин? Или, если перефразировать вопрос, как могут жить мужчины, когда у них вдвое меньше генов хромосомы X, чем у женщин?
Ответ на оба эти вопроса заключается в том, что экспрессия локализованных на хромосоме X генов в действительности абсолютно одинаковая как у мужчин, так и у женщин, несмотря на разное количество хромосом, и феномен этот называется компенсацией доз. Система определения половой принадлежности XY отсутствует у животных других классов, так что компенсация доз хромосомы X присуща исключительно плацентарным млекопитающим.
В начале 1960-х годов британская генетик Мэри Лайон выдвинула гипотезу о том, как должна происходить компенсация доз хромосомы X. Ее предположения сводились к следующему:
1) клетки здоровой женщины содержат только одну активную хромосому X;
2) репрессия хромосомы X происходит на ранних этапах развития;
3) репрессированная хромосома X может быть получена или от матери, или от отца, причем репрессия происходит случайным образом в какой-либо одной клетке;
4) репрессия хромосомы X будет необратимой в соматической клетке и во всех ее производных.
Ее предсказания оказались удивительно точными[97][98]. Настолько точными, что во многих учебниках репрессия хромосомы X называется лайонизацией. Давайте и мы рассмотрим ее «пророчества» по очереди:
1) отдельные клетки здоровой женщины действительно экспрессируют гены только с одной копии хромосомы X — другая копия, по сути, подавлена;
2) репрессия хромосомы X происходит на ранних этапах развития, на той его стадии, когда плюрипотентные клетки эмбриональной внутриклеточной массы начинают дифференцироваться, выбирая собственные пути специализации (около вершины уоддингтоновского эпигенетического ландшафта);
3) в среднем, у 50 процентах клеток у женщин полученная по материнской линии хромосома X не задействована. У остальных 50 процентов клеток эта хромосома, унаследованная от отца, репрессируется;
4) так как клетка подавляет одну из пары хромосому X, именно эта копия хромосомы X остается репрессированной во всех дочерних клетках на протяжении всей жизни женщины, даже если ей предстоит прожить более ста лет.
Хромосома Х репрессируется не мутацией; последовательность ДНК в ней остается совершенно неизменной. Репрессия хромосомы X является типичным эпигенетическим феноменом.
Тема репрессии хромосомы X оказалась удивительно плодородным полем для исследований. У некоторых механизмов, принимающих в ней участие, обнаружились параллели в ряде других эпигенетических и внутриклеточных процессов. Репрессия хромосомы X имеет важные последствия для возникновения у человека определенных заболеваний и для проблем терапевтического клонирования. И даже сегодня, через 50 лет после революционной работы Мэри Лайон, мы все еще далеко не до конца представляем себе, как именно происходит репрессия хромосомы X.
Чем больше мы вникаем в этот процесс, тем более удивительным он нам представляется. Для начала, репрессия возможна лишь только у хромосомы X, но ни у одной из аутосом, а это значит, что клетка должна обладать каким-то способом отличать хромосомы X от аутосом. Более того, репрессия хромосомы X затрагивает не один или несколько генов, как это происходит при импринтинге. Нет, при репрессии хромосомы X более 1000 генов подавляются на десятилетия.
Представьте себе автомобильный концерн, один завод которого расположен в Японии, а другой находится в Германии. Эквивалентом импринтинга можно считать незначительные изменения в спецификациях для разных рынков. На заводе в Германии могут запустить линию, на которой на рулевом колесе устанавливается датчик обогревателя, а не кондиционера. Японии сделают все наоборот. Репрессию хромосомы X в этом случае можно приравнять к полному закрытию и консервации одного из заводов, который никогда не возобновит свою деятельность, если только компанию не приобретет другой собственник.
Еще одно существенное отличие репрессии хромосомы X от импринтинга заключается в том, что в импринтинге хромосомы X отсутствует эффект исходного родителя. Для соматических клеток не имеет никакого значения, от кого из родителей была унаследована хромосома X. Любая из них имеет 50-процентный шанс подвергнуться репрессии. Причина, по которой это происходит, имеет совершенно обоснованное эволюцией объяснение.
Импринтинг отвечает за уравновешивание конкурирующих потребностей материнского и отцовского геномов, особенно в процессе развития. Механизмы импринтинга, сформировавшиеся в ходе эволюции, конкретно нацелены на отдельные гены или маленькие пучки генов, оказывающих влияние на рост плода. И, в конце концов, в геноме млекопитающих всего лишь от 50 до 100 импринтинговых генов.
Однако репрессия хромосомы X действует куда в более глобальных масштабах. Это механизм подавления касается свыше 1000 генов, всех вместе и навсегда. Тысяча генов — это весьма много, это около 5 процентов от общего числа кодирующих белки генов, поэтому всегда существует вероятность, что какой-либо отдельный ген хромосомы X может мутировать. На рисунке 9.2 представлено сравнение результатов импринтинговой репрессии хромосомы X (слева) и случайной репрессии хромосомы X (справа). Для упрощения, на диаграмме показана только мутация унаследованного по отцовской линии гена при импринтинговой репрессии полученной по материнской линии хромосомы X.
Рис. 9.2. Каждый кружок представляет женскую клетку, содержащую две хромосомы X. Хромосома X, унаследованная от матери, обозначена женским символом. Хромосома X, унаследованная от отца, обозначена мужским символом и содержит некую мутацию, отмеченную белой выемкой. На левой стороне диаграммы показано, что импринтинговая репрессия полученной по материнской линии хромосомы X приведет к тому, что все клетки организма будут экспрессировать только хромосому X, несущую мутацию, которая была унаследована от отца. С правой стороны хромосомы X инактивируются случайно, независимо от своего исходного родителя. В результате, в среднем, половина соматических клеток будет экспрессировать нормальную версию хромосомы X. По этой причине случайная репрессия хромосомы X является менее рискованным эволюционным сценарием, нежели импринтинговая репрессия хромосомы X
С помощью случайной репрессии хромосомы X клетки способны минимизировать последствия мутаций в генах, локализованных в хромосоме X.
Важно помнить, что «спящая» хромосома X действительно является репрессированной. Почти все ее гены постоянно подавлены, и эта репрессия в обычных условиях не может быть нарушена. Когда мы говорим об активной хромосоме X, мы всегда несколько преувеличиваем. Мы не имеем в виду, что каждый ген активной хромосомы X активен постоянно в каждой клетке. Правильнее было бы говорить, что гены обладают потенциалом стать активными. Они подвержены любым обычным эпигенетическим модификациям и системам контроля экспрессии гена, реагирующим на требования процесса развития и сигналы окружающей среды.
Одно из любопытных следствий репрессии хромосомы X заключается в том, что (эпигенетически) женщины сложнее мужчин. В клетках мужчин содержится лишь по одной хромосоме X, и поэтому репрессии хромосомы X у них не происходит. А вот у женщин хромосома X случайно репрессируется во всех клетках. Следовательно, на самом фундаментальном уровне все клетки женского организма могут быть разделены на два лагеря в зависимости от того, какую хромосому X они подавляют. Образно говоря, в этом плане женщины представляют собой эпигенетическую мозаику.
Этот замысловатый эпигенетический контроль у женщин представляет собой сложный и точно отрегулированный процесс, и именно для исследований этой темы предположения Мэри Лайон стали столь надежной концептуальной основой. Эти предположения, уже упоминавшиеся выше, мы можем перефразировать следующим образом:
1) подсчет: клетки здоровой женщины могут содержать только одну активную хромосому X;
2) выбор: репрессия хромосомы X происходит на ранних этапах развития;
3) стимуляция: подавленная хромосома X может быть получена по материнской или по отцовской линии, а репрессия будет случайной в каждой клетке;
4) сохранение: репрессия хромосомы X будет необратимой в соматической клетке и всех ее «потомках».
Поиски ответов на вопрос, какие механизмы лежат в основе этих четырех процессов, заняли ученых почти на 50 лет, и эти изыскания продолжаются и поныне. Эти процессы невероятно сложны, и в них часто задействованы механизмы, о существовании которых исследователи даже не подозревали. И это неудивительно, поскольку лайонизация представляет собой совершенно уникальный феномен — репрессия хромосомы X является процедурой, в ходе которой клетки поступают с двумя абсолютно идентичными хромосомами диаметрально противоположными и взаимоисключающими способами.
Экспериментально исследовать репрессию хромосомы X невероятно сложно. Это идеально сбалансированная система в клетках, и даже ничтожная вариация в технике может оказать огромное влияние на результат эксперимента. Кроме того, не существует и единого мнения по вопросу о наиболее подходящих для исследований видах. Мышиные клетки традиционно используются в качестве экспериментальной системы выбора, но теперь мы знаем, что клетки мыши и человека не идентичны, если говорить об репрессии хромосомы X[99]. Однако, даже учитывая все эти неопределенности, перед нами начинает вырисовываться весьма любопытная картина.
Клетки млекопитающих должны иметь механизм, позволяющий считать содержащиеся в них хромосомы X. Такой механизм необходим, чтобы хромосома X в мужских клетках не подавлялась. Исключительная роль этого механизма была продемонстрирована еще в 1980-х годах Давором Солтером. Он создавал эмбрионы, перенося мужские пронуклеусы в оплодотворенные яйцеклетки. У мужчин кариотип XY и, когда они производят гаметы, каждый отдельный сперматозоид содержит или X или Y. Беря пронуклеусы из разных сперматозоидов и помещая их в «пустые» яйцеклетки, Солтер мог создавать зиготы XX, XY или YY. Ни одна из комбинаций не привела к рождению потомства, поскольку, как мы уже знаем, свой вклад в создание зиготы должны сделать и отец, и мать. Однако результаты этих экспериментов, представленные на рисунке 9.3, тем не менее, оказались очень любопытными.
Рис. 9.3. В экспериментах по воссозданию донорской яйцеклетки в нее вводились мужской и женский пронуклеусы или два мужских пронуклеуса. Как было показано и на рисунке 7.2, эмбрионы, полученные из двух мужских пронуклеусов, оказались неспособны развиться полностью. Когда в каждом из ядер содержалось по одной хромосоме Y и не было ни одной хромосомы X. развитие эмбрионов приостанавливалось развитие на очень ранней стадии. Эмбрионы, полученные из двух мужских пронуклеусов, из которых хотя бы один содержал хромосому X, развивались несколько дольше, но в итоге тоже погибали
На самой ранней стадии развития погибали эмбрионы, созданные из двух мужских пронуклеусов, каждый из которых содержал хромосому Y как единственную половую хромосому[100]. В таких эмбрионах хромосомы X не было вообще, и именно это стало причиной их гибели на самом раннем этапе развития. Этот эксперимент подтверждает тот факт, что хромосома X чрезвычайно важна для жизнеспособности организма. Вот почему мужские (XY) клетки должны уметь «считать», так как только при этом условии они смогут понять, что располагают лишь одной хромосомой X, и не станут подавлять ее. Для клетки репрессия единственной хромосомы X будет иметь катастрофические последствия.
После подсчета количества хромосом X в женских клетках должен включиться другой механизм, случайным образом выбирающий одну из хромосом X для репрессии. Выбрав хромосому, клетка начинает ее подавлять.
Репрессия хромосомы X происходит на ранних стадиях развития женского эмбриона, когда клетки внутриклеточной массы начинают дифференцироваться на клетки разных типов. Экспериментально очень сложно работать с довольно небольшим числом клеток, которые можно получить из бластоцисты, поэтому исследователи обычно пользуются женскими ЭС клетками. В этих клетках обе хромосомы X активны, как и во внутриклеточной массе периода, предшествующего дифференциации. ЭС клетки довольно легко скатить вниз по уоддингтоновскому эпигенетическому ландшафту, для этого всего лишь нужно чуть изменить условия, в которых эти клетки выращиваются в лаборатории. Как только мы изменим эти условия, подталкивая женские ЭС клетки к дифференциации, они тут же начнут подавлять хромосому X. Так как ЭС клетки могут выращиваться в лабораториях практически в неограниченных количествах, они представляют собой очень подходящую модельную систему для изучения репрессии хромосомы X.
Проникать в загадки репрессии хромосомы X мы начали при изучении мышей и линий клеток со структурно перестроенными хромосомами. В некоторых из этих исследований обнаруживалось, что различные участки хромосомы X оказывались утрачены. В зависимости от того, каких именно участков недоставало, хромосома X активировалась или подавлялась. В ходе других исследований выяснилось, что некоторые участки отделялись от хромосомы X и присоединялись к какой-либо аутосоме. Это могло привести к удалению структурно аномальной аутосомы, опять же в зависимости от того, какая часть хромосомы X меняла свое местоположение[101][102].
Эти эксперименты показали, что на хромосоме X есть определенный участок, который жизненно важен для ее репрессии. Эта область была названа центром репрессии X. В 1991 году группа ученых лаборатории Ханта Уилларда из Стэнфордского университета в Калифорнии обнаружила, что в центре репрессии X содержится ген, который они назвали Xist (аббревиатура от X-inactive (X) specific transcript, то есть Х-репрессированный специфический транскрипт)[103]. Этот ген экспрессировался только с подавленной хромосомы X, но никогда — с активной. Так как ген экспрессировался лишь с одной из двух хромосом X, он становился привлекательным кандидатом на роль контроллера репрессии хромосомы X, при которой две идентичные хромосомы вели себя неодинаково.
Неоднократно предпринимались попытки идентифицировать белок, кодируемый геном Xist[104], но в 1992 году стало ясно, что с ним происходит нечто странное. Ген Xist транскрибировался для образования копий РНК. Эта РНК обрабатывалась так же, как любая другая РНК. Она сплайсировалась, и различные структуры добавлялись к каждому концу транскрипта для повышения ее стабильности. Пока все соответствует норме. Но прежде чем молекулы РНК начинали кодировать белок, они должны были покинуть ядро и проникнуть в цитоплазму клетки. Происходит так по той причине, что рибосомы — внутриклеточные структуры, соединяющие аминокислоты в длинные белковые цепочки — присутствуют только в цитоплазме. Но Xist РНК никогда не покидал ядра, а это означало, что он и не мог продуцировать белок[105][106].
Это, по крайней мере, прояснило один вопрос, озадачивавший ученый мир с момента обнаружения гена Xist. Взрослая Xist РНК представляет собой длинную молекулу, насчитывающую почти 17000 пар оснований (17 т. п. о.). Одна аминокислота кодируется состоящим из трех пар оснований кодоном, о чем уже говорилось в главе 3. Таким образом, теоретически, 17000 пар оснований должны быть способны закодировать белок длиною в 5700 аминокислот. Но когда исследователи проанализировали последовательность Xist с помощью рассчитывающих белки программ, они просто не могли понять, как он может закодировать нечто настолько длинное. На протяжении всей последовательности Xist обнаружились терминирующие кодоны (которые сигнализируют о завершении продукции белка), а самый длинный расчетный участок без терминирующих кодонов мог закодировать лишь 298 аминокислот (894 пары оснований[107]). По какой причине эволюция породила ген, создающий транс крипт в 17 т. п. о., но использующий для кодирования белка только около 5 процентов своего потенциала? Это выглядит как очень нецелесообразное расходование энергии и ресурсов клетки.
Но так как Xist на самом деле никогда не покидает ядра, его неспособность эффективно кодировать белки в данном случае не имеет значения. Xist не выступает в роли матричной РНК (мРНК), кодирующей белок. Он принадлежит к классу молекул, которые называются некодирующими РНК (нкРНК). Xist может не кодировать белок, но это не значит, что он освобожден от каких-либо обязанностей. Напротив, Xist нкРНК сама действует как функциональная молекула, имеющая критическое значение для репрессии хромосомы X.
Тогда, в 1992 году, нкРНК была понятием совсем новым, в то время ученым была известна лишь еще одна нкРНК. Но даже и сегодня Xist представляется нам очень необычным геном. И дело не только в том, что он никогда не покидает ядра. Xist даже никогда не оставляет хромосому, в которой он появился. Когда ЭС клетки начинают дифференцироваться, только одна из хромосом продуцирует Xist РНК. Это та самая хромосома, которая будет репрессированной. Xist не покидает хромосому, которая создала его. Напротив, он привязывается к этой хромосоме и начинает распространяться по ней.
Xist часто характеризуется как закрашивание «спящей» хромосомы X, и это весьма удачное сравнение. Давайте еще раз вернемся к нашей аналогии, в которой мы представляли кодирование ДНК как сценарий. На этот раз мы условимся, что наш сценарий написан на стене; возможно, это вдохновляющее стихотворение или речь в классной комнате. После окончания учебного года школа закрывается, и здание ее продается для перестройки в жилой дом. Приезжают маляры и закрашивают сценарий. Теперь новые жильцы будущего дома не узнают, что «нужно старательно учиться и поступать благородно», и так и не выяснят, как вести себя в «периоды триумфов и потерь». Но ведь все прежние рекомендации как были, так и остались на стене, просто они скрыты под краской.
Когда Xist присоединяется к создавшей его хромосоме X, он вызывает своего рода вялотекущий эпигенетический паралич. Он постепенно охватывает все больше и больше генов и отключает их. Сначала кажется, что он делает это, действуя как барьер между генами и ферментами, которые обычно копируют их в мРНК. Но по мере того как репрессия хромосомы X становится все более успешной, он меняет эпигенетические модификации на хромосоме. Гистоновые модификации, которые обычно активируют гены, утрачиваются. Они заменяются репрессивными гистоновыми модификациями, подавляющими гены.
Некоторые из обычных гистонов удаляются полностью. Гистон Н2А заменяется родственной ему, но чуть отличной молекулой, называемой макроH2A, тесно связанной с репрессией генов. Промоторы генов подвергаются метилированию ДНК — еще более суровому способу репрессии генов. Все эти изменения ведут к связыванию все большего и большего числа репрессорных молекул, обволакивающих ДНК на спящей хромосоме X и делающих ее все менее и менее доступной для ферментов, транскрибирующих гены. В конечном итоге ДНК на хромосоме X оказывается невероятно туго закрученной, как гигантское влажное полотенце, скрученное с обоих концов, и вся хромосома движется к краю ядра. К этому моменту большая часть хромосомы X уже полностью подавлена, за исключением гена Xist, являющего собой маленький оазис активности посреди транскрипционной пустыни[108].
При каждом делении клетки эти модификации инактивной хромосомы X копируются с материнской клетки и передаются дочерним клеткам, так что та же хромосома X остается подавленной во всех последующих поколениях, возникших из начальной клетки.
Несомненно, что роль Xist уникальна и удивительна, но предложенное выше ее описание все еще оставляет многие вопросы без ответов. Как контролируется экспрессия Xist? Почему этот ген включается, когда ЭС клетки начинают дифференцироваться? Функционален ли Xist только в женских клетках, или в мужских клетках он тоже проявляет себя каким-то образом?
Ответ на последний вопрос первыми начали искать в лаборатории Руди Джениша, с которым мы уже встречались, когда рассказывали в Главе 2 о iPS клетках и работе Шиньи Яманаки. В 1996 году профессор Джениш с коллегами вывели мышей с генетически измененной версией центра репрессии X (центр репрессии трансгена X). Размеры этого трансгена, включая сам ген Xist и другие последовательности по обеим его сторонам, составляли 450 т. п. о. Ученые ввели его в аутосому (неполовую хромосому), вывели самцов мышей, несущих этот трансген, и стали исследовать взятые у этих мышей ЭС клетки. У самцов мышей было лишь по одной нормальной хромосоме X, поскольку их кариотип XY, однако у них оказалось по два центра репрессии X. Один был на нормальной хромосоме X, а второй располагался на трансгене в аутосоме. Когда исследователи дифференцировали взятые у мышей ЭС клетки, они обнаружили, что Xist может экспрессироваться с каждого из двух центров репрессии X. Когда Xist экспрессировался, он подавлял хромосому, с которой экспрессировался, даже если это была аутосома, несущая трансген[109].
Эти эксперименты показали, что даже клетки, обычно являющиеся мужскими (XY), способны подсчитывать свои хромосомы X. В действительности, если говорить точнее, они продемонстрировали, что клетки могут считать свои центры репрессии X. Эти данные также подтвердили, что все необходимое для подсчета, выбора и стимуляции присутствует в 450 т. п. о. центра репрессии X в пределах гена Xist.
Сегодня нам известно чуть больше о механизме подсчета хромосом. Клетки обычно не пересчитывают свои аутосомы. Обе копии хромосомы 1, например, действуют независимо друг от друга. Но мы знаем, что две копии хромосомы X в женской ЭС клетке каким-то образом взаимодействуют. Когда начинается репрессия, две хромосомы X в клетке делают нечто весьма странное.
Они целуются.
Это, конечно, очень антропоморфный способ описания явления, но он наиболее точно соответствует тому, что происходит. Их «поцелуй» длится всего пару часов или около того, и, как это ни удивительно, именно он задает ту программу, которая будет сохраняться в клетках на протяжении следующей сотни лет, если женщине посчастливится прожить такой срок. Этот «хромосомный поцелуй» был впервые обнаружен в 1996 году Джинни Ли, начинавшей свою научную деятельность рядовым исследователем в лаборатории Руди Джениша, а теперь по праву занимающей должность профессора в Гарвардской медицинской школе, где она стала одной из самых молодых сотрудников, принятых в постоянный штат. Джинни Ли выяснила, что две копии хромосомы X, по сути, находят друг друга и вступают в физический контакт. Контактируют на самом деле очень небольшие участки хромосом, однако это их взаимодействие является ключевым фактором для запуска репрессии [110]. Если контакта не происходит, хромосома X делает вывод, что она единственная в клетке, ген Xist не активируется, и репрессия хромосомы X не начинается. Это ключевой этап в подсчете хромосом.
Также в лаборатории Джинни Ли был идентифицирован и один из главных генов, контролирующих экспрессию Xist[111]. ДНК представляет собой двухцепочечное образование, в котором цепочки удерживаются вместе связывающими их основаниями. Хотя визуально мы часто представляем себе ДНК как железнодорожное полотно, пожалуй, удобнее было бы думать о ней как о канатной дороге с двумя движущимися в противоположных направлениях вагончиками. Если мы примем эту метафору, то центр репрессии X будет выглядеть приблизительно так, как это показано на рисунке 9.4.
Рис. 9.4. Две цепочки ДНК на особом участке хромосомы X могут быть скопированы для создания молекулы мРНК. Две основные цепочки копируются в противоположных по отношению друг к другу направлениях, что позволяет одному и тому же участку хромосомы X производить Xist РНК и Tsix РНК
На том же участке ДНК, где находится Xist, есть еще одна некодирующая РНК длиною около 40 т. п. о. Она частично накладывается на Xist, но располагается на противоположной цепочке молекулы ДНК. Она транскрибируется в РНК в противоположном к Xist направлении и называется антисмысловым транскриптом. Имя ее — Tsix. Внимательный читатель уже успел заметить, что Tsix это тот же Xist в прочтении справа налево, и в этом есть своя неожиданно элегантная логика.
Такое перекрестное расположение Tsix к Xist имеет принципиальное значение для их взаимодействия, но провести подтверждающие это эксперименты необычайно сложно. Причина этого в том, что практически невозможно осуществить мутацию одного из генов, не затронув при этом мутацией его партнера на противоположной цепочке; в этом случае происходит своего рода параллельное поражение. Но, несмотря на это, уже достигнуты существенные успехи в понимании того, как Tsix влияет на Xist.
Если хромосома X экспрессирует Tsix, это предотвращает экспрессию Xist с той же хромосомы. Как ни странно, возможно, именно простым транскрибированием Tsix предотвращается экспрессия Xist, а не самой Tsix нкРНК. Это аналогично работе врезного замка. Если я запираю замок изнутри и оставляю ключ в замочной скважине, то никто не сможет отпереть этот замок снаружи. Мне нет необходимости пользоваться какими-то дополнительными средствами безопасности — оставив ключ в замочной скважине закрытого замка, я пресекаю любые попытки отпереть его с противоположной стороны. Поэтому, если Tsix активирован, то Xist подавлен, и хромосома X активна.
Эта ситуация имеет место в ЭС клетках, где обе хромосомы X активны. Как только ЭС клетки начинают дифференцироваться, одна из их пары перестает экспрессировать Tsix. Это дает возможность экспрессироваться Xist с той же хромосомы X, что и индуктирует ее репрессию.
Одного лишь Tsix, пожалуй, недостаточно для сохранения репрессии Xist. В ЭС клетках белки под названиями Oct4, Sox2 и Nanog привязываются к первому интрону Xist и подавляют его экспрессию[112]. Oct4 и Sox2 были двумя из четырех факторов, которые использовал Шинья Яманака, когда перепрограммировал соматические клетки в плюрипотентные iPS клетки. Более поздние эксперименты показали, что Nanog (названный в честь мифической кельтской земли вечной молодости) также может действовать как перепрограммирующий фактор. Oct4, Sox2 и Nanog активно экспрессируются в недифференцированных клетках, таких как ЭС клетки, но уровни их экспрессии падают, как только клетки начинают дифференцироваться. Когда это происходит в дифференцирующихся женских ЭС клетках, Oct4, Sox2 и Nanog перестают привязываться к интрону Xist. Тем самым снимаются некоторые барьеры для экспрессии Xist. Напротив, когда женские соматические клетки перепрограммируются по методике Яманаки, репрессированная хромосома X восстанавливается. [113]. Единственный другой случай восстановления репрессированной хромосомы X имеет место при формировании первичных половых клеток в процессе развития, и именно по этой причине при возникновении зиготы в ней присутствуют две активные хромосомы X.
Пока еще нет полной определенности в ответе на вопрос, почему репрессия является настолько взаимоисключающим процессом для двух хромосом. Согласно одной из теорий, причины этого нужно искать в том, что происходит при «поцелуе хромосом X». Случается это на том этапе развития, когда уровни Tsix начинают снижаться и уровни факторов Яманаки также идут на спад. Сторонники этой теории утверждают, что в этот момент пара хромосом достигает своего рода компромисса. Вместо того чтобы пополнить недостаточные количества нкРНК и задействовать другие факторы, все связывающие молекулы устремляются на одну хромосому из пары. До конца понять, каким образом это происходит, довольно трудно. Возможно, одна из хромосом в паре просто по чистой случайности несет чуть больше ключевых факторов, чем другая. Это делает ее чуть более привлекательной для определенных белков. Такие структуры могут создаваться в самоподдерживающем режиме, то есть чем большими запасами обладает одна из хромосом на начальной стадии, тем больше запасов она отбирает у конкурентки. Богатые становятся богаче, а бедные — беднее…
Удивительно, как много белых пятен остается в нашем понимании репрессии хромосомы X даже через 50 лет после фундаментальной работы Мэри Лайон. Мы все еще не до конца представляем себе, как Xist РНК обволакивает хромосому, с которой она экспрессируется, или как она собирает все эти негативные репрессивные эпигенетические ферменты и модификации. Так что, возможно, для нас разумнее будет покинуть эти зыбучие пески и вернуться на более твердую почву.
А вернемся мы к одному из утверждений, которое сделали несколько ранее в этой главе: «Как только клетка подавляет одну из пары хромосому X, копия этой самой хромосомы X будет оставаться ингибированной во всех ее дочерних клетках до конца жизни женщины, даже если той посчастливится дожить до столетнего возраста». Откуда мы это знаем? Как мы можем быть настолько уверены, что репрессия хромосомы X остается постоянной в соматических клетках? Сейчас мы имеем возможность проводить определенные генетические манипуляции, чтобы с их помощью показать, как это происходит, например, у мышей. Но задолго до того, как это стало реальным, ученые были совершенно уверены в справедливости этих тезисов. И за эти сведения мы должны благодарить не мышей, а кошек.
Не просто любых старых добрых кошек, а особенных, черепаховых. Вы, наверное, знаете, чем эти кошки отличаются от всех прочих. Это те самые, на шерсти которых хаотично разбросаны рыжие и черные пятна, располагающиеся иногда на белой подложке. Цвет каждой шерстинки кошек определяется клетками, которые называются меланоцитами — именно они вырабатывают соответствующий пигмент. Меланоциты находятся в коже и развиваются из особых стволовых клеток. Когда меланоцитовые стволовые клетки делятся, их дочерние клетки остаются рядом друг с другом и группируются в маленькие «очажки» клоновых клеток, образованных из одной родительской стволовой клетки.
И вот что удивительно: если у кошки черепаховый окрас, то она обязательно самка.
Цвет шерсти кошки определяет особый ген, кодирующий или черный, или рыжий пигмент. Этот ген находится на хромосоме X. Кошка может получить черную версию этого гена на хромосоме X, унаследованной от матери, или его рыжую версию на хромосоме X, унаследованной от отца (или наоборот). На рисунке 9.5 продемонстрировано, что происходит дальше.
Рис. 9.5. У кошачьих самок черепаховой масти гены, определяющие рыжий и черный цвет шерсти, находятся на хромосоме X.В зависимости от схемы репрессии хромосомы X в коже, клоновые группы клеток дадут начало раздельному окрашиванию шерсти в рыжий и черный цвет
В итоге у черепаховой кошки оказываются рыжие и черные пятна, в зависимости от хромосомы X, которая была случайным образом подавлена в меланоцитовой стволовой клетке. Окрас ее не меняется по мере взросления кошки и остается постоянным на протяжении всей ее жизни. Это говорит нам о том, что репрессия хромосомы X продолжает быть стабильной в клетках, создающих эту цветовую гамму.
Мы знаем, что кошками с черепаховым окрасом бывают только самки, потому что ген, определяющий цвет шерсти, находится только на хромосоме X, а не У. У котов только одна хромосома X, поэтому они могут быть или черными, или рыжими, не сочетая в себе эти два цвета.
Нечто довольно похожее наблюдается и при редком заболевании у людей, которое называется сцепленная с хромосомой X ангидротическая эктодермальная дисплазия. Это состояние вызывается мутациями гена под названием эктодисплазин-А, находящегося на хромосоме X[114]. Мужчины с мутацией своей единственной копии эктодисплазина-А на единственной хромосоме X демонстрируют широкий спектр симптомов, включая полное отсутствие потовых желез. Только при легкомысленном подходе это может показаться преимуществом, тогда как на самом деле это чрезвычайно опасное заболевание. Потовые железы являются одними из главных механизмов, позволяющих нам избавляться от излишков тепла, поэтому мужчины, страдающие таким заболеванием, постоянно подвержены серьезной опасности разрушения тканей и даже гибели в результате теплового удара[115].
У женщин же две копии эктодисплазина-А, по одной на каждой из двух хромосом X. Если у женщины развивается сцепленная с хромосомой X ангидротическая эктодермальная дисплазия, то на одной хромосоме X у нее нормальная копия гена, а на другой — его мутировавшая версия. В различных клетках у нее будет происходить случайная репрессия одной хромосомы X. Это значит, что некоторые клетки станут экспрессировать нормальную копию эктодисплазина-А. Другие клетки будут случайным образом блокировать хромосому X, несущую нормальную копию гена, и не смогут экспрессировать белок эктодисплазина-А. Благодаря такому клонированию клеток на определенных участках кожи, совсем как у черепаховых кошек, у таких женщин одни участки кожи будут экспрессировать эктодисплазин-А, а другие — не будут. Там, где эктодисплазин-А будет отсутствовать, потовые железы не будут формироваться. Как следствие, у страдающих этим заболеванием женщин одни участки кожи смогут потеть и охлаждаться, а другие — нет.
Случайная репрессия хромосомы X способна оказывать огромное влияние на то, как отражаются на женщинах мутации генов на хромосоме X. Зависит это не только от гена, подверженного мутации, но также и от тканей, которые экспрессируют белок, кодируемый этим геном. Заболевание под названием мукополисахаридоз II (МПСН) вызывается мутацией гена, кодирующего лизосомный фермент идуронат-2-сульфатазы, находящегося на хромосоме X. Юноши с такой мутацией на своей единственной хромосоме X неспособны расщеплять определенные крупные молекулы, которые могут разрастаться в клетках до токсичных уровней. Основные симптомы этого состояния включают в себя респираторные инфекции, аномально низкий рост и увеличение селезенки и печени. У юношей, страдающих этим заболеванием в особо тяжелых формах, может развиваться умственная отсталость; кроме того, они часто умирают в подростковом возрасте.
Женщины с мутацией того же гена обычно абсолютно здоровы. Белок лизосомальной идуронат-2-сульфатазы секретируется из синтезирующей его клетки и затем «поглощается» соседними клетками. В такой ситуации не имеет большого значения, которая из хромосом X мутировала в той или иной клетке. По соседству с каждой клеткой, в которой инактивирована хромосома X, несущая нормальную версию этого гена, с большой долей вероятности окажется другая клетка, в которой репрессирована другая хромосома X, и эта клетка выделяет белок. Таким образом, в конечном итоге все клетки будут располагать нормальным белком лизосомальной идуронат-2-сульфатазы независимо от того, продуцировали они его сами или нет[116].
Мышечная дистрофия Дюшенна представляет собой тяжелое заболевание, характеризуемое сильной мышечной атрофией и вызываемое мутациями связанного с хромосомой X геном белка дистрофина. Это большой ген, кодирующий крупный белок дистрофии, который выполняет в мышечных волокнах функции необходимого амортизатора. Юноши с определенными мутациями дистрофина страдают патологией мышечной ткани, что обычно приводит к летальному исходу уже в подростковом возрасте. У девушек с той же мутацией подобные симптомы, как правило, не проявляются. Причина этого в том, что мышца имеет очень необычное строение. Она называется синцитиальной тканью, а это значит, что огромное количество отдельных клеток сливаются воедино и действуют подобно одной гигантской клетке, но с множеством самостоятельных ядер. Именно поэтому женщины обычно не проявляют симптомов, сопутствующих мутации дистрофина. Они обладают достаточным количеством нормального белка дистрофина, закодированного ядрами, которые подавили мутировавший ген дистрофина для того, чтобы их синцитиальная ткань функционировала как здоровая[117].
Бывает, что в отдельных случаях эта система дает сбои. Так, в одной из пар монозиготных близнецов одна из сестер страдала острой формой мышечной дистрофии Дюшенна, а вторая была совершенно здорова[118]. У сестры с этим заболеванием репрессия хромосомы X пошла по ложному пути. На ранней стадии дифференциации тканей большинство ее клеток, из которых предстояло развиться мышцам, исключительно по воле злого рока репрессировали хромосому X, несущую нормальную копию гена дистрофина. Поэтому большинство мышечных тканей этой женщины экспрессировали только мутировавшую версию дистрофина, и у нее развилось острое дистрофия мышц. Этот факт может считаться универсальной демонстрацией значимости случайных эпигенетических явлений. Два идентичных индивидуума, каждый из которых обладал двумя явно идентичными хромосомами X, имели совершенно различные фенотипы из-за случайного сдвига в эпигенетическом равновесии сил.
Впрочем, иногда крайне важно, чтобы отдельные клетки экспрессировали нужные количества белка. В Главе 4 вы, вероятно, обратили внимание на то, что синдром Ретта поражает только девушек. Можно было бы выдвинуть гипотезу, что юноши по какой-то причине крайне невосприимчивы к последствиям мутации МеСР2, однако на самом деле справедливой является диаметрально противоположная версия. МеСР2 находится на хромосоме X, поэтому мужской плод, наследующий этот ген, пораженный вызывающей синдром Ретта мутацией, просто не имеет возможности экспрессировать нормальный белок МеСР2. Полное отсутствие экспрессии нормального МеСР2 обычно приводит к смертельному исходу уже на ранних этапах развития, и именно поэтому мальчики крайне редко рождаются с синдромом Ретта. Девочки имеют две копии гена МеСР2, по одной на каждой хромосоме X. Для каждой клетки существует 50-процентная вероятность того, что она репрессирует хромосому X, несущую немутировавший ген МеСР2, и тогда эта клетка не будет экспрессировать нормальный белок МеСР2. Хотя женский плод может продолжать развиваться, в конечном итоге наблюдаются серьезные отклонения в послеродовом развитии и функционировании мозга из-за того, что значительные количества нейронов не получают белок МеСР2.
Существует и множество других проблем, непосредственно связанных с хромосомой X. Один из касающихся репрессии хромосомы X вопросов, на которые нам нужно дать ответ, заключается в том, насколько хорошо умеют считать клетки млекопитающих. В 2004 году Питер Гордон из Колумбийского университета в Нью-Йорке сообщил о своих исследованиях племени пирайя, обитающего в одном из изолированных регионов Бразилии. В счете представители этого племени обходятся числами один и два. Все, что больше двух, описывается словом, приблизительно эквивалентным понятию «много»[119]. Так же искусны в счете наши клетки, или они способны считать не только до двух? Если в ядре содержится больше двух хромосом X, сможет ли распознать этот феномен механизм репрессии хромосомы X и как-то справиться с последствиями такого явления? Многочисленные исследования подтверждают, что сможет. По большому счету, не имеет какого-либо значения, сколько хромосом X (или, говоря более строго, центров репрессии X) присутствует в ядре, потому что клетка действительно может пересчитать их, а затем неоднократно ингибировать хромосомы X до тех пор, пока лишь одна из них не останется активной.
Именно благодаря этой способности аномальное количество хромосом X встречается у людей относительно редко, в отличие от аномалий в числе аутосом. Наиболее распространенные примеры нарушения числа хромосом X представлены в таблице 9.1.
Бесплодие, являющееся общим симптомов для всех этих заболеваний, отчасти объясняется проблемами при создании яйцеклеток или сперматозоидов, где важно, чтобы хромосомы выстраивались парами. Если число половых хромосом оказывается нечетным, эту задачу невозможно решить, и процесс образования гамет нарушается.
Отставив в сторону бесплодие, из этой таблицы мы можем сделать два очевидных вывода. В первую очередь, все фенотипы относительно умеренные по сравнению, скажем, с трисомией хромосомы 21 (синдром Дауна). Это свидетельствует о том, что клетки относятся более терпимо к присутствию больше чем или же менее чем две копий хромосомы X, нежели к обладанию лишней копией аутосомы. Однако второй наш вывод заключается в том, что аномальное количество хромосом X все же заметно отражается на фенотипе.
Почему это происходит? В конце концов, механизм подавления гарантирует, что, какое бы число хромосом ни присутствовало в клетке изначально, все они, кроме одной, будут репрессированы на ранних этапах развития. Но если бы этим все и ограничивалось, то и не существовало бы никаких различий в фенотипах между женским 45, X и женским 47, XXX или даже нормальным женским 46, XX набором хромосом. Подобным образом, и мужчины с нормальным кариотипом 46, XY были бы фенотипически идентичны мужчинам с кариотипом 47, XXY. Во всех этих случаях в клетках была бы лишь одна активная хромосома X.
Можно было бы предположить, что люди с такими кариотипами клинически отличаются друг от друга по той причине, что, возможно, репрессия хромосомы X не всегда оказывается эффективной в некоторых клетках, но такая версия представляется маловероятной. Репрессия хромосомы X происходит на самых ранних стадиях развития и представляет собой наиболее устойчивый из всех эпигенетических процессов. Так что этому явлению требуется иное объяснение.
Ответ на этот вопрос появился еще около 150 миллионов лет назад, когда у плацентарных млекопитающих только начинала образовываться система определения пола XY. Хромосомы X и Y, вероятно, являются потомками аутосом. Хромосома Y изменилась очень сильно, X — в значительно меньшей степени[120]. Однако обе они сохранили некую память о своем аутосомном прошлом. На хромосомах X и Y есть участки, которые называются псевдоаутосомными областями. Гены в этих областях присутствуют как на хромосоме X, так и на хромосоме Y, точно так же, как пары аутосом несут на себе одинаковые гены в одинаковых положениях, по одному унаследованные от каждого из родителей.
Когда хромосома X репрессируется, эти псевдоаутосомные области пропускаются. Эго значит, что, в отличие от большинства связанных с хромосомой X генов, гены на псевдоаутосомных областях не репрессируются. Как следствие, нормальные клетки потенциально экспрессируют две копии этих генов во всех клетках. Две копии экспрессируются или с двух хромосом X у здоровой женщины, или с хромосом X и Y у здорового мужчины.
Но страдающая синдромом Тернера женщина имеет только одну хромосому X, поэтому она экспрессирует только одну копию генов псевдоаутосомной области, вдвое меньше, чем необходимо. При трисомии X, с другой стороны, в псевдоаутосомных регионах присутствуют три копии генов. В результате этого клетки и пораженной области станут продуцировать белки от этих генов в количествах, на 50 процентов превышающих нормальный уровень.
Один из генов в псевдоаутосомных областях хромосомы X называется SHOX. Люди с мутациями в этом гене страдают низкорослостью. Вероятно, именно этим объясняется то, что больные синдромом Тернера отличаются низким ростом — в их клетках белок SHOX проду цируется в недостаточных количествах. Напротив, люди с трисомией X, очевидно, продуцируют на 50 процентов больше белка SHOX, чем необходимо, что, видимо, и является причиной их высокого роста[121].
Не только у людей встречается трисомия половых хромосом. Возможно, однажды вы поразите своих друзей уверенным заявлением, что их черепаховой масти кошка — девочка, но они будут активно возражать вам, настаивая, что это мальчик, и приводя в качестве доказательства то, что их любимца осматривал ветеринар и заверил их, что это кот. Тогда дождитесь паузы и, самодовольно усмехнувшись, скажите: «А, ну в таком случае он кариотипически аномален. У него кариотип XXY, а не XY». А если захотите произвести на друзей совсем уж неизгладимое впечатление, то можете сообщить, что их кот бесплоден. Это научит их больше никогда с вами не спорить.