Глава 14. Да здравствует королева

Все мои владения за одну минуту жизни!

Приписывается королеве Елизавете I

Влияние питания на здоровье и продолжительность жизни млекопитающих поистине трудно переоценить. Как мы уже видели в предыдущей главе, длительное ограничение потребления калорий способно продлить жизнь мышей приблизительно на одну треть[261]. Из главы 6 мы также узнали, что на наше здоровье и долголетие существенное влияние может оказывать рацион наших родителей и их родителей. Это совершенно удивительные открытия, однако сама природа предлагает нам еще более поразительный пример влияния питания на долголетие. Только представьте себе, если сможете, что при определенном режиме питания немногие избранные представители некоего вида имеют продолжительность жизни, в двадцать раз превышающую сроки существования большинства их сородичей. В двадцать раз! Если бы это было доступно людям, то по сей день британский трон занимала бы королева Елизавета I и продолжала бы править страной еще не менее 400 лет.

Увы, человечество лишено такой возможности, но ею успешно пользуется один весьма широко распространенный вид. Он нам прекрасно знаком, поскольку мы встречаемся с ним каждую весну и лето. Мы пользуемся результатами его трудов, когда изготавливаем свечи и мебельную политуру, и мы с удовольствием употребляем в пищу его щедрые дары на протяжении всей человеческой истории. Это медоносная пчела.

Медоносная пчела, или Apis mellifera, поистине удивительное создание. Она являет собой яркий пример общественного насекомого. Пчелы живут колониями, которые могут насчитывать десятки тысяч индивидуумов. Подавляющее большинство из них — рабочие. Это стерильные самки, выполняющие самый широкий круг специализированных обязанностей, включающих сбор пыльцы, строительство жилищ и заботу о новорожденных. Есть среди них небольшое количество самцов, которые, если повезет, кроме спаривания, ничем иным практически и не занимаются. А еще у них есть своя королева — матка.

При формировании новой колонии девственная матка покидает улей в сопровождении целого роя рабочих пчел. Она спаривается с несколькими самцами, а затем обустраивается для создания новой колонии. Матка откладывает тысячи яиц, и большинство пчел, вылупившихся из них, становятся новыми рабочими. Из нескольких яиц вылупятся новые матки и начнут цикл формирования своей колонии с самого начала.

Поскольку матка, основавшая колонию, спаривалась несколько раз, не все пчелы в ее колонии будут генетически идентичными друг другу, так как у некоторых из них будут разные отцы. Однако в каждой колонии насчитываются группы из тысяч и тысяч генетически идентичных пчел. И эта генетическая идентичность распространяется не только на рабочих пчел. Новые матки также генетически идентичны тысячам рабочих пчел в колонии. Мы могли бы назвать их сестрами, но этим термином мы не опишем их достаточно полно. На самом деле, все они клоны.

Однако новая матка и ее клоновые сестры из среды рабочих разительно отличаются друг от друга, как по физической форме, так и по роду деятельности. Матка размерами может дважды превышать рабочую пчелу. После так называемого брачного полета, когда она впервые покидает колонию и спаривается, матка практически никогда больше не оставляет улей. Всю жизнь она проводит во тьме его замкнутого пространства, откладывая в летние месяцы до 2000 яиц в день. У нее нет жала, нет восковых желез, нет пыльцовых корзиночек (нет никакого смысла обзаводиться сумкой, если вы никогда не выходите из дома). Продолжительность жизни рабочих пчел обычно измеряется неделями, тогда как матки живут несколько лет[262].

Рабочие пчелы, с другой стороны, способны на многое, что недоступно маткам. Главная их обязанность заключается в сборе пищи, а затем и в информировании остальных членов колонии о том, где эта пища находится. Эти сообщения они доносят до соплеменников с помощью знаменитого «виляющего танца». Матка всю жизнь проводит в сумрачной роскоши улья, но приглашения на танцпол не получает никогда.

Итак, колония медоносных плеч насчитывает тысячи индивидуумов, которые генетически идентичны друг другу, но некоторые из них резко отличаются от остальных с точки зрения физиологии и поведения. И все эти различия являются следствием того, как питаются личинки пчел. Образ питания личинки на ранних стадиях ее развития полностью определяет, кем в будущем — рабочей пчелой или маткой — станет эта личинка.

Сценарий ДНК у медоносных пчел постоянный, но конечные результаты его варьируются. Эти результаты определяются определенным событием на раннем этапе развития (образом кормления), которое устанавливает фенотип, сохраняющийся на протяжении всей оставшейся жизни. В основе такого развития событий, как нетрудно догадаться, лежит эпигенетика, и в последние годы ученые начинают проникать в суть молекулярных явлений, обеспечивающих этот процесс.

Будущая судьба медоносных пчел решается по истечении третьего дня их жизни, когда они еще представляют собой совершенно неподвижные и беспомощные личинки. До окончания третьего дня все личинки медоносных пчел получают одинаковую пищу. Ею является особая субстанция, называемая маточным молочком, которую производят специализированные группы рабочих пчел. Эти юные рабочие, известные как пчелы-кормилицы, выделяют маточное молочко из расположенных на их головах желез. Маточное молочко — чрезвычайно питательный корм. Оно представляет собой концентрированную смесь множества разнообразных компонентов, в число которых входят важнейшие аминокислоты, редкие жиры, особые белки, витамины и другие питательные вещества, которые пока еще не полностью определены.

Когда личинкам исполняется три дня от роду, пчелы-кормилицы перестают кормить подавляющее большинство из них маточным молочком. Большая часть личинок переводится на новую диету, состоящую из пыльцы и нектара. Эту пищу получают те личинки, которым предстоит стать рабочими пчелами.

Но по причинам, которым никто не может найти убедительного объяснения, нескольким избранным личинкам пчелы-кормилицы продолжают давать маточное молочко. Нам неизвестно, как и по каким критериям отбираются эти личинки. Генетически они абсолютно идентичны тем личинкам, которые переводятся на менее изысканную диету. Но эта небольшая группа личинок, продолжающая получать маточное молочко, разовьется в маток и будет питаться той же самой субстанцией до скончания своих дней. Кормление маточным молочком является необходимым требованием для развития у маток зрелых яйцеклеток. У рабочих самок яйцеклетки так до конца и не развиваются, что и является одной из главных причин их бесплодия. Маточное молочко, кроме того, препятствует развитию у маток тех органов, которыми они никогда не будут пользоваться, таких, например, как пыльцевые корзиночки.

Мы понимаем действие некоторых механизмов, лежащих в основе этого процесса. У личинок пчел есть орган, выполняющий некоторые из функций, присущих нашей печени. Если личинка получает маточное молочко постоянно, этот орган обрабатывает комплексный источник пищи и активирует выработку инсулина. Это очень похоже на производство гормонов у млекопитающих, с помощью которых контролируется уровень сахара в крови. У медоносных пчел активация выработки инсулина повышает производство другого гормона, который называется ювенильным гормоном. Ювенильный гормон, в свою очередь, активирует другие реакции. Одни из них стимулируют рост и развитие тканей, таких как созревающие яйцеклетки. Другие останавливают формирование органов, которые не потребуются матке[263].

Королевство подражателей

Так как в процессе созревания медоносных пчел постоянно наблюдается присутствие эпигенетических факторов, ученые выдвинули предположение о существовании некой стоящей за этими явлениями эпигенетической механики. Первые свидетельства того, что эта гипотеза соответствует действительности, были обнаружены в 2006 году. В этот год исследователи определили последовательность генома медоносных пчел и расшифровали его фундаментальную генетическую схему[264]. В результате этих исследований выяснилось, что в геноме медоносных пчел присутствуют гены, которые очень похожи на гены метилтрансферазы ДНК более сложных организмов, таких как позвоночные. Также в геноме медоносных пчел обнаружилось множество мотивов CpG. Это двухнуклеотидная последовательность, являющаяся обычно мишенью для метилтрансфераз ДНК.

В тот же самый год группа ученых из Иллинойса под руководством Джина Робинсона продемонстрировала, что предполагаемые белки метилтрансферазы ДНК, закодированные в геноме медоносных пчел, являются активными. Эти белки были способны добавлять метиловые группы к цитозиновому радикалу на мотиве CpG в ДНК[265]. Медоносные пчелы, кроме того, экспрессировали белки, способные присоединяться к метилированной ДНК. В совокупности эти открытия показали, что медоносные пчелы могут и «писать», и «читать» эпигенетический код.

До опубликования этих сведений никто даже не пытался выдвигать предположения о том, обладают или нет медоносные пчелы системой метилирования ДНК. Дело в том, что наиболее широко распространенная экспериментальная система среди насекомых, а именно плодовая мушка Drosophila melanogaster, с которой мы уже встречались в этой книге, не метилирует свою ДНК.

Интересно отметить, что медоносные пчелы обладают полной системой метилирования ДНК. Однако это не доказывает, что метилирование ДНК у них принимает участие в реакциях на маточное молочко или играет какую-либо роль в воздействии этого вида питания на физическое строение и функциональные особенности взрослых пчел. Исследованию этого вопроса была посвящена весьма оригинальная работа, проведенная в лаборатории доктора Ришарда Малешки в Австралийском национальном университете Канберры.

Доктор Малешка с коллегами заглушили экспрессию одной из метилтрансфераз ДНК у личинок медоносных пчел, подавив ген Dnmt3. Этот ген отвечает за добавление метиловых групп в те регионы ДНК, которые не были метилированы ранее. Результаты этого эксперимента продемонстрированы на рисунке 14.1.

Рис. 14.1. Когда кормление личинок медоносных пчел маточным молочком продолжается в течение длительного периода времени, то эти личинки развиваются в маток. Тот же результат достигается, если не кормить личинок долгое время маточным молочком, но подавить в лабораторных условиях экспрессию их гена Dnmt3. Белок Dnmt3 добавляет метиловые группы к ДНК


Когда ученые понижали экспрессию гена Dnmt3 у личинок медоносных пчел, то результаты эксперимента оказывались такими же, как если бы их кормили маточным молочком. Большинство личинок в зрелом возрасте становились не рабочими пчелами, а матками. Так как подавление экспрессии гена Dnmt3 приводит к тем же результатам, что и кормление маточным молочком, это заставляет предположить, что одна из главных функций маточного молочка непосредственно связана с изменением схем метилирования ДНК на важных генах[266].

Чтобы проверить эту гипотезу, ученые исследовали реальные схемы метилирования ДНК и экспрессии генов у различных экспериментальных групп пчел. Как оказалось, схемы метилирования ДНК в головном мозге маток и рабочих пчел различны. Схемы метилирования ДНК у пчел с подавленной экспрессией гена Dnmt3 были такими же, как и у обычных маток, питавшихся маточным молочком. Именно этого мы и вправе были ожидать, учитывая, что обе группы обладали одинаковым фенотипом. Схемы экспрессии генов у обычных маток и маток с нокаутированным геном Dnmt3 также оказались очень похожими. Из этого исследователи сделали вывод, что результаты продолжительного кормления маточным молочком достигаются через метилирование ДНК.

В нашем представлении о том, как именно питание личинок медоносных пчел приводит к изменению схем метилирования ДНК, по-прежнему остается много пробелов. Согласно одной из гипотез, построенной на результатах описанного выше эксперимента, маточное молочко подавляет фермент метилтрансферазы ДНК. Однако на настоящий момент никому еще не удалось подтвердить это предположение экспериментально. Поэтому возможно, что воздействие маточного молочка на метилирование ДНК осуществляется и косвенным путем.

Наверняка же нам известно то, что маточное молочко влияет на гормональную сигнальную систему медоносных пчел, вследствие чего и меняются схемы экспрессии генов. Изменения уровней экспрессии гена часто оказывают свое влияние на эпигенетические модификации этого гена. Чем более активен какой-либо ген, тем в большей степени его гистоны модифицируются способами, провоцирующими экспрессию гена. Нечто похожее может иметь место и у медоносных пчел.

Также мы знаем, что системы метилирования ДНК и системы гистоновой модификации часто работают совместно. Это пробудило интерес к роли модифицирующих гистоны ферментов в контролировании развития и активности медоносных пчел. Когда была определена последовательность генома медоносных пчел, ученые идентифицировали четыре фермента гистондеацетилазы. Это открытие оказалось довольно неожиданным, поскольку было известно, что в маточном молочке содержится соединение под названием фенилбутират[267]. Это очень маленькая молекула, которая способна подавлять гистондеацетилазы, но делает она это довольно слабо. В 2011 году группа ученых под руководством доктора Марка Бедфорда из Андерсоновского ракового центра в Хьюстоне опубликовала результаты удивительного исследования еще одного компонента маточного молочка. Одним из авторов этой статьи был профессор Жан-Пьер Исса, оказавший огромное влияние на продвижение эпигенетических препаратов для лечения рака.

Исследователи подвергли анализу соединение, обнаруженное в маточном молочке, которое получило название (Е)-10-гидрокси-2-деценовая кислота или, для краткости, 10ГДК. Строение этого соединения показано на рис. 14.2 вместе с САГК, ингибитором гистондеацетилазы, получившим лицензию лекарственного препарата против рака, с которым мы встречались в Главе 11.

Рис. 14.2. Химическое строение ингибитора гистондеацетилазы САГК и 10ГДК, соединения, обнаруженного в маточном молочке.С — углерод; Н — водород; N — азот; О — кислород. Для упрощения схемы некоторые атомы углерода намеренно не показаны, но они присутствуют в местах соединений двумя линиями.


Две структуры, разумеется, не идентичны, однако кое в чем они очень похожи. Каждая из них обладает длинной цепочкой атомов углерода (участок, отдаленно напоминающий профиль спины крокодила), и правые части каждого соединения также выглядят весьма похоже. Марк Бедфорд с коллегами выдвинули гипотезу, что 10ГДК может быть ингибитором гистондеацетилаз. Они провели ряд экспериментов в пробирках и на клетках, в результате которых выяснилось, что их предположение было верным. А это значит, что нам теперь известно, что одно из основных соединений, обнаруженных в маточном молочке, подавляет главные эпигенетические ферменты[268].

Забывчивая пчела и гибкий инструментарий

Эпигенетика влияет отнюдь не только на то, станут ли личинки рабочими пчелами или матками. Ришард Малешка также установил, что метилирование ДНК играет заметную роль в том, как медоносные пчелы обрабатывают сведения, хранящиеся в памяти. Когда медоносные пчелы обнаруживают достойный источник пыльцы или нектара, они летят обратно в улей и сообщают другим членам колонии, в каком направлении те смогут найти богатые запасы пищи.

Из этого мы можем сделать очень важный вывод относительно медоносных пчел — они способны запоминать информацию. Они вынуждены пользоваться памятью, поскольку в противном случае не смогли бы сообщить другим пчелам о местонахождении источников питания. Разумеется, в не меньшей степени важно и то, что пчелы способны забывать информацию и заменять ее новыми сведениями. Нет никакого смысла посылать своих соплеменниц к роскошному кусту чертополоха, который был в цвету на прошлой неделе, но к настоящему моменту уже пошел на корм встретившему его ослу. Пчелам необходимо уметь забывать о потерявшем свою актуальность чертополохе и запоминать координаты только что обнаруженной ими лаванды.

На самом деле можно научить пчел реагировать на определенные раздражители, связанные с пищей. Доктор Малешка с коллегами показал, что когда пчелы подвергаются такого рода тренировкам, то уровни белка Dnmt3 повышаются в тех участках головного мозга медоносных пчел, которые важны для обучения. Если пчелам давать препараты, подавляющие белок Dnmt3, эти соединения изменяют способы, с помощью которых пчелы сохраняют воспоминания, как и скорость, с которой воспоминания утрачиваются[269].

Хотя нам известно, что метилирование ДНК имеет большое значение для памяти медоносных пчел, мы не знаем наверняка, как оно действует. Причина этого в том, что пока не до конца ясно, какие именно гены становятся метилированными, когда медоносные пчелы обучаются и приобретают новые воспоминания.

Так что на настоящий момент мы склонны считать, что медоносные пчелы и высшие организмы, в том числе и мы, и наши млекопитающие родственники, используют метилирование ДНК одинаковым образом. Абсолютно справедливо мнение, что изменения в метилировании ДНК связаны с изменением процессов развития как у человека, так и у медоносных пчел. Также верно и то, что и млекопитающие, и медоносные пчелы пользуются метилированием ДНК в головном мозге в процессе обработки хранящейся в памяти информации.

Но, как это ни странно, медоносные пчелы и млекопитающие используют метилирование ДНК совершенно разными способами. В наборе инструментов плотника есть пила, с помощью которой он может изготовить книжный шкаф. В инструментарии хирурга-ортопеда тоже есть пила, которой он может ампутировать ногу. Иногда одни и те же инструменты могут применяться совершенно различными образами. Млекопитающие и медоносные пчелы пользуются метилированием ДНК как инструментом, но в процессе эволюции они привыкли использовать этот инструмент по-разному.

Когда млекопитающие метилируют ДНК, то мишенями этого процесса обычно являются области промоторов генов, а не те участки, которые кодируют аминокислоты. Млекопитающие также метилируют повторяющиеся элементы ДНК и транспозоны, в чем мы убедились в главе 5, рассматривая работу Эммы Уайтло. Метилирование ДНК у млекопитающих связано, главным образом, с подавлением экспрессии генов и таких опасных элементов как транспозоны, которые в противном случае могли бы стать источником проблем для нашего генома.

Медоносные пчелы пользуются метилированием ДНК совершенно иначе. Они не метилируют повторяющиеся участки или транспозоны, так что, очевидно, они располагают другими способами контроля этих потенциально опасных элементов. Они метилируют мотивы CpG на участках генов, которые кодируют аминокислоты, а не на областях промоторов генов. Медоносные пчелы не пользуются метилированием ДНК для репрессии генов. У них метилирование ДНК присутствует на генах, которые экспрессируются во всех тканях, а также на генах, которые обычно экспрессируются многими другими видами насекомых. Метилирование ДНК у них действует как механизм тонкой настройки тканей медоносной пчелы. Он регулирует активность генов, чуть повышая или понижая их «громкость», но не выступает в роли переключателя в позиции «включено-выключено»[270]. Схемы метилирования ДНК также жестко согласованы с контролем сплайсинга мРНК в тканях медоносных пчел. Однако нам по-прежнему неизвестно, как именно эта эпигенетическая модификация влияет на способы обработки пчелами информации[271].

Мы находимся только в самом начале пути, в течение которого нам предстоит расшифровать все тонкости эпигенетической регуляции у медоносных пчел. Так, в геноме медоносных пчел насчитывается до 10 000 000 островков CpG, но в каждом типе тканей метилированию подлежат только менее 1 процента из всех островков. К сожалению, столь низкая степень метилирования существенно затрудняет анализ результатов этой эпигенетической модификации. Последствия нокдауна гена Dnmt3 подсказывают нам, что метилирование ДНК крайне важно для развития медоносных пчел. Но, учитывая, что метилирование ДНК является для этого вида механизмом тонкой настройки, вполне вероятно, что нокдаун Dnmt3 приводит к ряду отдельных незначительных изменений в относительно большом количестве генов, а не к резким изменениям в нескольких генах. Такого рода слабые изменения наиболее сложно анализировать и исследовать экспериментально.

Медоносные пчелы не являются единственным видом насекомых, которые сформировали сложные сообщества с различными физическими формами и функциями генетически идентичных особей. Эта же модель независимо повторяется неоднократно, включая в себя различные виды ос, термитов, пчел и муравьев. Мы пока не знаем, одинаковые ли эпигенетические процессы используют все эти виды. Шелли Бергер из университета Пенсильвании, с чьей работой, посвященной исследованию проблем старения, мы познакомились в главе 13, принимает участие в крупном проекте, направленном на изучение генетических и эпигенетических особенностей муравьев. Проведенные в рамках этой работы эксперименты уже продемонстрировали, что, по крайней мере, два вида муравьев также метилируют ДНК в своем геноме. У представителей различных социальных групп в колониях насекомых экспрессия различных эпигенетических ферментов варьируется [272]. Эти данные дают основание предположить, что механизм эпигенетического контроля членов колонии общественных насекомых в ходе эволюции подвергался изменениях ни один раз.

На настоящий момент, однако, наибольший интерес в мире вне пределов эпигенетических лабораторий сосредоточен на маточном молочке, так как его применение в качестве оздоровительного средства уже имеет довольно длинную историю. Впрочем, стоит заметить, что существует очень мало надежных свидетельств его какой-либо существенной пользы для человека. 10ГДК, которая, как установил Марк Бедфорд с коллегами, является ингибитором гистондеацетилазы, может влиять на рост клеток кровеносных сосудов[273]. Теоретически, это могло бы оказаться полезным при лечении рака, так как новообразованиям для продолжения роста требуется активное снабжение кровью. Однако пока мы очень далеки от уверенности, что маточное молочко действительно способно препятствовать развитию рака или каким-либо иным способом поддерживать здоровье человека. Наверняка нам известно лишь то, что с эпигенетической точки зрения пчелы и люди не одинаковы. И это, пожалуй, к лучшему, если только вы не принадлежите к ярым сторонникам монархии…

Загрузка...