После того как были заложены основы квантовой механики, ученые начали системно применять ее в других областях физики, в частности при изучении химических связей, ферромагнетизма и строения атомных ядер. Наблюдая за тем, как растет влияние нацизма, Гейзенберг использовал весь свой авторитет, который значительно возрос после получения им в 1933 году Нобелевской премии, чтобы помешать нацистским идеологам определять «правильность» научных открытий.
В октябре 1927 года, когда Гейзенбергу не исполнилось и 26 лет, его пригласили занять должность профессора теоретической физики в Лейпцигском университете. Там он проработал 16 лет вплоть до переезда в Берлин. Ученый с этого времени и до конца жизни вел научно-просветительскую работу и рассказывал о квантовой механике и связанных с ней философских вопросах. После того как к власти пришли нацисты, Гейзенберг посвящал большую часть времени сохранению уровня немецкой науки и защите теоретической физики. Эта глава охватывает период протяженностью 12 лет, вплоть до начала Второй мировой войны.
Приезд Гейзенберга в Лейпциг ознаменовал начало масштабного обновления физики. Он привлек многих блестящих молодых ученых, желавших следовать новыми путями. Среди докторантов Гейзенберга были Феликс Блох, Рудольф Пайерлс, Эдвард Теллер и Карл Фридрих фон Вайцзеккер, а среди постдокторантов – Эдоардо Амальди, Уго Фано, Юджин Финберг, Лев Ландау, Этторе Майорана, Исидор Айзек Раби, Ласло Тисса, Синъитиро Томонага и Виктор Фредерик Вайскопф. Эти физики известны своими открытиями в различных областях, некоторые из них стали нобелевскими лауреатами.
Гейзенберг поддерживал очень теплые отношения со всеми этими учеными, многие из них были его ровесниками. После напряженной работы они все вместе играли в настольный теннис в подвале университета. По рассказам Пайерлса, Гейзенберг был превосходным игроком и почти всегда одерживал победу. Приезд китайского физика, способного на равных противостоять молодому профессору, вызвал всеобщее оживление. Пока нацисты не запретили все негосударственные молодежные движения, Гейзенберг часто проводил время с группой юных скаутов, посвящал досуг музыке. Каждый день он по нескольку часов играл на пианино в своей квартире, располагавшейся в здании института. Музыка распахнула перед Гейзенбергом двери в культурную жизнь Лейпцига, где вращались юристы, врачи, профессора университетов, редакторы. На одном из музыкальных вечеров в 1937 году он познакомился с Элизабет Шумахер, на которой спустя несколько месяцев женился.
Диссертации Феликса Блоха и Рудольфа Пайерлса ознаменовали начало современной физики твердого тела, основанной на изучении квантовой динамики электронов в периодической решетке положительных ионов. Гейзенберг не публиковал статей в соавторстве со студентами: он ограничивался предложениями, советами и критикой. Ученый внес важный вклад в решение задачи о ферромагнетизме, о которой мы поговорим далее. Существуют материалы, к примеру железо, кобальт и никель, которые становятся постоянными магнитами, если их поместить в магнитное поле или потереть о магнит. Законы электромагнетизма, открытые в XIX веке, позволили понять, что электрический ток может порождать магнитное поле (это свойство используется в электромагнитах), а магнитное поле в движении порождает электрический ток (это свойство используется при выработке электричества на электростанциях). Магнитные свойства материалов обусловлены электрическими токами, вызванными движением электронов, однако до появления квантовой механики физики не могли объяснить магнетизм.
Официальная церемония вручения Гейзенбергу Нобелевской премии по физике прошла 10 декабря 1933 года, однако сама премия была присуждена ему годом ранее.
Вернер Гейзенберг и Элизабет Шумахер поженились 29 апреля 1937 года, меньше чем через три месяца с момента первой встречи.
Участники конференции, прошедшей в копенгагенском Институте теоретической физики в 1930 году.
В первом ряду, слева направо: Клейн, Бор, Гейзенберг, Паули, Гамов и Ландау.
Как было сказано выше, спин электрона связан с его магнитными свойствами: электроны ведут себя подобно крохотным компасам или магнитам, однако в действительности их поведение несколько сложнее, так как речь идет о квантовых объектах. Если у множества электронов вещества спин будет направлен в одну сторону, возникнет общее магнитное поле, то есть вещество намагнитится. Будут ли магнитные свойства вещества постоянными, зависит от взаимодействия между электронами и от структуры материала.
Теперь напомним, как именно Гейзенберг разгадал загадку парагелия и ортогелия. Волновая функция двух электронов антисимметрична, то есть меняет знак, когда электроны или их спины меняются местами. Это гарантирует, что два электрона не будут находиться в одинаковых квантовых состояниях, как того и требует принцип Паули. Гейзенберг показал, что для атома гелия существует два типа волновых функций: в одной из них спиновая часть антисимметрична (для парагелия), в другой – симметрична (для ортогелия). Какое отношение это имеет к магнетизму? Чтобы материал сохранял состояние намагниченности длительное время, все спины электронов должны быть направлены в одну сторону, поэтому спиновая часть волновой функции симметрична: при смене двух любых спинов она будет оставаться неизменной. Следовательно, пространственная часть волновой функции должна быть антисимметричной и при смене положения двух электронов менять знак. Гейзенберг доказал, что в расчетах энергии взаимодействия электронов согласно закону Кулона используется то же выражение, что и при использовании законов классической физики, а также новое выражение, имеющее исключительно квантовую природу и связанное с антисимметричностью волновой функции. В физике это новое выражение называется обменным оператором и играет ключевую роль в изучении магнитных свойств материалов.
С марта по октябрь 1929 года Гейзенберга приглашали выступать на конференциях в университетах США, Индии и Японии. Он воспользовался случаем и посетил Великие озера, национальный парк «Йеллоустоун», Большой каньон, объездил Японию и Китай. Курс, прочитанный Гейзенбергом в Чикагском университете, был издан в виде книги под названием «Физические принципы квантовой теории», о которой мы уже упоминали в предыдущей главе. Эта книга стала самым популярным пособием по квантовой механике и продолжает издаваться до сих пор.
Вскоре после открытия атомного ядра Резерфорд выдвинул первые гипотезы о его структуре. Ядро атома водорода образовано протоном – положительно заряженной частицей, масса которой намного больше, чем масса электрона. Резерфорд предположил, что более тяжелые ядра образованы электронами и протонами. В то время считалось, что внутри ядра происходит электромагнитное взаимодействие, и если бы ядро состояло только из протонов, оно распалось бы под действием сил отталкивания. Кроме того, гипотеза Резерфорда позволяла дать самое простое объяснение бета-излучению, которое представляло собой поток электронов, испускаемый радиоактивными ядрами. Физик предположил, что внутри ядра электроны могут образовывать пары с протонами. Разумеется, он говорил не об атоме водорода – его размер в сто тысяч раз больше, чем размер ядра, – а о новой частице, которую назвал нейтроном. Сегодня мы знаем, что гипотеза Резерфорда была ошибочной, однако она лишний раз доказывает, что основой научных открытий часто служат более или менее логичные, но необязательно верные гипотезы.
В марте 1932 года англичанин Джеймс Чедвик с незначительными изменениями повторил эксперимент, проведенный Вальтером Боте и Гербертом Бекером в Берлине и супругами Жолио-Кюри в Париже. При облучении бериллиевой мишени потоком альфа-частиц, которые представляют собой ядра атомов гелия, наблюдался пучок нейтральных частиц. Их масса примерно в 1,007 раза превышала массу протона, и эти новые частицы могли выбить протоны из поглотителя – парафина. Это подобно лобовому столкновению бильярдных шаров, когда первый шар останавливается, а второй начинает движение с той скоростью, с которой до этого двигался первый. Чедвик пришел к выводу: наблюдаемая частица была тем самым нейтроном, о котором говорил Резерфорд. Он попытался описать структуру атомного ядра, хотя не вполне четко представлял, как это сделать.
Бор считал, что квантовая теория объясняет явления, происходящие на атомном уровне, но для описания явлений на уровне ядер атомов, то есть на расстояниях примерно в сто тысяч раз меньше, необходима новая теория. Гейзенберг показал, что законы квантовой механики достаточно применить к системе из протонов и нейтронов. Так как положительно заряженные протоны отталкиваются, должна существовать сила, удерживающая протоны и нейтроны внутри ядра. Эта сила должна действовать только на малых расстояниях – в противном случае размер атомного ядра будет намного больше, чем показывали эксперименты. О нейтроне было известно лишь то, что он существует, и велись споры о том, был ли нейтрон особым видом связи протона и электрона или новой элементарной частицей.
Атом водорода имеет изотоп под названием дейтерий, ядро которого состоит из нейтрона и протона. Гейзенберг начал изучать ядро дейтерия под названием дейтрон и заметил его сходство с молекулой ионизированного водорода Щ, состоящей из двух протонов и электрона. Стабильность молекулы была вызвана тем, что два протона обмениваются электроном между собой, а энергия взаимодействия тратится на поддержание стабильности молекулы. Напомним, что Паули не удалось описать эту молекулу в рамках старой квантовой теории. Первым подробный анализ молекулы H*2 с помощью законов квантовой механики провел Эдвард Теллер.
Ядро атома состоит из протонов и нейтронов, число которых обозначается Z и N соответственно. Нейтральный атом содержит то же число электронов Z. Это число называется атомным, или зарядовым числом и определяет химические свойства элементов. Так как масса протона и нейтрона более чем в 1800 раз превышает массу электрона, масса атома в первом приближении равна сумме масс протонов и нейтронов в его ядре. Поэтому массовое число атома определяется как А = Z + N. Изотопы химических элементов отличаются только числом нейтронов (или, что аналогично, массовым числом), однако обладают одинаковыми химическими свойствами. Для обозначения одного и того же изотопа используются различные способы, например символ химического элемента и три описанных выше числа. Изотоп обозначается следующим образом: AZСИМВОЛN . Часто один из индексов не указывается, так как подобная нотация является избыточной. К примеру, обозначения 23892U146 , 23892U и 238U соответствуют одному и тому же изотопу урана с массовым числом 238. Иногда для удобства используется обозначение U238 или уран-238. Иногда символ химического элемента не указывается, как, например, в обозначении (A, Z), особенно при записи ядерных реакций.
Молекулу H+2 можно представить как протон и пару протон-электрон, которые постоянно меняются ролями, так как электрон переходит от одного протона к другому. Гейзенберг предположил, что нейтрон и протон в дейтроне должны меняться ролями аналогичным образом. Но как могут меняться ролями две разные частицы? Гейзенберг предложил следующее объяснение: нейтрон и протон представляют собой два квантовых состояния одной и той же частицы, которая в 1941 году получила название нуклон. Эти два состояния различаются электрическим зарядом и небольшой частью массы. Сегодня говорят, что протон и нейтрон различаются изотопическим спином. Эту гипотезу Гейзенберг применил для изучения более тяжелых ядер, и ему удалось показать, что более легкие ядра (до 40 нуклонов) содержат примерно одинаковое число протонов и нейтронов, а более тяжелые ядра должны содержать больше нейтронов, чем протонов, чтобы компенсировать силы отталкивания между протонами.
В конечном итоге Гейзенберг доказал важность обменного оператора для объяснения стабильности различных систем и их свойств.
В конце 1920-х годов квантовая механика стала основой изучения атомных явлений, а квантовая и релятивистская динамика электрона в атоме водорода объяснялась с помощью уравнения Дирака, опубликованного в 1928 году. Одним из важных следствий этого уравнения является существование спина электрона. Кроме того, уравнение предсказывает существование позитрона – идентичной электрону частицы с положительным зарядом. Любопытно, что именно уравнение Дирака стало источником вдохновения для всех авторов-фантастов, писавших об антиматерии.
Основной источник информации о том, что происходит внутри атомов, – это электромагнитное излучение, которое испускается или поглощается во время квантовых скачков электронов между стационарными состояниями. Излучения не существует ни до момента его испускания, ни после того, как оно будет поглощено. Для объяснения этого эффекта требовалось установить связь между электронами и светом в рамках квантовой механики. Первый шаг в нужном направлении сделали Паули и Йордан в 1928 году, описав электромагнитные волны с помощью фотонов и проведя так называемую квантификацию электромагнитного поля. Казалось, все было готово для создания квантовой теории поля для электронов, позитронов и света. Однако появилась она лишь через несколько лет, пока не удалось решить некоторые проблемы. Любая заряженная сфера обладает энергией излучения, обратно пропорциональной ее радиусу. Судя по всему, электрон имеет нулевой радиус, поэтому его энергия излучения бесконечно велика. Если же предположить, что радиус электрона отличен от нуля, мы придем к выводу, несовместимому с теорией относительности. Как видите, в любой формулировке возникают бесконечно большие величины, которые делают расчеты невозможными.
После открытия нейтрона физики сочли, что материя состоит из четырех элементарных частиц: электрона (e), протона (p), нейтрино (v, читается «ню») и нейтрона (n). Электрон и протон имеют электрический заряд (отрицательный и положительный соответственно), модуль которого называется элементарным зарядом (-1,60 х 10-19 Кл). Нейтрино и нейтрон, как следует из названий, не имеют заряда. Этим частицам соответствуют античастицы (они обозначаются теми же символами, но с чертой вверху e, p v, n), из которых только одна частица, антиэлектрон, имеет собственное название – позитрон. Свободный нейтрон распадается на следующие частицы: n→p + e + v. Однако в ядре нейтрон стабилен, за исключением случаев присутствия излишнего числа нейтронов. В этом случае вышеописанный процесс соответствует бета-распаду ядер и обозначается так: (A,Z)→(A,Z+l) + e +v.
Описанная модель имела один важный недостаток. Ранее бета-распад понимался как процесс, в ходе которого ядро (A, Z) преобразовывалось в новое ядро (A, Z + 1) и испускало электрон. Измерения показали, что начальная энергия была больше энергии, полученной новым ядром и свободным электроном, и это противоречит закону сохранения энергии. Паули предположил, что подобное несоответствие обусловлено существованием особой частицы, нейтрино, которая имеет очень малую массу и почти не взаимодействует с материей. Нейтрино впервые был обнаружен в 1950-е, и хотя его масса до сих пор не определена, известно, что она меньше двух миллиардных долей массы протона. Нейтрино почти не взаимодействуют с материей: каждую секунду через наше тело проходит примерно 1012 нейтрино, но мы их совершенно не замечаем. Великое множество этих частиц возникает в результате химических реакций, происходящих внутри Солнца. Сегодня известно, что протоны и нейтроны – это не элементарные частицы. Они состоят из u-кварков и d-кварков (протон p = uud, нейтрон n = udd). Вся материя образована четырьмя частицами – u, d, e, v – и соответствующими античастицами (то есть имеющими противоположный заряд). Существуют еще две группы частиц, подобных частицам первого семейства, но с большей массой. Они проявляются в лабораторных экспериментах и при реакциях с космическими лучами.
Бор по-прежнему настаивал на том, что для описания явлений на уровне элементарных частиц необходима новая теория. Гейзенберг, разделяя эту точку зрения, предположил, что Вселенную можно представить как огромную кристаллическую решетку. Космос – это решетка из крошечных кубических ячеек размером с элементарную частицу. Ячейки представляют собой наименьшую универсальную единицу длины, а на меньших расстояниях современная квантовая теория будет неприменима. Однако эти идеи не вели к каким-либо конкретным результатам, и в 1931 году Гейзенберг написал Бору: «[…] Я отказываюсь рассматривать фундаментальные вопросы, которые для меня слишком сложны». Лишь появление новых результатов, связанных с космическими лучами, заставило Гейзенберга через два года изменить точку зрения.
Британский физик Патрик Блэкетт и итальянец Джузеппе Оккиалини, работавшие в Кембриджском университете, обнаружили, что при улавливании детектором космического луча с очень большой энергией наблюдается поток частиц, по всей видимости, возникающих при столкновении луча с ядрами атомов свинца, которым был покрыт детектор. Вскоре после этого открытия американский ученый Карл Дейвид Андерсон выявил позитрон, существование которого было предсказано уравнением Дирака. При столкновении электрон и позитрон уничтожаются, и рождаются два фотона, которые разлетаются в противоположных направлениях в соответствии с самым знаменитым уравнением физики Е = mc2 .
Верно и обратное: фотон, обладающий достаточно большой энергией, способен породить электрон и позитрон. Согласно закону сохранения импульса, чтобы это произошло, фотон должен столкнуться с ядром атома. Эти открытия вновь пробудили в Гейзенберге интерес к квантовой электродинамике. Он ожидал, что сможет связать свою гипотетическую минимальную единицу длины с длиной волны фотонов, которые присутствуют в потоке частиц, порождаемых космическими лучами. В «дожде частиц» возникают новые частицы, начиная с легчайших – пионов и мюонов. Описание всех этих частиц и античастиц было непростой задачей, ведь следовало учесть все возможные взаимодействия, все возможные процессы и их вероятности. Гейзенберг не мог четко сформулировать квантовую теорию поля (она стала постепенно вырисовываться лишь в 1940-е годы), однако именно он разработал многие основные ее элементы.
Космические лучи – это заряженные частицы, попадающие на Землю из космоса. В большинстве своем это протоны, которые попадают на Землю с поверхности Солнца. До изобретения ускорителей изучить столкновения частиц высоких энергий можно было только с помощью космических лучей. Когда протон, движущийся к Земле с космическими лучами, сталкивается с ядром атома в верхних слоях атмосферы, возникает цепная реакция, в результате которой образуется большое число частиц. Пример подобной реакции представлен на рисунке.
В конце января 1933 года Гитлер был провозглашен рейхсканцлером Германии, то есть главой правительства. Он получил все полномочия, позволявшие управлять страной в обход конституции, и немедленно принял особый закон о правительственных чиновниках, который подразумевал снятие со всех государственных должностей евреев, социалистов, коммунистов и противников режима. В результате последовавших увольнений и отставок университеты потеряли 15 % профессуры, а некоторые научные центры, в частности Гёттингенский университет, практически опустели.
Эйнштейн нашел убежище в США и заявил, что не вернется в Германию, пока в ней будут править нацисты. Он ушел в отставку со всех постов и заявил, что отказывается от членства в Прусской академии наук:
«Первейшая задача всякой академии заключается в поддержке и защите научной жизни страны. Однако члены научного общества Германии, насколько мне известно, стали молчаливыми свидетелями того, как немецких ученых, студентов и преподавателей лишили возможности трудиться и зарабатывать средства к существованию. У меня нет ни малейшего желания принадлежать к научному обществу, которое способно, даже под давлением извне, вести себя подобным образом».
Некоторые ученые вступили в нацистскую партию или открыто симпатизировали ей – например, соавтор матричной механики Паскуаль Йордан, а также два лауреата Нобелевской премии по физике: Филипп фон Ленард, получивший премию в 1905 году за работы о фотоэффекте, и Йоханнес Штарк, удостоенный премии в 1919 году за открытие удвоения лучей спектра в электрическом поле. Штарк вступил в ряды нацистской партии в 1930 году и в течение нескольких лет оказывал большое влияние на научную жизнь страны; Йордан примкнул к нацистам в мае 1933 года.
Большинство ученых, как и многие в Германии, считали, что в условиях экономического и социального кризиса необходима новая политическая сила, поэтому идеи Гитлера они восприняли с надеждой. Люди верили, что перегибы нового режима вскоре будут устранены и ситуация улучшится. Примерно так же считал и Гейзенберг. В частности, он попытался убедить Борна, уволенного из института за то, что его деды были евреями, не покидать Германию. В июне Гейзенберг писал:
«Я знаю, что среди ответственных за сложившуюся политическую ситуацию есть люди, ради которых стоит набраться терпения. Разумеется, пройдет некоторое время, и прекрасное будет отделено от ужасного».
Ученый считал, что радикальные законы коснутся лишь немногих незначительных лиц, и «политическая революция пройдет без ущерба для гёттингенской физики». Вероятно, Гейзенберга на этот счет обнадеживал и фон Вайцзеккер, отец которого занимал высокий пост и в итоге стал членом правительства. К счастью для себя и своей семьи, Борн не внял советам Гейзенберга и покинул страну. Шрёдингер стал одним из немногих, кто покинул Германию добровольно, из-за несогласия со сложившейся политической ситуацией. Гейзенберг не понял этого поступка, заметив: «Он не был евреем, и ему ничего не угрожало».
Ученые, как могли, выражали протест режиму. Макс Планк и Макс фон Лауэ, используя весь свой авторитет, пытались не допустить того, чтобы немецкая наука попала под влияние политики. Планк в свои 75 лет добился приема у Гитлера, чтобы рассказать лидеру нации об огромном ущербе, который был нанесен немецким университетам из-за антисемитизма, однако в ответ услышал лишь о том, что и сам он может разделить судьбу своих протеже и попасть в концентрационный лагерь. Гейзенберг, в котором Планк видел будущее немецкой физики, никогда не выступал против нацистского режима в открытую, однако присоединился к этим двум видным ученым, чтобы защитить немецкую науку от нападок нацистов.
Макс Борн (1882-1970) по образованию был математиком. Он учился в университетах Бреслау (ныне – Вроцлав, Польша), Гейдельберга и Цюриха. Докторскую степень (1906) и хабилитацию (1909) получил в Гёттингенском университете.
Там же он сменил профиль деятельности и посвятил себя теоретической физике. Некоторое время Борн был профессором в университетах Берлина и Франкфурта, а в 1921 году вернулся в Гёттинген, где возглавил кафедру теоретической физики. Среди докторантов ученого были такие известные в последующем физики, как Виктор Фредерик Вайскопф, Роберт Оппенгеймер, Мария Гёпперт-Майер и Макс Дельбрюк. В 1933 году Борн, еврей по происхождению, покинул нацистскую Германию. Он работал в Кембриджском университете, затем возглавил кафедру математической физики в Эдинбурге. Несмотря на всю важность его открытий, имя Борна не всегда упоминается в числе создателей квантовой механики. Некоторые считают, что ученый должен был вместе с Гейзенбергом получить Нобелевскую премию 1932 года. Признание пришло позднее, в 1954 году, когда Борн был удостоен Нобелевской премии по физике «за фундаментальные исследования по квантовой механике, особенно за статистическую интерпретацию волновой функции».
В ноябре 1933 года члены Лиги преподавателей подписали письмо в поддержку решения правительства Германии выйти из Лиги Наций. Гейзенберг отказался ставить свою подпись, и глава Лиги преподавателей, которым был не кто иной, как Йоханнес Штарк, попытался настроить против ученого студентов. Впрочем, эти усилия были напрасными. Несколько месяцев спустя Штарк предложил, чтобы все немецкие лауреаты Нобелевской премии отправили Гитлеру телеграмму со словами поддержки. Планк, Лауэ, Нернст и Гейзенберг отказались, мотивируя свое решение тем, что даже если бы они лично были согласны с текстом телеграммы, ученым не следует высказывать мнение о политических вопросах. Штарк с негодованием ответил, что они уже занимались политикой, когда преподавали теорию относительности и говорили об Эйнштейне.
В 1935 году в рядах государственных служащих прошла вторая чистка. Многие лейпцигские профессора, в числе которых был и Гейзенберг, выразили на ученом совете несогласие, за что получили строгий выговор. Ректор университета попытался убедить Гейзенберга записаться в резерв немецкой армии, чтобы доказать свою верность режиму, что тот и сделал несколько месяцев спустя. Гейзенберг считал уход из университета единственной политической и моральной альтернативой и решил посоветоваться с Планком. Как рассказывал физик много лет спустя, Планк считал, что отставка, не имеющая никакого практического воздействия, не станет решением. Он говорил: «Теперь все мы должны смотреть в будущее». Следовало поступить так же, как и во время Первой мировой войны: отделить немецкую культуру от политической конъюнктуры, провести различие между словами и истинными намерениями и сохранить свои посты. Гейзенберг сделал вывод: нужно терпеть, пока не случится худшее, и формировать в неблагоприятной политической среде островки стабильности, где можно сохранить отстаиваемые ценности.
В декабре 1933 года были присуждены очередные Нобелевские премии по физике. Гейзенберг был удостоен премии в 1932 году, однако ее вручение было отложено. Нобелевскую премию 1933 года разделили Шрёдингер и Дирак. Когда Борн узнал о присуждении Гейзенбергу Нобелевской премии, он отправил коллеге поздравительное письмо. В ответ Гейзенберг написал:
«Уважаемый господин Борн,
я не писал вам все это время и не поблагодарил вас за поздравления отчасти потому, что мне не давали покоя угрызения совести. Тот факт, что я один получил Нобелевскую премию за работу, которую вы, Йордан и я совместно провели в Гёттингене, угнетает меня, и я не знаю, что написать вам. Разумеется, я рад, что теперь наши общие усилия оценены по достоинству, и с наслаждением вспоминаю о нашем сотрудничестве. Я также верю, что всякий хороший физик знает, сколь важным был ваш вклад и вклад Йордана в создание квантовой механики, и никакое ошибочное решение, принятое извне, не изменит этого. Мне остается лишь вновь поблагодарить вас за совместный труд и опять испытать чувство легкого стыда.
С горячим приветом,
Вернер Гейзенберг»
О своих чувствах Гейзенберг написал и Бору:
«Если говорить о Нобелевской премии, я чувствую угрызения совести по отношению к Шрёдингеру, Дираку и Борну. Шрёдингер и Дирак заслуживают полной премии, по меньшей мере как и я, а я должен был разделить премию с Борном, с которым мы работали вместе».
Гейзенберг упоминал об этой неоднозначной ситуации в конце 1947 года, когда написал бумагу в защиту осужденного на Нюрнбергском процессе Эрнста фон Вайцзеккера, который был отцом его товарища. Некоторые свои идеи Гейзенберг прояснил и в рукописи, опубликованной уже после его смерти. Он писал, что немцы нееврейского происхождения, выступавшие против нацизма, должны были сделать выбор между двумя видами оппозиции – активной и пассивной. Пассивная оппозиция означала эмиграцию или отказ от всякой ответственности. Оба этих варианта были для ученого равносильны дезертирству. Активная оппозиция означала прямое противодействие, в том числе вооруженное сопротивление. Однако подобные действия также были обречены на провал. Выбором Гейзенберга стало получение определенного влияния: «Важно прояснить, что это, по сути, был единственный путь, который позволял что-то по- настоящему изменить». Жизнь ученого превратилась в череду ежедневных этических конфликтов и компромиссов с режимом, направленных на то, чтобы «что-то по-настоящему изменить». Для многих его коллег и друзей за границей действия Гейзенберга были равнозначны открытому сотрудничеству с нацистами.
В 1920-е годы Филипп фон Ленард и Йоханнес Штарк начали кампанию против евреев в науке. Их основной мишенью стали Эйнштейн и теория относительности. Напомним, что для крайне правых сил Германии перемирие 1918 года было предательством со стороны политических элит, в частности евреев. Эйнштейн же был не только евреем, но и пацифистом, который отказался подписать манифест 1914 года. Кроме того, он публично выступал с критикой нацизма. Когда в 1933 году антисемитизм стал официальной идеологией, Ленард и Штарк захотели установить в Германии немецкую физику, свободную от какого бы то ни было еврейского влияния. Большинство ученых не последовало за ними, так как считало, что любые дискуссии физиков должны проходить исключительно в научной сфере, однако публично выступить против Ленарда и Штарка осмеливались немногие.
Ленард даже написал книгу под названием Deutsche Physik («Немецкая физика»). Работа была посвящена общей физике, однако ее длинное предисловие описывало различия между «немецкой физикой» и «еврейской физикой». В нем, в частности, говорилось: истинная наука реалистична, построена на основе экспериментов, обладает причинно-следственными связями и интуитивно понятна, строится по индукции, целью ее является познание природы и поиск истины, и, кроме того, она имеет чисто нордическое происхождение. Еврейская наука, напротив, носит теоретический и формальный характер, имеет вероятностную природу, неинтуитивна, изобилует математическими выкладками, не относится к природе и к реальности и притворяется интернациональной. Разделение между классической и современной физикой – это происки еврейской физики, так как «евреи стремятся повсюду создать противоречия и разрушить связи, чтобы бедные немцы, которые попадают в их ловушки, утратили любую возможность понять, где же они находятся».
Проявлением неприязни Штарка к Гейзенбергу стали события после отставки Зоммерфельда. Летом 1935 года руководство Мюнхенского университета предложило единственного кандидата на вакантную должность, и этим кандидатом стал Гейзенберг. В обычной ситуации он получил бы должность, однако Штарку удалось помешать его назначению. Кроме того, на публичном обсуждении он заявил, что от Эйнштейна удалось избавиться, однако в университетах остались его друзья и союзники. К ним Штарк причислил Планка, Лауэ и «действующего в духе Эйнштейна теоретика-формалиста Гейзенберга, который теперь хочет заполучить себе кафедру». С этого момента фраза «он действует в духе Эйнштейна» стала равносильна обвинению в сопротивлении режиму.
В конце 1936 года в официальной газете нацистской партии появилась статья «Немецкая физика и еврейская физика», где приводились те же аргументы, что и в предисловии к книге Ленарда: он отвергал теорию относительности Эйнштейна за туманность и формализм, а также выступал против матричной механики Гейзенберга и волновой механики Шрёдингера. Статья завершалась требованием изгнать «еврейскую физику» из университетов. В июне 1937 года в официальной газете СС была опубликована статья «Белые евреи в науке». Так были названы немцы по крови, которые, однако, распространяют дух еврейства, а потому вдвойне опасны. Основным представителем «духа Эйнштейна в новой Германии» был назван Гейзенберг. Позже в прессе появились письма с требованиями заключить Гейзенберга, предателя расы и государства, в концентрационный лагерь. Все эти нападки представляли серьезную угрозу для ученого, и он решил написать главе СС Гиммлеру. В письме Гейзенберг выразил готовность оставить университет, если статья отражала официальное мнение СС, либо требовал прекратить травлю. Мать ученого была с детства знакома с матерью Гиммлера, через нее он и передал письмо, чтобы быть уверенным, что оно дойдет до адресата. По прошествии нескольких месяцев Гиммлер попросил Гейзенберга подготовить подробный доклад о теоретической физике и одновременно приказал начать расследование, которое должно было подтвердить политическую благонадежность ученого. Расследование продолжалось восемь месяцев, в течение которых Гейзенберга вызывали на допросы в СС.