В любой науке о природе, которая также изучает живые существа, особое место должно занимать сознание, поскольку оно также является частью реальности.

Размышления Гейзенберга в книге «Беседы вокруг атомной физики»


С 1951 года физик возглавлял немецкую делегацию, участвовавшую в создании европейской лаборатории ядерной физики, на основе которой был образован современный ЦЕРН (Европейская организация по ядерным исследованиям). Штаб-квартира этой организации находится в Женеве. ЦЕРН располагает крупнейшим комплексом ускорителей для проведения исследований в области физики элементарных частиц. Гейзенберг отказался от предложения возглавить организацию, так как считал, что для него по-прежнему достаточно работы в Германии. Ученый рассматривал участие в научной политике Германии как возможность служить своей стране, поступая при этом в том же духе, что и Планк после Первой мировой войны.

Эта работа приносила ему удовлетворение, и Гейзенберг оставил ее лишь за несколько месяцев до своей смерти. Немецкое правительство назначило его президентом Фонда Александра фон Гумбольдта, учрежденного в 1953 году. Эта организация выдавала стипендии молодым иностранным ученым на время занятий в постдокторантуре в немецких центрах, что должно было стимулировать исследования и способствовать установлению научных связей с другими странами. Еще с 1920-х годов, когда Гейзенберг начал работать в Копенгагене, он был убежден в важности сотрудничества молодых ученых из разных стран. Наука может способствовать взаимопониманию в мире, и работа в Фонде фон Гумбольдта была для Гейзенберга одним из способов, позволявших достичь этого идеала.

Завершая краткий обзор деятельности Гейзенберга, расскажем о его расхождениях во взглядах с Аденауэром. Канцлер Германии поддерживал планы НАТО по передаче немецким войскам тактического ядерного оружия. В 1957 году был опубликован Гёттингенский манифест, подписанный группой из 18 физиков-ядерщиков, среди которых были шесть давних гостей Фарм-холла: Вальтер Герлах, Отто Ган, Вернер Гейзенберг, Макс фон Лауэ, Карл Фридрих фон Вайцзеккер и Карл Вирц. В манифесте говорилось, что за термином «тактическое оружие» скрывается атомная бомба, способная разрушить небольшой город. По мнению авторов манифеста, Германия находилась бы в большей безопасности, если бы не располагала никаким ядерным оружием. Манифест имел большой резонанс, и спустя несколько дней после его публикации ряд министров провели длительное совещание с некоторыми его авторами. Гейзенберг из-за проблем со здоровьем в этом совещании не участвовал. В конечном итоге немецкое правительство решило не передавать военным ядерное оружие. Это решение не подразумевало запрет на развертывание тактического ядерного оружия США на территории Германии и его перевозку транспортом немецкой армии. Тем не менее Гёттингенский манифест сыграл важную роль, так как помог настроить общество против ядерного оружия.


«Теория всего» как Священный Грааль физики

Бурная деятельность Гейзенберга в области научной политики не оставляла ему времени на физические исследования. Однако он и не стремился к уровню творческой активности, характерному для него в 1920-е и 1930-е годы. Во время пребывания в Фарм-холле ученому довелось обсудить вопросы астрофизики с фон Вайцзеккером. Итогом беседы стало начало исследований, основным объектом которых были завихрения раскаленных вращающихся газов – именно из таких завихрений когда-то образовались галактики, звезды и планеты. Напомним, что докторская диссертация Гейзенберга была посвящена именно изучению завихрений потоков, так что тема ему была знакома. В 1948 году физик опубликовал статью о статистической теории турбулентности, которая по сравнению с другими его трудами может показаться малозначимой, однако ее продолжают широко цитировать до сих пор.


В немецком городе Линдау на Боденском озере с 1951 года проходят неформальные встречи нобелевских лауреатов и юных перспективных ученых со всего мира.

На фотографии изображены Бор, Гейзенберг и Дирак (слева направо)- участники встречи, прошедшей в 1962 году.


Гейзенберг с Хансом- Петером Дюрром обсуждают единую теорию поля.


Основные усилия Гейзенберг направил на создание единой теории поля. Эйнштейн также посвятил последние годы жизни попыткам построить единую теорию электромагнитного поля и поля тяготения. Обе эти попытки оказались неудачными. В чем же причина интереса к единой теории? После того как ученым удается связать непохожие на первый взгляд явления, за этим часто следует значительный прогресс в науке. К примеру, явления, происходящие на Земле, в частности падение предметов, и явления, которые происходят в космосе, к примеру движение планет Солнечной системы, объясняются одним и тем же законом всемирного тяготения. Таков итог мифической истории о яблоке и Ньютоне, которому, можно сказать, удалось создать первую единую теорию. В XIX веке стало понятно, что электричество и магнетизм подобны двум сторонам одной медали и порождаются электромагнитным полем. Эти явления удалось объединить с появлением уравнений Максвелла, а электромагнитные волны, предсказанные в этих уравнениях, были открыты в конце XIX века. Почти сразу после этого было изобретено радио.

С концептуальной точки зрения важно объяснить как можно больше явлений как можно меньшим числом гипотез. Именно по этой причине ведутся поиски единых теорий, однако это не означает, что подобные теории существуют. Эйнштейн пытался объединить свою общую теорию тяготения и электромагнетизм, однако ему, как и его последователям, это не удалось. Говоря о поле, мы имеем в виду функцию, описывающую некоторую величину, например силу тяжести, в любой точке пространства в любой момент времени.


Фундаментальные взаимодействия

Существует четыре фундаментальных взаимодействия: электромагнитное, гравитационное, сильное и слабое. Два первых наблюдаются на любом расстоянии между телами и частицами, сильное и слабое взаимодействие – лишь на микро-уровне, когда расстояния между частицами сопоставимы с размером атомного ядра.

1.Электромагнитное взаимодействие стало первым взаимодействием, описанным с помощью квантовой теории поля, которая одновременно была квантовой и релятивистской. В 1940-е годы была создана квантовая электродинамика, в которой взаимодействие между двумя частицами представлено как результат обмена фотонами. Примерно 20 лет спустя настала очередь слабого взаимодействия, которое было объединено с электромагнитным. Теперь эти два взаимодействия объединены общим названием электрослабого взаимодействия. В этой единой теории взаимодействие осуществляется посредством трех новых частиц: ИЛ, ИЛ и Z0 . Открытие этих частиц в 1980-е годы подтвердило правильность теории электрослабого взаимодействия.

2. Квантовая теория поля, описывающая сильные взаимодействия, называется квантовой хромодинамикой. Ее корректность была подтверждена множеством экспериментов начиная с 1970-х годов. В сильном взаимодействии участвуют кварки и частицы, состоящие из кварков, например протоны и нейтроны, которые обмениваются между собой другими частицами – глюонами. Было предпринято несколько попыток объединить квантовую хромодинамику и теорию электрослабого взаимодействия, однако поскольку в этих теориях рассматриваются колоссальные энергии, ни одну из них пока не удалось подтвердить экспериментально.

3. Гравитационное взаимодействие является самым слабым из всех фундаментальных взаимодействий, поэтому при изучении элементарных частиц им пренебрегают. Однако это взаимодействие наблюдается повсеместно и проявляется в виде сил притяжения на любом расстоянии. По этой причине гравитационное взаимодействие имеет огромное значение в космическом масштабе, хотя создать убедительную квантовую теорию тяготения до сих пор не удалось. Наиболее многообещающими в этом отношении являются теории суперструн, впрочем, до создания окончательной теории еще очень далеко.


Можно сказать, что целью поисков Эйнштейна было уравнение, в котором гравитация и электромагнетизм описывались бы одной функцией, то есть одним полем, как два аспекта одного явления.

В 1950-е годы Гейзенберг предпринял попытку унифицировать взаимодействия между элементарными частицами. Он исключил из рассмотрения гравитацию, поскольку силой тяготения между элементарными частицами по сравнению с тремя другими взаимодействиями можно пренебречь. Помимо электромагнитного взаимодействия, существует сильное взаимодействие, которое играет роль клея, соединяющего протоны и нейтроны в ядрах, и слабое взаимодействие, являющееся причиной бета-распада. Толчком к исследованиям в этом направлении для Гейзенберга стали последние результаты наблюдений космических лучей, предсказанные им за много лет до этого. При столкновении космических лучей с атомами атмосферы образуется множество элементарных частиц различных типов, которые участвуют в трех упомянутых выше фундаментальных взаимодействиях.

Гейзенберг взял за основу общие рассуждения, касающиеся симметрии в квантовой и релятивистской теории, чтобы обобщить три фундаментальных взаимодействия и описать их одним полем. Он обратился к Паули, однако их сотрудничество продолжалось лишь несколько лет, поскольку первоначальный интерес Паули уступил место растущему скептицизму, и в конечном итоге он прекратил работу над проектом. Спустя некоторое время Гейзенберг также вынужден был оставить работу над этой теорией. Мы знаем, что в то время были неизвестны многие свойства частиц, которые позднее сыграли важнейшую роль в попытках создать новые единые теории.


Частная жизнь

Из предыдущих глав этой книги можно понять, что биография Гейзенберга в значительной степени переплетается с историей развития квантовой механики. Однако чтобы у читателя сложилось объективное представление о Гейзенберге, следует, пусть и коротко, немного рассказать о его частной жизни.

В конце января 1937 года на музыкальном вечере молодой ученый познакомился с Элизабет Шумахер. Как они позднее рассказывали детям, любовь вспыхнула, когда Гейзенберг исполнил Трио для фортепиано соль мажор Бетховена. Последовавший разговор, в котором Вернер и Элизабет обменялись восторженными отзывами о медленном и плавном исполнении этого произведения, стал началом будущей семейной идиллии.

Загрузка...