Kassirer J, Angell M. Losing weight – an ill-fated New Year’s resolution. N Engl J Med. 1998;338(1):52–4. https://pubmed.ncbi.nlm.nih.gov/9414332/
Nelson TD. Promoting healthy aging by confronting ageism. Am Psychol. 2016;71(4):276–82. https://pubmed.ncbi.nlm.nih.gov/27159434/
Binstock RH. Anti-aging medicine and research: a realm of conflict and profound societal implications. J Gerontol A Biol Sci Med Sci. 2004;59(6):B523–33. https://pubmed.ncbi.nlm.nih.gov/15215257/
Reddy SSK, Chaiban JT. The endocrinology of aging: a key to longevity “great expectations.” Endocr Pract. 2017;23(9):1110–9. https://pubmed.ncbi.nlm.nih.gov/28704100/
Kristjuhan Ü. Real aging retardation in humans through diminishing risks to health. Ann N Y Acad Sci. 2007;1119:122–8. https://pubmed.ncbi.nlm.nih.gov/18056961/
Roe DA. Health foods and supplements for the elderly. Who can say no? N Y State J Med. 1993;93(2):109–12. https://pubmed.ncbi.nlm.nih.gov/8455823/
Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/
United States Senate, Special Committee on Aging. Senate hearing 107–190. Swindlers, hucksters and snake oil salesmen: hype and hope of marketing anti-aging products to seniors. U.S. Government Printing Office. September 10, 2001.; https://www.govinfo.gov/content/pkg/CHRG-107shrg76011/html/CHRG-107shrg76011.htm
United States Congress House of Representatives, Select Committee on Aging. Quackery: a $10 billion scandal. U.S. Government Printing Office. May 31, 1984.; https://centerforinquiry.org/wp-content/uploads/sites/33/quackwatch/pepper-report.pdf
Newton JP. Anti-ageing – fact, fiction or faction? Gerodontology. 2011;28(3):163–4. https://pubmed.ncbi.nlm.nih.gov/21843158/
Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/
McConnel C, Turner L. Medicine, ageing and human longevity: the economics and ethics of anti-ageing interventions. EMBO Rep. 2005;6(S1):S59–62. https://pubmed.ncbi.nlm.nih.gov/15995665/
Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/
Wick G. “Anti-aging” medicine: does it exist? A critical discussion of “anti-aging health products.” Exp Gerontol. 2002;37(8–9):1137–40. https://pubmed.ncbi.nlm.nih.gov/12213565/
Caulfield T. Blinded by science. The Walrus. https://thewalrus.ca/blinded-by-science/. Published September 12, 2011. Updated April 19, 2020. Accessed January 22, 2023.; https://thewalrus.ca/blinded-by-science/
Winslow R. The radium water worked fine until his jaw fell off. Wall Street Journal. August 1, 1990:A1.; https://web.archive.org/web/20170216124222/ https://case.edu/affil/MeMA/MCA/11-20/1991-Nov.pdf
Turner L. The US direct-to-consumer marketplace for autologous stem cell interventions. Perspect Biol Med. 2018;61(1):7–24. https://pubmed.ncbi.nlm.nih.gov/29805145/
Murray IR, Chahla J, Frank RM, et al. Rogue stem cell clinics. Bone Joint J. 2020;102-B(2):148–54. https://pubmed.ncbi.nlm.nih.gov/32009438/
Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2002;286(6):92–5. https://pubmed.ncbi.nlm.nih.gov/12030096/
Epstein D. Anti-aging doctors sue professors. Inside Higher Ed. https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors. Published June 21, 2005. Accessed January 22, 2023.; https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors
MacGregor C, Petersen A, Parker C. Hyping the market for ‘anti-ageing’ in the news: from medical failure to success in self-transformation. BioSocieties. 2018;13(1):64–80. https://link.springer.com/article/10.1057/s41292-017-0052-5
The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf
Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/
Find an anti-aging product or service. World Health Network. https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi. Accessed January 31, 2023.; https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi
Zs-Nagy I. Is consensus in anti-aging medical intervention an elusive expectation or a realistic goal? Arch Gerontol Geriatr. 2009;48(3):271–5. https://pubmed.ncbi.nlm.nih.gov/19269702/
Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/
The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf
Walker RF. On the evolution of anti-aging medicine. Clin Interv Aging. 2006;1(3):201–3. https://pubmed.ncbi.nlm.nih.gov/18046871/
Rattan SIS. Anti-ageing strategies: prevention or therapy? EMBO Rep. 2005;6(Suppl 1):S25–9. https://pubmed.ncbi.nlm.nih.gov/15995657/
Rae MJ. All hype, no hope? Excessive pessimism in the “anti-aging medicine” special sections. J Gerontol A Biol Sci Med Sci. 2005;60(2):139–40. https://academic.oup.com/biomedgerontology/article/60/2/139/563273
Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Retraction: cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. DOI: 10.1056/nejmoa2007621. N Engl J Med. 2020;382(26):2582. https://pubmed.ncbi.nlm.nih.gov/32501665/
Mehra MR, Ruschitzka F, Patel AN. Retraction – Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;395(10240):1820. https://pubmed.ncbi.nlm.nih.gov/32450107/
Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/
Berzlanovich AM, Keil W, Waldhoer T, Sim E, Fasching P, Fazeny-DBerzl B. Do centenarians die healthy? An autopsy study. J Gerontol A Biol Sci Med Sci. 2005;60(7):862–5. https://pubmed.ncbi.nlm.nih.gov/16079208/
Gessert CE, Elliott BA, Haller IV. Dying of old age: an examination of death certificates of Minnesota centenarians. J Am Geriatr Soc. 2002;50(9):1561–5. https://pubmed.ncbi.nlm.nih.gov/12383155/
Wilson DM, Cohen J, Birch S, et al. “No one dies of old age”: implications for research, practice, and policy. J Palliat Care. 2011;27(2):148–56. https://journals.sagepub.com/doi/10.1177/082585971102700211
Berzlanovich AM, Missliwetz J, Sim E, et al. Unexpected out-of-hospital deaths in persons aged 85 years or older: an autopsy study of 1886 patients. Am J Med. 2003;114(5):365–9. https://pubmed.ncbi.nlm.nih.gov/12714125/
John SM, Koelmeyer TD. The forensic pathology of nonagenarians and centenarians: do they die of old age? (The Auckland experience). Am J Forensic Med Pathol. 2001;22(2):150–4. https://pubmed.ncbi.nlm.nih.gov/11394748/
Blagosklonny MV. Answering the ultimate question “what is the proximal cause of aging?” Aging (Albany NY). 2012;4(12):861–77. https://pubmed.ncbi.nlm.nih.gov/23425777/
Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/
Writing Group Members, Roger VL, Go AS, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1): e2-e220. https://pubmed.ncbi.nlm.nih.gov/22179539/
Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief. 2021;(427):1–8. https://pubmed.ncbi.nlm.nih.gov/34978528/
Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/
Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. https://pubmed.ncbi.nlm.nih.gov/30340847/
Kaeberlein M. The biology of aging: citizen scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol. 2016;53(2):291–8. https://pubmed.ncbi.nlm.nih.gov/26077786/
Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/
Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/
Iyen B, Qureshi N, Weng S, et al. Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: a retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis. 2020;315:131–7. https://pubmed.ncbi.nlm.nih.gov/33187671/
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/
Jortveit J, Pripp AH, Langørgen J, Halvorsen S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart. 2020;106(18):1420–6. https://pubmed.ncbi.nlm.nih.gov/32111640/
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016;31:80–92. https://pubmed.ncbi.nlm.nih.gov/27355990/
Olshansky SJ, Carnes BA, Cassel C. In search of Methuselah: estimating the upper limits to human longevity. Science. 1990;250(4981):634–40. https://pubmed.ncbi.nlm.nih.gov/2237414/
Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: the difficult path from bench to bedside. Med Res Rev. 2021;41(3):1676–700. https://pubmed.ncbi.nlm.nih.gov/33314257/
Olshansky SJ, Perry D, Miller RA, Butler RN. In pursuit of the longevity dividend. Scientist (Philadelphia, Pa). 2006;20(3):28–36. https://pubmed.ncbi.nlm.nih.gov/17986572/
Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY). 2018;10(11):3067–78. https://pubmed.ncbi.nlm.nih.gov/30448823/
De Winter G. Aging as disease. Med Health Care Philos. 2015;18(2):237–43. https://pubmed.ncbi.nlm.nih.gov/25240472/
Zhavoronkov A, Bhullar B. Classifying aging as a disease in the context of ICD-11. Front Genet. 2015;6:326. https://pubmed.ncbi.nlm.nih.gov/26583032/
Hodgson J. Consumer, drug firms vie in vitamins. Wall Street Journal. https://www.wsj.com/articles/SB10001424127887323401904578155050445302398. Published December 2, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10001424127887323401904578155050445302398
Davis B. The link between Big Pharma and the supplement industry. Elsevier: Pharma R&D Today. https://web.archive.org/web/20220930062808/ https:/pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/. Published July 28th, 2017. Accessed February 10, 2023.; https://web.archive.org/web/20220930062808/ https://pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/
Направление, сформированное на стыке косметологии и фармакологии. – Примеч. ред.
Martin KI, Glaser DA. Cosmeceuticals: the new medicine of beauty. Mo Med. 2011;108(1):60–3. https://pubmed.ncbi.nlm.nih.gov/21462614/
Exuviance. Johnson & Johnson. https://www.jnj.com/exuviance. Accessed January 22, 2023.; https://www.jnj.com/exuviance
Spencer M. Coca-Cola, Sanofi in beauty venture. Wall Street Journal. https://www.wsj.com/articles/SB10000872396390443854204578060662301872612. Published October 16, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10000872396390443854204578060662301872612
Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/
Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2016;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/
Eissenberg JC. Hungering for immortality. Mo Med. 2018;115(1):12–7. https://pubmed.ncbi.nlm.nih.gov/30228670/
Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/
Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/
Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430–9. https://pubmed.ncbi.nlm.nih.gov/21402176/
Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43. https://pubmed.ncbi.nlm.nih.gov/22579043/
Smith-Uffen MES, Johnson SB, Martin AJ, et al. Estimating survival in advanced cancer: a comparison of estimates made by oncologists and patients. Support Care Cancer. 2020;28(7):3399–407. https://pubmed.ncbi.nlm.nih.gov/31781946/
Hole B, Salem J. How long do patients with chronic disease expect to live? A systematic review of the literature. BMJ Open. 2016;6(12):e012248. https://pubmed.ncbi.nlm.nih.gov/28039288/
Kaeberlein M. How healthy is the healthspan concept? GeroScience. 2018;40(4):361–4. https://pubmed.ncbi.nlm.nih.gov/30084059/
Около 400 метров. – Примеч. ред.
Crimmins EM, Beltrán-Sánchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci. 2011 Jan;66(1):75–86. https://pubmed.ncbi.nlm.nih.gov/21135070/
de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/
Хуан Понсе де Леон (1460–1521) – испанский конкистадор, который основал первое европейское поселение на Пуэрто-Рико и во время поисков источника вечной молодости в 1513 году первым из европейцев высадился на берега Флориды. – Примеч. ред.
Furrer R, Handschin C. Lifestyle vs. pharmacological interventions for healthy aging. Aging (Albany NY). 2020;12(1):5–7. https://pubmed.ncbi.nlm.nih.gov/31937689/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/
Kirkwood T. Why can’t we live forever? Sci Am. 2010;303(3):42–9. https://pubmed.ncbi.nlm.nih.gov/20812478/
Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/
Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. https://pubmed.ncbi.nlm.nih.gov/19915731/
Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/
Finlay BB, Pettersson S, Melby MK, Bosch TCG. The microbiome mediates environmental effects on aging. BioEssays. 2019;41(10):1800257. https://pubmed.ncbi.nlm.nih.gov/31157928/
Hayflick L. “Anti-aging” is an oxymoron. J Gerontol A Biol Sci Med Sci. 2004;59(6):B573–8. https://pubmed.ncbi.nlm.nih.gov/15215267/
Underwood M, Bartlett HP, Hall WD. Professional and personal attitudes of researchers in ageing towards life extension. Biogerontology. 2009;10(1):73–81. https://pubmed.ncbi.nlm.nih.gov/18516699/
de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/
Richmond CR. Population exposure from the fuel cycle: review and future direction. University of North Texas Libraries Government Documents Department. https://digital.library.unt.edu/ark:/67531/metadc1086292/. Published January 1, 1987. Accessed November 28, 2022.; https://digital.library.unt.edu/ark:/67531/metadc1086292/
de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/
Thomson W. Kelvin on science: British lord tells his hopes for wireless telegraphy. The Newark Advocate. https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html. Published April 26, 1902. Accessed October 24, 2022.; https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html
Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13–22. https://pubmed.ncbi.nlm.nih.gov/17996009/
Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412. https://pubmed.ncbi.nlm.nih.gov/11719795/
Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7. https://pubmed.ncbi.nlm.nih.gov/8001743/
Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/
Campbell S. Will biotechnology stop aging? IEEE Pulse. 2019;10(2):3–7. https://pubmed.ncbi.nlm.nih.gov/31021750/
Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/
de Grey ADNJ. Escape velocity: why the prospect of extreme human life extension matters now. PLoS Biol. 2004;2(6):e187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423155/
Kurzweil R, Grossman T. Fantastic voyage: live long enough to live forever. The science behind radical life extension questions and answers. Stud Health Technol Inform. 2009;149:187–94. https://pubmed.ncbi.nlm.nih.gov/19745481/
Raghavachari N. The impact of apolipoprotein E genetic variability in health and life span. J Gerontol A Biol Sci Med Sci. 2020;75(10):1855–7. https://pubmed.ncbi.nlm.nih.gov/32789475/
Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/
Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/
Steves CJ, Spector TD, Jackson SHD. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41(5):581–6. https://pubmed.ncbi.nlm.nih.gov/22826292/
Kirkwood T. How can we live forever? BMJ. 1996;313(7072):1571. https://pubmed.ncbi.nlm.nih.gov/8990987/
Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/
Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/
Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97(3):319–23. https://link.springer.com/article/10.1007/bf02185763
Skytthe A, Pedersen NL, Kaprio J, et al. Longevity studies in GenomEUtwin. Twin Res. 2003;6(5):448–54. https://pubmed.ncbi.nlm.nih.gov/14624729/
Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/
Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/
Search results: “the hallmarks of aging.” WebofScience.com. Accessed February 15, 2023.; https://www.webofscience.com/wos/woscc/summary/55559f9d-7ef6-429d-98f8-f41bc4c102d7-84135d71/relevance/1
Levine M, Crimmins E. Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS ONE. 2014;9(2):e87403. https://pubmed.ncbi.nlm.nih.gov/24520332/
Devi AS, Thokchom S, Devi AM. Children living with Progeria. Nurs Care Open Access J. 2017;3(4):275–8. https://medcraveonline.com/NCOAJ/children-living-with-progeria.html
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford progeria syndrome: a premature aging disease. Mol Neurobiol. 2018;55(5):4417–27. https://pubmed.ncbi.nlm.nih.gov/28660486/
Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A Biol Sci Med Sci. 2014;69(12):1448–61. https://pubmed.ncbi.nlm.nih.gov/24347613/
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: lesson from model organisms. Genes (Basel). 2019;10(7):518. https://pubmed.ncbi.nlm.nih.gov/31324014/
Концепция проведения научных исследований с привлечением широкого круга добровольцев-любителей (неспециалистов). – Примеч. ред.
Имя Мафусаила, прожившего 960 лет, стало синонимом долгожительства. «Собаками Мафусаила» традиционно называют собак-долгожителей. – Примеч. ред.
Jónás D, Sándor S, Tátrai K, Egyed B, Kubinyi E. A preliminary study to investigate the genetic background of longevity based on whole-genome sequence data of two Methuselah dogs. Front Genet. 2020;11:315. https://pubmed.ncbi.nlm.nih.gov/32373156/
Kaeberlein M, Creevy KE, Promislow DEL. The Dog Aging Project: translational geroscience in companion animals. Mamm Genome. 2016;27(7–8):279–88. https://pubmed.ncbi.nlm.nih.gov/27143112/
Pitt JN, Kaeberlein M. Why is aging conserved and what can we do about it? PLoS Biol. 2015;13(4):e1002131. https://pubmed.ncbi.nlm.nih.gov/25923592/
López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/
Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase – the fat controller of the energy railroad. Can J Physiol Pharmacol. 2006;84(7):655–65. https://pubmed.ncbi.nlm.nih.gov/16998529/
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41. https://pubmed.ncbi.nlm.nih.gov/22186033/
Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol. 2018;122:69–79. https://pubmed.ncbi.nlm.nih.gov/30290216/
Jiang S, Li T, Yang Z, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://pubmed.ncbi.nlm.nih.gov/28709692/
Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev. 2016;28:15–26. https://pubmed.ncbi.nlm.nih.gov/27060201/
Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1865–75. https://pubmed.ncbi.nlm.nih.gov/31109453/
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
Mair W, Morantte I, Rodrigues APC, et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature. 2011;470(7334):404–8. https://pubmed.ncbi.nlm.nih.gov/21331044/
Sokolov SS, Severin FF. Manipulating cellular energetics to slow aging of tissues and organs. Biochemistry (Mosc). 2020;85(6):651–9. https://pubmed.ncbi.nlm.nih.gov/32586228/
Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/
Миметики – это лекарственные вещества, биохимически имитирующие естественное синтезируемое в организме вещество или вызывающие в организме изменения, сходные с теми, которые проявляются под действием какого-либо внешнего фактора. – Примеч. ред.
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/
Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7. https://pubmed.ncbi.nlm.nih.gov/11334434/
Kola B, Grossman AB, Korbonits M. The role of AMP-activated protein kinase in obesity. Front Horm Res. 2008;36:198–211. https://pubmed.ncbi.nlm.nih.gov/18230904/
Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15. https://pubmed.ncbi.nlm.nih.gov/18674809/
Benkimoun P. Police find range of drugs after trawling bins used by Tour de France cyclists. BMJ. 2009;339:b4201. https://pubmed.ncbi.nlm.nih.gov/19825964/
Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/
Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/
Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next? J Physiol. 2021;599(3):791–802. https://pubmed.ncbi.nlm.nih.gov/31749163/
López-Lluch G, Santos-Ocaña C, Sánchez-Alcázar JA, et al. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology. 2015;16(5):599–620. https://pubmed.ncbi.nlm.nih.gov/26105157/
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. https://pubmed.ncbi.nlm.nih.gov/31667999/
Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014;2:936–44. https://pubmed.ncbi.nlm.nih.gov/25180170/
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/
Gonzalez-Freire M, de Cabo R, Bernier M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42. https://pubmed.ncbi.nlm.nih.gov/25995290/
Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY). 2014;6(4):296–310. https://pubmed.ncbi.nlm.nih.gov/24799450/
Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/
Corbisier P, Remacle J. Influence of the energetic pattern of mitochondria in cell ageing. Mech Ageing Dev. 1993;71(1):47–58. https://pubmed.ncbi.nlm.nih.gov/8309283/
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/
Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/
Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. https://pubmed.ncbi.nlm.nih.gov/32679729/
Agency for Healthcare Research and Quality (AHRQ). Medical Expenditure Panel Survey (MEPS) 2013–2019. ClinCalc DrugStats Database version 2021.10. https://clincalc.com/DrugStats/. Accessed May 22, 2023.; https://clincalc.com/DrugStats/
Inzucchi SE, Fonseca V. Dethroning the king?: the future of metformin as first line therapy in type 2 diabetes. J Diabetes Complications. 2019;33(6):462–4. https://pubmed.ncbi.nlm.nih.gov/31003925/
Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. https://pubmed.ncbi.nlm.nih.gov/28802803/
Glucophage® / Glucophage® XR: Response to FDA Comments of 10 12 00. U.S. Food & Drug Administration: Drugs@FDA. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202. Accessed April 25, 2021.; https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202
Braun B, Eze P, Stephens BR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33(1):61–7. https://pubmed.ncbi.nlm.nih.gov/18347654/
Walton RG, Dungan CM, Long DE, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial [published correction appears in Aging Cell. 2020;19(3):e13098]. Aging Cell. 2019;18(6):e13039. https://pubmed.ncbi.nlm.nih.gov/31557380/
Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://pubmed.ncbi.nlm.nih.gov/11832527/
Iannello S, Camuto M, Cavaleri A, et al. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids. Diabetes Obes Metab. 2004;6(1):8–15. https://pubmed.ncbi.nlm.nih.gov/14686957/
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15. https://pubmed.ncbi.nlm.nih.gov/21478880/
Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/
Fatima S, Hu X, Gong RH, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76(13):2547–57. https://pubmed.ncbi.nlm.nih.gov/30968170/
Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/
Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765–78. https://pubmed.ncbi.nlm.nih.gov/26027904/
Wang XJ, Malhi H. Nonalcoholic fatty liver disease. Ann Intern Med. 2018;169(9):ITC65–80. https://pubmed.ncbi.nlm.nih.gov/30398639/
Hydes T, Alam U, Cuthbertson DJ. The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD): too much fat, too much carbohydrate, or just too many calories? Front Nutr. 2021;8:640557. https://pubmed.ncbi.nlm.nih.gov/33665203/
Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/
Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/
Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/
Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43(5):1134–41. https://pubmed.ncbi.nlm.nih.gov/32165444/
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/
Wu Y, Song P, Zhang W, et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med. 2015;21(4):373–82. https://pubmed.ncbi.nlm.nih.gov/25799226/
Martínez de Morentin PB, Whittle AJ, Fernø J, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61(4):807–17. https://pubmed.ncbi.nlm.nih.gov/22315316/
Ferguson SG, Shiffman S, Rohay JM, Gitchell JG, Garvey AJ. Effect of compliance with nicotine gum dosing on weight gained during a quit attempt. Addiction. 2011;106(3):651–6. https://pubmed.ncbi.nlm.nih.gov/21182551/
Novak CM, Gavini CK. Smokeless weight loss. Diabetes. 2012;61(4):776–7. https://pubmed.ncbi.nlm.nih.gov/22442297/
Hadi A, Arab A, Ghaedi E, Rafie N, Miraghajani M, Kafeshani M. Barberry (Berberis vulgaris L.) is a safe approach for management of lipid parameters: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2019;43:117–24. https://pubmed.ncbi.nlm.nih.gov/30935518/
Fouladi RF. Aqueous extract of dried fruit of Berberis vulgaris L. in acne vulgaris, a clinical trial. J Diet Suppl. 2012;9(4):253–61. https://pubmed.ncbi.nlm.nih.gov/23038982/
Emamat H, Asadian S, Zahedmehr A, Ghanavati M, Nasrollahzadeh J. The effect of barberry (Berberis vulgaris) consumption on flow-mediated dilation and inflammatory biomarkers in patients with hypertension: a randomized controlled trial [published online ahead of print, 2020 Dec 22]. Phytother Res. 2020;10.1002/ptr.7000. https://pubmed.ncbi.nlm.nih.gov/33350540/
Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/
McCarty MF. AMPK activation – protean potential for boosting healthspan. Age (Dordr). 2014;36(2):641–63. https://pubmed.ncbi.nlm.nih.gov/24248330/
Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/
Funk RS, Singh RK, Winefield RD, et al. Variability in potency among commercial preparations of berberine. J Diet Suppl. 2018;15(3):343–51. https://pubmed.ncbi.nlm.nih.gov/28792254/
Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci. 2007;20(1):83–92. https://pubmed.ncbi.nlm.nih.gov/17337435/
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/
Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. Daru. 2020;28(2):779–87. https://pubmed.ncbi.nlm.nih.gov/33140312/
Mousavi SM, Sheikhi A, Varkaneh HK, Zarezadeh M, Rahmani J, Milajerdi A. Effect of Nigella sativa supplementation on obesity indices: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2018;38:48–57. https://pubmed.ncbi.nlm.nih.gov/29857879/
Sahebkar A, Beccuti G, Simental-Mendía LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;106:37–50. https://pubmed.ncbi.nlm.nih.gov/26875640/
Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens. 2016;34(11):2127–35. https://pubmed.ncbi.nlm.nih.gov/27512971/
Daryabeygi-Khotbehsara R, Golzarand M, Ghaffari MP, Djafarian K. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: a systematic review and meta-analysis. Complement Ther Med. 2017;35:6–13. https://pubmed.ncbi.nlm.nih.gov/29154069/
Agricultural Research Service, United States Department of Agriculture. Sweet sunnah, whole black seeds nigella sativa. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients. Published April 1, 2019. Accessed May 8, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients
Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Food Biochem. 2021;45(4):e13625. https://pubmed.ncbi.nlm.nih.gov/33559935/
He T, Xu X. The influence of Nigella sativa for asthma control: a meta-analysis. Am J Emerg Med. 2020;38(3):589–93. https://pubmed.ncbi.nlm.nih.gov/31892440/
Khabbazi A, Javadivala Z, Seyedsadjadi N, Malek Mahdavi A. A systematic review of the potential effects of Nigella sativa on rheumatoid arthritis. Planta Med. 2020;86(7):457–69. https://pubmed.ncbi.nlm.nih.gov/32274788/
Tajmiri S, Abbasalizad Farhangi M, Dehghan P. Nigella Sativa treatment and serum concentrations of thyroid hormones, transforming growth factor ß (TGF-ß) and interleukin 23 (IL-23) in patients with Hashimoto’s thyroiditis. Eur J Integr Med. 2016;8(4):576–80. https://www.sciencedirect.com/science/article/abs/pii/S1876382016300208
Ardakani Movaghati MR, Yousefi M, Saghebi SA, Sadeghi Vazin M, Iraji A, Mosavat SH. Efficacy of black seed (Nigella sativa L.) on kidney stone dissolution: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2019;33(5):1404–12. https://pubmed.ncbi.nlm.nih.gov/30873671/
Latiff LA, Parhizkar S, Dollah MA, Hassan ST. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci. 2014;17(12):980–5. https://pubmed.ncbi.nlm.nih.gov/25859301/
Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. J Ethnopharmacol. 2019;233:123–30. https://pubmed.ncbi.nlm.nih.gov/30593890/
Amos A, Khiatah B. Mechanisms of action of nutritionally rich Hibiscus sabdariffa’s therapeutic uses in major common chronic diseases: a literature review [published online ahead of print, 2021 Jan 28]. J Am Coll Nutr. 2021;1–8. https://pubmed.ncbi.nlm.nih.gov/33507846/
Soleimani AR, Akbari H, Soleimani S, Beladi Mousavi SS, Tamadon MR. Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. J Renal Inj Prev. 2015;4(3):73–9. https://pubmed.ncbi.nlm.nih.gov/26468478/
Nwachukwu DC, Aneke EI, Nwachukwu NZ, Azubike N, Obika LF. Does consumption of an aqueous extract of Hibscus sabdariffa affect renal function in subjects with mild to moderate hypertension? J Physiol Sci. 2017;67(1):227–34. https://pubmed.ncbi.nlm.nih.gov/27221151/
Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia. 2013;85:84–94. https://pubmed.ncbi.nlm.nih.gov/23333908/
Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: a systematic review and meta-analysis of randomized clinical trials. Food Res Int (Ottawa). 2020;130:108980. https://pubmed.ncbi.nlm.nih.gov/32156406/
Abubakar SM, Ukeyima MT, Spencer JPE, Lovegrove JA. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients. 2019;11(2):341. https://pubmed.ncbi.nlm.nih.gov/30764582/
Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734–9. https://pubmed.ncbi.nlm.nih.gov/24549255/
Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods. 2016;25:279–90. https://www.sciencedirect.com/science/article/abs/pii/S175646461630144X?via%3Dihub
Salim LZA, Mohan S, Othman R, et al. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules. 2013;18(9):11219–40. https://pubmed.ncbi.nlm.nih.gov/24036512/
Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/
Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/
Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/
Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81. https://pubmed.ncbi.nlm.nih.gov/27130687/
Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194–203. https://pubmed.ncbi.nlm.nih.gov/22750051/
Center for Food Safety and Applied Nutrition, Office of Regulatory Affairs. CPG sec. 525.825 vinegar, definitions – adulteration with vinegar eels. United States Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels. Published March 1995. Accessed May 8, 2021.; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels
Park J, Kim J, Kim J, et al. Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: a double-blind, randomized, and placebo-controlled trial. J Funct Foods. 2014;8:274–81. https://www.sciencedirect.com/science/article/abs/pii/S1756464614001273
Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73(8):1837–43. https://pubmed.ncbi.nlm.nih.gov/19661687/
Johnston C, Quagliano S, White S. Vinegar ingestion at mealtime reduced fasting blood glucose concentrations in healthy adults at risk for type 2 diabetes. J Funct Foods. 2013;5(4):2007–11. https://www.sciencedirect.com/science/article/abs/pii/S1756464613001874
Mitrou P, Petsiou E, Papakonstantinou E, et al. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J Diabetes Res. 2015;2015:175204. https://pubmed.ncbi.nlm.nih.gov/26064976/
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
Abid M, Memon Z, Shaheen S, Ahmed F, Shaikh MZ, Agha F. Comparison of apple cider vinegar and metformin combination with metformin alone in newly diagnosed type 2 diabetic patients: a randomized controlled trial. Int J Med Res Health Sci. 2020;9(2):1–7. https://www.ijmrhs.com/abstract/comparison-of-apple-cider-vinegar-and-metformin-combination-with-metformin-alone-in-newly-diagnosed-type-2-diabetic-pati-44684.html
Sakakibara S, Murakami R, Takahashi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74(5):1055–61. https://pubmed.ncbi.nlm.nih.gov/20460711/
Beheshti Z, Chan YH, Nia HS, et al. Influence of apple cider vinegar on blood lipids. Life Sci J. 2012;9(4):2431–40. https://www.lifesciencesite.com/lsj/life0904/360_10755life0904_2431_2440.pdf
Chuang MH, Chiou SH, Huang CH, Yang WB, Wong CH. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorg Med Chem. 2009;17(22):7831–40. https://pubmed.ncbi.nlm.nih.gov/19837596/
Hu FB, Stampfer MJ, Manson JE, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69(5):890–7. https://pubmed.ncbi.nlm.nih.gov/10232627/
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: health benefits with a focus on gut microbiota. Nutr Bull. 2020;45:294–308. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12448
Pritchard SE, Marciani L, Garsed KC, et al. Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil. 2014;26(1):124–30. https://pubmed.ncbi.nlm.nih.gov/24131490/
Tang R, Li L. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Can J Infect Dis Med Microbiol. 2021;2021:6632266. https://pubmed.ncbi.nlm.nih.gov/33488888/
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/
Spiller G, ed. Topics in Dietary Fiber Research. Plenum Press; 1978. https://link.springer.com/book/10.1007/978-1-4684-2481-2
Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–16. https://pubmed.ncbi.nlm.nih.gov/9104571/
Usual nutrient intake from food and beverages, by gender and age: what we eat in America, NHANES 2015–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf. Published January 2021. Accessed December 25, 2022.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/
López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/
Morgunova GV, Klebanov AA. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity. Cell Biochem Funct. 2019;37(3):169–76. https://pubmed.ncbi.nlm.nih.gov/30895648/
Американская единица объема «чашка» (cup) равна 240 мл. – Примеч. ред.
There are many different types of autophagy, including chaperone-mediated autophagy and microautophagy. In this book, I’m referring to macroautophagy.
Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/
Levine B, Klionsky DJ. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. PNAS. 2017;114(2):201–5. https://pubmed.ncbi.nlm.nih.gov/28039434/
Vijayakumar K, Cho G. Autophagy: an evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem Funct. 2019;37(6):452–8. https://pubmed.ncbi.nlm.nih.gov/31318072/
Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol. 2010;29(4):127–32. https://pubmed.ncbi.nlm.nih.gov/20686325/
Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/
Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952
Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/
Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300. https://pubmed.ncbi.nlm.nih.gov/23939249/
Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet. 2020;139(3):277–90. https://pubmed.ncbi.nlm.nih.gov/31144030/
Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952
Meijer AJ. Autophagy in practice: stevia and leucine. Autophagy. 2019;15(12):2043. https://pubmed.ncbi.nlm.nih.gov/31455125/
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids. 2015;47(10):2037–63. https://pubmed.ncbi.nlm.nih.gov/24880909/
Показатель физической работоспособности, определяет максимальное количество кислорода, которое может потреблять организм во время интенсивных упражнений. – Примеч. ред.
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/
Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training – induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7):e13651. https://pubmed.ncbi.nlm.nih.gov/29626392/
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/
Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952
Melnik BC. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes. 2012;3(3):38. https://pubmed.ncbi.nlm.nih.gov/22442749/
Rittig N, Bach E, Thomsen HH, et al. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without ß-hydroxy-ß-methylbutyrate (Hmb) during fasting-induced catabolism: a human randomized crossover trial. Clin Nutr. 2017;36(3):697–705. https://pubmed.ncbi.nlm.nih.gov/27265181/
Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998–5006. https://pubmed.ncbi.nlm.nih.gov/12166997/
Song D, Xu C, Holck AL, Liu R. Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicol Environ Saf. 2021;208:111543. https://pubmed.ncbi.nlm.nih.gov/33396091/
Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003–2006. Environ Pollut. 2018;238:852–8. https://pubmed.ncbi.nlm.nih.gov/29627755/
Naruszewicz M, Zapolska-Downar D, Kosmider A, et al. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009;89(3):773–7. https://pubmed.ncbi.nlm.nih.gov/19158207/
Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/
Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/
Arnesen E, Huseby NE, Brenn T, Try K. The Tromsø Heart Study: distribution of, and determinants for, gamma-glutamyltransferase in a free-living population. Scand J Clin Lab Invest. 1986;46(1):63–70. https://pubmed.ncbi.nlm.nih.gov/2869572/
Ruhl CE, Everhart JE. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology. 2005;129(6):1928–36. https://pubmed.ncbi.nlm.nih.gov/16344061/
Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann Hepatol. 2021;20:100254. https://pubmed.ncbi.nlm.nih.gov/32920163/
Ray K. Caffeine is a potent stimulator of autophagy to reduce hepatic lipid content – a coffee for NAFLD? Nat Rev Gastroenterol Hepatol 2013;10:563. https://pubmed.ncbi.nlm.nih.gov/23982685/
Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366–80. https://pubmed.ncbi.nlm.nih.gov/23929677/
Czachor J, Milek M, Galiniak S, Stepien K, Dzugan M, Molon M. Coffee extends yeast chronological lifespan through antioxidant properties. Int J Mol Sci. 2020;21(24):9510. https://pubmed.ncbi.nlm.nih.gov/33327536/
Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan. 2012;1(1):9. https://pubmed.ncbi.nlm.nih.gov/24764514/
Pietrocola F, Malik SA, Mariño G, et al. Coffee induces autophagy in vivo. Cell Cycle. 2014;13(12):1987–94. https://pubmed.ncbi.nlm.nih.gov/24769862/
Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/
Известный слоган кофейного бренда Maxwell House. – Примеч. ред.
Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495–504. https://pubmed.ncbi.nlm.nih.gov/24102757/
Kanbay M, Siriopol D, Copur S, et al. Effect of coffee consumption on renal outcome: a systematic review and meta-analysis of clinical studies. J Ren Nutr. 2021;31(1):5–20. https://pubmed.ncbi.nlm.nih.gov/32958376/
Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. https://pubmed.ncbi.nlm.nih.gov/28826374/
Thomas DR, Hodges ID. Dietary research on coffee: improving adjustment for confounding. Curr Dev Nutr. 2020;4(nzz142). https://pubmed.ncbi.nlm.nih.gov/31938763/
Duregon E, Bernier M, de Cabo R. A glance back at the journal of gerontology – coffee, dietary interventions and life span. J Geront A Biol Sci Med Sci. 2020;75(11):2029–30. https://pubmed.ncbi.nlm.nih.gov/33057720/
Li Q, Liu Y, Sun X, et al. Caffeinated and decaffeinated coffee consumption and risk of all-cause mortality: a dose – response meta-analysis of cohort studies. J Hum Nut Diet. 2019;32(3):279–87. https://pubmed.ncbi.nlm.nih.gov/30786114/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012 Dec 14;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/
Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178(8):1086. https://pubmed.ncbi.nlm.nih.gov/29971434/
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/
Gao LJ, Dai Y, Li XQ, Meng S, Zhong ZQ, Xu SJ. Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H2O2. Exp Ther Med. 2021;21(5):426. https://pubmed.ncbi.nlm.nih.gov/33747165/
Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/
Mills CE, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JPE. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem. 2013;141(4):3335–40. https://pubmed.ncbi.nlm.nih.gov/23993490/
Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/
Corrêa TAF, Monteiro MP, Mendes TMN, et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr. 2012;67(3):277–82. https://pubmed.ncbi.nlm.nih.gov/22766993/
DiBaise JK. A randomized, double-blind comparison of two different coffee-roasting processes on development of heartburn and dyspepsia in coffee-sensitive individuals. Dig Dis Sci. 2003;48(4):652–6. https://pubmed.ncbi.nlm.nih.gov/12741451/
Liu J, Wang Q, Zhang H, Yu D, Jin S, Ren F. Interaction of chlorogenic acid with milk proteins analyzed by spectroscopic and modeling methods. Spectrosc Lett. 2016;49(1):44–50. https://www.tandfonline.com/doi/full/10.1080/00387010.2015.1066826
Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/
Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/
Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/
Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/
Budryn G, Palecz B, Rachwal-Rosiak D, et al. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in ß-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem. 2015;168:276–87. https://pubmed.ncbi.nlm.nih.gov/25172711/
Felberg I, Farah A, Monteiro M, et al. Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods. 2015;19:688–99. https://www.sciencedirect.com/science/article/pii/S1756464615004910?via%3Dihub
Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr. 2020;60(5):760–79. https://pubmed.ncbi.nlm.nih.gov/30614247/
Tverdal A, Selmer R, Cohen JM, Thelle DS. Coffee consumption and mortality from cardiovascular diseases and total mortality: does the brewing method matter? Eur J Prev Cardiol. 2020;27(18):1986–93. https://pubmed.ncbi.nlm.nih.gov/32320635/
Aubin HJ, Luquiens A, Berlin I. Letter by Aubin et al regarding article, “Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts.” Circulation. 2016;133(20):e659. https://pubmed.ncbi.nlm.nih.gov/27185028/
Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/
Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011;119(7):989–96. https://pubmed.ncbi.nlm.nih.gov/21367689/
Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/
Li M, Wang M, Guo W, Wang J, Sun X. The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):435–42. https://pubmed.ncbi.nlm.nih.gov/20706731/
Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49(5):1924–31. https://pubmed.ncbi.nlm.nih.gov/18263806/
Gleason JL, Richter HE, Redden DT, Goode PS, Burgio KL, Markland AD. Caffeine and urinary incontinence in US women. Int Urogynecol J. 2013;24(2):295–302. https://pubmed.ncbi.nlm.nih.gov/22699886/
Davis NJ, Vaughan CP, Johnson TM, et al. Caffeine intake and its association with urinary incontinence in United States men: results from National Health and Nutrition Examination Surveys 2005–2006 and 2007–2008. J Urol. 2013;189(6):2170–4. https://pubmed.ncbi.nlm.nih.gov/23276513/
Bonilha L, Li LM. Heavy coffee drinking and epilepsy. Seizure. 2004;13(4):284–5. https://pubmed.ncbi.nlm.nih.gov/15121141/
Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL. Food and gastroesophageal reflux disease. Curr Med Chem. 2019;26(19):3497–511. https://pubmed.ncbi.nlm.nih.gov/28521699/
Lloret-Linares C, Lafuente-Lafuente C, Chassany O, et al. Does a single cup of coffee at dinner alter the sleep? A controlled cross-over randomised trial in real-life conditions. Nutr Diet. 2012;69(4):250–5. https://onlinelibrary.wiley.com/doi/10.1111/j.1747–0080.2012.01601.x
Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/
Son H, Song HJ, Seo HJ, Lee H, Choi SM, Lee S. The safety and effectiveness of self-administered coffee enema: a systematic review of case reports. Medicine. 2020;99(36):e21998. https://pubmed.ncbi.nlm.nih.gov/32899046/
Dirks-Naylor AJ. The benefits of coffee on skeletal muscle. Life Sci. 2015;143:182–6. https://pubmed.ncbi.nlm.nih.gov/26546720/
Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176(1):1–29. https://pubmed.ncbi.nlm.nih.gov/15448977/
O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol. 2013;62(12):1043–51. https://pubmed.ncbi.nlm.nih.gov/23871889/
Mendez JD. The other legacy of Antonie van Leeuwenhoek: the polyamines. J Clin Mol Endocrinol. 2017;02(01):e107. https://clinical-and-molecular-endocrinology.imedpub.com/the-other-legacy-of-antonie-van-leeuwenhoek-the-polyamines.php?aid=19400
Bachrach U. The early history of polyamine research. Plant Physiol Biochem. 2010;48(7):490–5. https://pubmed.ncbi.nlm.nih.gov/20219382/
Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res. 2016;112:99–118. https://pubmed.ncbi.nlm.nih.gov/27015893/
Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
Kaeberlein M. Spermidine surprise for a long life. Nat Cell Biol. 2009;11(11):1277–8. https://pubmed.ncbi.nlm.nih.gov/19884883/
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011;3(8):716–32. https://pubmed.ncbi.nlm.nih.gov/21869457/
Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol. 2009;44(11):727–32. https://pubmed.ncbi.nlm.nih.gov/19735716/
Yue F, Li W, Zou J, et al. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating map1s-mediated autophagy. Cancer Res. 2017;77(11):2938–51. https://pubmed.ncbi.nlm.nih.gov/28386016/
Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. https://pubmed.ncbi.nlm.nih.gov/19801973/
Rudman D, Kutner MH, Chawla RK, Goldsmith MA, Blackston RD, Bain R. Serum and urine polyamines in normal and in short children. J Clin Invest. 1979;64(6):1661–8. https://pubmed.ncbi.nlm.nih.gov/500832/
Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/
Piore A. Can blood from young people slow aging? Silicon Valley bets it will. Newsweek. April 7, 2021. https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html. Accessed December 25, 2022.; https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html
Viltard M, Durand S, Pérez-Lanzón M, et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY). 2019;11(14):4783–800. https://pubmed.ncbi.nlm.nih.gov/31346149/
Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/
Flurkey K, Currer JM, Harrison DE. 2007. The Mouse in Aging Research. In The Mouse in Biomedical Research 2nd Edition. Fox JG, et al, editors. American College Laboratory Animal Medicine (Elsevier), Burlington, MA. pp. 637–72.; https://www.sciencedirect.com/science/article/abs/pii/B9780123694546500741?via%3Dihub
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/
Filfan M, Olaru A, Udristoiu I, et al. Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience. 2020;42(3):937–49. https://pubmed.ncbi.nlm.nih.gov/32285289/
Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/
Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/
Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Derm Pract Concept. Published online October 31, 2017:17–21.; https://pubmed.ncbi.nlm.nih.gov/29214104/
Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/
Zhang H, Alsaleh G, Feltham J, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019;76(1):110–25.e9. https://pubmed.ncbi.nlm.nih.gov/31474573/
Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/
de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/
Fetterman JL, Holbrook M, Flint N, et al. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis. 2016;247:207–17. https://pubmed.ncbi.nlm.nih.gov/26926601/
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/
Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/
Madeo F, Hofer SJ, Pendl T, et al. Nutritional aspects of spermidine. Annu Rev Nutr. 2020;40(1):135–59. https://pubmed.ncbi.nlm.nih.gov/32634331/
Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Еще раз напомним, что американская единица объема «чашка» (cup) равна 240 мл: здесь и далее во всех рецептах. – Примеч. ред.
Ali MA, Poortvliet E, Strömberg R, Yngve A. Polyamines: total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (Sno). Food Nutr Res. 2011;55(1):5455. https://pubmed.ncbi.nlm.nih.gov/21249160/
Varghese N, Werner S, Grimm A, Eckert A. Dietary mitophagy enhancer: a strategy for healthy brain aging? Antioxidants (Basel). 2020;9(10). https://pubmed.ncbi.nlm.nih.gov/33003315/
Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/
Agricultural Research Service, United States Department of Agriculture. Dill weed, fresh. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients. Published April 1, 2019. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Agricultural Research Service, United States Department of Agriculture. Potato, baked, NFS. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nut Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Agricultural Research Service, United States Department of Agriculture. Garlic, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=garlic&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103354/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/
Buyukuslu N, Hizli H, Esin K, Garipagaoglu M. A cross-sectional study: nutritional polyamines in frequently consumed foods of the Turkish population. Foods. 2014;3(4):541–57. https://pubmed.ncbi.nlm.nih.gov/28234336/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Reis GCL, Dala-Paula BM, Tavano OL, Guidi LR, Godoy HT, Gloria MBA. In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom. Food Res Int. 2020;137:109616. https://pubmed.ncbi.nlm.nih.gov/33233206/
Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Agricultural Research Service, United States Department of Agriculture. Mangos, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients. Published April 2018. Accessed February 10, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Konakovsky V, Focke M, Hoffmann-Sommergruber K, et al. Levels of histamine and other biogenic amines in high-quality red wines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(4):408–16. https://pubmed.ncbi.nlm.nih.gov/21337238/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Agricultural Research Service, United States Department of Agriculture. Lettuce, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=lettuce&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103358/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients
Fukushima T, Tanaka K, Ushijima K, Moriyama M. Retrospective study of preventive effect of maize on mortality from Parkinson’s disease in Japan. Asia Pac J Clin Nutr. 2003;12(4):447–50. https://pubmed.ncbi.nlm.nih.gov/14672869/
McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/
Rossetto MRM, Vianello F, Saeki MJ, Lima GPP. Polyamines in conventional and organic vegetables exposed to exogenous ethylene. Food Chem. 2015;188:218–24. https://pubmed.ncbi.nlm.nih.gov/26041185/
Kalac¿ P, Krausová P. A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90(1–2):219–30. https://www.sciencedirect.com/science/article/abs/pii/S0308814604002961?via%3Dihub
Kozová M, Kalac P, Pelikánová T. Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food Chem. 2009;116(2):419–25. https://www.sciencedirect.com/science/article/abs/pii/S0308814609002441?via%3Dihub
.
Binh PNT, Soda K, Kawakami M. Gross domestic product and dietary pattern among 49 western countries with a focus on polyamine intake. Health. 2010;02(11):1327–34. https://www.scirp.org/journal/paperinformation.aspx?paperid=3116
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS
Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac Fish. Published online March 16, 2021. https://www.sciencedirect.com/science/article/pii/S2468550X21000198. Accessed December 25, 2022.; https://www.sciencedirect.com/science/article/pii/S2468550X21000198
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/
Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub
Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/
Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/
Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/
MacMillen H. Could consuming semen make you live longer? Cosmopolitan. https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553–20161201?ref=feed_1. Published online November 17, 2016. Accessed May 19, 2021.; https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553-20161201?ref=feed_1
Scott E. Drinking semen might help you live longer. Metro.co.uk. https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/. Published November 18, 2016. Accessed April 29, 2021.; https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/
Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl. 2005;26(4):459–69. https://pubmed.ncbi.nlm.nih.gov/15955884/
Fair WR, Clark RB, Wehner N. A correlation of seminal polyamine levels and semen analysis in the human. Fertil Steril. 1972;23(1):38–42. https://pubmed.ncbi.nlm.nih.gov/5008948/
Definition of testament. Merriam-Webster.com. https://www.merriam-webster.com/dictionary/testament. Accessed February 11, 2023.; https://www.merriam-webster.com/dictionary/testament
Agricultural Research Service, United States Department of Agriculture. Wheat germ, plain. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients
Liaqat H, Jeong E, Kim KJ, Kim JY. Effect of wheat germ on metabolic markers: a systematic review and meta-analysis of randomized controlled trials. Food Sci Biotechnol. 2020;29(6):739–49. https://pubmed.ncbi.nlm.nih.gov/32523783/
McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/
Cara L, Borel P, Armand M, et al. Plasma lipid lowering effects of wheat germ in hypercholesterolemic subjects. Plant Foods Hum Nutr. 1991;41(2):135–50. https://pubmed.ncbi.nlm.nih.gov/1649472/
Moreira-Rosário A, Pinheiro H, Marques C, Teixeira JA, Calhau C, Azevedo LF. Does intake of bread supplemented with wheat germ have a preventive role on cardiovascular disease risk markers in healthy volunteers? A randomised, controlled, crossover trial. BMJ Open. 2019;9(1):e023662. https://pubmed.ncbi.nlm.nih.gov/30659039/
Atallahi M, Amir Ali Akbari S, Mojab F, Alavi Majd H. Effects of wheat germ extract on the severity and systemic symptoms of primary dysmenorrhea: a randomized controlled clinical trial. Iran Red Crescent Med J. 2014;16(8). https://pubmed.ncbi.nlm.nih.gov/25389490/
Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr. 2013;109 Suppl 2:S81–5. https://pubmed.ncbi.nlm.nih.gov/23360884/
Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol. 2001;13(9):1021–5. https://pubmed.ncbi.nlm.nih.gov/11564949/
Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/
Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(2):227–34. https://pubmed.ncbi.nlm.nih.gov/19703328/
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
Matsumoto M, Aranami A, Ishige A, Watanabe K, Benno Y. LKM512 yogurt consumption improves the intestinal environment and induces the T-helper type 1 cytokine in adult patients with intractable atopic dermatitis. Clin Exp Allergy. 2007;37(3):358–70. https://pubmed.ncbi.nlm.nih.gov/17359386/
Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/
Kibe R, Kurihara S, Sakai Y, et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep. 2014;4(1):4548. https://pubmed.ncbi.nlm.nih.gov/24686447/
Matsumoto M, Kitada Y, Naito Y. Endothelial function is improved by inducing microbial polyamine production in the gut: a randomized placebo-controlled trial. Nutrients. 2019;11(5). https://pubmed.ncbi.nlm.nih.gov/31137855/
Matsumoto M. Prevention of atherosclerosis by the induction of microbial polyamine production in the intestinal lumen. Biol Pharm Bull. 2020;43(2):221–9. https://pubmed.ncbi.nlm.nih.gov/32009110/
Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/
de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/
Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/
Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol. 2020;10. https://pubmed.ncbi.nlm.nih.gov/33117715/
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/
Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/
Barardo D, Thornton D, Thoppil H, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017;16(3):594–7. https://pubmed.ncbi.nlm.nih.gov/28299908/
DrugAge: database of ageing-related drugs. https://genomics.senescence.info/drugs/stats.php. Updated February 7, 2023. Accessed February 11, 2023.; https://genomics.senescence.info/drugs/stats.php
Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. https://pubmed.ncbi.nlm.nih.gov/32562114/
Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904
Larqué E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007;23(1):87–95. https://pubmed.ncbi.nlm.nih.gov/17113752/
Khandia R, Dadar M, Munjal A, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7):674. https://pubmed.ncbi.nlm.nih.gov/31277291/
Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.; https://pubmed.ncbi.nlm.nih.gov/13905658/
Zhang H, Simon AK. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy. 2020;16(1):181–2. https://pubmed.ncbi.nlm.nih.gov/31679458/
Luo J, Si H, Jia Z, Liu D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021;10(2):283. https://pubmed.ncbi.nlm.nih.gov/33668479/
Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch-Eur J Physiol. 2017;469(9):1051–9. https://pubmed.ncbi.nlm.nih.gov/28389776/
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. https://pubmed.ncbi.nlm.nih.gov/29457783/
Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78(7):3333–54. https://pubmed.ncbi.nlm.nih.gov/33439271/
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31. https://pubmed.ncbi.nlm.nih.gov/29054535/
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
Hofmann B. Young blood rejuvenates old bodies: a call for reflection when moving from mice to men. Transfus Med Hemother. 2018;45(1):67–71. https://pubmed.ncbi.nlm.nih.gov/29593463/
Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7. https://pubmed.ncbi.nlm.nih.gov/4507935/
Lavazza A, Garasic M. Vampires 2.0? The ethical quandaries of young blood infusion in the quest for eternal life. Med Health Care Philos. 2020;23(3):421–32. https://pubmed.ncbi.nlm.nih.gov/32447568/
Rebo J, Mehdipour M, Gathwala R, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7(1):13363. https://pubmed.ncbi.nlm.nih.gov/27874859/
Mehdipour M, Skinner C, Wong N, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12(10):8790–819. https://pubmed.ncbi.nlm.nih.gov/32474458/
Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. https://pubmed.ncbi.nlm.nih.gov/32715623/
Biller-Andorno N. Young blood for old hands? A recent anti-ageing trial prompts ethical questions. Swiss Med Wkly. 2016;146(3940):w14359. https://pubmed.ncbi.nlm.nih.gov/27684581/
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082705/
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16INK4a-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845101/
de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/
Chen X, Yi Z, Wong GT, et al. Is exercise a senolytic medicine? A systematic review. Aging Cell. 2021;20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811843/
Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17(3):e12746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946078/
Rusznyák S, Szent-Györgyi A. Vitamin P: flavonols as vitamins. Nature. 1936;138(3479):27. https://www.nature.com/articles/138027a0
Belinha I, Amorim MA, Rodrigues P, et al. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem. 2007;55(6):2446–51. https://pubmed.ncbi.nlm.nih.gov/17323973/
Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395/
Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/
Geng L, Liu Z, Wang S, et al. Low-dose quercetin positively regulates mouse healthspan. Protein Cell. 2019;10(10):770–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776572/
Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:1–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790550/
Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/
Mai F, Glomb MA. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem. 2013;61(11):2868–74. https://pubmed.ncbi.nlm.nih.gov/23473017/
Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/
Agricultural Research Service, United States Department of Agriculture. Onions, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/170000/nutrients. Published April 1, 2019. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients
Agricultural Research Service, United States Department of Agriculture. Onions, red, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/790577/nutrients. Published April 1, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients
Agricultural Research Service, United States Department of Agriculture. Apple, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients. Published October 30, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients
Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/
Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci. 2019;30(5):555–72. https://pubmed.ncbi.nlm.nih.gov/30753166/
Vida RG, Fittler A, Somogyi-Végh A, Poór M. Dietary quercetin supplements: assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res. 2019;33(7):1912–20. https://pubmed.ncbi.nlm.nih.gov/31155780/
Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205. https://pubmed.ncbi.nlm.nih.gov/17698276/
Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796530/
Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267
Bondonno NP, Bondonno CP, Blekkenhorst LC, et al. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res. 2018;62(3). https://pubmed.ncbi.nlm.nih.gov/29086478/
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://pubmed.ncbi.nlm.nih.gov/31940027/
Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://pubmed.ncbi.nlm.nih.gov/31017459/
Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71(9):1033–9. https://pubmed.ncbi.nlm.nih.gov/28537580/
Nakagawa T, Itoh M, Ohta K, et al. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport. 2016;27(9):671–6. https://pubmed.ncbi.nlm.nih.gov/27145228/
Nishimura M, Ohkawara T, Nakagawa T, et al. A randomized, double-blind, placebo-controlled study evaluating the effects of quercetin-rich onion on cognitive function in elderly subjects. FFHD. 2017;7(6):353–74. https://ffhdj.com/index.php/ffhd/article/view/334
Kalus U, Pindur G, Jung F, et al. Influence of the onion as an essential ingredient of the Mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung. 2000;50(9):795–801. https://pubmed.ncbi.nlm.nih.gov/11050695/
Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342(8878):1007–11. https://pubmed.ncbi.nlm.nih.gov/8105262/
Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267
Hwang HV, Tran DT, Rebuffatti MN, Li CS, Knowlton AA. Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE. 2018;13(1):e0190374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760026/
Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets. 2016;20(6):689–703. https://pubmed.ncbi.nlm.nih.gov/26667209/
Geng L, Liu Z, Zhang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell. 2019;10(6):417–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538594/
Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–71. https://pubmed.ncbi.nlm.nih.gov/20619334/
Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL–XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391241/
Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619/
Li W, Qin L, Feng R, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6. https://pubmed.ncbi.nlm.nih.gov/31077707/
Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. PNAS. 2006;103(44):16568–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637622/
Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://pubmed.ncbi.nlm.nih.gov/29541713/
Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/
U.S. National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=
Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/
Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/
Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/
Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/
Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/
Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/
Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/
Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/
Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/
Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/
Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/
van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/
López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/
Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
Американская кантри-певица и киноактриса. – Примеч. ред.
BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm
Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/
Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/
Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/
López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/
Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–13. https://pubmed.ncbi.nlm.nih.gov/22186258/
Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://pubmed.ncbi.nlm.nih.gov/13054692/
Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/
Salzberg SL. Open questions: how many genes do we have? BMC Biol. 2018;16(1):94. https://pubmed.ncbi.nlm.nih.gov/30124169/
Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32. https://pubmed.ncbi.nlm.nih.gov/26937346/
vel Szic KS, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7(1):33. https://pubmed.ncbi.nlm.nih.gov/25861393/
Li X, Yi C. A novel epigenetic mark derived from vitamin C. Biochemistry. 2020;59(1):8–9. https://pubmed.ncbi.nlm.nih.gov/31538774/
Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. https://pubmed.ncbi.nlm.nih.gov/29268958/
Mitteldorf J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. In: Yashin AI, Jazwinski SM, eds. Aging and Health – A Systems Biology Perspective. Interdisciplinary Topics in Gerontology, vol 40. Karger, Basel;2015:49–62. https://pubmed.ncbi.nlm.nih.gov/25341512/
Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/
Vaiserman AM. Hormesis and epigenetics: is there a link? Ageing Res Rev. 2011;10(4):413–21. https://pubmed.ncbi.nlm.nih.gov/21292042/
Kawahata A, Sakamoto H. Some observations on sweating of the Aino. Jpn J Physiol. 1951;2(2):166–9. https://pubmed.ncbi.nlm.nih.gov/14897491/
Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115(10):1243–9. https://pubmed.ncbi.nlm.nih.gov/18715409/
Ornish D, Magbanua MJ, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/
Corona M, Velarde RA, Remolina S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci USA. 2007;104(17):7128–33. https://pubmed.ncbi.nlm.nih.gov/17438290/
Bacalini MG, Friso S, Olivieri F, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136–137:101–15. https://pubmed.ncbi.nlm.nih.gov/24388875/
Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. https://pubmed.ncbi.nlm.nih.gov/18339900/
Hadi A, Najafgholizadeh A, Aydenlu ES, et al. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: a meta-analysis. J Funct Foods. 2018;41:202–9. https://www.sciencedirect.com/science/article/abs/pii/S1756464617307284?via%3Dihub
Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/
Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. https://pubmed.ncbi.nlm.nih.gov/11181995/
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/
Устройство, выполняющее очень простое действие чрезвычайно сложным образом. Как правило, это происходит посредством длинной последовательности взаимодействий по «принципу домино». – Примеч. ред.
Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/
Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/
Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/
Social Security Administration. Actuarial life table. Period life table, 2017. Social Security Administration. https://www.ssa.gov/oact/STATS/table4c6.html. Accessed May 26, 2021.; https://www.ssa.gov/oact/STATS/table4c6.html
McCrory C, Fiorito G, Hernandez B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76(5):741–9. https://pubmed.ncbi.nlm.nih.gov/33211845/
Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/
Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/
Mitteldorf J. An incipient revolution in the testing of anti-aging strategies. Biochemistry (Mosc). 2018;83(12):1517–23. https://pubmed.ncbi.nlm.nih.gov/30878026/
Horvath S, Pirazzini C, Bacalini MG, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015;7(12):1159–70. https://pubmed.ncbi.nlm.nih.gov/26678252/
Declerck K, Vanden Berghe W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29. https://pubmed.ncbi.nlm.nih.gov/29337038/
Austad SN, Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology. 2015;62(1):40–6. https://pubmed.ncbi.nlm.nih.gov/25968226/
Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/
Beach SRH, Dogan MV, Lei MK, et al. Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J Am Geriatr Soc. 2015;63(12):2519–25. https://pubmed.ncbi.nlm.nih.gov/26566992/
Vyas CM, Hazra A, Chang SC, et al. Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry. 2019;9(1):118. https://pubmed.ncbi.nlm.nih.gov/30886137/
Pavanello S, Campisi M, Tona F, Dal Lin C, Iliceto S. Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age. Int J Environ Res Public Health. 2019;16(17):3074. https://pubmed.ncbi.nlm.nih.gov/31450859/
Chaix R, Alvarez-López MJ, Fagny M, et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology. 2017;85:210–4. https://pubmed.ncbi.nlm.nih.gov/28889075/
Maegawa S, Lu Y, Tahara T, et al. Caloric restriction delays age-related methylation drift. Nat Commun. 2017;8(1):539. https://pubmed.ncbi.nlm.nih.gov/28912502/
Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/
Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/
Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/
de Toro-Martín J, Guénard F, Tchernof A, et al. Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics. 2019;11(1):172. https://pubmed.ncbi.nlm.nih.gov/31791395/
Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/
Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://pubmed.ncbi.nlm.nih.gov/30669119/
Quach A, Levine ME, Tanaka T, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–37. https://pubmed.ncbi.nlm.nih.gov/28198702/
Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18. https://pubmed.ncbi.nlm.nih.gov/22022340/
Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://pubmed.ncbi.nlm.nih.gov/29676998/
Dugué PA, Bassett JK, Joo JE, et al. Association of DNA methylation-based biological age with health risk factors and overall and cause-specific mortality. Am J Epidemiol. 2018;187(3):529–38. https://pubmed.ncbi.nlm.nih.gov/29020168/
Lind PM, Salihovic S, Lind L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ Int. 2018;113:109–13. https://pubmed.ncbi.nlm.nih.gov/29421399/
Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010;48(5):1311–5. https://pubmed.ncbi.nlm.nih.gov/20188779/
Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget. 2016;7(46):74510–25. https://pubmed.ncbi.nlm.nih.gov/27793020/
Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. J Gerontol A Biol Sci Med Sci. 2020;75(3):481–94. https://pubmed.ncbi.nlm.nih.gov/31001624/
Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/
Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/
Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/
Nobel Media AB 2021. Shinya Yamanaka – Facts. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/. Accessed June 5, 2021.; https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://pubmed.ncbi.nlm.nih.gov/16904174/
Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. Regeneration. 2015;2(4):149–68. https://pubmed.ncbi.nlm.nih.gov/27499873/
Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588(7836):124–9. https://pubmed.ncbi.nlm.nih.gov/33268865/
Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. https://pubmed.ncbi.nlm.nih.gov/22961225/
Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. https://pubmed.ncbi.nlm.nih.gov/28275132/
Miles FL, Mashchak A, Filippov V, et al. DNA methylation profiles of vegans and non-vegetarians in the Adventist Health Study-2 cohort. Nutrients. 2020;12(12):3697. https://pubmed.ncbi.nlm.nih.gov/33266012/
Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014;100 Suppl 1:378S-85S. https://pubmed.ncbi.nlm.nih.gov/24898235/
Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/
McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/
Thaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2009;101(5):743–9. https://pubmed.ncbi.nlm.nih.gov/18684339/
Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94. https://pubmed.ncbi.nlm.nih.gov/23098078/
ElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961–76. https://pubmed.ncbi.nlm.nih.gov/30355391/
Miller JW. Factors associated with different forms of folate in human serum: the folate folio continues to grow. J Nutr. 2020;150(4):650–1. https://pubmed.ncbi.nlm.nih.gov/32119743/
Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/
ter Borg S, Verlaan S, Hemsworth J, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206. https://pubmed.ncbi.nlm.nih.gov/25822905/
Jacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12. https://pubmed.ncbi.nlm.nih.gov/9649607/
Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/
Amenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults – a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–66. https://pubmed.ncbi.nlm.nih.gov/31977026/
Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/
Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. https://pubmed.ncbi.nlm.nih.gov/20933124/
Eaton SB, Eaton SB. Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr. 2000;39(2):67–70. https://pubmed.ncbi.nlm.nih.gov/10918987/
Метилентетрагидрофолатредуктаза, ключевой фермент фолатного цикла. – Примеч. ред.
Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/
Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/
Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(11). https://pubmed.ncbi.nlm.nih.gov/27854316/
Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11. https://pubmed.ncbi.nlm.nih.gov/11929966/
Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/
Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/
Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/
Seitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD. Alcohol and cancer. Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):137S-43S. https://pubmed.ncbi.nlm.nih.gov/15082451/
Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/
Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/
Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/
Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/
Crider KS, Bailey LB, Berry RJ. Folic acid food fortification – its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84. https://pubmed.ncbi.nlm.nih.gov/22254102/
Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9. https://pubmed.ncbi.nlm.nih.gov/19706381/
Selhub J, Rosenberg IH. Excessive folic acid intake and relation to adverse health outcome. Biochimie. 2016;126:71–8. https://pubmed.ncbi.nlm.nih.gov/27131640/
Troen AM, Mitchell B, Sorensen B, et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006;136(1):189–94. https://pubmed.ncbi.nlm.nih.gov/16365081/
Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/
U.S. Preventive Services Task Force. Final recommendation statement: folic acid for the prevention of neural tube defects: preventive medication. U.S. Preventive Services Task Force. https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication. Published January 10, 2017. Accessed May 26, 2021.; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication
Dudeja PK, Torania SA, Said HM. Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. Am J Physiol. 1997;272(6Pt1):G1408–15. https://pubmed.ncbi.nlm.nih.gov/9227476/
Strozzi GP, Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol. 2008;42 Suppl 3 Pt 2:S179–84. https://pubmed.ncbi.nlm.nih.gov/18685499/
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by processed animal feed: the role of Maillard reaction products and advanced glycation end-products (AGEs). Front Immunol. 2018;9:2088. https://pubmed.ncbi.nlm.nih.gov/30271411/
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
Unnikrishnan R, Anjana RM, Mohan V. Drugs affecting HbA1c levels. Indian J Endocrinol Metab. 2012;16(4):528–31. https://pubmed.ncbi.nlm.nih.gov/22837911/
American Diabetes Association. Understanding A1C. American Diabetes Association website. https://www.diabetes.org/a1c. Accessed June 2, 2021.; https://www.diabetes.org/a1c
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31. https://pubmed.ncbi.nlm.nih.gov/10976109/
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. Am J Lifestyle Med. 2019;13(4):384–404. https://pubmed.ncbi.nlm.nih.gov/31285723/
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Sergi D, Boulestin H, Campbell FM, Williams LM. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res. 2021;65(1):1900934. https://pubmed.ncbi.nlm.nih.gov/32246887/
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
Azman KF, Zakaria R. D-galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763–82. https://pubmed.ncbi.nlm.nih.gov/31538262/
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/
Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Sgarbieri VC, Amaya J, Tanaka M, Chichester CO. Response of rats to amino acid supplementation of brown egg albumin. J Nutr. 1973;103(12):1731–8. https://pubmed.ncbi.nlm.nih.gov/4201784/
Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/
Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Babtan AM, Ilea A, Bosca BA, et al. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med. 2019;13(6):479–95. https://pubmed.ncbi.nlm.nih.gov/30968701/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Clarivate. Web of science. https://clarivate.com/webofsciencegroup/solutions/web-of-science/. Accessed June 5, 2021.; https://clarivate.com/webofsciencegroup/solutions/web-of-science/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/
Hellwig M, Gensberger-Reigl S, Henle T, Pischetsrieder M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin Cancer Biol. 2018;49:1–8. https://pubmed.ncbi.nlm.nih.gov/29174601/
Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, et al. Comparative evaluation of three different ELISA assays and HPLC-ESI–ITMS/MS for the analysis of Ne-carboxymethyl lysine in food samples. Food Chem. 2018;243:11–8. https://pubmed.ncbi.nlm.nih.gov/29146316/
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/
Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep. 2021;14(5):46. https://pubmed.ncbi.nlm.nih.gov/33786175/
Morales FJ, Somoza V, Fogliano V. Physiological relevance of dietary melanoidins. Amino Acids. 2012;42(4):1097–109. https://pubmed.ncbi.nlm.nih.gov/20949365/
Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1–12. https://pubmed.ncbi.nlm.nih.gov/26236094/
Cai W, Gao Q, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002;8(7):337–46. https://pubmed.ncbi.nlm.nih.gov/12393931/
Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1025–33. https://pubmed.ncbi.nlm.nih.gov/9846884/
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/
Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/
del Castillo MD, Iriondo-DeHond A, Iriondo-DeHond M, et al. Healthy eating recommendations: good for reducing dietary contribution to the body’s advanced glycation/lipoxidation end products pool? Nutr Res Rev. 2021;34(1):48–63. https://pubmed.ncbi.nlm.nih.gov/32450931/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Davis KE, Prasad C, Vijayagopal P, Juma S, Adams-Huet B, Imrhan V. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat. Br J Nutr. 2015;114(11):1797–806. https://pubmed.ncbi.nlm.nih.gov/26392152/
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/
Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64(6):886–90. https://pubmed.ncbi.nlm.nih.gov/15897309/
Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford). 2003;42(10):1242–6. https://pubmed.ncbi.nlm.nih.gov/12777635/
Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30. https://pubmed.ncbi.nlm.nih.gov/15243705/
Mahmoudi R, Jaisson S, Badr S, et al. Post-translational modification-derived products are associated with frailty status in elderly subjects. Clin Chem Lab Med. 2019;57(8):1153–61. https://pubmed.ncbi.nlm.nih.gov/30817296/
Cavero-Redondo I, Soriano-Cano A, Álvarez-Bueno C, et al. Skin autofluorescence – indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833. https://pubmed.ncbi.nlm.nih.gov/30371199/
Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J Alzheimers Dis. 2017;55(4):1481–7. https://pubmed.ncbi.nlm.nih.gov/27858716/
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/
Holloway CJ, Cochlin LE, Emmanuel Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr. 2011;93(4):748–55. https://pubmed.ncbi.nlm.nih.gov/21270386/
Cai W, He JC, Zhu L, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902. https://pubmed.ncbi.nlm.nih.gov/17525257/
Akhter F, Chen D, Akhter A, et al. High dietary advanced glycation end products impair mitochondrial and cognitive function. J Alzheimers Dis. 2020;76(1):165–78. https://pubmed.ncbi.nlm.nih.gov/32444539/
Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/
Tsakiri EN, Iliaki KK, Höhn A, et al. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med. 2013;65:1155–63. https://pubmed.ncbi.nlm.nih.gov/23999505/
Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/
Cai W, He JC, Zhu L, et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173(2):327–36. https://pubmed.ncbi.nlm.nih.gov/18599606/
Negrean M, Stirban A, Stratmann B, et al. Effects of low- and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43. https://pubmed.ncbi.nlm.nih.gov/17490958/
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
Gaesser GA, Rodriguez J, Patrie JT, Whisner CM, Angadi SS. Effects of glycemic index and cereal fiber on postprandial endothelial function, glycemia, and insulinemia in healthy adults. Nutrients. 2019;11(10):2387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835298/
Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004;292(20):2482–90. https://pubmed.ncbi.nlm.nih.gov/15562127/
Jenkins DJ, Taylor RH, Goff DV, et al. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes. 1981;30(11):951–4. https://pubmed.ncbi.nlm.nih.gov/7028548/
Augustin LSA, Kendall CWC, Jenkins DJA, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. https://pubmed.ncbi.nlm.nih.gov/26160327/
Schnell O, Weng J, Sheu WH, et al. Acarbose reduces body weight irrespective of glycemic control in patients with diabetes: results of a worldwide, non-interventional, observational study data pool. J Diabetes Complicat. 2016;30(4):628–37. https://pubmed.ncbi.nlm.nih.gov/26935335/
Tsunosue M, Mashiko N, Ohta Y, et al. An a-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin Exp Med. 2010;10(2):139–41. https://pubmed.ncbi.nlm.nih.gov/19834782/
Newman JC, Milman S, Hashmi SK, et al. Strategies and challenges in clinical trials targeting human aging. J Gerontol A Biol Sci Med Sci. 2016;71(11):1424–34. https://pubmed.ncbi.nlm.nih.gov/27535968/
Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/
Jenkins D, Wolever T, Taylor R, Barker H, Fielden H. Exceptionally low blood glucose response to dried beans: comparison with other carbohydrate foods. BMJ. 1980;281(6240):578–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1713902/
Jenkins DJ, Wolever TM, Taylor RH, et al. Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr. 1982;35(6):1339–46. https://pubmed.ncbi.nlm.nih.gov/6282105/
Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR. Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988;48(4):1041–7. https://pubmed.ncbi.nlm.nih.gov/2844076/
Mollard RC, Wong CL, Luhovyy BL, Anderson GH. First and second meal effects of pulses on blood glucose, appetite, and food intake at a later meal. Appl Physiol Nutr Metab. 2011;36(5):634–42. https://pubmed.ncbi.nlm.nih.gov/21957874/
Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60. https://pubmed.ncbi.nlm.nih.gov/23089999/
Sievenpiper JL, Chiavaroli L, de Souza RJ, et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012;108(3):418–23. https://pubmed.ncbi.nlm.nih.gov/22354959/
Christensen AS, Viggers L, Hasselström K, Gregersen S. Effect of fruit restriction on glycemic control in patients with type 2 diabetes – a randomized trial. Nutr J. 2013;12:29. https://pubmed.ncbi.nlm.nih.gov/23497350/
Choo VL, Viguiliouk E, Mejia SB, et al. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ. 2018;363:k4644. https://pubmed.ncbi.nlm.nih.gov/30463844/
McSwiney FT, Doyle L. Low-carbohydrate ketogenic diets in male endurance athletes demonstrate different micronutrient contents and changes in corpuscular haemoglobin over 12 weeks. Sports (Basel). 2019;7(9):201. https://pubmed.ncbi.nlm.nih.gov/31480346/
Sweeney JS. Dietary factors that influence the dextrose tolerance test: a preliminary study. Arch Intern Med (Chic). 1927;40(6):818–30. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/535594
Manco M, Bertuzzi A, Salinari S, et al. The ingestion of saturated fatty acid triacylglycerols acutely affects insulin secretion and insulin sensitivity in human subjects. Br J Nutr. 2004;92(6):895–903. https://pubmed.ncbi.nlm.nih.gov/15613251/
Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism. 2016;65(11):1621–8. https://pubmed.ncbi.nlm.nih.gov/27733250/
Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed Res Int. 2014;2014:238485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966409/
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/
Franz MJ. Protein and diabetes: much advice, little research. Curr Diab Rep. 2002;2(5):457–64. https://pubmed.ncbi.nlm.nih.gov/12643172/
Jones AW, Rössner S. False-positive breath-alcohol test after a ketogenic diet. Int J Obes (Lond). 2007;31(3):559–61. https://pubmed.ncbi.nlm.nih.gov/16894360/
Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/
Tey SL, Salleh NB, Henry CJ, Forde CG. Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. Eur J Clin Nutr. 2017;71(9):1129–32. https://pubmed.ncbi.nlm.nih.gov/28378852/
Coca-Cola. Nutrition facts – original 20 fl oz. https://us.coca-cola.com/products/coca-cola/original. Accessed December 26, 2022.; https://us.coca-cola.com/products/coca-cola/original
Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes (Lond). 2017;41(3):450–7. https://pubmed.ncbi.nlm.nih.gov/27956737/
Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36(9):2530–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747933/
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
Brand JC, Nicholson PL, Thorburn AW, Truswell AS. Food processing and the glycemic index. Am J Clin Nutr. 1985;42(6):1192–6. https://pubmed.ncbi.nlm.nih.gov/4072954/
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
Mofidi A, Ferraro ZM, Stewart KA, et al. The acute impact of ingestion of sourdough and whole-grain breads on blood glucose, insulin, and incretins in overweight and obese men. J Nutr Metab. 2012;2012:184710. https://pubmed.ncbi.nlm.nih.gov/22474577/
Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/
Jenkins DJ, Wesson V, Wolever TM, et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ. 1988;297(6654):958–60. https://pubmed.ncbi.nlm.nih.gov/3142566/
Breen C, Ryan M, Gibney MJ, Corrigan M, O’Shea D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013;39(3):376–86. https://pubmed.ncbi.nlm.nih.gov/23482513/
Reynolds AN, Mann J, Elbalshy M, et al. Wholegrain particle size influences postprandial glycemia in type 2 diabetes: a randomized crossover study comparing four wholegrain breads. Dia Care. 2020;43(2):476–9. https://pubmed.ncbi.nlm.nih.gov/31744812/
Burton P, Lightowler HJ. The impact of freezing and toasting on the glycaemic response of white bread. Eur J Clin Nutr. 2008;62(5):594–9. https://pubmed.ncbi.nlm.nih.gov/17426743/
Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/
Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/
de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM. Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr. 2017;57(2):372–90. https://pubmed.ncbi.nlm.nih.gov/25875451/
Narayanan J, Sanjeevi V, Rohini U, Trueman P, Viswanathan V. Postprandial glycaemic response of foxtail millet dosa in comparison to a rice dosa in patients with type 2 diabetes. Indian J Med Res. 2016;144(5):712–7. https://pubmed.ncbi.nlm.nih.gov/28361824/
Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/
Abdelgadir M, Abbas M, Järvi A, Elbagir M, Eltom M, Berne C. Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet Med. 2005;22(2):213–7. https://pubmed.ncbi.nlm.nih.gov/15660741/
Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/
Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M. Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants. Arch Med Sci. 2020;16(2):260–72. https://pubmed.ncbi.nlm.nih.gov/32190135/
Fernandes G, Velangi A, Wolever TMS. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005;105(4):557–62. https://pubmed.ncbi.nlm.nih.gov/15800557/
Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010;56(1):74–9. https://pubmed.ncbi.nlm.nih.gov/20068289/
Leeman M, Östman E, Björck I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr. 2005;59(11):1266–71. https://pubmed.ncbi.nlm.nih.gov/16034360/
Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit a-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem. 2011;59(6):2324–31. https://pubmed.ncbi.nlm.nih.gov/21329358/
Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: effect on fasting blood sugar and induced hyperglycemia in man. Indian J Med Res. 1977;65(3):422–9. https://pubmed.ncbi.nlm.nih.gov/336527/
Haldar S, Chia SC, Lee SH, et al. Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose-response randomized controlled crossover trial. Eur J Nutr. 2019;58(1):301–13. https://pubmed.ncbi.nlm.nih.gov/29236165/
Azzeh FS. Synergistic effect of green tea, cinnamon and ginger combination on enhancing postprandial blood glucose. Pak J Biol Sci. 2013;16(2):74–9. https://pubmed.ncbi.nlm.nih.gov/24199490/
Hajizadeh-Sharafabad F, Varshosaz P, Jafari-Vayghan H, Alizadeh M, Maleki V. Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: a systematic review. Complement Ther Med. 2020;48:102284. https://pubmed.ncbi.nlm.nih.gov/31987240/
Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/
Kermanian S, Mozaffari-Khosravi H, Dastgerdi G, Zavar-Reza J, Rahmanian M. The effect of chamomile tea versus black tea on glycemic control and blood lipid profiles in depressed patients with type 2 diabetes: a randomized clinical trial. JNFS, 2018;3(3):157–66. https://jnfs.ssu.ac.ir/article-1-197-en.pdf
Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/
Pirouzpanah S, Mahboob S, Sanayei M, Hajaliloo M, Safaeiyan A. The effect of chamomile tea consumption on inflammation among rheumatoid arthritis patients: randomized clinical trial. Prog Nutr. 2017;19(1-S)27–33. https://doi.org/10.23751/PN.V19I1-S.5171
Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016;72(2):306–15. https://pubmed.ncbi.nlm.nih.gov/26483209/
Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016;32(1):66–72. https://pubmed.ncbi.nlm.nih.gov/26437613/
Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Mol Nutr Food Res. 2017;61(12):1700566. https://pubmed.ncbi.nlm.nih.gov/28868668/
Bowen AJ, Reeves RL. Diurnal variation in glucose tolerance. Arch Intern Med. 1967;119(3):261–4. https://pubmed.ncbi.nlm.nih.gov/6019944/
Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997;18(5):716–38. https://pubmed.ncbi.nlm.nih.gov/9331550/
Bandín C, Scheer FA, Luque AJ, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond). 2015;39(5):828–33. https://pubmed.ncbi.nlm.nih.gov/25311083/
Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014;33(5):889–94. https://pubmed.ncbi.nlm.nih.gov/24135087/
3,2 км/ч. – Примеч. ред.
Colberg SR, Zarrabi L, Bennington L, et al. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009;10(6):394–7. https://pubmed.ncbi.nlm.nih.gov/19560716/
Haxhi J, Scotto di Palumbo A, Sacchetti M. Exercising for metabolic control: is timing important? Ann Nutr Metab. 2013;62(1):14–25. https://pubmed.ncbi.nlm.nih.gov/23208206/
Reynolds AN, Mann JI, Williams S, Venn BJ. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia. 2016;59(12):2572–8. https://pubmed.ncbi.nlm.nih.gov/27747394/
Rahmadi A, Steiner N, Münch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):385–91. https://pubmed.ncbi.nlm.nih.gov/21275816/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130(1):48–53. https://pubmed.ncbi.nlm.nih.gov/25871778/
Yamagishi S, Nakamura K, Matsui T, Inoue H, Takeuchi M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(3):666–8. https://pubmed.ncbi.nlm.nih.gov/17331665/
MIMS. Kremezin full prescribing information, dosage & side effects. https://www.mims.com/philippines/drug/info/kremezin?type=full. Accessed December 26, 2022.; https://www.mims.com/philippines/drug/info/kremezin?type=full
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94(25):13915–20. https://pubmed.ncbi.nlm.nih.gov/9391127/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4. https://pubmed.ncbi.nlm.nih.gov/8247153/
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
Partridge L, Harvey PH. Gerontology. Methuselah among nematodes. Nature. 1993;366(6454):404–5. https://pubmed.ncbi.nlm.nih.gov/8247143/
Мрачный жнец – образ смерти. – Примеч. ред.
Coffer P. OutFOXing the grim reaper: novel mechanisms regulating longevity by Forkhead transcription factors. Sci STKE. 2003;2003(201):PE39. https://pubmed.ncbi.nlm.nih.gov/14506287/
Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/
Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/
Vitale G, Pellegrino G, Vollery M, Hofland LJ. Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective. Front Endocrinol. 2019;10:27. https://pubmed.ncbi.nlm.nih.gov/30774624/
Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/
Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol. 2013;9(6):366–76. https://pubmed.ncbi.nlm.nih.gov/23591370/
Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/
Vitale G, Brugts MP, Ogliari G, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY). 2012;4(9):580–9. https://pubmed.ncbi.nlm.nih.gov/22983440/
Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/
Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/
Ben-Avraham D, Govindaraju DR, Budagov T, et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv. 2017;3(6):e1602025. https://pubmed.ncbi.nlm.nih.gov/28630896/
Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/
Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/
van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 2015;7(11):956–63. https://pubmed.ncbi.nlm.nih.gov/26568155/
Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/
Tazearslan C, Huang J, Barzilai N, Suh Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell. 2011;10(3):551–4. https://pubmed.ncbi.nlm.nih.gov/21388493/
Bartke A. Healthy aging: is smaller better? – a mini-review. Gerontology. 2012;58(4):337–43. https://pubmed.ncbi.nlm.nih.gov/22261798/
Michell AR. Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease. Vet Rec. 1999;145(22):625–9. https://pubmed.ncbi.nlm.nih.gov/10619607/
Sutter NB, Bustamante CD, Chase K, et al. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316(5821):112–5. https://pubmed.ncbi.nlm.nih.gov/17412960/
Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/
Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/
Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/
Samaras TT, Elrick H, Storms LH. Is height related to longevity? Life Sci. 2003;72(16):1781–802. https://pubmed.ncbi.nlm.nih.gov/12586217/
Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/
Один дюйм равен 2,54 см. – Примеч. ред.
Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/
Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/
Shors AR, Solomon C, McTiernan A, White E. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001;12(7):599–606. https://pubmed.ncbi.nlm.nih.gov/11552707/
Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/
Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/
Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17(9):2941–53. https://pubmed.ncbi.nlm.nih.gov/10561374/
Murphy N, Knuppel A, Papadimitriou N, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ~430 000 women. Ann Oncol. 2020;31(5):641–9. https://pubmed.ncbi.nlm.nih.gov/32169310/
Chi F, Wu R, Zeng Y, Xing R, Liu Y. Circulation insulin-like growth factor peptides and colorectal cancer risk: an updated systematic review and meta-analysis. Mol Biol Rep. 2013;40(5):3583–90. https://pubmed.ncbi.nlm.nih.gov/23269623/
Travis RC, Appleby PN, Martin RM, et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 2016;76(8):2288–300. https://pubmed.ncbi.nlm.nih.gov/26921328/
Cao H, Wang G, Meng L, et al. Association between circulating levels of IGF-1 and IGFBP-3 and lung cancer risk: a meta-analysis. PLoS One. 2012;7(11):e49884. https://pubmed.ncbi.nlm.nih.gov/23185474/
Li Y, Li Y, Zhang J, et al. Circulating insulin-like growth factor-1 level and ovarian cancer risk. Cell Physiol Biochem. 2016;38(2):589–97. https://pubmed.ncbi.nlm.nih.gov/26845340/
Gong Y, Zhang B, Liao Y, et al. Serum insulin-like growth factor axis and the risk of pancreatic cancer: systematic review and meta-analysis. Nutrients. 2017;9(4):394. https://pubmed.ncbi.nlm.nih.gov/28420208/
Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor I and risk of breast cancer. Lancet. 1998;351(9113):1393–6. https://pubmed.ncbi.nlm.nih.gov/9593409/
Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst. 2012;104(13):975–81. https://pubmed.ncbi.nlm.nih.gov/22761272/
Quan H, Tang H, Fang L, Bi J, Liu Y, Li H. IGF1(CA)19 and IGFBP-3–202A/C gene polymorphism and cancer risk: a meta-analysis. Cell Biochem Biophys. 2014;69(1):169–78. https://pubmed.ncbi.nlm.nih.gov/24310658/
Yokoyama NN, Denmon AP, Uchio EM, Jordan M, Mercola D, Zi X. When anti-aging studies meet cancer chemoprevention: can anti-aging agent kill two birds with one blow? Curr Pharmacol Rep. 2015;1(6):420–33. https://pubmed.ncbi.nlm.nih.gov/26756023/
Elia I, Doglioni G, Fendt SM. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 2018;28(8):673–84. https://pubmed.ncbi.nlm.nih.gov/29747903/
Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev. 2009;30(1):51–74. https://pubmed.ncbi.nlm.nih.gov/19075184/
Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/
Zhang Y, Ma B, Fan Q. Mechanisms of breast cancer bone metastasis. Cancer Lett. 2010;292(1):1–7. https://pubmed.ncbi.nlm.nih.gov/20006425/
Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/
Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–19. https://pubmed.ncbi.nlm.nih.gov/25991828/
Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/
Piantanelli L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann N Y Acad Sci. 1988;521:99–109. https://pubmed.ncbi.nlm.nih.gov/3377369/
Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/
Stanta G, Campagner L, Cavallieri F, Giarelli L. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 1997;13(1):55–68. https://pubmed.ncbi.nlm.nih.gov/8995100/
Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/
Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of growth hormone: a new inborn error of metabolism? Isr J Med Sci 1966;2:152–5. https://pubmed.ncbi.nlm.nih.gov/5916640/
Guevara-Aguirre J, Bautista C, Torres C, et al. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord. 2021;22(1):59–70. https://pubmed.ncbi.nlm.nih.gov/33047268/
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/
Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/
Boguszewski CL, Boguszewski MC da S. Growth hormone’s links to cancer. Endocr Rev. 2019;40(2):558–74. https://pubmed.ncbi.nlm.nih.gov/30500870/
Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/
Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol. 2014;77(6):917–28. https://pubmed.ncbi.nlm.nih.gov/24033707/
Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15(1):80–101. https://pubmed.ncbi.nlm.nih.gov/8156941/
Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://pubmed.ncbi.nlm.nih.gov/20145127/
Longo VD, Anderson RM. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell. 2022;185(9):1455–70. https://pubmed.ncbi.nlm.nih.gov/35487190/
Dunn SE, Kari FW, French J, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 1997;57(21):4667–72. https://pubmed.ncbi.nlm.nih.gov/9354418/
Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/
Schüler R, Markova M, Osterhoff MA, et al. Similar dietary regulation of IGF-1-and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr. https://link.springer.com/article/10.1007/s00394–021–02518-y. Published online March 8, 2021. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33686453/
Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/
Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/
Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/
Flood A, Mai V, Pfeiffer R, et al. The effects of a high-fruit and – vegetable, high-fiber, low-fat dietary intervention on serum concentrations of insulin, glucose, IGF-I and IGFBP-3. Eur J Clin Nutr. 2008;62(2):186–96. https://pubmed.ncbi.nlm.nih.gov/17487212/
Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/
Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/
Berrino F, Bellati C, Secreto G, et al. Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev. 2001;10(1):25–33. https://pubmed.ncbi.nlm.nih.gov/11205485/
Kaaks R, Bellati C, Venturelli E, et al. Effects of dietary intervention on IGF-I and IGF-binding proteins, and related alterations in sex steroid metabolism: the Diet and Androgens (DIANA) Randomised Trial. Eur J Clin Nutr. 2003;57(9):1079–88. https://pubmed.ncbi.nlm.nih.gov/12947426/
Pasanisi P, Bruno E, Venturelli E, et al. A dietary intervention to lower serum levels of IGF-I in BRCA mutation carriers. Cancers (Basel). 2018;10(9):309. https://pubmed.ncbi.nlm.nih.gov/30181513/
Gulick CN, Peddie MC, Cameron C, Bradbury K, Rehrer NJ. Physical activity, dietary protein and insulin-like growth factor 1: cross-sectional analysis utilising UK Biobank. Growth Horm IGF Res. 2020;55:101353. https://pubmed.ncbi.nlm.nih.gov/33002777/
Toden S, Belobrajdic DP, Bird AR, Topping DL, Conlon MA. Effects of dietary beef and chicken with and without high amylose maize starch on blood malondialdehyde, interleukins, IGF-I, insulin, leptin, MMP-2, and TIMP-2 concentrations in rats. Nutr Cancer. 2010;62(4):454–65. https://pubmed.ncbi.nlm.nih.gov/20432166/
Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(S7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/
Один галлон равен 4,55 л. – Примеч. ред.
Hoppe C, Kristensen M, Boiesen M, Kudsk J, Michaelsen KF, Mølgaard C. Short-term effects of replacing milk with cola beverages on insulin-like growth factor-I and insulin – glucose metabolism: a 10 d interventional study in young men. Br J Nutr. 2009;102(7):1047–51. https://pubmed.ncbi.nlm.nih.gov/15578035/
Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/
Adams AM, Smith AF. Risk perception and communication: recent developments and implications for anaesthesia. Anaesthesia. 2001;56(8):745–55. https://pubmed.ncbi.nlm.nih.gov/11493237/
Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/
Naghshi S, Sadeghi O, Larijani B, Esmaillzadeh A. High vs. low-fat dairy and milk differently affects the risk of all-cause, CVD, and cancer death: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021;Jan 5:1–15. https://pubmed.ncbi.nlm.nih.gov/33397132/
Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/
Jones CM, Heinrichs J. Growth charts for dairy heifers. Penn State Extension. https://extension.psu.edu/growth-charts-for-dairy-heifers. Updated July 28, 2017. Accessed June 9, 2021.; https://extension.psu.edu/growth-charts-for-dairy-heifers
Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/
Honegger A, Humbel RE. Insulin-like growth factors I and II in fetal and adult bovine serum. Purification, primary structures, and immunological cross-reactivities. J Biol Chem. 1986;261(2):569–75. https://pubmed.ncbi.nlm.nih.gov/3941093/
Collier RJ, Miller MA, Hildebrandt JR, et al. Factors affecting insulin-like growth factor-I concentration in bovine milk. J Dairy Sci. 1991;74(9):2905–11. https://pubmed.ncbi.nlm.nih.gov/1779049/
Kim WK, Ryu YH, Seo DS, Lee CY, Ko Y. Effects of oral administration of insulin-like growth factor-I on circulating concentration of insulin-like growth factor-I and growth of internal organs in weanling mice. Biol Neonate. 2006;89(3):199–204. https://pubmed.ncbi.nlm.nih.gov/16293962/
Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/
Allen NE, Key TJ. Re: plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst. 2001;93(8):649–51. https://pubmed.ncbi.nlm.nih.gov/11309444/
Conover CA. Discrepancies in insulin-like growth factor signaling? No, not really. Growth Horm IGF Res. 2016;30–31:42–4. https://pubmed.ncbi.nlm.nih.gov/27792888/
Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/
Clemmons DR, Seek MM, Underwood LE. Supplemental essential amino acids augment the somatomedin-C/insulin-like growth factor I response to refeeding after fasting. Metabolism. 1985;34(4):391–5. https://pubmed.ncbi.nlm.nih.gov/3884968/
Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/
Ten Have GAM, Engelen MPKJ, Soeters PB, Deutz NEP. Absence of post-prandial gut anabolism after intake of a low quality protein meal. Clin Nutr. 2012;31(2):273–82. https://pubmed.ncbi.nlm.nih.gov/22001026/
Katz DL, Doughty KN, Geagan K, Jenkins DA, Gardner CD. Perspective: the public health case for modernizing the definition of protein quality. Adv Nutr. 2019;10(5):755–64. https://pubmed.ncbi.nlm.nih.gov/31066877/
Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab. 2009;94(8):2880–6. https://pubmed.ncbi.nlm.nih.gov/19491226/
Friedlander AL, Butterfield GE, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab. 2001;86(4):1496–503. https://pubmed.ncbi.nlm.nih.gov/11297574/
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/
Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/
Crimarco A, Springfield S, Petlura C, et al. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood – Meat Eating Alternative Trial (SWAP-MEAT). Am J Clin Nutr. 2020;112(5):1188–99. https://pubmed.ncbi.nlm.nih.gov/32780794/
Arjmandi BH, Khalil DA, Smith BJ, et al. Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab. 2003;88(3):1048–54. https://pubmed.ncbi.nlm.nih.gov/12629084/
Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH. Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr. 2002;132(9):2605–8. https://pubmed.ncbi.nlm.nih.gov/12221217/
Maskarinec G, Takata Y, Murphy SP, Franke AA, Kaaks R. Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women. Br J Nutr. 2005;94(3):362–7. https://pubmed.ncbi.nlm.nih.gov/16176606/
Messina M, Magee P. Does soy protein affect circulating levels of unbound IGF-1? Eur J Nutr. 2018;57(2):423–32. https://pubmed.ncbi.nlm.nih.gov/28434035/
Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/
Applegate CC, Rowles JL III, Ranard KM, Jeon S, Erdman JW Jr. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis. Nutrients. 2018;10(1):40. https://pubmed.ncbi.nlm.nih.gov/29300347/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Lousuebsakul-Matthews V, Thorpe DL, Knutsen R, Beeson WL, Fraser GE, Knutsen SF. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2. Public Health Nutr. 2014;17(10):2333–43. https://pubmed.ncbi.nlm.nih.gov/24103482/
Mazidi M, Katsiki N, Mikhailidis DP, et al. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/
Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153(5):289–98. https://pubmed.ncbi.nlm.nih.gov/20820038/
Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/
Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/
Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Sample I. Diets high in meat, eggs and dairy could be as harmful to health as smoking. Guardian. https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy. Published March 5, 2014. Accessed June 9, 2021.; https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy
Philip Morris, Europe. Second-hand tobacco smoke in perspective. What risks do you take? Philip Morris Records; Master Settlement Agreement. UCSF Industry Documents Library. https://www.industrydocuments.ucsf.edu/docs/pkdl0113. Produced 1994. Accessed February 11 https://www.industrydocuments.ucsf.edu/docs/pkdl0113
Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/
Soliman S, Aronson WJ, Barnard RJ. Analyzing serum-stimulated prostate cancer cell lines after low-fat, high-fiber diet and exercise intervention. Evid Based Complement Alternat Med. 2011;2011:529053. https://pubmed.ncbi.nlm.nih.gov/19376839/
Barnard RJ, Ngo TH, Leung PS, Aronson WJ, Golding LA. A low-fat diet and/or strenuous exercise alters the IGF axis in vivo and reduces prostate tumor cell growth in vitro. Prostate. 2003;56(3):201–6. https://pubmed.ncbi.nlm.nih.gov/12772189/
Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–9. https://pubmed.ncbi.nlm.nih.gov/16094059/
Ornish D, Magbanua MJM, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/
Yang M, Kenfield SA, Van Blarigan EL, et al. Dairy intake after prostate cancer diagnosis in relation to disease-specific and total mortality. Int J Cancer. 2015;137(10):2462–9. https://pubmed.ncbi.nlm.nih.gov/25989745/
Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/
Mucci LA, Tamimi R, Lagiou P, et al. Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU Int. 2001;87(9):814–20. https://pubmed.ncbi.nlm.nih.gov/11412218/
Gunnell D, Oliver SE, Peters TJ, et al. Are diet – prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-I and IGFBP-3 in healthy middle-aged men. Br J Cancer. 2003;88(11):1682–6. https://pubmed.ncbi.nlm.nih.gov/12771980/
Walfisch S, Walfisch Y, Kirilov E, et al. Tomato lycopene extract supplementation decreases insulin-like growth factor-I levels in colon cancer patients. Eur J Cancer Prev. 2007;16(4):298–303. https://pubmed.ncbi.nlm.nih.gov/17554202/
Xie Z, Yang F. The effects of lycopene supplementation on serum insulin-like growth factor 1 (IGF-1) levels and cardiovascular disease: a dose-response meta-analysis of clinical trials. Complement Ther Med. 2021;56:102632. https://pubmed.ncbi.nlm.nih.gov/33259908/
Rickard SE, Yuan YV, Thompson LU. Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside. Cancer Lett. 2000;161(1):47–55. https://pubmed.ncbi.nlm.nih.gov/11078912/
Sturgeon SR, Volpe SL, Puleo E, et al. Dietary intervention of flaxseed: effect on serum levels of IGF-1, IGF-BP3, and C-peptide. Nutr Cancer. 2011;63(3):376–80. https://pubmed.ncbi.nlm.nih.gov/21462084/
Zhou JR, Yu L, Mai Z, Blackburn GL. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer. 2004;108(1):8–14. https://pubmed.ncbi.nlm.nih.gov/14618609/
Biernacka KM, Holly JMP, Martin RM, et al. Effect of green tea and lycopene on the insulin-like growth factor system: the ProDiet randomized controlled trial. Eur J Cancer Prev. 2019;28(6):569–75. https://pubmed.ncbi.nlm.nih.gov/30921005/
Samavat H, Wu AH, Ursin G, et al. Green tea catechin extract supplementation does not influence circulating sex hormones and insulin-like growth factor axis proteins in a randomized controlled trial of postmenopausal women at high risk of breast cancer. J Nutr. 2019;149(4):619–27. https://pubmed.ncbi.nlm.nih.gov/30926986/
Teas J, Irhimeh MR, Druker S, et al. Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutr Cancer. 2011;63(5):743–8. https://pubmed.ncbi.nlm.nih.gov/21711174/
Burgers AMG, Biermasz NR, Schoones JW, et al. Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab. 2011;96(9):2912–20. https://pubmed.ncbi.nlm.nih.gov/21795450/
LeRoith D. IGF-I: panacea or poison? J Clin Endocrinol Metab. 2010;95(10):4549–51. https://pubmed.ncbi.nlm.nih.gov/20926541/
Zhang WB, Aleksic S, Gao T, et al. Insulin-like growth factor-1 and IGF binding proteins predict all-cause mortality and morbidity in older adults. Cells. 2020;9(6):1368. https://pubmed.ncbi.nlm.nih.gov/32492897/
Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/
Hartley A, Sanderson E, Paternoster L, et al. Mendelian randomization provides evidence for a causal effect of higher serum IGF-1 concentration on risk of hip and knee osteoarthritis. Rheumatology (Oxford). 2020;60(4):1676–86. https://pubmed.ncbi.nlm.nih.gov/33027520/
Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/
Fan M, Li Y, Wang C, et al. Dietary protein consumption and the risk of type 2 diabetes: adose-response [sic] meta-analysis of prospective studies. Nutrients. 2019;11(11):2783. https://pubmed.ncbi.nlm.nih.gov/31731672/
Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/
Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/
Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
Chainani-Wu N, Weidner G, Purnell DM, et al. Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol. 2011;108(4):498–507. https://pubmed.ncbi.nlm.nih.gov/21624543/
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/
Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol. 2020;518:111003. https://pubmed.ncbi.nlm.nih.gov/32919021/
McCarty MF. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Med Hypotheses. 2003;60(6):784–92. https://pubmed.ncbi.nlm.nih.gov/12699704/
Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10. https://pubmed.ncbi.nlm.nih.gov/18946478/
McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014;83(3):365–71. https://pubmed.ncbi.nlm.nih.gov/25015767/
Piper MDW, Soultoukis GA, Blanc E, et al. Matching dietary amino acid balance to the in silico – translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 2017;25(3):610–21. https://pubmed.ncbi.nlm.nih.gov/28273481/
Slavich GM. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav Immun. 2015;45:13–4. https://pubmed.ncbi.nlm.nih.gov/25449576/
Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/
Rubio-Ruiz ME, Peredo-Escárcega AE, Cano-Martínez A, Guarner-Lans V. An evolutionary perspective of nutrition and inflammation as mechanisms of cardiovascular disease. Int J Evol Biol. 2015:2015:179791.; https://pubmed.ncbi.nlm.nih.gov/26693381/
Rogers J. The inflammatory response in Alzheimer’s disease. J Periodontol. 2008;79(8 Suppl):1535–43. https://pubmed.ncbi.nlm.nih.gov/18673008/
Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/
Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/
Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–21. https://pubmed.ncbi.nlm.nih.gov/29094869/
Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/
Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/
National Center for Injury Prevention and Control, CDC using WISQARSÔ.10 leading causes of death by age group, United States—2018. Centers for Disease Control and Prevention. https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg. Accessed June 29, 2021.; https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg
Weyh C, Krüger K, Strasser B. Physical activity and diet shape the immune system during aging. Nutrients. 2020;12(3):622. https://pubmed.ncbi.nlm.nih.gov/32121049/
Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8. https://pubmed.ncbi.nlm.nih.gov/8370415/
Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://pubmed.ncbi.nlm.nih.gov/29375577/
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/
Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/
Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/
Tait JL, Duckham RL, Milte CM, Main LC, Daly RM. Associations between inflammatory and neurological markers with quality of life and well-being in older adults. Exp Gerontol. 2019;125:110662. https://pubmed.ncbi.nlm.nih.gov/31323254/
Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/
Rajasekaran S, Tangavel C, Anand SV KS, et al. Inflammaging determines health and disease in lumbar discs – evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J. 2020;20(1):48–59. https://pubmed.ncbi.nlm.nih.gov/31125691/
Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(Pt 23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/
Barron E, Lara J, White M, Mathers JC. Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS ONE. 2015;10(6):e0127550. https://pubmed.ncbi.nlm.nih.gov/26039142/
Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/
Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/
Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/
Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38:329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/
Bonafè M, Olivieri F, Cavallone L, et al. A gender – dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol. 2001;31(8):2357–61. https://pubmed.ncbi.nlm.nih.gov/11500818/
Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/
Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/
Hu L, Mauro TM, Dang E, et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J Invest Dermatol. 2017;137(6):1277–85. https://pubmed.ncbi.nlm.nih.gov/28115059/
Ye L, Mauro TM, Dang E, et al. Topical applications of an emollient reduce circulating pro-inflammatory cytokine levels in chronically aged humans: a pilot clinical study. J Eur Acad Dermatol Venereol. 2019;33(11):2197–201. https://pubmed.ncbi.nlm.nih.gov/30835878/
Arai Y, Martin-Ruiz CM, Takayama M, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2(10):1549–58. https://pubmed.ncbi.nlm.nih.gov/26629551/
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://pubmed.ncbi.nlm.nih.gov/31806905/
Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘garb-aging.’ Trends Endocrinol. Metab. 2017;28(3):199–212. https://pubmed.ncbi.nlm.nih.gov/27789101/
Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev. 2017;165(Pt B):129–38. https://pubmed.ncbi.nlm.nih.gov/28038993/
Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/
Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232–44. https://pubmed.ncbi.nlm.nih.gov/23171381/
Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–63. https://pubmed.ncbi.nlm.nih.gov/28721154/
Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25. https://pubmed.ncbi.nlm.nih.gov/19074987/
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://pubmed.ncbi.nlm.nih.gov/14679176/
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. https://pubmed.ncbi.nlm.nih.gov/16150820/
Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68. https://pubmed.ncbi.nlm.nih.gov/18327995/
Welsh P, Polisecki E, Robertson M, et al. Unraveling the directional link between adiposity and inflammation: a bidirectional Mendelian randomization approach. J Clin Endocrinol Metab. 2010;95(1):93–9. https://pubmed.ncbi.nlm.nih.gov/28199503/
Timpson NJ, Nordestgaard BG, Harbord RM, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond). 2011;35(2):300–8. https://pubmed.ncbi.nlm.nih.gov/20714329/
Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/
Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/
Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/
Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/
Xu Z, McClure ST, Appel LJ. Dietary cholesterol intake and sources among U.S. adults: results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients. 2018;10(6):E771. https://pubmed.ncbi.nlm.nih.gov/29903993/
Morgan-Bathke ME, Jensen MD. Preliminary evidence for reduced adipose tissue inflammation in vegetarians compared with omnivores. Nutr J. 2019;18(1):45. https://pubmed.ncbi.nlm.nih.gov/31405384/
Hegsted DM. Dietary goals – a progressive view. Am J Clin Nutr. 1978;31(9):1504–9. https://pubmed.ncbi.nlm.nih.gov/28662/
Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/
Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/
Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol. 2021;143:111162. https://pubmed.ncbi.nlm.nih.gov/33253807/
Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. https://pubmed.ncbi.nlm.nih.gov/15479938/
Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res. 2012;61(8):789–807. https://pubmed.ncbi.nlm.nih.gov/22588278/
Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/
Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/
Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/
Egger G, Dixon J. Non-nutrient causes of low-grade, systemic inflammation: support for a ‘canary in the mineshaft’ view of obesity in chronic disease. Obes Rev. 2011;12(5):339–45. https://pubmed.ncbi.nlm.nih.gov/20701689/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Ryu S, Shivappa N, Veronese N, et al. Secular trends in Dietary Inflammatory Index among adults in the United States, 1999–2014. Eur J Clin Nutr. 2019;73(10):1343–51. https://pubmed.ncbi.nlm.nih.gov/30542148/
Xu H, Sjögren P, Ärnlöv J, et al. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr. 2015;145(4):729–35. https://pubmed.ncbi.nlm.nih.gov/25833776/
Han YY, Forno E, Shivappa N, Wirth MD, Hébert JR, Celedón JC. The Dietary Inflammatory Index and current wheeze among children and adults in the United States. J Allergy Clin Immunol Pract. 2018;6(3):834–41. https://pubmed.ncbi.nlm.nih.gov/29426751/
Cantero I, Abete I, Babio N, et al. Dietary Inflammatory Index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr. 2018;37(5):1736–43. https://pubmed.ncbi.nlm.nih.gov/28734553/
Shivappa N, Godos J, Hébert JR, et al. Dietary Inflammatory Index and cardiovascular risk and mortality – a meta-analysis. Nutrients. 2018;10(2):200. https://pubmed.ncbi.nlm.nih.gov/29439509/
Shivappa N, Wirth MD, Hurley TG, Hébert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey—1999–2002. Mol Nutr Food Res. 2017;61(4). https://pubmed.ncbi.nlm.nih.gov/29675557/
García-Calzón S, Zalba G, Ruiz-Canela M, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102(4):897–904. https://pubmed.ncbi.nlm.nih.gov/26354530/
Shivappa N, Stubbs B, Hébert JR, et al. The relationship between the Dietary Inflammatory Index and incident frailty: a longitudinal cohort study. J Am Med Dir Assoc. 2018;19(1):77–82. https://pubmed.ncbi.nlm.nih.gov/28943182/
Cervo MMC, Scott D, Seibel MJ, et al. Proinflammatory diet increases circulating inflammatory biomarkers and falls risk in community-dwelling older men. J Nutr. 2020;150(2):373–81. https://pubmed.ncbi.nlm.nih.gov/31665502/
Kheirouri S, Alizadeh M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol Rev. 2019;41(1):109–20. https://pubmed.ncbi.nlm.nih.gov/31565731/
Phillips CM, Shivappa N, Hébert JR, Perry IJ. Dietary inflammatory index and mental health: a cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin Nutr. 2018;37(5):1485–91. https://pubmed.ncbi.nlm.nih.gov/28912008/
Godos J, Ferri R, Caraci F, et al. Dietary inflammatory index and sleep quality in southern Italian adults. Nutrients. 2019;11(6):1324. https://pubmed.ncbi.nlm.nih.gov/31200445/
Shivappa N, Jackson MD, Bennett F, Hébert JR. Increased dietary inflammatory index (DII) is associated with increased risk of prostate cancer in Jamaican men. Nutr Cancer. 2015;67(6):941–8. https://pubmed.ncbi.nlm.nih.gov/29439509/
Shivappa N, Hébert JR, Jalilpiran Y, Faghih S. Association between dietary inflammatory index and prostate cancer in Shiraz province of Iran. Asian Pac J Cancer Prev. 2018;19(2):415–20. https://pubmed.ncbi.nlm.nih.gov/29479991/
Shivappa N, Miao Q, Walker M, Hébert JR, Aronson KJ. Association between a dietary inflammatory index and prostate cancer risk in Ontario, Canada. Nutr Cancer. 2017;69(6):825–32. https://pubmed.ncbi.nlm.nih.gov/28718711/
Huang WQ, Mo XF, Ye YB, et al. A higher Dietary Inflammatory Index score is associated with a higher risk of breast cancer among Chinese women: a case-control study. Br J Nutr. 2017;117(10):1358–67. https://pubmed.ncbi.nlm.nih.gov/32104043/
Shivappa N, Sandin S, Löf M, Hébert JR, Adami HO, Weiderpass E. Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br J Cancer. 2015;113(7):1099–103. https://pubmed.ncbi.nlm.nih.gov/26335605/
Shivappa N, Hébert JR, Zucchetto A, et al. Dietary inflammatory index and endometrial cancer risk in an Italian case-control study. Br J Nutr. 2016;115(1):138–46. https://pubmed.ncbi.nlm.nih.gov/26507451/
Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and ovarian cancer risk in a large Italian case-control study. Cancer Causes Control. 2016;27(7):897–906. https://pubmed.ncbi.nlm.nih.gov/27262447/
Shivappa N, Zucchetto A, Serraino D, Rossi M, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of esophageal squamous cell cancer in a case-control study from Italy. Cancer Causes Control. 2015;26(10):1439–47. https://pubmed.ncbi.nlm.nih.gov/26208592/
Shivappa N, Hébert JR, Ferraroni M, La Vecchia C, Rossi M. Association between dietary inflammatory index and gastric cancer risk in an Italian case-control study. Nutr Cancer. 2016;68(8):1262–8. https://pubmed.ncbi.nlm.nih.gov/27636679/
Shivappa N, Hébert JR, Polesel J, et al. Inflammatory potential of diet and risk for hepatocellular cancer in a case-control study from Italy. Br J Nutr. 2016;115(2):324–31. https://pubmed.ncbi.nlm.nih.gov/26556602/
Shivappa N, Bosetti C, Zucchetto A, Serraino D, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of pancreatic cancer in an Italian case-control study. Br J Nutr. 2015;113(2):292–8. https://pubmed.ncbi.nlm.nih.gov/25515552/
Shivappa N, Godos J, Hébert JR, et al. Dietary inflammatory index and colorectal cancer risk – a meta-analysis. Nutrients. 2017 Sep 20;9(9):1043. https://pubmed.ncbi.nlm.nih.gov/28930191/
Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and renal cell carcinoma risk in an Italian case-control study. Nutr Cancer. 2017;69(6):833–9. https://pubmed.ncbi.nlm.nih.gov/28718670/
Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and risk of bladder cancer in a large Italian case-control study. Urology. 2017;100:84–9. https://pubmed.ncbi.nlm.nih.gov/27693878/
Shivappa N, Hébert JR, Taborelli M, et al. Dietary inflammatory index and non-Hodgkin lymphoma risk in an Italian case-control study. Cancer Causes Control. 2017;28(7):791–9. https://pubmed.ncbi.nlm.nih.gov/28503716/
Fowler ME, Akinyemiju TF. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int J Cancer. 2017;141(11):2215–27. https://pubmed.ncbi.nlm.nih.gov/28795402/
Shivappa N, Hebert JR, Kivimaki M, Akbaraly T. Alternate Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br J Nutr. 2017;118(3):210–21. https://pubmed.ncbi.nlm.nih.gov/28831955/
Edwards MK, Shivappa N, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. The association between physical activity and dietary inflammatory index on mortality risk in U.S. adults. Phys Sportsmed. 2018;46(2):249–54. https://pubmed.ncbi.nlm.nih.gov/29463180/
Shivappa N, Harris H, Wolk A, Hebert JR. Association between inflammatory potential of diet and mortality among women in the Swedish Mammography Cohort. Eur J Nutr. 2016;55(5):1891–900. https://pubmed.ncbi.nlm.nih.gov/26227485/
Shivappa N, Blair CK, Prizment AE, Jacobs DR, Steck SE, Hébert JR. Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur J Nutr. 2016;55(4):1491–502. https://pubmed.ncbi.nlm.nih.gov/26130324/
Tomata Y, Shivappa N, Zhang S, et al. Dietary inflammatory index and disability-free survival in community-dwelling older adults. Nutrients. 2018;10(12):1896. https://pubmed.ncbi.nlm.nih.gov/30513971/
Garcia-Arellano A, Martínez-González MA, Ramallal R, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38(3):1221–31. https://pubmed.ncbi.nlm.nih.gov/30651193/
Nilsson MI, Bourgeois JM, Nederveen JP, et al. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One. 2019;14(1):e0210863. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210863
Bautmans I, Salimans L, Njemini R, Beyer I, Lieten S, Liberman K. The effects of exercise interventions on the inflammatory profile of older adults: a systematic review of the recent literature. Exp Gerontol. 2021;146:111236. https://pubmed.ncbi.nlm.nih.gov/33453323/
Ferrer MD, Capó X, Martorell M, et al. Regular practice of moderate physical activity by older adults ameliorates their anti-inflammatory status. Nutrients. 2018;10(11):1780. https://pubmed.ncbi.nlm.nih.gov/30453505/
Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–8. https://pubmed.ncbi.nlm.nih.gov/30418471/
Harvard T.H. Chan School of Public Health. Top food sources of saturated fat in the U.S. https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf. Accessed November 23, 2021.; https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf
Exler J, Lemar L, Smith J. Fat and fatty acid content of selected foods containing trans-fatty acids: special purpose table no. 1. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf. Published January 1996. Accessed June 20, 2021.; https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf
Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4. https://pubmed.ncbi.nlm.nih.gov/9036757/
Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/
Kesteloot HE, Sasaki S. Nutrition and the aging process: a population study. Am J Geriatr Cardiol. 1994;3(2):8–19. https://pubmed.ncbi.nlm.nih.gov/11416305/
Emerson SR, Kurti SP, Harms CA, et al. Magnitude and timing of the postprandial inflammatory response to a high-fat meal in healthy adults: a systematic review. Adv Nutr. 2017;8(2):213–25. https://pubmed.ncbi.nlm.nih.gov/28298267/
Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12. https://pubmed.ncbi.nlm.nih.gov/10335721/
Jonnalagadda SS, Egan SK, Heimbach JT, et al. Fatty acid consumption pattern of Americans: 1987–1988 USDA Nationwide Food Consumption Survey. Nutr Res. 1995;15(12):1767–81. https://agris.fao.org/agris-search/search.do?recordID=US19970167025
Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/
Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–32. https://pubmed.ncbi.nlm.nih.gov/31363792/
Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/
Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/
Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/
Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/
Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/
Одна американская унция = 28,3 грамма, но в данном случае это метафора, а не точное количество. – Примеч. ред.
Wassenaar TM, Zimmermann K. Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol (Bp). 2018;8(3):63–9. https://pubmed.ncbi.nlm.nih.gov/30345085/
Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7. https://pubmed.ncbi.nlm.nih.gov/18815435/
Ghezzal S, Postal BG, Quevrain E, et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158530. https://pubmed.ncbi.nlm.nih.gov/31647994/
Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/
Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/
Cho B, Kim MS, Chao K, Lawrence K, Park B, Kim K. Detection of fecal residue on poultry carcasses by laser-induced fluorescence imaging. J Food Sci. 2009;74(3):E154–9. https://pubmed.ncbi.nlm.nih.gov/19397721/
Giombelli A, Gloria MB. Prevalence of Salmonella and Campylobacter on broiler chickens from farm to slaughter and efficiency of methods to remove visible fecal contamination. J Food Prot. 2014;77(11):1851–9. https://pubmed.ncbi.nlm.nih.gov/25364917/
Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/
Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/
Tournas VH. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol. 2005;31(1):33–44. https://pubmed.ncbi.nlm.nih.gov/15839403/
Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/
Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/
Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/
Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(11):e016863. https://pubmed.ncbi.nlm.nih.gov/29170286/
Chen CYO, Holbrook M, Duess MA, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. Nutr J. 2015;14:61. https://pubmed.ncbi.nlm.nih.gov/26080804/
Li Z, Wong A, Henning SM, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013;4(3):384–91. https://pubmed.ncbi.nlm.nih.gov/23196671/
Haskins CP, Henderson G, Champ CE. Meat, eggs, full-fat dairy, and nutritional boogeymen: does the way in which animals are raised affect health differently in humans? Crit Rev Food Sci Nutr. 2019;59(17):2709–19. https://pubmed.ncbi.nlm.nih.gov/29672133/
Eaton SB. Humans, lipids and evolution. Lipids. 1992;27(10):814–20. https://pubmed.ncbi.nlm.nih.gov/1435101/
Arya F, Egger S, Colquhoun D, Sullivan D, Pal S, Egger G. Differences in postprandial inflammatory responses to a ‘modern’ v. traditional meat meal: a preliminary study. Br J Nutr. 2010;104(5):724–8. https://pubmed.ncbi.nlm.nih.gov/20377925/
Wang Y, Lehane C, Ghebremeskel K, et al. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr. 2010;13(3):400–8. https://pubmed.ncbi.nlm.nih.gov/19728900/
Kollander B, Widemo F, Ågren E, Larsen EH, Löschner K. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets. Anal Bioanal Chem. 2017;409(7):1877–85. https://pubmed.ncbi.nlm.nih.gov/27966171/
Metryka E, Chibowska K, Gutowska I, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci. 2018;19(6):1813. https://pubmed.ncbi.nlm.nih.gov/29925772/
Хронически повышенный уровень LPS, вызванный высококалорийной диетой. – Примеч. ред.
Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/
National Cancer Institute. Identification of top food sources of various dietary components. Epidemiology and Genomics Research Program website. https://epi.grants.cancer.gov/diet/foodsources. Updated November 30, 2019. Accessed June 20, 2021.; https://epi.grants.cancer.gov/diet/foodsources
Ghanim H, Batra M, Abuaysheh S, et al. Antiinflammatory and ROS suppressive effects of the addition of fiber to a high-fat high-calorie meal. J Clin Endocrinol Metab. 2017;102(3):858–69. https://pubmed.ncbi.nlm.nih.gov/27906549/
Simon AH, Lima PR, Almerinda M, Alves VF, Bottini PV, de Faria JB. Renal haemodynamic responses to a chicken or beef meal in normal individuals. Nephrol Dial Transplant. 1998;13(9):2261–4. https://pubmed.ncbi.nlm.nih.gov/9761506/
Kontessis P, Jones S, Dodds R, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990 Jul;38(1):136–44. https://pubmed.ncbi.nlm.nih.gov/2166857/
Liu Z, Ho SC, Chen Y, Tang N, Woo J. Effect of whole soy and purified isoflavone daidzein on renal function – a 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin Biochem. 2014;47(13–14):1250–6. https://pubmed.ncbi.nlm.nih.gov/24877660/
Fioretto P, Trevisan R, Valerio A, et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. Am J Physiol. 1990;258(3 Pt 2):F675–83. https://pubmed.ncbi.nlm.nih.gov/2316671/
N-гликолилнейраминовая кислота. – Примеч. ред.
Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun. 2017;83:134–42. https://pubmed.ncbi.nlm.nih.gov/28755952/
Pham T, Gregg CJ, Karp F, et al. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009;114(25):5225–35. https://pubmed.ncbi.nlm.nih.gov/19828701/
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
Samraj AN, Pearce OMT, Läubli H, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542–7. https://pubmed.ncbi.nlm.nih.gov/25548184/
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/
Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/
Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/
MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/
Yi B, Titze J, Rykova M, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166(1):103–10. https://pubmed.ncbi.nlm.nih.gov/25497276/
Mickleborough TD, Lindley MR, Ray S. Dietary salt, airway inflammation, and diffusion capacity in exercise-induced asthma. Med Sci Sports Exerc. 2005;37(6):904–14. https://pubmed.ncbi.nlm.nih.gov/15947713/
Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. https://pubmed.ncbi.nlm.nih.gov/28556498/
Krajina I, Stupin A, Šola M, Mihalj M. Oxidative stress induced by high salt diet – possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants (Basel). 2022;11(7):1269. https://pubmed.ncbi.nlm.nih.gov/35883760/
Carranza-León DA, Oeser A, Marton A, et al. Tissue sodium content in patients with systemic lupus erythematosus: association with disease activity and markers of inflammation. Lupus. 2020;29(5):455–62. https://pubmed.ncbi.nlm.nih.gov/32070186/
Jung SM, Kim Y, Kim J, et al. Sodium chloride aggravates arthritis via Th17 polarization. Yonsei Med J. 2019;60(1):88–97. https://pubmed.ncbi.nlm.nih.gov/30554495/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
United States Department of Health and Human Services, United States Department of Agriculture. Appendix 13. Food sources of dietary fiber. In: 2015–2020 Dietary Guidelines for Americans. 8th ed. DietaryGuidelines.gov. 2015:114–8.; https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/
Haytowitz DB, Bhagwat S, Harnly J, Holden JM, Gebhardt SE. Sources of flavonoids in the U.S. diet using USDA’s updated database on the flavonoid content of selected foods. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf. Published 2006. Accessed July 20, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. In: Alt FW, ed. Advances in Immunology. Vol 121. Academic Press, Elsevier; 2014:91–119. https://pubmed.ncbi.nlm.nih.gov/24388214/
Pukatzki S, Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 2013;4. https://pubmed.ncbi.nlm.nih.gov/24368907/
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52. https://pubmed.ncbi.nlm.nih.gov/24390544/
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/
Nilsson AC, Östman EM, Knudsen KEB, Holst JJ, Björck IME. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr. 2010;140(11):1932–6. https://pubmed.ncbi.nlm.nih.gov/20810606/
Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://pubmed.ncbi.nlm.nih.gov/20823773/
Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/
Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/
Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831926/
Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434-45. https://pubmed.ncbi.nlm.nih.gov/30638909/
Brewer RA, Gibbs VK, Smith DL Jr. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/
Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39. https://pubmed.ncbi.nlm.nih.gov/25327485/
Zhang X, Fang Z, Zhang C, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380489/
Wolever TMS, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr. 2000;84(1):57–61. https://pubmed.ncbi.nlm.nih.gov/10961161/
McCay CM, Ku CC, Woodward JC, Sehgal BS. Cellulose in the diet of rats and mice: two figures. J Nutr. 1934;8(4):435–47. https://academic.oup.com/jn/article-abstract/8/4/435/4727178
Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19(1):130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567620/
Hovey AL, Jones GP, Devereux HM, Walker KZ. Whole cereal and legume seeds increase faecal short chain fatty acids compared to ground seeds. Asia Pac J Clin Nutr. 2003;12(4):477–82. https://pubmed.ncbi.nlm.nih.gov/14672874/
Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/
Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/
Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/
Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/
Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/
Säemann MD, Böhmig GA, Österreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2. https://pubmed.ncbi.nlm.nih.gov/11024006/
Vitaglione P, Mennella I, Ferracane R, et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr. 2015;101(2):251–61. https://pubmed.ncbi.nlm.nih.gov/25646321/
Kohl A, Gögebakan Ö, Möhlig M, et al. Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-ß-glycan consumption in overweight humans. Nutr Res. 2009;29(4):248–54. https://pubmed.ncbi.nlm.nih.gov/19410976/
Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn’s disease. Scand J Gastroenterol. 1992;27(3):196–200. https://pubmed.ncbi.nlm.nih.gov/1502481/
Cannistrà C, Finocchi V, Trivisonno A, Tambasco D. New perspectives in the treatment of hidradenitis suppurativa: surgery and brewer’s yeast-exclusion diet. Surgery. 2013;154(5):1126–30. https://pubmed.ncbi.nlm.nih.gov/23891479/
Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27. https://pubmed.ncbi.nlm.nih.gov/23865797/
Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/
Sutliffe JT, Wilson LD, de Heer HD, Foster RL, Carnot MJ. C-reactive protein response to a vegan lifestyle intervention. Complement Ther Med. 2015;23(1):32–7. https://pubmed.ncbi.nlm.nih.gov/25637150/
Macknin M, Kong T, Weier A, et al. Plant-based, no-added-fat or American Heart Association diets: impact on cardiovascular risk in obese children with hypercholesterolemia and their parents. J Pediatr. 2015;166(4):953–9.e1–3. https://pubmed.ncbi.nlm.nih.gov/25684089/
Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/
Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005;82(5):1052–8. https://pubmed.ncbi.nlm.nih.gov/16280438/
Lee-Kwan SH, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in state-specific adult fruit and vegetable consumption – United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:1241–7. https://pubmed.ncbi.nlm.nih.gov/29145355/
Baden MY, Satija A, Hu FB, Huang T. Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J Nutr. 2019;149(4):676–86. https://pubmed.ncbi.nlm.nih.gov/30927000/
Ricker MA, Haas WC. Anti-inflammatory diet in clinical practice: a review. Nutr Clin Pract. 2017;32(3):318–25. https://pubmed.ncbi.nlm.nih.gov/28350517/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor a: a meta-analysis. PLoS ONE. 2014;9(2):e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/
Agricultural Research Service, United States Department of Agriculture. Search results: PUFA 22:6 n-3 (DHA) (g). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/?component=1272. Published April 1, 2019. Accessed July 19, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1272
Stella AB, Cappellari GG, Barazzoni R, Zanetti M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: a review. Int J Mol Sci. 2018;19(1):218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796167/
Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://pubmed.ncbi.nlm.nih.gov/28992469/
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/
Raymond MR, Christensen KY, Thompson BA, Anderson HA. Associations between fish consumption and contaminant biomarkers with cardiovascular conditions among older male anglers in Wisconsin. J Occup Environ Med. 2016;58(7):676–82. https://pubmed.ncbi.nlm.nih.gov/27253229/
Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70. https://pubmed.ncbi.nlm.nih.gov/27358416/
Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/
Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–81. https://pubmed.ncbi.nlm.nih.gov/26016863/
Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/
Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/
Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://pubmed.ncbi.nlm.nih.gov/24858007/
Franzini L, Ardigi D, Valtueña S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/20674303/
Sun CH, Li Y, Zhang YB, Wang F, Zhou XL, Wang F. The effect of vitamin – mineral supplementation on CRP and IL-6: a systemic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(8):576–83. https://pubmed.ncbi.nlm.nih.gov/20399082/
Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. https://pubmed.ncbi.nlm.nih.gov/31669599/
do Rosario VA, Chang C, Spencer J, et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr. 2021;40(3):879–89. https://pubmed.ncbi.nlm.nih.gov/33071012/
O’Hara C, Ojo B, Emerson SR, et al. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes. Nutr Metab Insights. 2019;12:1178638819869946. https://pubmed.ncbi.nlm.nih.gov/31452602/
Wang P, Zhang Q, Hou H, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: a meta-analysis and systematic review. Complement Ther Med. 2020;49:102358. https://pubmed.ncbi.nlm.nih.gov/32147056/
Aptekmann NP, Cesar TB. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67(4):343–7. https://pubmed.ncbi.nlm.nih.gov/20729016/
McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011;36(6):976–84. https://pubmed.ncbi.nlm.nih.gov/22111516/
Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83. https://pubmed.ncbi.nlm.nih.gov/16790484/
Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71. https://pubmed.ncbi.nlm.nih.gov/17156994/
Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/
McHugh M. The health benefits of cherries and potential applications in sports. Scand J Med Sci Sports. 2011;21(5):615–6. https://pubmed.ncbi.nlm.nih.gov/21917014/
Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/
Overman T. Pegloticase: a new treatment for gout. Pharmacotherapy Update. 2011;14(2):1–3. https://pubmed.ncbi.nlm.nih.gov/29204266/
Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). 2010;48(5):407–14. https://pubmed.ncbi.nlm.nih.gov/20586571/
Fritsch PO, Sidoroff A. Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Am J Clin Dermatol. 2000;1(6):349–60. https://pubmed.ncbi.nlm.nih.gov/11702611/
Wang M, Jiang X, Wu W, Zhang D. A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol. 2013;32(11):1641–8. https://pubmed.ncbi.nlm.nih.gov/23881436/
Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53. https://pubmed.ncbi.nlm.nih.gov/22648933/
Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10:21736. https://pubmed.ncbi.nlm.nih.gov/33303765/
Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/
Tran E, Dale HF, Jensen C, Lied GA. Effects of plant-based diets on weight status: a systematic review. Diabetes Metab Syndr Obes. 2020;13:3433–48. https://pubmed.ncbi.nlm.nih.gov/33061504/
Shah B, Newman JD, Woolf K, et al. Anti-inflammatory effects of a vegan diet versus the American Heart Association – recommended diet in coronary artery disease trial. J Am Heart Assoc. 2018;7(23):e011367. https://pubmed.ncbi.nlm.nih.gov/30571591/
Margolis KL, Manson JE, Greenland P, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165(5):500–8. https://pubmed.ncbi.nlm.nih.gov/15767524/
Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/
Gkrania-Klotsas E, Ye Z, Cooper AJ, et al. Differential white blood cell count and type 2 diabetes: systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One. 2010;5(10):e13405. https://pubmed.ncbi.nlm.nih.gov/20976133/
Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/
de Labry LO, Campion EW, Glynn RJ, Vokonas PS. White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J Clin Epidemiol. 1990;43(2):153–7. https://pubmed.ncbi.nlm.nih.gov/2303845/
Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med. 2004;116(3):145–50. https://pubmed.ncbi.nlm.nih.gov/14749157/
Swanson E. Prospective clinical study reveals significant reduction in triglyceride level and white blood cell count after liposuction and abdominoplasty and no change in cholesterol levels. Plast Reconstr Surg. 2011;128(3):182e-97e. https://pubmed.ncbi.nlm.nih.gov/21865992/
Domene PA, Moir HJ, Pummell E, Knox A, Easton C. The health-enhancing efficacy of Zumba® fitness: an 8-week randomised controlled study. J Sports Sci. 2016;34(15):1396–404. https://pubmed.ncbi.nlm.nih.gov/26571136/
Kjeldsen-Kragh J. Rheumatoid arthritis treated with vegetarian diets. Am J Clin Nutr. 1999;70(3 Suppl):594S-600S. https://pubmed.ncbi.nlm.nih.gov/10479237/
Schultz H, Ying GS, Dunaief JL, Dunaief DM. Rising plasma beta-carotene is associated with diminishing C-reactive protein in patients consuming a dark green leafy vegetable – rich, Low Inflammatory Foods Everyday (LIFE) diet. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827619894954. Published December 21, 2019. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/34916884/
Perzia B, Ying GS, Dunaief JL, Dunaief DM. Once-daily Low Inflammatory Foods Everyday (LIFE) smoothie or the full LIFE diet lowers C-reactive protein and raises plasma beta-carotene in 7 days. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827620962458. Published October 5, 2020. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/36389047/
Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of ß-carotene and to a lesser extent of lutein in humans. J Nutr. 1999;129(2):349–55. https://pubmed.ncbi.nlm.nih.gov/10024612/
Lin KH, Hsu CY, Huang YP, et al. Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells. J Med Food. 2013;16(10):886–98. https://pubmed.ncbi.nlm.nih.gov/24066944/
Subramoniam A, Asha VV, Nair SA, et al. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-a gene by the same. Inflammation. 2012;35(3):959–66. https://pubmed.ncbi.nlm.nih.gov/22038065/
Jiang Y, Wu SH, Shu XO, et al. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J Acad Nutr Diet. 2014;114(5):700–8.e2. https://pubmed.ncbi.nlm.nih.gov/25165394/
Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6. https://pubmed.ncbi.nlm.nih.gov/21593509/
Navarro SL, Schwarz Y, Song X, et al. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr. 2014;144(11):1850–7. https://pubmed.ncbi.nlm.nih.gov/25165394/
López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38(2):745–52. https://pubmed.ncbi.nlm.nih.gov/29573889/
Bentley J. Potatoes and tomatoes account for over half of U.S. vegetable availability. Economic Research Service, United States Department of Agriculture. https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability. Published September 8, 2015. Accessed June 20, 2021.; https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability/
Ghavipour M, Saedisomeolia A, Djalali M, et al. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr. 2013;109(11):2031–5. https://pubmed.ncbi.nlm.nih.gov/23069270/
Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56(4):622–31. https://pubmed.ncbi.nlm.nih.gov/22331646/
Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J. 2009;11(10):598–601. https://pubmed.ncbi.nlm.nih.gov/20077945/
Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/
World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. American Institute for Cancer Research; 2007. https://www.researchgate.net/publication/315725512_Food_Nutrition_Physical_Activity_and_the_Prevention_of_Cancer_A_Global_Perspective_Summary
American Heart Association. Types of whole grains. Heart.org. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains. Published January 1, 2015. Accessed November 5, 2021.; https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains
Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/
Jacobs DR, Andersen LF, Blomhoff R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2007;85(6):1606–14. https://pubmed.ncbi.nlm.nih.gov/17556700/
Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/
Afshin A, Sun PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/
Yu Z, Malik VS, Keum NN, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104(3):722–8. https://pubmed.ncbi.nlm.nih.gov/27465378/
Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/
Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/
Xiao Y, Xia J, Ke Y, et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–43. https://pubmed.ncbi.nlm.nih.gov/29852452/
Eftekhar Sadat B, Khadem Haghighian M, Alipoor B, Malek Mahdavi A, Asghari Jafarabadi M, Moghaddam A. Effects of sesame seed supplementation on clinical signs and symptoms in patients with knee osteoarthritis. Int J Rheum Dis. 2013;16(5):578–82. https://pubmed.ncbi.nlm.nih.gov/24164846/
Rodriguez-Leyva D, Weighell W, Edel AL, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081–9. https://pubmed.ncbi.nlm.nih.gov/24126178/
Rahimlou M, Jahromi NB, Hasanyani N, Ahmadi AR. Effects of flaxseed interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(6):1108–19. https://pubmed.ncbi.nlm.nih.gov/31115436/
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313(5):H903–18. https://pubmed.ncbi.nlm.nih.gov/28801523/
Caligiuri SPB, Aukema HM, Ravandi A, Pierce GN. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp Gerontol. 2014;59:51–7. https://pubmed.ncbi.nlm.nih.gov/24747581/
Srinivasan K. Anti-inflammatory influences of culinary spices and their bioactives. Food Rev Int. 2020;Nov:1–17. https://www.tandfonline.com/doi/abs/10.1080/87559129.2020.1839761?journalCode=lfri20
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Allijn IE, Vaessen SF, Quarles van Ufford LC, et al. Head-to-head comparison of anti-inflammatory performance of known natural products in vitro. PLoS ONE. 2016;11(5):e0155325. https://pubmed.ncbi.nlm.nih.gov/27163931/
Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19(8):717–29. https://pubmed.ncbi.nlm.nih.gov/27533649/
Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J Clin Diagn Res. 2014;8(8):HC19–24. https://pubmed.ncbi.nlm.nih.gov/25302215/
Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8. https://pubmed.ncbi.nlm.nih.gov/23038702/
Garg SK, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424. https://pubmed.ncbi.nlm.nih.gov/23076948/
Khajehdehi P, Zanjaninejad B, Aflaki E, et al. Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J Ren Nutr. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/21742514/
Vors C, Couillard C, Paradis ME, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr. 2018;148(3):379–88. https://pubmed.ncbi.nlm.nih.gov/29546309/
Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. https://pubmed.ncbi.nlm.nih.gov/27392742/
Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-a levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:234–42. https://pubmed.ncbi.nlm.nih.gov/27025786/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Morvaridzadeh M, Fazelian S, Agah S, et al. Effect of ginger (Zingiber officinale) on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Cytokine. 2020;135:155224. https://pubmed.ncbi.nlm.nih.gov/32763761/
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene. 2019;698:179–185. https://pubmed.ncbi.nlm.nih.gov/30844477/
Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoar Cartil. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/
Haghighi M, Khalvat A, Toliat T, Jallaei SH. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med. 2005;8(4):267–71. https://www.researchgate.net/publication/235007127_Comparing_the_Effects_of_ginger_Zingiber_officinale_extract_and_ibuprofen_On_patients_with_osteoarthritis
Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct. 2013;4(6):845–55. https://pubmed.ncbi.nlm.nih.gov/23612703/
Caunedo-Alvarez A, Gómez-Rodríguez BJ, Romero-Vázquez J, et al. Macroscopic small bowel mucosal injury caused by chronic nonsteroidal anti-inflammatory drugs (NSAID) use as assessed by capsule endoscopy. Rev Esp Enferm Dig. 2010;102(2):80–5. https://pubmed.ncbi.nlm.nih.gov/20361843/
Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytother Res. 2014;28(3):412–5. https://pubmed.ncbi.nlm.nih.gov/23657930/
Kashefi F, Khajehei M, Alavinia M, Golmakani E, Asili J. Effect of ginger (Zingiber officinale) on heavy menstrual bleeding: a placebo-controlled, randomized clinical trial. Phytother Res. 2015;29(1):114–9. https://pubmed.ncbi.nlm.nih.gov/25298352/
Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127(2):515–20. https://pubmed.ncbi.nlm.nih.gov/19833188/
Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating C-reactive protein, tumor necrosis factor, and interleukin-6 in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2019;149(4):605–18. https://pubmed.ncbi.nlm.nih.gov/30949665/
Moosavian SP, Paknahad Z, Habibagahi Z, Maracy M. The effects of garlic (Allium sativum) supplementation on inflammatory biomarkers, fatigue, and clinical symptoms in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2020;34(11):2953–62. https://pubmed.ncbi.nlm.nih.gov/32478922/
Taghizadeh M, Hamedifard Z, Jafarnejad S. Effect of garlic supplementation on serum C-reactive protein level: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33(2):243–52. https://pubmed.ncbi.nlm.nih.gov/30370629/
Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/
Payahoo L, Ostadrahimi A, Mobasseri M, et al. Anethum graveolens L. supplementation has anti-inflammatory effect in type 2 diabetic patients. Indian J Tradit Knowl. 2014:13(3):461–5.; https://www.researchgate.net/publication/267032371_Anethum_graveolens_L_supplementation_has_anti-inflammatory_effect_in_type_2_diabetic_patients
Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/
Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum Zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/
Vázquez-Agell M, Urpi-Sarda M, Sacanella E, et al. Cocoa consumption reduces NF-¿B activation in peripheral blood mononuclear cells in humans. Nutr Metab Cardiovasc Dis. 2013;23(3):257–63. https://pubmed.ncbi.nlm.nih.gov/21824756/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Eshghpour M, Mortazavi H, Mohammadzadeh Rezaei NM, Nejat AH. Effectiveness of green tea mouthwash in postoperative pain control following surgical removal of impacted third molars: double blind randomized clinical trial. Daru. 2013;21(1):59. https://pubmed.ncbi.nlm.nih.gov/23866761/
Sridharan S, Archer N, Manning N. Premature constriction of the fetal ductus arteriosus following the maternal consumption of camomile herbal tea. Ultrasound Obstet Gynecol. 2009;34(3):358–9. https://pubmed.ncbi.nlm.nih.gov/19705407/
Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-Activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/
Fuster V, Sweeny JM. Aspirin: a historical and contemporary therapeutic overview. Circulation. 2011;123(7):768–78. https://pubmed.ncbi.nlm.nih.gov/21343593/
Saad M, Abdelaziz HK, Mehta JL. Aspirin for primary prevention in the elderly. Aging (Albany NY). 2019;11(17):6618–9. https://pubmed.ncbi.nlm.nih.gov/31492828/
Patrono C, Baigent C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol. 2019;16(11):675–86. https://pubmed.ncbi.nlm.nih.gov/31243390/
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/
Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/
Knutsen SF. Lifestyle and the use of health services. Am J Clin Nutr. 1994;59(5 Suppl):1171S-5S. https://pubmed.ncbi.nlm.nih.gov/8172119/
McCarty MF. Dietary nitrate and reductive polyphenols may potentiate the vascular benefit and alleviate the ulcerative risk of low-dose aspirin. Med Hypotheses. 2013;80(2):186–90. https://pubmed.ncbi.nlm.nih.gov/23265354/
Scheier L. Salicylic acid: one more reason to eat your fruits and vegetables. J Am Diet Assoc. 2001;101(12):1406–8. https://pubmed.ncbi.nlm.nih.gov/11762733/
Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/
Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub
Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
Keszycka PK, Szkop M, Gajewska D. Overall content of salicylic acid and salicylates in food available on the European market. J Agric Food Chem. 2017;65(50):11085–91. https://pubmed.ncbi.nlm.nih.gov/29182277/
Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub
Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/
Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/
Популярное индийское блюдо, завезенное в Гоа португальскими моряками. – Примеч. ред.
Традиционные индийские блюда, приправленные куркумой, перцем чили, чесноком, кумином, кориандром, имбирем, тамариндом, лимонной кислотой, растительным маслом, уксусом и солью. – Примеч. ред.
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/
Pasche B, Wang M, Pennison M, Jimenez H. Prevention and treatment of cancer with aspirin: where do we stand? Semin Oncol. 2014;41(3):397–401. https://pubmed.ncbi.nlm.nih.gov/25023355/
Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/
Pawelec G. Aging as an inflammatory disease and possible reversal strategies. J Allergy Clin Immunol. 2020;145(5):1355–6. https://pubmed.ncbi.nlm.nih.gov/32142747/
Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/
Assmann KE, Adjibade M, Shivappa N, et al. The inflammatory potential of the diet at midlife is associated with later healthy aging in French adults. J Nutr. 2018;148(3):437–44. https://pubmed.ncbi.nlm.nih.gov/29546305/
Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/
O’Keefe JH, Bell DSH. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol. 2007;100(5):899–904. https://pubmed.ncbi.nlm.nih.gov/17719342/
Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. https://pubmed.ncbi.nlm.nih.gov/1102508/
Garza-Lombó C, Gonsebatt ME. Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci. 2016;10:157. https://pubmed.ncbi.nlm.nih.gov/27378854/
Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Blagosklonny MV. TOR-driven aging: speeding car without brakes. Cell Cycle. 2009;8(24):4055–9. https://pubmed.ncbi.nlm.nih.gov/19923900/
Schmeisser K, Parker JA. Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol. 2019;7. https://pubmed.ncbi.nlm.nih.gov/31572724/
Vasunilashorn S, Finch CE, Crimmins EM, et al. Inflammatory gene variants in the Tsimane, an indigenous Bolivian population with a high infectious load. Biodemography Soc Biol. 2011;57(1):33–52. https://pubmed.ncbi.nlm.nih.gov/21845926/
Huebbe P, Schloesser A, Rimbach G. A nutritional perspective on cellular rejuvenation. Oncotarget. 2015;6(16):13846–7. https://pubmed.ncbi.nlm.nih.gov/26116836/
Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/
Blagosklonny MV. Does rapamycin slow down time? Oncotarget. 2018;9(54):30210–2. https://pubmed.ncbi.nlm.nih.gov/30100983/
Wei Y, Zhang YJ, Cai Y. Growth or longevity: the TOR’s decision on lifespan regulation. Biogerontology. 2013;14(4):353–63. https://pubmed.ncbi.nlm.nih.gov/23740528/
Swindell WR. Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse. J Gerontol A Biol Sci Med Sci. 2017;72(8):1024–32. https://pubmed.ncbi.nlm.nih.gov/27519886/
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/
Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/
Sharp ZD, Strong R. The role of mTOR signaling in controlling mammalian life span: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci. 2010;65A(6):580–9. https://pubmed.ncbi.nlm.nih.gov/20083554/
Kaeberlein M, Kennedy BK. A midlife longevity drug? Nature. 2009;460(7253):331–2. https://pubmed.ncbi.nlm.nih.gov/19606132/
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/
Arriola Apelo SI, Lamming DW. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci. 2016;71(7):841–9. https://pubmed.ncbi.nlm.nih.gov/27208895/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/
Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23. https://pubmed.ncbi.nlm.nih.gov/15800227/
Majumder S, Caccamo A, Medina DX, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1ß and enhancing NMDA signaling. Aging Cell. 2012;11(2):326–35. https://pubmed.ncbi.nlm.nih.gov/22212527/
Wilkinson JE, Burmeister L, Brooks SV, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://pubmed.ncbi.nlm.nih.gov/22587563/
An JY, Kerns KA, Ouellette A, et al. Rapamycin rejuvenates oral health in aging mice. Elife. 2020;9:e54318. https://pubmed.ncbi.nlm.nih.gov/32342860/
Altschuler RA, Kanicki A, Martin C, Kohrman DC, Miller RA. Rapamycin but not acarbose decreases age-related loss of outer hair cells in the mouse cochlea. Hear Res. 2018;370:11–5. https://pubmed.ncbi.nlm.nih.gov/30245283/
Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell. 2017;16(1):17–26. https://pubmed.ncbi.nlm.nih.gov/27660040/
Zaseck LW, Miller RA, Brooks SV. Rapamycin attenuates age-associated changes in tibialis anterior tendon viscoelastic properties. J Gerontol A Biol Sci Med Sci. 2016;71(7):858–65. https://pubmed.ncbi.nlm.nih.gov/26809496/
Dai DF, Karunadharma PP, Chiao YA, et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014;13(3):529–39. https://pubmed.ncbi.nlm.nih.gov/24612461/
Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2016;71(7):876–81. https://pubmed.ncbi.nlm.nih.gov/27091134/
Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. https://pubmed.ncbi.nlm.nih.gov/27549339/
Urfer SR, Kaeberlein TL, Mailheau S, et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience. 2017;39(2):117–27. https://pubmed.ncbi.nlm.nih.gov/28374166/
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92. https://pubmed.ncbi.nlm.nih.gov/32130880/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA. 2004;291(10):1226–30. https://pubmed.ncbi.nlm.nih.gov/15010444/
Wazir U, Newbold RF, Jiang WG, Sharma AK, Mokbel K. Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol Rep. 2013;29(5):1969–74. https://pubmed.ncbi.nlm.nih.gov/23503572/
Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31. https://pubmed.ncbi.nlm.nih.gov/21727255/
Dar BA, Dar MA, Bashir S. Calorie restriction the fountain of youth. Food Nutr Sci. 2012;3(11):1522–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=24485
Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7. https://pubmed.ncbi.nlm.nih.gov/16226298/
Bourzac K. Interventions: live long and prosper. Nature. 2012;492(7427):S18–20. https://pubmed.ncbi.nlm.nih.gov/23222670/
Nakagawa S, Lagisz M, Hector KL, Spencer HG. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell. 2012;11(3):401–9. https://pubmed.ncbi.nlm.nih.gov/22268691/
Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/
Ross MH. Length of life and nutrition in the rat. J Nutr. 1961;75:197–210. https://pubmed.ncbi.nlm.nih.gov/14494200/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Fontana L, Partridge L, Longo VD. Extending healthy life span – from yeast to humans. Science. 2010;328(5976):321–6. https://pubmed.ncbi.nlm.nih.gov/20395504/
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Mechanism of activation of mechanistic target of rapamycin complex 1 by methionine. Front Cell Dev Biol. 2020;8:715. https://pubmed.ncbi.nlm.nih.gov/32850834/
Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/
Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ. The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009;139(6):1103–9. https://pubmed.ncbi.nlm.nih.gov/19403715/
Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/
Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33951994/
Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev. 2019;177:186–200. https://pubmed.ncbi.nlm.nih.gov/30044947/
Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/
Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/
Davinelli S, Willcox DC, Scapagnini G. Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing. 2012;9:9. https://pubmed.ncbi.nlm.nih.gov/22524452/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta. 2014;1842(7):1097–108. https://pubmed.ncbi.nlm.nih.gov/24726883/
Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/
Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J. 2017;31(2):598–609. https://pubmed.ncbi.nlm.nih.gov/28148781/
Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/
Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/
Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/
Moro T, Brightwell CR, Velarde B, et al. Whey protein hydrolysate increases amino acid uptake, mTORC1 signaling, and protein synthesis in skeletal muscle of healthy young men in a randomized crossover trial. J Nutr. 2019;149(7):1149–58. https://pubmed.ncbi.nlm.nih.gov/31095313/
Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/
Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/
Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/
Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/
Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12:103. https://pubmed.ncbi.nlm.nih.gov/23883112/
Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138(12):1584–90. https://pubmed.ncbi.nlm.nih.gov/12472346/
Danby FW. Acne and milk, the diet myth, and beyond. J Am Acad Dermatol. 2005;52(2):360–2. https://pubmed.ncbi.nlm.nih.gov/15692488/
Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A, Omidian M, Taheri F. Dairy intake and acne development: a meta-analysis of observational studies. Clin Nutr. 2019;38(3):1067–75. https://pubmed.ncbi.nlm.nih.gov/29778512/
Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/
Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/
Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/
Baron JA, Weiderpass E, Newcomb PA, et al. Metabolic disorders and breast cancer risk (United States). Cancer Causes Control. 2001;12(10):875–80. https://pubmed.ncbi.nlm.nih.gov/11808705/
Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer. 2007;121(12):2688–92. https://pubmed.ncbi.nlm.nih.gov/17724724/
Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/
Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/
Pettersson A, Kasperzyk JL, Kenfield SA, et al. Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev. 2012;21(3):428–36. https://pubmed.ncbi.nlm.nih.gov/22315365/
Tognon G, Nilsson LM, Shungin D, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr. 2017;105(6):1502–11. https://pubmed.ncbi.nlm.nih.gov/28490510/
Melnik BC, Schmitz G. Pasteurized non-fermented cow’s milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev. 2021;67:101270. https://pubmed.ncbi.nlm.nih.gov/33571703/
Gao X, Jia H, Chen G, Li C, Hao M. Yogurt intake reduces all-cause and cardiovascular disease mortality: a meta-analysis of eight prospective cohort studies. Chin J Integr Med. 2020;26(6):462–8. https://pubmed.ncbi.nlm.nih.gov/31970674/
Sahin K, Orhan C, Tuzcu M, et al. Tomato powder modulates NF-¿B, mTOR, and Nrf2 pathways during aging in healthy rats. J Aging Res. 2019;2019:1643243. https://pubmed.ncbi.nlm.nih.gov/30719353/
Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014;105(3):252–7. https://pubmed.ncbi.nlm.nih.gov/24397737/
Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3’-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev. 2016;74(7):432–43. https://pubmed.ncbi.nlm.nih.gov/27261275/
Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-a induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol. 2019;10:1620. https://pubmed.ncbi.nlm.nih.gov/31396207/
Zhang Y, Gilmour A, Ahn YH, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine. 2021;86:153062. https://pubmed.ncbi.nlm.nih.gov/31409554/
Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021;360:130145. https://pubmed.ncbi.nlm.nih.gov/34034049/
Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets. 2016;15(5):533–43. https://pubmed.ncbi.nlm.nih.gov/27071790/
Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273–81. https://pubmed.ncbi.nlm.nih.gov/15184012/
Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111(43):15550–5. https://pubmed.ncbi.nlm.nih.gov/25313065/
Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://pubmed.ncbi.nlm.nih.gov/18513215/
Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/
Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–9. https://pubmed.ncbi.nlm.nih.gov/21300025/
Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/
Cassidy A, Chung M, Zhao N, et al. Dose – response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies. Adv Nutr. 2020;11(4):790–814. https://pubmed.ncbi.nlm.nih.gov/32073596/
Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR) – rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6(5). https://pubmed.ncbi.nlm.nih.gov/27048303/
Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/
Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc. 2016;17(11):963–6. https://pubmed.ncbi.nlm.nih.gov/27780571/
Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY). 2010;2(5):265–73. https://pubmed.ncbi.nlm.nih.gov/20519781/
Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://pubmed.ncbi.nlm.nih.gov/25735236/
Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–6. https://pubmed.ncbi.nlm.nih.gov/21525248/
Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75. https://pubmed.ncbi.nlm.nih.gov/19321567/
Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging (Albany NY). 2019;11(16):5868–70. https://pubmed.ncbi.nlm.nih.gov/31454792/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/
Тор (Tor) – в германо-скандинавской мифологии бог грома и молний, защищающий богов и людей от великанов и чудовищ с помощью боевого молота (hammer). – Примеч. ред.
Lamming DW, Salmon AB. TORwards a victory over aging. J Gerontol A Biol Sci Med Sci. 2020;75(1):1–3. https://pubmed.ncbi.nlm.nih.gov/31544928/
Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic “hammer” of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J Exp Bot. 2019;70(8):2217–25. https://pubmed.ncbi.nlm.nih.gov/30722050/
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. https://pubmed.ncbi.nlm.nih.gov/30674654/
Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://pubmed.ncbi.nlm.nih.gov/20519118/
Sansevero TB. The Profit Machine. Cultiva Libros; 2009.
Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://pubmed.ncbi.nlm.nih.gov/5016631/
Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/
Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/
Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/
Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/
Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/
Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/
Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/
Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/
Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/
Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/
Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/
Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/
Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/
.
Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/
Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/
Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/
Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/
Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/
Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/
López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/
Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/
Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970
McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/
Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/
Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/
Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/
Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/
Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/
Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/
Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/
Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/
Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/
Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/
Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/
Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/
Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/
Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/
Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/
Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/
Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/
Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24. https://pubmed.ncbi.nlm.nih.gov/28109890/
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/
Coffey DS. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology. 2001;57(4 Suppl 1):31–8. https://pubmed.ncbi.nlm.nih.gov/11295592/
Jallinoja P, Niva M, Helakorpi S, Kahma N. Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. Food Nutr Res. 2014;58:23552. https://pubmed.ncbi.nlm.nih.gov/25490960/
Nestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25:43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/
Abbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers: an updated systematic review and meta-analysis. Nutr Cancer. 2021;73(5):721–39. https://pubmed.ncbi.nlm.nih.gov/32462920/
Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/
Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/
Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/
Bastin S, Henken K. Water content of fruits and vegetables. University of Kentucky College of Agriculture Cooperative Extension Service. https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables. Published December 1997. Accessed November 11, 2021.; https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables
Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6 Pt 1):1309–15. https://pubmed.ncbi.nlm.nih.gov/9625058/
Halliwell B. The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol. 2013;75(3):637–44. https://pubmed.ncbi.nlm.nih.gov/22420826/
van Poppel G, Poulsen H, Loft S, Verhagen H. No influence of beta carotene on oxidative DNA damage in male smokers. J Natl Cancer Inst. 1995;87(4):310–1. https://pubmed.ncbi.nlm.nih.gov/7707423/
Priemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion in smokers. Am J Clin Nutr. 1997;65(2):503–7. https://pubmed.ncbi.nlm.nih.gov/9022536/
Cao G, Booth SL, Sadowski JA, Prior RL. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr. 1998;68(5):1081–7. https://pubmed.ncbi.nlm.nih.gov/9808226/
Johnson SA, Feresin RG, Navaei N, et al. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017;8(1):372–80. https://pubmed.ncbi.nlm.nih.gov/28059417/
Verhagen H, Poulsen HE, Loft S, van Poppel G, Willems MI, van Bladeren PJ. Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis. 1995;16(4):969–70. https://pubmed.ncbi.nlm.nih.gov/7728983/
Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/
Ha K, Kim K, Sakaki JR, Chun OK. Relative validity of dietary total antioxidant capacity for predicting all-cause mortality in comparison to diet quality indexes in US adults. Nutrients. 2020;12(5):1210. https://pubmed.ncbi.nlm.nih.gov/32344879/
Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/
Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/
Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/
Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3. https://pubmed.ncbi.nlm.nih.gov/10946914/
Prior RL, Gu L, Wu X, et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26(2):170–81. https://pubmed.ncbi.nlm.nih.gov/17536129/
Darvin ME, Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J. One-year study on the variation of carotenoid antioxidant substances in living human skin: influence of dietary supplementation and stress factors. J Biomed Opt. 2008;13(4):044028. https://pubmed.ncbi.nlm.nih.gov/19021355/
Blacker BC, Snyder SM, Eggett DL, Parker TL. Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation. Br J Nutr. 2013;109(9):1670–7. https://pubmed.ncbi.nlm.nih.gov/22935321/
Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/
Del Bó C, Riso P, Campolo J, et al. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res. 2013;33(3):220–7. https://pubmed.ncbi.nlm.nih.gov/29019365/
Szeto YT, Chu WK, Benzie IFF. Antioxidants in fruits and vegetables: a study of cellular availability and direct effects on human DNA. Biosci Biotechnol Biochem. 2006;70(10):2551–5. https://pubmed.ncbi.nlm.nih.gov/17031063/
López-Uriarte P, Nogués R, Saez G, et al. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29(3):373–80. https://pubmed.ncbi.nlm.nih.gov/20064680/
Porrini M, Riso P. Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr. 2000;130(2):189–92. https://pubmed.ncbi.nlm.nih.gov/10720168/
Porrini M, Riso P, Oriani G. Spinach and tomato consumption increases lymphocyte DNA resistance to oxidative stress but this is not related to cell carotenoid concentrations. Eur J Nutr. 2002;41(3):95–100. https://pubmed.ncbi.nlm.nih.gov/12111045/
Frugé AD, Smith KS, Riviere AJ, et al. A dietary intervention high in green leafy vegetables reduces oxidative DNA damage in adults at increased risk of colorectal cancer: biological outcomes of the randomized controlled meat and three greens (M3G) feasibility trial. Nutrients. 2021;13(4):1220. https://pubmed.ncbi.nlm.nih.gov/33917165/
Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/
Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/
Fogarty MC, Hughes CM, Burke G, Brown JC, Davison GW. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation. Br J Nutr. 2013;109(2):293–301. https://pubmed.ncbi.nlm.nih.gov/22475430/
Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/
Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/
Szeto YT, To TL, Pak SC, Kalle W. A study of DNA protective effect of orange juice supplementation. Appl Physiol Nutr Metab. 2013;38(5):533–6. https://pubmed.ncbi.nlm.nih.gov/23668761/
Guarnieri S, Riso P, Porrini M. Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr. 2007;97(4):639–43. https://pubmed.ncbi.nlm.nih.gov/17349075/
Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/
Collins BH, Horská A, Hotten PM, Riddoch C, Collins AR. Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutr Cancer. 2001;39(1):148–53. https://pubmed.ncbi.nlm.nih.gov/11588897/
Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/
Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/
Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/
Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/
Collins AR, Azqueta A, Langie SAS. Effects of micronutrients on DNA repair. Eur J Nutr. 2012;51(3):261–79. https://pubmed.ncbi.nlm.nih.gov/22362552/
Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/
Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/
Wang J, Deng N, Wang H, et al. Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules. 2020;25(2):351. https://pubmed.ncbi.nlm.nih.gov/31952185/
Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4:e1879. https://pubmed.ncbi.nlm.nih.gov/27077003/
Salehi B, Azzini E, Zucca P, et al. Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci. 2020;10(3):947. https://www.mdpi.com/2076-3417/10/3/947
Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod. 2011;74(8):1713–20. https://pubmed.ncbi.nlm.nih.gov/21805983/
Ferk F, Chakraborty A, Jäger W, et al. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res. 2011;715(1–2):61–71. https://pubmed.ncbi.nlm.nih.gov/21827773/
Ferk F, Kundi M, Brath H, et al. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Mol Nutr Food Res. 2018;62(4). https://pubmed.ncbi.nlm.nih.gov/29193677/
Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/
Kampkötter A, Timpel C, Zurawski RF, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(2):314–23. https://pubmed.ncbi.nlm.nih.gov/18024103/
Shimizu C, Wakita Y, Inoue T, et al. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep. 2019;9(1):3671. https://pubmed.ncbi.nlm.nih.gov/30842523/
Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/
Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/
Bahadorani S, Hilliker AJ. Cocoa confers life span extension in Drosophila melanogaster. Nutr Res. 2008;28(6):377–82. https://pubmed.ncbi.nlm.nih.gov/19083435/
Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/
Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/
Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/
Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020;17:100499. https://pubmed.ncbi.nlm.nih.gov/31890983/
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/
Zhu C, Yan H, Zheng Y, Santos HO, Macit MS, Zhao K. Impact of cinnamon supplementation on cardiometabolic biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020;53:102517. https://pubmed.ncbi.nlm.nih.gov/33066854/
Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005;93(2):257–66. https://pubmed.ncbi.nlm.nih.gov/15788119/
Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612. https://pubmed.ncbi.nlm.nih.gov/33458848/
Askari M, Mozaffari H, Darooghegi Mofrad M, et al. Effects of garlic supplementation on oxidative stress and antioxidative capacity biomarkers: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021;35(6):3032–45. https://pubmed.ncbi.nlm.nih.gov/33484037/
Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/
Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: a systematic review and meta-analysis of interventional studies. Complement Ther Med. 2020;48:102240. https://pubmed.ncbi.nlm.nih.gov/31987247/
Grassi D, Desideri G, Necozione S, et al. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens. 2015;33(2):294–303. https://pubmed.ncbi.nlm.nih.gov/25380152/
Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290(8):1029–30. https://pubmed.ncbi.nlm.nih.gov/12941673/
Carnevale R, Loffredo L, Pignatelli P, et al. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J Thromb Haemost. 2012;10(1):125–32. https://pubmed.ncbi.nlm.nih.gov/22066819/
Parsaeyan N, Mozaffari-Khosravi H, Absalan A, Mozayan MR. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. J Diabetes Metab Disord. 2014;13(1):30. https://pubmed.ncbi.nlm.nih.gov/24495354/
Onuegbu AJ, Olisekodiaka JM, Irogue SE, et al. Consumption of soymilk reduces lipid peroxidation but may lower micronutrient status in apparently healthy individuals. J Med Food. 2018;21(5):506–10. https://pubmed.ncbi.nlm.nih.gov/29432056/
Ballard KD, Mah E, Guo Y, Pei R, Volek JS, Bruno RS. Low-fat milk ingestion prevents postprandial hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic syndrome. J Nutr. 2013;143(10):1602–10. https://pubmed.ncbi.nlm.nih.gov/23966328/
Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93(3):500–5. https://pubmed.ncbi.nlm.nih.gov/21228265/
Jablonski KL, Racine ML, Geolfos CJ, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61(3):335–43. https://pubmed.ncbi.nlm.nih.gov/23141486/
McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit 7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/
Chai SC, Davis K, Zhang Z, Zha L, Kirschner KF. Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults. Nutrients. 2019;11(2):228. https://pubmed.ncbi.nlm.nih.gov/30678193/
Dourado GKZS, Cesar TB. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects. Food Nutr Res. 2015;59(1):28147. https://pubmed.ncbi.nlm.nih.gov/26490535/
Shema-Didi L, Sela S, Ore L, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med. 2012;53(2):297–304. https://pubmed.ncbi.nlm.nih.gov/22609423/
Ghavipour M, Sotoudeh G, Ghorbani M. Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr. 2015;34(5):805–9. https://pubmed.ncbi.nlm.nih.gov/25466953/
Shyam R, Singh SN, Vats P, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. J Altern Complement Med. 2007;13(8):789–91. https://pubmed.ncbi.nlm.nih.gov/17983333/
Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ. Low-calorie cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res. 2011;31(3):190–6. https://pubmed.ncbi.nlm.nih.gov/21481712/
de Lima Tavares Toscano L, Silva AS, de França ACL, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr. 2020;59(7):2997–3007. https://pubmed.ncbi.nlm.nih.gov/31732851/
Cao G, Russell RM, Lischner N, Prior RL. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr. 1998;128(12):2383–90. https://pubmed.ncbi.nlm.nih.gov/9868185/
Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25(2):250–2. https://pubmed.ncbi.nlm.nih.gov/9667503/
Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/
Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/
Xue KX, Wang S, Ma GJ, et al. Micronucleus formation in peripheral-blood lymphocytes from smokers and the influence of alcohol- and tea-drinking habits. Int J Cancer. 1992;50(5):702–5. https://pubmed.ncbi.nlm.nih.gov/1544703/
Bloomer RJ, Trepanowski JF, Farney TM. Influence of acute coffee consumption on postprandial oxidative stress. Nutr Metab Insights. 2013;6:35–42. https://pubmed.ncbi.nlm.nih.gov/23935371/
Takahashi M, Miyashita M, Suzuki K, et al. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr. 2014;112(9):1542–50. https://pubmed.ncbi.nlm.nih.gov/25230741/
Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr. 2000;54(1):87–92. https://pubmed.ncbi.nlm.nih.gov/10694777/
Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Addition of milk to tea infusions: helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Crit Rev Food Sci Nutr. 2017;57(15):3188–96. https://pubmed.ncbi.nlm.nih.gov/26517348/
Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/
Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/
Dias TR, Alves MG, Tomás GD, Socorro S, Silva BM, Oliveira PF. White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea. J Agric Food Chem. 2014;62(3):608–17. https://pubmed.ncbi.nlm.nih.gov/24372402/
Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–37. https://pubmed.ncbi.nlm.nih.gov/25527735/
Leaf DA, Kleinman MT, Hamilton M, Deitrick RW. The exercise-induced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci. 1999;317(5):295–300. https://pubmed.ncbi.nlm.nih.gov/10334116/
Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/
Vollaard NBJ, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med. 2005;35(12):1045–62. https://pubmed.ncbi.nlm.nih.gov/16336008/
Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/
Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. https://pubmed.ncbi.nlm.nih.gov/19144121/
Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70. https://pubmed.ncbi.nlm.nih.gov/19433800/
Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4. https://pubmed.ncbi.nlm.nih.gov/22777327/
Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10):E2389. https://pubmed.ncbi.nlm.nih.gov/31591287/
Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9. https://pubmed.ncbi.nlm.nih.gov/29559721/
Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J Sports Sci. 2010;28(12):1261–8. https://pubmed.ncbi.nlm.nih.gov/20845212/
Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81. https://pubmed.ncbi.nlm.nih.gov/19403859/
Funes L, Carrera-Quintanar L, Cerdán-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705. https://pubmed.ncbi.nlm.nih.gov/20967458/
Ghezzi P, Jaquet V, Marcucci F, Schmidt HHHW. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017;174(12):1784–96. https://pubmed.ncbi.nlm.nih.gov/27425643/
Scudellari M. The science myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/
Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/
Milisav I, Ribaric S, Poljsak B. Antioxidant vitamins and ageing. Subcell Biochem. 2018;90:1–23. https://pubmed.ncbi.nlm.nih.gov/30779004/
Smejkal GB, Kakumanu S. Enzymes and their turnover numbers. Expert Rev Proteom. 2019;16(7):543–4. https://pubmed.ncbi.nlm.nih.gov/31220960/
Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/
Zang H, Mathew RO, Cui T. The dark side of Nrf2 in the heart. Front Physiol. 2020;11:722. https://pubmed.ncbi.nlm.nih.gov/32733266/
Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro. 2020;12:1759091419899782. https://pubmed.ncbi.nlm.nih.gov/31964153/
Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother. 2020;129:110373. https://pubmed.ncbi.nlm.nih.gov/32603894/
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/
Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/
Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/
Ferguson LR, Schlothauer RC. The potential role of nutritional genomics tools in validating high health foods for cancer control: broccoli as example. Mol Nutr Food Res. 2012;56(1):126–46. https://pubmed.ncbi.nlm.nih.gov/22147677/
Sun Y, Yang T, Leak RK, Chen J, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targets. 2017;16(3):326–38. https://pubmed.ncbi.nlm.nih.gov/28042770/
Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43(1):146–53. https://pubmed.ncbi.nlm.nih.gov/26970133/
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102. https://pubmed.ncbi.nlm.nih.gov/32730855/
Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50(5):829–43. https://pubmed.ncbi.nlm.nih.gov/21031035/
Tullet JMA, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38. https://pubmed.ncbi.nlm.nih.gov/18358814/
Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14(1):76–85. https://pubmed.ncbi.nlm.nih.gov/18194654/
Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/
Yu C, Li Y, Holmes A, et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE. 2011;6(11):e26729. https://pubmed.ncbi.nlm.nih.gov/22073188/
Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/
Andziak B, O’Connor TP, Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev. 2005;126(11):1206–12. https://pubmed.ncbi.nlm.nih.gov/16087218/
Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/
Zhou L, Zhang H, Davies KJA, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. https://pubmed.ncbi.nlm.nih.gov/28863281/
Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471–9. https://pubmed.ncbi.nlm.nih.gov/32871230/
Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/
Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:5438179. https://pubmed.ncbi.nlm.nih.gov/29977456/
Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. https://pubmed.ncbi.nlm.nih.gov/33067900/
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. https://pubmed.ncbi.nlm.nih.gov/29074861/
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/
Riso P, Martini D, Møller P, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595–602. https://pubmed.ncbi.nlm.nih.gov/20713433/
Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/
Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/
Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/
Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetable-enriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108(2):212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/
Knatko EV, Ibbotson SH, Zhang Y, et al. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res (Phila). 2015;8(6):475–86. https://pubmed.ncbi.nlm.nih.gov/25804610/
Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186. https://pubmed.ncbi.nlm.nih.gov/26881038/
Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/
Mori N, Shimazu T, Charvat H, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr. 2019;38(2):631–43. https://pubmed.ncbi.nlm.nih.gov/29739681/
Grünwald S, Stellzig J, Adam IV, et al. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr. 2013;8(5):439–48. https://pubmed.ncbi.nlm.nih.gov/23321956/
Hanschen FS. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020;321:126694. https://pubmed.ncbi.nlm.nih.gov/32244140/
Hernández-Ruiz Á, García-Villanova B, Guerra-Hernández E, Amiano P, Ruiz-Canela M, Molina-Montes E. A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. 2019;11(4):774. https://pubmed.ncbi.nlm.nih.gov/30987200/
Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18(3):579–90. https://pubmed.ncbi.nlm.nih.gov/15777097/
Carvalho AM, Miranda AM, Santos FA, Loureiro APM, Fisberg RM, Marchioni DM. High intake of heterocyclic amines from meat is associated with oxidative stress. Br J Nutr. 2015;113(8):1301–7. https://pubmed.ncbi.nlm.nih.gov/25812604/
Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/
Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001;31(11):1388–95. https://pubmed.ncbi.nlm.nih.gov/11728810/
Mohamed B, Mohamed I. The effects of residual blood of carcasses on poultry technological quality. Food Nutri Sci. 2012;03(10):1382–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=23386
Alvarado CZ, Richards MP, O’Keefe SF, Wang H. The effect of blood removal on oxidation and shelf life of broiler breast meat. Poult Sci. 2007;86(1):156–61. https://pubmed.ncbi.nlm.nih.gov/17179431/
Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/
Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub
Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628. Published May 6, 2021. Accessed July 10, 2021.; https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628
Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/
Edalati S, Bagherzadeh F, Asghari Jafarabadi M, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr. 2021;125(5):568–76. https://pubmed.ncbi.nlm.nih.gov/32513316/
Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/
Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. https://pubmed.ncbi.nlm.nih.gov/33541846/
Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal. 2010;13(10):1575–91. https://pubmed.ncbi.nlm.nih.gov/20222825/
Burri BJ. Antioxidant status in vegetarians versus omnivores: a mechanism for longer life? Nutrition. 2000;16(2):149–50. https://pubmed.ncbi.nlm.nih.gov/10755825/
Krajcovicová-Kudlácková M, Šimoncic R, Béderová A, Klvanová J, Brtková A, Grancicová E. Lipid and antioxidant blood levels in vegetarians. Nahrung. 1996;40(1):17–20. https://pubmed.ncbi.nlm.nih.gov/8975140/
Kováciková Z, Cerhata D, Kadrabová J, Madaric A, Ginter E. Antioxidant status in vegetarians and nonvegetarians in Bratislava region (Slovakia). Z Ernahrungswiss. 1998;37(2):178–82. https://pubmed.ncbi.nlm.nih.gov/9698645/
Nagyová A, Kudlácková M, Grancicová E, Magálová T. LDL oxidizability and antioxidative status of plasma in vegetarians. Ann Nutr Metab. 1998;42(6):328–32. https://pubmed.ncbi.nlm.nih.gov/9895420/
Boanca MM, Colosi HA, Craciun EC. The impact of the lacto-ovo vegetarian diet on the erythrocyte superoxide dismutase activity: a study in the Romanian population. Eur J Clin Nutr. 2014;68(2):184–8. https://pubmed.ncbi.nlm.nih.gov/24105324/
Krajcovicová-Kudlácková M, Valachovicová M, Pauková V, Dušinská M. Effects of diet and age on oxidative damage products in healthy subjects. Physiol Res. 2008;57(4):647–51. https://pubmed.ncbi.nlm.nih.gov/17705666/
Somannavar MS, Kodliwadmath MV. Correlation between oxidative stress and antioxidant defence in South Indian urban vegetarians and non-vegetarians. Eur Rev Med Pharmacol Sci. 2012;16(3):351–4. https://pubmed.ncbi.nlm.nih.gov/22530352/
Manjari V, Suresh Y, Sailaja Devi MM, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in South Indian vegetarians and non-vegetarians. Prostaglandins Leukot Essent Fatty Acids. 2001;64(1):53–9. https://pubmed.ncbi.nlm.nih.gov/11161585/
Kim MK, Cho SW, Park YK. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr Res Pract. 2012;6(2):155–61. https://pubmed.ncbi.nlm.nih.gov/22586505/
Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6. https://pubmed.ncbi.nlm.nih.gov/15474873/
Gajski G, Geric M, Vucic Lovrencic M, et al. Analysis of health-related biomarkers between vegetarians and non-vegetarians: a multi-biomarker approach. J Funct Foods. 2018;48:643–53. https://www.sciencedirect.com/science/article/abs/pii/S1756464618304109?via%3Dihub
Poornima K, Cariappa M, Asha K, Kedilaya HP, Nandini M. Oxidant and antioxidant status in vegetarians and fish eaters. Indian J Clin Biochem. 2003;18(2):197–205. https://pubmed.ncbi.nlm.nih.gov/23105412/
Krajcovicová-Kudlácková M, Šimoncic R, Babinská K, Béderová A. Levels of lipid peroxidation and antioxidants in vegetarians. Eur J Epidemiol. 1995;11(2):207–11. https://pubmed.ncbi.nlm.nih.gov/7672077/
Nadimi H, Yousefinejad A, Djazayery A, Hosseini M, Hosseini S. Association of vegan diet with RMR, body composition and oxidative stress. Acta Sci Pol Technol Aliment. 2013;12(3):311–8. https://pubmed.ncbi.nlm.nih.gov/24584960/
Herrmann W, Schorr H, Purschwitz K, Rassoul F, Richter V. Total homocysteine, vitamin B12, and total antioxidant status in vegetarians. Clin Chem. 2001;47(6):1094–101. https://pubmed.ncbi.nlm.nih.gov/11375297/
van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;11(2):E482. https://pubmed.ncbi.nlm.nih.gov/30823595/
Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/
Wellington CL, Frikke-Schmidt R. Relation between plasma and brain lipids. Curr Opin Lipidol. 2016;27(3):225–32. https://pubmed.ncbi.nlm.nih.gov/27149391/
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7. https://pubmed.ncbi.nlm.nih.gov/26150787/
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/
Iuliano L, Micheletta F, Natoli S, et al. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem. 2003;312(2):217–23. https://pubmed.ncbi.nlm.nih.gov/12531208/
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/
Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/
Si R, Qu K, Jiang Z, Yang X, Gao P. Egg consumption and breast cancer risk: a meta-analysis. Breast Cancer. 2014;21(3):251–61. https://pubmed.ncbi.nlm.nih.gov/24504557/
Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016;36(7):627–35. https://pubmed.ncbi.nlm.nih.gov/27333953/
Asghari A, Umetani M. Obesity and cancer: 27-hydroxycholesterol, the missing link. Int J Mol Sci. 2020;21(14):4822. https://pubmed.ncbi.nlm.nih.gov/32650428/
Nelson ER, Chang C, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol & Metab. 2014;25(12):649–55. https://pubmed.ncbi.nlm.nih.gov/25458418/
Kaiser J. Cholesterol forges link between obesity and breast cancer. Science. 2013;342(6162):1028. https://pubmed.ncbi.nlm.nih.gov/24288308/
Staprans I, Pan XM, Rapp JH, Feingold KR. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res. 2003;44(4):705–15. https://pubmed.ncbi.nlm.nih.gov/12562864/
Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x
Natella F, Macone A, Ramberti A, et al. Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. Br J Nutr. 2011;105(12):1718–23. https://pubmed.ncbi.nlm.nih.gov/21294933/
Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/
Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x
Khan MI, Min JS, Lee SO, et al. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids Health Dis. 2015;14:89. https://pubmed.ncbi.nlm.nih.gov/26260472/
Min JS, Lee SO, Khan MI, et al. Monitoring the formation of cholesterol oxidation products in model systems using response surface methodology. Lipids Health Dis. 2015;14:77. https://pubmed.ncbi.nlm.nih.gov/26201850/
Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products
Echarte M, Ansorena D, Astiasarán I. Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties. J Agric Food Chem. 2003;51(20):5941–5. https://pubmed.ncbi.nlm.nih.gov/13129298/
Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products
Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol. 2018;118:908–39. https://pubmed.ncbi.nlm.nih.gov/29940280/
Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/
Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/
Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/
Jacobson MS. Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet. 1987;2(8560):656–8. https://pubmed.ncbi.nlm.nih.gov/2887943/
Raheja BS. Ghee, cholesterol, and heart disease. Lancet. 1987;2(8568):1144–5. https://pubmed.ncbi.nlm.nih.gov/2890036/
Connor JM. Global Price Fixing. 2nd ed. Springer-Verlag; 2008. https://worldcat.org/title/238586901
Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013;310(11):1178–9. https://pubmed.ncbi.nlm.nih.gov/24045742/
Sadowska-Bartosz I, Bartosz G. Effect of antioxidants supplementation on aging and longevity. Biomed Res Int. 2014;2014:404680. https://pubmed.ncbi.nlm.nih.gov/24783202/
Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/
Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract. 2020;74(6):e13493. https://pubmed.ncbi.nlm.nih.gov/32091656/
de Barcelos IP, Haas RH. CoQ10 and aging. Biology (Basel). 2019;8(2):28. https://pubmed.ncbi.nlm.nih.gov/31083534/
Raizner AE, Quiñones MA. Coenzyme Q10 for patients with cardiovascular disease: JAAC Focus Seminar. J Am Coll Cardiol. 2021;77(5):609–19. https://pubmed.ncbi.nlm.nih.gov/33538259/
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/
Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr. 2018;63(2):129–36. https://pubmed.ncbi.nlm.nih.gov/30279624/
Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and its role in the dietary therapy against aging. Molecules. 2016;21(3):373. https://pubmed.ncbi.nlm.nih.gov/26999099/
Asencio C, Rodríguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P. Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J. 2003;17(9):1135–7. https://pubmed.ncbi.nlm.nih.gov/12709403/
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, et al. The paradox of coenzyme Q10 in aging. Nutrients. 2019;11(9):E2221. https://pubmed.ncbi.nlm.nih.gov/31540029/
Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36. https://pubmed.ncbi.nlm.nih.gov/28179205/
Akbari A, Mobini GR, Agah S, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020;76(11):1483–99. https://pubmed.ncbi.nlm.nih.gov/32583356/
Jafari M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the treatment of heart failure: a systematic review of systematic reviews. Indian Heart J. 2018;70(Suppl 1):S111–7. https://pubmed.ncbi.nlm.nih.gov/30122240/
Sazali S, Badrin S, Norhayati MN, Idris NS. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine – a meta-analysis. BMJ Open. 2021;11(1):e039358. https://pubmed.ncbi.nlm.nih.gov/33402403/
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/
Qu J, Ma L, Zhang J, Jockusch S, Washington I. Dietary chlorophyll metabolites catalyze the photoreduction of plasma ubiquinone. Photochem Photobiol. 2013;89(2):310–3. https://pubmed.ncbi.nlm.nih.gov/22928808/
Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007;7S:S168–74. https://pubmed.ncbi.nlm.nih.gov/17482884/
Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis. 2005;20(4):237–43. https://pubmed.ncbi.nlm.nih.gov/15956041/
Fan S, Zhang Z, Su H, et al. Panax ginseng clinical trials: current status and future perspectives. Biomed Pharmacother. 2020;132:110832. https://pubmed.ncbi.nlm.nih.gov/33059260/
Shergis JL, Zhang AL, Zhou W, Xue CC. Panax ginseng in randomised controlled trials: a systematic review. Phytother Res. 2013;27(7):949–65. https://pubmed.ncbi.nlm.nih.gov/22969004/
Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine. 2016;95(6):e2584. https://pubmed.ncbi.nlm.nih.gov/26871778/
Szeto YT, Sin YSP, Pak SC, Kalle W. American ginseng tea protects cellular DNA within 2¿h from consumption: results of a pilot study in healthy human volunteers. Int J Food Sci Nutr. 2015;66(7):815–8. https://pubmed.ncbi.nlm.nih.gov/26393910/
Szeto YT, Lee LKY. Rapid but mild genoprotective effect on lymphocytic DNA with Panax notoginseng extract supplementation. J Intercult Ethnopharmacol. 2014;3(4):155–8. https://pubmed.ncbi.nlm.nih.gov/26401366/
Szeto YT, Ko AW. Acute genoprotective effects on lymphocytic DNA with ginseng extract supplementation. J Aging Res Clin Practice. 2013;2(2):174–7. https://www.researchgate.net/publication/244990213_Acute_genoprotective_effects_on_lymphocytic_DNA_with_ginseng_extract_supplementation
Kim HG, Yoo SR, Park HJ, et al. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol. 2011;49(9):2229–35. https://pubmed.ncbi.nlm.nih.gov/21699953/
Dickman JR, Koenig RT, Ji LL. American ginseng supplementation induces an oxidative stress in postmenopausal women. J Am Coll Nutr. 2009;28(2):219–28. https://pubmed.ncbi.nlm.nih.gov/19828907/
Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010;65(12):1275–84. https://pubmed.ncbi.nlm.nih.gov/20819793/
Oh SI, Park JK, Park SK. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L–Cysteine in Caenorhabditis elegans. Clinics. 2015;70(5):380–6. https://pubmed.ncbi.nlm.nih.gov/26039957/
Niraula P, Kim MS. N-Acetylcysteine extends lifespan of Drosophila via modulating ROS scavenger gene expression. Biogerontology. 2019;20(4):533–43. https://pubmed.ncbi.nlm.nih.gov/31115735/
Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel). 2018;7(5):66. https://pubmed.ncbi.nlm.nih.gov/29758013/
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil. 2020;453(1–2):245–70. https://pubmed.ncbi.nlm.nih.gov/32836404/
Duarte GBS, Reis BZ, Rogero MM, et al. Consumption of Brazil nuts with high selenium levels increased inflammation biomarkers in obese women: a randomized controlled trial. Nutrition. 2019;63–64:162–8. https://pubmed.ncbi.nlm.nih.gov/31026738/
Xiang S, Dai Z, Man C, Fan Y. Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res. 2020;195(1):55–62. https://pubmed.ncbi.nlm.nih.gov/31368032/
Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med. 2008;168(4):404–10. https://pubmed.ncbi.nlm.nih.gov/18299496/
Rayman MP, Winther KH, Pastor-Barriuso R, et al. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med. 2018;127:46–54. https://pubmed.ncbi.nlm.nih.gov/29454039/
Faghihi T, Radfar M, Barmal M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther. 2014;21(6):491–5. https://pubmed.ncbi.nlm.nih.gov/23633679/
Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/
Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/
Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci. 2016;73(8):1645–58. https://pubmed.ncbi.nlm.nih.gov/26846695/
Schaus R. The ascorbic acid content of human pituitary, cerebral cortex, heart, and skeletal muscle and its relation to age. Am J Clin Nutr. 1957;5(1):39–41. https://pubmed.ncbi.nlm.nih.gov/13394538/
Granger M, Eck P. Dietary vitamin C in human health. Adv Food Nutr Res. 2018;83:281–310. https://pubmed.ncbi.nlm.nih.gov/29477224/
Duarte TL, Lunec J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res. 2005;39(7):671–86. https://pubmed.ncbi.nlm.nih.gov/16036346/
Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/
Mendes-da-Silva RF, Lopes-de-Morais AAC, Bandim-da-Silva ME, et al. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis. Neuropharmacology. 2014;86:155–60. https://pubmed.ncbi.nlm.nih.gov/25008558/
Pallauf K, Bendall JK, Scheiermann C, et al. Vitamin C and lifespan in model organisms. Food Chem Toxicol. 2013;58:255–63. https://pubmed.ncbi.nlm.nih.gov/23643700/
Brauchla M, Dekker MJ, Rehm CD. Trends in vitamin C consumption in the United States: 1999–2018. Nutrients. 2021;13(2):420. https://pubmed.ncbi.nlm.nih.gov/33525516/
Thomas LDK, Elinder CG, Tiselius HG, Wolk A, Åkesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173(5):386–8. https://pubmed.ncbi.nlm.nih.gov/23381591/
Fletcher RH. The risk of taking ascorbic acid. JAMA Intern Med. 2013;173(5):388. https://pubmed.ncbi.nlm.nih.gov/23381657/
Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/
Toledo C, Saltsman K. Genetics by the numbers. Inside Life Science. National Institute of General Medical Sciences. https://www.nigms.nih.gov/education/Inside-Life-Science/Pages/genetics-by-the-numbers.aspx. Published June 12, 2012. Accessed June 28, 2021.; https://nigms.nih.gov/education/Inside-Life-Science/Pages/Genetics-by-the-Numbers.aspx
Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–95. https://pubmed.ncbi.nlm.nih.gov/21930182/
Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514220/
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317077/
Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/
Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416–30. https://pubmed.ncbi.nlm.nih.gov/24011076/
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. https://pubmed.ncbi.nlm.nih.gov/22367546/
Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312–23. https://pubmed.ncbi.nlm.nih.gov/18835033/
Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24–34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386230/
Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/
Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191(7):1299–313. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010065/
Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
Flachsbart F, Croucher PJP, Nikolaus S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol. 2006;41(1):98–102. https://pubmed.ncbi.nlm.nih.gov/16257164/
Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. https://pubmed.ncbi.nlm.nih.gov/22395773/
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/
Xu W, Deng YY, Yang L, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res. 2015;166(5):451–8. https://pubmed.ncbi.nlm.nih.gov/26141671/
Dang W. The controversial world of sirtuins. Drug Discov Today Technol. 2014;12:e9–17. https://pubmed.ncbi.nlm.nih.gov/25027380/
Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/
Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/
Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Am Coll Nutr. 2018;37(3):223–33. https://pubmed.ncbi.nlm.nih.gov/29313746/
Crujeiras AB, Parra D, Goyenechea E, Martínez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest. 2008;38(9):672–8. https://pubmed.ncbi.nlm.nih.gov/18837744/
Draznin B, Wang C, Adochio R, Leitner JW, Cornier MA. Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Horm Metab Res. 2012;44(9):650–5. https://pubmed.ncbi.nlm.nih.gov/22674476/
Lilja S, Stoll C, Krammer U, et al. Five days periodic fasting elevates levels of longevity related Christensenella and sirtuin expression in humans. Int J Mol Sci. 2021;22(5):2331. https://pubmed.ncbi.nlm.nih.gov/33652686/
Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res. 2005;13(3):574–81. https://pubmed.ncbi.nlm.nih.gov/15833943/
Mansur AP, Roggerio A, Goes MFS, et al. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: a randomized trial. Int J Cardiol. 2017;227:788–94. https://pubmed.ncbi.nlm.nih.gov/28029409/
Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. https://pubmed.ncbi.nlm.nih.gov/17341128/
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules. 2014;19(11):17154–72. https://pubmed.ncbi.nlm.nih.gov/25347459/
Pezzuto JM. Resveratrol: twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019;27(1):1–14. https://pubmed.ncbi.nlm.nih.gov/30332889/
Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci. 2015;1348(1):150–60. https://pubmed.ncbi.nlm.nih.gov/26099945/
Сравнительно низкий уровень сердечно-сосудистых и онкологических заболеваний у жителей Франции при высококалорийном рационе питания и обилии в нем жиров. – Примеч. ред.
Visioli F, Panaite SA, Tomé-Carneiro J. Wine’s phenolic compounds and health: a Pythagorean view. Molecules. 2020;25(18):4105. https://pubmed.ncbi.nlm.nih.gov/32911765/
Burr ML. Explaining the French paradox. J R Soc Health. 1995;115(4):217–9. https://pubmed.ncbi.nlm.nih.gov/7562866/
Vang O. What is new for resveratrol? Is a new set of recommendations necessary? Ann N Y Acad Sci. 2013;1290:1–11. https://pubmed.ncbi.nlm.nih.gov/23855460/
Resveratrol. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol. Accessed January 18, 2023.; https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol
Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/
Rascón B, Hubbard BP, Sinclair DA, Amdam GV. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY). 2012;4(7):499–508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433935/
Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/
Kim E, Ansell CM, Dudycha JL. Resveratrol and food effects on lifespan and reproduction in the model crustacean Daphnia. J Exp Zool A Ecol Genet Physiol. 2014;321(1):48–56. https://pubmed.ncbi.nlm.nih.gov/24133070/
Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/
Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51. https://pubmed.ncbi.nlm.nih.gov/20061378/
Cottart CH, Nivet-Antoine V, Beaudeux JL. Is resveratrol an imposter? Mol Nutr Food Res. 2015;59(1):7. https://pubmed.ncbi.nlm.nih.gov/25558005/
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol Res. 2014;90:88–115. https://pubmed.ncbi.nlm.nih.gov/25151891/
Артефакт эксперимента (от лат. arte – «искусственно» + factus – «сделанный») – эффект в эксперименте, возникающий вследствие дефектов методики проведения опыта. – Примеч. ред.
Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/
Roehr B. Cardiovascular researcher fabricated data in studies of red wine. BMJ. 2012;344:e406. https://pubmed.ncbi.nlm.nih.gov/22250221/
Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/
Resveratrol clinical trial, humans from 2014/12/1–3000/12/12. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol&filter=pubt.clinicaltrial&filter=dates.2014%2F12%2F1–3000%2F12%2F12&filter=hum_ani.humans. Accessed January 18, 2023.; https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol&filter=pubt.clinicaltrial&filter=dates.2014%2F12%2F1-3000%2F12%2F12&filter=hum_ani.humans
Rabassa M, Zamora-Ros R, Urpi-Sarda M, et al. Association of habitual dietary resveratrol exposure with the development of frailty in older age: the Invecchiare in Chianti study. Am J Clin Nutr. 2015;102(6):1534–42. https://pubmed.ncbi.nlm.nih.gov/26490492/
Semba RD, Ferrucci L, Bartali B, et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014;174(7):1077–84. https://pubmed.ncbi.nlm.nih.gov/24819981/
Omidian M, Abdolahi M, Daneshzad E, et al. The effects of resveratrol on oxidative stress markers: a systematic review and meta-analysis of randomized clinical trials. Endocr Metab Immune Disord Drug Targets. 2020;20(5):718–27. https://pubmed.ncbi.nlm.nih.gov/31738139/
Koushki M, Lakzaei M, Khodabandehloo H, Hosseini H, Meshkani R, Panahi G. Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 2020;96(1134):197–205. https://pubmed.ncbi.nlm.nih.gov/31628212/
Heger A, Ferk F, Nersesyan A, et al. Intake of a resveratrol-containing dietary supplement has no impact on DNA stability in healthy subjects. Mutat Res. 2012;749(1–2):82–6. https://pubmed.ncbi.nlm.nih.gov/22981768/
Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr. 2021;114(5):1675–85. https://pubmed.ncbi.nlm.nih.gov/34320173/
Zhang T, He Q, Liu Y, Chen Z, Hu H. Efficacy and safety of resveratrol supplements on blood lipid and blood glucose control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2021;2021:5644171. https://pubmed.ncbi.nlm.nih.gov/34484395/
Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr. 2021;114(5):1675–8. https://pubmed.ncbi.nlm.nih.gov/34320173/
Bashmakov YK, Assaad-Khalil SH, Abou Seif M, et al. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol. 2014;2014:816307. https://pubmed.ncbi.nlm.nih.gov/24701359/
Moxey PW, Gogalniceanu P, Hinchliffe RJ, et al. Lower extremity amputations – a review of global variability in incidence. Diabet Med. 2011;28(10):1144–53. https://pubmed.ncbi.nlm.nih.gov/21388445/
Bhattarai G, Poudel SB, Kook SH, Lee JC. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398–408. https://pubmed.ncbi.nlm.nih.gov/26497626/
Zhen L, Fan DS, Zhang Y, Cao XM, Wang LM. Resveratrol ameliorates experimental periodontitis in diabetic mice through negative regulation of TLR4 signaling. Acta Pharmacol Sin. 2015;36(2):221–8. https://pubmed.ncbi.nlm.nih.gov/25530164/
Javid AZ, Hormoznejad R, Yousefimanesh HA, Haghighi-Zadeh MH, Zakerkish M. Impact of resveratrol supplementation on inflammatory, antioxidant, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Diabetes Metab Syndr. 2019;13(4):2769–74. https://pubmed.ncbi.nlm.nih.gov/31405706/
Samsamikor M, Daryani NE, Asl PR, Hekmatdoost A. Resveratrol supplementation and oxidative/anti-oxidative status in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res. 2016;47(4):304–9. https://pubmed.ncbi.nlm.nih.gov/27664491/
Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res. 2015;46(4):280–5. https://pubmed.ncbi.nlm.nih.gov/26002728/
Hussain SA, Marouf BH, Ali ZS, Ahmmad RS. Efficacy and safety of co-administration of resveratrol with meloxicam in patients with knee osteoarthritis: a pilot interventional study. Clin Interv Aging. 2018;13:1621–30. https://pubmed.ncbi.nlm.nih.gov/30233159/
Qasem RJ. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit Rev Toxicol. 2020;50(5):439–62. https://pubmed.ncbi.nlm.nih.gov/32744480/
Dzator JSA, Howe PRC, Coupland KG, Wong RHX. A randomised, double-blind, placebo-controlled crossover trial of resveratrol supplementation for prophylaxis of hormonal migraine. Nutrients. 2022;14(9):1763. https://pubmed.ncbi.nlm.nih.gov/35565731/
Mansour A, Samadi M, Sanginabadi M, et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin Nutr. 2021;40(6):4106–12. https://pubmed.ncbi.nlm.nih.gov/33610422/
Zaw JJT, Howe PRC, Wong RHX. Long-term resveratrol supplementation improves pain perception, menopausal symptoms, and overall well-being in postmenopausal women: findings from a 24-month randomized, controlled, crossover trial. Menopause. 2020;28(1):40–9. https://pubmed.ncbi.nlm.nih.gov/32881835/
Li Q, Yang G, Xu H, Tang S, Lee WYW. Effects of resveratrol supplementation on bone quality: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Med Ther. 2021;21(1):214. https://pubmed.ncbi.nlm.nih.gov/34420523/
Johnson JJ, Nihal M, Siddiqui IA, et al. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res. 2011;55(8):1169–76. https://pubmed.ncbi.nlm.nih.gov/21714124/
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383-91 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626244/
Gliemann L. What are the chances that resveratrol will be the drug of tomorrow? Pharmacol Res. 2018;129:139–40. https://pubmed.ncbi.nlm.nih.gov/29425727/
Semba RD, Ferrucci L, Bartali B, et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014;174(7):1077–84. https://pubmed.ncbi.nlm.nih.gov/24819981/
Wahab A, Gao K, Jia C, et al. Significance of resveratrol in clinical management of chronic diseases. Molecules. 2017;22(8):1329. https://pubmed.ncbi.nlm.nih.gov/28820474/
Scribbans TD, Ma JK, Edgett BA, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39(11):1305–13. https://pubmed.ncbi.nlm.nih.gov/25211703/
Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(Pt 20):5047–59. https://pubmed.ncbi.nlm.nih.gov/23878368/
Meng X, Zhou J, Zhao CN, Gan RY, Li HB. Health benefits and molecular mechanisms of resveratrol: a narrative review. Foods. 2020;9(3):340. https://pubmed.ncbi.nlm.nih.gov/32183376/
45,36 кг. – Примеч. ред.
Dybkowska E, Sadowska A, Swiderski F, Rakowska R, Wysocka K. The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review. Rocz Panstw Zakl Hig. 2018;69(1):5–14. https://pubmed.ncbi.nlm.nih.gov/29517181/
Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell. 2006;127(6):1109–22. https://pubmed.ncbi.nlm.nih.gov/17112576/
Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22. https://pubmed.ncbi.nlm.nih.gov/22055504/
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol Res. 2014;90:88–115. https://pubmed.ncbi.nlm.nih.gov/25151891/
Gliemann L, Olesen J, Biensø RS, et al. Reply from Lasse Gliemann, Jesper Olesen, Rasmus Sjørup Biensø, Stefan Peter Mortensen, Michael Nyberg, Jens Bangsbo, Henriette Pilegaard and Ylva Hellsten. J Physiol. 2014;592(Pt 3):553. https://pubmed.ncbi.nlm.nih.gov/24488075/
Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/
Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416–31. https://pubmed.ncbi.nlm.nih.gov/33037751/
Gayer BA, Avendano EE, Edelson E, Nirmala N, Johnson EJ, Raman G. Effects of intake of apples, pears, or their products on cardiometabolic risk factors and clinical outcomes: a systematic review and meta-analysis. Curr Dev Nutr. 2019;3(10):nzz109. https://pubmed.ncbi.nlm.nih.gov/31667463/
Hodgson JM, Prince RL, Woodman RJ, et al. Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. Br J Nutr. 2016;115(5):860–7. https://pubmed.ncbi.nlm.nih.gov/26787402/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Xiang L, Sun K, Lu J, et al. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci Biotechnol Biochem. 2011;75(5):854–8. https://pubmed.ncbi.nlm.nih.gov/21597195/
Peng C, Chan HYE, Huang Y, Yu H, Chen ZY. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem. 2011;59(5):2097–106. https://pubmed.ncbi.nlm.nih.gov/21319854/
Shaposhnikov M, Latkin D, Plyusnina E, et al. The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology. 2014;15(2):113–27. https://pubmed.ncbi.nlm.nih.gov/24305778/
Palermo V, Mattivi F, Silvestri R, La Regina G, Falcone C, Mazzoni C. Apple can act as anti-aging on yeast cells. Oxid Med Cell Longev. 2012;2012:491759. https://pubmed.ncbi.nlm.nih.gov/22970337/
Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/
Sunagawa T, Shimizu T, Kanda T, Tagashira M, Sami M, Shirasawa T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med. 2011;77(2):122–7. https://pubmed.ncbi.nlm.nih.gov/20717869/
Song B, Wang H, Xia W, Zheng B, Li T, Liu RH. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food Funct. 2020;11(7):6170–85. https://pubs.rsc.org/en/content/articlelanding/2020/FO/D0FO00718H
Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev. 2013;2013:707421. https://pubmed.ncbi.nlm.nih.gov/24069505/
Wu X, Cao N, Fenech M, Wang X. Role of sirtuins in maintenance of genomic stability: relevance to cancer and healthy aging. DNA Cell Biol. 2016;35(10):542–75. https://pubmed.ncbi.nlm.nih.gov/27380140/
Khazdouz M, Daryani NE, Alborzi F, et al. Effect of selenium supplementation on expression of SIRT1 and PGC-1a genes in ulcerative colitis patients: a double blind randomized clinical trial. Clin Nutr Res. 2020;9(4):284–95. https://pubmed.ncbi.nlm.nih.gov/33204668/
Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/
Fusi J, Bianchi S, Daniele S, et al. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed Pharmacother. 2018;101:805–19. https://pubmed.ncbi.nlm.nih.gov/29525677/
Yang Y, Duan W, Lin Y, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667–79. https://pubmed.ncbi.nlm.nih.gov/23880291/
Heshmati J, Golab F, Morvaridzadeh M, et al. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor ¿ coactivator 1a gene expression in polycystic ovarian syndrome (PCOS) patients: a randomized placebo-controlled clinical trial. Diabetes Metab Syndr. 2020;14(2):77–82. https://pubmed.ncbi.nlm.nih.gov/31991296/
Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/
Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: a double-blind randomized placebo-controlled clinical trial. Nutr Metab (Lond). 2018;15:63. https://pubmed.ncbi.nlm.nih.gov/30263038/
Zhong Y, Chen AF, Zhao J, Gu YJ, Fu GX. Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Exp Res. 2016;28(4):641–5. https://pubmed.ncbi.nlm.nih.gov/26462844/
Kumar R, Mohan N, Upadhyay AD, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80. https://pubmed.ncbi.nlm.nih.gov/25100619/
Kumar R, Chaterjee P, Sharma PK, et al. Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS One. 2013;8(4):e61560. https://pubmed.ncbi.nlm.nih.gov/23613875/
Yanagisawa S, Papaioannou AI, Papaporfyriou A, et al. Decreased serum sirtuin-1 in COPD. Chest. 2017;152(2):343–52. https://pubmed.ncbi.nlm.nih.gov/28506610/
Kazemi S, Yaghooblou F, Siassi F, et al. Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: a randomized double-blind clinical trial. J Sci Food Agric. 2017;97(15):5296–301. https://pubmed.ncbi.nlm.nih.gov/28480505/
Shekarchizadeh-Esfahani P, Arab A, Ghaedi E, Hadi A, Jalili C. Effects of cardamom supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res. 2020;34(3):475–85. https://pubmed.ncbi.nlm.nih.gov/31755188/
Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/
Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70. https://pubmed.ncbi.nlm.nih.gov/18174544/
Caito S, Rajendrasozhan S, Cook S, et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 2010;24(9):3145–59. https://pubmed.ncbi.nlm.nih.gov/20385619/
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/
Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides. 2018;71:54–60. https://pubmed.ncbi.nlm.nih.gov/30007474/
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/
Potthast AB, Nebl J, Wasserfurth P, et al. Impact of nutrition on short-term exercise-induced sirtuin regulation: vegans differ from omnivores and lacto-ovo vegetarians. Nutrients. 2020;12(4):1004. https://pubmed.ncbi.nlm.nih.gov/32260570/
Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379
Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/
Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/
Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 2007;8(9):715–22. https://pubmed.ncbi.nlm.nih.gov/17717516/
Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev. 2020;59:101027. https://pubmed.ncbi.nlm.nih.gov/32068123/
Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere length and the cancer – atherosclerosis trade-off. PLoS Genet. 2016;12(7):e1006144. https://pubmed.ncbi.nlm.nih.gov/27386863/
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/
Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/
Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2014;7(3):161–7. https://pubmed.ncbi.nlm.nih.gov/25612739/
Wang J, Liu Y, Xia Q, et al. Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol. 2020;163:1060–78. https://pubmed.ncbi.nlm.nih.gov/32673712/
Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/
Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/
Zhou J, Wang J, Shen Y, et al. The association between telomere length and frailty: a systematic review and meta-analysis. Exp Gerontol. 2018;106:16–20. https://pubmed.ncbi.nlm.nih.gov/29518479/
Cohen S, Janicki-Deverts D, Turner RB, et al. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA. 2013;309(7):699–705. https://pubmed.ncbi.nlm.nih.gov/23423415/
Zhan Y, Clements MS, Roberts RO, et al. Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging. 2018;69:111–6. https://pubmed.ncbi.nlm.nih.gov/29870951/
Smith L, Luchini C, Demurtas J, et al. Telomere length and health outcomes: an umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10. https://pubmed.ncbi.nlm.nih.gov/30776454/
Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/
Zhan Y, Liu XR, Reynolds CA, Pedersen NL, Hägg S, Clements MS. Leukocyte telomere length and all-cause mortality: a between-within twin study with time-dependent effects using generalized survival models. Am J Epidemiol. 2018;187(10):2186–91. https://pubmed.ncbi.nlm.nih.gov/29961868/
Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/
Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/
Zhan Y, Hägg S. Association between genetically predicted telomere length and facial skin aging in the UK Biobank: a Mendelian randomization study. GeroScience. 2021;43(3):1519–25. https://pubmed.ncbi.nlm.nih.gov/33033864/
Astuti Y, Wardhana A, Watkins J, Wulaningsih W. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9. https://pubmed.ncbi.nlm.nih.gov/28704792/
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/
Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci U S A. 2019;116(30):15122–7. https://pubmed.ncbi.nlm.nih.gov/31285335/
Fick LJ, Fick GH, Li Z, et al. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530–6. https://pubmed.ncbi.nlm.nih.gov/23260664/
Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun. 2019;10(1):4723. https://pubmed.ncbi.nlm.nih.gov/31624261/
Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. https://pubmed.ncbi.nlm.nih.gov/30229407/
Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/
Tsuji A, Ishiko A, Takasaki T, Ikeda N. Estimating age of humans based on telomere shortening. Forensic Sci Int. 2002;126(3):197–9. https://pubmed.ncbi.nlm.nih.gov/12062940/
Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/
Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chemie Int Ed Engl. 2010;49(41):7405–21. https://pubmed.ncbi.nlm.nih.gov/20821774/
Laberthonnière C, Magdinier F, Robin JD. Bring it to an end: does telomeres size matter? Cells. 2019;8(1):30. https://pubmed.ncbi.nlm.nih.gov/30626097/
Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/
Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/
Flanary BE, Kletetschka G. Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva. Biogerontology. 2005;6(2):101–11. https://pubmed.ncbi.nlm.nih.gov/16034678/
Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9. https://pubmed.ncbi.nlm.nih.gov/8934879/
Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91. https://pubmed.ncbi.nlm.nih.gov/9282118/
Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/
Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/
Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9. https://pubmed.ncbi.nlm.nih.gov/21310811/
Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2008;1(1):81–8. https://pubmed.ncbi.nlm.nih.gov/20195384/
Tedone E, Arosio B, Gussago C, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014;58:90–5. https://pubmed.ncbi.nlm.nih.gov/24975295/
Tedone E, Huang E, O’Hara R, et al. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. https://pubmed.ncbi.nlm.nih.gov/30488553/
Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: retrospective analysis and future prospects. Life Sci. 2020;257:118115. https://pubmed.ncbi.nlm.nih.gov/32698073/
Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev. 2014;15:1–5. https://pubmed.ncbi.nlm.nih.gov/24561251/
Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016;5:89. https://pubmed.ncbi.nlm.nih.gov/27081482/
Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008;135(4):609–22. https://pubmed.ncbi.nlm.nih.gov/19013273/
Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/
Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/
Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science. 2000;287(5456):1253–8. https://pubmed.ncbi.nlm.nih.gov/10678830/
Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/
Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/
Eitan E, Tichon A, Gazit A, Gitler D, Slavin S, Priel E. Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med. 2012;4(4):313–29. https://pubmed.ncbi.nlm.nih.gov/22351600/
Gilson E, Ségal-Bendirdjian E. The telomere story or the triumph of an open-minded research. Biochimie. 2010;92(4):321–6. https://pubmed.ncbi.nlm.nih.gov/20096746/
Suram A, Herbig U. The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell. 2014;13(5):780–6. https://pubmed.ncbi.nlm.nih.gov/25040628/
Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/
Hornsby PJ. Telomerase and the aging process. Exp Gerontol. 2007;42(7):575–81. https://pubmed.ncbi.nlm.nih.gov/17482404/
Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52. https://pubmed.ncbi.nlm.nih.gov/9454332/
Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/
Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/
Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. https://pubmed.ncbi.nlm.nih.gov/23321625/
Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/
Ip P, Chung BHY, Ho FKW, et al. Prenatal tobacco exposure shortens telomere length in children. Nicotine Tob Res. 2017;19(1):111–8. https://pubmed.ncbi.nlm.nih.gov/27194546/
Zhao B, Vo HQ, Johnston FH, Negishi K. Air pollution and telomere length: a systematic review of 12,058 subjects. Cardiovasc Diagn Ther. 2018;8(4):480–92. https://pubmed.ncbi.nlm.nih.gov/30214863/
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/
Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/
Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet. 1990;336(8708):129–33. https://pubmed.ncbi.nlm.nih.gov/1973470/
Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/
U.S. National Library of Medicine. Can lifestyle changes reverse early-stage Alzheimer’s disease. ClincalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04606420. Updated October 28, 2020. Accessed July 17, 2021.; https://clinicaltrials.gov/ct2/show/NCT04606420
Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/
Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/
Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/
Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/
В российском прокате – «Отпуск по обмену». – Примеч. ред.
Blackburn EH, Epel ES. Too toxic to ignore. Nature. 2012;490(7419):169–71. https://pubmed.ncbi.nlm.nih.gov/23060172/
Epel ES, Lin J, Dhabhar FS, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010;24(4):531–9. https://pubmed.ncbi.nlm.nih.gov/20018236/
Damjanovic AK, Yang Y, Glaser R, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007;179(6):4249–54. https://pubmed.ncbi.nlm.nih.gov/17785865/
Schutte NS, Malouff JM, Keng SL. Meditation and telomere length: a meta-analysis. Psychol Health. 2020;35(8):901–15. https://pubmed.ncbi.nlm.nih.gov/31903785/
Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8. https://pubmed.ncbi.nlm.nih.gov/18227361/
Tucker LA. Walking and biologic ageing: evidence based on NHANES telomere data. J Sports Sci. 2020;38(9):1026–35. https://pubmed.ncbi.nlm.nih.gov/32175820/
Lin X, Zhou J, Dong B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J Rehabil Med. 2019;51(7):473–8. https://pubmed.ncbi.nlm.nih.gov/31093683/
Mundstock E, Zatti H, Louzada FM, et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res Rev. 2015;22:72–80. https://pubmed.ncbi.nlm.nih.gov/25956165/
Abrahin O, Cortinhas-Alves EA, Vieira RP, Guerreiro JF. Elite athletes have longer telomeres than sedentary subjects: a meta-analysis. Exp Gerontol. 2019;119:138–45. https://pubmed.ncbi.nlm.nih.gov/30735724/
Aguiar SS, Sousa CV, Santos PA, et al. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp Gerontol. 2021;146:111212. https://pubmed.ncbi.nlm.nih.gov/33387607/
Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377. https://pubmed.ncbi.nlm.nih.gov/23936000/
Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47. https://pubmed.ncbi.nlm.nih.gov/19948976/
Friedenreich CM, Wang Q, Ting NS, et al. Effect of a 12-month exercise intervention on leukocyte telomere length: results from the ALPHA Trial. Cancer Epidemiol. 2018;56:67–74. https://pubmed.ncbi.nlm.nih.gov/30075329/
Sjögren P, Fisher R, Kallings L, Svenson U, Roos G, Hellénius ML. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9. https://pubmed.ncbi.nlm.nih.gov/25185586/
Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/
Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/
Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/
To-Miles FYL, Backman CL. What telomeres say about activity and health: a rapid review. Can J Occup Ther. 2016;83(3):143–53. https://pubmed.ncbi.nlm.nih.gov/27053148/
Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/
Himbert C, Thompson H, Ulrich CM. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes Facts. 2017;10(6):648–65. https://pubmed.ncbi.nlm.nih.gov/29237161/
Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/
Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/
Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/
De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/
Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/
Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/
Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González MA, Zalba G, Bes-Rastrollo M, Marti A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr. 2020;111(6):1259–66. https://pubmed.ncbi.nlm.nih.gov/32330232/
Askari M, Heshmati J, Shahinfar H, Tripathi N, Daneshzad E. Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes (Lond). 2020;44(10):2080–91. https://pubmed.ncbi.nlm.nih.gov/32796919/
Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr. 2021;125(3):308–18. https://pubmed.ncbi.nlm.nih.gov/32792031/
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22. https://pubmed.ncbi.nlm.nih.gov/22875407/
Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/
Huang Y, Cao D, Chen Z, et al. Red and processed meat consumption and cancer outcomes: umbrella review. Food Chem. 2021;356:129697. https://pubmed.ncbi.nlm.nih.gov/33838606/
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/
De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/
Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250. https://pubmed.ncbi.nlm.nih.gov/20085953/
Pawelczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Zurner N, Pawelczyk A. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:142–8. https://pubmed.ncbi.nlm.nih.gov/31098654/
O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/
Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/
Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Pitkänen N, Pahkala K, Rovio SP, et al. Effects of randomized controlled infancy-onset dietary intervention on leukocyte telomere length – the Special Turku Coronary Risk Factor Intervention Project (STRIP). Nutrients. 2021;13(2):318. https://pubmed.ncbi.nlm.nih.gov/33499376/
Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/
Canudas S, Becerra-Tomás N, Hernández-Alonso P, et al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv Nutr. 2020;11(6):1544–54. https://pubmed.ncbi.nlm.nih.gov/32730558/
Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:e1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/
Tucker LA. Dietary fiber and telomere length in 5674 U.S. adults: an NHANES study of biological aging. Nutrients. 2018;10(4):400. https://pubmed.ncbi.nlm.nih.gov/29570620/
Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/
Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/
Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://pubmed.ncbi.nlm.nih.gov/16112303/
Institute of Medicine. Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/
Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63. https://pubmed.ncbi.nlm.nih.gov/19279081/
Min KB, Min JY. Association between leukocyte telomere length and serum carotenoid in US adults. Eur J Nutr. 2017;56(3):1045–52. https://pubmed.ncbi.nlm.nih.gov/26818530/
Liu JJ, Crous-Bou M, Giovannucci E, De Vivo I. Coffee consumption is positively associated with longer leukocyte telomere length in the Nurses’ Health Study. J Nutr. 2016;146(7):1373–8. https://pubmed.ncbi.nlm.nih.gov/27281805/
Tucker LA. Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond). 2017;14(1):10. https://pubmed.ncbi.nlm.nih.gov/28603543/
Freitas-Simoes TM, Ros E, Sala-Vila A. Telomere length as a biomarker of accelerated aging: is it influenced by dietary intake? Curr Opin Clin Nutr Metab Care. 2018;21(6):430–6. https://pubmed.ncbi.nlm.nih.gov/30148739/
Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13. https://pubmed.ncbi.nlm.nih.gov/19671205/
Sheng R, Gu ZL, Xie ML. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol. 2013;162(3):199–209. https://pubmed.ncbi.nlm.nih.gov/22000973/
Rusak G, Komes D, Likic S, Horžic D, Kovac M. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008;110(4):852–8. https://pubmed.ncbi.nlm.nih.gov/26047270/
Hovanloo F, Fallah Huseini H, Hedayati M, Teimourian M. Effects of aerobic training combined with green tea extract on leukocyte telomere length, quality of life and body composition in elderly women. J Med Plants. 2016;15(59):47–57. https://www.researchgate.net/publication/309402738_Effects_of_Aerobic_Training_Combined_with_Green_Tea_Extract_on_Leukocyte_Telomere_Length_Quality_of_Life_and_Body_Composition_in_Elderly_Women
Tran HTT, Schreiner M, Schlotz N, Lamy E. Short-term dietary intervention with cooked but not raw Brassica leafy vegetables increases telomerase activity in CD8+ lymphocytes in a randomized human trial. Nutrients. 2019;11(4):786. https://pubmed.ncbi.nlm.nih.gov/30959753/
Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84. https://pubmed.ncbi.nlm.nih.gov/18484782/
Yu Z, Samavat H, Dostal AM, et al. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev Res (Phila). 2017;10(10):571–9. https://pubmed.ncbi.nlm.nih.gov/28765194/
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33. https://pubmed.ncbi.nlm.nih.gov/29580974/
O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/
Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/
Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/
Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/
García-Calzón S, Martínez-González MA, Razquin C, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35(6):1399–405. https://pubmed.ncbi.nlm.nih.gov/27083496/
Pusceddu I, Herrmann M, Kirsch SH, et al. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr. 2016;55(5):1863–73. https://pubmed.ncbi.nlm.nih.gov/27083496/
Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–12. https://pubmed.ncbi.nlm.nih.gov/25755079/
Zarei M, Zarezadeh M, Hamedi Kalajahi F, Javanbakht MH. The relationship between vitamin D and telomere/telomerase: a comprehensive review. J Frailty Aging. 2021;10(1):2–9. https://pubmed.ncbi.nlm.nih.gov/33331615/
Zhu H, Guo D, Li K, et al. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond). 2012;36(6):805–9. https://pubmed.ncbi.nlm.nih.gov/21986705/
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial. J Alzheimers Dis. 2020;78(4):1509–18. https://pubmed.ncbi.nlm.nih.gov/33164936/
Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali radix: implications for Astragali radix as a personalized medicine. Int J Mol Sci. 2019;20(6):1463. https://pubmed.ncbi.nlm.nih.gov/30909474/
Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis. 2017;8(6):868–86. https://pubmed.ncbi.nlm.nih.gov/29344421/
Fauce SR, Jamieson BD, Chin AC, et al. Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol. 2008;181(10):7400–6. https://pubmed.ncbi.nlm.nih.gov/18981163/
Dow CT, Harley CB. Evaluation of an oral telomerase activator for early age-related macular degeneration – a pilot study. Clin Ophthalmol. 2016;10:243–9. https://pubmed.ncbi.nlm.nih.gov/26869760/
United States of America before the Federal Trade Commission in the matter of Telomerase Activation Sciences, Inc., and Noel Thomas Patton. Docket No. C-4644. FTC.gov. https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf. Updated April 19, 2018. Accessed December10, 2021.; https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
Chandrika UG, Kumara PAASP. Gotu kola (Centella asiatica): nutritional properties and plausible health benefits. Adv Food Nutr Res. 2015;76:125–57. https://pubmed.ncbi.nlm.nih.gov/26602573/
Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/
Puttarak P, Dilokthornsakul P, Saokaew S, et al. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: a systematic review and meta-analysis. Sci Rep. 2017;7(1):10646. https://pubmed.ncbi.nlm.nih.gov/28878245/
Larrick JW, Mendelsohn AR. Telomerase redux: ready for prime time? Rejuvenation Res. 2015;18(2):185–7. https://pubmed.ncbi.nlm.nih.gov/25790341/
Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28–34. https://pubmed.ncbi.nlm.nih.gov/21102320/
Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/
Artandi SE, Depinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31(1):9–18. https://pubmed.ncbi.nlm.nih.gov/19887512/
Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/
Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/
Huzen J, Wong LS, van Veldhuisen DJ, et al. Telomere length loss due to smoking and metabolic traits. J Intern Med. 2014;275(2):155–63. https://pubmed.ncbi.nlm.nih.gov/24118582/
García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/
Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/
Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/
Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/
Hou L, Savage SA, Blaser MJ, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3103–9. https://pubmed.ncbi.nlm.nih.gov/19861514/
Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/
García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/
Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/
Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/
Strong R, Miller RA, Antebi A, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an a-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84. https://pubmed.ncbi.nlm.nih.gov/27312235/
Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/
Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. https://pubmed.ncbi.nlm.nih.gov/23245604/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/
Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/
Das P, Samarasekera U. The story of GBD 2010: a “super-human” effort. Lancet. 2012;380(9859):2067–70. https://pubmed.ncbi.nlm.nih.gov/23259158/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Dato S, Bellizzi D, Rose G, Passarino G. The impact of nutrients on the aging rate: a complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev. 2016;154:49–61. https://pubmed.ncbi.nlm.nih.gov/26876763/
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92. https://pubmed.ncbi.nlm.nih.gov/31292558/
Govindaraju T, Sahle BW, McCaffrey TA, McNeil JJ, Owen AJ. Dietary patterns and quality of life in older adults: a systematic review. Nutrients. 2018;10(8):971. https://pubmed.ncbi.nlm.nih.gov/30050006/
Milte CM, McNaughton SA. Dietary patterns and successful ageing: a systematic review. Eur J Nutr. 2016;55(2):423–50. https://pubmed.ncbi.nlm.nih.gov/26695408/
Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/
McCullough ML. Diet patterns and mortality: common threads and consistent results. J Nutr. 2014;144(6):795–6. https://pubmed.ncbi.nlm.nih.gov/24717365/
Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/
Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/
Yip CSC, Chan W, Fielding R. The associations of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J Acad Nutr Diet. 2019;119(3):464–81. https://pubmed.ncbi.nlm.nih.gov/30639206/
Fisher D. Study finds no link between secondhand smoke and cancer. Forbes. https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4. Published December 12, 2013. Accessed December 12, 2021.; https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4
Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ. 1997;315(7114):980–8. https://pubmed.ncbi.nlm.nih.gov/9365295/
Gori GB, Mantel N. Mainstream and environmental tobacco smoke. Regul Toxicol Pharmacol. 1991;14(1):88–105. https://pubmed.ncbi.nlm.nih.gov/1947248/
Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/
Drope J, Chapman S. Tobacco industry efforts at discrediting scientific knowledge of environmental tobacco smoke: a review of internal industry documents. J Epidemiol Community Health. 2001;55(8):588–94. https://pubmed.ncbi.nlm.nih.gov/11449018/
Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/
Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/
Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/
Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177. https://pubmed.ncbi.nlm.nih.gov/30019766/
Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/
Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids – a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr. 2022;62(18):4982–97. https://pubmed.ncbi.nlm.nih.gov/33576691/
Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/
Yip CSC, Lam W, Fielding R. A summary of meat intakes and health burdens. Eur J Clin Nutr. 2018;72(1):18–29. https://pubmed.ncbi.nlm.nih.gov/28792013/
Spiegelhalter D. Microlives. Understanding Uncertainty. http://understandinguncertainty.org/microlives. Published November 22, 2011. Accessed August 30, 2021.; https://understandinguncertainty.org/microlives
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Zhuang P, Wu F, Mao L, et al. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: a population-based cohort study. PLoS Med. 2021;18(2):e1003508. https://pubmed.ncbi.nlm.nih.gov/33561122/
Zeraatkar D, Han MA, Guyatt GH, et al. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Ann Intern Med. 2019;171(10):703–10. https://pubmed.ncbi.nlm.nih.gov/31569213/
Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381
Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf
Chaffetz J. Letter on behalf of the U.S. House of Representatives Committee on Oversight and Government Reform of the 114th Congress to Francis S. Collins, M.D., Ph.D., Director, National Institutes of Health. September 26, 2016.; https://oversight.house.gov/wp-content/uploads/2016/09/2016-09-26-JEC-to-Collins-NIH-IARC-Funding-due-10-10.pdf
Boobis AR, Cohen SM, Dellarco VL, et al. Classification schemes for carcinogenicity based on hazard-identification have become outmoded and serve neither science nor society. Regul Toxicol Pharmacol. 2016;82:158–66. https://pubmed.ncbi.nlm.nih.gov/27780763/
Wild CP. Letter to Dr. Francis S. Collins re: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. October 5, 2016. https://monographs.iarc.who.int/ENG/News/LetterFromDrWild-to-DrCollins.pdf. Accessed December 19, 2021.; https://monographs.iarc.who.int/wp-content/uploads/2018/06/LetterFromDrWild-to-DrCollins.pdf
International Agency for Research on Cancer. World Health Organization. Q&A on the carcinogenicity of the consumption of red meat and processed meat. 2015. https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf. Accessed December 28, 2022.; https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf
Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Centers for Disease Control and Prevention (US); 2006. https://pubmed.ncbi.nlm.nih.gov/20669524/
Modica C, Lewis JH, Bay C. Colorectal cancer: applying the value transformation framework to increase the percent of patients receiving screening in federally qualified health centers. Prev Med Rep. 2019;15:100894. https://pubmed.ncbi.nlm.nih.gov/31198660/
Kim H, Caulfield LE, Rebholz CM. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J Nutr. 2018;148(4):624–31. https://pubmed.ncbi.nlm.nih.gov/29659968/
Bamia C, Trichopoulos D, Ferrari P, et al. Dietary patterns and survival of older Europeans: the EPIC – Elderly Study (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2007;10(6):590–8. https://pubmed.ncbi.nlm.nih.gov/17381929/
Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/
Ekmekcioglu C. Nutrition and longevity – from mechanisms to uncertainties. Crit Rev Food Sci Nutr. 2020;60(18):3063–82. https://pubmed.ncbi.nlm.nih.gov/31631676/
Everitt AV, Hilmer SN, Brand-Miller JC, et al. Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006;1(1):11–31. https://pubmed.ncbi.nlm.nih.gov/18047254/
Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/
O’Hara JK. The $11 trillion reward: how simple dietary changes can save lives and money, and how we get there. UCSusa.org. https://www.ucsusa.org/sites/default/files/2019–09/11-trillion-reward.pdf. Published August 2013. Accessed December 15, 2021.; https://www.ucsusa.org/sites/default/files/2019-09/11-trillion-reward.pdf
Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60. https://pubmed.ncbi.nlm.nih.gov/12750250/
Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: the Baltimore Longitudinal Study of Aging. J Nutr. 2005;135(3):556–61. https://pubmed.ncbi.nlm.nih.gov/15735093/
Jenkins DJ, Kendall CW. The Garden of Eden: plant-based diets, the genetic drive to store fat and conserve cholesterol, and implications for epidemiology in the 21st century. Epidemiology. 2006;17(2):128–30. https://pubmed.ncbi.nlm.nih.gov/16477249/
Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–9. https://pubmed.ncbi.nlm.nih.gov/2981409/
Anderson JW, Konz EC, Jenkins DJ. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr. 2000;19(5):578–90. https://pubmed.ncbi.nlm.nih.gov/11022871/
Hladik CM, Pasquet P. The human adaptations to meat eating: a reappraisal. Hum Evol. 2002;17(3–4):199–206. https://link.springer.com/article/10.1007/BF02436371
Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/
Jenkins DJA, Kendall CWC, Marchie A, et al. The Garden of Eden – plant based diets, the genetic drive to conserve cholesterol and its implications for heart disease in the 21st century. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):141–51. https://pubmed.ncbi.nlm.nih.gov/14527636/
Larsen SC, Ängquist L, Sørensen TI, Heitmann BL. 24h urinary sodium excretion and subsequent change in weight, waist circumference and body composition. PLoS ONE. 2013;8(7):e69689. https://pubmed.ncbi.nlm.nih.gov/23936079/
Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/
Yin X, Tian M, Neal B. Sodium reduction: how big might the risks and benefits be? Heart Lung Circ. 2021;30(2):180–5. https://pubmed.ncbi.nlm.nih.gov/32855069/
Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/
MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/
Rudelt A, French S, Harnack L. Fourteen-year trends in sodium content of menu offerings at eight leading fast-food restaurants in the USA. Public Nutr. 2014;17(8):1682–8. https://pubmed.ncbi.nlm.nih.gov/24018166/
Suckling RJ, He FJ, Markandu ND, MacGregor GA. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 2012;81(4):407–11. https://pubmed.ncbi.nlm.nih.gov/22048126/
Chobufo MD, Gayam V, Soluny J, et al. Prevalence and control rates of hypertension in the USA: 2017–2018. Int J Cardiol Hypertens. 2020;6:100044. https://pubmed.ncbi.nlm.nih.gov/33447770/
Celermajer DS, Neal B. Excessive sodium intake and cardiovascular disease: a-salting our vessels. J Am Coll Cardiol. 2013;61(3):344–5. https://pubmed.ncbi.nlm.nih.gov/23141488/
Mancilha-Carvalho J de J, de Souza e Silva NA. The Yanomami Indians in the INTERSALT Study. Arq Bras Cardiol. 2003;80(3):289–300. https://pubmed.ncbi.nlm.nih.gov/12856272/
Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/
Cappuccio FP, Capewell S, Lincoln P, McPherson K. Policy options to reduce population salt intake. BMJ. 2011;343:d4995. https://pubmed.ncbi.nlm.nih.gov/21835876/
Toldrá F, Barat JM. Strategies for salt reduction in foods. Recent Pat Food Nutr Agric. 2012;4(1):19–25. https://pubmed.ncbi.nlm.nih.gov/22316270/
Appel LJ, Anderson CA. Compelling evidence for public health action to reduce salt intake. N Engl J Med. 2010;362(7):650–2. https://pubmed.ncbi.nlm.nih.gov/20089959/
Drewnowski A, Rehm CD. Sodium intakes of US children and adults from foods and beverages by location of origin and by specific food source. Nutrients. 2013;5(6):1840–55. https://pubmed.ncbi.nlm.nih.gov/23760055/
.;
Select Committee on Nutrition and Human Needs. Dietary Goals for the United States – Supplemental Views. U.S. Government Printing Office; 1977. https://naldc.nal.usda.gov/catalog/1759572
Foscolou A, Critselis E, Tyrovolas S, et al. The association of sodium intake with successful aging, in 3,349 middle-aged and older adults: results from the ATTICA and MEDIS cross-sectional epidemiological studies. Nutr Healthy Aging. 2020;5(4):287–96. https://content.iospress.com/articles/nutrition-and-healthy-aging/nha190080
Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/
Quirynen M, Avontroodt P, Soers C, Zhao H, Pauwels M, van Steenberghe D. Impact of tongue cleansers on microbial load and taste. J Clin Periodontol. 2004;31(7):506–10. https://pubmed.ncbi.nlm.nih.gov/15191584/
Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/
Sigurdsson EL. Salt: a taste of death? Scand J Prim Health Care. 2014;32(2):53–4. https://pubmed.ncbi.nlm.nih.gov/24939739/
Maleki A, Soltanian AR, Zeraati F, Sheikh V, Poorolajal J. The flavor and acceptability of six different potassium-enriched (sodium reduced) iodized salts: a single-blind, randomized, crossover design. Clin Hypertens. 2016;22(1):18. https://pubmed.ncbi.nlm.nih.gov/28031983/
Whelton PK, Appel LJ, Sacco RL, et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation. 2012;126(24):2880–9. https://pubmed.ncbi.nlm.nih.gov/23124030/
Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am J Clin Nutr. 2012;96(3):647–57. https://pubmed.ncbi.nlm.nih.gov/22854410/
Sebastian A, Cordain L, Frassetto L, Banerjee T, Morris RC. Postulating the major environmental condition resulting in the expression of essential hypertension and its associated cardiovascular diseases: dietary imprudence in daily selection of foods in respect of their potassium and sodium content resulting in oxidative stress-induced dysfunction of the vascular endothelium, vascular smooth muscle, and perivascular tissues. Med Hypotheses. 2018;119:110–9. https://pubmed.ncbi.nlm.nih.gov/30122481/
Palmer BF, Clegg DJ. Achieving the benefits of a high-potassium, paleolithic diet, without the toxicity. Mayo Clin Proc. 2016;91(4):496–508. https://pubmed.ncbi.nlm.nih.gov/26948054/
Jew S, AbuMweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/
Drewnowski A, Maillot M, Rehm C. Reducing the sodium-potassium ratio in the US diet: a challenge for public health. Am J Clin Nutr. 2012;96(2):439–44. https://pubmed.ncbi.nlm.nih.gov/22760562/
van Buren L, Dötsch-Klerk M, Seewi G, Newson RS. Dietary impact of adding potassium chloride to foods as a sodium reduction technique. Nutrients. 2016;8(4):235. https://pubmed.ncbi.nlm.nih.gov/27110818/
Jafarnejad S, Mirzaei H, Clark CCT, Taghizadeh M, Ebrahimzadeh A. The hypotensive effect of salt substitutes in stage 2 hypertension: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;20(1):98. https://pubmed.ncbi.nlm.nih.gov/32106813/
Chang HY, Hu YW, Yue CSJ, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83(6):1289–96. https://pubmed.ncbi.nlm.nih.gov/16762939/
Lambert K, Conley M, Dumont R, et al. Letter to the editor on “Potential use of salt substitutes to reduce blood pressure.” J Clin Hypertens. 2019;21(10):1609–10. https://pubmed.ncbi.nlm.nih.gov/31448881/
Farrand C, MacGregor G, Campbell NRC, Webster J. Potential use of salt substitutes to reduce blood pressure. J Clin Hypertens. 2019;21(3):350–4. https://pubmed.ncbi.nlm.nih.gov/30690859/
Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/
Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/
Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/
Devries S, Willett W, Bonow RO. Nutrition education in medical school, residency training, and practice. JAMA. 2019;321(14):1351–2. https://pubmed.ncbi.nlm.nih.gov/30896728/
Freeman KJ, Grega ML, Friedman SM, et al. Lifestyle medicine reimbursement: a proposal for policy priorities informed by a cross-sectional survey of lifestyle medicine practitioners. Int J Environ Res Public Health. 2021;18(21):11632. https://pubmed.ncbi.nlm.nih.gov/34770148/
Brody H. Pharmaceutical industry financial support for medical education: benefit, or undue influence? J Law Med Ethics. 2009;37(3):451–60. https://pubmed.ncbi.nlm.nih.gov/19723256/
Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/
Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, CDC. Tobacco use – United States, 1900–1999. JAMA. 1999;282(23):2202–4. https://pubmed.ncbi.nlm.nih.gov/10605963/
Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011
Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011
Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/
Gugiu PC, Gugiu MR. Levels of evidence: a reply to Berger and Knoll. Eval Health Prof. 2011;34(1):127–30. https://journals.sagepub.com/doi/10.1177/0163278710391467
Chopra M, Darnton-Hill I. Tobacco and obesity epidemics: not so different after all? BMJ. 2004;328(7455):1558–60. https://pubmed.ncbi.nlm.nih.gov/15217877/
Industries. OpenSecrets.org. https://www.opensecrets.org/federal-lobbying/industries. Published July 23, 2021. Accessed August 31, 2021.; https://www.opensecrets.org/federal-lobbying/industries
Maplight, Feed the Truth. Draining the Big Food swamp. FeedtheTruth.org. https://feedthetruth.org/wp-content/uploads/2021/08/FTT-DrainingTheSwamp-ExecSummary-FINAL.pdf. Published February 25, 2021. Accessed January 6, 2022.; https://www.readkong.com/page/draining-the-big-food-feed-the-truth-5969302
Ищи, кому выгодно (лат.). – Примеч. ред.
Sarna L, Bialous SA, Nandy K, Antonio ALM, Yang Q. Changes in smoking prevalences among health care professionals from 2003 to 2010–2011. JAMA. 2014;311(2):197–9. https://pubmed.ncbi.nlm.nih.gov/24399560/
Jindeel A. Health care providers who smoke. Am J Nurs. 2010;110(6):11. https://pubmed.ncbi.nlm.nih.gov/20505442/
Aggarwal M, Singh Ospina N, Kazory A, et al. The mismatch of nutrition and lifestyle beliefs and actions among physicians: a wake-up call. Am J Lifestyle Med. 2020;14(3):304–15. https://pubmed.ncbi.nlm.nih.gov/32477033/
Bertozzi B, Tosti V, Fontana L. Beyond calories: an integrated approach to promote health, longevity and well-being. Gerontology. 2017;63(1):13–9. https://pubmed.ncbi.nlm.nih.gov/27173125/
Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/
Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/
Kenney WL, Chiu P. Influence of age on thirst and fluid intake. Med Sci Sports Exerc. 2001;33(9):1524–32. https://pubmed.ncbi.nlm.nih.gov/11528342/
Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients. 2019;11(8):E1857. https://pubmed.ncbi.nlm.nih.gov/31405072/
Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/
Popkin BM, Armstrong LE, Bray GM, Caballero B, Frei B, Willett WC. A new proposed guidance system for beverage consumption in the United States. Am J Clin Nutr. 2006;83(3):529–42. https://pubmed.ncbi.nlm.nih.gov/16522898/
Walsh NP, Fortes MB, Purslow C, Esmaeelpour M. Author response: is whole body hydration an important consideration in dry eye? Invest Ophthalmol Vis Sci. 2013;54(3):1713–4. https://pubmed.ncbi.nlm.nih.gov/23471906/
Chan J, Knutsen SF, Blix GG, Lee JW, Fraser GE. Water, other fluids, and fatal coronary heart disease: the Adventist Health Study. Am J Epidemiol. 2002;155(9):827–33. https://pubmed.ncbi.nlm.nih.gov/11978586/
Cui R, Iso H, Eshak ES, Maruyama K, Tamakoshi A, JACC Study Group. Water intake from foods and beverages and risk of mortality from CVD: the Japan Collaborative Cohort (JACC) Study. Public Health Nutr. 2018;21(16):3011–7. https://pubmed.ncbi.nlm.nih.gov/30107863/
Stookey JD, Kavouras S¿, Suh H, Lang F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients. 2020;12(4):E905. https://pubmed.ncbi.nlm.nih.gov/32224908/
Lim WH, Wong G, Lewis JR, et al. Total volume and composition of fluid intake and mortality in older women: a cohort study. BMJ Open. 2017;7(3):e011720. https://pubmed.ncbi.nlm.nih.gov/28341683/
Kant AK, Graubard BI. A prospective study of water intake and subsequent risk of all-cause mortality in a national cohort. Am J Clin Nutr. 2017;105(1):212–20. https://pubmed.ncbi.nlm.nih.gov/27903521/
Leurs LJ, Schouten LJ, Goldbohm RA, van den Brandt PA. Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr. 2010;104(8):1212–21. https://pubmed.ncbi.nlm.nih.gov/20456812/
Loomba RS, Aggarwal S, Arora RR. Raw water consumption does not affect all-cause or cardiovascular mortality: a secondary analysis. Am J Ther. 2016;23(6):e1287–92. https://pubmed.ncbi.nlm.nih.gov/25611360/
Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/
Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/
McKenzie AL, Muñoz CX, Armstrong LE. Accuracy of urine color to detect equal to or greater than 2 % body mass loss in men. J Athl Train. 2015;50(12):1306–9. https://pubmed.ncbi.nlm.nih.gov/26642041/
McKenzie AL, Armstrong LE. Monitoring body water balance in pregnant and nursing women: the validity of urine color. Ann Nutr Metab. 2017;70 Suppl 1:18–22. https://pubmed.ncbi.nlm.nih.gov/28614809/
Perrier ET, Johnson EC, McKenzie AL, Ellis LA, Armstrong LE. Urine colour change as an indicator of change in daily water intake: a quantitative analysis. Eur J Nutr. 2016;55(5):1943–9. https://pubmed.ncbi.nlm.nih.gov/26286348/
Kostelnik SB, Davy KP, Hedrick VE, Thomas DT, Davy BM. The validity of urine color as a hydration biomarker within the general adult population and athletes: a systematic review. J Am Coll Nutr. 2021;40(2):172–9. https://pubmed.ncbi.nlm.nih.gov/32330109/
Hooper L, Abdelhamid A, Attreed NJ, et al. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people. Cochrane Database Syst Rev. 2015;(4):CD009647. https://pubmed.ncbi.nlm.nih.gov/25924806/
Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x
Vivanti AP. Origins for the estimations of water requirements in adults. Eur J Clin Nutr. 2012;66(12):1282–9. https://pubmed.ncbi.nlm.nih.gov/23093341/
Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x
Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/
Hoffman MD, Bross TL, Hamilton RT. Are we being drowned by overhydration advice on the Internet? Phys Sportsmed. 2016;44(4):343–8. https://pubmed.ncbi.nlm.nih.gov/27548748/
Onufrak SJ, Park S, Sharkey JR, Sherry B. The relationship of perceptions of tap water safety with intake of sugar-sweetened beverages and plain water among US adults. Public Health Nutr. 2014;17(1):179–85. https://pubmed.ncbi.nlm.nih.gov/23098620/
Saleh MA, Abdel-Rahman FH, Woodard BB, et al. Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(4):335–47. https://pubmed.ncbi.nlm.nih.gov/18273738/
Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/
. Øverby NC, Lillegaard ITL, Johansson L, Andersen LF. High intake of added sugar among Norwegian children and adolescents. Public Health Nutr. 2004;7(2):285–93. https://pubmed.ncbi.nlm.nih.gov/15003136/
Chikritzhs T, Stockwell T, Naimi T, Andreasson S, Dangardt F, Liang W. Has the leaning tower of presumed health benefits from ‘moderate’ alcohol use finally collapsed? Addiction. 2015;110(5):726–7. https://pubmed.ncbi.nlm.nih.gov/25613200/
Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W. Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol. 2007;17(5 Suppl):S16–23. https://pubmed.ncbi.nlm.nih.gov/17478320/
Johnson T, Gerson L, Hershcovici T, Stave C, Fass R. Systematic review: the effects of carbonated beverages on gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2010;31(6):607–14. https://pubmed.ncbi.nlm.nih.gov/20055784/
Lesser LI, Ebbeling CB, Goozner M, Wypij D, Ludwig DS. Relationship between funding source and conclusion among nutrition-related scientific articles. PLoS Med. 2007;4(1):e5. https://pubmed.ncbi.nlm.nih.gov/17214504/
Quik M. Smoking, nicotine and Parkinson’s disease. Trends Neurosci. 2004;27(9):561–8. https://pubmed.ncbi.nlm.nih.gov/15331239/
Searles Nielsen S, Gallagher LG, Lundin JI, et al. Environmental tobacco smoke and Parkinson’s disease. Mov Disord. 2012;27(2):293–6. https://pubmed.ncbi.nlm.nih.gov/22095755/
U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Centers for Disease Control and Prevention; 2014. https://www.cdc.gov/tobacco/sgr/50th-anniversary/index.htm#complete-report
Nielsen SS, Franklin GM, Longstreth WT, Swanson PD, Checkoway H. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–7. https://pubmed.ncbi.nlm.nih.gov/23661325/
Aune D, Rosenblatt DAN, Chan DSM, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101(1):87–117. https://pubmed.ncbi.nlm.nih.gov/25527754/
Vasconcelos A, Santos T, Ravasco P, Neves PM. Dairy products: is there an impact on promotion of prostate cancer? A review of the literature. Front Nutr. 2019;6:62. https://pubmed.ncbi.nlm.nih.gov/31139629/
Aune D, Lau R, Chan DSM, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45. https://pubmed.ncbi.nlm.nih.gov/21617020/
Veettil SK, Ching SM, Lim KG, Saokaew S, Phisalprapa P, Chaiyakunapruk N. Effects of calcium on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Medicine. 2017;96(32):e7661. https://pubmed.ncbi.nlm.nih.gov/28796047/
Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/
Bridges, M. Moo-ove over, cow’s milk: the rise of plant-based dairy alternatives. Pract Gastroenterol. 2018;42(1):20–7. https://practicalgastro.com/2019/07/29/moo-ove-over-cows-milk-the-rise-of-plant-based-dairy-alternatives/
Boland, MA. Milk processors are going bankrupt as Americans ditch dairy. Bloomberg. https://www.bloomberg.com/news/articles/2020–01–10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court. Published January 10, 2020. Accessed January 6, 2022.; https://www.bloomberg.com/news/articles/2020-01-10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court?leadSource=uverify%20wall
Silva ARA, Silva MMN, Ribeiro BD. Health issues and technological aspects of plant-based alternative milk. Food Res Int. 2020;131:108972. https://pubmed.ncbi.nlm.nih.gov/32247441/
Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/
Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55(1):10–20. https://pubmed.ncbi.nlm.nih.gov/29358791/
Непереносимость лактозы. – Примеч. ред.
Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738–46. https://pubmed.ncbi.nlm.nih.gov/28690131/
National Institute of Child Health and Human Development. Lactose intolerance: information for health care providers. U.S. Dept. of Health and Human Services, National Institutes of Health. http://purl.access.gpo.gov/GPO/LPS80173. Published January 2006. Accessed January 6, 2022.; https://purl.access.gpo.gov/GPO/LPS80173
Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91(3):151–7. https://pubmed.ncbi.nlm.nih.gov/10203917/
Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/
Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/
Godlee F, Malone R, Timmis A, et al. Journal policy on research funded by the tobacco industry. Thorax. 2013;68(12):1090–1. https://pubmed.ncbi.nlm.nih.gov/24130154/
Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/
Zhang L, Jie G, Zhang J, Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 2009;46(3):414–21. https://pubmed.ncbi.nlm.nih.gov/19061950/
Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell. 2013;12(6):1041–9. https://pubmed.ncbi.nlm.nih.gov/23834676/
Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/
Jochmann N, Lorenz M, von Krosigk A, et al. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr. 2008;99(4):863–8. https://pubmed.ncbi.nlm.nih.gov/17916273/
Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/
Ahmad AF, Rich L, Koch H, et al. Effect of adding milk to black tea on vascular function in healthy men and women: a randomised controlled crossover trial. Food Funct. 2018;9(12):6307–14. https://pubmed.ncbi.nlm.nih.gov/30411751/
Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/
Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/
Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/
Получают из побегов аспалатуса линейного, кустарника из семейства бобовых. – Примеч. ред.
Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine. 2013;20(3–4):380–6. https://pubmed.ncbi.nlm.nih.gov/23218401/
Yoo KM, Hwang IK, Moon B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79–4 cells. J Food Sci. 2009;74(6):C419–25. https://pubmed.ncbi.nlm.nih.gov/19723177/
Damiani E, Carloni P, Rocchetti G, et al. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal tea. Antioxidants (Basel). 2019;8(10):499. https://pubmed.ncbi.nlm.nih.gov/31640245/
Cleverdon R, Elhalaby Y, McAlpine MD, Gittings W, Ward WE. Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages. 2018;4(1):15. https://www.mdpi.com/2306-5710/4/1/15
Peterson J, Dwyer J, Jacques P, Rand W, Prior R, Chui K. Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compost Anal. 2004;17(3–4):397–405. https://www.sciencedirect.com/science/article/abs/pii/S0889157504000614
Saklar S, Ertas E, Ozdemir IS, Karadeniz B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J Food Sci Technol. 2015;52(10):6639–46. https://pubmed.ncbi.nlm.nih.gov/26396411/
Pérez-Burillo S, Giménez R, Rufián-Henares JA, Pastoriza S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: relationship with sensory properties. Food Chem. 2018;248:111–8. https://pubmed.ncbi.nlm.nih.gov/29329833/
Nikniaz Z, Mahdavi R, Ghaemmaghami SJ, Yagin NL, Nikniaz L. Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.). Avicenna J Phytomed. 2016;6(3):313–21. https://pubmed.ncbi.nlm.nih.gov/27462554/
Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25. https://pubmed.ncbi.nlm.nih.gov/30882235/
Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/
Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis. 2014;234(1):11–6. https://pubmed.ncbi.nlm.nih.gov/24583500/
Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. https://pubmed.ncbi.nlm.nih.gov/26199070/
Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/
Gardener H, Elkind MSV. Artificial sweeteners, real risks. Stroke. 2019;50(3):549–51. https://pubmed.ncbi.nlm.nih.gov/30760171/
Huang CW, Wang HD, Bai H, et al. Tequila regulates insulin-like signaling and extends life span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2015;70(12):1461–9. https://pubmed.ncbi.nlm.nih.gov/26265729/
Didelot G, Molinari F, Tchénio P, et al. Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila. Science. 2006;313(5788):851–3. https://pubmed.ncbi.nlm.nih.gov/16902143/
Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/
Degenhardt L, Charlson F, Ferrari A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry. 2018;5(12):987–1012. https://pubmed.ncbi.nlm.nih.gov/30392731/
CDC Morbidity and Mortality Weekly Report. Alcohol-attributable deaths and years of potential life lost – United States, 2001. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm. Published September 24, 2004. Accessed October 31. 2021.; https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm
Martinez P, Kerr WC, Subbaraman MS, Roberts SCM. New estimates of the mean ethanol content of beer, wine, and spirits sold in the United States show a greater increase in per capita alcohol consumption than previous estimates. Alcohol Clin Exp Res. 2019;43(3):509–21. https://pubmed.ncbi.nlm.nih.gov/30742317/
Editorial. Alcohol and health: time for an overdue conversation. Lancet Gastroenterol Hepatol. 2020;5(3):229. https://pubmed.ncbi.nlm.nih.gov/32061324/
Seyedsadjadi N, Grant R. The potential benefit of monitoring oxidative stress and inflammation in the prevention of non-communicable diseases (NCDs). Antioxidants (Basel). 2020;10(1):15. https://pubmed.ncbi.nlm.nih.gov/33375428/
Guest J, Guillemin GJ, Heng B, Grant R. Lycopene pretreatment ameliorates acute ethanol induced NAD+ depletion in human astroglial cells. Oxid Med Cell Longev. 2015;2015:1–8. https://pubmed.ncbi.nlm.nih.gov/26075038/
Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/
Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/
Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/
Choi YJ, Myung SK, Lee JH. Light alcohol drinking and risk of cancer: a meta-analysis of cohort studies. Cancer Res Treat. 2018;50(2):474–87. https://pubmed.ncbi.nlm.nih.gov/28546524/
Testino G, Leone S, Sumberaz A, Borro P. Alcohol and cancer. Alcohol Clin Exp Res. 2015;39(11):2261. https://pubmed.ncbi.nlm.nih.gov/26332802/
Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342:d636. https://pubmed.ncbi.nlm.nih.gov/21343206/
Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. https://pubmed.ncbi.nlm.nih.gov/22607825/
Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease – a Mendelian randomisation study. PLoS One. 2008;3(8):e2986. https://pubmed.ncbi.nlm.nih.gov/18714375/
Britton AR, Grobbee DE, den Ruijter HM, et al. Alcohol consumption and common carotid intima-media thickness: the USE-IMT Study. Alcohol Alcohol. 2017;52(4):483–6. https://pubmed.ncbi.nlm.nih.gov/28525540/
Отложение солей кальция на стенках артерий, питающих сердце. – Примеч. ред.
Pletcher MJ, Varosy P, Kiefe CI, Lewis CE, Sidney S, Hulley SB. Alcohol consumption, binge drinking, and early coronary calcification: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2005;161(5):423–33. https://pubmed.ncbi.nlm.nih.gov/15718478/
McFadden CB, Brensinger CM, Berlin JA, Townsend RR. Systematic review of the effect of daily alcohol intake on blood pressure. Am J Hypertens. 2005;18(2):276–86. https://pubmed.ncbi.nlm.nih.gov/15752957/
Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/
Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/
Stockwell T, Zhao J. Alcohol’s contribution to cancer is underestimated for exactly the same reason that its contribution to cardioprotection is overestimated. Addiction. 2017;112(2):230–2. https://pubmed.ncbi.nlm.nih.gov/27891690/
Doll R, Peto R, Boreham J, Sutherland I. Mortality from cancer in relation to smoking: 50 years observations on British doctors. Br J Cancer. 2005;92(3):426–9. https://pubmed.ncbi.nlm.nih.gov/15668706/
Stockwell T, Zhao J, Panwar S, Roemer A, Naimi T, Chikritzhs T. Do “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. J Stud Alcohol Drugs. 2016;77(2):185–98. https://pubmed.ncbi.nlm.nih.gov/26997174/
Sattar N, Preiss D. Reverse causality in cardiovascular epidemiological research: more common than imagined? Circulation. 2017;135(24):2369–72. https://pubmed.ncbi.nlm.nih.gov/28606949/
Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/
Huynh K. Reducing alcohol intake improves heart health. Nat Rev Cardiol. 2014;11(9):495. https://pubmed.ncbi.nlm.nih.gov/25072907/
Stott DJ. Alcohol and mortality in older people: understanding the J-shaped curve. Age Ageing. 2020;49(3):332–3. https://pubmed.ncbi.nlm.nih.gov/32343789/
Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/
Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife. 2020;9:e58914. https://pubmed.ncbi.nlm.nih.gov/33063668/
Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/
Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/
Goulden R. Moderate alcohol consumption is not associated with reduced all-cause mortality. Am J Med. 2016;129(2):180–6.e4. https://pubmed.ncbi.nlm.nih.gov/26524703/
Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/
Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2014;349:g4164. https://pubmed.ncbi.nlm.nih.gov/25011450/
Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/
Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/
Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/
Skovenborg E, Grønbæk M, Ellison RC. Benefits and hazards of alcohol-the J-shaped curve and public health. DAT. 2021;21(1):54–69. https://portal.findresearcher.sdu.dk/en/publications/benefits-and-hazards-of-alcohol-the-j-shaped-curve-and-public-hea
Golder S, McCambridge J. Alcohol, cardiovascular disease and industry funding: a co-authorship network analysis of systematic reviews. Soc Sci Med. 2021;289:114450. https://pubmed.ncbi.nlm.nih.gov/34607052/
Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/
Connor J. Why do alcohol’s assumed benefits have any role in policymaking? J Stud Alcohol Drugs. 2016;77(2):201–2. https://pubmed.ncbi.nlm.nih.gov/26997176/
Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html
Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html
Rabin RC. Major study of drinking will be shut down. The New York Times. https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html. Published June 15, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html
Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html
Braillon A, Wilson M. Does moderate alcohol consumption really have health benefits? BMJ. 2018;362:k3888. https://pubmed.ncbi.nlm.nih.gov/30224550/
Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/
Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/
Burton R, Sheron N. No level of alcohol consumption improves health. Lancet. 2018;392(10152):987–8. https://pubmed.ncbi.nlm.nih.gov/30146328/
Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/
Manolis TA, Manolis AA, Manolis AS. Cardiovascular effects of alcohol: a double-edged sword / how to remain at the nadir point of the J-curve? Alcohol. 2019;76:117–29. https://pubmed.ncbi.nlm.nih.gov/30735906/
Arora M, ElSayed A, Beger B, et al. The impact of alcohol consumption on cardiovascular health: myths and measures. Glob Heart. 2022;17(1):45. https://pubmed.ncbi.nlm.nih.gov/36051324/
Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/
Holahan CJ, Schutte KK, Brennan PL, et al. Wine consumption and 20-year mortality among late-life moderate drinkers. J Stud Alcohol Drugs. 2012;73(1):80–8. https://pubmed.ncbi.nlm.nih.gov/24588326/
Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet. 1993;341(8843):454–7. https://pubmed.ncbi.nlm.nih.gov/8094487/
Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/
Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev. 2014;2014:681318. https://pubmed.ncbi.nlm.nih.gov/24876915/
Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/
Schrieks IC, van den Berg R, Sierksma A, Beulens JWJ, Vaes WHJ, Hendriks HFJ. Effect of red wine consumption on biomarkers of oxidative stress. Alcohol Alcohol. 2013;48(2):153–9. https://pubmed.ncbi.nlm.nih.gov/22859618/
Chiva-Blanch G, Urpi-Sarda M, Ros E, et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication. Circ Res. 2012;111(8):1065–8. https://pubmed.ncbi.nlm.nih.gov/22955728/
Naissides M, Mamo JCL, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177(2):401–8. https://pubmed.ncbi.nlm.nih.gov/15530916/
Williams MJA, Sutherland WHF, Whelan AP, McCormick MP, de Jong SA. Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism. 2004;53(3):318–23. https://pubmed.ncbi.nlm.nih.gov/15015143/
Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N. Does a glass of red wine improve endothelial function? Eur Heart J. 2000;21(1):74–8. https://pubmed.ncbi.nlm.nih.gov/10610747/
Hashimoto M, Kim S, Eto M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol. 2001;88(12):1457–60. https://pubmed.ncbi.nlm.nih.gov/11741577/
Boban M, Modun D, Music I, et al. Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates. J Cardiovasc Pharmacol. 2006;47(5):695–701. https://pubmed.ncbi.nlm.nih.gov/16775510/
Whelan AP, Sutherland WHF, McCormick MP, Yeoman DJ, de Jong SA, Williams MJA. Effects of white and red wine on endothelial function in subjects with coronary artery disease. Intern Med J. 2004;34(5):224–8. https://pubmed.ncbi.nlm.nih.gov/15151666/
Karatzi K, Papamichael C, Aznaouridis K, et al. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis. 2004;15(8):485–90. https://pubmed.ncbi.nlm.nih.gov/15585989/
Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition. 2006;22(3):295–302. https://pubmed.ncbi.nlm.nih.gov/16412610/
Smith JM, Stouffer EM. Concord grape juice reverses the age-related impairment in latent learning in rats. Nutr Neurosci. 2014;17(2):81–7. https://pubmed.ncbi.nlm.nih.gov/23541291/
Американская компания, с 1956 года принадлежит Национальной виноградной кооперативной ассоциации, кооперативу производителей винограда. – Примеч. ред.
Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103(5):730–4. https://pubmed.ncbi.nlm.nih.gov/20028599/
Wang DD, Li Y, Bhupathiraju SN, et al. Fruit and vegetable intake and mortality: results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation. 2021;143(17):1642–54. https://pubmed.ncbi.nlm.nih.gov/33641343/
Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9. https://pubmed.ncbi.nlm.nih.gov/16945610/
Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9. https://pubmed.ncbi.nlm.nih.gov/16945610/
Mee KA, Gee DL. Apple fiber and gum arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia. J Am Diet Assoc. 1997;97(4):422–4. https://pubmed.ncbi.nlm.nih.gov/9120199/
Buscemi S, Rosafio G, Arcoleo G, et al. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. Am J Clin Nutr. 2012;95(5):1089–95. https://pubmed.ncbi.nlm.nih.gov/22492368/
Hägele FA, Büsing F, Nas A, et al. High orange juice consumption with or in-between three meals a day differently affects energy balance in healthy subjects. Nutr Diabetes. 2018;8(1):19. https://pubmed.ncbi.nlm.nih.gov/29695707/
Silaste ML, Alfthan G, Aro A, Kesäniemi YA, Hörkkö S. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br J Nutr. 2007;98(6):1251–8. https://pubmed.ncbi.nlm.nih.gov/17617941/
Samaras A, Tsarouhas K, Paschalidis E, et al. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol. 2014;69:231–6. https://pubmed.ncbi.nlm.nih.gov/24705018/
Mazidi M, Katsiki N, George ES, Banach M. Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: a population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). Br J Nutr. 2020;124(12):1303–10. https://pubmed.ncbi.nlm.nih.gov/31434581/
Pan B, Ge L, Lai H, et al. Association of soft drink and 100 % fruit juice consumption with all-cause mortality, cardiovascular diseases mortality, and cancer mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021;Jun 13:1–12. https://pubmed.ncbi.nlm.nih.gov/34121531/
Scheffers FR, Boer JMA. Sugar intake and all-cause mortality-differences between sugar-sweetened beverages, artificially sweetened beverages, and pure fruit juices. BMC Med. 2020;18(1):112. https://pubmed.ncbi.nlm.nih.gov/32316967/
Yip CSC, Chan W, Fielding R. The associations of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J Acad Nutr Diet. 2019;119(3):464–81. https://pubmed.ncbi.nlm.nih.gov/30639206/
Leaf A. Long-lived populations: extreme old age. J Am Geriatr Soc. 1982;30(8):485–7. https://pubmed.ncbi.nlm.nih.gov/6212609/
Zak N. Evidence that Jeanne Calment died in 1934, not 1997. Rejuvenation Res. 2019;22(1):3–12. https://pubmed.ncbi.nlm.nih.gov/30696353/
Leaf A. Long-lived populations: extreme old age. J Am Geriatr Soc. 1982;30(8):485–7. https://pubmed.ncbi.nlm.nih.gov/6212609/
Mazess RB, Forman SH. Longevity and age exaggeration in Vilcabamba, Ecuador. J Gerontol. 1979;34(1):94–8. https://pubmed.ncbi.nlm.nih.gov/759498/
Poulain M, Herm A, Pes G. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res. 2014;11:87–108. https://www.researchgate.net/publication/255508953_The_Blue_Zones_areas_of_exceptional_longevity_around_the_world
Willcox BJ, Willcox DC, Ferrucci L. Secrets of healthy aging and longevity from exceptional survivors around the globe: lessons from octogenarians to supercentenarians. J Gerontol A Biol Sci Med Sci. 2008;63(11):1181–5. https://pubmed.ncbi.nlm.nih.gov/19038832/
Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/
Poulain M, Herm A, Pes G. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res. 2014;11:87–108. https://www.researchgate.net/publication/255508953_The_Blue_Zones_areas_of_exceptional_longevity_around_the_world
Carter ED. Making the Blue Zones: neoliberalism and nudges in public health promotion. Soc Sci Med. 2015;133:374–82. https://pubmed.ncbi.nlm.nih.gov/25605430/
Madrigal-Leer F, Martìnez-Montandòn A, Solìs-Umaña M, et al. Clinical, functional, mental and social profile of the Nicoya Peninsula centenarians, Costa Rica, 2017. Aging Clin Exp Res. 2020;32(2):313–21. https://pubmed.ncbi.nlm.nih.gov/30919261/
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/
Marston HR, Niles-Yokum K, Silva PA. A commentary on Blue Zones®: a critical review of age-friendly environments in the 21st century and beyond. Int J Environ Res Public Health. 2021;18(2):837. https://pubmed.ncbi.nlm.nih.gov/33478140/
Panagiotakos DB, Chrysohoou C, Siasos G, et al. Sociodemographic and lifestyle statistics of oldest old people (80 years) living in Ikaria Island: the Ikaria Study. Cardiol Res Pract. 2011;2011:679187. https://pubmed.ncbi.nlm.nih.gov/21403883/
Food guidelines. BlueZones.com. https://www.bluezones.com/recipes/food-guidelines/. Accessed December 28, 2022.; https://www.bluezones.com/recipes/food-guidelines/
Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: an elixir of life. An overview. Antioxidants (Basel). 2021;10(4):507. https://pubmed.ncbi.nlm.nih.gov/33805092/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Food guidelines. BlueZones.com. https://www.bluezones.com/recipes/food-guidelines/. Accessed December 28, 2022.; https://www.bluezones.com/recipes/food-guidelines/
Weber H. A lecture on means for the prolongation of life: delivered before the Royal College of Physicians of London. BMJ. 1903;2(2240):1445–51. https://pubmed.ncbi.nlm.nih.gov/20761218/
Stathakos D, Pratsinis H, Zachos I, et al. Greek centenarians: assessment of functional health status and life-style characteristics. Exp Gerontol. 2005;40(6):512–8. https://pubmed.ncbi.nlm.nih.gov/15935588/
Chen C. A survey of the dietary nutritional composition of centenarians. Chin Med J (Engl). 2001;114(10):1095–7. https://pubmed.ncbi.nlm.nih.gov/11677774/
Li Y, Bai Y, Tao QL, et al. Lifestyle of Chinese centenarians and their key beneficial factors in Chongqing, China. Asia Pac J Clin Nutr. 2014;23(2):309–14. https://pubmed.ncbi.nlm.nih.gov/24901102/
Ye JJ, Li JC, Peng L, et al. Nonagenarians and centenarians in a rural Han Chinese population: lifestyle and epidemics: letters to the editor. J Am Geriatr Soc. 2009;57(9):1723–4. https://pubmed.ncbi.nlm.nih.gov/19895443/
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/
Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. National Geographic; 2012. https://worldcat.org/title/777659970
Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/
Agricultural Research Service, United States Department of Agriculture. Beans, NFS. FoodDataCentral. https://fdc.nal.usda.gov/fdc-app.html#/food-details/1100362/portions. Published October 30, 2020. Accessed February 16, 2022.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/1100362/portions
Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/
U.S. Department of Agriculture. Beans, peas, and lentils. MyPlate.gov. https://www.myplate.gov/eat-healthy/protein-foods/beans-and-peas. Accessed February 16, 2022.; https://www.myplate.gov/eat-healthy/protein-foods/beans-and-peas
Drewnowski A, Rehm CD. Vegetable cost metrics show that potatoes and beans provide most nutrients per penny. PLoS One. 2013;8(5):e63277. https://pubmed.ncbi.nlm.nih.gov/23691007/
Kabagambe EK, Baylin A, Ruiz-Narvarez E, Siles X, Campos H. Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction. J Nutr. 2005;135(7):1770–5. https://pubmed.ncbi.nlm.nih.gov/15987863/
Luyken R, Pikaar NA, Polman H, Schippers FA. The influence of legumes on the serum cholesterol level. Voeding. 1962;23:447–53. https://pubmed.ncbi.nlm.nih.gov/14467529/
Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61(1):85–96. https://pubmed.ncbi.nlm.nih.gov/31983216/
Abeysekara S, Chilibeck PD, Vatanparast H, Zello GA. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br J Nutr. 2012;108 Suppl 1:S103–10. https://pubmed.ncbi.nlm.nih.gov/22916805/
Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43. https://pubmed.ncbi.nlm.nih.gov/21559039/
Kou T, Wang Q, Cai J, et al. Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials. Food Funct. 2017;8(8):2663–71. https://pubmed.ncbi.nlm.nih.gov/28675204/
Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103. https://pubmed.ncbi.nlm.nih.gov/19939654/
Sievenpiper JL, Kendall CW, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52(8):1479–95. https://pubmed.ncbi.nlm.nih.gov/19526214/
Palmer SM, Winham DM, Hradek C. Knowledge gaps of the health benefits of beans among low-income women. Am J Health Behav. 2018;42(1):27–38. https://pubmed.ncbi.nlm.nih.gov/29320336/
Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/
Mirmiran P, Hosseinpour-Niazi S, Azizi F. Therapeutic lifestyle change diet enriched in legumes reduces oxidative stress in overweight type 2 diabetic patients: a crossover randomised clinical trial. Eur J Clin Nutr. 2018;72(1):174–6. https://pubmed.ncbi.nlm.nih.gov/28722030/
Mullins AP, Arjmandi BH. Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases. Nutrients. 2021;13(2):519. https://pubmed.ncbi.nlm.nih.gov/33562498/
Mathur KS, Khan MA, Sharma RD. Hypocholesterolaemic effect of Bengal gram: a long-term study in man. Br Med J. 1968;1(5583):30–1. https://pubmed.ncbi.nlm.nih.gov/5636741/
Esselstyn CB. In cholesterol lowering, moderation kills. Cleve Clin J Med. 2000;67(8):560–4. https://pubmed.ncbi.nlm.nih.gov/10946449/
Геометрическая схема, которая используется для моделирования множеств и для схематичного изображения и отношений между ними. – Примеч. ред.
Tor-Roca A, Garcia-Aloy M, Mattivi F, Llorach R, Andres-Lacueva C, Urpi-Sarda M. Phytochemicals in legumes: a qualitative reviewed analysis. J Agric Food Chem. 2020;68(47):13486–96. https://pubmed.ncbi.nlm.nih.gov/33169614/
Bruno JA, Feldman CH, Konas DW, Kerrihard AL, Matthews EL. Incorporating sprouted chickpea flour in pasta increases brachial artery flow-mediated dilation. Physiol Int. 2019;106(3):207–12. https://pubmed.ncbi.nlm.nih.gov/31564118/
Zahradka P, Wright B, Weighell W, et al. Daily non-soy legume consumption reverses vascular impairment due to peripheral artery disease. Atherosclerosis. 2013;230(2):310–4. https://pubmed.ncbi.nlm.nih.gov/24075762/
West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6. https://pubmed.ncbi.nlm.nih.gov/9082983/
Levine HJ. Rest heart rate and life expectancy. J Am Coll Cardiol. 1997;30(4):1104–6. https://pubmed.ncbi.nlm.nih.gov/9316546/
Cook S, Hess OM. Resting heart rate and cardiovascular events: time for a new crusade? Eur Heart J. 2010;31(5):517–9. https://pubmed.ncbi.nlm.nih.gov/19933283/
Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur J Prev Cardiol. 2014;21(6):719–26. https://pubmed.ncbi.nlm.nih.gov/22718796/
Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur J Prev Cardiol. 2014;21(6):719–26. https://pubmed.ncbi.nlm.nih.gov/22718796/
Teodorescu C, Reinier K, Uy-Evanado A, Gunson K, Jui J, Chugh SS. Resting heart rate and risk of sudden cardiac death in the general population: influence of left ventricular systolic dysfunction and heart rate-modulating drugs. Heart Rhythm. 2013;10(8):1153–8. https://pubmed.ncbi.nlm.nih.gov/23680897/
Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159(4):612–9.e3. https://pubmed.ncbi.nlm.nih.gov/20362720/
Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60. https://pubmed.ncbi.nlm.nih.gov/23089999/
Sloan RP, Shapiro PA, DeMeersman RE, et al. The effect of aerobic training and cardiac autonomic regulation in young adults. Am J Public Health. 2009;99(5):921–8. https://pubmed.ncbi.nlm.nih.gov/19299682/
Viguiliouk E, Glenn AJ, Nishi SK, et al. Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: an umbrella review and updated systematic review and meta-analysis of prospective cohort studies. Adv Nutr. 2019;10(Suppl_4):S308–19. https://pubmed.ncbi.nlm.nih.gov/31728500/
Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/
Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73. https://pubmed.ncbi.nlm.nih.gov/28446499/
Liu W, Hu B, Dehghan M, et al. Fruit, vegetable, and legume intake and the risk of all-cause, cardiovascular, and cancer mortality: a prospective study. Clin Nutr. 2021;40(6):4316–23. https://pubmed.ncbi.nlm.nih.gov/33581953/
Krebs-Smith SM, Guenther PM, Subar AF, Kirkpatrick SI, Dodd KW. Americans do not meet federal dietary recommendations. J Nutr. 2010;140(10):1832–8. https://pubmed.ncbi.nlm.nih.gov/20702750/
Desrochers N, Brauer PM. Legume promotion in counselling: an e-mail survey of dietitians. Can J Diet Pract Res. 2001;62(4):193–8. https://pubmed.ncbi.nlm.nih.gov/11742561/
Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10(1):128. https://pubmed.ncbi.nlm.nih.gov/22104320/
Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10(1):128. https://pubmed.ncbi.nlm.nih.gov/22104320/
Steggerda FR, Dimmick JF. Effects of bean diets on concentration of carbon dioxide in flatus. Am J Clin Nutr. 1966;19(2):120–4. https://pubmed.ncbi.nlm.nih.gov/5916034/
McEligot AJ, Gilpin EA, Rock CL, et al. High dietary fiber consumption is not associated with gastrointestinal discomfort in a diet intervention trial. J Am Diet Assoc. 2002;102(4):549–51. https://pubmed.ncbi.nlm.nih.gov/11985415/
How you can limit your gas production. 12 tips for dealing with flatulence. Harv Health Lett. 2007;32(12):3. https://pubmed.ncbi.nlm.nih.gov/18246621/
Zartl B, Silberbauer K, Loeppert R, Viernstein H, Praznik W, Mueller M. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food Funct. 2018;9(3):1638–46. https://pubmed.ncbi.nlm.nih.gov/29465736/
Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10:128. https://pubmed.ncbi.nlm.nih.gov/22104320/
Spiro HM. Fat, foreboding, and flatulence. Ann Intern Med. 1999;130(4 Pt 1):320–2. https://pubmed.ncbi.nlm.nih.gov/10068391/
Schneiderman N, Chirinos DA, Avilés-Santa ML, Heiss G. Challenges in preventing heart disease in hispanics: early lessons learned from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Prog Cardiovasc Dis. 2014;57(3):253–61. https://pubmed.ncbi.nlm.nih.gov/25212986/
Kochanek KD, Murphy SL, Xu J, Arias E. Mortality in the United States, 2013. Centers for Disease Control and Prevention. NCHS Data Brief. No. 178. Published December 2014. Accessed December 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/25549183/
The Hispanic paradox. Lancet. 2015;385(9981):1918. https://pubmed.ncbi.nlm.nih.gov/26090624/
Colón-Ramos U, Thompson FE, Yaroch AL, et al. Differences in fruit and vegetable intake among Hispanic subgroups in California: results from the 2005 California Health Interview Survey. J Am Diet Assoc. 2009;109(11):1878–85. https://pubmed.ncbi.nlm.nih.gov/19857629/
Reyes-Ortiz CA, Ju H, Eschbach K, Kuo YF, Goodwin JS. Neighbourhood ethnic composition and diet among Mexican-Americans. Public Health Nutr. 2009;12(12):2293–301. https://pubmed.ncbi.nlm.nih.gov/19254428/
Nieddu A, Vindas L, Errigo A, Vindas J, Pes GM, Dore MP. Dietary habits, anthropometric features and daily performance in two independent long-lived populations from Nicoya peninsula (Costa Rica) and Ogliastra (Sardinia). Nutrients. 2020;12(6):E1621. https://pubmed.ncbi.nlm.nih.gov/32492804/
Reyes-Ortiz CA, Ju H, Eschbach K, Kuo YF, Goodwin JS. Neighbourhood ethnic composition and diet among Mexican-Americans. Public Health Nutr. 2009;12(12):2293–301. https://pubmed.ncbi.nlm.nih.gov/19254428/
Shen J, Shan J, Zhu X, et al. Sex specific effects of capsaicin on longevity regulation. Exp Gerontol. 2020;130:110788. https://pubmed.ncbi.nlm.nih.gov/31790803/
Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Chili pepper consumption and mortality in Italian adults. J Am Coll Cardiol. 2019;74(25):3139–49. https://pubmed.ncbi.nlm.nih.gov/31856971/
Chopan M, Littenberg B. The association of hot red chili pepper consumption and mortality: a large population-based cohort study. PLoS One. 2017;12(1):e0169876. https://pubmed.ncbi.nlm.nih.gov/28068423/
Lv J, Qi L, Yu C, et al. Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ. 2015;351:h3942. https://pubmed.ncbi.nlm.nih.gov/26242395/
Hashemian M, Poustchi H, Murphy G, et al. Turmeric, pepper, cinnamon, and saffron consumption and mortality. J Am Heart Assoc. 2019;8(18):e012240. https://www.ahajournals.org/doi/10.1161/JAHA.119.012240
Janssens PLHR, Hursel R, Martens EAP, Westerterp-Plantenga MS. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS One. 2013;8(7):e67786. https://pubmed.ncbi.nlm.nih.gov/23844093/
Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Chili pepper consumption and mortality in Italian adults. J Am Coll Cardiol. 2019;74(25):3139–49. https://pubmed.ncbi.nlm.nih.gov/31856971/
American Heart Association News. Retired? Hardly – at 99, this pioneering heart doctor is still leading the way. American Heart Association. https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way. Published October 18, 2019. Accessed December 27, 2021.; https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way
Stamler J. Toward a modern Mediterranean diet for the 21st century. Nutr Metab Cardiovasc Dis. 2013;23(12):1159–62. https://pubmed.ncbi.nlm.nih.gov/24238655/
Nestle M. Mediterranean diets: historical and research overview. Am J Clin Nutr. 1995;61(6 Suppl):1313S-20S. https://pubmed.ncbi.nlm.nih.gov/7754981/
Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the Seven Countries Study. Am J Epidemiol. 1986;124(6):903–15. https://pubmed.ncbi.nlm.nih.gov/3776973/
Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10. https://pubmed.ncbi.nlm.nih.gov/30448616/
Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr. 1995;61(6 Suppl):1321S-3S. https://pubmed.ncbi.nlm.nih.gov/7754982/
Russo GL, Siani A, Fogliano V, et al. The Mediterranean diet from past to future: key concepts from the second “Ancel Keys” International Seminar. Nutr Metab Cardiovasc Dis. 2021;31(3):717–32. https://pubmed.ncbi.nlm.nih.gov/33558092/
Voukiklaris GE, Kafatos A, Dontas AS. Changing prevalence of coronary heart disease risk factors and cardiovascular diseases in men of a rural area of Crete from 1960 to 1991. Angiology. 1996;47(1):43–9. https://pubmed.ncbi.nlm.nih.gov/8546344/
Altomare R, Cacciabaudo F, Damiano G, et al. The Mediterranean diet: a history of health. Iran J Public Health. 2013;42(5):449–57. https://pubmed.ncbi.nlm.nih.gov/23802101/
Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr. 1995;61(6 Suppl):1321S-3S. https://pubmed.ncbi.nlm.nih.gov/7754982/
Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82. https://pubmed.ncbi.nlm.nih.gov/24476641/
Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–313. https://pubmed.ncbi.nlm.nih.gov/21392646/
Soltani S, Jayedi A, Shab-Bidar S, Becerra-Tomás N, Salas-Salvadó J. Adherence to the Mediterranean diet in relation to all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2019;10(6):1029–39. https://pubmed.ncbi.nlm.nih.gov/31111871/
Bellavia A, Tektonidis TG, Orsini N, Wolk A, Larsson SC. Quantifying the benefits of Mediterranean diet in terms of survival. Eur J Epidemiol. 2016;31(5):527–30. https://pubmed.ncbi.nlm.nih.gov/26848763/
Critselis E, Panagiotakos D. Adherence to the Mediterranean diet and healthy ageing: current evidence, biological pathways, and future directions. Crit Rev Food Sci Nutr. 2020;60(13):2148–57. https://pubmed.ncbi.nlm.nih.gov/31272195/
Wang Y, Hao Q, Su L, Liu Y, Liu S, Dong B. Adherence to the Mediterranean diet and the risk of frailty in old people: a systematic review and meta-analysis. J Nutr Health Aging. 2018;22(5):613–8. https://pubmed.ncbi.nlm.nih.gov/29717762/
Eleftheriou D, Benetou V, Trichopoulou A, La Vecchia C, Bamia C. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br J Nutr. 2018;120(10):1081–97. https://pubmed.ncbi.nlm.nih.gov/30401007/
Pett KD, Willett WC, Vartiainen E, Katz DL. The Seven Countries Study. Eur Heart J. 2017;38(42):3119–21. https://pubmed.ncbi.nlm.nih.gov/29121230/
Montani JP. Ancel Keys: the legacy of a giant in physiology, nutrition, and public health. Obes Rev. 2021;22 Suppl 2:e13196. https://pubmed.ncbi.nlm.nih.gov/33496369/
Sparling PB. Legacy of nutritionist Ancel Keys. Mayo Clin Proc. 2020;95(3):615–7. https://pubmed.ncbi.nlm.nih.gov/32138891/
American Heart Association News. Retired? Hardly – at 99, this pioneering heart doctor is still leading the way. American Heart Association. https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way. Published October 18, 2019. Accessed December 27, 2021.; https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way
Paul M. As Jeremiah Stamler turns 100, ‘he continues to do brilliant science’. Northwestern Now. https://news.northwestern.edu/stories/2019/10/jeremiah-stamler/. Published October 29, 2019. Accessed December 27, 2021.; https://news.northwestern.edu/stories/2019/10/jeremiah-stamler/
Winter L. “Father of Preventive Cardiology” Jeremiah Stamler dies at 102. The Scientist. https://www.the-scientist.com/news-opinion/father-of-preventive-cardiology-jeremiah-stamler-dies-at-102–69718. Published February 18, 2022. Accessed April 4, 2022.; https://www.the-scientist.com/news-opinion/father-of-preventive-cardiology-jeremiah-stamler-dies-at-102-69718
Bes-Rastrollo M, Sánchez-Villegas A, de la Fuente C, de Irala J, Martínez JA, Martínez-González MA. Olive oil consumption and weight change: the SUN prospective cohort study. Lipids. 2006;41(3):249–56. https://pubmed.ncbi.nlm.nih.gov/16711599/
Guasch-Ferré M, Liu G, Li Y, et al. Olive oil consumption and cardiovascular risk in U.S. adults. J Am Coll Cardiol. 2020;75(15):1729–39. https://pubmed.ncbi.nlm.nih.gov/35027106/
Blankenhorn DH, Johnson RL, Mack WJ, El Zein HA, Vailas LI. The influence of diet on the appearance of new lesions in human coronary arteries. JAMA. 1990;263(12):1646–52. https://pubmed.ncbi.nlm.nih.gov/2407875/
Schwingshackl L, Bogensberger B, Bencic A, Knüppel S, Boeing H, Hoffmann G. Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. J Lipid Res. 2018;59(9):1771–82. https://pubmed.ncbi.nlm.nih.gov/30006369/
Tentolouris N, Arapostathi C, Perrea D, Kyriaki D, Revenas C, Katsilambros N. Differential effects of two isoenergetic meals rich in saturated or monounsaturated fat on endothelial function in subjects with type 2 diabetes. Diabetes Care. 2008;31(12):2276–8. https://pubmed.ncbi.nlm.nih.gov/18835957/
Cortés B, Núñez I, Cofán M, et al. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. J Am Coll Cardiol. 2006;48(8):1666–71. https://pubmed.ncbi.nlm.nih.gov/17045905/
Vogel RA, Corretti MC, Plotnick GD. The postprandial effect of components of the Mediterranean diet on endothelial function. J Am Coll Cardiol. 2000;36(5):1455–60. https://pubmed.ncbi.nlm.nih.gov/11079642/
Vogel RA. Brachial artery ultrasound: a noninvasive tool in the assessment of triglyceride-rich lipoproteins. Clin Cardiol. 1999;22(Suppl II):II-34–9. https://pubmed.ncbi.nlm.nih.gov/10376195/
Rueda-Clausen CF, Silva FA, Lindarte MA, et al. Olive, soybean and palm oils intake have a similar acute detrimental effect over the endothelial function in healthy young subjects. Nutr Metab Cardiovasc Dis. 2007;17(1):50–7. https://pubmed.ncbi.nlm.nih.gov/17174226/
Ong PJ, Dean TS, Hayward CS, Della Monica PL, Sanders TAB, Collins P. Effect of fat and carbohydrate consumption on endothelial function. Lancet. 1999;354(9196):2134. https://pubmed.ncbi.nlm.nih.gov/10609824/
Casas-Agustench P, López-Uriarte P, Ros E, Bulló M, Salas-Salvadó J. Nuts, hypertension and endothelial function. Nutr Metab Cardiovasc Dis. 2011;21 Suppl 1:S21–33. https://pubmed.ncbi.nlm.nih.gov/20031380/
Park E, Edirisinghe I, Burton-Freeman B. Avocado fruit on postprandial markers of cardio-metabolic risk: a randomized controlled dose response trial in overweight and obese men and women. Nutrients. 2018;10(9):E1287. https://pubmed.ncbi.nlm.nih.gov/30213052/
Традиционный соус, в состав которого входят оливковое масло, бальзамический уксус, мед, горчица и чеснок. – Примеч. ред.
Agricultural Research Service, United States Department of Agriculture. Olives, ripe, canned (jumbo-super colossal). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169095/nutrients. Published April 1, 2019. Accessed December 28, 2022.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169095/nutrients
Martínez-González MÁ, Corella D, Salas-Salvadó J, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85. https://pubmed.ncbi.nlm.nih.gov/21172932/
Martínez-González MÁ, Corella D, Salas-Salvadó J, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85. https://pubmed.ncbi.nlm.nih.gov/21172932/
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. https://pubmed.ncbi.nlm.nih.gov/29897866/
Agarwal A, Ioannidis JPA. PREDIMED trial of Mediterranean diet: retracted, republished, still trusted? BMJ. 2019;364:l341. https://pubmed.ncbi.nlm.nih.gov/30733217/
Rees K, Takeda A, Martin N, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019;3:CD009825. https://pubmed.ncbi.nlm.nih.gov/30864165/
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/
Sala-Vila A, Romero-Mamani ES, Gilabert R, et al. Changes in ultrasound-assessed carotid intima-media thickness and plaque with a Mediterranean diet: a substudy of the PREDIMED trial. Arterioscler Thromb Vasc Biol. 2014;34(2):439–45. https://pubmed.ncbi.nlm.nih.gov/24285581/
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/
Guasch-Ferré M, Bulló M, Martínez-González MÁ, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164. https://pubmed.ncbi.nlm.nih.gov/23866098/
Guasch-Ferré M, Hu FB, Martínez-González MA, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014;12:78. https://pubmed.ncbi.nlm.nih.gov/24886626/
Keys A. Olive oil and coronary heart disease. Lancet. 1987;1(8539):983–4. https://pubmed.ncbi.nlm.nih.gov/2882379/
Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103. https://pubmed.ncbi.nlm.nih.gov/25961184/
Martínez-González MÁ, Toledo E, Arós F, et al. Extra-virgin olive oil consumption reduces risk of atrial fibrillation: the PREDIMED trial. Circulation. 2014;130(1):18–26. https://pubmed.ncbi.nlm.nih.gov/24787471/
Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA. Association of Mediterranean diet with peripheral artery disease: the PREDIMED randomized trial. JAMA. 2014;311(4):415–7. https://pubmed.ncbi.nlm.nih.gov/24449321/
Salas-Salvadó J, Bulló M, Estruch R, et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann Intern Med. 2014;160(1):1–10. https://pubmed.ncbi.nlm.nih.gov/24573661/
Díaz-López A, Babio N, Martínez-González MA, et al. Erratum. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 2015;38:2134–2141. Diabetes Care. 2018;41(10):2260–1. https://pubmed.ncbi.nlm.nih.gov/26370380/
Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging. 2013;17(6):544–52. https://pubmed.ncbi.nlm.nih.gov/23732551/
Toledo E, Salas-Salvadó J, Donat-Vargas C, et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Intern Med. 2015;175(11):1752–60. https://pubmed.ncbi.nlm.nih.gov/26365989/
Bogani P, Galli C, Villa M, Visioli F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007;190(1):181–6. https://pubmed.ncbi.nlm.nih.gov/16488419/
Visioli F, Caruso D, Galli C, Viappiani S, Galli G, Sala A. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem Biophys Res Commun. 2000;278(3):797–9. https://pubmed.ncbi.nlm.nih.gov/11095986/
Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants (Basel). 2021;10(7):1044. https://pubmed.ncbi.nlm.nih.gov/34209636/
Tiong SH, Saparin N, Teh HF, et al. Natural organochlorines as precursors of 3-monochloropropanediol esters in vegetable oils. J Agric Food Chem. 2018;66(4):999–1007. https://pubmed.ncbi.nlm.nih.gov/29260544/
Gao B, Li Y, Huang G, Yu L. Fatty acid esters of 3-monochloropropanediol: a review. Annu Rev Food Sci Technol. 2019;10:259–84. https://pubmed.ncbi.nlm.nih.gov/30908955/
Yan J, Oey SB, van Leeuwen SPJ, van Ruth SM. Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chem. 2018;248:93–100. https://pubmed.ncbi.nlm.nih.gov/29329876/
Mossoba MM, Azizian H, Fardin-Kia AR, Karunathilaka SR, Kramer JKG. First application of newly developed FT-NIR spectroscopic methodology to predict authenticity of extra virgin olive oil retail products in the USA. Lipids. 2017;52(5):443–55. https://pubmed.ncbi.nlm.nih.gov/28401382/
Frankel EN, Mailed RJ, Wang SC, et al. Evaluation of extra-virgin olive oil sold in California. UC Davis Olive Center. https://olivecenter.ucdavis.edu/media/files/report2011three.pdf. Published April 2011. Accessed December 28, 2021.; https://issuu.com/oliveoiltimes/docs/report_041211_final_reduced
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/
Huedo-Medina TB, Garcia M, Bihuniak JD, Kenny A, Kerstetter J. Methodologic quality of meta-analyses and systematic reviews on the Mediterranean diet and cardiovascular disease outcomes: a review. Am J Clin Nutr. 2016;103(3):841–50. https://pubmed.ncbi.nlm.nih.gov/26864357/
Galbete C, Schwingshackl L, Schwedhelm C, Boeing H, Schulze MB. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: an umbrella review of meta-analyses. Eur J Epidemiol. 2018;33(10):909–31. https://pubmed.ncbi.nlm.nih.gov/30030684/
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/
Galbete C, Schwingshackl L, Schwedhelm C, Boeing H, Schulze MB. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: an umbrella review of meta-analyses. Eur J Epidemiol. 2018;33(10):909–31. https://pubmed.ncbi.nlm.nih.gov/30030684/
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/
White C. Suspected research fraud: difficulties of getting at the truth. BMJ. 2005;331(7511):281–8. https://pubmed.ncbi.nlm.nih.gov/16052022/
Horton R. Expression of concern: Indo-Mediterranean diet heart study. Lancet. 2005;366(9483):354–6. https://pubmed.ncbi.nlm.nih.gov/16054927/
de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9. https://pubmed.ncbi.nlm.nih.gov/7911176/
Simopoulos AP. Omega-3 fatty acids and antioxidants in edible wild plants. Biol Res. 2004;37(2):263–77. https://pubmed.ncbi.nlm.nih.gov/15455656/
Pourrajab B, Sharifi-Zahabi E, Soltani S, Shahinfar H, Shidfar F. Comparison of canola oil and olive oil consumption on the serum lipid profile in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. Published online July 22, 2022:1–15.; https://pubmed.ncbi.nlm.nih.gov/35866510/
Vogel RA, Corretti MC, Plotnick GD. The postprandial effect of components of the Mediterranean diet on endothelial function. J Am Coll Cardiol. 2000;36(5):1455–60. https://pubmed.ncbi.nlm.nih.gov/11079642/
de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9. https://pubmed.ncbi.nlm.nih.gov/7911176/
de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85. https://pubmed.ncbi.nlm.nih.gov/9989963/
Esselstyn CB, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014;63(7):356–64b. https://pubmed.ncbi.nlm.nih.gov/25198208/
Rimm EB, Stampfer MJ. Diet, lifestyle, and longevity – the next steps? JAMA. 2004;292(12):1490–2. https://pubmed.ncbi.nlm.nih.gov/15383521/
Drewnowski A, Hill JO, Wansink B, Murray R, Diekman C. Achieve better health with nutrient-rich foods. Nutr Today. 2012;47(1):23–9. https://journals.lww.com/nutritiontodayonline/Abstract/2012/01000/Achieve_Better_Health_With_Nutrient_Rich_Foods.5.aspx
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Willcox DC, Willcox BJ, He Q, Wang NC, Suzuki M. They really are that old: a validation study of centenarian prevalence in Okinawa. J Gerontol A Biol Sci Med Sci. 2008;63(4):338–49. https://pubmed.ncbi.nlm.nih.gov/18426957/
Shao A, Drewnowski A, Willcox DC, et al. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur J Nutr. 2017;56(Suppl 1):1–21. https://pubmed.ncbi.nlm.nih.gov/28474121/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–137:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/
Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Suzuki M, Willcox DC, Rosenbaum MW, Willcox BJ. Oxidative stress and longevity in Okinawa: an investigation of blood lipid peroxidation and tocopherol in Okinawan centenarians. Curr Gerontol Geriatr Res. 2010;2010:380460. https://pubmed.ncbi.nlm.nih.gov/21490698/
Suzuki M, Wilcox BJ, Wilcox CD. Implications from and for food cultures for cardiovascular disease: longevity. Asia Pac J Clin Nutr. 2001;10(2):165–71. https://pubmed.ncbi.nlm.nih.gov/11710359/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/
Chen X, Jiao J, Zhuang P, et al. Current intake levels of potatoes and all-cause mortality in China: a population-based nationwide study. Nutrition. 2021;81:110902. https://pubmed.ncbi.nlm.nih.gov/32739659/
Center for Science in the Public Interest. 10 Best Foods. https://cspinet.org/eating-healthy/what-eat/10-best-foods. Accessed January 5, 2022.; https://cspinet.org/eating-healthy/what-eat/10-best-foods
Wilson CD, Pace RD, Bromfield E, Jones G, Lu JY. Consumer acceptance of vegetarian sweet potato products intended for space missions. Life Support Biosph Sci. 1998;5(3):339–46. https://pubmed.ncbi.nlm.nih.gov/11876201/
Drewnowski A. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost? J Acad Nutr Diet. 2013;113(9):1182–7. https://pubmed.ncbi.nlm.nih.gov/23714199/
Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci Rep. 2019;9(1):18061. https://pubmed.ncbi.nlm.nih.gov/31792269/
Chen W, Müller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53. https://pubmed.ncbi.nlm.nih.gov/23470220/
Zuo Y, Peng C, Liang Y, et al. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012;3(12):1271–9. https://pubmed.ncbi.nlm.nih.gov/22930061/
Lu X, Zhou Y, Wu T, Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct. 2014;5(11):2892–7. https://pubmed.ncbi.nlm.nih.gov/25190075/
Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem. 2005;69(5):979–88. https://pubmed.ncbi.nlm.nih.gov/15914919/
Majid M, Nasir B, Zahra SS, Khan MR, Mirza B, Haq I. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement Altern Med. 2018;18(1):216. https://pubmed.ncbi.nlm.nih.gov/30005651/
Wang YJ, Zheng YL, Lu J, et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int. 2010;56(3):424–30. https://pubmed.ncbi.nlm.nih.gov/19941923/
Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem. 2008;90(1):19–27. https://pubmed.ncbi.nlm.nih.gov/18316211/
Sun C, Diao Q, Lu J, et al. Purple sweet potato color attenuated NLRP3 inflammasome by inducing autophagy to delay endothelial senescence. J Cell Physiol. 2019;234(5):5926–39. https://pubmed.ncbi.nlm.nih.gov/30585631/
Su W, Zhang C, Chen F, et al. Purple sweet potato color protects against hepatocyte apoptosis through Sirt1 activation in high-fat-diet-treated mice. Food Nutr Res. 2020;64:10.29219/fnr.v64.1509. https://pubmed.ncbi.nlm.nih.gov/32110174/
Han Y, Guo Y, Cui SW, Li H, Shan Y, Wang H. Purple Sweet Potato Extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster. Exp Gerontol. 2021;144:111190. https://pubmed.ncbi.nlm.nih.gov/33301922/
Zhang X, Yang Y, Wu Z, Weng P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem. 2016;64(12):2582–90. https://pubmed.ncbi.nlm.nih.gov/26975278/
Suda I, Ishikawa F, Hatakeyama M, et al. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr. 2008;62(1):60–7. https://pubmed.ncbi.nlm.nih.gov/17299464/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Shi Z, Zhang T, Byles J, Martin S, Avery JC, Taylor AW. Food habits, lifestyle factors and mortality among oldest old Chinese: the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Nutrients. 2015;7(9):7562–79. https://pubmed.ncbi.nlm.nih.gov/26371039/
Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/
Mosallanezhad Z, Mahmoodi M, Ranjbar S, et al. Soy intake is associated with lowering blood pressure in adults: a systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Complement Ther Med. 2021;59:102692. https://pubmed.ncbi.nlm.nih.gov/33636295/
Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103. https://pubmed.ncbi.nlm.nih.gov/19939654/
Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/
Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43. https://pubmed.ncbi.nlm.nih.gov/21559039/
Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24(7):735–47. https://pubmed.ncbi.nlm.nih.gov/28067550/
Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/
D’elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012;31(4):489–98. https://pubmed.ncbi.nlm.nih.gov/22296873/
Kanda A, Hoshiyama Y, Kawaguchi T. Association of lifestyle parameters with the prevention of hypertension in elderly Japanese men and women: a four-year follow-up of normotensive subjects. Asia Pac J Public Health. 1999;11(2):77–81. https://pubmed.ncbi.nlm.nih.gov/11195162/
Ito K. Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate. Environ Health Prev Med. 2020;25(1):45. https://pubmed.ncbi.nlm.nih.gov/32867671/
Kondo H, Tomari HS, Yamakawa S, et al. Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertens Res. 2019;42(11):1757–67. https://pubmed.ncbi.nlm.nih.gov/31371810/
Du DD, Yoshinaga M, Sonoda M, Kawakubo K, Uehara Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clin Exp Hypertens. 2014;36(5):359–66. https://pubmed.ncbi.nlm.nih.gov/24047246/
Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/
Iso H, Kubota Y. Nutrition and disease in the Japan Collaborative Cohort Study for evaluation of cancer (JACC). Asian Pac J Cancer Prev. 2007;8 Suppl:35–80. https://pubmed.ncbi.nlm.nih.gov/18260705/
Lashmanova E, Proshkina E, Zhikrivetskaya S, et al. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res. 2015;100:228–41. https://pubmed.ncbi.nlm.nih.gov/26292053/
Zhao T, Zhang Q, Qi H, Liu X, Li Z. Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacol Res. 2008;57(1):67–72. https://pubmed.ncbi.nlm.nih.gov/18221885/
Wada K, Nakamura K, Tamai Y, et al. Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr J. 2011;10:83. https://pubmed.ncbi.nlm.nih.gov/21827710/
Ono A, Shibaoka M, Yano J, Asai Y, Fujita T. Eating habits and intensity of medication in elderly hypertensive outpatients. Hypertens Res. 2000;23(3):195–200. https://pubmed.ncbi.nlm.nih.gov/10821126/
Teas J, Baldeón ME, Chiriboga DE, Davis JR, Sarriés AJ, Braverman LE. Could dietary seaweed reverse the metabolic syndrome? Asia Pac J Clin Nutr. 2009;18(2):145–54. https://pubmed.ncbi.nlm.nih.gov/19713172/
Ma W, He X, Braverman L. Iodine content in milk alternatives. Thyroid. 2016;26(9):1308–10. https://pubmed.ncbi.nlm.nih.gov/27358189/
Flachowsky G, Franke K, Meyer U, Leiterer M, Schöne F. Influencing factors on iodine content of cow milk. Eur J Nutr. 2014;53(2):351–65. https://pubmed.ncbi.nlm.nih.gov/24185833/
Teas J, Pino S, Critchley A, Braverman LE. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14(10):836–41. https://pubmed.ncbi.nlm.nih.gov/15588380/
Combet E. Iodine status, thyroid function, and vegetarianism. In: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Elsevier; 2017:769–90. https://worldcat.org/title/988275855
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Sánchez JE, Jiménez-Pérez G, Liedo P. Can consumption of antioxidant rich mushrooms extend longevity?: antioxidant activity of Pleurotus spp. and its effects on Mexican fruit flies’ (Anastrepha ludens) longevity. Age (Dordr). 2015;37(6):107. https://pubmed.ncbi.nlm.nih.gov/26499817/
Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/
Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/
Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci U S A. 2018;115(43):10836–44. https://pubmed.ncbi.nlm.nih.gov/30322941/
Smith E, Ottosson F, Hellstrand S, et al. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart. 2020;106(9):691–7. https://pubmed.ncbi.nlm.nih.gov/31672783/
Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010;17(7):1134–40. https://pubmed.ncbi.nlm.nih.gov/19911007/
Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/
Beelman RB, Kalaras MD, Richie JP. Micronutrients and bioactive compounds in mushrooms: a recipe for healthy aging? Nutr Today. 2019;54(1):16–22. https://journals.lww.com/nutritiontodayonline/Abstract/2019/01000/Micronutrients_and_Bioactive_Compounds_in.5.aspx
Ba DM, Gao X, Al-Shaar L, et al. Prospective study of dietary mushroom intake and risk of mortality: results from continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a meta-analysis. Nutr J. 2021;20(1):80. https://pubmed.ncbi.nlm.nih.gov/34548082/
Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/
Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A. 2020;117(17):9483–9. https://pubmed.ncbi.nlm.nih.gov/32295884/
Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/
Lagrange E, Vernoux JP. Warning on false or true morels and button mushrooms with potential toxicity linked to hydrazinic toxins: an update. Toxins (Basel). 2020;12(8):482. https://pubmed.ncbi.nlm.nih.gov/32751277/
Heer RS, Patel NB, Mandal AKJ, Lewis F, Missouris CG. Not a fungi to be with: shiitake mushroom flagellate dermatitis. Am J Emerg Med. 2020;38(2):412.e1–2. https://pubmed.ncbi.nlm.nih.gov/31864870/
Stijve T, Pittet A. Absence of agaritine in Pleurotus species and in other cultivated and wild-growing mushrooms not belonging to the genus Agaricus. Dtsch Lebensm-Rundsch. 2000;96(7):251–4. https://www.researchgate.net/publication/286669322_Absence_of_Agaritine_in_Pleurotus_species_and_in_other_cultivated_and_wild-growing_mushrooms_not_belonging_to_the_genus_Agaricus
Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/
Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/
Litten W. The most poisonous mushrooms. Sci Am. 1975;232(3):90–101. https://pubmed.ncbi.nlm.nih.gov/1114308/
Lim CS, Chhabra N, Leikin S, Fischbein C, Mueller GM, Nelson ME. Atlas of select poisonous plants and mushrooms. Dis Mon. 2016;62(3):41–66. https://pubmed.ncbi.nlm.nih.gov/26965743/
Грибы рода Amanita. В Европе это Amanita virosa, а в восточной и западной части Северной Америки – A. bisporigera и A. ocreata. В России известен как бледная поганка (Amanita phalloides). – Примеч. ред.
Culliton BJ. The destroying angel: a story of a search for an antidote. Science. 1974;185(4151):600–1. https://pubmed.ncbi.nlm.nih.gov/17791229/
Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/
Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/
Pan Y, Lin Z. Anti-aging effect of Ganoderma (Lingzhi) with health and fitness. Adv Exp Med Bio. 2019;1182:299–309. https://pubmed.ncbi.nlm.nih.gov/31777025/
Cuong VT, Chen W, Shi J, et al. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp Gerontol. 2019;117:99–105. https://pubmed.ncbi.nlm.nih.gov/28750751/
Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/
Hsu KD, Cheng KC. From nutraceutical to clinical trial: frontiers in Ganoderma development. App Microbiol Biotechnol. 2018;102(21). https://pubmed.ncbi.nlm.nih.gov/30182215/
Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/
Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/
Totelin L. When foods become remedies in ancient Greece: The curious case of garlic and other substances. J Ethnopharmacol. 2015;167:30–7. https://pubmed.ncbi.nlm.nih.gov/25173971/
Shi X, Lv Y, Mao C, et al. Garlic consumption and all-cause mortality among Chinese oldest-old individuals: a population-based cohort study. Nutrients. 2019;11(7):E1504. https://pubmed.ncbi.nlm.nih.gov/31262080/
Lau KK, Chan YH, Wong YK, et al. Garlic intake is an independent predictor of endothelial function in patients with ischemic stroke. J Nutr Health Aging. 2013;17(7):600–4. https://pubmed.ncbi.nlm.nih.gov/23933870/
Mahdavi-Roshan M, Mirmiran P, Arjmand M, Nasrollahzadeh J. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol. 2017;18(2):116–21. https://pubmed.ncbi.nlm.nih.gov/28554988/
Mahdavi-Roshan M, Zahedmehr A, Mohammad-Zadeh A, et al. Effect of garlic powder tablet on carotid intima-media thickness in patients with coronary artery disease: a preliminary randomized controlled trial. Nutr Health. 2013;22(2):143–55. https://pubmed.ncbi.nlm.nih.gov/25573347/
Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/
Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2015;22(3):352–61. https://pubmed.ncbi.nlm.nih.gov/25837272/
Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications. 2016;30(4):723–7. https://pubmed.ncbi.nlm.nih.gov/26954484/
Soleimani D, Paknahad Z, Askari G, Iraj B, Feizi A. Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Adv Biomed Res. 2016;5:2. https://pubmed.ncbi.nlm.nih.gov/26955623/
Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/
Rajan TV, Hein M, Porte P, Wikel S. A double-blinded, placebo-controlled trial of garlic as a mosquito repellant: a preliminary study. Med Vet Entomol. 2005;19(1):84–9. https://pubmed.ncbi.nlm.nih.gov/15752181/
Stjernberg L, Berglund J. Garlic as an insect repellent. JAMA. 2000;284(7):831. https://pubmed.ncbi.nlm.nih.gov/10938169/
Tunón H. Garlic as a tick repellent. JAMA. 2001;285(1):41–2. https://pubmed.ncbi.nlm.nih.gov/11150101/
Yusof YAM. Gingerol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:177–207. https://pubmed.ncbi.nlm.nih.gov/27771925/
Liu J, Shi JZ, Yu LM, Goyer RA, Waalkes MP. Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med (Maywood). 2008;233(7):810–7. https://pubmed.ncbi.nlm.nih.gov/18445765/
Anh NH, Kim SJ, Long NP, et al. Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. 2020;12(1):E157. https://pubmed.ncbi.nlm.nih.gov/31935866/
Bodagh MN, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: a systematic review of clinical trials. Food Sci Nutr. 2018;7(1):96–108. https://pubmed.ncbi.nlm.nih.gov/30680163/
Mowrey DB, Clayson DE. Motion sickness, ginger, and psychophysics. Lancet. 1982;1(8273):655–7. https://pubmed.ncbi.nlm.nih.gov/30680163/
Palatty PL, Haniadka R, Valder B, Arora R, Baliga MS. Ginger in the prevention of nausea and vomiting: a review. Crit Rev Food Sci Nutr. 2013;53(7):659–69. https://pubmed.ncbi.nlm.nih.gov/23638927/
Adib-Hajbaghery M, Hosseini FS. Investigating the effects of inhaling ginger essence on post-nephrectomy nausea and vomiting. Complement Ther Med. 2015;23(6):827–31. https://pubmed.ncbi.nlm.nih.gov/26645524/
Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoarthritis Cartilage. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/
Khayat S, Kheirkhah M, Behboodi Moghadam Z, Fanaei H, Kasaeian A, Javadimehr M. Effect of treatment with ginger on the severity of premenstrual syndrome symptoms. ISRN Obstet Gynecol. 2014;2014:792708. https://pubmed.ncbi.nlm.nih.gov/24944825/
Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J Altern Complement Med. 2009;15(2):129–32. https://pubmed.ncbi.nlm.nih.gov/19216660/
Martins LB, Rodrigues AMdS, Monteze NM, et al. Double-blind placebo-controlled randomized clinical trial of ginger (Zingiber officinale Rosc.) in the prophylactic treatment of migraine. Cephalalgia. 2020;40(1):88–95. https://pubmed.ncbi.nlm.nih.gov/29768938/
Chen L, Cai Z. The efficacy of ginger for the treatment of migraine: a meta-analysis of randomized controlled studies. Am J Emerg Med. 2021;46:567–71. https://pubmed.ncbi.nlm.nih.gov/33293189/
Pourmasoumi M, Hadi A, Rafie N, Najafgholizadeh A, Mohammadi H, Rouhani MH. The effect of ginger supplementation on lipid profile: a systematic review and meta-analysis of clinical trials. Phytomedicine. 2018;43:28–36. https://pubmed.ncbi.nlm.nih.gov/29747751/
Makhdoomi Arzati M, Mohammadzadeh Honarvar N, Saedisomeolia A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab. 2017;15(4):e57927. https://pubmed.ncbi.nlm.nih.gov/29344037/
Hasani H, Arab A, Hadi A, Pourmasoumi M, Ghavami A, Miraghajani M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother Res. 2019;33(6):1639–47. https://pubmed.ncbi.nlm.nih.gov/30972845/
Maharlouei N, Tabrizi R, Lankarani KB, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2018:1–14.; https://pubmed.ncbi.nlm.nih.gov/29393665/
Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612. https://pubmed.ncbi.nlm.nih.gov/33458848/
Mazidi M, Gao HK, Rezaie P, Ferns GA. The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis. Food Nutr Res. 2016;60:32613. https://pubmed.ncbi.nlm.nih.gov/27806832/
Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther. 2018;182:56–69. https://pubmed.ncbi.nlm.nih.gov/28842272/
Bischoff-Kont I, Fürst R. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals (Basel). 2021;14(6):571. https://pubmed.ncbi.nlm.nih.gov/34203813/
Teschke R, Xuan TD. Viewpoint: a contributory role of shell ginger (Alpinia zerumbet) for human longevity in Okinawa, Japan? Nutrients. 2018;10(2):166. https://pubmed.ncbi.nlm.nih.gov/29385084/
Upadhyay A, Chompoo J, Taira N, Fukuta M, Tawata S. Significant longevity-extending effects of Alpinia zerumbet leaf extract on the life span of Caenorhabditis elegans. Biosci Biotechnol Biochem. 2013;77(2):217–23. https://pubmed.ncbi.nlm.nih.gov/23391900/
Rasheed N. Ginger and its active constituents as therapeutic agents: recent perspectives with molecular evidences. Int J Health Sci (Qassim). 2020;14(6):1–3. https://pubmed.ncbi.nlm.nih.gov/33192225/
Lee EB, Kim JH, Kim YJ, et al. Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Arch Pharm Res. 2018;41(7):743–52. https://pubmed.ncbi.nlm.nih.gov/29978428/
Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/
Stepien K, Wojdyla D, Nowak K, Molon M. Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology. 2020;21(1):109–23. https://pubmed.ncbi.nlm.nih.gov/31659616/
Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev. 2011;132(10):480–7. https://pubmed.ncbi.nlm.nih.gov/21855561/
Suckow BK, Suckow MA. Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Int J Biomed Sci. 2006;2(4):402–5. https://pubmed.ncbi.nlm.nih.gov/23675008/
Kitani K, Osawa T, Yokozawa T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology. 2007;8(5):567–73. https://pubmed.ncbi.nlm.nih.gov/17516143/
Lao CD, Ruffin MT IV, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. https://pubmed.ncbi.nlm.nih.gov/16545122/
Bala K, Tripathy BC, Sharma D. Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology. 2006;7(2):81–9. https://pubmed.ncbi.nlm.nih.gov/16802111/
Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/
Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/
DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79. https://pubmed.ncbi.nlm.nih.gov/23013352/
Rakha A, Rehman K, Babar Imran M, Shahid M, Jahan N. Mitigation of 131-I induced oxidative stress by supplementation of turmeric and green cardamom in thyroid patients. Int J Radiat Res. 2022;20(1):29–36. https://ijrr.com/article-1-4063-en.html
Thorogood M, Appleby PN, Key TJ, Mann J. Relation between body mass index and mortality in an unusually slim cohort. J Epidemiol Community Health. 2003;57(2):130–3. https://pubmed.ncbi.nlm.nih.gov/12540689/
Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://pubmed.ncbi.nlm.nih.gov/27146380/
Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology. 2006;7(3):173–7. https://pubmed.ncbi.nlm.nih.gov/16810568/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Gavrilova NS, Gavrilov LA. Comments on dietary restriction, Okinawa diet and longevity. Gerontology. 2012;58(3):221–3. https://pubmed.ncbi.nlm.nih.gov/21893946/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/
Marston HR, Niles-Yokum K, Silva PA. A commentary on Blue Zones®: a critical review of age-friendly environments in the 21st century and beyond. Int J Environ Res Public Health. 2021;18(2):837. https://pubmed.ncbi.nlm.nih.gov/33478140/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Cockerham WC, Yamori Y. Okinawa: an exception to the social gradient of life expectancy in Japan. Asia Pac J Clin Nutr. 2001;10(2):154–8. https://pubmed.ncbi.nlm.nih.gov/11710357/
Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/
Bajpai P. World’s 5 richest nations by GDP per capita. Nasdaq. https://www.nasdaq.com/articles/worlds-5-richest-nations-by-gdp-per-capita-2021–05–20. Published May 20, 2021. Accessed January 10, 2022.; https://www.nasdaq.com/articles/worlds-5-richest-nations-by-gdp-per-capita-2021-05-20
Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Kent LM, Morton DP, Ward EJ, et al. The influence of religious affiliation on participant responsiveness to the Complete Health Improvement Program (CHIP) lifestyle intervention. J Relig Health. 2016;55(5):1561–73. https://pubmed.ncbi.nlm.nih.gov/26472654/
Fraser GE. Diet as primordial prevention in Seventh-Day Adventists. Prev Med. 1999;29(6):S18–23. https://pubmed.ncbi.nlm.nih.gov/10641813/
Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/
Sloan RP, Bagiella E, Powell T. Religion, spirituality, and medicine. Lancet. 1999;353(9153):664–7. https://pubmed.ncbi.nlm.nih.gov/10030348/
Chida Y, Steptoe A, Powell LH. Religiosity/spirituality and mortality: a systematic quantitative review. Psychother Psychosom. 2009;78(2):81–90. https://pubmed.ncbi.nlm.nih.gov/19142047/
Sullivan AR. Mortality differentials and religion in the United States: religious affiliation and attendance. J Sci Study Relig. 2010;49(4):740–53. https://pubmed.ncbi.nlm.nih.gov/21318110/
Schnall E, Wassertheil-Smoller S, Swencionis C, et al. The relationship between religion and cardiovascular outcomes and all-cause mortality in the Women’s Health Initiative Observational Study. Psychol Health. 2010;25(2):249–63. https://pubmed.ncbi.nlm.nih.gov/20391218/
Hill TD, Ellison CG, Burdette AM, Taylor J, Friedman KL. Dimensions of religious involvement and leukocyte telomere length. Soc Sci Med. 2016;163:168–75. https://pubmed.ncbi.nlm.nih.gov/27174242/
Koenig HG, Nelson B, Shaw SF, Saxena S, Cohen HJ. Religious involvement and telomere length in women family caregivers. J Nerv Ment Dis. 2016;204(1):36–42. https://pubmed.ncbi.nlm.nih.gov/26669979/
Schnall E, Wassertheil-Smoller S, Swencionis C, et al. The relationship between religion and cardiovascular outcomes and all-cause mortality in the Women’s Health Initiative Observational Study. Psychol Health. 2010;25(2):249–63. https://pubmed.ncbi.nlm.nih.gov/20391218/
Sloan RP, Bagiella E, Powell T. Religion, spirituality, and medicine. Lancet. 1999;353(9153):664–7. https://pubmed.ncbi.nlm.nih.gov/10030348/
Morton D, Rankin P, Kent L, Dysinger W. The Complete Health Improvement Program (CHIP): history, evaluation, and outcomes. Am J Lifestyle Med. 2016;10(1):64–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124862/
Kent LM, Morton DP, Ward EJ, et al. The influence of religious affiliation on participant responsiveness to the Complete Health Improvement Program (CHIP) lifestyle intervention. J Relig Health. 2016;55(5):1561–73. https://pubmed.ncbi.nlm.nih.gov/26472654/
World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press; 2010. https://apps.who.int/iris/handle/10665/44261
Orzylowska EM, Jacobson JD, Bareh GM, Ko EY, Corselli JU, Chan PJ. Food intake diet and sperm characteristics in a blue zone: a Loma Linda Study. Eur J Obstet Gynecol Reprod Biol. 2016;203:112–5. https://pubmed.ncbi.nlm.nih.gov/27280539/
Messina M, Watanabe S, Setchell KDR. Report on the 8th international symposium on the role of soy in health promotion and chronic disease prevention and treatment. J Nutr. 2009;139(4):796S-802S. https://pubmed.ncbi.nlm.nih.gov/19225130/
Zhang Y, Hood WR. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms. J Exp Biol. 2016;219(Pt 20):3177–89. https://pubmed.ncbi.nlm.nih.gov/27802148/
Mukhopadhyay A, Tissenbaum HA. Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol. 2007;17(2):65–71. https://pubmed.ncbi.nlm.nih.gov/17187981/
Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6. https://pubmed.ncbi.nlm.nih.gov/10360574/
Flatt T, Min KJ, D’Alterio C, et al. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A. 2008;105(17):6368–73. https://pubmed.ncbi.nlm.nih.gov/18434551/
American Veterinary Medical Association. Banfield: spaying, neutering correlate with longer lives. JAVMA News. https://www.avma.org/javma-news/2013–07–01/banfield-spaying-neutering-correlate-longer-lives. Published June 19, 2013. Accessed January 10, 2022.; https://www.avma.org/javma-news/2013-07-01/banfield-spaying-neutering-correlate-longer-lives
Banfield Pet Hospital. State of Pet Health 2013 Report. Banfield.com. https://www.banfield.com/-/media/Project/Banfield/Main/en/general/SOPH-Infographic/PDFs/Banfield-State-of-Pet-Health-Report_2013.pdf?rev=a8612f3fa39141e3bf2876a5ed6760de&hash=D79B771D2C3539DF737353E65D310504. Accessed February 21, 2022.; https://www.banfield.com/en/pet-health/State-of-pet-health
Min KJ, Lee CK, Park HN. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3. https://pubmed.ncbi.nlm.nih.gov/23017989/
Reilly PR. Involuntary sterilization in the United States: a surgical solution. Q Rev Biol. 1987;62(2):153–70. https://pubmed.ncbi.nlm.nih.gov/3299450/
Buck v. Bell, 274 US 200 (1927).; https://supreme.justia.com/cases/federal/us/274/200/
Hamilton JB, Mestler GE. Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J Gerontol. 1969;24(4):395–411. https://pubmed.ncbi.nlm.nih.gov/5362349/
Hsu CH, Posegga O, Fischbach K, Engelhardt H. Examining the trade-offs between human fertility and longevity over three centuries using crowdsourced genealogy data. PLoS One. 2021;16(8):e0255528. https://pubmed.ncbi.nlm.nih.gov/34351988/
Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. Exceptional longevity is associated with decreased reproduction. Aging (Albany NY). 2011;3(12):1202–5. https://pubmed.ncbi.nlm.nih.gov/22199025/
Zwaan B, Bijlsma R, Hoekstra RF. Direct selection on life span in Drosophila melanogaster. Evolution. 1995;49(4):649–59. https://pubmed.ncbi.nlm.nih.gov/28565142/
Mukhopadhyay A, Tissenbaum HA. Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol. 2007;17(2):65–71. https://pubmed.ncbi.nlm.nih.gov/17187981/
Franklin JC, Scheile BC, Brozek J, Keys A. Observations on human behavior in experimental semi-starvation and rehabilitation. J Clin Psychol. 1948;4(1):28–45. https://pubmed.ncbi.nlm.nih.gov/18903450/
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol. 2018;217(1):93–106. https://pubmed.ncbi.nlm.nih.gov/29074705/
Chen X, Liu Y, Sun X, et al. Age at menarche and risk of all-cause and cardiovascular mortality: a systematic review and dose-response meta-analysis. Menopause. 2018;26(6):670–6. https://pubmed.ncbi.nlm.nih.gov/30562317/
Fuhrman BJ, Moore SC, Byrne C, et al. Association of the age at menarche with site-specific cancer risks in pooled data from nine cohorts. Cancer Res. 2021;81(8):2246–55. https://pubmed.ncbi.nlm.nih.gov/33820799/
Chen X, Liu Y, Sun X, et al. Age at menarche and risk of all-cause and cardiovascular mortality: a systematic review and dose-response meta-analysis. Menopause. 2018;26(6):670–6. https://pubmed.ncbi.nlm.nih.gov/30562317/
Goldberg M, D’Aloisio AA, O’Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020;22(1):112. https://pubmed.ncbi.nlm.nih.gov/33109223/
Fuhrman BJ, Moore SC, Byrne C, et al. Association of the age at menarche with site-specific cancer risks in pooled data from nine cohorts. Cancer Res. 2021;81(8):2246–55. https://pubmed.ncbi.nlm.nih.gov/33820799/
Lee HS. Why should we be concerned about early menarche? Clin Exp Pediatr. 2020;64(1):26–7. https://pubmed.ncbi.nlm.nih.gov/32683812/
Martinez GM. Trends and patterns in menarche in the United States: 1995 through 2013–2017. Natl Health Stat Report. 2020;(146):1–12. https://pubmed.ncbi.nlm.nih.gov/33054923/
Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(4):e195881. https://pubmed.ncbi.nlm.nih.gov/32040143/
Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JMP, Dunger DB. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. J Clin Endocrinol Metab. 2012;97(5):E786–90. https://pubmed.ncbi.nlm.nih.gov/22419724/
Günther ALB, Karaolis-Danckert N, Kroke A, Remer T, Buyken AE. Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr. 2010;140(3):565–71. https://pubmed.ncbi.nlm.nih.gov/20042466/
Nguyen NTK, Fan HY, Tsai MC, et al. Nutrient intake through childhood and early menarche onset in girls: systematic review and meta-analysis. Nutrients. 2020;12(9):2544. https://pubmed.ncbi.nlm.nih.gov/32842616/
Rogers IS, Northstone K, Dunger DB, Cooper AR, Ness AR, Emmett PM. Diet throughout childhood and age at menarche in a contemporary cohort of British girls. Public Health Nutr. 2010;13(12):2052–63. https://pubmed.ncbi.nlm.nih.gov/20529402/
Jansen EC, Marín C, Mora-Plazas M, Villamor E. Higher childhood red meat intake frequency is associated with earlier age at menarche. J Nutr. 2015;146(4):792–8. https://pubmed.ncbi.nlm.nih.gov/26962195/
Schecter A, Cramer P, Boggess K, Stanley J, Olson JR. Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States. Chemosphere. 1997;34(5–7):1437–47. https://pubmed.ncbi.nlm.nih.gov/9134677/
Ouyang F, Perry MJ, Venners SA, et al. Serum DDT, age at menarche, and abnormal menstrual cycle length. Occup Environ Med. 2005;62(12):878–84. https://pubmed.ncbi.nlm.nih.gov/16299097/
Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/
Fraser GE, Cosgrove CM, Mashchak AD, Orlich MJ, Altekruse SF. Lower rates of cancer and all-cause mortality in an Adventist cohort compared with a US Census population. Cancer. 2020;126(5):1102–11. https://pubmed.ncbi.nlm.nih.gov/31762009/
Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/
Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary patterns, and noncommunicable disease in Asian Indians. Am J Clin Nutr. 2014;100 Suppl 1:359S-64S. https://pubmed.ncbi.nlm.nih.gov/24847857/
Singh PN, Sabaté J, Fraser GE. Does low meat consumption increase life expectancy in humans? Am J Clin Nutr. 2003;78(3 Suppl):526S-32S. https://pubmed.ncbi.nlm.nih.gov/12936945/
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2015;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/
Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/
Lin CL, Wang JH, Chang CC, Chiu THT, Lin MN. Vegetarian diets and medical expenditure in Taiwan – a matched cohort study. Nutrients. 2019;11(11):E2688. https://pubmed.ncbi.nlm.nih.gov/32102976/
Kahleova H, Hrachovinova T, Hill M, et al. Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med. 2013;30(1):127–9. https://pubmed.ncbi.nlm.nih.gov/23050853/
Trapp C, Barnard N, Katcher H. A plant-based diet for type 2 diabetes. Diabetes Educ. 2010;36(1):33–48. https://pubmed.ncbi.nlm.nih.gov/20185610/
Barnard N, Scialli AR, Bertron P, Hurlick D, Edmondset K. Acceptability of a therapeutic low-fat, vegan diet in premenopausal women. J Nutr Educ. 2000;32(6):314–9. https://www.researchgate.net/publication/223584518_Acceptability_of_a_Therapeutic_Low-Fat_Vegan_Diet_in_Premenopausal_Women
Trapp C, Barnard N, Katcher H. A plant-based diet for type 2 diabetes. Diabetes Educ. 2010;36(1):33–48. https://pubmed.ncbi.nlm.nih.gov/20185610/
Hemler EC, Hu FB. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr Atheroscler Rep. 2019;21(5):18. https://pubmed.ncbi.nlm.nih.gov/30895476/
Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/
Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169(6):562–71. https://pubmed.ncbi.nlm.nih.gov/19307518/
Popkin BM. Reducing meat consumption has multiple benefits for the world’s health. Arch Intern Med. 2009;169(6):543. https://pubmed.ncbi.nlm.nih.gov/19307515/
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/
Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9. https://pubmed.ncbi.nlm.nih.gov/33839765/
Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9. https://pubmed.ncbi.nlm.nih.gov/33839765/
Norman K, Klaus S. Veganism, aging and longevity: new insight into old concepts. Curr Opin Clin Nutr Metab Care. 2020;23(2):145–50. https://pubmed.ncbi.nlm.nih.gov/31895244/
Eleftheriou D, Benetou V, Trichopoulou A, La Vecchia C, Bamia C. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br J Nutr. 2018;120(10):1081–97. https://pubmed.ncbi.nlm.nih.gov/30401007/
Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100 Suppl 1:320S-8S. https://pubmed.ncbi.nlm.nih.gov/24871477/
Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/
Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/
Kaiser Permanente. Plant-based eating: using the healthy plate to eat well. Center for Healthy Living. https://thrive.kaiserpermanente.org/care-near-you/southern-california/center-for-healthy-living/wp-content/uploads/sites/30/2020/03/plant_based_diet_e.pdf. Updated 2019. Accessed January 17, 2022.; https://thrive.kaiserpermanente.org/care-near-you/southern-california/center-for-healthy-living/wp-content/uploads/sites/30/2020/03/plant_based_diet_e.pdf
Martínez-González MÁ, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients. 2017;9(11):E1226. https://pubmed.ncbi.nlm.nih.gov/29117146/
Avital K, Buch A, Hollander I, Brickner T, Goldbourt U. Adherence to a Mediterranean diet by vegetarians and vegans as compared to omnivores. Int J Food Sci Nutr. 2020;71(3):378–87. https://pubmed.ncbi.nlm.nih.gov/31558068/
M Nestle. Mediterranean diets: historical and research overview. Am J Clin Nutr. 1995;61(6):1313S–20S. https://pubmed.ncbi.nlm.nih.gov/7754981/
Sofi F, Dinu M, Pagliai G, et al. Low-calorie vegetarian versus Mediterranean diets for reducing body weight and improving cardiovascular risk profile: CARDIVEG study (cardiovascular prevention with vegetarian diet). Circulation. 2018;137(11):1103–13. https://pubmed.ncbi.nlm.nih.gov/29483085/
Barnard ND, Alwarith J, Rembert E, et al. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: a randomized, cross-over trial. J Am Nutr Assoc. 2022;41(2):127–39. https://pubmed.ncbi.nlm.nih.gov/33544066/
Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/
Lane MM, Davis JA, Beattie S, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev. 2021;22(3):e13146. https://pubmed.ncbi.nlm.nih.gov/33167080/
Katz DL. Plant-based diets for reversing disease and saving the planet: past, present, and future. Adv Nutr. 2019;10(Suppl_4):S304–7. https://pubmed.ncbi.nlm.nih.gov/31728489/
Gehring J, Touvier M, Baudry J, et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J Nutr. 2021;151(1):120–31. https://pubmed.ncbi.nlm.nih.gov/32692345/
Radnitz C, Ni J, Dennis D, Cerrito B. Health benefits of a vegan diet: current insights. Nutr Diet Suppl. 2020;12:57–85. https://www.dovepress.com/health-benefits-of-a-vegan-diet-current-insights-peer-reviewed-fulltext-article-NDS
Neff RA, Edwards D, Palmer A, Ramsing R, Righter A, Wolfson J. Reducing meat consumption in the USA: a nationally representative survey of attitudes and behaviours. Public Health Nutr. 2018;21(10):1835–44. https://pubmed.ncbi.nlm.nih.gov/29576031/
Radnitz C, Ni J, Dennis D, Cerrito B. Health benefits of a vegan diet: current insights. Nutr Diet Suppl. 2020;12:57–85. https://www.dovepress.com/health-benefits-of-a-vegan-diet-current-insights-peer-reviewed-fulltext-article-NDS
Almost half of UK vegans made the change in the last year, according to new data. Vegan Trade Journal. https://www.vegantradejournal.com/almost-half-of-uk-vegans-made-the-change-in-the-last-year-according-to-new-data/. November 19, 2018. Accessed December 28, 2022.; https://www.vegantradejournal.com/almost-half-of-uk-vegans-made-the-change-in-the-last-year-according-to-new-data/
Radnitz C, Beezhold B, DiMatteo J. Investigation of lifestyle choices of individuals following a vegan diet for health and ethical reasons. Appetite. 2015;90:31–6. https://pubmed.ncbi.nlm.nih.gov/25725486/
Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/
Rocha JP, Laster J, Parag B, Shah NU. Multiple health benefits and minimal risks associated with vegetarian diets. Curr Nutr Rep. 2019;8(4):374–81. https://pubmed.ncbi.nlm.nih.gov/31705483/
Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary patterns, and noncommunicable disease in Asian Indians. Am J Clin Nutr. 2014;100 Suppl 1:359S-64S. https://pubmed.ncbi.nlm.nih.gov/24847857/
Campbell EK, Fidahusain M, Campbell TM II. Evaluation of an eight-week whole-food plant-based lifestyle modification program. Nutrients. 2019;11(9):E2068. https://pubmed.ncbi.nlm.nih.gov/31484341/
Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/
Everitt AV, Hilmer SN, Brand-Miller JC, et al. Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006;1(1):11–31. https://pubmed.ncbi.nlm.nih.gov/18047254/
Jacobs DR Jr, Orlich MJ. Diet pattern and longevity: do simple rules suffice? A commentary. Am J Clin Nutr. 2014;100(Suppl 1):313S-9S. https://pubmed.ncbi.nlm.nih.gov/24871470/
Kim H, Caulfield LE, Rebholz CM. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J Nutr. 2018;148(4):624–31. https://pubmed.ncbi.nlm.nih.gov/29659968/
Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/
Hemler EC, Hu FB. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr Atheroscler Rep. 2019;21(5):18. https://pubmed.ncbi.nlm.nih.gov/30895476/
Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/
Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100 Suppl 1:320S-8S. https://pubmed.ncbi.nlm.nih.gov/24871477/
Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. Published online August 11, 2021.; https://pubmed.ncbi.nlm.nih.gov/34379193/
Keaver L, Ruan M, Chen F, et al. Plant- and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/
Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/
Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. Published online August 11, 2021.; https://pubmed.ncbi.nlm.nih.gov/34379193/
Baden MY, Liu G, Satija A, et al. Changes in plant-based diet quality and total and cause-specific mortality. Circulation. 2019;140(12):979–91. https://pubmed.ncbi.nlm.nih.gov/31401846/
Keaver L, Ruan M, Chen F, et al. Plant- and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/
McCarty MF. Proposal for a dietary “phytochemical index.” Med Hypotheses. 2004;63(5):813–7. https://pubmed.ncbi.nlm.nih.gov/15488652/
U.S. Department of Agriculture, Economic Research Service. Loss-adjusted food availability. https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7. Updated August 26, 2019. Accessed January 17, 2022.; https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7
U.S. Department of Agriculture, Economic Research Service. Loss-adjusted food availability. https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7. Updated August 26, 2019. Accessed January 17, 2022.; https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7
Mirmiran P, Bahadoran Z, Golzarand M, Shiva N, Azizi F. Association between dietary phytochemical index and 3-year changes in weight, waist circumference and body adiposity index in adults: Tehran Lipid and Glucose study. Nutr Metab (Lond). 2012;9(1):108. https://pubmed.ncbi.nlm.nih.gov/23206375/
Golzarand M, Bahadoran Z, Mirmiran P, Sadeghian-Sharif S, Azizi F. Dietary phytochemical index is inversely associated with the occurrence of hypertension in adults: a 3-year follow-up (the Tehran Lipid and Glucose Study). Eur J Clin Nutr. 2015;69(3):392–8. https://pubmed.ncbi.nlm.nih.gov/25387902/
Abshirini M, Mahaki B, Bagheri F, Siassi F, Koohdani F, Sotoudeh G. Higher intake of phytochemical-rich foods is inversely related to prediabetes: a case-control study. Int J Prev Med. 2018;9:64. https://pubmed.ncbi.nlm.nih.gov/30147853/
Kim M, Park K. Association between phytochemical index and metabolic syndrome. Nutr Res Pract. 2020;14(3):252–61. https://pubmed.ncbi.nlm.nih.gov/32528632/
Golzarand M, Mirmiran P, Bahadoran Z, Alamdari S, Azizi F. Dietary phytochemical index and subsequent changes of lipid profile: a 3-year follow-up in Tehran Lipid and Glucose Study in Iran. ARYA Atheroscler. 2014;10(4):203–10. https://pubmed.ncbi.nlm.nih.gov/25258636/
Darooghegi Mofrad M, Siassi F, Guilani B, Bellissimo N, Azadbakht L. Association of dietary phytochemical index and mental health in women: a cross-sectional study. Br J Nutr. 2019;121(9):1049–56. https://pubmed.ncbi.nlm.nih.gov/33298144/
Aghababayan S, Sheikhi Mobarakeh Z, Qorbani M, et al. Dietary phytochemical index and benign breast diseases: a case-control study. Nutr Cancer. 2020;72(6):1067–73. https://pubmed.ncbi.nlm.nih.gov/31475586/
Bahadoran Z, Karimi Z, Houshiar-Rad A, Mirzayi HR, Rashidkhani B. Dietary phytochemical index and the risk of breast cancer: a case control study in a population of Iranian women. Asian Pac J Cancer Prev. 2013;14(5):2747–51. https://pubmed.ncbi.nlm.nih.gov/23803026/
Bellavia A, Larsson SC, Bottai M, Wolk A, Orsini N. Fruit and vegetable consumption and all-cause mortality: a dose-response analysis. Am J Clin Nutr. 2013;98(2):454–9. https://pubmed.ncbi.nlm.nih.gov/23803880/
Juraske R, Mutel CL, Stoessel F, Hellweg S. Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere. 2009;77(7):939–45. https://pubmed.ncbi.nlm.nih.gov/19729188/
Bellavia A, Larsson SC, Bottai M, Wolk A, Orsini N. Fruit and vegetable consumption and all-cause mortality: a dose-response analysis. Am J Clin Nutr. 2013;98(2):454–9. https://pubmed.ncbi.nlm.nih.gov/23803880/
Nicklett EJ, Semba RD, Xue QL, et al. Fruit and vegetable intake, physical activity, and mortality in older community-dwelling women. J Am Geriatr Soc. 2012;60(5):862–8. https://pubmed.ncbi.nlm.nih.gov/22587851/
Lo YT, Chang YH, Wahlqvist ML, Huang HB, Lee MS. Spending on vegetable and fruit consumption could reduce all-cause mortality among older adults. Nutr J. 2012;11:113. https://pubmed.ncbi.nlm.nih.gov/23253183/
Dórea JG. Vegetarian diets and exposure to organochlorine pollutants, lead, and mercury. Am J Clin Nutr. 2004;80(1):237–8. https://pubmed.ncbi.nlm.nih.gov/15213054/
Hergenrather J, Hlady G, Wallace B, Savage E. Pollutants in breast milk of vegetarians. N Engl J Med. 1981;304(13):792. https://pubmed.ncbi.nlm.nih.gov/7464895/
Key TJ, Appleby PN, Spencer EA, et al. Cancer incidence in British vegetarians. Br J Cancer. 2009;101(1):192–7. https://pubmed.ncbi.nlm.nih.gov/19536095/
Dearfield KL, Edwards SR, O’Keefe MM, et al. Dietary estimates of dioxins consumed in U.S. Department of Agriculture – regulated meat and poultry products. J Food Prot. 2013;76(9):1597–607. https://pubmed.ncbi.nlm.nih.gov/23992505/
Hernández ÁR, Boada LD, Mendoza Z, et al. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ Sci Pollut Res Int. 2017;24(5):4261–73. https://pubmed.ncbi.nlm.nih.gov/25893622/
U.S. Department of Agriculture, Economic Research Service. Per capita red meat and poultry consumption expected to decrease modestly in 2022. https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=103767. Last updated April 15, 2022. Accessed December 28, 2022.; https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=103767
Hernández ÁR, Boada LD, Mendoza Z, et al. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ Sci Pollut Res Int. 2017;24(5):4261–73. https://pubmed.ncbi.nlm.nih.gov/25893622/
Ta CA, Zee JA, Desrosiers T, et al. Binding capacity of various fibre to pesticide residues under simulated gastrointestinal conditions. Food Chem Toxicol. 1999;37(12):1147–51. https://pubmed.ncbi.nlm.nih.gov/10654590/
Lee YM, Shin JY, Kim SA, Jacobs DR, Lee DH. Can habitual exercise help reduce serum concentrations of lipophilic chemical mixtures? Association between physical activity and persistent organic pollutants. Diabetes Metab J. 2020;44(5):764–74. https://pubmed.ncbi.nlm.nih.gov/32174058/
Genuis SJ, Lane K, Birkholz D. Human elimination of organochlorine pesticides: blood, urine, and sweat study. Biomed Res Int. 2016;2016:1624643. https://pubmed.ncbi.nlm.nih.gov/27800487/
Yiamouyiannis CA, Sanders RA, Watkins JB III, Martin BJ. Chronic physical activity: hepatic hypertrophy and increased total biotransformation enzyme activity. Biochem Pharmacol. 1992;44(1):121–7. https://pubmed.ncbi.nlm.nih.gov/8474015/
Watkins JB, Crawford ST, Sanders RA. Chronic voluntary exercise may alter hepatobiliary clearance of endogenous and exogenous chemicals in rats. Drug Metab Dispos. 1994;22(4):537–43. https://pubmed.ncbi.nlm.nih.gov/7956727/
Lupton SJ, O’Keefe M, Muñiz-Ortiz JG, Clinch N, Basu P. Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and non-ortho-polychlorinated biphenyls in US meat and poultry, 2012–13: toxic equivalency levels, patterns, temporal trends and implications. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017;34(11):1970–81. https://pubmed.ncbi.nlm.nih.gov/28632453/
González N, Marquès M, Nadal M, Domingo JL. Meat consumption: which are the current global risks? A review of recent (2010–2020) evidences. Food Res Int. 2020;137:109341. https://pubmed.ncbi.nlm.nih.gov/33233049/
Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet. 2016;116(12):1970–80. https://pubmed.ncbi.nlm.nih.gov/27886704/
Johnston PK. Recognition: Mervyn G Hardinge. Am J Clin Nutr. 1999;70(3):431s-2s. https://pubmed.ncbi.nlm.nih.gov/10479213/
Ma Y, Pagoto SL, Griffith JA, et al. A dietary quality comparison of popular weight-loss plans. J Am Diet Assoc. 2007;107(10):1786–91. https://pubmed.ncbi.nlm.nih.gov/17904938/
Clarys P, Deliens T, Huybrechts I, et al. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients. 2014;6(3):1318–32. https://pubmed.ncbi.nlm.nih.gov/24667136/
Farmer B, Larson BT, Fulgoni VL, Rainville AJ, Liepa GU. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the National Health and Nutrition Examination Survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27. https://pubmed.ncbi.nlm.nih.gov/21616194/
Van Horn L. Achieving nutrient density: a vegetarian approach. J Am Diet Assoc. 2011;111(6):799. https://pubmed.ncbi.nlm.nih.gov/21616188/
Keenan S, Mitts KG, Kurtz CA. Scurvy presenting as a medial head tear of the gastrocnemius. Orthopedics. 2002;25(6):689–91. https://pubmed.ncbi.nlm.nih.gov/12083582/
Mariotti F, ed. Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press; 2017. https://worldcat.org/title/988275855
Armstrong BK. Absorption of vitamin B12 from the human colon. Am J Clin Nutr. 1968;21(4):298–9. https://pubmed.ncbi.nlm.nih.gov/5647478/
Gupta ES, Sheth SP, Ganjiwale JD. Association of vitamin B12 deficiency and use of reverse osmosis processed water for drinking: a cross-sectional study from Western India. J Clin Diagn Res. 2016;10(5):OC37–40. https://pubmed.ncbi.nlm.nih.gov/27437269/
Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/
Herrmann W, Geisel J. Vegetarian lifestyle and monitoring of vitamin B-12 status. Clin Chim Acta. 2002;326(1–2):47–59. https://pubmed.ncbi.nlm.nih.gov/12417096/
Mariotti F, ed. Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press; 2017. https://worldcat.org/title/988275855
Eitenmiller R, Ye L, Landen WO Jr. Vitamin Analysis for the Health and Food Sciences. 2nd ed. CRC Press; 2007:469.Book
Del Bo’ C, Riso P, Gardana C, Brusamolino A, Battezzati A, Ciappellano S. Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional status in vegans and vegetarians with a marginal deficiency: a randomized controlled trial. Clin Nutr. 2019;38(2):575–83. https://pubmed.ncbi.nlm.nih.gov/29499976/
MacFarlane AJ, Shi Y, Greene-Finestone LS. High-dose compared with low-dose vitamin B-12 supplement use is not associated with higher vitamin B-12 status in children, adolescents, and older adults. J Nutr. 2014;144(6):915–20. https://pubmed.ncbi.nlm.nih.gov/24699807/
Rajan S, Wallace JI, Brodkin KI, Beresford SA, Allen RH, Stabler SP. Response of elevated methylmalonic acid to three dose levels of oral cobalamin in older adults. J Am Geriatr Soc. 2002;50(11):1789–95. https://pubmed.ncbi.nlm.nih.gov/12410896/
Eussen S, de Groot L, Clarke R, et al. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: a dose-finding trial. Arch Intern Med. 2005;165(10):1167–72. https://pubmed.ncbi.nlm.nih.gov/15911731/
Rizzo G, Laganà AS, Rapisarda AMC, et al. Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients. 2016;8(12):767. https://pubmed.ncbi.nlm.nih.gov/27916823/
Crane MG, Sample C, Patchett S, Register UD. Vitamin B12 studies in total vegetarians (vegans). J Nutr Med. 1994;4(4):419–30. https://www.tandfonline.com/doi/abs/10.3109/13590849409003591
Briani C, Dalla Torre C, Citton V, et al. Cobalamin deficiency: clinical picture and radiological findings. Nutrients. 2013;5(11):4521–39. https://pubmed.ncbi.nlm.nih.gov/24248213/
Crane MG, Sample C, Patchett S, Register UD. Vitamin B12 studies in total vegetarians (vegans). J Nutr Med. 1994;4(4):419–30. https://www.tandfonline.com/doi/abs/10.3109/13590849409003591
Mott A, Bradley T, Wright K, et al. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int. 2019;30(8):1543–59. https://pubmed.ncbi.nlm.nih.gov/31076817/
EFSA Panel on Dietetic Products, Nutrition and Allergies, Turck D, Bresson JL, et al. Dietary reference values for vitamin K. EFSA J. 2017;15(5):e04780. https://pubmed.ncbi.nlm.nih.gov/32625486/
Nakagawa K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468(7320):117–21. https://pubmed.ncbi.nlm.nih.gov/20953171/
Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29. https://pubmed.ncbi.nlm.nih.gov/30971126/
Shea MK, Barger K, Booth SL, et al. Vitamin K status, cardiovascular disease, and all-cause mortality: a participant-level meta-analysis of 3 US cohorts. Am J Clin Nutr. 2020;111(6):1170–7. https://pubmed.ncbi.nlm.nih.gov/32359159/
Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/
Stranges S, Takeda A, Martin N, Rees K. Cochrane corner: does the Mediterranean-style diet help in the prevention of cardiovascular disease? Heart. 2019;105(22):1691–4. https://pubmed.ncbi.nlm.nih.gov/31439660/
Wizard Edison says doctors of future will give no medicine. The Newark Advocate. https://archive.org/details/newark-advocate-1903–01–02/mode/1up?view=theater. Published January 2, 1903;46:47:1. Accessed February 21 https://archive.org/details/newark-advocate-1903-01-02/mode/1up?view=theater
American College of Lifestyle Medicine. About us. http://lifestylemedicine.org/about-us/. Accessed December 28, 2022.; https://lifestylemedicine.org/about-us/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Vodovotz Y, Barnard N, Hu FB, et al. Prioritized research for the prevention, treatment, and reversal of chronic disease: recommendations from the Lifestyle Medicine Research Summit. Front Med (Lausanne). 2020;7:585744. https://pubmed.ncbi.nlm.nih.gov/33415115/
Zhang YB, Pan XF, Chen J, et al. Combined lifestyle factors, all-cause mortality and cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. J Epidemiol Community Health. 2021;75(1):92–9. https://pubmed.ncbi.nlm.nih.gov/32892156/
Willcox BJ, Willcox DC, Ferrucci L. Secrets of healthy aging and longevity from exceptional survivors around the globe: lessons from octogenarians to supercentenarians. J Gerontol A Biol Sci Med Sci. 2008;63(11):1181–5. https://pubmed.ncbi.nlm.nih.gov/19038832/
Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition – Potsdam study. Arch Intern Med. 2009;169(15):1355–62. https://pubmed.ncbi.nlm.nih.gov/19667296/
Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control. 2000;11(7):579–88. https://pubmed.ncbi.nlm.nih.gov/10977102/
Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition – Potsdam study. Arch Intern Med. 2009;169(15):1355–62. https://pubmed.ncbi.nlm.nih.gov/19667296/
Wahls TL. The seventy percent solution. J Gen Intern Med. 2011;26(10):1215–6. https://pubmed.ncbi.nlm.nih.gov/21253878/
Khaw KT, Wareham N, Bingham S, Welch A, Luben R, Day N. Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study. PLoS Med. 2008;5(1):e12. https://pubmed.ncbi.nlm.nih.gov/18184033/
Машина из фильма «Назад в будущее». – Примеч. ред.
Wang K, Li Y, Liu G, et al. Healthy lifestyle for prevention of premature death among users and nonusers of common preventive medications: a prospective study in 2 US cohorts. JAHA. 2020;9(13):e016692. https://pubmed.ncbi.nlm.nih.gov/32578485/
King DE, Mainous AG III, Geesey ME. Turning back the clock: adopting a healthy lifestyle in middle age. Am J Med. 2007;120(7):598–603. https://pubmed.ncbi.nlm.nih.gov/17602933/
Nyberg ST, Singh-Manoux A, Pentti J, et al. Association of healthy lifestyle with years lived without major chronic diseases. JAMA Intern Med. 2020;180(5):760–8. https://pubmed.ncbi.nlm.nih.gov/32250383/
Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/
Zhang S, Tomata Y, Discacciati A, et al. Combined healthy lifestyle behaviors and disability-free survival: the Ohsaki Cohort 2006 Study. J Gen Intern Med. 2019;34(9):1724–9. https://pubmed.ncbi.nlm.nih.gov/31144283/
Vallance JK, Gardiner PA, Lynch BM, et al. Evaluating the evidence on sitting, smoking, and health: is sitting really the new smoking? Am J Public Health. 2018;108(11):1478–82. https://pubmed.ncbi.nlm.nih.gov/30252516/
Rezende LFM, Sá TH, Mielke GI, Viscondi JYK, Rey-López JP, Garcia LMT. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51(2):253–63. https://pubmed.ncbi.nlm.nih.gov/27017420/
Vallance JK, Gardiner PA, Lynch BM, et al. Evaluating the evidence on sitting, smoking, and health: is sitting really the new smoking? Am J Public Health. 2018;108(11):1478–82. https://pubmed.ncbi.nlm.nih.gov/30252516/
Taylor DH Jr, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation for longevity. Am J Public Health. 2002;92(6):990–6. https://pubmed.ncbi.nlm.nih.gov/12036794/
Engelhard CL, Garson A, Dorn S. Reducing obesity: policy strategies from the tobacco wars. Methodist Debakey Cardiovasc J. 2009;5(4):46–50. https://pubmed.ncbi.nlm.nih.gov/20143597/
Cornelius ME, Wang TW, Jamal A, Loretan CG, Neff LJ. Tobacco product use among adults – United States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69(46):1736–42. https://pubmed.ncbi.nlm.nih.gov/33211681/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Barnard ND. The physician’s role in nutrition-related disorders: from bystander to leader. Virtual Mentor. 2013;15(4):367–72. https://pubmed.ncbi.nlm.nih.gov/23566788/
Ding D, Grunseit AC, Chau JY, Vo K, Byles J, Bauman AE. Retirement – a transition to a healthier lifestyle?: evidence from a large Australian study. Am J Prev Med. 2016;51(2):170–8. https://pubmed.ncbi.nlm.nih.gov/26972491/
Rebelo-Marques A, Lages ADS, Andrade R, et al. Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne). 2018;9:258. https://pubmed.ncbi.nlm.nih.gov/29887832/
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev. 2021;200:111584. https://pubmed.ncbi.nlm.nih.gov/34673082/
Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001–24. https://pubmed.ncbi.nlm.nih.gov/25639909/
Lin YH, Chen Y-C, Tseng Y-C, Tsai S-T, Tseng Y-H. Physical activity and successful aging among middle-aged and older adults: a systematic review and meta-analysis of cohort studies. Aging (Albany NY). 2020;12(9):7704–16. https://pubmed.ncbi.nlm.nih.gov/32350152/
Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. https://pubmed.ncbi.nlm.nih.gov/18091006/
Pedersen BK. Which type of exercise keeps you young? Curr Opin Clin Nutr Metab Care. 2019;22(2):167–73. https://pubmed.ncbi.nlm.nih.gov/30640736/
Di Lorito C, Long A, Byrne A, et al. Exercise interventions for older adults: a systematic review of meta-analyses. J Sport Health Sci. 2021;10(1):29–47. https://pubmed.ncbi.nlm.nih.gov/32525097/
Pahor M, Guralnik JM, Ambrosius WT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387–96. https://pubmed.ncbi.nlm.nih.gov/24866862/
Sherrington C, Fairhall N, Kwok W, et al. Evidence on physical activity and falls prevention for people aged 65+ years: systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act. 2020;17(1):144. https://pubmed.ncbi.nlm.nih.gov/33239019/
de Souto Barreto P, Rolland Y, Vellas B, Maltais M. Association of long-term exercise training with risk of falls, fractures, hospitalizations, and mortality in older adults: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(3):394–405. https://pubmed.ncbi.nlm.nih.gov/30592475/
Soltani S, Hunter GR, Kazemi A, Shab-Bidar S. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2016;27(9):2655–71. https://pubmed.ncbi.nlm.nih.gov/27154437/
García-Hermoso A, Ramirez-Vélez R, Sáez de Asteasu ML, et al. Safety and effectiveness of long-term exercise interventions in older adults: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020;50(6):1095–106. https://pubmed.ncbi.nlm.nih.gov/32020543/
Di Lorito C, Long A, Byrne A, et al. Exercise interventions for older adults: a systematic review of meta-analyses. J Sport Health Sci. 2021;10(1):29–47. https://pubmed.ncbi.nlm.nih.gov/32525097/
Blumenthal JA, Babyak MA, Doraiswamy PM, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. 2007;69(7):587–96. https://pubmed.ncbi.nlm.nih.gov/17846259/
Gerbild H, Larsen CM, Graugaard C, Areskoug Josefsson K. Physical activity to improve erectile function: a systematic review of intervention studies. Sex Med. 2018;6(2):75–89. https://pubmed.ncbi.nlm.nih.gov/29661646/
Marquez DX, Aguiñaga S, Vásquez PM, et al. A systematic review of physical activity and quality of life and well-being. Transl Behav Med. 2020;10(5):1098–109. https://pubmed.ncbi.nlm.nih.gov/33044541/
Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56. https://pubmed.ncbi.nlm.nih.gov/28708630/
Fock KM, Khoo J. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol. 2013;28 Suppl 4:59–63. https://pubmed.ncbi.nlm.nih.gov/24251706/
Archer E, Hand GA, Blair SN. Correction: Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS One. 2013;8(10):10.1371/annotation/c313df3a-52bd-4cbe-af14–6676480d1a43. https://pubmed.ncbi.nlm.nih.gov/24130784/
Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2. https://pubmed.ncbi.nlm.nih.gov/19136507/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94. https://pubmed.ncbi.nlm.nih.gov/30496105/
Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92. https://pubmed.ncbi.nlm.nih.gov/31292558/
World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization; 2009. https://apps.who.int/iris/handle/10665/44203
Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet. 2012;380(9838):219–29. https://pubmed.ncbi.nlm.nih.gov/22818936/
Strain T, Brage S, Sharp SJ, et al. Use of the prevented fraction for the population to determine deaths averted by existing prevalence of physical activity: a descriptive study. Lancet Glob Health. 2020;8(7):e920–30. https://pubmed.ncbi.nlm.nih.gov/32562648/
Wade KH, Richmond RC, Smith GD. Physical activity and longevity: how to move closer to causal inference. Br J Sports Med. 2018;52(14):890–1. https://pubmed.ncbi.nlm.nih.gov/29545236/
Richard A, Martin B, Wanner M, Eichholzer M, Rohrmann S. Effects of leisure-time and occupational physical activity on total mortality risk in NHANES III according to sex, ethnicity, central obesity, and age. J Phys Act Health. 2015;12(2):184–92. https://pubmed.ncbi.nlm.nih.gov/24770336/
Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med. 2018;52(14):914–8. https://pubmed.ncbi.nlm.nih.gov/29545237/
Karvinen S, Waller K, Silvennoinen M, et al. Physical activity in adulthood: genes and mortality. Sci Rep. 2015;5:18259. https://pubmed.ncbi.nlm.nih.gov/26666586/
O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/
O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/
O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/
Lee D, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a key lifestyle medicine for longevity. Prog Cardiovasc Dis. 2017;60(1):45–55. https://pubmed.ncbi.nlm.nih.gov/28365296/
Montgomery MJ, Kandi D. QuickStats: percentage of adults who met federal guidelines for aerobic physical activity through leisure-time activity, by race/ethnicity – National Health Interview Survey, 2008–2017. MMWR Morb Mortal Wkly Rep. 2019;68:292. https://pubmed.ncbi.nlm.nih.gov/30921300/
Lee D, Lavie CJ, Sui X, Blair SN. Running and mortality: is more actually worse? Mayo Clin Proc. 2016;91(4):534–6. https://pubmed.ncbi.nlm.nih.gov/27046526/
Schnohr P, Marott JL, O’Keefe JH. Reply: exercise and mortality reduction: recurring reverse J- or U-curves. J Am Coll Cardiol. 2015;65(24):2674–6. https://pubmed.ncbi.nlm.nih.gov/26088316/
Спортом на выносливость считаются спортивная ходьба; бег на средние и длинные дистанции; марафонский бег; велоспорт; плавание; гребля на академических лодках, байдарках, каноэ; лыжные гонки; конькобежный спорт; биатлон; спортивное ориентирование; триатлон. – Примеч. ред.
Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/
Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/
Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–23. https://pubmed.ncbi.nlm.nih.gov/28620111/
Smith MM, Trexler ET, Sommer AJ, et al. Unrestricted paleolithic diet is associated with unfavorable changes to blood lipids in healthy subjects. Int J Exerc Sci. 2014;7(2):128–39. Note this study has been retracted https://retractionwatch.com/2017/06/30/researcher-tangled-crossfit-loses-two-papers/
Barnard RJ, Ugianskis EJ, Martin DA, Inkeles SB. Role of diet and exercise in the management of hyperinsulinemia and associated atherosclerotic risk factors. Am J Cardiol. 1992;69(5):440–4. https://pubmed.ncbi.nlm.nih.gov/1736602/
Smith MM, Trexler ET, Sommer AJ, et al. Unrestricted paleolithic diet is associated with unfavorable changes to blood lipids in healthy subjects. Int J Exerc Sci. 2014;7(2):128–39. Note this study has been retracted https://retractionwatch.com/2017/06/30/researcher-tangled-crossfit-loses-two-papers/
Craddock JC, Neale EP, Peoples GE, Probst YC. Plant-based eating patterns and endurance performance: a focus on inflammation, oxidative stress and immune responses. Nutr Bull. 2020;45(2):123–32. https://onlinelibrary.wiley.com/doi/abs/10.1111/nbu.12427
В российском прокате – «Переломный момент». – Примеч. ред.
Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/
Lynch HM, Wharton CM, Johnston CS. Cardiorespiratory fitness and peak torque differences between vegetarian and omnivore endurance athletes: a cross-sectional study. Nutrients. 2016;8(11):E726. https://pubmed.ncbi.nlm.nih.gov/27854281/
Boutros GH, Landry-Duval MA, Garzon M, Karelis AD. Is a vegan diet detrimental to endurance and muscle strength? Eur J Clin Nutr. 2020;74(11):1550–5. https://pubmed.ncbi.nlm.nih.gov/32332862/
Król W, Price S, Sliz D, et al. A vegan athlete’s heart – is it different? Morphology and function in echocardiography. Diagnostics (Basel). 2020;10(7):E477. https://pubmed.ncbi.nlm.nih.gov/32674452/
Veleba J, Matoulek M, Hill M, Pelikanova T, Kahleova H. “A vegetarian vs. conventional hypocaloric diet: the effect on physical fitness in response to aerobic exercise in patients with type 2 diabetes.” A parallel randomized study. Nutrients. 2016;8(11):671. https://pubmed.ncbi.nlm.nih.gov/27792174/
Veleba J, Matoulek M, Hill M, Pelikanova T, Kahleova H. “A vegetarian vs. conventional hypocaloric diet: the effect on physical fitness in response to aerobic exercise in patients with type 2 diabetes.” A parallel randomized study. Nutrients. 2016;8(11):671. https://pubmed.ncbi.nlm.nih.gov/27792174/
Kahleova H, Hrachovinova T, Hill M, Pelikanova T. Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med. 2013;30(1):127–9. https://pubmed.ncbi.nlm.nih.gov/23050853/
Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/
Dumas JA, Bunn JY, Nickerson J, et al. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metab Clin Exp. 2016;65(10):1582–8. https://pubmed.ncbi.nlm.nih.gov/27621193/
Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/
Kahleova H, Matoulek M, Malinska H, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med. 2011;28(5):549–59. https://pubmed.ncbi.nlm.nih.gov/21480966/
Roderka MN, Puri S, Batsis JA. Addressing obesity to promote healthy aging. Clin Geriatr Med. 2020;36(4):631–43. https://pubmed.ncbi.nlm.nih.gov/33010899/
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;(360):1–8. https://pubmed.ncbi.nlm.nih.gov/32487284/
Pontzer H, Yamada Y, Sagayama H, et al. Daily energy expenditure through the human life course. Science. 2021;373(6556):808–12. https://pubmed.ncbi.nlm.nih.gov/34385400/
Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/
Himbert C, Thompson H, Ulrich CM. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes Facts. 2017;10(6):648–65. https://pubmed.ncbi.nlm.nih.gov/29237161/
Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN. 2018;28:21–35. https://pubmed.ncbi.nlm.nih.gov/30390883/
Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/
Ronan L, Alexander-Bloch AF, Wagstyl K, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70. https://pubmed.ncbi.nlm.nih.gov/27562529/
Albanese E, Launer LJ, Egger M, et al. Body mass index in midlife and dementia: systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimers Dement (Amst). 2017;8:165–78. https://pubmed.ncbi.nlm.nih.gov/28761927/
Chuang YF, An Y, Bilgel M, et al. Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol Psychiatry. 2016;21(7):910–5. https://pubmed.ncbi.nlm.nih.gov/26324099/
Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45. https://pubmed.ncbi.nlm.nih.gov/15784668/
Ludwig DS. Lifespan weighed down by diet. JAMA. 2016;315(21):2269–70. https://pubmed.ncbi.nlm.nih.gov/27043490/
Mann CC. Provocative study says obesity may reduce U.S. life expectancy. Science. 2005;307(5716):1716–7. https://pubmed.ncbi.nlm.nih.gov/15774742/
Sun Q, Townsend MK, Okereke OI, Franco OH, Hu FB, Grodstein F. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ. 2009;339:b3796. https://pubmed.ncbi.nlm.nih.gov/20101015/
Santos-Lozano A, Pareja-Galeano H, Fuku N, et al. Implications of obesity in exceptional longevity. Ann Transl Med. 2016;4(20):416. https://pubmed.ncbi.nlm.nih.gov/27867968/
Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/
Pararasa C, Bailey CJ, Griffiths HR. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology. 2015;16(2):235–48. https://pubmed.ncbi.nlm.nih.gov/25367746/
Rubin R. Postmenopausal women with a “normal” BMI might be overweight or even obese. JAMA. 2018;319(12):1185–7. https://pubmed.ncbi.nlm.nih.gov/29516084/
Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324. https://pubmed.ncbi.nlm.nih.gov/32967840/
Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://pubmed.ncbi.nlm.nih.gov/15201411/
Blackburn G. Effect of degree of weight loss on health benefits. Obes Res. 1995;3 Suppl 2:211s-6s. https://pubmed.ncbi.nlm.nih.gov/8581779/
Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://pubmed.ncbi.nlm.nih.gov/15201411/
Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond). 2008;32(4):619–28. https://pubmed.ncbi.nlm.nih.gov/18180786/
Haywood C, Sumithran P. Treatment of obesity in older persons – a systematic review. Obes Rev. 2019;20(4):588–98. https://pubmed.ncbi.nlm.nih.gov/30645010/
Muzumdar R, Allison DB, Huffman DM, et al. Visceral adipose tissue modulates mammalian longevity. Aging Cell. 2008;7(3):438–40. https://pubmed.ncbi.nlm.nih.gov/18363902/
Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: a systematic review and meta-analysis. PLoS Med. 2020;17(7):e1003206. https://pubmed.ncbi.nlm.nih.gov/32722673/
Kritchevsky SB, Beavers KM, Miller ME, et al. Intentional weight loss and all-cause mortality: a meta-analysis of randomized clinical trials. PLoS One. 2015;10(3):e0121993. https://pubmed.ncbi.nlm.nih.gov/25794148/
Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: a randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes. 2017;7(3):e256. https://pubmed.ncbi.nlm.nih.gov/28319109/
Hall KD, Guo J, Courville AB, et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat Med. 2021;27(2):344–53. https://pubmed.ncbi.nlm.nih.gov/33479499/
Piers LS, Walker KZ, Stoney RM, Soares MJ, O’Dea K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br J Nutr. 2003;90(3):717–27. https://pubmed.ncbi.nlm.nih.gov/13129479/
Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68. https://pubmed.ncbi.nlm.nih.gov/24550191/
Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr. 2014;53(3):691–710. https://pubmed.ncbi.nlm.nih.gov/24363161/
Jonnalagadda SS, Egan SK, Heimbach JT, et al. Fatty acid consumption pattern of Americans: 1987–1988 USDA Nationwide Food Consumption Survey. Nutr Res. 1995;15(12):1767–81. https://agris.fao.org/agris-search/search.do?recordID=US19970167025
Pimenta AS, Gaidhu MP, Habib S, et al. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol. 2008;217(2):478–85. https://pubmed.ncbi.nlm.nih.gov/18561258/
Chen YC, Cypess AM, Chen YC, et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med. 2013;54(9):1584–7. https://pubmed.ncbi.nlm.nih.gov/23868958/
Darcy J, Tseng YH. ComBATing aging – does increased brown adipose tissue activity confer longevity? GeroScience. 2019;41(3):285–96. https://pubmed.ncbi.nlm.nih.gov/31230192/
Darcy J, Tseng YH. ComBATing aging – does increased brown adipose tissue activity confer longevity? GeroScience. 2019;41(3):285–96. https://pubmed.ncbi.nlm.nih.gov/31230192/
Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, et al. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 2012;15(3):382–94. https://pubmed.ncbi.nlm.nih.gov/22405073/
Vatner DE, Zhang J, Oydanich M, et al. Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell. 2018;17(4):e12751. https://pubmed.ncbi.nlm.nih.gov/29654651/
Hoffman JM, Valencak TG. Sex differences and aging: is there a role of brown adipose tissue? Mol Cell Endocrinol. 2021;531:111310. https://pubmed.ncbi.nlm.nih.gov/33989715/
Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med. 2018;12(2):130–8. https://pubmed.ncbi.nlm.nih.gov/29119382/
Rogers NH. Brown adipose tissue during puberty and with aging. Ann Med. 2015;47(2):142–9. https://pubmed.ncbi.nlm.nih.gov/24888388/
Fuse S, Endo T, Tanaka R, et al. Effects of capsinoid intake on brown adipose tissue vascular density and resting energy expenditure in healthy, middle-aged adults: a randomized, double-blind, placebo-controlled study. Nutrients. 2020;12(9):E2676. https://pubmed.ncbi.nlm.nih.gov/32887379/
Smeets AJ, Janssens PL, Westerterp-Plantenga MS. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. J Nutr. 2013;143(4):442–7. https://pubmed.ncbi.nlm.nih.gov/23406619/
Sugita J, Yoneshiro T, Hatano T, et al. Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men. Br J Nutr. 2013;110(4):733–8. https://pubmed.ncbi.nlm.nih.gov/23308394/
Maharlouei N, Tabrizi R, Lankarani KB, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2018:1–14.; https://pubmed.ncbi.nlm.nih.gov/29393665/
Pellagra: secondary to antiobesity diet. Postgrad Med. 1955;17(3):37. https://pubmed.ncbi.nlm.nih.gov/14371224/
Afshin A, Forouzanfar MH, Reitsma BS, et al. Correspondence: health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://pubmed.ncbi.nlm.nih.gov/28604169/
Berrigan D, Troiano RP, Graubard BI. BMI and mortality: the limits of epidemiological evidence. Lancet. 2016;388(10046):734–6. https://pubmed.ncbi.nlm.nih.gov/27423263/
Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9. https://pubmed.ncbi.nlm.nih.gov/21121834/
Afshin A, Forouzanfar MH, Reitsma BS, et al. Correspondence: health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://pubmed.ncbi.nlm.nih.gov/28604169/
Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://pubmed.ncbi.nlm.nih.gov/27146380/
Greger M, Stone G. How Not to Die. Flatiron Books; 2015. https://www.worldcat.org/title/946602582
Rae DE, Ebrahim I, Roden LC. Sleep: a serious contender for the prevention of obesity and non-communicable diseases. JEMDSA. 2016;21(1):1–2. https://www.tandfonline.com/doi/full/10.1080/16089677.2016.1150574
Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci. 2019;219:231–7. https://pubmed.ncbi.nlm.nih.gov/30630005/
Möller-Levet CS, Archer SN, Bucca G, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A. 2013;110(12):E1132–41. https://pubmed.ncbi.nlm.nih.gov/23440187/
Calvin AD, Covassin N, Kremers WK, et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J Am Heart Assoc. 2014;3(6):e001143. https://pubmed.ncbi.nlm.nih.gov/25424573/
Kohansieh M, Makaryus AN. Sleep deficiency and deprivation leading to cardiovascular disease. Int J Hypertens. 2015;2015:615681. https://pubmed.ncbi.nlm.nih.gov/26495139/
Calvin AD, Covassin N, Kremers WK, et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J Am Heart Assoc. 2014;3(6):e001143. https://pubmed.ncbi.nlm.nih.gov/25424573/
Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional population-based study. Am J Epidemiol. 2009;169(9):1052–63. https://pubmed.ncbi.nlm.nih.gov/19299406/
Golem DL, Martin-Biggers JT, Koenings MM, Davis KF, Byrd-Bredbenner C. An integrative review of sleep for nutrition professionals. Adv Nutr. 2014;5(6):742–59. https://pubmed.ncbi.nlm.nih.gov/25398735/
Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/
Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/
Bosman ES, Albert AY, Lui H, Dutz JP, Vallance BA. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome. Front Microbiol. 2019;10:2410. https://pubmed.ncbi.nlm.nih.gov/31708890/
Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/
Li Q, Kobayashi M, Wakayama Y, et al. Effect of phytoncide from trees on human natural killer cell function. Int J Immunopathol Pharmacol. 2009;22(4):951–9. https://pubmed.ncbi.nlm.nih.gov/20074458/
Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia. 2017;60(7):1333–43. https://pubmed.ncbi.nlm.nih.gov/28374068/
Kurina LM, McClintock MK, Chen JH, Waite LJ, Thisted RA, Lauderdale DS. Sleep duration and all-cause mortality: a critical review of measurement and associations. Ann Epidemiol. 2013;23(6):361–70. https://pubmed.ncbi.nlm.nih.gov/23622956/
He M, Deng X, Zhu Y, Huan L, Niu W. The relationship between sleep duration and all-cause mortality in the older people: an updated and dose-response meta-analysis. BMC Public Health. 2020;20(1):1179. https://pubmed.ncbi.nlm.nih.gov/32723316/
Yetish G, Kaplan H, Gurven M, et al. Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol. 2015;25(21):2862–8. https://pubmed.ncbi.nlm.nih.gov/26480842/
Shen X, Wu Y, Zhang D. Nighttime sleep duration, 24-hour sleep duration and risk of all-cause mortality among adults: a meta-analysis of prospective cohort studies. Sci Rep. 2016;6:21480. https://pubmed.ncbi.nlm.nih.gov/26900147/
García-Perdomo HA, Zapata-Copete J, Rojas-Cerón CA. Sleep duration and risk of all-cause mortality: a systematic review and meta-analysis. Epidemiol Psychiatr Sci. 2018;Jul 30:1–11. https://pubmed.ncbi.nlm.nih.gov/30058510/
Knutson KL, Turek FW. The U-shaped association between sleep and health: the 2 peaks do not mean the same thing. Sleep. 2006;29(7):878–9. https://pubmed.ncbi.nlm.nih.gov/16895253/
Grandner MA, Drummond SPA. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Med Rev. 2007;11(5):341–60. https://pubmed.ncbi.nlm.nih.gov/17625932/
Kurina LM, McClintock MK, Chen JH, Waite LJ, Thisted RA, Lauderdale DS. Sleep duration and all-cause mortality: a critical review of measurement and associations. Ann Epidemiol. 2013;23(6):361–70. https://pubmed.ncbi.nlm.nih.gov/23622956/
Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–3. https://pubmed.ncbi.nlm.nih.gov/29073412/
Pourmotabbed A, Boozari B, Babaei A, et al. Sleep and frailty risk: a systematic review and meta-analysis. Sleep Breath. 2020;24(3):1187–97. https://pubmed.ncbi.nlm.nih.gov/32215833/
Pourmotabbed A, Ghaedi E, Babaei A, et al. Sleep duration and sarcopenia risk: a systematic review and dose-response meta-analysis. Sleep Breath. 2020;24(4):1267–78. https://pubmed.ncbi.nlm.nih.gov/31832982/
Schwarz EI, Puhan MA, Schlatzer C, Stradling JR, Kohler M. Effect of CPAP therapy on endothelial function in obstructive sleep apnoea: a systematic review and meta-analysis. Respirology. 2015;20(6):889–95. https://pubmed.ncbi.nlm.nih.gov/26073295/
Bjorvatn B, Fiske E, Pallesen S. A self-help book is better than sleep hygiene advice for insomnia: a randomized controlled comparative study. Scand J Psychol. 2011;52(6):580–5. https://pubmed.ncbi.nlm.nih.gov/21790620/
Ancoli-Israel S. Sleep problems in older adults: putting myths to bed. Geriatrics. 1997;52(1):20–30. https://pubmed.ncbi.nlm.nih.gov/9003201/
Miner B, Kryger MH. Sleep in the aging population. Sleep Med Clin. 2017;12(1):31–8. https://pubmed.ncbi.nlm.nih.gov/28159095/
Lovato N, Lack L. Insomnia and mortality: a meta-analysis. Sleep Med Rev. 2019;43:71–83. https://pubmed.ncbi.nlm.nih.gov/30529432/
Barclay NL, Kocevska D, Bramer WM, Van Someren EJW, Gehrman P. The heritability of insomnia: a meta-analysis of twin studies. Genes Brain Behav. 2021;20(4):e12717. https://pubmed.ncbi.nlm.nih.gov/33222383/
Machado FV, Louzada LL, Cross NE, Camargos EF, Dang-Vu TT, Nóbrega OT. More than a quarter century of the most prescribed sleeping pill: systematic review of zolpidem use by older adults. Exp Gerontol. 2020;136:110962. https://pubmed.ncbi.nlm.nih.gov/32360985/
Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open. 2012;2(1):1–10. https://pubmed.ncbi.nlm.nih.gov/22371848/
Baber R. Climacteric commentaries. Better sleep but higher mortality risk. Climacteric. 2012;15(4):401. https://pubmed.ncbi.nlm.nih.gov/22950121/
Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open. 2012;2(1):1–10. https://pubmed.ncbi.nlm.nih.gov/22371848/
Rabin RC. New worries about sleeping pills. The New York Times: Well. https://well.blogs.nytimes.com/2012/03/12/new-worries-about-sleeping-pills. Published March 12, 2012. Accessed April 17, 2019.; https://well.blogs.nytimes.com/2012/03/12/new-worries-about-sleeping-pills
Kripke DF. Mortality risk of hypnotics: strengths and limits of evidence. Drug Saf. 2016;39(2):93–107. https://pubmed.ncbi.nlm.nih.gov/26563222/
Bianchi MT, Thomas RJ, Ellenbogen JM. Hypnotics and mortality risk. J Clin Sleep Med. 2012;8(4):351–2. https://pubmed.ncbi.nlm.nih.gov/22893762/
Kripke DF, Langer RD, Kline LE. Do no harm: not even to some degree. J Clin Sleep Med. 2012;8(4):353–4. https://pubmed.ncbi.nlm.nih.gov/22893763/
Huedo-Medina TB, Kirsch I, Middlemass J, Klonizakis M, Siriwardena AN. Effectiveness of non-benzodiazepine hypnotics in treatment of adult insomnia: meta-analysis of data submitted to the Food and Drug Administration. BMJ. 2012;345. https://pubmed.ncbi.nlm.nih.gov/23248080/
Buscemi N, Vandermeer B, Friesen C, et al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs. J Gen Intern Med. 2007;22(9):1335–50. https://pubmed.ncbi.nlm.nih.gov/17619935/
Kripke DF, Langer RD, Kline LE. Do no harm: not even to some degree. J Clin Sleep Med. 2012;08(04):353–4. https://pubmed.ncbi.nlm.nih.gov/22893763/
Matheson E, Hainer BL. Insomnia: pharmacologic therapy. Am Fam Physician. 2017;96(1):29–35. https://pubmed.ncbi.nlm.nih.gov/28671376/
Brown RF, Thorsteinsson EB, Smithson M, Birmingham CL, Aljarallah H, Nolan C. Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle? Eat Weight Disord. 2017;22(4):599–608. https://pubmed.ncbi.nlm.nih.gov/28929462/
Brown RF, Thorsteinsson EB, Smithson M, Birmingham CL, Aljarallah H, Nolan C. Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle? Eat Weight Disord. 2017;22(4):599–608. https://pubmed.ncbi.nlm.nih.gov/28929462/
Sung EJ, Tochihara Y. Effects of bathing and hot footbath on sleep in winter. J Physiol Anthropol Appl Human Sci. 2000;19(1):21–7. https://pubmed.ncbi.nlm.nih.gov/10979246/
Aghamohammadi V, Salmani R, Ivanbagha R, Effati-Daryani F, Nasiri K. Footbath as a safe, simple, and non-pharmacological method to improve sleep quality of menopausal women. Res Nurs Health. 2020;43(6):621–8. https://pubmed.ncbi.nlm.nih.gov/33112004/
Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Before-bedtime passive body heating by warm shower or bath to improve sleep: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:124–35. https://pubmed.ncbi.nlm.nih.gov/31102877/
Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Before-bedtime passive body heating by warm shower or bath to improve sleep: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:124–35. https://pubmed.ncbi.nlm.nih.gov/31102877/
Liao WC, Wang L, Kuo CP, Lo C, Chiu MJ, Ting H. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial. Int J Nurs Stud. 2013;50(12):1607–16. https://pubmed.ncbi.nlm.nih.gov/23669188/
Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Warm feet promote the rapid onset of sleep. Nature. 1999;401(6748):36–7. https://pubmed.ncbi.nlm.nih.gov/10485703/
Ko Y, Lee JY. Effects of feet warming using bed socks on sleep quality and thermoregulatory responses in a cool environment. J Physiol Anthropol. 2018;37(1):13. https://pubmed.ncbi.nlm.nih.gov/29699592/
Matheson E, Hainer BL. Insomnia: pharmacologic therapy. Am Fam Physician. 2017;96(1):29–35. https://pubmed.ncbi.nlm.nih.gov/28671376/
Morin CM, Inoue Y, Kushida C, et al. Endorsement of European guideline for the diagnosis and treatment of insomnia by the World Sleep Society. Sleep Med. 2021;81:124–6. https://pubmed.ncbi.nlm.nih.gov/33667998/
Fatemeh G, Sajjad M, Niloufar R, Neda S, Leila S, Khadijeh M. Effect of melatonin supplementation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2022;269(1):205–16. https://pubmed.ncbi.nlm.nih.gov/33417003/
Brzezinski A, Vangel MG, Wurtman RJ, et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev. 2005;9(1):41–50. https://pubmed.ncbi.nlm.nih.gov/15649737/
Williamson B, Tomlinson A, Naylor S, Gleich G. Contaminants in commercial preparations of melatonin. Mayo Clin Proc. 1997;72(11):1094–5. https://pubmed.ncbi.nlm.nih.gov/9374988/
Poeggeler B. Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine. 2005;27(2):201–12. https://pubmed.ncbi.nlm.nih.gov/16217133/
Oaknin-Bendahan S, Anis Y, Nir I, Zisapel N. Effects of long-term administration of melatonin and a putative antagonist on the ageing rat. Neuroreport. 1995;6(5):785–8. https://pubmed.ncbi.nlm.nih.gov/7605949/
Kim J, Lee SL, Kang I, et al. Natural products from single plants as sleep aids: a systematic review. J Med Food. 2018;21(5):433–44. https://pubmed.ncbi.nlm.nih.gov/29356580/
Taibi DM, Landis CA, Petry H, Vitiello MV. A systematic review of valerian as a sleep aid: safe but not effective. Sleep Med Rev. 2007;11(3):209–30. https://pubmed.ncbi.nlm.nih.gov/17517355/
Afrasiabian F, Ardakani MM, Rahmani K, et al. Aloysia citriodora Palau (lemon verbena) for insomnia patients: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Phytother Res. 2019;33(2):350–9. https://pubmed.ncbi.nlm.nih.gov/30450627/
Zick SM, Wright BD, Sen A, Arnedt JT. Preliminary examination of the efficacy and safety of a standardized chamomile extract for chronic primary insomnia: a randomized placebo-controlled pilot study. BMC Complement Altern Med. 2011;11:78. https://pubmed.ncbi.nlm.nih.gov/21939549/
Hieu TH, Dibas M, Dila KAS, et al. Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: a systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytother Res. 2019;33(6):1604–15. https://pubmed.ncbi.nlm.nih.gov/31006899/
St-Onge MP, Roberts A, Shechter A, Choudhury AR. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J Clin Sleep Med. 2016;12(1):19–24. https://pubmed.ncbi.nlm.nih.gov/26156950/
Grandner MA, Kripke DF, Naidoo N, Langer RD. Relationships among dietary nutrients and subjective sleep, objective sleep, and napping in women. Sleep Med. 2010;11(2):180. https://pubmed.ncbi.nlm.nih.gov/20005774/
McClernon FJ, Yancy WS, Eberstein JA, Atkins RC, Westman EC. The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity (Silver Spring). 2007;15(1):182–7. https://pubmed.ncbi.nlm.nih.gov/17228046/
Lana A, Struijk EA, Arias-Fernandez L, et al. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019;10(2):267–77. https://pubmed.ncbi.nlm.nih.gov/31011478/
Hansen AL, Dahl L, Olson G, et al. Fish consumption, sleep, daily functioning, and heart rate variability. J Clin Sleep Med. 2014;10(5):567–75. https://pubmed.ncbi.nlm.nih.gov/24812543/
Lana A, Struijk EA, Arias-Fernandez L, et al. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019;10(2):267–77. https://pubmed.ncbi.nlm.nih.gov/31011478/
Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr. 2003;77(1):128–32. https://pubmed.ncbi.nlm.nih.gov/12499331/
Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores improves mood: a pilot randomized controlled trial. Nutr J. 2012;11:9. https://pubmed.ncbi.nlm.nih.gov/22333737/
Merrill RM, Aldana SG, Greenlaw RL, Diehl HA, Salberg A. The effects of an intensive lifestyle modification program on sleep and stress disorders. J Nutr Health Aging. 2007;11(3):242–8. https://pubmed.ncbi.nlm.nih.gov/17508101/
St-Onge MP, Crawford A, Aggarwal B. Plant-based diets: reducing cardiovascular risk by improving sleep quality? Curr Sleep Med Rep. 2018;4(1):74–8. https://pubmed.ncbi.nlm.nih.gov/29910998/
Harsha SN, Anilakumar KR. Anxiolytic property of Lactuca sativa, effect on anxiety behaviour induced by novel food and height. Asian Pac J Trop Med. 2013;6(7):532–6. https://pubmed.ncbi.nlm.nih.gov/23768824/
Gonzálex-lima F, Valedón A, Stiehil WL. Depressant pharmacological effects of a component isolated from lettuce, Lactuca sativa. Int J Crude Drug Res. 1986;24(3):154–66. https://www.tandfonline.com/doi/abs/10.3109/13880208609060893
Kim H-W, Suh HJ, Choi H-S, Hong K-B, Jo K. Effectiveness of the sleep enhancement by green romaine lettuce (Lactuca sativa) in a rodent model. Biol Pharm Bull. 2019;42(10):1726–32. https://pubmed.ncbi.nlm.nih.gov/31582660/
Kim HD, Hong K-B, Noh DO, Suh HJ. Sleep-inducing effect of lettuce (Lactuca sativa) varieties on pentobarbital-induced sleep. Food Sci Biotechnol. 2017;26(3):807–14. https://pubmed.ncbi.nlm.nih.gov/30263607/
Pour ZS, Hosseinkhani A, Asadi N, et al. Double-blind randomized placebo-controlled trial on efficacy and safety of Lactuca sativa L. seeds on pregnancy-related insomnia. J Ethnopharmacol. 2018;227:176–80. https://pubmed.ncbi.nlm.nih.gov/30172900/
Thomas T. Perls, MD, MPH, FACP. Boston University School of Medicine website. https://www.bumc.bu.edu/busm/profile/thomas-perls/. Accessesd April 3, 2022.; https://www.bumc.bu.edu/busm/profile/thomas-perls/
Sebastiani P, Perls TT. The genetics of extreme longevity: lessons from the New England Centenarian Study. Front Gene. 2012;3:277. https://pubmed.ncbi.nlm.nih.gov/23226160/
Tomiyama AJ. Stress and obesity. Annu Rev Psychol. 2019;70:703–18. https://pubmed.ncbi.nlm.nih.gov/29927688/
Baxter AJ, Scott KM, Ferrari AJ, Norman RE, Vos T, Whiteford HA. Challenging the myth of an “epidemic” of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010. Depress Anxiety. 2014;31(6):506–16. https://pubmed.ncbi.nlm.nih.gov/24448889/
Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007;91(4):449–58. https://pubmed.ncbi.nlm.nih.gov/17543357/
Tomiyama A. Stress and obesity. Annu Rev Psychol. 2019;70:703–18. https://pubmed.ncbi.nlm.nih.gov/29927688/
Zellner DA, Loaiza S, Gonzalez Z, et al. Food selection changes under stress. Physiol Behav. 2006;87(4):789–93. https://pubmed.ncbi.nlm.nih.gov/16519909/
Buchmann AF, Laucht M, Schmid B, Wiedemann K, Mann K, Zimmermann US. Cigarette craving increases after a psychosocial stress test and is related to cortisol stress response but not to dependence scores in daily smokers. J Psychopharmacol. 2010;24(2):247–55. https://pubmed.ncbi.nlm.nih.gov/18957475/
Magrys SA, Olmstead MC. Acute stress increases voluntary consumption of alcohol in undergraduates. Alcohol Alcohol. 2015;50(2):213–8. https://pubmed.ncbi.nlm.nih.gov/25557606/
Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry. 2006;63(3):324–31. https://pubmed.ncbi.nlm.nih.gov/16520439/
Rutters F, Pilz S, Koopman AD, et al. The association between psychosocial stress and mortality is mediated by lifestyle and chronic diseases: the Hoorn Study. Soc Sci Med. 2014;118:166–72. https://pubmed.ncbi.nlm.nih.gov/25137635/
Rodgers J, Cuevas AG, Williams DR, Kawachi I, Subramanian SV. The relative contributions of behavioral, biological, and psychological risk factors in the association between psychosocial stress and all-cause mortality among middle- and older-aged adults in the USA. Geroscience. 2021;43(2):655–72. https://pubmed.ncbi.nlm.nih.gov/33511488/
Strøm A, Jensen RA. Mortality from circulatory diseases in Norway 1940–1945. Lancet. 1951;1(6647):126–9. https://pubmed.ncbi.nlm.nih.gov/14795790/
Keys A. Coronary heart disease – the global picture. Atherosclerosis. 1975;22(2):149–92. https://pubmed.ncbi.nlm.nih.gov/1103902/
Malmros H. The relation of nutrition to health; a statistical study of the effect of the war-time on arteriosclerosis https://pubmed.ncbi.nlm.nih.gov/14789502/
Cronkite W. Poverty and want rip Netherlands; troops say Dutch suffered hunger https://www.nytimes.com/1944/09/29/archives/poverty-and-want-rip-netherlands-troops-say-dutch-suffered-hunger.html
Diet and stress in vascular disease. JAMA. 1961;176(9):806–7. https://pubmed.ncbi.nlm.nih.gov/14447689/
Hitchcott PK, Fastame MC, Penna MP. More to Blue Zones than long life: positive psychological characteristics. Health Risk Soc. 2018;20(3–4):163–81. https://www.tandfonline.com/doi/full/10.1080/13698575.2018.1496233
Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/
Ennis J, Majid U. “Death from a broken heart”: a systematic review of the relationship between spousal bereavement and physical and physiological health outcomes. Death Stud. 2021;45(7):538–51. https://pubmed.ncbi.nlm.nih.gov/31535594/
Friedmann E, Katcher AH, Lynch JJ, Thomas SA. Animal companions and one-year survival of patients after discharge from a coronary care unit. Public Health Rep. 1980;95(4):307–12. https://pubmed.ncbi.nlm.nih.gov/6999524/
Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/
Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/
Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10(2):227–37. https://pubmed.ncbi.nlm.nih.gov/25910392/
Rico-Uribe LA, Caballero FF, Martín-María N, Cabello M, Ayuso-Mateos JL, Miret M. Association of loneliness with all-cause mortality: a meta-analysis. PLoS One. 2018;13(1):e0190033. https://pubmed.ncbi.nlm.nih.gov/29300743/
Shor E, Roelfs DJ. Social contact frequency and all-cause mortality: a meta-analysis and meta-regression. Soc Sci Med. 2015;128:76–86. https://pubmed.ncbi.nlm.nih.gov/25594955/
Stickley A, Koyanagi A, Roberts B, et al. Loneliness: its correlates and association with health behaviours and outcomes in nine countries of the former Soviet Union. PLoS One. 2013;8(7):e67978. https://pubmed.ncbi.nlm.nih.gov/23861843/
Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10(2):227–37. https://pubmed.ncbi.nlm.nih.gov/25910392/
Kramer CK, Mehmood S, Suen RS. Dog ownership and survival: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005554. https://pubmed.ncbi.nlm.nih.gov/31592726/
Nagasawa M, Mitsui S, En S, et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science. 2015;348(6232):333–6. https://pubmed.ncbi.nlm.nih.gov/25883356/
Friedmann E, Katcher AH, Lynch JJ, Thomas SA. Animal companions and one-year survival of patients after discharge from a coronary care unit. Public Health Rep. 1980;95(4):307–12. https://pubmed.ncbi.nlm.nih.gov/6999524/
Herzog H. The impact of pets on human health and psychological well-being: fact, fiction, or hypothesis? Curr Dir Psychol Sci. 2011;20(4):236–9. https://journals.sagepub.com/doi/10.1177/0963721411415220
Kazi DS. Who is rescuing whom? Dog ownership and cardiovascular health. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005887. https://pubmed.ncbi.nlm.nih.gov/31592727/
Kazi DS. Who is rescuing whom? Dog ownership and cardiovascular health. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005887. https://pubmed.ncbi.nlm.nih.gov/31592727/
Ko HJ, Youn CH, Kim SH, Kim SY. Effect of pet insects on the psychological health of community-dwelling elderly people: a single-blinded, randomized, controlled trial. Gerontology. 2016;62(2):200–9. https://pubmed.ncbi.nlm.nih.gov/26383099/
Puterbaugh JS. The emperor’s tailors: the failure of the medical weight loss paradigm and its causal role in the obesity of America. Diabetes Obes Metab. 2009;11(6):557–70. https://pubmed.ncbi.nlm.nih.gov/19383033/
Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/
Gupta T, Das N, Imran S. The prevention and therapy of osteoporosis: a review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J Diet Suppl. 2019;16(6):699–713. https://pubmed.ncbi.nlm.nih.gov/29985715/
Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/
Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/
Lorentzon M, Cummings SR. Osteoporosis: the evolution of a diagnosis. J Intern Med. 2015;277(6):650–61. https://pubmed.ncbi.nlm.nih.gov/25832448/
Gupta T, Das N, Imran S. The prevention and therapy of osteoporosis: a review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J Diet Suppl. 2019;16(6):699–713. https://pubmed.ncbi.nlm.nih.gov/29985715/
Sahota O, Masud T. Osteoporosis: fact, fiction, fallacy and the future. Age Ageing. 1999;28(5):425–8. https://pubmed.ncbi.nlm.nih.gov/10529034/
Michaëlsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165(16):1825–30. https://pubmed.ncbi.nlm.nih.gov/16157825/
Kanis JA, Odén A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56. https://pubmed.ncbi.nlm.nih.gov/22419370/
Final recommendation statement: osteoporosis to prevent fractures: screening. U.S. Preventative Services Task Force website. https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/osteoporosis-screening. Published June 26, 2018. Accessed March 6, 2022.; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/osteoporosis-screening
Luo H, Fan Q, Xiao S, Chen K. Changes in proton pump inhibitor prescribing trend over the past decade and pharmacists’ effect on prescribing practice at a tertiary hospital. BMC Health Serv Res. 2018;18(1):537. https://pubmed.ncbi.nlm.nih.gov/29996830/
Poly TN, Islam MM, Yang HC, Wu CC, Li YCJ. Proton pump inhibitors and risk of hip fracture: a meta-analysis of observational studies. Osteoporos Int. 2019;30(1):103–14. https://pubmed.ncbi.nlm.nih.gov/30539272/
Xun X, Yin Q, Fu Y, He X, Dong Z. Proton pump inhibitors and the risk of community-acquired pneumonia: an updated meta-analysis. Ann Pharmacother. 2022;56(5):524–32. https://pubmed.ncbi.nlm.nih.gov/34425689/
Moayyedi P, Lewis MA. Proton pump inhibitors and dementia: deciphering the data. Am J Gastroenterol. 2017;112(12):1809–11. https://pubmed.ncbi.nlm.nih.gov/29215629/
Vengrus CS, Delfino VD, Bignardi PR. Proton pump inhibitors use and risk of chronic kidney disease and end-stage renal disease. Minerva Urol Nephrol. 2021;73(4):462–70. https://pubmed.ncbi.nlm.nih.gov/33769018/
D’Silva KM, Mehta R, Mitchell M, et al. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(5):697–703. https://pubmed.ncbi.nlm.nih.gov/33465501/
Salvo EM, Ferko NC, Cash SB, Gonzalez A, Kahrilas PJ. Umbrella review of 42 systematic reviews with meta-analyses: the safety of proton pump inhibitors. Aliment Pharmacol Ther. 2021;54(2):129–43. https://pubmed.ncbi.nlm.nih.gov/34114655/
Sun S, Cui Z, Zhou M, et al. Proton pump inhibitor monotherapy and the risk of cardiovascular events in patients with gastro-esophageal reflux disease: a meta-analysis. Neurogastroenterol Motil. 2017;29(2):e12926. https://pubmed.ncbi.nlm.nih.gov/27577963/
Ben-Eltriki M, Green CJ, Maclure M, Musini V, Bassett KL, Wright JM. Do proton pump inhibitors increase mortality? A systematic review and in-depth analysis of the evidence. Pharmacol Res Perspect. 2020;8(5):e00651. https://pubmed.ncbi.nlm.nih.gov/32996701/
Safer DJ. Overprescribed medications for US adults: four major examples. J Clin Med Res. 2019;11(9):617–22. https://pubmed.ncbi.nlm.nih.gov/31523334/
Safer DJ. Overprescribed medications for US adults: four major examples. J Clin Med Res. 2019;11(9):617–22. https://pubmed.ncbi.nlm.nih.gov/31523334/
Ness-Jensen E, Hveem K, El-Serag H, Lagergren J. Lifestyle intervention in gastroesophageal reflux disease. Clin Gastroenterol Hepatol. 2016;14(2):175–82.e1–3. https://pubmed.ncbi.nlm.nih.gov/25956834/
Andrici J, Cox MR, Eslick GD. Cigarette smoking and the risk of Barrett’s esophagus: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2013;28(8):1258–73. https://pubmed.ncbi.nlm.nih.gov/23611750/
Fan WJ, Hou YT, Sun XH, et al. Effect of high-fat, standard, and functional food meals on esophageal and gastric pH in patients with gastroesophageal reflux disease and healthy subjects. J Dig Dis. 2018;19(11):664–73. https://pubmed.ncbi.nlm.nih.gov/30270576/
Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol. 2013;108(3):308–28. https://pubmed.ncbi.nlm.nih.gov/23419381/
Newberry C, Lynch K. The role of diet in the development and management of gastroesophageal reflux disease: why we feel the burn. J Thorac Dis. 2019;11(Suppl 12):S1594–601. https://pubmed.ncbi.nlm.nih.gov/31489226/
Jung JG, Kang HW. Vegetarianism and the risk of gastroesophageal reflux disease. In: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Elsevier; 2017:463–72. https://www.sciencedirect.com/science/article/abs/pii/B9780128039687000253?via%3Dihub
Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ. 1997;315(7112):841–6. https://pubmed.ncbi.nlm.nih.gov/9353503/
Patel RA, Wilson RF, Patel PA, Palmer RM. The effect of smoking on bone healing. Bone Joint Res. 2013;2(6):102–11. https://pubmed.ncbi.nlm.nih.gov/23836474/
Kim JH, Patel S. Is it worth discriminating against patients who smoke? A systematic literature review on the effects of tobacco use in foot and ankle surgery. J Foot Ankle Surg. 2017;56(3):594–9. https://pubmed.ncbi.nlm.nih.gov/28476393/
Bourne D, Plinke W, Hooker ER, Nielson CM. Cannabis use and bone mineral density: NHANES 2007–2010. Arch Osteoporos. 2017;12(1):29. https://pubmed.ncbi.nlm.nih.gov/28286929/
Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH. Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med. 2017;130(2):214–21. https://pubmed.ncbi.nlm.nih.gov/27593602/
Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://pubmed.ncbi.nlm.nih.gov/25182228/
Wright J. Marketing disease: is osteoporosis an example of “disease mongering”? Br J Nurs. 2009;18(17):1064–7. https://pubmed.ncbi.nlm.nih.gov/19798007/
Hudson B, Zarifeh A, Young L, Wells JE. Patients’ expectations of screening and preventive treatments. Ann Fam Med. 2012;10(6):495–502. https://pubmed.ncbi.nlm.nih.gov/23149525/
Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med. 2016;374(21):2096–7. https://pubmed.ncbi.nlm.nih.gov/26789873/
Lems WF, Raterman HG. Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther Adv Musculoskelet Dis. 2017;9(12):299–316. https://pubmed.ncbi.nlm.nih.gov/29201155/
Kolata G. Fearing drugs’ rare side effects, millions take their chances with osteoporosis. The New York Times. https://www.nytimes.com/2016/06/02/health/osteoporosis-drugs-bones.html. Published June 1, 2016. Accessed March 6, 2022.; https://www.nytimes.com/2016/06/02/health/osteoporosis-drugs-bones.html
Sales LP, Pinto AJ, Rodrigues SF, et al. Creatine supplementation (3 g/d) and bone health in older women: a 2-year, randomized, placebo-controlled trial. J Gerontol A Biol Sci Med Sci. 2020;75(5):931–8. https://pubmed.ncbi.nlm.nih.gov/31257405/
Candow DG, Forbes SC, Kirk B, Duque G. Current evidence and possible future applications of creatine supplementation for older adults. Nutrients. 2021;13(3):745. https://pubmed.ncbi.nlm.nih.gov/33652673/
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95. https://pubmed.ncbi.nlm.nih.gov/11440324/
Nestle M, Nesheim MC. To supplement or not to supplement: the U.S. Preventive Services Task Force recommendations on calcium and vitamin D. Ann Intern Med. 2013;158(9):701–2. https://pubmed.ncbi.nlm.nih.gov/23440174/
Grossman DC, Curry SJ, Owens DK, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(15):1592–9. https://pubmed.ncbi.nlm.nih.gov/29677309/
Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf. 2013;4(5):199–210. https://pubmed.ncbi.nlm.nih.gov/25114781/
Reid IR, Bristow SM, Bolland MJ. Calcium supplements: benefits and risks. J Intern Med. 2015;278(4):354–68. https://pubmed.ncbi.nlm.nih.gov/26174589/
Reid IR, Bolland MJ. Risk factors: calcium supplements and cardiovascular risk. Nat Rev Cardiol. 2012;9(9):497–8. https://pubmed.ncbi.nlm.nih.gov/22776986/
Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium intake and hip fracture risk in men and women: a meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr. 2007;86(6):1780–90. https://pubmed.ncbi.nlm.nih.gov/18065599/
Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf. 2013;4(5):199–210. https://pubmed.ncbi.nlm.nih.gov/25114781/
Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/
Dawson-Hughes B, Jacques P, Shipp C. Dietary calcium intake and bone loss from the spine in healthy postmenopausal women. Am J Clin Nutr. 1987;46(4):685–7. https://pubmed.ncbi.nlm.nih.gov/3661483/
Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22. https://pubmed.ncbi.nlm.nih.gov/20460620/
Ginde AA, Blatchford P, Breese K, et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial. J Am Geriatr Soc. 2017;65(3):496–503. https://pubmed.ncbi.nlm.nih.gov/27861708/
Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83. https://pubmed.ncbi.nlm.nih.gov/26747333/
Smith LM, Gallagher JC, Suiter C. Medium doses of vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol. 2017;173:317–22. https://pubmed.ncbi.nlm.nih.gov/28323044/
Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: a randomized clinical trial. JAMA. 2019;322(8):736–45. https://pubmed.ncbi.nlm.nih.gov/31454046/
Burt LA, Billington EO, Rose MS, Kremer R, Hanley DA, Boyd SK. Adverse effects of high-dose vitamin D supplementation on volumetric bone density are greater in females than males. J Bone Miner Res. 2020;35(12):2404–14. https://pubmed.ncbi.nlm.nih.gov/31454046/
Iuliano S, Hill TR. Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence. Br J Nutr. 2019;121(7):763–72. https://pubmed.ncbi.nlm.nih.gov/30638442/
Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/
Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/
Phillip A. Study: milk may not be very good for bones or the body. The Washington Post. https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/. Published October 31, 2014. Accessed March 23, 2022.; https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/
Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://pubmed.ncbi.nlm.nih.gov/25352269/
Cui X, Wang L, Zuo P, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology. 2004;5(5):317–25. https://pubmed.ncbi.nlm.nih.gov/15547319/
Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res. 2006;84(3):647–54. https://pubmed.ncbi.nlm.nih.gov/16555301/
Simoons FJ. A geographic approach to senile cataracts: possible links with milk consumption, lactase activity, and galactose metabolism. Dig Dis Sci. 1982;27(3):257–64. https://pubmed.ncbi.nlm.nih.gov/6804198/
Sella R, Afshari NA. Nutritional effect on age-related cataract formation and progression. Curr Opin Ophthalmol. 2019;30(1):63–9. https://pubmed.ncbi.nlm.nih.gov/30320615/
Ding M, Li J, Qi L, et al. Associations of dairy intake with risk of mortality in women and men: three prospective cohort studies. BMJ. 2019;367:l6204. https://pubmed.ncbi.nlm.nih.gov/31776125/
Grey A, Bolland M. Web of industry, advocacy, and academia in the management of osteoporosis. BMJ. 2015;351:h3170. https://pubmed.ncbi.nlm.nih.gov/26198274/
Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/
Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/
Dai Z, Kroeger CM, Lawrence M, Scrinis G, Bero L. Comparison of methodological quality between the 2007 and 2019 Canadian dietary guidelines. Public Health Nutr. 2020;23(16):2879–85. https://pubmed.ncbi.nlm.nih.gov/32552917/
Ausman LM, Oliver LM, Goldin BR, Woods MN, Gorbach SL, Dwyer JT. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores. J Ren Nutr. 2008;18(5):456–65. https://pubmed.ncbi.nlm.nih.gov/18721741/
Kerstetter JE, O’Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab. 2005;90(1):26–31. https://pubmed.ncbi.nlm.nih.gov/15546911/
Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008;87(3):662–5. https://pubmed.ncbi.nlm.nih.gov/18326605/
Groesbeck DK, Bluml RM, Kossoff EH. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48(12):978–81. https://pubmed.ncbi.nlm.nih.gov/17109786/
Heikura IA, Burke LM, Hawley JA, et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front Endocrinol (Lausanne). 2020;10:880. https://pubmed.ncbi.nlm.nih.gov/32038477/
Simm PJ, Bicknell-Royle J, Lawrie J, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res. 2017;136:62–6. https://pubmed.ncbi.nlm.nih.gov/28778055/
Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr. 2008;88(6):1678–84. https://pubmed.ncbi.nlm.nih.gov/19064531/
Yancy WS, Olsen MK, Dudley T, Westman EC. Acid-base analysis of individuals following two weight loss diets. Eur J Clin Nutr. 2007;61(12):1416–22. https://pubmed.ncbi.nlm.nih.gov/17299473/
Gunaratnam K, Vidal C, Gimble JM, Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology. 2014;155(1):108–16. https://pubmed.ncbi.nlm.nih.gov/24169557/
Mozaffari H, Djafarian K, Mofrad MD, Shab-Bidar S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2018;29(9):1949–61. https://pubmed.ncbi.nlm.nih.gov/29947872/
Frassetto L, Sebastian A. Age and systemic acid-base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci. 1996;51(1):B91–9. https://pubmed.ncbi.nlm.nih.gov/8548506/
Frassetto L, Banerjee T, Powe N, Sebastian A. Acid balance, dietary acid load, and bone effects – a controversial subject. Nutrients. 2018;10(4):517. https://pubmed.ncbi.nlm.nih.gov/29690515/
Cao JJ, Whigham LD, Jahns L. Depletion and repletion of fruit and vegetable intake alters serum bone turnover markers: a 28-week single-arm experimental feeding intervention. Br J Nutr. 2018;120(5):500–7. https://pubmed.ncbi.nlm.nih.gov/30022739/
Hayhoe RPG, Abdelhamid A, Luben RN, Khaw KT, Welch AA. Dietary acid-base load and its association with risk of osteoporotic fractures and low estimated skeletal muscle mass. Eur J Clin Nutr. 2020;74(Suppl 1):33–42. https://pubmed.ncbi.nlm.nih.gov/32873955/
Macdonald R, Black A, Sandison R, Aucott L, et al. Two year double blind randomized controlled trial in postmenopausal women shows no gain in BMD with potassium citrate treatment. Paper presented at: 28th Annual Meeting of the American Society of Bone and Mineral Research; September 15–19 https://pubmed.ncbi.nlm.nih.gov/18689384/
Dawson-Hughes B. Acid-base balance of the diet-implications for bone and muscle. Eur J Clin Nutr. 2020;74(Suppl 1):7–13. https://pubmed.ncbi.nlm.nih.gov/32873951/
Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(1):207–17. https://pubmed.ncbi.nlm.nih.gov/23162100/
Fang Y, Zhu J, Fan J, et al. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos Int. 2021;32(4):633–43. https://pubmed.ncbi.nlm.nih.gov/32740669/
Mun H, Liu B, Pham THA, Wu Q. C-reactive protein and fracture risk: an updated systematic review and meta-analysis of cohort studies through the use of both frequentist and Bayesian approaches. Osteoporos Int. 2021;32(3):425–35. https://pubmed.ncbi.nlm.nih.gov/32935169/
Zhao F, Guo L, Wang X, Zhang Y. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: a systematic review and meta-analysis. Arch Osteoporos. 2021;16(1):4. https://pubmed.ncbi.nlm.nih.gov/33400044/
Brondani JE, Comim FV, Flores LM, Martini LA, Premaor MO. Fruit and vegetable intake and bones: a systematic review and meta-analysis. PLoS One. 2019;14(5):e0217223. https://pubmed.ncbi.nlm.nih.gov/31150426/
Zeng LF, Luo MH, Liang GH, et al. Can dietary intake of vitamin C – oriented foods reduce the risk of osteoporosis, fracture, and BMD loss? Systematic review with meta-analyses of recent studies. Front Endocrinol (Lausanne). 2019;10:844. https://pubmed.ncbi.nlm.nih.gov/32117042/
Sun Y, Liu C, Bo Y, et al. Dietary vitamin C intake and the risk of hip fracture: a dose-response meta-analysis. Osteoporos Int. 2018;29(1):79–87. https://pubmed.ncbi.nlm.nih.gov/29101410/
Mühlbauer RC, Lozano A, Reinli A, Wetli H. Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr. 2003;133(11):3592–7. https://pubmed.ncbi.nlm.nih.gov/14608079/
Hooshmand S, Kern M, Metti D, et al. The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: a randomized, controlled trial. Osteoporos Int. 2016;27(7):2271–9. https://pubmed.ncbi.nlm.nih.gov/26902092/
Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct. 2016;7(2):902–12. https://pubmed.ncbi.nlm.nih.gov/26686359/
Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22(4):1091–101. https://pubmed.ncbi.nlm.nih.gov/20552330/
Russo C, Ferro Y, Maurotti S, et al. Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. J Transl Med. 2020;18(1):43. https://pubmed.ncbi.nlm.nih.gov/31996227/
Gunn CA, Weber JL, McGill AT, Kruger MC. Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women. Nutrients. 2015;7(4):2499–517. https://pubmed.ncbi.nlm.nih.gov/25856221/
Cheraghi Z, Doosti-Irani A, Almasi-Hashiani A, et al. The effect of alcohol on osteoporosis: a systematic review and meta-analysis. Drug Alcohol Depend. 2019;197:197–202. https://pubmed.ncbi.nlm.nih.gov/30844616/
Godos J, Giampieri F, Chisari E, et al. Alcohol consumption, bone mineral density, and risk of osteoporotic fractures: a dose-response meta-analysis. Int J Environ Res Public Health. 2022;19(3):1515. https://pubmed.ncbi.nlm.nih.gov/35162537/
Lems WF, Raterman HG. Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther Adv Musculoskelet Dis. 2017;9(12):299–316. https://pubmed.ncbi.nlm.nih.gov/29201155/
Ahn H, Park YK. Sugar-sweetened beverage consumption and bone health: a systematic review and meta-analysis. Nutr J. 2021;20(1):41. https://pubmed.ncbi.nlm.nih.gov/33952276/
Fatahi S, Namazi N, Larijani B, Azadbakht L. The association of dietary and urinary sodium with bone mineral density and risk of osteoporosis: a systematic review and meta-analysis. J Am Coll Nutr. 2018;37(6):522–32. https://pubmed.ncbi.nlm.nih.gov/29617220/
Mortensen SJ, Beeram I, Florance J, et al. Modifiable lifestyle factors associated with fragility hip fracture: a systematic review and meta-analysis. J Bone Miner Metab. 2021;39(5):893–902. https://pubmed.ncbi.nlm.nih.gov/33991260/
Shen CL, Chyu MC, Yeh JK, et al. Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial. Osteoporos Int. 2012;23(5):1541–52. https://pubmed.ncbi.nlm.nih.gov/21766228/
Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS. Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int. 2008;19(7):979–90. https://pubmed.ncbi.nlm.nih.gov/18084689/
Dostal AM, Arikawa A, Espejo L, Kurzer MS. Long-term supplementation of green tea extract does not modify adiposity or bone mineral density in a randomized trial of overweight and obese postmenopausal women. J Nutr. 2016;146(2):256–64. https://pubmed.ncbi.nlm.nih.gov/26701796/
Platt ID, Josse AR, Kendall CWC, Jenkins DJA, El-Sohemy A. Postprandial effects of almond consumption on human osteoclast precursors – an ex vivo study. Metabolism. 2011;60(7):923–9. https://pubmed.ncbi.nlm.nih.gov/20947104/
Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/
Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. https://pubmed.ncbi.nlm.nih.gov/12117397/
Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008;74(13):1656–65. https://pubmed.ncbi.nlm.nih.gov/18843590/
McCarty MF. Isoflavones made simple – genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses. 2006;66(6):1093–114. https://pubmed.ncbi.nlm.nih.gov/16513288/
Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/
Sansai K, Na Takuathung M, Khatsri R, Teekachunhatean S, Hanprasertpong N, Koonrungsesomboon N. Effects of isoflavone interventions on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2020;31(10):1853–64. https://pubmed.ncbi.nlm.nih.gov/32524173/
Morabito N, Crisafulli A, Vergara C, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res. 2002;17(10):1904–12. https://pubmed.ncbi.nlm.nih.gov/12369794/
Lydeking-Olsen E, Beck-Jensen JE, Setchell KDR, Holm-Jensen T. Soymilk or progesterone for prevention of bone loss: a 2 year randomized, placebo-controlled trial. Eur J Nutr. 2004;43(4):246–57. https://pubmed.ncbi.nlm.nih.gov/15309425/
Koch L. Nutrition: High isoflavone intake delays puberty onset and may reduce breast cancer risk in girls. Nat Rev Endocrinol. 2010;6(11):595. https://pubmed.ncbi.nlm.nih.gov/21038502/
Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control. 1998;9(6):553–7. https://pubmed.ncbi.nlm.nih.gov/10189040/
Fujisawa T, Ohashi Y, Shin R, Narai-Kanayama A, Nakagaki T. The effect of soymilk intake on the fecal microbiota, particularly Bifidobacterium species, and intestinal environment of healthy adults: a pilot study. Biosci Microbiota Food Health. 2017;36(1):33–7. https://pubmed.ncbi.nlm.nih.gov/28243549/
Eslami O, Shidfar F, Maleki Z, et al. Effect of soy milk on metabolic status of patients with nonalcoholic fatty liver disease: a randomized clinical trial. J Am Coll Nutr. 2019;38(1):51–8. https://pubmed.ncbi.nlm.nih.gov/30028245/
Mitchell JH, Collins AR. Effects of a soy milk supplement on plasma cholesterol levels and oxidative DNA damage in men – a pilot study. Eur J Nutr. 1999;38(3):143–8. https://pubmed.ncbi.nlm.nih.gov/10443336/
Maleki Z, Jazayeri S, Eslami O, et al. Effect of soy milk consumption on glycemic status, blood pressure, fibrinogen and malondialdehyde in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Complement Ther Med. 2019;44:44–50. https://pubmed.ncbi.nlm.nih.gov/31126574/
Liao YH, Chen CN, Hu CY, Tsai SC, Kuo YC. Soymilk ingestion immediately after therapeutic exercise enhances rehabilitation outcomes in chronic stroke patients: a randomized controlled trial. NeuroRehabilitation. 2019;44(2):217–29. https://pubmed.ncbi.nlm.nih.gov/30856124/
Rivas M, Garay RP, Escanero JF, Cia P, Cia P, Alda JO. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J Nutr. 2002;132(7):1900–2. https://pubmed.ncbi.nlm.nih.gov/12097666/
Onuegbu AJ, Olisekodiaka JM, Onibon MO, Adesiyan AA, Igbeneghu CA. Consumption of soymilk lowers atherogenic lipid fraction in healthy individuals. J Med Food. 2011;14(3):257–60. https://pubmed.ncbi.nlm.nih.gov/21142946/
Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55(1):10–20. https://pubmed.ncbi.nlm.nih.gov/29358791/
Shi Y, Zhan Y, Chen Y, Jiang Y. Effects of dairy products on bone mineral density in healthy postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos. 2020;15(1):48. https://pubmed.ncbi.nlm.nih.gov/32185512/
Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/
Akhavan Zanjani M, Rahmani S, Mehranfar S, et al. Soy foods and the risk of fracture: a systematic review of prospective cohort studies. Complement Med Res. 2022;29(2):172–81. https://pubmed.ncbi.nlm.nih.gov/34547749/
Zhang X, Shu XO, Li H, et al. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005;165(16):1890–5. https://pubmed.ncbi.nlm.nih.gov/16157834/
Chen Z, Zheng W, Custer LJ, et al. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer. 1999;33(1):82–7. https://pubmed.ncbi.nlm.nih.gov/10227048/
Prabhakaran MP. Isoflavone levels and the effect of processing on the content of isoflavones during the preparation of soymilk and tofu. Thesis submitted for the degree of doctor of philosophy to the National University of Singapore. 2005.; https://scholarbank.nus.edu.sg/handle/10635/15175
Petroski W, Minich DM. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients. 2020;12(10):2929. https://pubmed.ncbi.nlm.nih.gov/32987890/
Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/
Melaku YA, Gill TK, Appleton SL, Taylor AW, Adams R, Shi Z. Prospective associations of dietary and nutrient patterns with fracture risk: a 20-year follow-up study. Nutrients. 2017;9(11):1198. https://pubmed.ncbi.nlm.nih.gov/29088104/
Iguacel I, Miguel-Berges ML, Gómez-Bruton A, Moreno LA, Julián C. Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis. Nutr Rev. 2019;77(1):1–18. https://pubmed.ncbi.nlm.nih.gov/30376075/
Karavasiloglou N, Selinger E, Gojda J, Rohrmann S, Kühn T. Differences in bone mineral density between adult vegetarians and nonvegetarians become marginal when accounting for differences in anthropometric factors. J Nutr. 2020;150(5):1266–71. https://pubmed.ncbi.nlm.nih.gov/32055831/
Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol. 2016;230(3):R115–30. https://pubmed.ncbi.nlm.nih.gov/27352896/
Tong TYN, Appleby PN, Armstrong MEG, et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. BMC Med. 2020;18(1):353. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01815-3
Tong TYN, Appleby PN, Armstrong MEG, et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. Table S6. Risks of hip fractures by age, sex, menopausal status, physical activity and BMI. BMC Med. 2020;18(1):353. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01815-3
Yao P, Bennett D, Mafham M, et al. Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(12):e1917789. https://pubmed.ncbi.nlm.nih.gov/31860103/
Heaney RP. The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005;97(1–2):13–9. https://pubmed.ncbi.nlm.nih.gov/16026981/
Appleby P, Roddam A, Allen N, Key T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr. 2007;61(12):1400–6. https://pubmed.ncbi.nlm.nih.gov/17299475/
Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12. https://pubmed.ncbi.nlm.nih.gov/15125798/
Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):E878. https://pubmed.ncbi.nlm.nih.gov/29710770/
Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):E878. https://pubmed.ncbi.nlm.nih.gov/29710770/
Lu YH, Rosner B, Chang G, Fishman LM. Twelve-minute daily yoga regimen reverses osteoporotic bone loss. Top Geriatr Rehabil. 2016;32(2):81–7. https://pubmed.ncbi.nlm.nih.gov/27226695/
Sfeir JG, Drake MT, Sonawane VJ, Sinaki M. Vertebral compression fractures associated with yoga: a case series. Eur J Phys Rehabil Med. 2018;54(6):947–51. https://pubmed.ncbi.nlm.nih.gov/29687967/
Cramer H, Ostermann T, Dobos G. Injuries and other adverse events associated with yoga practice: a systematic review of epidemiological studies. J Sci Med Sport. 2018;21(2):147–54. https://pubmed.ncbi.nlm.nih.gov/28958637/
Cramer H, Quinker D, Schumann D, Wardle J, Dobos G, Lauche R. Adverse effects of yoga: a national cross-sectional survey. BMC Complement Altern Med. 2019;19(1):190. https://pubmed.ncbi.nlm.nih.gov/31357980/
Zhu JK, Wu LD, Zheng RZ, Lan SH. Yoga is found hazardous to the meniscus for Chinese women. Chin J Traumatol. 2012;15(3):148–51. https://pubmed.ncbi.nlm.nih.gov/22663908/
Boddu P, Patel S, Shahrrava A. Sudden cardiac arrest from heat stroke: hidden dangers of hot yoga. Am J Med. 2016;129(8):e129–30. https://pubmed.ncbi.nlm.nih.gov/27107927/
insightSlice. Bone densitometer market global sales are expected to grow steadily to reach US$1.75 billion by 2031. Globe Newswire. https://www.globenewswire.com/news-release/2021/07/12/2261344/0/en/Bone-Densitometer-Market-Global-Sales-are-Expected-to-Grow-Steadily-to-Reach-US-1–75-billion-by-2031.html. Published July 12, 2021. Accessed March 18, 2022.; https://www.globenewswire.com/news-release/2021/07/12/2261344/0/en/Bone-Densitometer-Market-Global-Sales-are-Expected-to-Grow-Steadily-to-Reach-US-1-75-billion-by-2031.html
Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54. https://pubmed.ncbi.nlm.nih.gov/14606506/
De Laet CEDH, van Hout BA, Burger H, Hofman A, Pols HAP. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ. 1997;315(7102):221–5. https://pubmed.ncbi.nlm.nih.gov/9253270/
Järvinen TLN, Sievänen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336(7636):124–6. https://pubmed.ncbi.nlm.nih.gov/18202065/
Nordström P, Eklund F, Björnstig U, et al. Do both areal BMD and injurious falls explain the higher incidence of fractures in women than in men? Calcif Tissue Int. 2011;89(3):203–10. https://pubmed.ncbi.nlm.nih.gov/21667164/
Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaëlsson K. Simply ask them about their balance – future fracture risk in a nationwide cohort study of twins. Am J Epidemiol. 2009;169(2):143–9. https://pubmed.ncbi.nlm.nih.gov/19064648/
Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54. https://pubmed.ncbi.nlm.nih.gov/14606506/
Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/
Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone. 1987;8(4):207–9. https://pubmed.ncbi.nlm.nih.gov/3446256/
Michaëlsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165(16):1825–30. https://pubmed.ncbi.nlm.nih.gov/16157825/
Wagner H, Melhus H, Pedersen NL, Michaëlsson K. Heritability of impaired balance: a nationwide cohort study in twins. Osteoporos Int. 2009;20(4):577–83. https://pubmed.ncbi.nlm.nih.gov/18802660/
Burger H, de Laet CEDH, Weel AEAM, Hofman A, Pols HAP. Added value of bone mineral density in hip fracture risk scores. Bone. 1999;25(3):369–74. https://pubmed.ncbi.nlm.nih.gov/10495142/
Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/
Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet. 2005;366(9500):1885–93. https://pubmed.ncbi.nlm.nih.gov/16310556/
Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/
Tinetti ME. Preventing falls in elderly persons. N Engl J Med. 2003;348(1):42–9. https://pubmed.ncbi.nlm.nih.gov/12510042/
Sernbo I, Johnell O. Consequences of a hip fracture: a prospective study over 1 year. Osteoporos Int. 1993;3(3):148–53. https://pubmed.ncbi.nlm.nih.gov/8481591/
Tricco AC, Thomas SM, Veroniki AA, et al. Comparisons of interventions for preventing falls in older adults: a systematic review and meta-analysis. JAMA. 2017;318(17):1687–99. https://pubmed.ncbi.nlm.nih.gov/29114830/
Dautzenberg L, Beglinger S, Tsokani S, et al. Interventions for preventing falls and fall-related fractures in community-dwelling older adults: a systematic review and network meta-analysis. J Am Geriatr Soc. 2021;69(10):2973–84. https://pubmed.ncbi.nlm.nih.gov/34318929/
Sherrington C, Fairhall NJ, Wallbank GK, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424. https://pubmed.ncbi.nlm.nih.gov/31792067/
Wong RMY, Chong KC, Law SW, et al. The effectiveness of exercises on fall and fracture prevention amongst community elderlies: a systematic review and meta-analysis. J Orthop Translat. 2020;24:58–65. https://pubmed.ncbi.nlm.nih.gov/32695605/
Karinkanta S, Heinonen A, Sievänen H, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int. 2007;18(4):453–62. https://pubmed.ncbi.nlm.nih.gov/17103296/
Karinkanta S, Kannus P, Uusi-Rasi K, Heinonen A, Sievänen H. Combined resistance and balance-jumping exercise reduces older women’s injurious falls and fractures: 5-year follow-up study. Age Ageing. 2015;44(5):784–9. https://pubmed.ncbi.nlm.nih.gov/25990940/
Korall AMB, Feldman F, Scott VJ, et al. Facilitators of and barriers to hip protector acceptance and adherence in long-term care facilities: a systematic review. J Am Med Dir Assoc. 2015;16(3):185–93. https://pubmed.ncbi.nlm.nih.gov/25704127/
Santesso N, Carrasco-Labra A, Brignardello-Petersen R. Hip protectors for preventing hip fractures in older people. Cochrane Database Syst Rev. 2014;(3):CD001255. https://pubmed.ncbi.nlm.nih.gov/24687239/
Dautzenberg L, Beglinger S, Tsokani S, et al. Interventions for preventing falls and fall-related fractures in community-dwelling older adults: a systematic review and network meta-analysis. J Am Geriatr Soc. 2021;69(10):2973–84. https://pubmed.ncbi.nlm.nih.gov/34318929/
STEADI. What you can do to prevent falls. Centers for Disease Control and Prevention. https://www.cdc.gov/steadi/pdf/STEADI-Brochure-WhatYouCanDo-508.pdf. Published 2017. Accessed March 11, 2022.; https://www.cdc.gov/steadi/patient.html
STEADI. Family caregivers: protect your loved ones from falling. Centers for Disease Control and Prevention. https://www.cdc.gov/steadi/pdf/patient/customizable/Caregiver-Brochure-Final-Customizable-508.pdf. Published 2018. Accessed March 11, 2022.; https://www.cdc.gov/steadi/patient.html
Pirruccio K, Ahn J. Fractures while walking leashed dogs – reply. JAMA Surg. 2019;154(11):1078. https://pubmed.ncbi.nlm.nih.gov/31389985/
Law MR, Wald NJ, Meade TW. Strategies for prevention of osteoporosis and hip fracture. BMJ. 1991;303(6800):453–9. https://pubmed.ncbi.nlm.nih.gov/1912840/
Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/
Sullivan R. A brief journey into medical care and disease in ancient Egypt. J R Soc Med. 1995;88(3):141–5. https://pubmed.ncbi.nlm.nih.gov/7752157/
Chen TS, Chen PS. Gastroenterology in ancient Egypt. J Clin Gastroenterol. 1991;13(2):182–7. https://pubmed.ncbi.nlm.nih.gov/2033225/
Holl RM. Bowel movement: the sixth vital sign. Holist Nurs Pract. 2014;28(3):195–7. https://pubmed.ncbi.nlm.nih.gov/24722614/
Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/
Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther. 2007;25(5):599–608. https://pubmed.ncbi.nlm.nih.gov/17305761/
Gokce AH, Gokce FS. Effects of bilateral transcutaneous tibial nerve stimulation on constipation severity in geriatric patients: a prospective clinical study. Geriatr Gerontol Int. 2020;20(2):101–5. https://pubmed.ncbi.nlm.nih.gov/31793185/
Sonnenberg A, Koch TR. Physician visits in the United States for constipation: 1958 to 1986. Dig Dis Sci. 1989;34(4):606–11. https://pubmed.ncbi.nlm.nih.gov/2784759/
Luthra P, Camilleri M, Burr NE, Quigley EMM, Black CJ, Ford AC. Efficacy of drugs in chronic idiopathic constipation: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2019;4(11):831–44. https://pubmed.ncbi.nlm.nih.gov/31474542/
Chen J, Liu X, Bai T, Hou X. Impact of clinical outcome measures on placebo response rates in clinical trials for chronic constipation: a systematic review and meta-analysis. Clin Transl Gastroenterol. 2020;11(11):e00255. https://pubmed.ncbi.nlm.nih.gov/33259160/
Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/
Lämås K, Karlsson S, Nolén A, Lövheim H, Sandman PO. Prevalence of constipation among persons living in institutional geriatric-care settings – a cross-sectional study. Scand J Caring Sci. 2017;31(1):157–63. https://pubmed.ncbi.nlm.nih.gov/27327073/
Tvistholm N, Munch L, Danielsen AK. Constipation is casting a shadow over everyday life – a systematic review on older people’s experience of living with constipation. J Clin Nurs. 2017;26(7–8):902–14. https://pubmed.ncbi.nlm.nih.gov/27271918/
Belsey J, Greenfield S, Candy D, Geraint M. Systematic review: impact of constipation on quality of life in adults and children. Aliment Pharmacol Ther. 2010;31(9):938–49. https://pubmed.ncbi.nlm.nih.gov/20180788/
Tvistholm N, Munch L, Danielsen AK. Constipation is casting a shadow over everyday life – a systematic review on older people’s experience of living with constipation. J Clin Nurs. 2017;26(7–8):902–14. https://pubmed.ncbi.nlm.nih.gov/27271918/
Emmanuel A, Mattace-Raso F, Neri MC, Petersen KU, Rey E, Rogers J. Constipation in older people: a consensus statement. Int J Clin Pract. 2017;71(1):e12920. https://discovery.ucl.ac.uk/id/eprint/1533175/
Pekmezaris R, Aversa L, Wolf-Klein G, Cedarbaum J, Reid-Durant M. The cost of chronic constipation. J Am Med Dir Assoc. 2002;3(4):224–8. https://pubmed.ncbi.nlm.nih.gov/12807642/
Modi RM, Hinton A, Pinkhas D, et al. Implementation of a defecation posture modification device. J Clin Gastroenterol. 2019;53(3):216–9. https://pubmed.ncbi.nlm.nih.gov/30346317/
Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/
Burkitt DP. Hiatus hernia: is it preventable? Am J Clin Nutr. 1981;34(3):428–31. https://pubmed.ncbi.nlm.nih.gov/6259926/
Burkitt DP, James PA. Low-residue diets and hiatus hernia. Lancet. 1973;2(7821):128–30. https://pubmed.ncbi.nlm.nih.gov/4124047/
Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/
Fox A, Tietze PH, Ramakrishnan K. Anorectal conditions: anal fissure and anorectal fistula. FP Essent. 2014;419:20–7. https://pubmed.ncbi.nlm.nih.gov/24742084/
Burkitt DP. Two blind spots in medical knowledge. Nurs Times. 1976;72(1):24–7. https://pubmed.ncbi.nlm.nih.gov/54904/
Burkitt DP. Hiatus hernia: is it preventable? Am J Clin Nutr. 1981;34(3):428–31. https://pubmed.ncbi.nlm.nih.gov/6259926/
Burkitt DP. Dietary fibre and “pressure diseases.” J R Coll Physicians Lond. 1975;9(2):138–46. https://pubmed.ncbi.nlm.nih.gov/1127617/
Kapoor WN, Peterson J, Karpf M. Defecation syncope: a symptom with multiple etiologies. Arch Intern Med. 1986;146(12):2377–9. https://pubmed.ncbi.nlm.nih.gov/3778072/
Greenfield JC, Rembert JC, Tindall GT. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke. 1984;15(1):76–9. https://pubmed.ncbi.nlm.nih.gov/6229907/
Benchimol A, Wang TF, Desser KB, Gartlan JL. The Valsalva maneuver and coronary arterial blood flow velocity. Studies in man. Ann Intern Med. 1972;77(3):357–60. https://pubmed.ncbi.nlm.nih.gov/5053728/
McGuire J, Green RS, Courter S, et al. Bed pan deaths. J Lab Clin Med. 1948;33(11):1457. https://pubmed.ncbi.nlm.nih.gov/18890042/
Emmanuel A, Mattace-Raso F, Neri MC, Petersen KU, Rey E, Rogers J. Constipation in older people: a consensus statement. Int J Clin Pract. 2017;71(1):e12920. https://discovery.ucl.ac.uk/id/eprint/1533175/
Annells M, Koch T. Faecal impaction: older people’s experiences and nursing practice. Br J Community Nurs. 2002;7(3):118–26. https://pubmed.ncbi.nlm.nih.gov/11904547/
Annells M, Koch T. Older people seeking solutions to constipation: the laxative mire. J Clin Nurs. 2002;11(5):603–12. https://pubmed.ncbi.nlm.nih.gov/12201887/
Sakakibara R, Tsunoyama K, Hosoi H, et al. Influence of body position on defecation in humans. Low Urin Tract Symptoms. 2010;2(1):16–21. https://pubmed.ncbi.nlm.nih.gov/26676214/
Isbit J. Is the porcelain throne to blame? Tech Coloproctol. 2015;19(3):193–4. https://pubmed.ncbi.nlm.nih.gov/25579878/
Davies GJ, Crowder M, Reid B, Dickerson JW. Bowel function measurements of individuals with different eating patterns. Gut. 1986;27(2):164–9. https://pubmed.ncbi.nlm.nih.gov/3005140/
Choi YI, Kim KO, Chung JW, et al. Effects of automatic abdominal massage device in treatment of chronic constipation patients: a prospective study. Dig Dis Sci. 2021;66(9):3105–12. https://pubmed.ncbi.nlm.nih.gov/33001346/
Rao SSC, Lembo A, Chey WD, Friedenberg K, Quigley EMM. Effects of the vibrating capsule on colonic circadian rhythm and bowel symptoms in chronic idiopathic constipation. Neurogastroenterol Motil. 2020;32(11):e13890. https://pubmed.ncbi.nlm.nih.gov/32449277/
Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/
Knowles CH, Grossi U, Chapman M, et al. Surgery for constipation: systematic review and practice recommendations: Results I: colonic resection. Colorectal Dis. 2017;19 Suppl 3:17–36. https://pubmed.ncbi.nlm.nih.gov/28960923/
Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/
Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/
Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/
Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/
Noergaard M, Traerup Andersen J, Jimenez-Solem E, Bring Christensen M. Long term treatment with stimulant laxatives – clinical evidence for effectiveness and safety? Scand J Gastroenterol. 2019;54(1):27–34. https://pubmed.ncbi.nlm.nih.gov/30700194/
Riemann JF, Schmidt H, Zimmermann W. The fine structure of colonic submucosal nerves in patients with chronic laxative abuse. Scand J Gastroenterol. 1980;15(6):761–8. https://pubmed.ncbi.nlm.nih.gov/7209384/
Serrano-Falcón B, Rey E. The safety of available treatments for chronic constipation. Expert Opin Drug Saf. 2017;16(11):1243–53. https://pubmed.ncbi.nlm.nih.gov/28756692/
Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/
Leth PM, Gregersen M. Ethylene glycol poisoning. Forensic Sci Int. 2005;155(2–3):179–84. https://pubmed.ncbi.nlm.nih.gov/16226155/
Serrano-Falcón B, Rey E. The safety of available treatments for chronic constipation. Expert Opin Drug Saf. 2017;16(11):1243–53. https://pubmed.ncbi.nlm.nih.gov/28756692/
Lacy BE, Shea EP, Manuel M, Abel JL, Jiang H, Taylor DCA. Lessons learned: chronic idiopathic constipation patient experiences with over-the-counter medications. PLoS One. 2021;16(1):e0243318. https://pubmed.ncbi.nlm.nih.gov/33428631/
Lucak S, Lunsford TN, Harris LA. Evaluation and treatment of constipation in the geriatric population. Clin Geriatr Med. 2021;37(1):85–102. https://pubmed.ncbi.nlm.nih.gov/33213776/
Annells M, Koch T. Older people seeking solutions to constipation: the laxative mire. J Clin Nurs. 2002;11(5):603–12. https://pubmed.ncbi.nlm.nih.gov/12201887/
Wilson PB. Associations between physical activity and constipation in adult Americans: results from the National Health and Nutrition Examination Survey. Neurogastroenterol Motil. 2020;32(5):e13789. https://pubmed.ncbi.nlm.nih.gov/31905422/
Liu F, Kondo T, Toda Y. Brief physical inactivity prolongs colonic transit time in elderly active men. Int J Sports Med. 1993;14(8):465–7. https://pubmed.ncbi.nlm.nih.gov/8300274/
Asnicar F, Leeming ER, Dimidi E, et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut. 2021;70(9):1665–74. https://pubmed.ncbi.nlm.nih.gov/33722860/
Gao R, Tao Y, Zhou C, et al. Exercise therapy in patients with constipation: a systematic review and meta-analysis of randomized controlled trials. Scand J Gastroenterol. 2019;54(2):169–77. https://pubmed.ncbi.nlm.nih.gov/30843436/
Mari A, Mahamid M, Amara H, Baker FA, Yaccob A. Chronic constipation in the elderly patient: updates in evaluation and management. Korean J Fam Med. 2020;41(3):139–45. https://pubmed.ncbi.nlm.nih.gov/32062960/
Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/
Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/
Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012;142(7):1390S-401S. https://pubmed.ncbi.nlm.nih.gov/22649260/
Sanjoaquin MA, Appleby PN, Spencer EA, Key TJ. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20630 men and women in EPIC-Oxford. Public Health Nutr. 2004 Feb;7(1):77–83. https://pubmed.ncbi.nlm.nih.gov/14972075/
Schmier JK, Miller PE, Levine JA, et al. Cost savings of reduced constipation rates attributed to increased dietary fiber intakes: a decision-analytic model. BMC Public Health. 2014;14:374. https://pubmed.ncbi.nlm.nih.gov/24739472/
Oh SJ, Fuller G, Patel D, et al. Chronic constipation in the United States: results from a population-based survey assessing healthcare seeking and use of pharmacotherapy. Am J Gastroenterol. 2020;115(6):895–905. https://pubmed.ncbi.nlm.nih.gov/32324606/
Christodoulides S, Dimidi E, Fragkos KC, Farmer AD, Whelan K, Scott SM. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment Pharmacol Ther. 2016;44(2):103–16. https://pubmed.ncbi.nlm.nih.gov/27170558/
Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/
Jalanka J, Major G, Murray K, et al. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int J Mol Sci. 2019;20(2):E433. https://pubmed.ncbi.nlm.nih.gov/30669509/
Hefny AF, Ayad AZ, Matev N, Bashir MO. Intestinal obstruction caused by a laxative drug (Psyllium): a case report and review of the literature. Int J Surg Case Rep. 2018;52:59–62. https://pubmed.ncbi.nlm.nih.gov/30321826/
Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16. https://pubmed.ncbi.nlm.nih.gov/33208922/
Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/
Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16. https://pubmed.ncbi.nlm.nih.gov/33208922/
Maskarinec G, Takata Y, Pagano I, et al. Trends and dietary determinants of overweight and obesity in a multiethnic population. Obesity (Silver Spring). 2006;14(4):717–26. https://pubmed.ncbi.nlm.nih.gov/16741275/
Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88. https://pubmed.ncbi.nlm.nih.gov/24389767/
Fatahi S, Matin SS, Sohouli MH, et al. Association of dietary fiber and depression symptom: a systematic review and meta-analysis of observational studies. Complement Ther Med. 2021;56:102621. https://pubmed.ncbi.nlm.nih.gov/33220451/
Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73. https://pubmed.ncbi.nlm.nih.gov/25143474/
Threapleton DE, Greenwood DC, Evans CEL, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/
Wolever TM, Jenkins DJ. What is a high fiber diet? Adv Exp Med Biol. 1997;427:35–42. https://pubmed.ncbi.nlm.nih.gov/9361828/
Shaper AG, Jones KW. Serum-cholesterol, diet, and coronary heart-disease in Africans and Asians in Uganda: 1959. Int J Epidemiol. 2012;41(5):1221–5. https://pubmed.ncbi.nlm.nih.gov/23045195/
Singh SA, Trowell HC. A case of coronary heart disease in an African. East Afr Med J. 1956;33(10):391–4. https://pubmed.ncbi.nlm.nih.gov/13375489/
Ikem I, Sumpio BE. Cardiovascular disease: the new epidemic in sub-Saharan Africa. Vascular. 2011;19(6):301–7. https://pubmed.ncbi.nlm.nih.gov/21940758/
Burkitt DP, Walker AR, Painter NS. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet. 1972;2(7792):1408–12. https://pubmed.ncbi.nlm.nih.gov/4118696/
Dietary fiber market to reach $3.25 billion by 2017. Neutraceuticals World. https://nutraceuticalsworld.com/contents/view_breaking-news/2012–10–29/dietary-fiber-market-to-reach-325-billion-by-2017. Published October 29, 2012. Accessed March 29, 2022.; https://nutraceuticalsworld.com/contents/view_breaking-news/2012-10-29/dietary-fiber-market-to-reach-325-billion-by-2017
Eastwood M, Kritchevsky D. Dietary fiber: how did we get where we are? Annu Rev Nutr. 2005;25:1–8. https://pubmed.ncbi.nlm.nih.gov/16011456/
Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/
Eastwood M, Kritchevsky D. Dietary fiber: how did we get where we are? Annu Rev Nutr. 2005;25:1–8. https://pubmed.ncbi.nlm.nih.gov/16011456/
McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):90–7. https://pubmed.ncbi.nlm.nih.gov/25972618/
Agricultural Research Service, United States Department of Agriculture. Seeds, flaxseeds. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients. Published April 1, 2019. Accessed February 22, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients
Soltanian N, Janghorbani M. A randomized trial of the effects of flaxseed to manage constipation, weight, glycemia, and lipids in constipated patients with type 2 diabetes. Nutr Metab (Lond). 2018;15:36. https://pubmed.ncbi.nlm.nih.gov/29760761/
Soltanian N, Janghorbani M. Effect of flaxseed or psyllium vs. placebo on management of constipation, weight, glycemia, and lipids: a randomized trial in constipated patients with type 2 diabetes. Clin Nutr ESPEN. 2019;29:41–8. https://pubmed.ncbi.nlm.nih.gov/30661699/
Sun J, Bai H, Ma J, et al. Effects of flaxseed supplementation on functional constipation and quality of life in a Chinese population: a randomized trial. Asia Pac J Clin Nutr. 2020;29(1):61–7. https://pubmed.ncbi.nlm.nih.gov/32229443/
Hongisto SM, Paajanen L, Saxelin M, Korpela R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur J Clin Nutr. 2006;60(3):319–24. https://pubmed.ncbi.nlm.nih.gov/16251881/
Almario CV, Almario AA, Cunningham ME, Fouladian J, Spiegel BMR. Old farts – fact or fiction? Results from a population-based survey of 16,000 Americans examining the association between age and flatus. Clin Gastroenterol Hepatol. 2017;15(8):1308–10. https://pubmed.ncbi.nlm.nih.gov/28344066/
Behm RM. A special recipe to banish constipation. Geriatr Nurs. 1985;6(4):216–7. https://pubmed.ncbi.nlm.nih.gov/2989122/
Hull MA, McIntire DD, Atnip SD, et al. Randomized trial comparing 2 fiber regimens for the reduction of symptoms of constipation. Female Pelvic Med Reconstr Surg. 2011;17(3):128–33. https://pubmed.ncbi.nlm.nih.gov/22453784/
Lever E, Cole J, Scott SM, Emery PW, Whelan K. Systematic review: the effect of prunes on gastrointestinal function. Aliment Pharmacol Ther. 2014;40(7):750–8. https://pubmed.ncbi.nlm.nih.gov/25109788/
Sanjoaquin MA, Appleby PN, Spencer EA, Key TJ. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20 630 men and women in EPIC – Oxford. Public Health Nutr. 2004;7(1):77–83. https://pubmed.ncbi.nlm.nih.gov/14972075/
Attaluri A, Donahoe R, Valestin J, Brown K, Rao SSC. Randomised clinical trial: dried plums (prunes) vs. psyllium for constipation. Aliment Pharmacol Ther. 2011;33(7):822–8. https://pubmed.ncbi.nlm.nih.gov/21323688/
Baek HI, Ha KC, Kim HM, et al. Randomized, double-blind, placebo-controlled trial of Ficus carica paste for the management of functional constipation. Asia Pac J Clin Nutr. 2016;25(3):487–96. https://pubmed.ncbi.nlm.nih.gov/27440682/
Venancio VP, Kim H, Sirven MA, et al. Polyphenol-rich mango (Mangifera indica L.) ameliorate functional constipation symptoms in humans beyond equivalent amount of fiber. Mol Nutr Food Res. 2018;62(12):e1701034. https://pubmed.ncbi.nlm.nih.gov/29733520/
Ojo B, El-Rassi GD, Payton ME, et al. Mango supplementation modulates gut microbial dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J Nutr. 2016;146(8):1483–91. https://pubmed.ncbi.nlm.nih.gov/27358411/
Kim H, Venancio VP, Fang C, Dupont AW, Talcott ST, Mertens-Talcott SU. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res. 2020;75:85–94. https://pubmed.ncbi.nlm.nih.gov/32109839/
What are the key statistics about colorectal cancer? American Cancer Society website. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics. Updated January 12, 2022. Accessed March 29, 2022.; https://www.cancer.org/cancer/types/colon-rectal-cancer/about/key-statistics.html
American Cancer Society. Cancer Facts & Figures 2014. American Cancer Society; 2014. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2014.html
U.S. Preventive Services Task Force. Screening for colorectal cancer. U.S. Preventive Services Task Force website. http://www.uspreventiveservicestaskforce.org/Home/GetFile/1/467/colcancsumm/pdf. Accessed March 29, 2022.; https://www.uspreventiveservicestaskforce.org/Home/GetFile/1/467/colcancsumm/pdf
Wender RC. Colorectal cancer screening should begin at 45. J Gastroenterol Hepatol. 2020;35(9):1461–3. https://pubmed.ncbi.nlm.nih.gov/32944996/
Anderson JC, Samadder JN. To screen or not to screen adults 45–49 years of age: that is the question. Am J Gastroenterol. 2018;113(12):1750–3. https://pubmed.ncbi.nlm.nih.gov/30385833/
Davidson KW, Barry MJ, Mangione CM, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(19):1965–77. https://pubmed.ncbi.nlm.nih.gov/34003218/
Mannucci A, Zuppardo RA, Rosati R, Leo MD, Perea J, Cavestro GM. Colorectal cancer screening from 45 years of age: thesis, antithesis and synthesis. World J Gastroenterol. 2019;25(21):2565–80. https://pubmed.ncbi.nlm.nih.gov/31210710/
Anderson JC, Samadder JN. To screen or not to screen adults 45–49 years of age: that is the question. Am J Gastroenterol. 2018;113(12):1750–3. https://pubmed.ncbi.nlm.nih.gov/30385833/
Hussan H, Patel A, Le Roux M, et al. Rising incidence of colorectal cancer in young adults corresponds with increasing surgical resections in obese patients. Clin Transl Gastroenterol. 2020;11(4):e00160. https://pubmed.ncbi.nlm.nih.gov/32352680/
Dairi O, Anderson JC, Butterly LF. Why is colorectal cancer increasing in younger age groups in the United States? Expert Rev Gastroenterol Hepatol. 2021;15(6):623–32. https://pubmed.ncbi.nlm.nih.gov/33480301/
U.S. Cancer Statistics Working Group. U.S. Cancer Statistics data visualizations tool, based on 2020 submission data (1999–2018). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. www.cdc.gov/cancer/dataviz. Published June 2021. Accessed May 11, 2022.; https://gis.cdc.gov/Cancer/USCS/?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcancer%2Fdataviz%2Findex.htm#/AtAGlance/
Khan AM, Mucci LA. Concerning trends in colorectal cancer in the wake of Chadwick Boseman’s death. J Cancer Policy. 2020;26:100260. https://pubmed.ncbi.nlm.nih.gov/35656888/
Mueller NM, Hyams T, King-Marshall EC, Curbow BA. Colorectal cancer knowledge and perceptions among individuals below the age of 50. Psychooncology. 2022;31(3):436–41. https://pubmed.ncbi.nlm.nih.gov/34546622/
Imperiale TF, Kahi CJ, Rex DK. Lowering the starting age for colorectal cancer screening to 45 years: who will come… and should they? Clin Gastroenterol Hepatol. 2018;16(10):1541–4. https://pubmed.ncbi.nlm.nih.gov/30114484/
Davidson KW, Barry MJ, Mangione CM, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(19):1965–77. https://pubmed.ncbi.nlm.nih.gov/34003218/
Yabroff KR, Klabunde CN, Yuan G, et al. Are physicians’ recommendations for colorectal cancer screening guideline – consistent? J Gen Intern Med. 2011;26(2):177–84. https://pubmed.ncbi.nlm.nih.gov/20949328/
Swan H, Siddiqui AA, Myers RE. International colorectal cancer screening programs: population contact strategies, testing methods and screening rates. Pract Gastroenter. 2012;36(8):20–9. https://www.researchgate.net/publication/286884668_International_colorectal_cancer_screening_programs_Population_contact_strategies_testing_methods_and_screening_rates
Swan H, Siddiqui AA, Myers RE. International colorectal cancer screening programs: population contact strategies, testing methods and screening rates. Pract Gastroenter. 2012;36(8):20–9. https://www.researchgate.net/publication/286884668_International_colorectal_cancer_screening_programs_Population_contact_strategies_testing_methods_and_screening_rates
Butterfield S. Changes coming for colon cancer screening. ACP Internist. 2014;34(7):10–11. https://acpinternist.org/archives/2014/07/colonoscopy.htm
Hoffman RM, Levy BT, Allison JE. Rising use of multitarget stool DNA testing for colorectal cancer. JAMA Netw Open. 2021;4(9):e2122328. https://pubmed.ncbi.nlm.nih.gov/34473264/
Wang K, Ma W, Wu K, et al. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: a nationwide cohort study. PLoS Med. 2021;18(2):e1003522. https://pubmed.ncbi.nlm.nih.gov/33524029/
Larsen IK, Grotmol T, Almendingen K, Hoff G. Impact of colorectal cancer screening on future lifestyle choices: a three-year randomized controlled trial. Clin Gastroenterol Hepatol. 2007;5(4):477–83. https://pubmed.ncbi.nlm.nih.gov/17363335/
Hoff G, Thiis-Evensen E, Grotmol T, Sauar J, Vatn MH, Moen IE. Do undesirable effects of screening affect all-cause mortality in flexible sigmoidoscopy programmes? Experience from the Telemark Polyp Study 1983–1996. Eur J Cancer Prev. 2001;10(2):131–7. https://pubmed.ncbi.nlm.nih.gov/19483252/
Berstad P, Løberg M, Larsen IK, et al. Long-term lifestyle changes after colorectal cancer screening: randomised controlled trial. Gut. 2015;64(8):1268–76. https://pubmed.ncbi.nlm.nih.gov/25183203/
Wang K, Ma W, Wu K, et al. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: a nationwide cohort study. PLoS Med. 2021;18(2):e1003522. https://pubmed.ncbi.nlm.nih.gov/33524029/
Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control. 2000;11(7):579–88. https://pubmed.ncbi.nlm.nih.gov/10977102/
O’Keefe SJD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://pubmed.ncbi.nlm.nih.gov/25919227/
O’Keefe SJD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://pubmed.ncbi.nlm.nih.gov/25919227/
Weber C. Nutrition. Diet change alters microbiota and might affect cancer risk. Nat Rev Gastroenterol Hepatol. 2015;12(6):314. https://pubmed.ncbi.nlm.nih.gov/25963512/
Zhao Y, Zhan J, Wang Y, Wang D. The relationship between plant-based diet and risk of digestive system cancers: a meta-analysis based on 3,059,009 subjects. Front Public Health. 2022;10. https://pubmed.ncbi.nlm.nih.gov/35719615/
McCarty MF. Mortality from Western cancers rose dramatically among African-Americans during the 20th century: are dietary animal products to blame? Med Hypotheses. 2001;57(2):169–74. https://pubmed.ncbi.nlm.nih.gov/11461167/
Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/
Wieland LS, Shrestha N, Lassi ZS, Panda S, Chiaramonte D, Skoetz N. Yoga for treating urinary incontinence in women. Cochrane Database Syst Rev. 2019;2:CD012668. https://pubmed.ncbi.nlm.nih.gov/30816997/
Pearlman A, Kreder K. Evaluation and treatment of urinary incontinence in the aging male. Postgrad Med. 2020;132(sup4):9–17. https://pubmed.ncbi.nlm.nih.gov/33017202/
Faleiro DJA, Menezes EC, Capeletto E, Fank F, Porto RM, Mazo GZ. Association of physical activity with urinary incontinence in older women: a systematic review. J Aging Phys Act. 2019;27(4):906–13. https://pubmed.ncbi.nlm.nih.gov/30859902/
Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/
Muller N. Myths about incontinence in aging adults. Ostomy Wound Manage. 2009;55(5):22. https://pubmed.ncbi.nlm.nih.gov/20560204/
Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/
Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/
Pizzol D, Demurtas J, Celotto S, et al. Urinary incontinence and quality of life: a systematic review and meta-analysis. Aging Clin Exp Res. 2021;33(1):25–35. https://pubmed.ncbi.nlm.nih.gov/32964401/
Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/
Ashton-Miller JA, DeLancey JOL. Functional anatomy of the female pelvic floor. Ann N Y Acad Sci. 2007;1101:266–96. https://pubmed.ncbi.nlm.nih.gov/17416924/
Kuh D, Cardozo L, Hardy R. Urinary incontinence in middle aged women: childhood enuresis and other lifetime risk factors in a British prospective cohort. J Epidemiol Community Health. 1999;53(8):453–8. https://pubmed.ncbi.nlm.nih.gov/10562862/
Danforth KN, Townsend MK, Lifford K, Curhan GC, Resnick NM, Grodstein F. Risk factors for urinary incontinence among middle-aged women. Am J Obstet Gynecol. 2006;194(2):339–45. https://pubmed.ncbi.nlm.nih.gov/16458626/
Robinson D, Giarenis I, Cardozo L. You are what you eat: the impact of diet on overactive bladder and lower urinary tract symptoms. Maturitas. 2014;79(1):8–13. https://pubmed.ncbi.nlm.nih.gov/25033724/
Imamura M, Williams K, Wells M, McGrother C. Lifestyle interventions for the treatment of urinary incontinence in adults. Cochrane Database Syst Rev. 2015;(12):CD003505. https://pubmed.ncbi.nlm.nih.gov/26630349/
Subak LL, Wing R, West DS, et al. Weight loss to treat urinary incontinence in overweight and obese women. N Engl J Med. 2009;360(5):481–90. https://pubmed.ncbi.nlm.nih.gov/19179316/
Stewart WF, Van Rooyen JB, Cundiff GW, et al. Prevalence and burden of overactive bladder in the United States. World J Urol. 2003;20(6):327–36. https://pubmed.ncbi.nlm.nih.gov/12811491/
Flore K, Fauber J, Wynn M. Drug firms helped create $3 billion overactive bladder market. Milwaukee Journal Sentinel. https://www.jsonline.com/story/news/investigations/2016/10/16/overactive-bladder-drug-companies-helped-create-3-billion-market/92030360/. Published October 15, 2016. Accessed August 24, 2022.; https://www.jsonline.com/story/news/investigations/2016/10/16/overactive-bladder-drug-companies-helped-create-3-billion-market/92030360/
Mitcheson HD, Samanta S, Muldowney K, et al. Vibegron (RVT-901/MK-4618/KRP-114V) administered once daily as monotherapy or concomitantly with tolterodine in patients with an overactive bladder: a multicenter, phase IIb, randomized, double-blind, controlled trial. Eur Urol. 2019;75(2):274–82. https://pubmed.ncbi.nlm.nih.gov/30661513/
Cho A, Eidelberg A, Butler DJ, et al. Efficacy of daily intake of dried cranberry 500 mg in women with overactive bladder: a randomized, double-blind, placebo controlled study. J Urol. 2021;205(2):507–13. https://pubmed.ncbi.nlm.nih.gov/32945735/
Ernst M, Gonka J, Povcher O, Kim J. Diet modification for overactive bladder: an evidence-based review. Curr Bladder Dysfunct Rep. 2015;10(1):25–30. https://link.springer.com/article/10.1007/s11884-014-0285-0
Dallosso H, Matthews R, McGrother C, Donaldson M. Diet as a risk factor for the development of stress urinary incontinence: a longitudinal study in women. Eur J Clin Nutr. 2004;58(6):920–6. https://pubmed.ncbi.nlm.nih.gov/15164113/
Robinson D, Giarenis I, Cardozo L. You are what you eat: the impact of diet on overactive bladder and lower urinary tract symptoms. Maturitas. 2014;79(1):8–13. https://pubmed.ncbi.nlm.nih.gov/25033724/
Urinary Incontinence and Pelvic Organ Prolapse in Women: Management. National Institute for Health and Care Excellence (NICE); 2019. https://pubmed.ncbi.nlm.nih.gov/31008559/
Burkhard FC, Bosch JLHR, Cruz F, et al. EAU guidelines on urinary incontinence. Vol 3. Eur Urol. 2011;59(3):387–400. https://pubmed.ncbi.nlm.nih.gov/21130559/
Le Berre M, Presse N, Morin M, et al. What do we really know about the role of caffeine on urinary tract symptoms? A scoping review on caffeine consumption and lower urinary tract symptoms in adults. Neurourol Urodyn. 2020;39(5):1217–33. https://pubmed.ncbi.nlm.nih.gov/32270903/
Sun S, Liu D, Jiao Z. Coffee and caffeine intake and risk of urinary incontinence: a meta-analysis of observational studies. BMC Urol. 2016;16(1):61. https://pubmed.ncbi.nlm.nih.gov/27716171/
Muller N. Myths about incontinence in aging adults. Ostomy Wound Manage. 2009;55(5):22. https://pubmed.ncbi.nlm.nih.gov/20560204/
Dasgupta J, Elliott RA, Doshani A, Tincello DG. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca2+ influx. Toxicol Appl Pharmacol. 2006;217(2):216–24. https://pubmed.ncbi.nlm.nih.gov/17046038/
Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/
Riemsma R, Hagen S, Kirschner-Hermanns R, et al. Can incontinence be cured? A systematic review of cure rates. BMC Med. 2017;15(1):63. https://pubmed.ncbi.nlm.nih.gov/28335792/
Wagg A, Compion G, Fahey A, Siddiqui E. Persistence with prescribed antimuscarinic therapy for overactive bladder: a UK experience. BJU Int. 2012;110(11):1767–74. https://pubmed.ncbi.nlm.nih.gov/22409769/
Hu JS, Pierre EF. Urinary incontinence in women: evaluation and management. Am Fam Physician. 2019;100(6):339–48. https://pubmed.ncbi.nlm.nih.gov/31524367/
Riemsma R, Hagen S, Kirschner-Hermanns R, et al. Can incontinence be cured? A systematic review of cure rates. BMC Med. 2017;15(1):63. https://pubmed.ncbi.nlm.nih.gov/28335792/
Cody JD, Jacobs ML, Richardson K, Moehrer B, Hextall A. Oestrogen therapy for urinary incontinence in post-menopausal women. Cochrane Database Syst Rev. 2012;2012(10):CD001405. https://pubmed.ncbi.nlm.nih.gov/23076892/
Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/
Cody JD, Jacobs ML, Richardson K, Moehrer B, Hextall A. Oestrogen therapy for urinary incontinence in post-menopausal women. Cochrane Database Syst Rev. 2012;2012(10):CD001405. https://pubmed.ncbi.nlm.nih.gov/23076892/
Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/
Kegel AH. Stress incontinence and genital relaxation; a nonsurgical method of increasing the tone of sphincters and their supporting structures. Ciba Clin Symp. 1952;4(2):35–51. https://pubmed.ncbi.nlm.nih.gov/14905555/
Kegel exercises: a how-to guide for women. Mayo Clinic. https://www.mayoclinic.org/healthy-lifestyle/womens-health/in-depth/kegel-exercises/art-20045283. Published September 15, 2020. Accessed August 24, 2022.; https://www.mayoclinic.org/healthy-lifestyle/womens-health/in-depth/kegel-exercises/art-20045283
Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/
Nazarpour S, Simbar M, Ramezani Tehrani F, Alavi Majd H. Effects of sex education and Kegel exercises on the sexual function of postmenopausal women: a randomized clinical trial. J Sex Med. 2017;14(7):959–67. https://pubmed.ncbi.nlm.nih.gov/28601506/
Vaughan CP, Markland AD. Urinary incontinence in women. Ann Intern Med. 2020;172(3):ITC17. https://pubmed.ncbi.nlm.nih.gov/32016335/
Kilpatrick KA, Paton P, Subbarayan S, et al. Non-pharmacological, non-surgical interventions for urinary incontinence in older persons: a systematic review of systematic reviews. The SENATOR project ONTOP series. Maturitas. 2020;133:42–8. https://pubmed.ncbi.nlm.nih.gov/32005422/
Dumoulin C, Cacciari LP, Hay-Smith EJC. Pelvic floor muscle training versus no treatment, or inactive control treatments, for urinary incontinence in women. Cochrane Database Syst Rev. 2018;(10). https://pubmed.ncbi.nlm.nih.gov/30288727/
Faleiro DJA, Menezes EC, Capeletto E, Fank F, Porto RM, Mazo GZ. Association of physical activity with urinary incontinence in older women: a systematic review. J Aging Phys Act. 2019;27(4):906–13. https://pubmed.ncbi.nlm.nih.gov/30859902/
Huang AJ, Chesney M, Lisha N, et al. A group-based yoga program for urinary incontinence in ambulatory women: feasibility, tolerability, and change in incontinence frequency over 3 months in a single-center randomized trial. Am J Obstet Gynecol. 2019;220(1):87.e1–13. https://pubmed.ncbi.nlm.nih.gov/30595143/
Wei JT, Calhoun E, Jacobsen SJ. Urologic Diseases in America Project: benign prostatic hyperplasia. J Urol. 2008;179(5 Suppl):S75–80. https://pubmed.ncbi.nlm.nih.gov/18405761/
Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/
Trumble BC, Stieglitz J, Rodriguez DE, Linares EC, Kaplan HS, Gurven MD. Challenging the inevitability of prostate enlargement: low levels of benign prostatic hyperplasia among Tsimane forager-horticulturalists. J Gerontol A Biol Sci Med Sci. 2015;70(10):1262–8. https://pubmed.ncbi.nlm.nih.gov/25922348/
Taub DA, Wei JT. The economics of benign prostatic hyperplasia and lower urinary tract symptoms in the United States. Curr Urol Rep. 2006;7(4):272–81. https://pubmed.ncbi.nlm.nih.gov/16930498/
Zhang AY, Xu X. Prevalence, burden, and treatment of lower urinary tract symptoms in men aged 50 and older: a systematic review of the literature. SAGE Open Nurs. 2018;4:2377960818811773. https://pubmed.ncbi.nlm.nih.gov/33415211/
Traish AM, Mulgaonkar A, Giordano N. The dark side of 5a-reductase inhibitors’ therapy: sexual dysfunction, high Gleason grade prostate cancer and depression. Korean J Urol. 2014;55(6):367–79. https://pubmed.ncbi.nlm.nih.gov/24955220/
Cindolo L, Pirozzi L, Fanizza C, et al. Drug adherence and clinical outcomes for patients under pharmacological therapy for lower urinary tract symptoms related to benign prostatic hyperplasia: population-based cohort study. Eur Urol. 2015;68(3):418–25. https://pubmed.ncbi.nlm.nih.gov/25465970/
Roehrborn CG, Bruskewitz R, Nickel JC, et al. Sustained decrease in incidence of acute urinary retention and surgery with finasteride for 6 years in men with benign prostatic hyperplasia. J Urol. 2004;171(3):1194–8. https://pubmed.ncbi.nlm.nih.gov/14767299/
Irwig MS. How routine pharmacovigilance failed to identify finasteride’s persistent sexual side effects. Andrology. 2022;10(2):207–8. https://pubmed.ncbi.nlm.nih.gov/34713622/
Zhang AY, Xu X. Prevalence, burden, and treatment of lower urinary tract symptoms in men aged 50 and older: a systematic review of the literature. SAGE Open Nurs. 2018;4:2377960818811773. https://pubmed.ncbi.nlm.nih.gov/33415211/
Metcalfe C, Poon KS. Long-term results of surgical techniques and procedures in men with benign prostatic hyperplasia. Curr Urol Rep. 2011;12(4):265–73. https://pubmed.ncbi.nlm.nih.gov/21484456/
Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/
Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/
Gu F. Epidemiological survey of benign prostatic hyperplasia and prostatic cancer in China. Chin Med J. 2000;113(4):299–302. https://pubmed.ncbi.nlm.nih.gov/11775222/
Kraft TS, Stieglitz J, Trumble BC, Martin M, Kaplan H, Gurven M. Nutrition transition in 2 lowland Bolivian subsistence populations. Am J Clin Nutr. 2018;108(6):1183–95. https://pubmed.ncbi.nlm.nih.gov/30383188/
Trumble BC, Stieglitz J, Rodriguez DE, Linares EC, Kaplan HS, Gurven MD. Challenging the inevitability of prostate enlargement: low levels of benign prostatic hyperplasia among Tsimane forager-horticulturalists. J Gerontol A Biol Sci Med Sci. 2015;70(10):1262–8. https://pubmed.ncbi.nlm.nih.gov/25922348/
Cicero AFG, Allkanjari O, Busetto GM, et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch Ital Urol Androl. 2019;91(3). https://pubmed.ncbi.nlm.nih.gov/31577095/
Koskimäki J, Hakama M, Huhtala H, Tammela TL. Association of dietary elements and lower urinary tract symptoms. Scand J Urol Nephrol. 2000;34(1):46–50. https://pubmed.ncbi.nlm.nih.gov/10757270/
Bravi F, Bosetti C, Dal Maso L, et al. Food groups and risk of benign prostatic hyperplasia. Urology. 2006;67(1):73–9. https://pubmed.ncbi.nlm.nih.gov/16413336/
Galeone C, Pelucchi C, Talamini R, et al. Onion and garlic intake and the odds of benign prostatic hyperplasia. Urology. 2007;70(4):672–6. https://pubmed.ncbi.nlm.nih.gov/17991535/
Bravi F, Bosetti C, Dal Maso L, et al. Food groups and risk of benign prostatic hyperplasia. Urology. 2006;67(1):73–9. https://pubmed.ncbi.nlm.nih.gov/16413336/
Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed April 15, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf
Wong SYS, Lau WWY, Leung PC, Leung JCS, Woo J. The association between isoflavone and lower urinary tract symptoms in elderly men. Br J Nutr. 2007;98(6):1237–42. https://pubmed.ncbi.nlm.nih.gov/17640419/
Zhou Z, Wang Z, Chen C, et al. Transurethral prostate vaporization using an oval electrode in 82 cases of benign prostatic hyperplasia. Chin Med J. 1998;111(1):52–5. https://pubmed.ncbi.nlm.nih.gov/10322654/
Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–9. https://pubmed.ncbi.nlm.nih.gov/16094059/
Barnard RJ, Gonzalez JH, Liva ME, Ngo TH. Effects of a low-fat, high-fiber diet and exercise program on breast cancer risk factors in vivo and tumor cell growth and apoptosis in vitro. Nutr Cancer. 2006;55(1):28–34. https://pubmed.ncbi.nlm.nih.gov/16965238/
Barnard RJ, Kobayashi N, Aronson WJ. Effect of diet and exercise intervention on the growth of prostate epithelial cells. Prostate Cancer Prostatic Dis. 2008;11(4):362–6. https://pubmed.ncbi.nlm.nih.gov/18283296/
Карликовая пальма, произрастающая на восточном побережье Северной Америки. – Примеч. ред.
Keehn A, Taylor J, Lowe FC. Phytotherapy for benign prostatic hyperplasia. Curr Urol Rep. 2016;17(7):53. https://pubmed.ncbi.nlm.nih.gov/27180172/
Trivisonno LF, Sgarbossa N, Alvez GA, et al. Serenoa repens for the treatment of lower urinary tract symptoms due to benign prostatic enlargement: a systematic review and meta-analysis. Investig Clin Urol. 2021;62(5):520–34. https://pubmed.ncbi.nlm.nih.gov/34488251/
Zendehdel A, Ansari M, Khatami F, Mansoursamaei S, Dialameh H. The effect of vitamin D supplementation on the progression of benign prostatic hyperplasia: a randomized controlled trial. Clin Nutr. 2021;40(5):3325–31. https://pubmed.ncbi.nlm.nih.gov/33213976/
Safwat AS, Hasanain A, Shahat A, et al. Cholecalciferol for the prophylaxis against recurrent urinary tract infection among patients with benign prostatic hyperplasia: a randomized, comparative study. World J Urol. 2019;37(7):1347–52. https://pubmed.ncbi.nlm.nih.gov/30361957/
Zhang W, Wang X, Liu Y, et al. Effects of dietary flaxseed lignan extract on symptoms of benign prostatic hyperplasia. J Med Food. 2008;11(2):207–14. https://pubmed.ncbi.nlm.nih.gov/18358071/
Vahlensieck W, Theurer C, Pfitzer E, Patz B, Banik N, Engelmann U. Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urol Int. 2015;94(3):286–95. https://pubmed.ncbi.nlm.nih.gov/25196580/
Assessment report on Cucurbita pepo L., semen. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-cucurbita-pepo-l-semen_en.pdf. Published September 13, 2011. Accessed August 22, 2022.; https://www.ema.europa.eu/en/medicines/herbal/cucurbitae-semen
Matsuo T, Miyata Y, Sakai H. Effect of salt intake reduction on nocturia in patients with excessive salt intake. Neurourol Urodyn. 2019;38(3):927–33. https://pubmed.ncbi.nlm.nih.gov/30706965/
Bradley CS, Erickson BA, Messersmith EE, et al. Evidence for the impact of diet, fluid intake, caffeine, alcohol and tobacco on lower urinary tract symptoms: a systematic review. J Urol. 2017;198(5):1010–20. https://pubmed.ncbi.nlm.nih.gov/28479236/
Xue Z, Lin Y, Jiang Y, Wei N, Bi J. The evaluation of nocturia in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia and the analysis of the curative effect after medical or placebo therapy for nocturia: a randomized placebo-controlled study. BMC Urol. 2018;18(1):115. https://pubmed.ncbi.nlm.nih.gov/30545338/
Johnson TM II, Sattin RW, Parmelee P, Fultz NH, Ouslander JG. Evaluating potentially modifiable risk factors for prevalent and incident nocturia in older adults. J Am Geriatr Soc. 2005;53(6):1011–6. https://pubmed.ncbi.nlm.nih.gov/15935026/
Tani M, Hirayama A, Torimoto K, Matsushita C, Yamada A, Fujimoto K. Guidance on water intake effectively improves urinary frequency in patients with nocturia. Int J Urol. 2014;21(6):595–600. https://pubmed.ncbi.nlm.nih.gov/24405404/
Soda T, Masui K, Okuno H, Terai A, Ogawa O, Yoshimura K. Efficacy of nondrug lifestyle measures for the treatment of nocturia. J Urol. 2010;184(3):1000–4. https://pubmed.ncbi.nlm.nih.gov/20643422/
Cho SY, Lee SL, Kim IS, Koo DH, Kim HK, Oh SJ. Short-term effects of systematized behavioral modification program for nocturia: a prospective study. Neurourol Urodyn. 2012;31(1):64–8. https://pubmed.ncbi.nlm.nih.gov/21826726/
Johnson TM. The chicken-or-egg dilemma with nocturia: which matters most, the water or the salt? J Clin Hypertens. 2020;22(4):639–41. https://pubmed.ncbi.nlm.nih.gov/32073711/
Matsuo T, Miyata Y, Sakai H. Daily salt intake is an independent risk factor for pollakiuria and nocturia. Int J Urol. 2017;24(5):384–9. https://pubmed.ncbi.nlm.nih.gov/28295650/
Alwis US, Monaghan TF, Haddad R, et al. Dietary considerations in the evaluation and management of nocturia. F1000Res. 2020;9(F1000 Faculty Rev):165. https://pubmed.ncbi.nlm.nih.gov/32185022/
Matsuo T, Miyata Y, Sakai H. Effect of salt intake reduction on nocturia in patients with excessive salt intake. Neurourol Urodyn. 2019;38(3):927–33. https://pubmed.ncbi.nlm.nih.gov/30706965/
Monaghan TF, Michelson KP, Wu ZD, et al. Sodium restriction improves nocturia in patients at a cardiology clinic. J Clin Hypertens (Greenwich). 2020;22(4):633–8. https://pubmed.ncbi.nlm.nih.gov/32049435/
Alwis US, Delanghe J, Dossche L, et al. Could evening dietary protein intake play a role in nocturnal polyuria? J Clin Med. 2020;9(8):E2532. https://pubmed.ncbi.nlm.nih.gov/32764521/
Vidlar A, Student V, Vostalova J, et al. Cranberry fruit powder (Flowens™) improves lower urinary tract symptoms in men: a double-blind, randomized, placebo-controlled study. World J Urol. 2016;34(3):419–24. https://pubmed.ncbi.nlm.nih.gov/26049866/
An YJ, Lee JY, Kim Y, Jun W, Lee YH. Cranberry powder attenuates benign prostatic hyperplasia in rats. J Med Food. 2020;23(12):1296–302. https://pubmed.ncbi.nlm.nih.gov/33136465/
Vidlar A, Vostalova J, Ulrichova J, et al. The effectiveness of dried cranberries (Vaccinium macrocarpon) in men with lower urinary tract symptoms. Br J Nutr. 2010;104(8):1181–9. https://pubmed.ncbi.nlm.nih.gov/20804630/
Vidlar A, Student V, Vostalova J, et al. Cranberry fruit powder (Flowens™) improves lower urinary tract symptoms in men: a double-blind, randomized, placebo-controlled study. World J Urol. 2016;34(3):419–24. https://pubmed.ncbi.nlm.nih.gov/26049866/
Ledda A, Belcaro G, Dugall M, et al. Supplementation with high titer cranberry extract (Anthocran®) for the prevention of recurrent urinary tract infections in elderly men suffering from moderate prostatic hyperplasia: a pilot study. Eur Rev Med Pharmacol Sci. 2016;20(24):5205–9. https://pubmed.ncbi.nlm.nih.gov/28051247/
Spettel S, Chughtai B, Feustel P, Kaufman A, Levin RM, De E. A prospective randomized double-blind trial of grape juice antioxidants in men with lower urinary tract symptoms. Neurourol Urodyn. 2013;32(3):261–5. https://pubmed.ncbi.nlm.nih.gov/22907790/
Edinger MS, Koff WJ. Effect of the consumption of tomato paste on plasma prostate – specific antigen levels in patients with benign prostate hyperplasia. Braz J Med Biol Res. 2006;39(8):1115–9. https://pubmed.ncbi.nlm.nih.gov/16906286/
Durak lker, Yilmaz E, Devrim E, Perk H, Kaçmaz M. Consumption of aqueous garlic extract leads to significant improvement in patients with benign prostate hyperplasia and prostate cancer. Nutr Res. 2003;23(2):199–204. https://www.sciencedirect.com/science/article/abs/pii/S0271531702004955?via%3Dihub
Jani B, Rajkumar C. Ageing and vascular ageing. Postgrad Med J. 2006;82(968):357–62. https://pubmed.ncbi.nlm.nih.gov/16754702/
Mosca L, Ferris A, Fabunmi R, Robertson RM, American Heart Association. Tracking women’s awareness of heart disease: an American Heart Association national study. Circulation. 2004;109(5):573–9. https://pubmed.ncbi.nlm.nih.gov/14761901/
Xu J. Mortality among centenarians in the United States, 2000–2014. NCHS Data Brief. 2016;(233):1–8. https://pubmed.ncbi.nlm.nih.gov/26828422/
Cushman M, Shay CM, Howard VJ, et al. Ten-year differences in women’s awareness related to coronary heart disease: results of the 2019 American Heart Association national survey: a special report from the American Heart Association. Circulation. 2021;143(7):e239–48. https://pubmed.ncbi.nlm.nih.gov/32954796/
Tao J, Qiu Y. All disease stems from vessels. Aging Med (Milton). 2020;3(4):224–5. https://pubmed.ncbi.nlm.nih.gov/33392426/
Jin K. A microcirculatory theory of aging. Aging Dis. 2019;10(3):676–83. https://pubmed.ncbi.nlm.nih.gov/31165010/
Möbius-Winkler S, Linke A, Adams V, Schuler G, Erbs S. How to improve endothelial repair mechanisms: the lifestyle approach. Expert Rev Cardiovasc Ther. 2010;8(4):573–80. https://pubmed.ncbi.nlm.nih.gov/20397830/
Sharma S, Pandey NN, Sinha M, et al. Randomized, double-blind, placebo-controlled trial to evaluate safety and therapeutic efficacy of angiogenesis induced by intraarterial autologous bone marrow-derived stem cells in patients with severe peripheral arterial disease. J Vasc Interv Radiol. 2021;32(2):157–63. https://pubmed.ncbi.nlm.nih.gov/33248918/
Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: how currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev. 2016;159:49–62. https://pubmed.ncbi.nlm.nih.gov/26919825/
Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol (1985). 2007;102(3):847–52. https://pubmed.ncbi.nlm.nih.gov/17158243/
Wang M, Monticone RE, McGraw KR. Proinflammation, profibrosis, and arterial aging. Aging Med (Milton). 2020;3(3):159–68. https://pubmed.ncbi.nlm.nih.gov/33103036/
Weech M, Altowaijri H, Mayneris-Perxachs J, et al. Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating endothelial progenitor cells and decreases numbers of microparticles: findings from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am J Clin Nutr. 2018;107(6):876–82. https://pubmed.ncbi.nlm.nih.gov/29741564/
Shi Q, Hubbard GB, Kushwaha RS, et al. Endothelial senescence after high-cholesterol, high-fat diet challenge in baboons. Am J Physiol Heart Circ Physiol. 2007;292(6):H2913–20. https://pubmed.ncbi.nlm.nih.gov/17277030/
Jeong HS, Kim S, Hong SJ, et al. Black raspberry extract increased circulating endothelial progenitor cells and improved arterial stiffness in patients with metabolic syndrome: a randomized controlled trial. J Med Food. 2016;19(4):346–52. https://pubmed.ncbi.nlm.nih.gov/26891216/
Choi EY, Lee H, Woo JS, et al. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition. 2015;31(9):1131–5. https://pubmed.ncbi.nlm.nih.gov/26233871/
Kim W, Jeong MH, Cho SH, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J. 2006;70(8):1052–7. https://pubmed.ncbi.nlm.nih.gov/16864941/
Keith M, Kuliszewski MA, Liao C, et al. A modified portfolio diet complements medical management to reduce cardiovascular risk factors in diabetic patients with coronary artery disease. Clin Nutr. 2015;34(3):541–8. https://pubmed.ncbi.nlm.nih.gov/25023926/
Steinberg D, Blumenthal S, Carleton RA, et al. Lowering blood cholesterol to prevent heart disease: NIH Consensus Development Conference statement. Nutr Rev. 1985;43(9):283–91. https://pubmed.ncbi.nlm.nih.gov/4058807/
Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/
Roberts WC. It’s the cholesterol, stupid! Am J Cardiol. 2010;106(9):1364–6. https://pubmed.ncbi.nlm.nih.gov/21029840/
Roberts WC. William Clifford Roberts, MD curriculum vitae. http://www.iscvdp.org/docs/WCRoberts-CV.pdf. Accessed May 13, 2022.;http://www.iscvdp.org/storage/app/media/william-clifford-roberts.pdf
Roberts WC. Quantitative extent of atherosclerotic plaque in the major epicardial coronary arteries in patients with fatal coronary heart disease, in coronary endarterectomy specimens, in aorta – coronary saphenous venous conduits, and means to prevent the plaques: a review after studying the coronary arteries for 50 years. Am J Cardiol. 2018;121(11):1413–35. https://pubmed.ncbi.nlm.nih.gov/29753395/
Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/
Fernández-Friera L, Fuster V, López-Melgar B, et al. Normal LDL – cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70(24):2979–91. https://pubmed.ncbi.nlm.nih.gov/29241485/
Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70(24):2992–4. https://pubmed.ncbi.nlm.nih.gov/29241486/
Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/
Fernández-Friera L, Fuster V, López-Melgar B, et al. Normal LDL – cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70(24):2979–91. https://pubmed.ncbi.nlm.nih.gov/29241485/
Gitin A, Pfeffer MA, Hennekens CH. Editorial commentary: the lower the LDL the better but how and how much? Trends Cardiovasc Med. 2018;28(5):355–6. https://pubmed.ncbi.nlm.nih.gov/29428160/
Law MR, Wald NJ. Risk factor thresholds: their existence under scrutiny. BMJ. 2002;324(7353):1570–6. https://pubmed.ncbi.nlm.nih.gov/12089098/
Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/
O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dL: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43(11):2142–6. https://pubmed.ncbi.nlm.nih.gov/15172426/
Anderson JW, Konz EC, Jenkins DJ. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr. 2000;19(5):578–90. https://pubmed.ncbi.nlm.nih.gov/11022871/
Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/
Law MR, Wald NJ. Risk factor thresholds: their existence under scrutiny. BMJ. 2002;324(7353):1570–6. https://pubmed.ncbi.nlm.nih.gov/12089098/
Roberts WC. Quantitative extent of atherosclerotic plaque in the major epicardial coronary arteries in patients with fatal coronary heart disease, in coronary endarterectomy specimens, in aorta – coronary saphenous venous conduits, and means to prevent the plaques: a review after studying the coronary arteries for 50 years. Am J Cardiol. 2018;121(11):1413–35. https://pubmed.ncbi.nlm.nih.gov/29753395/
Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/
Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/
Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70(24):2992–4. https://pubmed.ncbi.nlm.nih.gov/29241486/
Hong KN, Fuster V, Rosenson RS, Rosendorff C, Bhatt DL. How low to go with glucose, cholesterol, and blood pressure in primary prevention of CVD. J Am Coll Cardiol. 2017;70(17):2171–85. https://pubmed.ncbi.nlm.nih.gov/29050566/
Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://pubmed.ncbi.nlm.nih.gov/21067804/
Guber K, Pemmasani G, Malik A, Aronow WS, Yandrapalli S, Frishman WH. Statins and higher diabetes mellitus risk: incidence, proposed mechanisms, and clinical implications. Cardiol Rev. 2021;29(6):314–22. https://pubmed.ncbi.nlm.nih.gov/32947479/
Hong KN, Fuster V, Rosenson RS, Rosendorff C, Bhatt DL. How low to go with glucose, cholesterol, and blood pressure in primary prevention of CVD. J Am Coll Cardiol. 2017;70(17):2171–85. https://pubmed.ncbi.nlm.nih.gov/29050566/
Glenn AJ, Li J, Lo K, et al. The Portfolio Diet and incident type 2 diabetes: findings from the Women’s Health Initiative prospective cohort study. Diabetes Care. 2023;46(1):28–37. https://pubmed.ncbi.nlm.nih.gov/36162007/
Sliding scale for LDL: how low should you go? The target for the safest amount of “bad” cholesterol continues to drift downward. Harv Heart Lett. 2011;21(12):5. https://pubmed.ncbi.nlm.nih.gov/21991609/
How low should your cholesterol go? Even lower may be better. For those at highest risk, very low cholesterol levels may help prevent a second heart attack or stroke. Health News. 2004;10(10):6. https://pubmed.ncbi.nlm.nih.gov/15584114/
De Biase SG, Fernandes SFC, Gianini RJ, Duarte JLG. Vegetarian diet and cholesterol and triglycerides levels. Arq Bras Cardiol. 2007;88(1):35–9. https://pubmed.ncbi.nlm.nih.gov/17364116/
Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61. https://pubmed.ncbi.nlm.nih.gov/29800598/
The US Burden of Disease Collaborators, Mokdad AH, Ballestros K, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/
Huang Z, Xu A, Cheung BMY. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep. 2017;19(4):28. https://pubmed.ncbi.nlm.nih.gov/28337713/
Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies [published correction appears in Lancet. 2003;361(9362):1060]. Lancet. 2002;360(9349):1903–13. https://pubmed.ncbi.nlm.nih.gov/12493255/
Kramer H, Cooper R. Pros and cons of intensive systolic blood pressure lowering. Curr Hypertens Rep. 2018;20(2):16. https://pubmed.ncbi.nlm.nih.gov/29511979/
Kjeldsen SE, Os I, Westheim A. Could adverse events offset the benefit of intensive blood pressure lowering treatment in the Systolic Blood Pressure Intervention Trial? J Hypertens. 2019;37(5):902–4. https://pubmed.ncbi.nlm.nih.gov/30920495/
Fuster V. No such thing as ideal blood pressure: a case for personalized medicine. J Am Coll Cardiol. 2016;67(25):3014–5. https://pubmed.ncbi.nlm.nih.gov/27339499/
Goldhamer A, Lisle D, Parpia B, Anderson SV, Campbell TC. Medically supervised water-only fasting in the treatment of hypertension. J Manipulative Physiol Ther. 2001;24(5):335–9. https://pubmed.ncbi.nlm.nih.gov/11416824/
McDougall J, Litzau K, Haver E, Saunders V, Spiller GA. Rapid reduction of serum cholesterol and blood pressure by a twelve-day, very low fat, strictly vegetarian diet. J Am Coll Nutr. 1995;14(5):491–6. https://pubmed.ncbi.nlm.nih.gov/8522729/
Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/
McGill HC, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol. 1998;82(10B):30T-6T. https://pubmed.ncbi.nlm.nih.gov/9860371/
Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281(8):727–35. https://pubmed.ncbi.nlm.nih.gov/10052443/
Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation. 2008;118(6):672–7. https://pubmed.ncbi.nlm.nih.gov/18678783/
Myerburg RJ, Junttila MJ. 2012. Sudden cardiac death caused by coronary heart disease. Circulation. 28;125(8):1043–52. https://pubmed.ncbi.nlm.nih.gov/22371442/
Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/
Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation. 2008;118(6):672–7. https://pubmed.ncbi.nlm.nih.gov/18678783/
Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5. https://pubmed.ncbi.nlm.nih.gov/15654334/
Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. https://pubmed.ncbi.nlm.nih.gov/16554528/
Robinson JG, Gidding SS. Curing atherosclerosis should be the next major cardiovascular prevention goal. J Am Coll Cardiol. 2014;63(25):2779–85. https://pubmed.ncbi.nlm.nih.gov/24814489/
Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/
Wang N, Fulcher J, Abeysuriya N, et al. Intensive LDL cholesterol – lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327¿037 participants. Lancet Diabetes Endocrinol. 2020;8(1):36–49. https://pubmed.ncbi.nlm.nih.gov/31862150/
Shapiro MD, Bhatt DL. “Cholesterol-years” for ASCVD risk prediction and treatment. J Am Coll Cardiol. 2020;76(13):1517–20. https://pubmed.ncbi.nlm.nih.gov/32972527/
Kaplan H, Thompson RC, Trumble BC, et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet. 2017;389(10080):1730–9. https://pubmed.ncbi.nlm.nih.gov/28320601/
Penson PE, Pirro M, Banach M. LDL–C: lower is better for longer – even at low risk. BMC Med. 2020;18(1):320. https://pubmed.ncbi.nlm.nih.gov/33032586/
Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/
Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/
Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61. https://pubmed.ncbi.nlm.nih.gov/29800598/
O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dL: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43(11):2142–6. https://pubmed.ncbi.nlm.nih.gov/15172426/
Roberts WC. Cholesterol is the cause of atherosclerosis. Am J Cardiol. 2017;120(9):1696. https://pubmed.ncbi.nlm.nih.gov/28847597/
Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis. 2015;242(2):490–5. https://pubmed.ncbi.nlm.nih.gov/26298740/
Diamond DM, Ravnskov U. How statistical deception created the appearance that statins are safe and effective in primary and secondary prevention of cardiovascular disease. Expert Rev Clin Pharmacol. 2015;8(2):201–10. https://pubmed.ncbi.nlm.nih.gov/25672965/
Trewby PN, Reddy AV, Trewby CS, Ashton VJ, Brennan G, Inglis J. Are preventive drugs preventive enough? A study of patients’ expectation of benefit from preventive drugs. Clin Med (Lond). 2002;2(6):527–33. https://pubmed.ncbi.nlm.nih.gov/12528966/
Salami JA, Warraich H, Valero-Elizondo J, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the Medical Expenditure Panel Survey. JAMA Cardiol. 2017;2(1):56–65. https://pubmed.ncbi.nlm.nih.gov/29358195/
Diprose W, Verster F. The preventive-pill paradox: how shared decision making could increase cardiovascular morbidity and mortality. Circulation. 2016;134(21):1599–600. https://pubmed.ncbi.nlm.nih.gov/27881503/
Ziaeian B, Fonarow GC. Statins and the prevention of heart disease. JAMA Cardiol. 2017;2(4):464. https://pubmed.ncbi.nlm.nih.gov/28122083/
ASCVD Risk Estimator Plus. American College of Cardiology. https://tools.acc.org/ASCVD-Risk-Estimator/. Accessed April 3, 2022.; https://tools.acc.org/ASCVD-Risk-Estimator/
Framingham Risk Score. Medscape. https://reference.medscape.com/calculator/framingham-cardiovascular-disease-risk. Accessed April 3, 2022.; https://reference.medscape.com/calculator/252/framingham-risk-score-2008
Reynolds Risk Score. https://www.reynoldsriskscore.org. Accessed April 3, 2022.; https://www.reynoldsriskscore.org/
Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153–67. https://pubmed.ncbi.nlm.nih.gov/30586766/
Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153–67. https://pubmed.ncbi.nlm.nih.gov/30586766/
Curry SJ, Krist AH, Owens DK, et al. Risk assessment for cardiovascular disease with nontraditional risk factors: US Preventive Services Task Force recommendation statement. JAMA. 2018;320(3):272–80. https://pubmed.ncbi.nlm.nih.gov/29998297/
Diamond DM, de Lorgeril M, Kendrick M, Ravnskov U, Rosch PJ. Formal comment on “Systematic review of the predictors of statin adherence for the primary prevention of cardiovascular disease.” PLoS One. 2019;14(1):e0205138. https://pubmed.ncbi.nlm.nih.gov/30653537/
Wei MY, Ito MK, Cohen JD, Brinton EA, Jacobson TA. Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. J Clin Lipidol. 2013;7(5):472–83. https://pubmed.ncbi.nlm.nih.gov/24079289/
Ward NC, Watts GF, Eckel RH. Statin toxicity: mechanistic insights and clinical implications. Circ Res. 2019;124(2):328–50. https://pubmed.ncbi.nlm.nih.gov/30653440/
Zaleski AL, Taylor BA, Thompson PD. Coenzyme Q10 as treatment for statin-associated muscle symptoms – a good idea, but…. Adv Nutr. 2018;9(4):519S-23S. https://pubmed.ncbi.nlm.nih.gov/30032220/
Banach M, Serban C, Sahebkar A, et al. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90(1):24–34. https://pubmed.ncbi.nlm.nih.gov/25440725/
Armour R, Zhou L. Outcomes of statin myopathy after statin withdrawal. J Clin Neuromuscul Dis. 2013;14(3):103–9. https://pubmed.ncbi.nlm.nih.gov/23492461/
Majeed A, Molokhia M. Urgent need to establish the true incidence of the side effects of statins. BMJ. 2014;348:g3650. https://pubmed.ncbi.nlm.nih.gov/24920685/
Finegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol. 2014;21(4):464–74. https://pubmed.ncbi.nlm.nih.gov/24623264/
Climent E, Benaiges D, Pedro-Botet J. Statin treatment and increased diabetes risk. Possible mechanisms. Clínica e Investigación en Arteriosclerosis. 2019;31(5):228–32. https://pubmed.ncbi.nlm.nih.gov/30737072/
Mansi IA, English J, Zhang S, Mortensen EM, Halm EA. Long-term outcomes of short-term statin use in healthy adults: a retrospective cohort study. Drug Saf. 2016;39(6):543–59. https://pubmed.ncbi.nlm.nih.gov/26979831/
The Panel on Food Additives and Nutrient Sources, Aggett P, Aguilar F, et al. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018;16(80):5368. https://pubmed.ncbi.nlm.nih.gov/32626016/
Gordon RY, Cooperman T, Obermeyer W, Becker DJ. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch Intern Med. 2010;170(19):1722–7. https://pubmed.ncbi.nlm.nih.gov/20975018/
Righetti L, Dall’Asta C, Bruni R. Risk assessment of RYR food supplements: perception vs. reality. Front Nutr. 2021;8:792529. https://pubmed.ncbi.nlm.nih.gov/34950692/
Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief, No. 427. https://www.cdc.gov/nchs/products/databriefs/db427.htm. Published December 2021. Accessed January 3, 2023.; https://www.cdc.gov/nchs/products/databriefs/db427.htm
Jukema JW, Cannon CP, de Craen AJM, Westendorp RGJ, Trompet S. The controversies of statin therapy: weighing the evidence. J Am Coll Cardiol. 2012;60(10):875–81. https://pubmed.ncbi.nlm.nih.gov/22902202/
Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81. https://pubmed.ncbi.nlm.nih.gov/30580575/
Redberg RF, Katz MH. Statins for primary prevention: the debate is intense, but the data are weak. JAMA. 2016;316(19):1979–81. https://pubmed.ncbi.nlm.nih.gov/27838702/
Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280(23):2001–7. https://pubmed.ncbi.nlm.nih.gov/9863851/
Kelly J, Karlsen M, Steinke G. Type 2 diabetes remission and lifestyle medicine: a position statement from the American College of Lifestyle Medicine. Am J Lifestyle Med. 2020;14(4):406–19. https://pubmed.ncbi.nlm.nih.gov/33281521/
Esselstyn CB Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014;63(7):356–64b. https://pubmed.ncbi.nlm.nih.gov/25198208/
Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/
Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci U S A. 2009;106(24):9546–7. https://pubmed.ncbi.nlm.nih.gov/19506257/
Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5. https://pubmed.ncbi.nlm.nih.gov/15654334/
Jaworski K, Jankowski P, Kosior DA. PCSK9 inhibitors – from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci. 2017;13(4):914–29. https://pubmed.ncbi.nlm.nih.gov/28721159/
Qamar A, Bhatt DL. Effect of low cholesterol on steroid hormones and vitamin E levels: just a theory or real concern? Circ Res. 2015;117(8):662–4. https://pubmed.ncbi.nlm.nih.gov/26405182/
Blom DJ, Djedjos CS, Monsalvo ML, et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117(8):731–41. https://pubmed.ncbi.nlm.nih.gov/26228031/
Qamar A, Libby P. Low-density lipoprotein cholesterol after an acute coronary syndrome: how low to go? Curr Cardiol Rep. 2019;21(8):77. https://pubmed.ncbi.nlm.nih.gov/31250329/
Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/
Glueck CJ, Gartside P, Fallat RW, Sielski J, Steiner PM. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med. 1976;88(6):941–57. https://pubmed.ncbi.nlm.nih.gov/186545/
Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/
Gotto AM. Low-density lipoprotein cholesterol and cardiovascular risk reduction: how low is low enough without causing harm? JAMA Cardiol. 2018;3(9):802–3. https://pubmed.ncbi.nlm.nih.gov/30073330/
Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/
Steinberg D. The cholesterol controversy is over. Why did it take so long? Circulation. 1989;80(4):1070–8. https://pubmed.ncbi.nlm.nih.gov/2676235/
Morgan DJ, Dhruva SS, Coon ER, Wright SM, Korenstein D. 2018 update on medical overuse. JAMA Intern Med. 2019;179(2):240–6. https://pubmed.ncbi.nlm.nih.gov/30508032/
Lyu H, Xu T, Brotman D, et al. Overtreatment in the United States. PLoS One. 2017;12(9):e0181970. https://pubmed.ncbi.nlm.nih.gov/28877170/
Rothberg MB, Scherer L, Kashef MA, et al. The effect of information presentation on beliefs about the benefits of elective percutaneous coronary intervention. JAMA Intern Med. 2014;174(10):1623–9. https://pubmed.ncbi.nlm.nih.gov/25156687/
Rothberg MB, Sivalingam SK, Ashraf J, et al. Summaries for patients: patients’ and cardiologists’ beliefs about a common heart procedure. Ann Intern Med. 2010;153(5):I46. https://pubmed.ncbi.nlm.nih.gov/20820040/
Laukkanen JA, Kunutsor SK, Lavie CJ. Percutaneous coronary intervention versus medical therapy in the treatment of stable coronary artery disease: an updated meta-analysis of contemporary randomized controlled trials. J Invasive Cardiol. 2021;33(8):E647–57. https://pubmed.ncbi.nlm.nih.gov/34338654/
Harvard Heart Letter. COURAGE to make choices. Harvard Health Publishing. https://www.health.harvard.edu/newsletter_article/courage-to-make-choices. Published June 1, 2007. Accessed April 5, 2022.; https://www.health.harvard.edu/newsletter_article/courage-to-make-choices
Al-Lamee R, Thompson D, Dehbi HM, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40. https://pubmed.ncbi.nlm.nih.gov/29103656/
Kolata G. ‘Unbelievable’: heart stents fail to ease chest pain. The New York Times. https://www.nytimes.com/2017/11/02/health/heart-disease-stents.html. Published November 2, 2017. Accessed April 5, 2022.; https://www.nytimes.com/2017/11/02/health/heart-disease-stents.html
Al-Lamee R, Thompson D, Dehbi HM, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40. https://pubmed.ncbi.nlm.nih.gov/29103656/
Doenst T, Haverich A, Serruys P, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2019;73(8):964–76. https://pubmed.ncbi.nlm.nih.gov/30819365/
Rothberg MB. Coronary artery disease as clogged pipes: a misconceptual model. Circ Cardiovasc Qual Outcomes. 2013;6(1):129–32. https://pubmed.ncbi.nlm.nih.gov/23322809/
Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/
World Health Organization. Countdown to 2023: WHO report on global trans-fat elimination 2021. Geneva: 2021.; https://www.who.int/publications/i/item/9789240031876
Wanders AJ, Zock PL, Brouwer IA. Trans fat intake and its dietary sources in general populations worldwide: a systematic review. Nutrients. 2017;9(8):E840. https://pubmed.ncbi.nlm.nih.gov/28783062/
Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of top food sources of various food components. Epidemiology and Genomics Research Program. https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf. Updated November 30, 2019. Accessed April 5, 2022.; https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf
Xu Z, McClure ST, Appel LJ. Dietary cholesterol intake and sources among U.S. adults: results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients. 2018;10(6):E771. https://pubmed.ncbi.nlm.nih.gov/29903993/
Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of top food sources of various food components. Epidemiology and Genomics Research Program. https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf. Updated November 30, 2019. Accessed April 5, 2022.; https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf
Riccardi G, Giosuè A, Calabrese I, Vaccaro O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc Res. 2022;118(5):1188–204. https://pubmed.ncbi.nlm.nih.gov/34229346/
Кокрейновская база данных систематических обзоров и метаанализов, которые обобщают и интерпретируют результаты медицинских исследований. – Примеч. ред.
Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015;(6):CD011737. https://pubmed.ncbi.nlm.nih.gov/26068959/
Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–30. https://pubmed.ncbi.nlm.nih.gov/28620111/
Hughes S. AHA issues ‘Presidential Advisory’ on harms of saturated fat. Medscape. https://www.medscape.com/viewarticle/881689. Published June 15, 2017. Accessed April 3, 2022.; https://www.medscape.com/viewarticle/881689
Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–30. https://pubmed.ncbi.nlm.nih.gov/28620111/
Bergeron N, Chiu S, Williams PT, M King S, Krauss RM. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr. 2019;110(1):24–33. https://pubmed.ncbi.nlm.nih.gov/31161217/
Maki KC, Van Elswyk ME, Alexander DD, Rains TM, Sohn EL, McNeill S. A meta-analysis of randomized controlled trials that compare the lipid effects of beef versus poultry and/or fish consumption. J Clin Lipidol. 2012;6(4):352–61. https://pubmed.ncbi.nlm.nih.gov/22836072/
Connor WE, Connor SL. Dietary cholesterol and coronary heart disease. Curr Atheroscler Rep. 2002;4(6):425–32. https://pubmed.ncbi.nlm.nih.gov/12361489/
Khalighi Sikaroudi M, Soltani S, Kolahdouz-Mohammadi R, et al. The responses of different dosages of egg consumption on blood lipid profile: an updated systematic review and meta-analysis of randomized clinical trials. J Food Biochem. 2020;44(8):e13263. https://pubmed.ncbi.nlm.nih.gov/32524644/
Barnard ND, Long MB, Ferguson JM, Flores R, Kahleova H. Industry funding and cholesterol research: a systematic review. Am J Lifestyle Med. 2021;15(2):165–72. https://pubmed.ncbi.nlm.nih.gov/33786032/
Choi Y, Chang Y, Lee JE, et al. Egg consumption and coronary artery calcification in asymptomatic men and women. Atherosclerosis. 2015;241(2):305–12. https://pubmed.ncbi.nlm.nih.gov/26062990/
Zhong VW, Van Horn L, Cornelis MC, et al. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA. 2019;321(11):1081–95. https://pubmed.ncbi.nlm.nih.gov/30874756/
Abbasi J. Study puts eggs and dietary cholesterol back on the radar. JAMA. 2019;321(20):1959–61. https://pubmed.ncbi.nlm.nih.gov/31066864/
Physicians Comm for Responsible Med v. Vilsack, № 16-cv-00069-LB, 2016 US Dist LEXIS 141489, 2016 WL 5930585 (ND Cal 2016).; https://casetext.com/case/physicians-comm-for-responsible-med-v-vilsack-2
U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2015–2020. 8th ed. http://health.gov/dietaryguidelines/2015/guidelines/. Published December 2015. Accessed May 25, 2022; https://health.gov/dietaryguidelines/2015/guidelines/
U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2020–2025. 9th ed. https://www.dietaryguidelines.gov/sites/default/files/2020–12/Dietary_Guidelines_for_Americans_2020–2025.pdf. Published December 2020. Accessed April 5, 2022.; https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf
Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/
David Spence J. Dietary cholesterol and egg yolk should be avoided by patients at risk of vascular disease. J Transl Int Med. 2016;4(1):20–4. https://pubmed.ncbi.nlm.nih.gov/28191513/
Enas EA, Varkey B, Dharmarajan TS, Pare G, Bahl VK. Lipoprotein(a): an independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J. 2019;71(2):99–112. https://pubmed.ncbi.nlm.nih.gov/31280836/
Kotani K, Serban MC, Penson P, Lippi G, Banach M. Evidence-based assessment of lipoprotein(a) as a risk biomarker for cardiovascular diseases – some answers and still many questions. Crit Rev Clin Lab Sci. 2016;53(6):370–8. https://pubmed.ncbi.nlm.nih.gov/27173621/
Stulnig TM, Morozzi C, Reindl-Schwaighofer R, Stefanutti C. Looking at Lp(a) and related cardiovascular risk: from scientific evidence and clinical practice. Curr Atheroscler Rep. 2019;21(10):37. https://pubmed.ncbi.nlm.nih.gov/31350625/
Kostner KM, Kostner GM, Wierzbicki AS. Is Lp(a) ready for prime time use in the clinic? A pros-and-cons debate. Atherosclerosis. 2018;274:16–22. https://pubmed.ncbi.nlm.nih.gov/29747086/
Stender S. In equal amounts, the major ruminant trans fatty acid is as bad for LDL cholesterol as industrially produced trans fatty acids, but the latter are easier to remove from foods. Am J Clin Nutr. 2015;102(6):1301–2. https://pubmed.ncbi.nlm.nih.gov/26561633/
Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial. Am J Clin Nutr. 2015;102(6):1339–46. https://pubmed.ncbi.nlm.nih.gov/26561632/
Вариант вегетарианства, при котором разрешены не только продукты растительного происхождения, но также молоко и яйца. – Примеч. ред.
Masarei JR, Rouse IL, Lynch WJ, Robertson K, Vandongen R, Beilin LJ. Effects of a lacto-ovo vegetarian diet on serum concentrations of cholesterol, triglyceride, HDL–C, HDL2-C, HDL3-C, apoprotein-B, and Lp(a). Am J Clin Nutr. 1984;40(3):468–78. https://pubmed.ncbi.nlm.nih.gov/6089540/
Sahebkar A, Katsiki N, Ward N, Reiner Ž. Flaxseed supplementation reduces plasma lipoprotein(a) levels: a meta-analysis. Altern Ther Health Med. 2021;27(3):50–3. https://pubmed.ncbi.nlm.nih.gov/31634874/
Biswas TK, Chakrabarti S, Pandit S, Jana U, Dey SK. Pilot study evaluating the use of Emblica officinalis standardized fruit extract in cardio-respiratory improvement and antioxidant status of volunteers with smoking history. J Herb Med. 2014;4(4):188–94. https://www.sciencedirect.com/science/article/abs/pii/S2210803314000633
Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018;41(8):1062–8. https://pubmed.ncbi.nlm.nih.gov/30014498/
Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(A) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97. https://pubmed.ncbi.nlm.nih.gov/28386638/
Najjar RS, Moore CE, Montgomery BD. A defined, plant-based diet utilized in an outpatient cardiovascular clinic effectively treats hypercholesterolemia and hypertension and reduces medications. Clin Cardiol. 2018;41(3):307–13. https://pubmed.ncbi.nlm.nih.gov/29575002/
Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018;41(8):1062–8. https://pubmed.ncbi.nlm.nih.gov/30014498/
Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. 2022;61(1):387–98. https://pubmed.ncbi.nlm.nih.gov/34379193/
Keaver L, Ruan M, Chen F, et al. Plant- and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/
Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/
Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13.; https://pubmed.ncbi.nlm.nih.gov/33951994/
Remde A, DeTurk SN, Almardini A, Steiner L, Wojda T. Plant-predominant eating patterns – how effective are they for treating obesity and related cardiometabolic health outcomes? – a systematic review. Nutr Rev. 2022;80(5):1094–104. https://pubmed.ncbi.nlm.nih.gov/34498070/
Benatar JR, Stewart RAH. Cardiometabolic risk factors in vegans; a meta-analysis of observational studies. PLoS One. 2018;13(12):e0209086. https://pubmed.ncbi.nlm.nih.gov/30571724/
Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term low-calorie low-protein vegan diet and endurance exercise are associated with low cardiometabolic risk. Rejuvenation Res. 2007;10(2):225–34. https://pubmed.ncbi.nlm.nih.gov/17158430/
Chen GC, Chen PY, Su YC, et al. Vascular, cognitive, and psychomental survey on elderly recycling volunteers in Northern Taiwan. Front Neurol. 2018;9:1176. https://pubmed.ncbi.nlm.nih.gov/30687225/
McDougall J, Thomas LE, McDougall C, et al. Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J. 2014;13:99. https://pubmed.ncbi.nlm.nih.gov/25311617/
Bloomer RJ, Kabir MM, Canale RE, et al. Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women. Lipids Health Dis. 2010;9:94. https://pubmed.ncbi.nlm.nih.gov/20815907/
Friedman SM, Barnett CH, Franki R, Pollock B, Garver B, Barnett TD. Jumpstarting health with a 15-day whole-food plant-based program. Am J Lifestyle Med. Published online April 8, 2021:155982762110063.; https://pubmed.ncbi.nlm.nih.gov/35706593/
Kapur NK, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag. 2008;4(2):341–53. https://pubmed.ncbi.nlm.nih.gov/18561510/
Friedman SM, Barnett CH, Franki R, Pollock B, Garver B, Barnett TD. Jumpstarting health with a 15-day whole-food plant-based program. Am J Lifestyle Med. Published online April 8, 2021:155982762110063.; https://pubmed.ncbi.nlm.nih.gov/35706593/
Paz MA, de-La-Sierra A, Sáez M, et al. Treatment efficacy of anti-hypertensive drugs in monotherapy or combination: ATOM systematic review and meta-analysis of randomized clinical trials according to PRISMA statement. Medicine (Baltimore). 2016;95(30):e4071. https://pubmed.ncbi.nlm.nih.gov/27472680/
Lin CL, Fang TC, Gueng MK. Vascular dilatory functions of ovo-lactovegetarians compared with omnivores. Atherosclerosis. 2001;158(1):247–51. https://pubmed.ncbi.nlm.nih.gov/11500198/
Ernst E, Pietsch L, Matrai A, Eisenberg J. Blood rheology in vegetarians. Br J Nutr. 1986;56(3):555–60. https://pubmed.ncbi.nlm.nih.gov/3676231/
McCarty MF. Favorable impact of a vegan diet with exercise on hemorheology: implications for control of diabetic neuropathy. Med Hypotheses. 2002;58(6):476–86. https://pubmed.ncbi.nlm.nih.gov/12323113/
Dintenfass L. Effect of low-fat, low-protein diet on blood viscosity factors. Med J Aust. 1982;1(13):543. https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326–5377.1982.tb124177.x
Ernst E, Franz A. Blood fluidity score during vegetarian and hypocaloric diets – a pilot study. Complement Ther Med. 1995;3(2):70–1. https://www.sciencedirect.com/science/article/abs/pii/S0965229995800026?via%3Dihub
Tong TYN, Appleby PN, Bradbury KE, et al. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study. BMJ. Published online September 4, 2019:l4897.; https://pubmed.ncbi.nlm.nih.gov/31484644/
Petermann-Rocha F, Parra-Soto S, Gray S, et al. Vegetarians, fish, poultry, and meat-eaters: who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. Eur Heart J. 2021;42(12):1136–43. https://pubmed.ncbi.nlm.nih.gov/33313747/
Chiu THT, Chang HR, Wang LY, Chang CC, Lin MN, Lin CL. Vegetarian diet and incidence of total, ischemic, and hemorrhagic stroke in 2 cohorts in Taiwan. Neurology. 2020;94(11):e1112–21. https://pubmed.ncbi.nlm.nih.gov/32102976/
Baden MY, Shan Z, Wang F, et al. Quality of plant-based diet and risk of total, ischemic, and hemorrhagic stroke. Neurology. 2021;96(15):e1940–53. https://pubmed.ncbi.nlm.nih.gov/33692165/
Lu JW, Yu LH, Tu YK, et al. Risk of incident stroke among vegetarians compared to nonvegetarians: a systematic review and meta-analysis of prospective cohort studies. Nutrients. 2021;13(9):3019. https://pubmed.ncbi.nlm.nih.gov/34578897/
Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13.; https://pubmed.ncbi.nlm.nih.gov/33951994/
Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/
Schutz Y, Montani JP, Dulloo AG. Low-carbohydrate ketogenic diets in body weight control: a recurrent plaguing issue of fad diets? Obes Rev. 2021;22 Suppl 2:e13195. https://pubmed.ncbi.nlm.nih.gov/33471427/
Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/
Fleming RM. The effect of high-protein diets on coronary blood flow. Angiology. 2000;51(10):817–26. https://pubmed.ncbi.nlm.nih.gov/11108325/
Schwingshackl L, Hoffmann G. Low-carbohydrate diets impair flow-mediated dilatation: evidence from a systematic review and meta-analysis. Br J Nutr. 2013;110(5):969–70. https://pubmed.ncbi.nlm.nih.gov/23829973/
Nicholls SJ, Lundman P, Harmer JA, et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. 2006;48(4):715–20. https://pubmed.ncbi.nlm.nih.gov/16904539/
Phillips SA, Jurva JW, Syed AQ, et al. Benefit of low-fat over low-carbohydrate diet on endothelial health in obesity. Hypertension. 2008;51(2):376–82. https://pubmed.ncbi.nlm.nih.gov/18195164/
Schwingshackl L, Hoffmann G. Low-carbohydrate diets impair flow-mediated dilatation: evidence from a systematic review and meta-analysis. Br J Nutr. 2013;110(5):969–70. https://pubmed.ncbi.nlm.nih.gov/23829973/
Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/
Young NJ, Metcalfe C, Gunnell D, et al. A cross-sectional analysis of the association between diet and insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-2, and IGFBP-3 in men in the United Kingdom. Cancer Causes Control. 2012;23(6):907–17. https://pubmed.ncbi.nlm.nih.gov/22527168/
Lee DH, Lee IK, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care. 2006;29(7):1638–44. https://pubmed.ncbi.nlm.nih.gov/16801591/
Ax E, Lampa E, Lind L, et al. Circulating levels of environmental contaminants are associated with dietary patterns in older adults. Environ Int. 2015;75:93–102. https://pubmed.ncbi.nlm.nih.gov/25461418/
Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23(2):e20–30. https://pubmed.ncbi.nlm.nih.gov/12588785/
Shepherd CJ, Jackson AJ. Global fishmeal and fish-oil supply: inputs, outputs and markets. J Fish Biol. 2013;83(4):1046–66. https://pubmed.ncbi.nlm.nih.gov/24090562/
Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177. https://pubmed.ncbi.nlm.nih.gov/30019766/
de Magalhães JP, Müller M, Rainger GEd, Steegenga W. Fish oil supplements, longevity and aging. Aging (Albany NY). 2016;8(8):1578–82. https://pubmed.ncbi.nlm.nih.gov/27564420/
Bowman L, Mafham M, Wallendszus K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50. https://pubmed.ncbi.nlm.nih.gov/30146932/
Kalstad AA, Myhre PL, Laake K, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation. 2021;143(6):528–39. https://pubmed.ncbi.nlm.nih.gov/33191772/
Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324(22):2268–80. https://pubmed.ncbi.nlm.nih.gov/33190147/
Manson JE, Cook NR, Lee IM, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380(1):23–32. https://pubmed.ncbi.nlm.nih.gov/30415637/
Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. https://pubmed.ncbi.nlm.nih.gov/30415628/
Park S, Lee S, Kim Y, et al. Causal effects of serum levels of n-3 or n-6 polyunsaturated fatty acids on coronary artery disease: Mendelian randomization study. Nutrients. 2021;13(5):1490. https://pubmed.ncbi.nlm.nih.gov/33924952/
Nicholls SJ, Nelson AJ. The fish-oil paradox. Curr Opin Lipidol. 2020;31(6):356–61. https://pubmed.ncbi.nlm.nih.gov/33027227/
Wennberg M, Tornevi A, Johansson I, Hörnell A, Norberg M, Bergdahl IA. Diet and lifestyle factors associated with fish consumption in men and women: a study of whether gender differences can result in gender-specific confounding. Nutr J. 2012;11:101. https://pubmed.ncbi.nlm.nih.gov/23210480/
Mariotti F. Animal and plant protein sources and cardiometabolic health. Adv Nutr. 2019;10(Suppl_4):S351–66. https://pubmed.ncbi.nlm.nih.gov/31728490/
Krittanawong C, Isath A, Hahn J, et al. Fish consumption and cardiovascular health: a systematic review. Am J Med. 2021;134(6):713–20. https://pubmed.ncbi.nlm.nih.gov/33444594/
Gardner CD, Mehta T, Bernstein A, Aronson D. Three factors that need to be addressed more consistently in nutrition studies: “Instead of what?”, “In what context?”, and “For what?.” Am J Health Promot. 2021;35(6):881–2. https://journals.sagepub.com/doi/full/10.1177/08901171211016191d
Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/
Rimm EB, Appel LJ, Chiuve SE, et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2018;138(1):e35–47. https://pubmed.ncbi.nlm.nih.gov/29773586/
Guasch-Ferré M, Satija A, Blondin SA, et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation. 2019;139(15):1828–45. https://pubmed.ncbi.nlm.nih.gov/30958719/
Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/
Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/
Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/
Esselstyn CB. Resolving the coronary artery disease epidemic through plant-based nutrition. Prev Cardiol. 2001;4(4):171–7. https://pubmed.ncbi.nlm.nih.gov/11832674/
Affairs of the Heart. Frontier profile: Bill Castelli. Scientific American Frontiers. http://www.pbs.org/saf/1104/features/castelli3.htm. Accessed February 24, 2023.; https://www.pbs.org/saf/1104/features/castelli3.htm
Keogh EV, Walsh RJ. Rate of greying of human hair. Nature. 1965;207(999):877–8. https://pubmed.ncbi.nlm.nih.gov/5885957/
Seiberg M. Age-induced hair greying – the multiple effects of oxidative stress. Int J Cosmet Sci. 2013;35(6):532–8. https://pubmed.ncbi.nlm.nih.gov/24033376/
Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/
Commo S, Gaillard O, Thibaut S, Thibaut S, Bernard BA. Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res. 2004;17(5):488–97. https://pubmed.ncbi.nlm.nih.gov/15357835/
Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J. 2005;272(10):2407–15. https://pubmed.ncbi.nlm.nih.gov/15885091/
Wood JM, Decker H, Hartmann H, et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 2009;23(7):2065–75. https://pubmed.ncbi.nlm.nih.gov/19237503/
Pandhi D, Khanna D. Premature graying of hair. Indian J Dermatol Venereol Leprol. 2013;79(5):641–53. https://pubmed.ncbi.nlm.nih.gov/23974581/
Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54. https://pubmed.ncbi.nlm.nih.gov/11162910/
Fernandez-Flores A, Saeb-Lima M, Cassarino DS. Histopathology of aging of the hair follicle. J Cutan Pathol. 2019;46(7):508–19. https://pubmed.ncbi.nlm.nih.gov/30932205/
Mahendiratta S, Sarma P, Kaur H, et al. Premature graying of hair: risk factors, co-morbid conditions, pharmacotherapy and reversal – a systematic review and meta-analysis. Dermatol Ther. 2020;33(6):e13990. https://pubmed.ncbi.nlm.nih.gov/32654282/
Daulatabad D, Singal A, Grover C, Sharma SB, Chhillar N. Assessment of oxidative stress in patients with premature canities. Int J Trichology. 2015;7(3):91–4. https://pubmed.ncbi.nlm.nih.gov/26622150/
Babadjouni A, Foulad DP, Hedayati B, Evron E, Mesinkovska N. The effects of smoking on hair health: a systematic review. Skin Appendage Disord. 2021;7(4):251–64. https://pubmed.ncbi.nlm.nih.gov/34307472/
Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/
Acer E, Kaya Erdogan H, Igrek A, Parlak H, Saraçoglu ZN, Bilgin M. Relationship between diet, atopy, family history, and premature hair graying. J Cosmet Dermatol. 2019;18(2):665–70. https://pubmed.ncbi.nlm.nih.gov/30556257/
Addolorato G, Leggio L, Ojetti V, Capristo E, Gasbarrini G, Gasbarrini A. Effects of short-term moderate alcohol administration on oxidative stress and nutritional status in healthy males. Appetite. 2008;50(1):50–6. https://pubmed.ncbi.nlm.nih.gov/17602789/
Mahendiratta S, Sarma P, Kaur H, et al. Premature graying of hair: risk factors, co-morbid conditions, pharmacotherapy and reversal – a systematic review and meta-analysis. Dermatol Ther. 2020;33(6):e13990. https://pubmed.ncbi.nlm.nih.gov/32654282/
Acer E, Kaya Erdogan H, Igrek A, Parlak H, Saraçoglu ZN, Bilgin M. Relationship between diet, atopy, family history, and premature hair graying. J Cosmet Dermatol. 2019;18(2):665–70. https://pubmed.ncbi.nlm.nih.gov/30556257/
Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/
Noppakun N, Swasdikul D. Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Arch Dermatol. 1986;122(8):896–9. https://pubmed.ncbi.nlm.nih.gov/3740873/
Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/
Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54. https://pubmed.ncbi.nlm.nih.gov/11162910/
Tai SY, Hsieh HM, Huang SP, Wu MT. Hair dye use, regular exercise, and the risk and prognosis of prostate cancer: multicenter case-control and case-only studies. BMC Cancer. 2016;16:242. https://pubmed.ncbi.nlm.nih.gov/26996776/
Towle KM, Grespin ME, Monnot AD. Personal use of hair dyes and risk of leukemia: a systematic literature review and meta-analysis. Cancer Med. 2017;6(10):2471–86. https://pubmed.ncbi.nlm.nih.gov/28925101/
Odutola MK, Nnakelu E, Giles GG, van Leeuwen MT, Vajdic CM. Lifestyle and risk of follicular lymphoma: a systematic review and meta-analysis of observational studies. Cancer Causes Control. 2020;31(11):979–1000. https://pubmed.ncbi.nlm.nih.gov/32851495/
Tai SY, Hsieh HM, Huang SP, Wu MT. Hair dye use, regular exercise, and the risk and prognosis of prostate cancer: multicenter case-control and case-only studies. BMC Cancer. 2016;16:242. https://pubmed.ncbi.nlm.nih.gov/26996776/
Takkouche B, Regueira-Méndez C, Montes-Martínez A. Risk of cancer among hairdressers and related workers: a meta-analysis. Int J Epidemiol. 2009;38(6):1512–31. https://pubmed.ncbi.nlm.nih.gov/19755396/
Qin L, Deng HY, Chen SJ, Wei W. A meta-analysis on the relationship between hair dye and the incidence of non-Hodgkin’s lymphoma. Med Princ Pract. 2019;28(3):222–30. https://pubmed.ncbi.nlm.nih.gov/30583293/
Park AM, Khan S, Rawnsley J. Hair biology: growth and pigmentation. Facial Plast Surg Clin North Am. 2018;26(4):415–24. https://pubmed.ncbi.nlm.nih.gov/30213423/
Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp Dermatol. 2020;29(7):588–97. https://pubmed.ncbi.nlm.nih.gov/32358903/
Sadick NS, Callender VD, Kircik LH, Kogan S. New insight into the pathophysiology of hair loss trigger a paradigm shift in the treatment approach. J Drugs Dermatol. 2017;16(11):s135–40. https://pubmed.ncbi.nlm.nih.gov/29141068/
English RS Jr. A hypothetical pathogenesis model for androgenic alopecia: clarifying the dihydrotestosterone paradox and rate-limiting recovery factors. Med Hypotheses. 2018;111:73–81. https://pubmed.ncbi.nlm.nih.gov/29407002/
Carmina E, Azziz R, Bergfeld W, et al. Female pattern hair loss and androgen excess: a report from the multidisciplinary Androgen Excess and PCOS committee. J Clin Endocrinol Metab. 2019;104(7):2875–91. https://pubmed.ncbi.nlm.nih.gov/30785992/
Varothai S, Bergfeld WF. Androgenetic alopecia: an evidence-based treatment update. Am J Clin Dermatol. 2014;15(3):217–30. https://pubmed.ncbi.nlm.nih.gov/24848508/
Grymowicz M, Rudnicka E, Podfigurna A, et al. Hormonal effects on hair follicles. Int J Mol Sci. 2020;21(15):E5342. https://pubmed.ncbi.nlm.nih.gov/32731328/
Tai T, Kochhar A. Physiology and medical treatments for alopecia. Facial Plast Surg Clin North Am. 2020;28(2):149–59. https://pubmed.ncbi.nlm.nih.gov/32312501/
Hibberts NA, Howell AE, Randall VA. Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. J Endocrinol. 1998;156(1):59–65. https://pubmed.ncbi.nlm.nih.gov/9496234/
Grymowicz M, Rudnicka E, Podfigurna A, et al. Hormonal effects on hair follicles. Int J Mol Sci. 2020;21(15):E5342. https://pubmed.ncbi.nlm.nih.gov/32731328/
Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/
English RS Jr. A hypothetical pathogenesis model for androgenic alopecia: clarifying the dihydrotestosterone paradox and rate-limiting recovery factors. Med Hypotheses. 2018;111:73–81. https://pubmed.ncbi.nlm.nih.gov/29407002/
Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/
Hamilton JB. Effect of castration in adolescent and young adult males upon further changes in the proportions of bare and hairy scalp. J Clin Endocrinol Metab. 1960;20:1309–18. https://pubmed.ncbi.nlm.nih.gov/13711016/
Collins DT. Children of sorrow: a history of the mentally retarded in Kansas. Bull Hist Med. 1965;39:53–78. https://pubmed.ncbi.nlm.nih.gov/14284409/
Kempton W, Kahn E. Sexuality and people with intellectual disabilities: a historical perspective. Sex Disabil. 1991;9(2):93–111. https://link.springer.com/article/10.1007/BF01101735
Flood E. Notes on the castration of idiot children. Am J Psychol. 1899;10(2):296–301. https://www.jstor.org/stable/1412485?origin=crossref
Lombardo PA. Preface & acknowledgments. In: Lombardo PA, ed. A Century of Eugenics in America: From the Indiana Experiment to the Human Genome Era. Indiana University Press; 2011:ix. https://worldcat.org/title/703156879
Scott ES. Sterilization of mentally retarded persons: reproductive rights and family privacy. Duke Law J. 1986;1986(5):806–65. https://pubmed.ncbi.nlm.nih.gov/11658848/
Wittmann E. To what extent were ideas and beliefs about eugenics held in Nazi Germany shared in Britain and the United States prior to the Second World War? Vesalius. 2004;10(1):16–9. https://pubmed.ncbi.nlm.nih.gov/15386878/
Bolland MJ, Ames RW, Grey AB, et al. Does degree of baldness influence vitamin D status? Med J Aust. 2008;189(11–12):674–5. https://pubmed.ncbi.nlm.nih.gov/19061473/
Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/
Sinclair RD, English DR, Giles GG. Are bald men more virile than their well thatched contemporaries? Med J Aust. 2013;199(11):811–2. https://pubmed.ncbi.nlm.nih.gov/24329675/
Jin T, Wu T, Luo Z, Duan X, Deng S, Tang Y. Association between male pattern baldness and prostate disease: a meta-analysis. Urol Oncol. 2018;36(2):80.e7–15. https://pubmed.ncbi.nlm.nih.gov/29054497/
Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife. 2020;9:e58914. https://pubmed.ncbi.nlm.nih.gov/33063668/
Ata Korkmaz HA. Relationship between androgenic alopecia and white matter hyperintensities in apparently healthy subjects. Brain Imaging Behav. 2020;14(2):527–33. https://pubmed.ncbi.nlm.nih.gov/31250269/
Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/
Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/
Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/
Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/
van Zuuren EJ, Fedorowicz Z, Schoones J. Interventions for female pattern hair loss. Cochrane Database Syst Rev. 2016;(5):CD007628. https://pubmed.ncbi.nlm.nih.gov/27225981/
Lam SM. Hair loss and hair restoration in women. Facial Plast Surg Clin North Am. 2020;28(2):205–23. https://pubmed.ncbi.nlm.nih.gov/32312508/
Lam SM. Hair loss and hair restoration in women. Facial Plast Surg Clin North Am. 2020;28(2):205–23. https://pubmed.ncbi.nlm.nih.gov/32312508/
Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/
Bauer M, Glenn T, Pilhatsch M, Pfennig A, Whybrow PC. Gender differences in thyroid system function: relevance to bipolar disorder and its treatment. Bipolar Disord. 2014;16(1):58–71. https://pubmed.ncbi.nlm.nih.gov/24245529/
Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/
Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp Dermatol. 2020;29(7):588–97. https://pubmed.ncbi.nlm.nih.gov/32358903/
Chien Yin GO, Siong-See JL, Wang ECE. Telogen Effluvium – a review of the science and current obstacles. J Dermatol Sci. 2021;101(3):156–63. https://pubmed.ncbi.nlm.nih.gov/33541773/
Sharquie KE, Jabbar RI. COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci. Published online August 31, 2021.; https://pubmed.ncbi.nlm.nih.gov/34467470/
Malkud S. Telogen effluvium: a review. J Clin Diagn Res. 2015;9(9):WE01–3. https://pubmed.ncbi.nlm.nih.gov/26500992/
Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/
Malkud S. Telogen effluvium: a review. J Clin Diagn Res. 2015;9(9):WE01–3. https://pubmed.ncbi.nlm.nih.gov/26500992/
Sharquie KE, Jabbar RI. COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci. Published online August 31, 2021.; https://pubmed.ncbi.nlm.nih.gov/34467470/
Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/
Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e-801e. https://pubmed.ncbi.nlm.nih.gov/23629119/
Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review. Endocrine. 2017;57(1):9–17. https://pubmed.ncbi.nlm.nih.gov/28349362/
DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/
Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/
Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e-801e. https://pubmed.ncbi.nlm.nih.gov/23629119/
Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/
D’Andrea S, Spaggiari G, Barbonetti A, Santi D. Endogenous transient doping: physical exercise acutely increases testosterone levels – results from a meta-analysis. J Endocrinol Invest. 2020;43(10):1349–71. https://pubmed.ncbi.nlm.nih.gov/32297287/
Wedick NM, Mantzoros CS, Ding EL, et al. The effects of caffeinated and decaffeinated coffee on sex hormone – binding globulin and endogenous sex hormone levels: a randomized controlled trial. Nutr J. 2012;11:86. https://pubmed.ncbi.nlm.nih.gov/23078574/
Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e–801e. https://pubmed.ncbi.nlm.nih.gov/23629119/
Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/
Babadjouni A, Foulad DP, Hedayati B, Evron E, Mesinkovska N. The effects of smoking on hair health: a systematic review. Skin Appendage Disord. 2021;7(4):251–64. https://pubmed.ncbi.nlm.nih.gov/34307472/
Lai CH, Chu NF, Chang CW, et al. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8(12):e79789. https://pubmed.ncbi.nlm.nih.gov/24386074/
Yu V, Juhász M, Chiang A, Atanaskova Mesinkovska N. Alopecia and associated toxic agents: a systematic review. Skin Appendage Disord. 2018;4(4):245–60. https://pubmed.ncbi.nlm.nih.gov/30410891/
Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110(Suppl 1):11–23. https://pubmed.ncbi.nlm.nih.gov/11834460/
Ross JJ. Shakespeare’s chancre: did the bard have syphilis? Clin Infect Dis. 2005;40(3):399–404. https://pubmed.ncbi.nlm.nih.gov/15668863/
Centers for Disease Control and Prevention. Executive summary. Fourth National Report on Human Exposure to Environmental Chemicals. 2009.; https://cfpub.epa.gov/ncea/risk/hhra/recordisplay.cfm?deid=23995
Peters JB, Warren MP. Reversible alopecia associated with high blood mercury levels and early menopause: a report of two cases. Menopause. 2019;26(8):915–8. https://pubmed.ncbi.nlm.nih.gov/30939539/
Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/
Nanda S, De Bedout V, Miteva M. Alopecia as a systemic disease. Clin Dermatol. 2019;37(6):618–28. https://pubmed.ncbi.nlm.nih.gov/31864440/
Park AM, Khan S, Rawnsley J. Hair biology: growth and pigmentation. Facial Plast Surg Clin North Am. 2018;26(4):415–24. https://pubmed.ncbi.nlm.nih.gov/30213423/
Sadick NS, Callender VD, Kircik LH, Kogan S. New insight into the pathophysiology of hair loss trigger a paradigm shift in the treatment approach. J Drugs Dermatol. 2017;16(11):s135–40. https://pubmed.ncbi.nlm.nih.gov/29141068/
Sand JP. Follicular unit transplantation. Facial Plast Surg Clin North Am. 2020;28(2):161–7. https://pubmed.ncbi.nlm.nih.gov/32312502/
Stoneburner J, Shauly O, Carey J, Patel KM, Stevens WG, Gould DJ. Contemporary management of alopecia: a systematic review and meta-analysis for surgeons. Aesthetic Plast Surg. 2020;44(1):97–113. https://pubmed.ncbi.nlm.nih.gov/31667549/
Vogel JE. Hair restoration complications: an approach to the unnatural-appearing hair transplant. Facial Plast Surg. 2008;24(4):453–61. https://pubmed.ncbi.nlm.nih.gov/19034821/
Rose PT. Advances in hair restoration. Dermatol Clin. 2018;36(1):57–62. https://pubmed.ncbi.nlm.nih.gov/29108547/
Umar S. Hair transplantation in patients with inadequate head donor supply using nonhead hair: report of 3 cases. Ann Plast Surg. 2011;67(4):332–5. https://pubmed.ncbi.nlm.nih.gov/21540728/
Stoneburner J, Shauly O, Carey J, Patel KM, Stevens WG, Gould DJ. Contemporary management of alopecia: a systematic review and meta-analysis for surgeons. Aesthetic Plast Surg. 2020;44(1):97–113. https://pubmed.ncbi.nlm.nih.gov/31667549/
Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/
Nadimi S. Complications with hair transplantation. Facial Plast Surg Clin North Am. 2020;28(2):225–35. https://pubmed.ncbi.nlm.nih.gov/32312509/
Gupta AK, Mays RR, Dotzert MS, Versteeg SG, Shear NH, Piguet V. Efficacy of non-surgical treatments for androgenetic alopecia: a systematic review and network meta-analysis. J Eur Acad Dermatol Venereol. 2018;32(12):2112–25. https://pubmed.ncbi.nlm.nih.gov/29797431/
Lotti T, Goren A, Verner I, D’Alessio PA, Franca K. Platelet rich plasma in androgenetic alopecia: a systematic review. Dermatol Ther. 2019;32(3):e12837. https://pubmed.ncbi.nlm.nih.gov/30667146/
Carloni R, Pechevy L, Postel F, Zielinski M, Gandolfi S. Is there a therapeutic effect of botulinum toxin on scalp alopecia? Physiopathology and reported cases: a systematic review of the literature. J Plast Reconstr Aesthet Surg. 2020;73(12):2210–6. https://pubmed.ncbi.nlm.nih.gov/32536461/
Wang Y, Zhang H, Zheng Q, Tang K, Fang R, Sun Q. Botulinum toxin as a double-edged sword in alopecia: a systematic review. J Cosmet Dermatol. 2020;19(10):2560–5. https://pubmed.ncbi.nlm.nih.gov/32745302/
Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: a clinician’s guide to home-use devices cleared by the Federal Drug Administration. J Cosmet Laser Ther. 2018;20(3):159–67. https://pubmed.ncbi.nlm.nih.gov/29020478/
Simunovic Z, Trobonjaca T, Trobonjaca Z. Treatment of medial and lateral epicondylitis – tennis and golfer’s elbow – with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J Clin Laser Med Surg. 1998;16(3):145–51. https://pubmed.ncbi.nlm.nih.gov/9743652/
Cohen PR. A case report of scrotal rejuvenation: laser treatment of angiokeratomas of the scrotum. Dermatol Ther (Heidelb). 2019;9(1):185–92. https://pubmed.ncbi.nlm.nih.gov/30478818/
Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/
Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/
Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/
Ledoux S, Flamant M, Calabrese D, Bogard C, Sami O, Coupaye M. What are the micronutrient deficiencies responsible for the most common nutritional symptoms after bariatric surgery? Obes Surg. 2020;30(5):1891–7. https://pubmed.ncbi.nlm.nih.gov/31960214/
DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/
Thompson KG, Kim N. Dietary supplements in dermatology: a review of the evidence for zinc, biotin, vitamin D, nicotinamide, and Polypodium. J Am Acad Dermatol. 2021;84(4):1042–50. https://pubmed.ncbi.nlm.nih.gov/32360756/
Patel DP, Swink SM, Castelo-Soccio L. A review of the use of biotin for hair loss. Skin Appendage Disord. 2017;3(3):166–9. https://pubmed.ncbi.nlm.nih.gov/28879195/
FDA in brief: FDA reminds patients, health care professionals and laboratory personnel about the potential for biotin interference with certain test results, especially specific tests to aid in heart attack diagnoses. U.S. Food and Drug Administration. https://www.fda.gov/news-events/fda-brief/fda-brief-fda-reminds-patients-health-care-professionals-and-laboratory-personnel-about-potential#:~:text=Today%2C%20the%20U.S.%20Food%20and,and%20cause%20incorrect%20results%20that. Published November 5, 2019. Accessed July 2, 2022.; https://www.fda.gov/news-events/fda-brief/fda-brief-fda-reminds-patients-health-care-professionals-and-laboratory-personnel-about-potential
MacFarquhar JK, Broussard DL, Melstrom P, et al. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med. 2010;170(3):256–61. https://pubmed.ncbi.nlm.nih.gov/20142570/
Almohanna HM, Ahmed AA, Tsatalis JP, Tosti A. The role of vitamins and minerals in hair loss: a review. Dermatol Ther (Heidelb). 2018;9(1):51–70. https://pubmed.ncbi.nlm.nih.gov/30547302/
Guo EL, Katta R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol Pract Concept. 2017;7(1):1–10. https://pubmed.ncbi.nlm.nih.gov/28243487/
DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/
Bater K, Rieder E. Over-the-counter hair loss treatments: help or hype? J Drugs Dermatol. 2018;17(12):1317–21. https://pubmed.ncbi.nlm.nih.gov/30586264/
Yi Y, Qiu J, Jia J, et al. Severity of androgenetic alopecia associated with poor sleeping habits and carnivorous eating and junk food consumption – a web-based investigation of male pattern hair loss in China. Dermatol Ther. 2020;33(2):e13273. https://pubmed.ncbi.nlm.nih.gov/32061036/
Fortes C, Mastroeni S, Mannooranparampil T, Abeni D, Panebianco A. Mediterranean diet: fresh herbs and fresh vegetables decrease the risk of Androgenetic Alopecia in males. Arch Dermatol Res. 2018;310(1):71–6. https://pubmed.ncbi.nlm.nih.gov/29181579/
Lai CH, Chu NF, Chang CW, et al. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8(12):e79789. https://pubmed.ncbi.nlm.nih.gov/24386074/
Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci. 2019;41(4):332–45. https://pubmed.ncbi.nlm.nih.gov/31240739/
Hosking AM, Juhasz M, Atanaskova Mesinkovska N. Complementary and alternative treatments for alopecia: a comprehensive review. Skin Appendage Disord. 2019;5(2):72–89. https://pubmed.ncbi.nlm.nih.gov/30815439/
Herman A, Herman AP. Topically used herbal products for the treatment of hair loss: preclinical and clinical studies. Arch Dermatol Res. 2017;309(8):595–610. https://pubmed.ncbi.nlm.nih.gov/28695329/
Grothe T, Wandrey F, Schuerch C. Short communication: clinical evaluation of pea sprout extract in the treatment of hair loss. Phytother Res. 2020;34(2):428–31. https://pubmed.ncbi.nlm.nih.gov/31680356/
Harada N, Okajima K, Arai M, Kurihara H, Nakagata N. Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia. Growth Horm IGF Res. 2007;17(5):408–15. https://pubmed.ncbi.nlm.nih.gov/17569567/
Troconis-Torres IG, Rojas-López M, Hernández-Rodríguez C, et al. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J Biomed Biotech. 2012;2012:1–11. https://pubmed.ncbi.nlm.nih.gov/22665993/
Cho H, Kwon Y. Development of a database of capsaicinoid contents in foods commonly consumed in Korea. Food Sci Nutr. 2020;8(8):4611–24. https://pubmed.ncbi.nlm.nih.gov/32884741/
Harada N, Okajima K, Arai M, Kurihara H, Nakagata N. Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia. Growth Horm IGF Res. 2007;17(5):408–15. https://pubmed.ncbi.nlm.nih.gov/17569567/
Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed April 15, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf
Cho YH, Lee SY, Jeong DW, et al. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: a randomized, double-blind, placebo-controlled trial. Evid Based Complement Alternat Med. 2014;2014:549721. https://pubmed.ncbi.nlm.nih.gov/24864154/
Octa Sabal Plus. tradeKorea.com. https://www.tradekorea.com/product/detail/P291943/Octa-Sabal-Plus-.html. Accessed July 5, 2022.; https://www.tradekorea.com/product/detail/P291943/Octa-Sabal-Plus-.html
Hajhashemi V, Rajabi P, Mardani M. Beneficial effects of pumpkin seed oil as a topical hair growth promoting agent in a mice model. Avicenna J Phytomed. 2019;9(6):499–504. https://pubmed.ncbi.nlm.nih.gov/31763209/
Ibrahim IM, Hasan MS, Elsabaa KI, Elsaie ML. Pumpkin seed oil vs. minoxidil 5 % topical foam for the treatment of female pattern hair loss: a randomized comparative trial. J Cosmet Dermatol. 2021;20(9):2867–73. https://pubmed.ncbi.nlm.nih.gov/33544448/
Dhurat R, Chitallia J, May TW, et al. An open-label randomized multicenter study assessing the noninferiority of a caffeine-based topical liquid 0. 2 % versus minoxidil 5 % solution in male androgenetic alopecia. Skin Pharmacol Physiol. 2017;30(6):298–305. https://pubmed.ncbi.nlm.nih.gov/29055953/
Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci. 2019;41(4):332–45. https://pubmed.ncbi.nlm.nih.gov/31240739/
Randall VA, Ebling FJ. Seasonal changes in human hair growth. Br J Dermatol. 1991;124(2):146–51. https://pubmed.ncbi.nlm.nih.gov/2003996/
Fischer TW, Herczeg-Lisztes E, Funk W, Zillikens D, Bíró T, Paus R. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-ß2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro. Br J Dermatol. 2014;171(5):1031–43. https://pubmed.ncbi.nlm.nih.gov/24836650/
Dressler C, Blumeyer A, Rosumeck S, Arayesh A, Nast A. Efficacy of topical caffeine in male androgenetic alopecia. J Dtsch Dermatol Ges. 2017;15(7):734–41. https://pubmed.ncbi.nlm.nih.gov/28677188/
Bussoletti C, Tolaini MV, Celleno L. Efficacy of a cosmetic phyto-caffeine shampoo in female androgenetic alopecia. G Ital Dermatol Venereol. 2020;155(4):492–9. https://pubmed.ncbi.nlm.nih.gov/29512972/
Dressler C, Blumeyer A, Rosumeck S, Arayesh A, Nast A. Efficacy of topical caffeine in male androgenetic alopecia. J Dtsch Dermatol Ges. 2017;15(7):734–41. https://pubmed.ncbi.nlm.nih.gov/28677188/
Kwon OS, Han JH, Yoo HG, et al. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine. 2007;14(7–8):551–5. https://pubmed.ncbi.nlm.nih.gov/17092697/
Liao S, Hiipakka RA. Selective inhibition of steroid 5 a-reductase isozymes by tea epicatechin-3-gallate and epigallocatechin-3-gallate. Biochem Biophys Res Commun. 1995;214(3):833–8. https://pubmed.ncbi.nlm.nih.gov/7575552/
Kim YY, Up No S, Kim MH, et al. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model. Exp Dermatol. 2011;20(12):1015–7. https://pubmed.ncbi.nlm.nih.gov/21951062/
Berger RS, Fu JL, Smiles KA, et al. The effects of minoxidil, 1 % pyrithione zinc and a combination of both on hair density: a randomized controlled trial. Br J Dermatol. 2003;149(2):354–62. https://pubmed.ncbi.nlm.nih.gov/27552261/
Miao Y, Sun Y, Wang W, et al. 6-gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice. PLoS One. 2013;8(2):e57226. https://pubmed.ncbi.nlm.nih.gov/23437345/
Li Y, Han M, Lin P, He Y, Yu J, Zhao R. Hair growth promotion activity and its mechanism of Polygonum multiflorum. Evid Based Complement Alternat Med. 2015;2015:517901. https://pubmed.ncbi.nlm.nih.gov/26294926/
Shin JY, Choi YH, Kim J, et al. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complement Med Ther. 2020;20(1):144. https://pubmed.ncbi.nlm.nih.gov/32398000/
Teka T, Wang L, Gao J, et al. Polygonum multiflorum: recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J Ethnopharmacol. 2021;271:113864. https://pubmed.ncbi.nlm.nih.gov/33485980/
Hay IC, Jamieson M, Ormerod AD. Randomized trial of aromatherapy: successful treatment for alopecia areata. Arch Dermatol. 1998;134(11):1349–52. https://pubmed.ncbi.nlm.nih.gov/9828867/
Sharquie KE, Al-Obaidi HK. Onion juice (Allium cepa L.), a new topical treatment for alopecia areata. J Dermatol. 2002;29(6):343–6. https://pubmed.ncbi.nlm.nih.gov/12126069/
Hajheydari Z, Jamshidi M, Akbari J, Mohammadpour R. Combination of topical garlic gel and betamethasone valerate cream in the treatment of localized alopecia areata: a double-blind randomized controlled study. Indian J Dermatol Venereol Leprol. 2007;73(1):29–32. https://pubmed.ncbi.nlm.nih.gov/17314444/
Panahi Y, Taghizadeh M, Marzony ET, Sahebkar A. Rosemary oil vs minoxidil 2 % for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed. 2015;13(1):15–21. https://pubmed.ncbi.nlm.nih.gov/25842469/
Ajmani GS, Suh HH, Wroblewski KE, Pinto JM. Smoking and olfactory dysfunction: a systematic literature review and meta-analysis. Laryngoscope. 2017;127(8):1753–61. https://pubmed.ncbi.nlm.nih.gov/28561327/
Desiato VM, Levy DA, Byun YJ, Nguyen SA, Soler ZM, Schlosser RJ. The prevalence of olfactory dysfunction in the general population: a systematic review and meta-analysis. Am J Rhinol Allergy. 2021;35(2):195–205. https://pubmed.ncbi.nlm.nih.gov/32746612/
Stevens JC, Cain WS, Demarque A, Ruthruff AM. On the discrimination of missing ingredients: aging and salt flavor. Appetite. 1991;16(2):129–40. https://pubmed.ncbi.nlm.nih.gov/2064391/
Schäfer L, Schriever VA, Croy I. Human olfactory dysfunction: causes and consequences. Cell Tissue Res. 2021;383(1):569–79. https://pubmed.ncbi.nlm.nih.gov/33496882/
Nolan LS. Age-related hearing loss: why we need to think about sex as a biological variable. J Neurosci Res. 2020;98(9):1705–20. https://pubmed.ncbi.nlm.nih.gov/32557661/
Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/
Committee on Accessible and Affordable Hearing Health Care for Adults. Blazer DG, Domnitz S, Liverman CT, eds. Hearing Health Care for Adults: Priorities for Improving Access and Affordability. National Academies Press; 2016. https://pubmed.ncbi.nlm.nih.gov/27280276/
Goman AM, Lin FR. Prevalence of hearing loss by severity in the United States. Am J Public Health. 2016;106(10):1820–2. https://pubmed.ncbi.nlm.nih.gov/27552261/
Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/
Wattamwar K, Qian ZJ, Otter J, et al. Increases in the rate of age-related hearing loss in the older old. JAMA Otolaryngol Head Neck Surg. 2017;143(1):41–5. https://pubmed.ncbi.nlm.nih.gov/27632707/
Shukla A, Harper M, Pedersen E, et al. Hearing loss, loneliness, and social isolation: a systematic review. Otolaryngol Head Neck Surg. 2020;162(5):622–33. https://pubmed.ncbi.nlm.nih.gov/32151193/
Lawrence BJ, Jayakody DMP, Bennett RJ, Eikelboom RH, Gasson N, Friedland PL. Hearing loss and depression in older adults: a systematic review and meta-analysis. Gerontologist. 2020;60(3):e137–54. https://pubmed.ncbi.nlm.nih.gov/30835787/
Wattamwar K, Qian ZJ, Otter J, et al. Increases in the rate of age-related hearing loss in the older old. JAMA Otolaryngol Head Neck Surg. 2017;143(1):41–5. https://pubmed.ncbi.nlm.nih.gov/27632707/
Goman AM, Lin FR. Hearing loss in older adults – from epidemiological insights to national initiatives. Hear Res. 2018;369:29–32. https://pubmed.ncbi.nlm.nih.gov/29653842/
Brennan-Jones CG, Weeda E, Ferguson M. Cochrane corner: hearing aids for mild to moderate hearing loss in adults. Int J Audiol. 2018;57(7):479–82. https://pubmed.ncbi.nlm.nih.gov/29383941/
Mahmoudi E, Basu T, Langa K, et al. Can hearing aids delay time to diagnosis of dementia, depression, or falls in older adults? J Am Geriatr Soc. 2019;67(11):2362–9. https://pubmed.ncbi.nlm.nih.gov/31486068/
Goman AM, Lin FR. Hearing loss in older adults – from epidemiological insights to national initiatives. Hear Res. 2018;369:29–32. https://pubmed.ncbi.nlm.nih.gov/29653842/
Franck KH, Rathi VK. Regulation of over-the-counter hearing aids – deafening silence from the FDA. N Engl J Med. 2020;383(21):1997–2000. https://pubmed.ncbi.nlm.nih.gov/33207090/
Fact Sheet: cheaper hearing aids now in stores thanks to Biden-Harris administration competition agenda. WhiteHouse.gov. https://www.whitehouse.gov/briefing-room/statements-releases/2022/10/17/fact-sheet-cheaper-hearing-aids-now-in-stores-thanks-to-biden-harris-administration-competition-agenda/. Published October 17, 2022. Accessed January 3, 2023.; https://www.whitehouse.gov/briefing-room/statements-releases/2022/10/17/fact-sheet-cheaper-hearing-aids-now-in-stores-thanks-to-biden-harris-administration-competition-agenda
Michaud HN, Duchesne L. Aural rehabilitation for older adults with hearing loss: impacts on quality of life – a systematic review of randomized controlled trials. J Am Acad Audiol. 2017;28(7):596–609. https://pubmed.ncbi.nlm.nih.gov/28722643/
Ferguson MA, Kitterick PT, Chong LY, Edmondson-Jones M, Barker F, Hoare DJ. Hearing aids for mild to moderate hearing loss in adults. Cochrane Database Syst Rev. 2017;2017(9):CD012023. https://pubmed.ncbi.nlm.nih.gov/28944461/
Brennan-Jones CG, Weeda E, Ferguson M. Cochrane corner: hearing aids for mild to moderate hearing loss in adults. Int J Audiol. 2018;57(7):479–82. https://pubmed.ncbi.nlm.nih.gov/29383941/
Lerner S. Limitations of conventional hearing aids: examining common complaints and issues that can and cannot be remedied. Otolaryngol Clin North Am. 2019;52(2):211–20. https://pubmed.ncbi.nlm.nih.gov/30612754/
Davis A, McMahon CM, Pichora-Fuller KM, et al. Aging and hearing health: the life-course approach. Gerontologist. 2016;56 Suppl 2:S256–67. https://pubmed.ncbi.nlm.nih.gov/26994265/
McCormack A, Fortnum H. Why do people fitted with hearing aids not wear them? Int J Audiol. 2013;52(5):360–8. https://pubmed.ncbi.nlm.nih.gov/23473329/
Blustein J, Weinstein BE, Chodosh J. Marketing claims about using hearing aids to forestall or prevent dementia. JAMA Otolaryngol Head Neck Surg. 2020;146(8):765–6. https://pubmed.ncbi.nlm.nih.gov/32556250/
World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. World Health Organization; 2019. https://www.who.int/publications/i/item/9789241550543
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Nagala S, Singh P, Tostevin P. Extent of cotton-bud use in ears. Br J Gen Pract. 2011;61(592):662–3. https://pubmed.ncbi.nlm.nih.gov/22054319/
Baxter P. Association between use of cotton tipped swabs and cerumen plugs. BMJ. 1983;287(6401):1260. https://pubmed.ncbi.nlm.nih.gov/6416358/
Barton RT. Q-tip otalgia. JAMA. 1972;220(12):1619. https://pubmed.ncbi.nlm.nih.gov/5067751/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Oron Y, Zwecker-Lazar I, Levy D, Kreitler S, Roth Y. Cerumen removal: comparison of cerumenolytic agents and effect on cognition among the elderly. Arch Gerontol Geriatr. 2011;52(2):228–32. https://pubmed.ncbi.nlm.nih.gov/20417976/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Lee LM, Govindaraju R, Hon SK. Cotton bud and ear cleaning – a loose tip cotton bud? Med J Malaysia. 2005;60(1):85–8. https://pubmed.ncbi.nlm.nih.gov/16250286/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Goldman SA, Ankerstjerne JK, Welker KB, Chen DA. Fatal meningitis and brain abscess resulting from foreign body-induced otomastoiditis. Otolaryngol Head Neck Surg. 1998;118(1):6–8. https://pubmed.ncbi.nlm.nih.gov/9450821/
Aaron K, Cooper TE, Warner L, Burton MJ. Ear drops for the removal of ear wax. Cochrane ENT Group, ed. Cochrane Database of Systematic Reviews. 2018;7(CD012171). https://pubmed.ncbi.nlm.nih.gov/30043448/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Coppin R, Wicke D, Little P. Managing earwax in primary care: efficacy of self-treatment using a bulb syringe. Br J Gen Pract. 2008;58(546):44–9. https://pubmed.ncbi.nlm.nih.gov/18186996/
Coppin R, Wicke D, Little P. Randomized trial of bulb syringes for earwax: impact on health service utilization. Ann Fam Med. 2011;9(2):110–4. https://pubmed.ncbi.nlm.nih.gov/21403136/
Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/
Dinsdale RC, Roland PS, Manning SC, Meyerhoff WL. Catastrophic otologic injury from oral jet irrigation of the external auditory canal. Laryngoscope. 1991;101(1 Pt 1):75–8. https://pubmed.ncbi.nlm.nih.gov/1984556/
Seely DR, Quigley SM, Langman AW. Ear candles – efficacy and safety. Laryngoscope. 1996;106(10):1226–9. https://pubmed.ncbi.nlm.nih.gov/8849790/
Seely DR, Quigley SM, Langman AW. Ear candles – efficacy and safety. Laryngoscope. 1996;106(10):1226–9. https://pubmed.ncbi.nlm.nih.gov/8849790/
Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/
Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/
Donnison CP. Blood pressure in the African native. Lancet. 1929;213(5497):6–7. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)49248-2/fulltext
Morse WR, McGill MD, Beh YT. Blood pressure amongst aboriginal ethnic groups of Szechwan Province, West China. Lancet. 1937;229(5929):966–8. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)86708-2/fulltext
Mueller NT, Noya-Alarcon O, Contreras M, Appel LJ, Dominguez-Bello MG. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana villages. JAMA Cardiol. 2018;3(12):1247–9. https://pubmed.ncbi.nlm.nih.gov/30427998/
Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/
Goycoolea MV, Goycoolea HG, Farfan CR, Rodriguez LG, Martinez GC, Vidal R. Effect of life in industrialized societies on hearing in natives of Easter Island. Laryngoscope. 1986;96(12):1391–6. https://pubmed.ncbi.nlm.nih.gov/3784745/
Wu PZ, O’Malley JT, de Gruttola V, Liberman MC. Age-related hearing loss is dominated by damage to inner ear sensory cells, not the cellular battery that powers them. J Neurosci. 2020;40(33):6357–66. https://pubmed.ncbi.nlm.nih.gov/32690619/
Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/
Momi SK, Wolber LE, Fabiane SM, MacGregor AJ, Williams FMK. Genetic and environmental factors in age-related hearing impairment. Twin Res Hum Genet. 2015;18(4):383–92. https://pubmed.ncbi.nlm.nih.gov/26081266/
Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/
Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies. J Clin Med. 2020;9(1):E218. https://pubmed.ncbi.nlm.nih.gov/31947524/
Attarha M, Bigelow J, Merzenich MM. Unintended consequences of white noise therapy for tinnitus – otolaryngology’s cobra effect: a review. JAMA Otolaryngol Head Neck Surg. 2018;144(10):938–43. https://pubmed.ncbi.nlm.nih.gov/30178067/
Attarha M, Bigelow J, Merzenich MM. No evidence of broadband noise having any harmful effect on hearing. JAMA Otolaryngol Head Neck Surg. 2019;145(3):292–3. https://pubmed.ncbi.nlm.nih.gov/30676625/
Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/
Joo Y, Cruickshanks KJ, Klein BEK, Klein R, Hong O, Wallhagen MI. The contribution of ototoxic medications to hearing loss among older adults. J Gerontol A Biol Sci Med Sci. 2020;75(3):561–6. https://pubmed.ncbi.nlm.nih.gov/31282945/
Panda NK, Modi R, Munjal S, Virk RS. Auditory changes in mobile users: is evidence forthcoming? Otolaryngol Head Neck Surg. 2011;144(4):581–5. https://pubmed.ncbi.nlm.nih.gov/21493239/
Alsanosi AA, Al-Momani MO, Hagr AA, Almomani FM, Shami IM, Al-Habeeb SF. The acute auditory effects of exposure for 60 minutes to mobile’s electromagnetic field. Saudi Med J. 2013;34(2):142–6. https://pubmed.ncbi.nlm.nih.gov/23396459/
Mandalà M, Colletti V, Sacchetto L, et al. Effect of Bluetooth headset and mobile phone electromagnetic fields on the human auditory nerve. Laryngoscope. 2014;124(1):255–9. https://pubmed.ncbi.nlm.nih.gov/23619813/
Rosen S, Olin P. Hearing loss and coronary heart disease. Arch Otolaryngol. 1965;82:236–43. https://pubmed.ncbi.nlm.nih.gov/14327021/
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324. https://pubmed.ncbi.nlm.nih.gov/29133354/
Rosen S, Olin P. Hearing loss and coronary heart disease. Arch Otolaryngol. 1965;82:236–43. https://pubmed.ncbi.nlm.nih.gov/14327021/
Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/
Curhan SG, Halpin C, Wang M, Eavey RD, Curhan GC. Prospective study of dietary patterns and hearing threshold elevation. Am J Epidemiol. 2020;189(3):204–14. https://pubmed.ncbi.nlm.nih.gov/31608356/
Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/
Gopinath B, Flood VM, McMahon CM, Burlutsky G, Brand-Miller J, Mitchell P. Dietary glycemic load is a predictor of age-related hearing loss in older adults. J Nutr. 2010;140(12):2207–12. https://pubmed.ncbi.nlm.nih.gov/20926604/
Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: a review. Ageing Res Rev. 2021;71:101423. https://pubmed.ncbi.nlm.nih.gov/34384902/
Prasad MPR, Rao BD, Kalpana K, Rao MV, Patil JV. Glycaemic index and glycaemic load of sorghum products. J Sci Food Agric. 2015;95(8):1626–30. https://pubmed.ncbi.nlm.nih.gov/25092385/
Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/
Honkura Y, Matsuo H, Murakami S, et al. NRF2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci Rep. 2016;6:19329. https://pubmed.ncbi.nlm.nih.gov/26776972/
Yang JR, Hidayat K, Chen CL, Li YH, Xu JY, Qin LQ. Body mass index, waist circumference, and risk of hearing loss: a meta-analysis and systematic review of observational study. Environ Health Prev Med. 2020;25(1):25. https://pubmed.ncbi.nlm.nih.gov/32590951/
Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies. J Clin Med. 2020;9(1):E218. https://pubmed.ncbi.nlm.nih.gov/31947524/
de Rivera C, Shukitt-Hale B, Joseph JA, Mendelson JR. The effects of antioxidants in the senescent auditory cortex. Neurobiol Aging. 2006;27(7):1035–44. https://pubmed.ncbi.nlm.nih.gov/15950320/
Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol. 2000;21(2):161–7. https://pubmed.ncbi.nlm.nih.gov/10733178/
Sanz-Fernández R, Sánchez-Rodriguez C, Granizo JJ, Durio-Calero E, Martín-Sanz E. Accuracy of auditory steady state and auditory brainstem responses to detect the preventive effect of polyphenols on age-related hearing loss in Sprague-Dawley rats. Eur Arch Otorhinolaryngol. 2016;273(2):341–7. https://pubmed.ncbi.nlm.nih.gov/25673025/
Polanski JF, Cruz OL. Evaluation of antioxidant treatment in presbyacusis: prospective, placebo-controlled, double-blind, randomised trial. J Laryngol Otol. 2013;127(2):134–41. https://pubmed.ncbi.nlm.nih.gov/23318104/
Durga J, Verhoef P, Anteunis LJC, Schouten E, Kok FJ. Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med. 2007;146(1):1–9. https://pubmed.ncbi.nlm.nih.gov/17200216/
Agricultural Research Service, United States Department of Agriculture. Lentils, mature seeds, cooked, boiled, without salt. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=kale&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172421/nutrients. Published April 1, 2019. Accessed April 21, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=kale&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172421/nutrients
Agricultural Research Service, United States Department of Agriculture. Edamame, frozen, prepared. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168411/nutrients. Published April 1, 2019. Accessed February 21, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients
Rodrigo L, Campos-Asensio C, Rodríguez MÁ, Crespo I, Olmedillas H. Role of nutrition in the development and prevention of age-related hearing loss: a scoping review. J Formos Med Assoc. 2021;120(1 Pt 1):107–20. https://pubmed.ncbi.nlm.nih.gov/32473863/
Pillsbury HC. Hypertension, hyperlipoproteinemia, chronic noise exposure: is there synergism in cochlear pathology? Laryngoscope. 1986;96(10):1112–38. https://pubmed.ncbi.nlm.nih.gov/3762287/
Sikora MA, Morizono T, Ward WD, Paparella MM, Leslie K. Diet-induced hyperlipidemia and auditory dysfunction. Acta Oto-Laryngologica. 1986;102(5–6):372–81. https://pubmed.ncbi.nlm.nih.gov/3788535/
Momi SK, Wolber LE, Fabiane SM, MacGregor AJ, Williams FMK. Genetic and environmental factors in age-related hearing impairment. Twin Res Hum Genet. 2015;18(4):383–92. https://pubmed.ncbi.nlm.nih.gov/26081266/
Gopinath B, Flood VM, Teber E, McMahon CM, Mitchell P. Dietary intake of cholesterol is positively associated and use of cholesterol-lowering medication is negatively associated with prevalent age-related hearing loss. J Nutr. 2011;141(7):1355–61. https://pubmed.ncbi.nlm.nih.gov/21613455/
Erkan AF, Beriat GK, Ekici B, Dogan C, Kocatürk S, Töre HF. Link between angiographic extent and severity of coronary artery disease and degree of sensorineural hearing loss. Herz. 2015;40(3):481–6. https://pubmed.ncbi.nlm.nih.gov/24049023/
Croll PH, Bos D, Vernooij MW, et al. Carotid atherosclerosis is associated with poorer hearing in older adults. J Am Med Dir Assoc. 2019;20(12):1617–22.e1. https://pubmed.ncbi.nlm.nih.gov/31399361/
Fischer ME, Schubert CR, Nondahl DM, et al. Subclinical atherosclerosis and increased risk of hearing impairment. Atherosclerosis. 2015;238(2):344–9. https://pubmed.ncbi.nlm.nih.gov/25555266/
Fischer ME, Schubert CR, Nondahl DM, et al. Subclinical atherosclerosis and increased risk of hearing impairment. Atherosclerosis. 2015;238(2):344–9. https://pubmed.ncbi.nlm.nih.gov/25555266/
Erkan AF, Beriat GK, Ekici B, Dogan C, Kocatürk S, Töre HF. Link between angiographic extent and severity of coronary artery disease and degree of sensorineural hearing loss. Herz. 2015;40(3):481–6. https://pubmed.ncbi.nlm.nih.gov/24049023/
Sikora MA, Morizono T, Ward WD, Paparella MM, Leslie K. Diet-induced hyperlipidemia and auditory dysfunction. Acta Oto-Laryngologica. 1986;102(5–6):372–81. https://pubmed.ncbi.nlm.nih.gov/3788535/
Saito T, Sato K, Saito H. An experimental study of auditory dysfunction associated with hyperlipoproteinemia. Arch Otorhinolaryngol. 1986;243(4):242–5. https://pubmed.ncbi.nlm.nih.gov/3778299/
Turpeinen O, Roine P, Pekkarinen M, et al. Effect on serum-cholesterol level of replacement of dietary milk fat by soybean oil. Lancet. January 23, 1960;196–9. https://pubmed.ncbi.nlm.nih.gov/13839984/
Hearing loss and coronary heart disease. JAMA. 1965;194(4):452 https://pubmed.ncbi.nlm.nih.gov/5897421/
Puga AM, Pajares MA, Varela-Moreiras G, Partearroyo T. Interplay between nutrition and hearing loss: state of art. Nutrients. 2018;11(1):E35. https://pubmed.ncbi.nlm.nih.gov/30586880/
Hearing loss and coronary heart disease. JAMA. 1965;194(4):452. https://pubmed.ncbi.nlm.nih.gov/5897421/
Rosen S, Olin P, Rosen HV. Dietary prevention of hearing loss. Acta Oto-Laryngologica. 1970;70(4):242–7. https://pubmed.ncbi.nlm.nih.gov/5491161/
Nobus D. The madness of Princess Alice: Sigmund Freud, Ernst Simmel and Alice of Battenberg at Kurhaus Schloß Tegel. Hist Psychiatry. 2020;31(2):147–62. https://pubmed.ncbi.nlm.nih.gov/31969019/
Brown-Séquard. Note on the effects produced on man by subcutaneous injections of a liquid obtained from the testicles of animals. Lancet. 1889;134(3438):105–7. https://www.sciencedirect.com/science/article/abs/pii/S0140673600641181
Kahn A. Regaining lost youth: the controversial and colorful beginnings of hormone replacement therapy in aging. J Gerontol A Biol Sci Med Sci. 2005;60(2):142–7. https://pubmed.ncbi.nlm.nih.gov/15814854/
Blue E. The strange career of Leo Stanley: remaking manhood and medicine at San Quentin State Penitentiary, 1913–1951. Pac Hist Rev. 2009;78(2):210–41. https://www.researchgate.net/publication/236335739_The_Strange_Career_of_Leo_Stanley_Remaking_Manhood_and_Medicine_at_San_Quentin_State_Penitentiary_1913-1951
Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/
Irwig MS, Fleseriu M, Jonklaas J, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53. https://pubmed.ncbi.nlm.nih.gov/32163313/
Regelson W. Growth hormone use. Science. 1987;235(4784):14c-5c. https://pubmed.ncbi.nlm.nih.gov/17769289/
Barkan AL. Growth hormone as an anti-aging therapy – do the benefits outweigh the risks? Nat Clin Pract Endocrinol Metab. 2007;3(7):508–9. https://pubmed.ncbi.nlm.nih.gov/17534272/
Irwig MS, Fleseriu M, Jonklaas J, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53. https://pubmed.ncbi.nlm.nih.gov/32163313/
Mullur RS. Making a difference in adrenal fatigue. Endocr Pract. 2018;24(12):1103–5. https://pubmed.ncbi.nlm.nih.gov/30289314/
Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16(1):48. https://pubmed.ncbi.nlm.nih.gov/27557747/
Nippoldt T. Mayo Clinic office visit. Adrenal fatigue: an interview with Todd Nippoldt, M.D. Mayo Clin Womens Healthsource. 2010;14(3):6. https://pubmed.ncbi.nlm.nih.gov/20110864/
Chimote BN, Chimote NM. Dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) in mammalian reproduction: known roles and novel paradigms. Vitam Horm. 2018;108:223–50. https://pubmed.ncbi.nlm.nih.gov/30029728/
Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? J Endocrinol Invest. 2005;28(11 Suppl Proceedings):5–14. https://pubmed.ncbi.nlm.nih.gov/16760618/
Peixoto C, Carrilho CG, Barros JA, et al. The effects of dehydroepiandrosterone on sexual function: a systematic review. Climacteric. 2017;20(2):129–37. https://pubmed.ncbi.nlm.nih.gov/28118059/
Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs. 2014;74(11):1195–207. https://pubmed.ncbi.nlm.nih.gov/25022952/
ConsumerLab.com tests DHEA supplements, warns of differences in dose and price. ConsumerLab.com. https://www.consumerlab.com/news/dhea-dose-price/07–22–2015/. Published July 22, 2015. Accessed May 5, 2022.; https://www.consumerlab.com/news/dhea-dose-price/07-22-2015
Celec P, Stárka L. Dehydroepiandrosterone – is the fountain of youth drying out? Physiol Res. 2003;52(4):397–407. https://pubmed.ncbi.nlm.nih.gov/12899651/
Peixoto C, Carrilho CG, Barros JA, et al. The effects of dehydroepiandrosterone on sexual function: a systematic review. Climacteric. 2017;20(2):129–37. https://pubmed.ncbi.nlm.nih.gov/28118059/
Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Hum Reprod. 2010;25(10):2496–500. https://pubmed.ncbi.nlm.nih.gov/22456062/
Tartagni M, Cicinelli MV, Baldini D, et al. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reprod Biol Endocrinol. 2015;13:18. https://ncbi.nlm.nih.gov/pmc/articles/PMC4355976/
Thompson RD, Carlson M. Liquid chromatographic determination of dehydroepiandrosterone (DHEA) in dietary supplement products. J AOAC Int. 2000;83(4):847–57. https://pubmed.ncbi.nlm.nih.gov/10995111/
Trichopoulou A, Bamia C, Kalapothaki V, Spanos E, Naska A, Trichopoulos D. Dehydroepiandrosterone relations to dietary and lifestyle variables in a general population sample. Ann Nutr Metab. 2003;47(3–4):158–64. https://pubmed.ncbi.nlm.nih.gov/12743468/
Remer T, Pietrzik K, Manz F. The short-term effect of dietary pectin on plasma levels and renal excretion of dehydroepiandrosterone sulfate. Z Ernahrungswiss. 1996;35(1):32–8. https://pubmed.ncbi.nlm.nih.gov/8776832/
Remer T, Pietrzik K, Manz F. Short-term impact of a lactovegetarian diet on adrenocortical activity and adrenal androgens. J Clin Endocrinol Metab. 1998;83(6):2132–7. https://pubmed.ncbi.nlm.nih.gov/9626151/
Hill P, Wynder EL, Garbaczewski L, Walker AR. Effect of diet on plasma and urinary hormones in South African black men with prostatic cancer. Cancer Res. 1982;42(9):3864–9. https://pubmed.ncbi.nlm.nih.gov/6179613/
Hill P, Garbaczewski L, Helman P, Huskisson J, Sporangisa E, Wynder EL. Diet, lifestyle, and menstrual activity. Am J Clin Nutr. 1980;33(6):1192–8. https://pubmed.ncbi.nlm.nih.gov/7386408/
Remer T, Pietrzik K, Manz F. Short-term impact of a lactovegetarian diet on adrenocortical activity and adrenal androgens. J Clin Endocrinol Metab. 1998;83(6):2132–7. https://pubmed.ncbi.nlm.nih.gov/9626151/
Grande M, Borobio V, Jimenez JM, et al. Antral follicle count as a marker of ovarian biological age to reflect the background risk of fetal aneuploidy. Hum Reprod. 2014;29(6):1337–43. https://pubmed.ncbi.nlm.nih.gov/24682614/
Bozdag G, Calis P, Zengin D, Tanacan A, Karahan S. Age related normogram for antral follicle count in general population and comparison with previous studies. Eur J Obstet Gynecol Reprod Biol. 2016;206:120–4. https://pubmed.ncbi.nlm.nih.gov/27689809/
Souter I, Chiu YH, Batsis M, et al. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. BJOG. 2017;124(10):1547–55. https://pubmed.ncbi.nlm.nih.gov/28278351/
Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones in food. Food Chem (Oxf). 1998;62(1):7–20. https://www.sciencedirect.com/science/article/abs/pii/S0308814697001507?via%3Dihub
Brinkman MT, Baglietto L, Krishnan K, et al. Consumption of animal products, their nutrient components and postmenopausal circulating steroid hormone concentrations. Eur J Clin Nutr. 2010;64(2):176–83. https://pubmed.ncbi.nlm.nih.gov/19904296/
Andersson AM, Skakkebaek NE. Exposure to exogenous estrogens in food: possible impact on human development and health. Eur J Endocrinol. 1999;140(6):477–85. https://pubmed.ncbi.nlm.nih.gov/10366402/
Souter I, Chiu YH, Batsis M, et al. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. BJOG. 2017;124(10):1547–55. https://pubmed.ncbi.nlm.nih.gov/28278351/
Lumsden MA, Sassarini J. The evolution of the human menopause. Climacteric. 2019;22(2):111–6. https://pubmed.ncbi.nlm.nih.gov/30712396/
National Center for Health Statistics. Health, United States, 2010: With Special Feature on Death and Dying. https://www.cdc.gov/nchs/data/hus/hus10.pdf. Published February 2011. Accessed May 5, 2022.; https://www.cdc.gov/nchs/data/hus/hus10.pdf
Llarena N, Hine C. Reproductive longevity and aging: geroscience approaches to maintain long-term ovarian fitness. J Gerontol A Biol Sci Med Sci. 2021;76(9):1551–60. https://pubmed.ncbi.nlm.nih.gov/32808646/
Gagnon A. Natural fertility and longevity. Fertil Steril. 2015;103(5):1109–16. https://pubmed.ncbi.nlm.nih.gov/25934597/
Giri R, Vincent AJ. Prevalence and risk factors of premature ovarian insufficiency/early menopause. Semin Reprod Med. 2020;38(4–05):237–46. https://pubmed.ncbi.nlm.nih.gov/33434933/
Stanford JL, Hartge P, Brinton LA, Hoover RN, Brookmeyer R. Factors influencing the age at natural menopause. J Chronic Dis. 1987;40(11):995–1002. https://pubmed.ncbi.nlm.nih.gov/3654908/
Boutot ME, Purdue-Smithe A, Whitcomb BW, et al. Dietary protein intake and early menopause in the Nurses’ Health Study II. Am J Epidemiol. 2018;187(2):270–7. https://pubmed.ncbi.nlm.nih.gov/28992246/
Conway F. Menopause matters: attending to the vitality of older women. J Women Aging. 2020;32(5):489–90. https://pubmed.ncbi.nlm.nih.gov/33225875/
Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/
Johnson A, Roberts L, Elkins G. Complementary and alternative medicine for menopause. J Evid Based Integr Med. 2019;24:2515690X19829380. https://pubmed.ncbi.nlm.nih.gov/30868921/
Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/
Pirhadi R, Sinai Talaulikar V, Onwude J, Manyonda I. It is all in the name: the importance of correct terminology in hormone replacement therapy. Post Reprod Health. 2020;26(3):142–6. https://pubmed.ncbi.nlm.nih.gov/32390508/
Hunter MM, Huang AJ, Wallhagen MI. “I’m going to stay young”: belief in anti-aging efficacy of menopausal hormone therapy drives prolonged use despite medical risks. PLoS One. 2020;15(5):e0233703. https://pubmed.ncbi.nlm.nih.gov/32469976/
Wilson RA, Wilson TA. The fate of the nontreated postmenopausal woman: a plea for the maintenance of adequate estrogen from puberty to the grave. J Am Geriatr Soc. 1963;11:347–62. https://pubmed.ncbi.nlm.nih.gov/14001078/
Wilson RA, Wilson TA. The basic philosophy of estrogen maintenance. J Am Geriatr Soc.1972;20(11):521–3. https://pubmed.ncbi.nlm.nih.gov/5082121/
Chew F, Wu X. Sources of information influencing the state-of-the-science gap in hormone replacement therapy usage. PLoS One. 2017;12(2):e0171189. https://pubmed.ncbi.nlm.nih.gov/28158240/
Fugh-Berman A. The science of marketing: how pharmaceutical companies manipulated medical discourse on menopause. Women’s Reprod Health. 2015;2(1):18–23. https://www.tandfonline.com/doi/full/10.1080/23293691.2015.1039448
Rubinstein H. Defining what is normal at menopause: how women’s and clinician’s different understandings may lead to a lack of provision for those in most need. Hum Fertil (Camb). 2014;17(3):218–22. https://pubmed.ncbi.nlm.nih.gov/24989874/
Tatsioni A, Siontis GCM, Ioannidis JPA. Partisan perspectives in the medical literature: a study of high frequency editorialists favoring hormone replacement therapy. J Gen Intern Med. 2010;25(9):914–9. https://pubmed.ncbi.nlm.nih.gov/20425148/
Rubinstein H. Defining what is normal at menopause: how women’s and clinician’s different understandings may lead to a lack of provision for those in most need. Hum Fertil (Camb). 2014;17(3):218–22. https://pubmed.ncbi.nlm.nih.gov/24989874/
Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/
Verkooijen HM, Bouchardy C, Vinh-Hung V, Rapiti E, Hartman M. The incidence of breast cancer and changes in the use of hormone replacement therapy: a review of the evidence. Maturitas. 2009;64(2):80–5. https://pubmed.ncbi.nlm.nih.gov/19709827/
Auchincloss H, Haagensen CD. Cancer of the breast possibly induced by estrogenic substance. JAMA. 1940;114(16):1517–23. https://jamanetwork.com/journals/jama/article-abstract/1160126
Anderson G, Cummings S, Freedman LS, et al. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19(1):61–109. https://pubmed.ncbi.nlm.nih.gov/9492970/
Cummings SR. Evaluating the benefits and risks of postmenopausal hormone therapy. Am J Med. 1991;91(5B):14S-8S. https://pubmed.ncbi.nlm.nih.gov/1750410/
Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. https://pubmed.ncbi.nlm.nih.gov/12117397/
Marsden J. Hormone replacement therapy and female malignancy: what has the Million Women Study added to our knowledge? J Fam Plann Reprod Health Care. 2007;33(4):237–43. https://pubmed.ncbi.nlm.nih.gov/17925102/
Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–12. https://pubmed.ncbi.nlm.nih.gov/15082697/
Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/
Katz A. Observations and advertising: controversies in the prescribing of hormone replacement therapy. Health Care Women Int. 2003;24(10):927–39. https://pubmed.ncbi.nlm.nih.gov/14742130/
Majumdar SR, Almasi EA, Stafford RS. Promotion and prescribing of hormone therapy after report of harm by the Women’s Health Initiative. JAMA. 2004;292(16):1983–8. https://pubmed.ncbi.nlm.nih.gov/15507584/
Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med. 2007;356(16):1670–4. https://pubmed.ncbi.nlm.nih.gov/17442911/
Fugh-Berman A. The science of marketing: how pharmaceutical companies manipulated medical discourse on menopause. Women’s Reprod Health. 2015;2(1):18–23. https://www.tandfonline.com/doi/full/10.1080/23293691.2015.1039448
Roth JA, Etzioni R, Waters TM, et al. Economic return from the Women’s Health Initiative estrogen plus progestin clinical trial: a modeling study. Ann Intern Med. 2014;160(9):594–602. https://pubmed.ncbi.nlm.nih.gov/24798522/
Majumdar SR, Almasi EA, Stafford RS. Promotion and prescribing of hormone therapy after report of harm by the Women’s Health Initiative. JAMA. 2004;292(16):1983–8. https://pubmed.ncbi.nlm.nih.gov/15507584/
Carstens AJ. HRT prescriptions linked to 25 % of breast cancers in California. S Afr Med J. 2009;99(5):280. https://pubmed.ncbi.nlm.nih.gov/19588781/
Fugh-Berman AJ. The haunting of medical journals: how ghostwriting sold “HRT.” PLoS Med. 2010;7(9):e1000335. https://pubmed.ncbi.nlm.nih.gov/20838656/
Fugh-Berman A, Scialli AR. Gynecologists and estrogen: an affair of the heart. Perspect Biol Med. 2006;49(1):115–30. https://pubmed.ncbi.nlm.nih.gov/16489281/
Fugh-Berman AJ. The haunting of medical journals: how ghostwriting sold “HRT.” PLoS Med. 2010;7(9):e1000335. https://pubmed.ncbi.nlm.nih.gov/20838656/
Egilman AC, Kesselheim AS, Krumholz HM, Ross JS, Kim J, Kapczynski A. Confidentiality orders and public interest in drug and medical device litigation. JAMA Intern Med. 2020;180(2):292–9. https://pubmed.ncbi.nlm.nih.gov/31657836/
Fugh-Berman A, Scialli AR. Gynecologists and estrogen: an affair of the heart. Perspect Biol Med. 2006;49(1):115–30. https://pubmed.ncbi.nlm.nih.gov/16489281/
Tatsioni A, Siontis GCM, Ioannidis JPA. Partisan perspectives in the medical literature: a study of high frequency editorialists favoring hormone replacement therapy. J Gen Intern Med. 2010;25(9):914–9. https://pubmed.ncbi.nlm.nih.gov/20425148/
Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/
Akesson A, Weismayer C, Newby PK, Wolk A. Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med. 2007;167(19):2122–7. https://pubmed.ncbi.nlm.nih.gov/17954808/
American Academy of Family Physicians. Clinical preventative service recommendation: hormone replacement therapy. https://www.aafp.org/family-physician/patient-care/clinical-recommendations/all-clinical-recommendations/hrt.html. Accessed Aug 2, 2022.; https://www.aafp.org/family-physician/patient-care/clinical-recommendations/all-clinical-recommendations/hrt.html
Fick DM, Semla TP, Steinman M, et al. American Geriatrics Society 2019 updated AGS Beers criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://pubmed.ncbi.nlm.nih.gov/30693946/
Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. J Am Coll Cardiol. 2011;57(12):1404–23. https://pubmed.ncbi.nlm.nih.gov/21325087/
Grossman DC, Curry SJ, Owens DK, et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: US Preventive Services Task Force recommendation statement. JAMA. 2017;318(22):2224–33. https://pubmed.ncbi.nlm.nih.gov/29677309/
ACOG Committee Opinion No. 565: Hormone therapy and heart disease. Obstet Gynecol. 2013;121(6):1407–10. https://pubmed.ncbi.nlm.nih.gov/23812486/
Maclennan AH, Broadbent JL, Lester S, Moore V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst Rev. 2004;(4):CD002978. https://pubmed.ncbi.nlm.nih.gov/15495039/
Santoro N, Allshouse A, Neal-Perry G, et al. Longitudinal changes in menopausal symptoms comparing women randomized to low-dose oral conjugated estrogens or transdermal estradiol plus micronized progesterone versus placebo: the Kronos Early Estrogen Prevention Study (KEEPS). Menopause. 2017;24(3):238–46. https://pubmed.ncbi.nlm.nih.gov/27779568/
Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/
Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J. Long-term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2017;1:CD004143. https://pubmed.ncbi.nlm.nih.gov/28093732/
Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/
Manson JE, Bassuk SS, Kaunitz AM, Pinkerton JV. The Women’s Health Initiative trials of menopausal hormone therapy: lessons learned. Menopause. 2020;27(8):918–28. https://pubmed.ncbi.nlm.nih.gov/32345788/
Kim JJ, Chapman-Davis E. Role of progesterone in endometrial cancer. Semin Reprod Med. 2010;28(1):81–90. https://pubmed.ncbi.nlm.nih.gov/20104432/
Maclennan AH, Broadbent JL, Lester S, Moore V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst Rev. 2004;(4):CD002978. https://pubmed.ncbi.nlm.nih.gov/15495039/
Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/
Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/
Chew F, Wu X. Sources of information influencing the state-of-the-science gap in hormone replacement therapy usage. PLoS One. 2017;12(2):e0171189. https://pubmed.ncbi.nlm.nih.gov/28158240/
Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol. 2014;142:16–29. https://pubmed.ncbi.nlm.nih.gov/24176763/
ClinCalc DrugStats database. The top 300 of 2019. ClinCalc.com. https://clincalc.com/DrugStats/Top300Drugs.aspx. Updated September 12, 2021. Accessed May 5, 2022.; https://clincalc.com/DrugStats/Top300Drugs.aspx
Kling J. The strange case of Premarin. Mod Drug Discov. 2000;3(8):46–52. https://pubsapp.acs.org/subscribe/archive/mdd/v03/i08/html/kling.html
Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/
ACOG Practice Bulletin No. 141: management of menopausal symptoms. Obstet Gynecol. 2014;123(1):202–16. https://pubmed.ncbi.nlm.nih.gov/24463691/
Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/
Brawley OW, O’Regan RM. Breast cancer screening: time for rational discourse. Cancer. 2014;120(18):2800–2. https://pubmed.ncbi.nlm.nih.gov/24925095/
Biller-Andorno N, Jüni P. Abolishing mammography screening programs? A view from the Swiss Medical Board. N Engl J Med. 2014;370(21):1965–7. https://pubmed.ncbi.nlm.nih.gov/24738641/
Nelson AL. Controversies regarding mammography, breast self-examination, and clinical breast examination. Obstet Gynecol Clin North Am. 2013;40(3):413–27. https://pubmed.ncbi.nlm.nih.gov/24021250/
Loh KP, Stefan MS, Friderici J, et al. Healthcare professionals’ perceptions and knowledge of the USPSTF guidelines on breast self-examination. South Med J. 2015;108(8):459–62. https://pubmed.ncbi.nlm.nih.gov/26280768/
Welch HG. Screening mammography – a long run for a short slide? N Engl J Med. 2010;363(13):1276–8. https://pubmed.ncbi.nlm.nih.gov/20860510/
Gigerenzer G. Women’s perception of the benefit of breast cancer screening. Maturitas. 2010;67(1):5–6. https://pubmed.ncbi.nlm.nih.gov/20609537/
Atkins CD. Potential hazards of mammography. J Clin Oncol. 2007;25(5):604. https://pubmed.ncbi.nlm.nih.gov/17290073/
Barratt A. Overdiagnosis in mammography screening: a 45 year journey from shadowy idea to acknowledged reality. BMJ. 2015;350:h867. https://pubmed.ncbi.nlm.nih.gov/25736426/
Gøtzsche PC, Jørgensen KJ, Zahl PH, Mæhlen J. Why mammography screening has not lived up to expectations from the randomised trials. Cancer Causes Control. 2012;23(1):15–21. https://pubmed.ncbi.nlm.nih.gov/22072221/
Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA. 2014;311(13):1327–35. https://pubmed.ncbi.nlm.nih.gov/24691608/
Gøtzsche PC, Jørgensen KJ, Zahl PH, Mæhlen J. Why mammography screening has not lived up to expectations from the randomised trials. Cancer Causes Control. 2012;23(1):15–21. https://pubmed.ncbi.nlm.nih.gov/22072221/
Sohn E. Screening: don’t look now. Nature. 2015;527(7578):S118–9. https://pubmed.ncbi.nlm.nih.gov/26580162/
Gotzsche P. Commentary: screening: a seductive paradigm that has generally failed us. Int J Epidemiol. 2015;44(1):278–80. https://pubmed.ncbi.nlm.nih.gov/25596213/
Derbyshire SWG. Second opinion: doctors, diseases and decisions in modern medicine. BMJ. 2003;327(7411):399. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1126826/
Jørgensen KJ, Gøtzsche PC. The background review for the USPSTF recommendation on screening for breast cancer. Ann Intern Med. 2010;152(8):538; author reply 538–9. https://pubmed.ncbi.nlm.nih.gov/20157097/
Domenighetti G, D’Avanzo B, Egger M, et al. Women’s perception of the benefits of mammography screening: population-based survey in four countries. Int J Epidemiol. 2003;32(5):816–21. https://pubmed.ncbi.nlm.nih.gov/14559757/
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://pubmed.ncbi.nlm.nih.gov/33501848/
National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer stat facts: female breast cancer. https://seer.cancer.gov/statfacts/html/breast.html. Accessed May 5, 2022.; https://seer.cancer.gov/statfacts/html/breast.html
Parise CA, Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J Cancer Epidemiol. 2014;2014:469251. https://pubmed.ncbi.nlm.nih.gov/24955090/
Romanos-Nanclares A, Willett WC, Rosner BA, et al. Healthful and unhealthful plant-based diets and risk of breast cancer in U.S. women: results from the Nurses’ Health Studies. Cancer Epidemiol Biomarkers Prev. 2021;30(10):1921–31. https://pubmed.ncbi.nlm.nih.gov/34289970/
Link LB, Canchola AJ, Bernstein L, et al. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am J Clin Nutr. 2013;98(6):1524–32. https://pubmed.ncbi.nlm.nih.gov/24108781/
Hankinson SE. Circulating levels of sex steroids and prolactin in premenopausal women and risk of breast cancer. In: Li JJ, Li SA, Mohla S, Rochefort H, Maudelonde T, eds. Hormonal Carcinogenesis V. Springer; 2008:161–9. https://pubmed.ncbi.nlm.nih.gov/18497040/
Key T, Appleby P, Barnes I, et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606–16. https://pubmed.ncbi.nlm.nih.gov/11959894/
Hankinson SE. Circulating levels of sex steroids and prolactin in premenopausal women and risk of breast cancer. In: Li JJ, Li SA, Mohla S, Rochefort H, Maudelonde T, eds. Hormonal Carcinogenesis V. Springer; 2008:161–9. https://pubmed.ncbi.nlm.nih.gov/18497040/
Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42. https://pubmed.ncbi.nlm.nih.gov/19372199/
Shultz TD, Leklem JE. Nutrient intake and hormonal status of premenopausal vegetarian Seventh-day Adventists and premenopausal nonvegetarians. Nutr Cancer. 1983;4(4):247–59. https://pubmed.ncbi.nlm.nih.gov/6224137/
Barbosa JC, Shultz TD, Filley SJ, Nieman DC. The relationship among adiposity, diet, and hormone concentrations in vegetarian and nonvegetarian postmenopausal women. Am J Clin Nutr. 1990;51(5):798–803. https://pubmed.ncbi.nlm.nih.gov/2159209/
Shultz TD, Howie BJ. In vitro binding of steroid hormones by natural and purified fibers. Nutr Cancer. 1986;8(2):141–7. https://pubmed.ncbi.nlm.nih.gov/3010251/
Goldin BR, Woods MN, Spiegelman DL, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74(3 Suppl):1125–31. https://pubmed.ncbi.nlm.nih.gov/8039147/
Jew S, AbuMweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/
Goldin BR, Adlercreutz H, Dwyer JT, Swenson L, Warram JH, Gorbach SL. Effect of diet on excretion of estrogens in pre- and postmenopausal women. Cancer Res. 1981;41(9 Pt 2):3771–3. https://pubmed.ncbi.nlm.nih.gov/7260944/
Goldin BR, Adlercreutz H, Gorbach SL, et al. Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. N Engl J Med. 1982;307(25):1542–7. https://pubmed.ncbi.nlm.nih.gov/7144835/
Beezhold B, Radnitz C, McGrath RE, Feldman A. Vegans report less bothersome vasomotor and physical menopausal symptoms than omnivores. Maturitas. 2018;112:12–7. https://pubmed.ncbi.nlm.nih.gov/29704911/
Beezhold B, Radnitz C, McGrath RE, Feldman A. Vegans report less bothersome vasomotor and physical menopausal symptoms than omnivores. Maturitas. 2018;112:12–7. https://pubmed.ncbi.nlm.nih.gov/29704911/
Noll PRES, Campos CAS, Leone C, et al. Dietary intake and menopausal symptoms in postmenopausal women: a systematic review. Climacteric. 2021;24(2):128–38. https://pubmed.ncbi.nlm.nih.gov/33112163/
Cagnacci A, Cannoletta M, Palma F, Bellafronte M, Romani C, Palmieri B. Relation between oxidative stress and climacteric symptoms in early postmenopausal women. Climacteric. 2015;18(4):631–6. https://pubmed.ncbi.nlm.nih.gov/25536006/
Aslani Z, Abshirini M, Heidari-Beni M, et al. Dietary inflammatory index and dietary energy density are associated with menopausal symptoms in postmenopausal women: a cross-sectional study. Menopause. 2020;27(5):568–78. https://pubmed.ncbi.nlm.nih.gov/32068687/
Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/
Woyka J. Consensus statement for non-hormonal-based treatments for menopausal symptoms. Post Reprod Health. 2017;23(2):71–5. https://pubmed.ncbi.nlm.nih.gov/28643614/
Prentice RL, Howard BV, Van Horn L, et al. Nutritional epidemiology and the Women’s Health Initiative: a review. Am J Clin Nutr. 2021;113(5):1083–92. https://pubmed.ncbi.nlm.nih.gov/33876183/
Patterson RE, Kristal A, Rodabough R, et al. Changes in food sources of dietary fat in response to an intensive low-fat dietary intervention: early results from the Women’s Health Initiative. J Am Diet Assoc. 2003;103(4):454–60. https://pubmed.ncbi.nlm.nih.gov/12669007/
Patterson RE, Prentice RL, Beresford S, et al. Dietary adherence in the Women’s Health Initiative dietary modification trial. J Am Diet Assoc. 2004;104(4):654–8. https://pubmed.ncbi.nlm.nih.gov/15054353/
Kroenke CH, Caan BJ, Stefanick ML, et al. Effects of a dietary intervention and weight change on vasomotor symptoms in the Women’s Health Initiative. Menopause. 2012;19(9):980–8. https://pubmed.ncbi.nlm.nih.gov/22781782/
Rotolo O, Zinzi I, Veronese N, et al. Women in LOVe: lacto-ovo-vegetarian diet rich in omega-3 improves vasomotor symptoms in postmenopausal women. An exploratory randomized controlled trial. Endocr Metab Immune Disord Drug Targets. 2019;19(8):1232–9. https://pubmed.ncbi.nlm.nih.gov/31132980/
Cetisli NE, Saruhan A, Kivcak B. The effects of flaxseed on menopausal symptoms and quality of life. Holist Nurs Pract. 2015;29(3):151–7. https://pubmed.ncbi.nlm.nih.gov/25882265/
Messina M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients. 2016;8(12):E754. https://pubmed.ncbi.nlm.nih.gov/27886135/
Thomas AJ, Ismail R, Taylor-Swanson L, et al. Effects of isoflavones and amino acid therapies for hot flashes and co-occurring symptoms during the menopausal transition and early postmenopause: a systematic review. Maturitas. 2014;78(4):263–76. https://pubmed.ncbi.nlm.nih.gov/24951101/
Avis NE, Crawford SL, Greendale G, et al. Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Intern Med. 2015;175(4):531–9. https://pubmed.ncbi.nlm.nih.gov/25686030/
Avis NE, Kaufert PA, Lock M, McKinlay SM, Vass K. The evolution of menopausal symptoms. Baillieres Clin Endocrinol Metab. 1993;7(1):17–32. https://pubmed.ncbi.nlm.nih.gov/8435051/
Thomas AJ, Ismail R, Taylor-Swanson L, et al. Effects of isoflavones and amino acid therapies for hot flashes and co-occurring symptoms during the menopausal transition and early postmenopause: a systematic review. Maturitas. 2014;78(4):263–76. https://pubmed.ncbi.nlm.nih.gov/24951101/
Lock M. Contested meanings of the menopause. Lancet. 1991;337(8752):1270–2. https://pubmed.ncbi.nlm.nih.gov/1674073/
Avis NE, Kaufert PA, Lock M, McKinlay SM, Vass K. The evolution of menopausal symptoms. Baillieres Clin Endocrinol Metab. 1993;7(1):17–32. https://pubmed.ncbi.nlm.nih.gov/8435051/
Lock M. Contested meanings of the menopause. Lancet. 1991;337(8752):1270–2. https://pubmed.ncbi.nlm.nih.gov/1674073/
Lock M. Ambiguities of aging: Japanese experience and perceptions of menopause. Cult Med Psychiatry. 1986;10(1):23–46. https://pubmed.ncbi.nlm.nih.gov/3486095/
Avis NE, Stellato R, Crawford S, et al. Is there a menopausal syndrome? Menopausal status and symptoms across racial/ethnic groups. Soc Sci Med. 2001;52(3):345–56. https://pubmed.ncbi.nlm.nih.gov/11330770/
Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-analysis of randomized controlled trials. Menopause. 2012;19(7):776–90. https://pubmed.ncbi.nlm.nih.gov/22433977/
Ghazanfarpour M, Sadeghi R, Roudsari RL. The application of soy isoflavones for subjective symptoms and objective signs of vaginal atrophy in menopause: a systematic review of randomised controlled trials. J Obstet Gynaecol. 2016;36(2):160–71. https://pubmed.ncbi.nlm.nih.gov/26440219/
Lambert MNT, Hu LM, Jeppesen PB. A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am J Clin Nutr. 2017;106(3):801–11. https://pubmed.ncbi.nlm.nih.gov/28768649/
Su BYW, Tung TH, Chien WH. Effects of phytoestrogens on depressive symptoms in climacteric women: a meta-analysis of randomized controlled trials. J Altern Complement Med. 2018;24(8):850–1. https://pubmed.ncbi.nlm.nih.gov/29717895/
Cheng PF, Chen JJ, Zhou XY, et al. Do soy isoflavones improve cognitive function in postmenopausal women? A meta-analysis. Menopause. 2015;22(2):198–206. https://pubmed.ncbi.nlm.nih.gov/25003621/
Schmidt M, Arjomand-Wölkart K, Birkhäuser MH, et al. Consensus: soy isoflavones as a first-line approach to the treatment of menopausal vasomotor complaints. Gynecol Endocrinol. 2016;32(6):427–30. https://pubmed.ncbi.nlm.nih.gov/26943176/
Welty FK, Lee KS, Lew NS, Nasca M, Zhou JR. The association between soy nut consumption and decreased menopausal symptoms. J Womens Health (Larchmt). 2007;16(3):361–9. https://pubmed.ncbi.nlm.nih.gov/17439381/
Barnard ND, Kahleova H, Holtz DN, et al. A dietary intervention for vasomotor symptoms of menopause: a randomized, controlled trial. Menopause. 2023;30(1):80–7. https://pubmed.ncbi.nlm.nih.gov/36253903/
Barnard ND, Kahleova H, Holtz DN, et al. The Women’s Study for the Alleviation of Vasomotor Symptoms (WAVS): a randomized, controlled trial of a plant-based diet and whole soybeans for postmenopausal women. Menopause. 2021;28(10):1150–6. https://pubmed.ncbi.nlm.nih.gov/34260478/
Buja A, Pierbon M, Lago L, Grotto G, Baldo V. Breast cancer primary prevention and diet: an umbrella review. Int J Environ Res Public Health. 2020;17(13):E4731. https://pubmed.ncbi.nlm.nih.gov/32630215/
Messina M, Messina VL. Exploring the soyfood controversy. Nutr Today. 2013;48(2):68. https://www.researchgate.net/publication/271683198_Exploring_the_Soyfood_Controversy
Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/
Kelsey JL. A review of the epidemiology of human breast cancer. Epidemiol Rev. 1979;1:74–109. https://pubmed.ncbi.nlm.nih.gov/398270/
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://pubmed.ncbi.nlm.nih.gov/33433946/
Fraser GE, Jaceldo-Siegl K, Orlich M, Mashchak A, Sirirat R, Knutsen S. Dairy, soy, and risk of breast cancer: those confounded milks. Int J Epidemiol. 2020;49(5):1526–37. https://pubmed.ncbi.nlm.nih.gov/32095830/
Shu XO, Zheng Y, Cai H, et al. Soy food intake and breast cancer survival. JAMA. 2009;302(22):2437–43. https://pubmed.ncbi.nlm.nih.gov/19996398/
Guha N, Kwan ML, Quesenberry CP, Weltzien EK, Castillo AL, Caan BJ. Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. Breast Cancer Res Treat. 2009;118(2):395–405. https://pubmed.ncbi.nlm.nih.gov/19221874/
Kang X, Zhang Q, Wang S, Huang X, Jin S. Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ. 2010;182(17):1857–62. https://pubmed.ncbi.nlm.nih.gov/20956506/
Rock CL, Doyle C, Demark-Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74. https://pubmed.ncbi.nlm.nih.gov/22539238/
Caan BJ, Natarajan L, Parker B, et al. Soy food consumption and breast cancer prognosis. Cancer Epidemiol Biomarkers Prev. 2011;20(5):854–8. https://pubmed.ncbi.nlm.nih.gov/21357380/
Zhang YF, Kang HB, Li BL, Zhang RM. Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev. 2012;13(2):479–82. https://pubmed.ncbi.nlm.nih.gov/22524810/
Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/
Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/
Kang HB, Zhang YF, Yang JD, Lu KL. Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev. 2012;13(3):995–8. https://pubmed.ncbi.nlm.nih.gov/22631686/
Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr. 2010;92(1):141–53. https://pubmed.ncbi.nlm.nih.gov/20463043/
McCann SE, Thompson LU, Nie J, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat. 2010;122(1):229–35. https://pubmed.ncbi.nlm.nih.gov/20033482/
Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res. 2005;11(10):3828–35. https://pubmed.ncbi.nlm.nih.gov/15897583/
Calado A, Neves PM, Santos T, Ravasco P. The effect of flaxseed in breast cancer: a literature review. Front Nutr. 2018;5:4. https://pubmed.ncbi.nlm.nih.gov/29468163/
Hadi A, Askarpour M, Salamat S, Ghaedi E, Symonds ME, Miraghajani M. Effect of flaxseed supplementation on lipid profile: an updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials. Pharmacol Res. 2020;152:104622. https://pubmed.ncbi.nlm.nih.gov/31899314/
Khandouzi N, Zahedmehr A, Mohammadzadeh A, Sanati HR, Nasrollahzadeh J. Effect of flaxseed consumption on flow-mediated dilation and inflammatory biomarkers in patients with coronary artery disease: a randomized controlled trial. Eur J Clin Nutr. 2019;73(2):258–65. https://pubmed.ncbi.nlm.nih.gov/30127374/
Ursoniu S, Sahebkar A, Andrica F, et al. Effects of flaxseed supplements on blood pressure: a systematic review and meta-analysis of controlled clinical trial. Clin Nutr. 2016;35(3):615–25. https://pubmed.ncbi.nlm.nih.gov/26071633/
Khandouzi N, Zahedmehr A, Mohammadzadeh A, Sanati HR, Nasrollahzadeh J. Effect of flaxseed consumption on flow-mediated dilation and inflammatory biomarkers in patients with coronary artery disease: a randomized controlled trial. Eur J Clin Nutr. 2019;73(2):258–65. https://pubmed.ncbi.nlm.nih.gov/30127374/
Hadi A, Askarpour M, Ziaei R, Venkatakrishnan K, Ghaedi E, Ghavami A. Impact of flaxseed supplementation on plasma lipoprotein(A) concentrations: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020;34(7):1599–608. https://pubmed.ncbi.nlm.nih.gov/32073724/
Almehmadi A, Lightowler H, Chohan M, Clegg ME. The effect of a split portion of flaxseed on 24-h blood glucose response. Eur J Nutr. 2021;60(3):1363–73. https://pubmed.ncbi.nlm.nih.gov/32699911/
Ghazanfarpour M, Sadeghi R, Latifnejad Roudsari R, et al. Effects of flaxseed and Hypericum perforatum on hot flash, vaginal atrophy and estrogen-dependent cancers in menopausal women: a systematic review and meta-analysis. Avicenna J Phytomed. 2016;6(3):273–83. https://pubmed.ncbi.nlm.nih.gov/27462550/
Franco OH, Chowdhury R, Troup J, et al. Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA. 2016;315(23):2554–63. https://pubmed.ncbi.nlm.nih.gov/27327802/
Milligan SR, Kalita JC, Heyerick A, Rong H, De Cooman L, De Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab. 1999;84(6):2249–52. https://pubmed.ncbi.nlm.nih.gov/10372741/
Milligan S, Kalita J, Pocock V, et al. Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction. 2002;123(2):235–42. https://pubmed.ncbi.nlm.nih.gov/11866690/
Bradbury RB, White DE. 761. The chemistry of subterranean clover. Part I. Isolation of formononetin and genistein. J Chem Soc. 1951;(0):3447–9. https://pubs.rsc.org/en/content/articlelanding/1951/jr/jr9510003447
Gavaler JS, Rosenblum ER, Deal SR, Bowie BT. The phytoestrogen congeners of alcoholic beverages: current status. Proc Soc Exp Biol Med. 1995;208(1):98–102. https://pubmed.ncbi.nlm.nih.gov/7892304/
Pedrera-Zamorano JD, Lavado-Garcia JM, Roncero-Martin R, Calderon-Garcia JF, Rodriguez-Dominguez T, Canal-Macias ML. Effect of beer drinking on ultrasound bone mass in women. Nutrition. 2009;25(10):1057–63. https://pubmed.ncbi.nlm.nih.gov/19527924/
Aghamiri V, Mirghafourvand M, Mohammad-Alizadeh-Charandabi S, Nazemiyeh H. The effect of Hop (Humulus lupulus L.) on early menopausal symptoms and hot flashes: a randomized placebo-controlled trial. Complement Ther Clin Pract. 2016;23:130–5. https://pubmed.ncbi.nlm.nih.gov/25982391/
Schaefer O, Hümpel M, Fritzemeier KH, Bohlmann R, Schleuning WD. 8-Prenyl naringenin is a potent ERa selective phytoestrogen present in hops and beer. J Steroid Biochem Mol Biol. 2003;84(2–3):359–60. https://pubmed.ncbi.nlm.nih.gov/12711023/
Fugh-Berman A. “Bust enhancing” herbal products. Obstet Gynecol. 2003;101(6):1345–9. https://pubmed.ncbi.nlm.nih.gov/12798545/
Lê MG, Hill C, Kramar A, Flamanti R. Alcoholic beverage consumption and breast cancer in a French case-control study. Am J Epidemiol. 1984;120(3):350–7. https://pubmed.ncbi.nlm.nih.gov/6475912/
Salehi-Pourmehr H, Ostadrahimi A, Ebrahimpour-Mirzarezaei M, Farshbaf-Khalili A. Does aromatherapy with lavender affect physical and psychological symptoms of menopausal women? A systematic review and meta-analysis. Complement Ther Clin Pract. 2020;39:101150. https://pubmed.ncbi.nlm.nih.gov/32379682/
Kazemzadeh R, Nikjou R, Rostamnegad M, Norouzi H. Effect of lavender aromatherapy on menopause hot flushing: a crossover randomized clinical trial. J Chin Med Assoc. 2016;79(9):489–92. https://pubmed.ncbi.nlm.nih.gov/27388435/
Nikjou R, Kazemzadeh R, Asadzadeh F, Fathi R, Mostafazadeh F. The effect of lavender aromatherapy on the symptoms of menopause. J Natl Med Assoc. 2018;110(3):265–9. https://pubmed.ncbi.nlm.nih.gov/29778129/
Dos Reis Lucena L, Dos Santos-Junior JG, Tufik S, Hachul H. Lavender essential oil on postmenopausal women with insomnia: double-blind randomized trial. Complement Ther Med. 2021;59:102726. https://pubmed.ncbi.nlm.nih.gov/33905827/
Donelli D, Antonelli M, Bellinazzi C, Gensini GF, Firenzuoli F. Effects of lavender on anxiety: a systematic review and meta-analysis. Phytomedicine. 2019;65:153099. https://pubmed.ncbi.nlm.nih.gov/31655395/
Farshbaf-Khalili A, Kamalifard M, Namadian M. Comparison of the effect of lavender and bitter orange on anxiety in postmenopausal women: a triple-blind, randomized, controlled clinical trial. Complement Ther Clin Pract. 2018;31:132–8. https://pubmed.ncbi.nlm.nih.gov/29705445/
Kamalifard M, Farshbaf-Khalili A, Namadian M, Ranjbar Y, Herizchi S. Comparison of the effect of lavender and bitter orange on sleep quality in postmenopausal women: a triple-blind, randomized, controlled clinical trial. Women Health. 2018;58(8):851–65. https://pubmed.ncbi.nlm.nih.gov/28749734/