Примечания

1

Kassirer J, Angell M. Losing weight – an ill-fated New Year’s resolution. N Engl J Med. 1998;338(1):52–4. https://pubmed.ncbi.nlm.nih.gov/9414332/

2

Nelson TD. Promoting healthy aging by confronting ageism. Am Psychol. 2016;71(4):276–82. https://pubmed.ncbi.nlm.nih.gov/27159434/

3

Binstock RH. Anti-aging medicine and research: a realm of conflict and profound societal implications. J Gerontol A Biol Sci Med Sci. 2004;59(6):B523–33. https://pubmed.ncbi.nlm.nih.gov/15215257/

4

Reddy SSK, Chaiban JT. The endocrinology of aging: a key to longevity “great expectations.” Endocr Pract. 2017;23(9):1110–9. https://pubmed.ncbi.nlm.nih.gov/28704100/

5

Kristjuhan Ü. Real aging retardation in humans through diminishing risks to health. Ann N Y Acad Sci. 2007;1119:122–8. https://pubmed.ncbi.nlm.nih.gov/18056961/

6

Roe DA. Health foods and supplements for the elderly. Who can say no? N Y State J Med. 1993;93(2):109–12. https://pubmed.ncbi.nlm.nih.gov/8455823/

7

Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/

8

United States Senate, Special Committee on Aging. Senate hearing 107–190. Swindlers, hucksters and snake oil salesmen: hype and hope of marketing anti-aging products to seniors. U.S. Government Printing Office. September 10, 2001.; https://www.govinfo.gov/content/pkg/CHRG-107shrg76011/html/CHRG-107shrg76011.htm

9

United States Congress House of Representatives, Select Committee on Aging. Quackery: a $10 billion scandal. U.S. Government Printing Office. May 31, 1984.; https://centerforinquiry.org/wp-content/uploads/sites/33/quackwatch/pepper-report.pdf

10

Newton JP. Anti-ageing – fact, fiction or faction? Gerodontology. 2011;28(3):163–4. https://pubmed.ncbi.nlm.nih.gov/21843158/

11

Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/

12

McConnel C, Turner L. Medicine, ageing and human longevity: the economics and ethics of anti-ageing interventions. EMBO Rep. 2005;6(S1):S59–62. https://pubmed.ncbi.nlm.nih.gov/15995665/

13

Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/

14

Wick G. “Anti-aging” medicine: does it exist? A critical discussion of “anti-aging health products.” Exp Gerontol. 2002;37(8–9):1137–40. https://pubmed.ncbi.nlm.nih.gov/12213565/

15

Caulfield T. Blinded by science. The Walrus. https://thewalrus.ca/blinded-by-science/. Published September 12, 2011. Updated April 19, 2020. Accessed January 22, 2023.; https://thewalrus.ca/blinded-by-science/

16

Winslow R. The radium water worked fine until his jaw fell off. Wall Street Journal. August 1, 1990:A1.; https://web.archive.org/web/20170216124222/ https://case.edu/affil/MeMA/MCA/11-20/1991-Nov.pdf

17

Turner L. The US direct-to-consumer marketplace for autologous stem cell interventions. Perspect Biol Med. 2018;61(1):7–24. https://pubmed.ncbi.nlm.nih.gov/29805145/

18

Murray IR, Chahla J, Frank RM, et al. Rogue stem cell clinics. Bone Joint J. 2020;102-B(2):148–54. https://pubmed.ncbi.nlm.nih.gov/32009438/

19

Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2002;286(6):92–5. https://pubmed.ncbi.nlm.nih.gov/12030096/

20

Epstein D. Anti-aging doctors sue professors. Inside Higher Ed. https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors. Published June 21, 2005. Accessed January 22, 2023.; https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors

21

MacGregor C, Petersen A, Parker C. Hyping the market for ‘anti-ageing’ in the news: from medical failure to success in self-transformation. BioSocieties. 2018;13(1):64–80. https://link.springer.com/article/10.1057/s41292-017-0052-5

22

The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf

23

Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/

24

Find an anti-aging product or service. World Health Network. https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi. Accessed January 31, 2023.; https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi

25

Zs-Nagy I. Is consensus in anti-aging medical intervention an elusive expectation or a realistic goal? Arch Gerontol Geriatr. 2009;48(3):271–5. https://pubmed.ncbi.nlm.nih.gov/19269702/

26

Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/

27

The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf

28

Walker RF. On the evolution of anti-aging medicine. Clin Interv Aging. 2006;1(3):201–3. https://pubmed.ncbi.nlm.nih.gov/18046871/

29

Rattan SIS. Anti-ageing strategies: prevention or therapy? EMBO Rep. 2005;6(Suppl 1):S25–9. https://pubmed.ncbi.nlm.nih.gov/15995657/

30

Rae MJ. All hype, no hope? Excessive pessimism in the “anti-aging medicine” special sections. J Gerontol A Biol Sci Med Sci. 2005;60(2):139–40. https://academic.oup.com/biomedgerontology/article/60/2/139/563273

31

Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Retraction: cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. DOI: 10.1056/nejmoa2007621. N Engl J Med. 2020;382(26):2582. https://pubmed.ncbi.nlm.nih.gov/32501665/

32

Mehra MR, Ruschitzka F, Patel AN. Retraction – Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;395(10240):1820. https://pubmed.ncbi.nlm.nih.gov/32450107/

33

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

34

Berzlanovich AM, Keil W, Waldhoer T, Sim E, Fasching P, Fazeny-DBerzl B. Do centenarians die healthy? An autopsy study. J Gerontol A Biol Sci Med Sci. 2005;60(7):862–5. https://pubmed.ncbi.nlm.nih.gov/16079208/

35

Gessert CE, Elliott BA, Haller IV. Dying of old age: an examination of death certificates of Minnesota centenarians. J Am Geriatr Soc. 2002;50(9):1561–5. https://pubmed.ncbi.nlm.nih.gov/12383155/

36

Wilson DM, Cohen J, Birch S, et al. “No one dies of old age”: implications for research, practice, and policy. J Palliat Care. 2011;27(2):148–56. https://journals.sagepub.com/doi/10.1177/082585971102700211

37

Berzlanovich AM, Missliwetz J, Sim E, et al. Unexpected out-of-hospital deaths in persons aged 85 years or older: an autopsy study of 1886 patients. Am J Med. 2003;114(5):365–9. https://pubmed.ncbi.nlm.nih.gov/12714125/

38

John SM, Koelmeyer TD. The forensic pathology of nonagenarians and centenarians: do they die of old age? (The Auckland experience). Am J Forensic Med Pathol. 2001;22(2):150–4. https://pubmed.ncbi.nlm.nih.gov/11394748/

39

Blagosklonny MV. Answering the ultimate question “what is the proximal cause of aging?” Aging (Albany NY). 2012;4(12):861–77. https://pubmed.ncbi.nlm.nih.gov/23425777/

40

Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/

41

Writing Group Members, Roger VL, Go AS, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1): e2-e220. https://pubmed.ncbi.nlm.nih.gov/22179539/

42

Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief. 2021;(427):1–8. https://pubmed.ncbi.nlm.nih.gov/34978528/

43

Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/

44

Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. https://pubmed.ncbi.nlm.nih.gov/30340847/

45

Kaeberlein M. The biology of aging: citizen scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol. 2016;53(2):291–8. https://pubmed.ncbi.nlm.nih.gov/26077786/

46

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

47

Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/

48

Iyen B, Qureshi N, Weng S, et al. Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: a retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis. 2020;315:131–7. https://pubmed.ncbi.nlm.nih.gov/33187671/

49

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/

50

Jortveit J, Pripp AH, Langørgen J, Halvorsen S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart. 2020;106(18):1420–6. https://pubmed.ncbi.nlm.nih.gov/32111640/

51

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

52

Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016;31:80–92. https://pubmed.ncbi.nlm.nih.gov/27355990/

53

Olshansky SJ, Carnes BA, Cassel C. In search of Methuselah: estimating the upper limits to human longevity. Science. 1990;250(4981):634–40. https://pubmed.ncbi.nlm.nih.gov/2237414/

54

Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: the difficult path from bench to bedside. Med Res Rev. 2021;41(3):1676–700. https://pubmed.ncbi.nlm.nih.gov/33314257/

55

Olshansky SJ, Perry D, Miller RA, Butler RN. In pursuit of the longevity dividend. Scientist (Philadelphia, Pa). 2006;20(3):28–36. https://pubmed.ncbi.nlm.nih.gov/17986572/

56

Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY). 2018;10(11):3067–78. https://pubmed.ncbi.nlm.nih.gov/30448823/

57

De Winter G. Aging as disease. Med Health Care Philos. 2015;18(2):237–43. https://pubmed.ncbi.nlm.nih.gov/25240472/

58

Zhavoronkov A, Bhullar B. Classifying aging as a disease in the context of ICD-11. Front Genet. 2015;6:326. https://pubmed.ncbi.nlm.nih.gov/26583032/

59

Hodgson J. Consumer, drug firms vie in vitamins. Wall Street Journal. https://www.wsj.com/articles/SB10001424127887323401904578155050445302398. Published December 2, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10001424127887323401904578155050445302398

60

Davis B. The link between Big Pharma and the supplement industry. Elsevier: Pharma R&D Today. https://web.archive.org/web/20220930062808/ https:/pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/. Published July 28th, 2017. Accessed February 10, 2023.; https://web.archive.org/web/20220930062808/ https://pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/

61

Направление, сформированное на стыке косметологии и фармакологии. – Примеч. ред.

62

Martin KI, Glaser DA. Cosmeceuticals: the new medicine of beauty. Mo Med. 2011;108(1):60–3. https://pubmed.ncbi.nlm.nih.gov/21462614/

63

Exuviance. Johnson & Johnson. https://www.jnj.com/exuviance. Accessed January 22, 2023.; https://www.jnj.com/exuviance

64

Spencer M. Coca-Cola, Sanofi in beauty venture. Wall Street Journal. https://www.wsj.com/articles/SB10000872396390443854204578060662301872612. Published October 16, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10000872396390443854204578060662301872612

65

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

66

Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2016;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/

67

Eissenberg JC. Hungering for immortality. Mo Med. 2018;115(1):12–7. https://pubmed.ncbi.nlm.nih.gov/30228670/

68

Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/

69

Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/

70

Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430–9. https://pubmed.ncbi.nlm.nih.gov/21402176/

71

Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43. https://pubmed.ncbi.nlm.nih.gov/22579043/

72

Smith-Uffen MES, Johnson SB, Martin AJ, et al. Estimating survival in advanced cancer: a comparison of estimates made by oncologists and patients. Support Care Cancer. 2020;28(7):3399–407. https://pubmed.ncbi.nlm.nih.gov/31781946/

73

Hole B, Salem J. How long do patients with chronic disease expect to live? A systematic review of the literature. BMJ Open. 2016;6(12):e012248. https://pubmed.ncbi.nlm.nih.gov/28039288/

74

Kaeberlein M. How healthy is the healthspan concept? GeroScience. 2018;40(4):361–4. https://pubmed.ncbi.nlm.nih.gov/30084059/

75

Около 400 метров. – Примеч. ред.

76

Crimmins EM, Beltrán-Sánchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci. 2011 Jan;66(1):75–86. https://pubmed.ncbi.nlm.nih.gov/21135070/

77

de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/

78

Хуан Понсе де Леон (1460–1521) – испанский конкистадор, который основал первое европейское поселение на Пуэрто-Рико и во время поисков источника вечной молодости в 1513 году первым из европейцев высадился на берега Флориды. – Примеч. ред.

79

Furrer R, Handschin C. Lifestyle vs. pharmacological interventions for healthy aging. Aging (Albany NY). 2020;12(1):5–7. https://pubmed.ncbi.nlm.nih.gov/31937689/

80

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

81

de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/

82

Kirkwood T. Why can’t we live forever? Sci Am. 2010;303(3):42–9. https://pubmed.ncbi.nlm.nih.gov/20812478/

83

Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/

84

Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. https://pubmed.ncbi.nlm.nih.gov/19915731/

85

Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/

86

Finlay BB, Pettersson S, Melby MK, Bosch TCG. The microbiome mediates environmental effects on aging. BioEssays. 2019;41(10):1800257. https://pubmed.ncbi.nlm.nih.gov/31157928/

87

Hayflick L. “Anti-aging” is an oxymoron. J Gerontol A Biol Sci Med Sci. 2004;59(6):B573–8. https://pubmed.ncbi.nlm.nih.gov/15215267/

88

Underwood M, Bartlett HP, Hall WD. Professional and personal attitudes of researchers in ageing towards life extension. Biogerontology. 2009;10(1):73–81. https://pubmed.ncbi.nlm.nih.gov/18516699/

89

de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/

90

Richmond CR. Population exposure from the fuel cycle: review and future direction. University of North Texas Libraries Government Documents Department. https://digital.library.unt.edu/ark:/67531/metadc1086292/. Published January 1, 1987. Accessed November 28, 2022.; https://digital.library.unt.edu/ark:/67531/metadc1086292/

91

de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/

92

Thomson W. Kelvin on science: British lord tells his hopes for wireless telegraphy. The Newark Advocate. https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html. Published April 26, 1902. Accessed October 24, 2022.; https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html

93

Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13–22. https://pubmed.ncbi.nlm.nih.gov/17996009/

94

Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412. https://pubmed.ncbi.nlm.nih.gov/11719795/

95

Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7. https://pubmed.ncbi.nlm.nih.gov/8001743/

96

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

97

Campbell S. Will biotechnology stop aging? IEEE Pulse. 2019;10(2):3–7. https://pubmed.ncbi.nlm.nih.gov/31021750/

98

Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/

99

de Grey ADNJ. Escape velocity: why the prospect of extreme human life extension matters now. PLoS Biol. 2004;2(6):e187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423155/

100

Kurzweil R, Grossman T. Fantastic voyage: live long enough to live forever. The science behind radical life extension questions and answers. Stud Health Technol Inform. 2009;149:187–94. https://pubmed.ncbi.nlm.nih.gov/19745481/

101

Raghavachari N. The impact of apolipoprotein E genetic variability in health and life span. J Gerontol A Biol Sci Med Sci. 2020;75(10):1855–7. https://pubmed.ncbi.nlm.nih.gov/32789475/

102

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

103

Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/

104

Steves CJ, Spector TD, Jackson SHD. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41(5):581–6. https://pubmed.ncbi.nlm.nih.gov/22826292/

105

Kirkwood T. How can we live forever? BMJ. 1996;313(7072):1571. https://pubmed.ncbi.nlm.nih.gov/8990987/

106

Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/

107

Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/

108

Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97(3):319–23. https://link.springer.com/article/10.1007/bf02185763

109

Skytthe A, Pedersen NL, Kaprio J, et al. Longevity studies in GenomEUtwin. Twin Res. 2003;6(5):448–54. https://pubmed.ncbi.nlm.nih.gov/14624729/

110

Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/

111

Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/

112

Search results: “the hallmarks of aging.” WebofScience.com. Accessed February 15, 2023.; https://www.webofscience.com/wos/woscc/summary/55559f9d-7ef6-429d-98f8-f41bc4c102d7-84135d71/relevance/1

113

Levine M, Crimmins E. Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS ONE. 2014;9(2):e87403. https://pubmed.ncbi.nlm.nih.gov/24520332/

114

Devi AS, Thokchom S, Devi AM. Children living with Progeria. Nurs Care Open Access J. 2017;3(4):275–8. https://medcraveonline.com/NCOAJ/children-living-with-progeria.html

115

Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford progeria syndrome: a premature aging disease. Mol Neurobiol. 2018;55(5):4417–27. https://pubmed.ncbi.nlm.nih.gov/28660486/

116

Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A Biol Sci Med Sci. 2014;69(12):1448–61. https://pubmed.ncbi.nlm.nih.gov/24347613/

117

Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: lesson from model organisms. Genes (Basel). 2019;10(7):518. https://pubmed.ncbi.nlm.nih.gov/31324014/

118

Концепция проведения научных исследований с привлечением широкого круга добровольцев-любителей (неспециалистов). – Примеч. ред.

119

Имя Мафусаила, прожившего 960 лет, стало синонимом долгожительства. «Собаками Мафусаила» традиционно называют собак-долгожителей. – Примеч. ред.

120

Jónás D, Sándor S, Tátrai K, Egyed B, Kubinyi E. A preliminary study to investigate the genetic background of longevity based on whole-genome sequence data of two Methuselah dogs. Front Genet. 2020;11:315. https://pubmed.ncbi.nlm.nih.gov/32373156/

121

Kaeberlein M, Creevy KE, Promislow DEL. The Dog Aging Project: translational geroscience in companion animals. Mamm Genome. 2016;27(7–8):279–88. https://pubmed.ncbi.nlm.nih.gov/27143112/

122

Pitt JN, Kaeberlein M. Why is aging conserved and what can we do about it? PLoS Biol. 2015;13(4):e1002131. https://pubmed.ncbi.nlm.nih.gov/25923592/

123

López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/

124

Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase – the fat controller of the energy railroad. Can J Physiol Pharmacol. 2006;84(7):655–65. https://pubmed.ncbi.nlm.nih.gov/16998529/

125

Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41. https://pubmed.ncbi.nlm.nih.gov/22186033/

126

Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol. 2018;122:69–79. https://pubmed.ncbi.nlm.nih.gov/30290216/

127

Jiang S, Li T, Yang Z, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://pubmed.ncbi.nlm.nih.gov/28709692/

128

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

129

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

130

Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev. 2016;28:15–26. https://pubmed.ncbi.nlm.nih.gov/27060201/

131

Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1865–75. https://pubmed.ncbi.nlm.nih.gov/31109453/

132

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

133

Mair W, Morantte I, Rodrigues APC, et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature. 2011;470(7334):404–8. https://pubmed.ncbi.nlm.nih.gov/21331044/

134

Sokolov SS, Severin FF. Manipulating cellular energetics to slow aging of tissues and organs. Biochemistry (Mosc). 2020;85(6):651–9. https://pubmed.ncbi.nlm.nih.gov/32586228/

135

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

136

Миметики – это лекарственные вещества, биохимически имитирующие естественное синтезируемое в организме вещество или вызывающие в организме изменения, сходные с теми, которые проявляются под действием какого-либо внешнего фактора. – Примеч. ред.

137

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

138

Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7. https://pubmed.ncbi.nlm.nih.gov/11334434/

139

Kola B, Grossman AB, Korbonits M. The role of AMP-activated protein kinase in obesity. Front Horm Res. 2008;36:198–211. https://pubmed.ncbi.nlm.nih.gov/18230904/

140

Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15. https://pubmed.ncbi.nlm.nih.gov/18674809/

141

Benkimoun P. Police find range of drugs after trawling bins used by Tour de France cyclists. BMJ. 2009;339:b4201. https://pubmed.ncbi.nlm.nih.gov/19825964/

142

Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/

143

Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/

144

Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next? J Physiol. 2021;599(3):791–802. https://pubmed.ncbi.nlm.nih.gov/31749163/

145

López-Lluch G, Santos-Ocaña C, Sánchez-Alcázar JA, et al. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology. 2015;16(5):599–620. https://pubmed.ncbi.nlm.nih.gov/26105157/

146

Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. https://pubmed.ncbi.nlm.nih.gov/31667999/

147

Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014;2:936–44. https://pubmed.ncbi.nlm.nih.gov/25180170/

148

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

149

Gonzalez-Freire M, de Cabo R, Bernier M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42. https://pubmed.ncbi.nlm.nih.gov/25995290/

150

Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY). 2014;6(4):296–310. https://pubmed.ncbi.nlm.nih.gov/24799450/

151

Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/

152

Corbisier P, Remacle J. Influence of the energetic pattern of mitochondria in cell ageing. Mech Ageing Dev. 1993;71(1):47–58. https://pubmed.ncbi.nlm.nih.gov/8309283/

153

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

154

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

155

Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. https://pubmed.ncbi.nlm.nih.gov/32679729/

156

Agency for Healthcare Research and Quality (AHRQ). Medical Expenditure Panel Survey (MEPS) 2013–2019. ClinCalc DrugStats Database version 2021.10. https://clincalc.com/DrugStats/. Accessed May 22, 2023.; https://clincalc.com/DrugStats/

157

Inzucchi SE, Fonseca V. Dethroning the king?: the future of metformin as first line therapy in type 2 diabetes. J Diabetes Complications. 2019;33(6):462–4. https://pubmed.ncbi.nlm.nih.gov/31003925/

158

Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. https://pubmed.ncbi.nlm.nih.gov/28802803/

159

Glucophage® / Glucophage® XR: Response to FDA Comments of 10 12 00. U.S. Food & Drug Administration: Drugs@FDA. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202. Accessed April 25, 2021.; https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202

160

Braun B, Eze P, Stephens BR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33(1):61–7. https://pubmed.ncbi.nlm.nih.gov/18347654/

161

Walton RG, Dungan CM, Long DE, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial [published correction appears in Aging Cell. 2020;19(3):e13098]. Aging Cell. 2019;18(6):e13039. https://pubmed.ncbi.nlm.nih.gov/31557380/

162

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

163

Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://pubmed.ncbi.nlm.nih.gov/11832527/

164

Iannello S, Camuto M, Cavaleri A, et al. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids. Diabetes Obes Metab. 2004;6(1):8–15. https://pubmed.ncbi.nlm.nih.gov/14686957/

165

Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15. https://pubmed.ncbi.nlm.nih.gov/21478880/

166

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/

167

Fatima S, Hu X, Gong RH, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76(13):2547–57. https://pubmed.ncbi.nlm.nih.gov/30968170/

168

Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

169

Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765–78. https://pubmed.ncbi.nlm.nih.gov/26027904/

170

Wang XJ, Malhi H. Nonalcoholic fatty liver disease. Ann Intern Med. 2018;169(9):ITC65–80. https://pubmed.ncbi.nlm.nih.gov/30398639/

171

Hydes T, Alam U, Cuthbertson DJ. The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD): too much fat, too much carbohydrate, or just too many calories? Front Nutr. 2021;8:640557. https://pubmed.ncbi.nlm.nih.gov/33665203/

172

Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

173

Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

174

Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

175

Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43(5):1134–41. https://pubmed.ncbi.nlm.nih.gov/32165444/

176

Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/

177

Wu Y, Song P, Zhang W, et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med. 2015;21(4):373–82. https://pubmed.ncbi.nlm.nih.gov/25799226/

178

Martínez de Morentin PB, Whittle AJ, Fernø J, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61(4):807–17. https://pubmed.ncbi.nlm.nih.gov/22315316/

179

Ferguson SG, Shiffman S, Rohay JM, Gitchell JG, Garvey AJ. Effect of compliance with nicotine gum dosing on weight gained during a quit attempt. Addiction. 2011;106(3):651–6. https://pubmed.ncbi.nlm.nih.gov/21182551/

180

Novak CM, Gavini CK. Smokeless weight loss. Diabetes. 2012;61(4):776–7. https://pubmed.ncbi.nlm.nih.gov/22442297/

181

Hadi A, Arab A, Ghaedi E, Rafie N, Miraghajani M, Kafeshani M. Barberry (Berberis vulgaris L.) is a safe approach for management of lipid parameters: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2019;43:117–24. https://pubmed.ncbi.nlm.nih.gov/30935518/

182

Fouladi RF. Aqueous extract of dried fruit of Berberis vulgaris L. in acne vulgaris, a clinical trial. J Diet Suppl. 2012;9(4):253–61. https://pubmed.ncbi.nlm.nih.gov/23038982/

183

Emamat H, Asadian S, Zahedmehr A, Ghanavati M, Nasrollahzadeh J. The effect of barberry (Berberis vulgaris) consumption on flow-mediated dilation and inflammatory biomarkers in patients with hypertension: a randomized controlled trial [published online ahead of print, 2020 Dec 22]. Phytother Res. 2020;10.1002/ptr.7000. https://pubmed.ncbi.nlm.nih.gov/33350540/

184

Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/

185

McCarty MF. AMPK activation – protean potential for boosting healthspan. Age (Dordr). 2014;36(2):641–63. https://pubmed.ncbi.nlm.nih.gov/24248330/

186

Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/

187

Funk RS, Singh RK, Winefield RD, et al. Variability in potency among commercial preparations of berberine. J Diet Suppl. 2018;15(3):343–51. https://pubmed.ncbi.nlm.nih.gov/28792254/

188

Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci. 2007;20(1):83–92. https://pubmed.ncbi.nlm.nih.gov/17337435/

189

Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/

190

Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. Daru. 2020;28(2):779–87. https://pubmed.ncbi.nlm.nih.gov/33140312/

191

Mousavi SM, Sheikhi A, Varkaneh HK, Zarezadeh M, Rahmani J, Milajerdi A. Effect of Nigella sativa supplementation on obesity indices: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2018;38:48–57. https://pubmed.ncbi.nlm.nih.gov/29857879/

192

Sahebkar A, Beccuti G, Simental-Mendía LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;106:37–50. https://pubmed.ncbi.nlm.nih.gov/26875640/

193

Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens. 2016;34(11):2127–35. https://pubmed.ncbi.nlm.nih.gov/27512971/

194

Daryabeygi-Khotbehsara R, Golzarand M, Ghaffari MP, Djafarian K. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: a systematic review and meta-analysis. Complement Ther Med. 2017;35:6–13. https://pubmed.ncbi.nlm.nih.gov/29154069/

195

Agricultural Research Service, United States Department of Agriculture. Sweet sunnah, whole black seeds nigella sativa. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients. Published April 1, 2019. Accessed May 8, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients

196

Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Food Biochem. 2021;45(4):e13625. https://pubmed.ncbi.nlm.nih.gov/33559935/

197

He T, Xu X. The influence of Nigella sativa for asthma control: a meta-analysis. Am J Emerg Med. 2020;38(3):589–93. https://pubmed.ncbi.nlm.nih.gov/31892440/

198

Khabbazi A, Javadivala Z, Seyedsadjadi N, Malek Mahdavi A. A systematic review of the potential effects of Nigella sativa on rheumatoid arthritis. Planta Med. 2020;86(7):457–69. https://pubmed.ncbi.nlm.nih.gov/32274788/

199

Tajmiri S, Abbasalizad Farhangi M, Dehghan P. Nigella Sativa treatment and serum concentrations of thyroid hormones, transforming growth factor ß (TGF-ß) and interleukin 23 (IL-23) in patients with Hashimoto’s thyroiditis. Eur J Integr Med. 2016;8(4):576–80. https://www.sciencedirect.com/science/article/abs/pii/S1876382016300208

200

Ardakani Movaghati MR, Yousefi M, Saghebi SA, Sadeghi Vazin M, Iraji A, Mosavat SH. Efficacy of black seed (Nigella sativa L.) on kidney stone dissolution: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2019;33(5):1404–12. https://pubmed.ncbi.nlm.nih.gov/30873671/

201

Latiff LA, Parhizkar S, Dollah MA, Hassan ST. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci. 2014;17(12):980–5. https://pubmed.ncbi.nlm.nih.gov/25859301/

202

Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. J Ethnopharmacol. 2019;233:123–30. https://pubmed.ncbi.nlm.nih.gov/30593890/

203

Amos A, Khiatah B. Mechanisms of action of nutritionally rich Hibiscus sabdariffa’s therapeutic uses in major common chronic diseases: a literature review [published online ahead of print, 2021 Jan 28]. J Am Coll Nutr. 2021;1–8. https://pubmed.ncbi.nlm.nih.gov/33507846/

204

Soleimani AR, Akbari H, Soleimani S, Beladi Mousavi SS, Tamadon MR. Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. J Renal Inj Prev. 2015;4(3):73–9. https://pubmed.ncbi.nlm.nih.gov/26468478/

205

Nwachukwu DC, Aneke EI, Nwachukwu NZ, Azubike N, Obika LF. Does consumption of an aqueous extract of Hibscus sabdariffa affect renal function in subjects with mild to moderate hypertension? J Physiol Sci. 2017;67(1):227–34. https://pubmed.ncbi.nlm.nih.gov/27221151/

206

Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia. 2013;85:84–94. https://pubmed.ncbi.nlm.nih.gov/23333908/

207

Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: a systematic review and meta-analysis of randomized clinical trials. Food Res Int (Ottawa). 2020;130:108980. https://pubmed.ncbi.nlm.nih.gov/32156406/

208

Abubakar SM, Ukeyima MT, Spencer JPE, Lovegrove JA. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients. 2019;11(2):341. https://pubmed.ncbi.nlm.nih.gov/30764582/

209

Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734–9. https://pubmed.ncbi.nlm.nih.gov/24549255/

210

Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods. 2016;25:279–90. https://www.sciencedirect.com/science/article/abs/pii/S175646461630144X?via%3Dihub

211

Salim LZA, Mohan S, Othman R, et al. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules. 2013;18(9):11219–40. https://pubmed.ncbi.nlm.nih.gov/24036512/

212

Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/

213

Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/

214

Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/

215

Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81. https://pubmed.ncbi.nlm.nih.gov/27130687/

216

Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194–203. https://pubmed.ncbi.nlm.nih.gov/22750051/

217

Center for Food Safety and Applied Nutrition, Office of Regulatory Affairs. CPG sec. 525.825 vinegar, definitions – adulteration with vinegar eels. United States Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels. Published March 1995. Accessed May 8, 2021.; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels

218

Park J, Kim J, Kim J, et al. Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: a double-blind, randomized, and placebo-controlled trial. J Funct Foods. 2014;8:274–81. https://www.sciencedirect.com/science/article/abs/pii/S1756464614001273

219

Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73(8):1837–43. https://pubmed.ncbi.nlm.nih.gov/19661687/

220

Johnston C, Quagliano S, White S. Vinegar ingestion at mealtime reduced fasting blood glucose concentrations in healthy adults at risk for type 2 diabetes. J Funct Foods. 2013;5(4):2007–11. https://www.sciencedirect.com/science/article/abs/pii/S1756464613001874

221

Mitrou P, Petsiou E, Papakonstantinou E, et al. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J Diabetes Res. 2015;2015:175204. https://pubmed.ncbi.nlm.nih.gov/26064976/

222

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

223

Abid M, Memon Z, Shaheen S, Ahmed F, Shaikh MZ, Agha F. Comparison of apple cider vinegar and metformin combination with metformin alone in newly diagnosed type 2 diabetic patients: a randomized controlled trial. Int J Med Res Health Sci. 2020;9(2):1–7. https://www.ijmrhs.com/abstract/comparison-of-apple-cider-vinegar-and-metformin-combination-with-metformin-alone-in-newly-diagnosed-type-2-diabetic-pati-44684.html

224

Sakakibara S, Murakami R, Takahashi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74(5):1055–61. https://pubmed.ncbi.nlm.nih.gov/20460711/

225

Beheshti Z, Chan YH, Nia HS, et al. Influence of apple cider vinegar on blood lipids. Life Sci J. 2012;9(4):2431–40. https://www.lifesciencesite.com/lsj/life0904/360_10755life0904_2431_2440.pdf

226

Chuang MH, Chiou SH, Huang CH, Yang WB, Wong CH. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorg Med Chem. 2009;17(22):7831–40. https://pubmed.ncbi.nlm.nih.gov/19837596/

227

Hu FB, Stampfer MJ, Manson JE, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69(5):890–7. https://pubmed.ncbi.nlm.nih.gov/10232627/

228

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

229

Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: health benefits with a focus on gut microbiota. Nutr Bull. 2020;45:294–308. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12448

230

Pritchard SE, Marciani L, Garsed KC, et al. Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil. 2014;26(1):124–30. https://pubmed.ncbi.nlm.nih.gov/24131490/

231

Tang R, Li L. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Can J Infect Dis Med Microbiol. 2021;2021:6632266. https://pubmed.ncbi.nlm.nih.gov/33488888/

232

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

233

Spiller G, ed. Topics in Dietary Fiber Research. Plenum Press; 1978. https://link.springer.com/book/10.1007/978-1-4684-2481-2

234

Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–16. https://pubmed.ncbi.nlm.nih.gov/9104571/

235

Usual nutrient intake from food and beverages, by gender and age: what we eat in America, NHANES 2015–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf. Published January 2021. Accessed December 25, 2022.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf

236

McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/

237

López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/

238

Morgunova GV, Klebanov AA. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity. Cell Biochem Funct. 2019;37(3):169–76. https://pubmed.ncbi.nlm.nih.gov/30895648/

239

Американская единица объема «чашка» (cup) равна 240 мл. – Примеч. ред.

240

There are many different types of autophagy, including chaperone-mediated autophagy and microautophagy. In this book, I’m referring to macroautophagy.

241

Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/

242

Levine B, Klionsky DJ. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. PNAS. 2017;114(2):201–5. https://pubmed.ncbi.nlm.nih.gov/28039434/

243

Vijayakumar K, Cho G. Autophagy: an evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem Funct. 2019;37(6):452–8. https://pubmed.ncbi.nlm.nih.gov/31318072/

244

Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol. 2010;29(4):127–32. https://pubmed.ncbi.nlm.nih.gov/20686325/

245

Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/

246

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

247

Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/

248

Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300. https://pubmed.ncbi.nlm.nih.gov/23939249/

249

Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet. 2020;139(3):277–90. https://pubmed.ncbi.nlm.nih.gov/31144030/

250

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

251

Meijer AJ. Autophagy in practice: stevia and leucine. Autophagy. 2019;15(12):2043. https://pubmed.ncbi.nlm.nih.gov/31455125/

252

Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids. 2015;47(10):2037–63. https://pubmed.ncbi.nlm.nih.gov/24880909/

253

Показатель физической работоспособности, определяет максимальное количество кислорода, которое может потреблять организм во время интенсивных упражнений. – Примеч. ред.

254

Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/

255

Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training – induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7):e13651. https://pubmed.ncbi.nlm.nih.gov/29626392/

256

Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/

257

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

258

Melnik BC. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes. 2012;3(3):38. https://pubmed.ncbi.nlm.nih.gov/22442749/

259

Rittig N, Bach E, Thomsen HH, et al. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without ß-hydroxy-ß-methylbutyrate (Hmb) during fasting-induced catabolism: a human randomized crossover trial. Clin Nutr. 2017;36(3):697–705. https://pubmed.ncbi.nlm.nih.gov/27265181/

260

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998–5006. https://pubmed.ncbi.nlm.nih.gov/12166997/

261

Song D, Xu C, Holck AL, Liu R. Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicol Environ Saf. 2021;208:111543. https://pubmed.ncbi.nlm.nih.gov/33396091/

262

Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003–2006. Environ Pollut. 2018;238:852–8. https://pubmed.ncbi.nlm.nih.gov/29627755/

263

Naruszewicz M, Zapolska-Downar D, Kosmider A, et al. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009;89(3):773–7. https://pubmed.ncbi.nlm.nih.gov/19158207/

264

Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/

265

Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/

266

Arnesen E, Huseby NE, Brenn T, Try K. The Tromsø Heart Study: distribution of, and determinants for, gamma-glutamyltransferase in a free-living population. Scand J Clin Lab Invest. 1986;46(1):63–70. https://pubmed.ncbi.nlm.nih.gov/2869572/

267

Ruhl CE, Everhart JE. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology. 2005;129(6):1928–36. https://pubmed.ncbi.nlm.nih.gov/16344061/

268

Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann Hepatol. 2021;20:100254. https://pubmed.ncbi.nlm.nih.gov/32920163/

269

Ray K. Caffeine is a potent stimulator of autophagy to reduce hepatic lipid content – a coffee for NAFLD? Nat Rev Gastroenterol Hepatol 2013;10:563. https://pubmed.ncbi.nlm.nih.gov/23982685/

270

Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366–80. https://pubmed.ncbi.nlm.nih.gov/23929677/

271

Czachor J, Milek M, Galiniak S, Stepien K, Dzugan M, Molon M. Coffee extends yeast chronological lifespan through antioxidant properties. Int J Mol Sci. 2020;21(24):9510. https://pubmed.ncbi.nlm.nih.gov/33327536/

272

Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan. 2012;1(1):9. https://pubmed.ncbi.nlm.nih.gov/24764514/

273

Pietrocola F, Malik SA, Mariño G, et al. Coffee induces autophagy in vivo. Cell Cycle. 2014;13(12):1987–94. https://pubmed.ncbi.nlm.nih.gov/24769862/

274

Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/

275

Известный слоган кофейного бренда Maxwell House. – Примеч. ред.

276

Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495–504. https://pubmed.ncbi.nlm.nih.gov/24102757/

277

Kanbay M, Siriopol D, Copur S, et al. Effect of coffee consumption on renal outcome: a systematic review and meta-analysis of clinical studies. J Ren Nutr. 2021;31(1):5–20. https://pubmed.ncbi.nlm.nih.gov/32958376/

278

Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. https://pubmed.ncbi.nlm.nih.gov/28826374/

279

Thomas DR, Hodges ID. Dietary research on coffee: improving adjustment for confounding. Curr Dev Nutr. 2020;4(nzz142). https://pubmed.ncbi.nlm.nih.gov/31938763/

280

Duregon E, Bernier M, de Cabo R. A glance back at the journal of gerontology – coffee, dietary interventions and life span. J Geront A Biol Sci Med Sci. 2020;75(11):2029–30. https://pubmed.ncbi.nlm.nih.gov/33057720/

281

Li Q, Liu Y, Sun X, et al. Caffeinated and decaffeinated coffee consumption and risk of all-cause mortality: a dose – response meta-analysis of cohort studies. J Hum Nut Diet. 2019;32(3):279–87. https://pubmed.ncbi.nlm.nih.gov/30786114/

282

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012 Dec 14;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

283

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

284

Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178(8):1086. https://pubmed.ncbi.nlm.nih.gov/29971434/

285

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

286

Gao LJ, Dai Y, Li XQ, Meng S, Zhong ZQ, Xu SJ. Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H2O2. Exp Ther Med. 2021;21(5):426. https://pubmed.ncbi.nlm.nih.gov/33747165/

287

Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/

288

Mills CE, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JPE. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem. 2013;141(4):3335–40. https://pubmed.ncbi.nlm.nih.gov/23993490/

289

Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/

290

Corrêa TAF, Monteiro MP, Mendes TMN, et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr. 2012;67(3):277–82. https://pubmed.ncbi.nlm.nih.gov/22766993/

291

DiBaise JK. A randomized, double-blind comparison of two different coffee-roasting processes on development of heartburn and dyspepsia in coffee-sensitive individuals. Dig Dis Sci. 2003;48(4):652–6. https://pubmed.ncbi.nlm.nih.gov/12741451/

292

Liu J, Wang Q, Zhang H, Yu D, Jin S, Ren F. Interaction of chlorogenic acid with milk proteins analyzed by spectroscopic and modeling methods. Spectrosc Lett. 2016;49(1):44–50. https://www.tandfonline.com/doi/full/10.1080/00387010.2015.1066826

293

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

294

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

295

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

296

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

297

Budryn G, Palecz B, Rachwal-Rosiak D, et al. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in ß-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem. 2015;168:276–87. https://pubmed.ncbi.nlm.nih.gov/25172711/

298

Felberg I, Farah A, Monteiro M, et al. Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods. 2015;19:688–99. https://www.sciencedirect.com/science/article/pii/S1756464615004910?via%3Dihub

299

Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr. 2020;60(5):760–79. https://pubmed.ncbi.nlm.nih.gov/30614247/

300

Tverdal A, Selmer R, Cohen JM, Thelle DS. Coffee consumption and mortality from cardiovascular diseases and total mortality: does the brewing method matter? Eur J Prev Cardiol. 2020;27(18):1986–93. https://pubmed.ncbi.nlm.nih.gov/32320635/

301

Aubin HJ, Luquiens A, Berlin I. Letter by Aubin et al regarding article, “Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts.” Circulation. 2016;133(20):e659. https://pubmed.ncbi.nlm.nih.gov/27185028/

302

Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/

303

Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011;119(7):989–96. https://pubmed.ncbi.nlm.nih.gov/21367689/

304

Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/

305

Li M, Wang M, Guo W, Wang J, Sun X. The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):435–42. https://pubmed.ncbi.nlm.nih.gov/20706731/

306

Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49(5):1924–31. https://pubmed.ncbi.nlm.nih.gov/18263806/

307

Gleason JL, Richter HE, Redden DT, Goode PS, Burgio KL, Markland AD. Caffeine and urinary incontinence in US women. Int Urogynecol J. 2013;24(2):295–302. https://pubmed.ncbi.nlm.nih.gov/22699886/

308

Davis NJ, Vaughan CP, Johnson TM, et al. Caffeine intake and its association with urinary incontinence in United States men: results from National Health and Nutrition Examination Surveys 2005–2006 and 2007–2008. J Urol. 2013;189(6):2170–4. https://pubmed.ncbi.nlm.nih.gov/23276513/

309

Bonilha L, Li LM. Heavy coffee drinking and epilepsy. Seizure. 2004;13(4):284–5. https://pubmed.ncbi.nlm.nih.gov/15121141/

310

Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL. Food and gastroesophageal reflux disease. Curr Med Chem. 2019;26(19):3497–511. https://pubmed.ncbi.nlm.nih.gov/28521699/

311

Lloret-Linares C, Lafuente-Lafuente C, Chassany O, et al. Does a single cup of coffee at dinner alter the sleep? A controlled cross-over randomised trial in real-life conditions. Nutr Diet. 2012;69(4):250–5. https://onlinelibrary.wiley.com/doi/10.1111/j.1747–0080.2012.01601.x

312

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

313

Son H, Song HJ, Seo HJ, Lee H, Choi SM, Lee S. The safety and effectiveness of self-administered coffee enema: a systematic review of case reports. Medicine. 2020;99(36):e21998. https://pubmed.ncbi.nlm.nih.gov/32899046/

314

Dirks-Naylor AJ. The benefits of coffee on skeletal muscle. Life Sci. 2015;143:182–6. https://pubmed.ncbi.nlm.nih.gov/26546720/

315

Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176(1):1–29. https://pubmed.ncbi.nlm.nih.gov/15448977/

316

O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol. 2013;62(12):1043–51. https://pubmed.ncbi.nlm.nih.gov/23871889/

317

Mendez JD. The other legacy of Antonie van Leeuwenhoek: the polyamines. J Clin Mol Endocrinol. 2017;02(01):e107. https://clinical-and-molecular-endocrinology.imedpub.com/the-other-legacy-of-antonie-van-leeuwenhoek-the-polyamines.php?aid=19400

318

Bachrach U. The early history of polyamine research. Plant Physiol Biochem. 2010;48(7):490–5. https://pubmed.ncbi.nlm.nih.gov/20219382/

319

Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res. 2016;112:99–118. https://pubmed.ncbi.nlm.nih.gov/27015893/

320

Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/

321

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

322

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

323

Kaeberlein M. Spermidine surprise for a long life. Nat Cell Biol. 2009;11(11):1277–8. https://pubmed.ncbi.nlm.nih.gov/19884883/

324

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

325

Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011;3(8):716–32. https://pubmed.ncbi.nlm.nih.gov/21869457/

326

Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol. 2009;44(11):727–32. https://pubmed.ncbi.nlm.nih.gov/19735716/

327

Yue F, Li W, Zou J, et al. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating map1s-mediated autophagy. Cancer Res. 2017;77(11):2938–51. https://pubmed.ncbi.nlm.nih.gov/28386016/

328

Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. https://pubmed.ncbi.nlm.nih.gov/19801973/

329

Rudman D, Kutner MH, Chawla RK, Goldsmith MA, Blackston RD, Bain R. Serum and urine polyamines in normal and in short children. J Clin Invest. 1979;64(6):1661–8. https://pubmed.ncbi.nlm.nih.gov/500832/

330

Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/

331

Piore A. Can blood from young people slow aging? Silicon Valley bets it will. Newsweek. April 7, 2021. https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html. Accessed December 25, 2022.; https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html

332

Viltard M, Durand S, Pérez-Lanzón M, et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY). 2019;11(14):4783–800. https://pubmed.ncbi.nlm.nih.gov/31346149/

333

Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/

334

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

335

Flurkey K, Currer JM, Harrison DE. 2007. The Mouse in Aging Research. In The Mouse in Biomedical Research 2nd Edition. Fox JG, et al, editors. American College Laboratory Animal Medicine (Elsevier), Burlington, MA. pp. 637–72.; https://www.sciencedirect.com/science/article/abs/pii/B9780123694546500741?via%3Dihub

336

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

337

Filfan M, Olaru A, Udristoiu I, et al. Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience. 2020;42(3):937–49. https://pubmed.ncbi.nlm.nih.gov/32285289/

338

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

339

Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/

340

Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Derm Pract Concept. Published online October 31, 2017:17–21.; https://pubmed.ncbi.nlm.nih.gov/29214104/

341

Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/

342

Zhang H, Alsaleh G, Feltham J, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019;76(1):110–25.e9. https://pubmed.ncbi.nlm.nih.gov/31474573/

343

Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/

344

de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/

345

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

346

Fetterman JL, Holbrook M, Flint N, et al. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis. 2016;247:207–17. https://pubmed.ncbi.nlm.nih.gov/26926601/

347

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

348

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

349

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

350

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

351

Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/

352

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

353

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

354

Madeo F, Hofer SJ, Pendl T, et al. Nutritional aspects of spermidine. Annu Rev Nutr. 2020;40(1):135–59. https://pubmed.ncbi.nlm.nih.gov/32634331/

355

Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/

356

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

357

Еще раз напомним, что американская единица объема «чашка» (cup) равна 240 мл: здесь и далее во всех рецептах. – Примеч. ред.

358

Ali MA, Poortvliet E, Strömberg R, Yngve A. Polyamines: total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (Sno). Food Nutr Res. 2011;55(1):5455. https://pubmed.ncbi.nlm.nih.gov/21249160/

359

Varghese N, Werner S, Grimm A, Eckert A. Dietary mitophagy enhancer: a strategy for healthy brain aging? Antioxidants (Basel). 2020;9(10). https://pubmed.ncbi.nlm.nih.gov/33003315/

360

Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/

361

Agricultural Research Service, United States Department of Agriculture. Dill weed, fresh. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients. Published April 1, 2019. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients

362

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

363

Agricultural Research Service, United States Department of Agriculture. Potato, baked, NFS. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients

364

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nut Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

365

Agricultural Research Service, United States Department of Agriculture. Garlic, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=garlic&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103354/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

366

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

367

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

368

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

369

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

370

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

371

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

372

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

373

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

374

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

375

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

376

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

377

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

378

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

379

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

380

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

381

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

382

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

383

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

384

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

385

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

386

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

387

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

388

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

389

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

390

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

391

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

392

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

393

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

394

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

395

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

396

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

397

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

398

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

399

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

400

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

401

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

402

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

403

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

404

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

405

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

406

Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/

407

Buyukuslu N, Hizli H, Esin K, Garipagaoglu M. A cross-sectional study: nutritional polyamines in frequently consumed foods of the Turkish population. Foods. 2014;3(4):541–57. https://pubmed.ncbi.nlm.nih.gov/28234336/

408

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

409

Reis GCL, Dala-Paula BM, Tavano OL, Guidi LR, Godoy HT, Gloria MBA. In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom. Food Res Int. 2020;137:109616. https://pubmed.ncbi.nlm.nih.gov/33233206/

410

Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/

411

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

412

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

413

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

414

Agricultural Research Service, United States Department of Agriculture. Mangos, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients. Published April 2018. Accessed February 10, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients

415

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

416

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

417

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

418

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

419

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

420

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

421

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

422

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

423

Konakovsky V, Focke M, Hoffmann-Sommergruber K, et al. Levels of histamine and other biogenic amines in high-quality red wines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(4):408–16. https://pubmed.ncbi.nlm.nih.gov/21337238/

424

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

425

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

426

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

427

Agricultural Research Service, United States Department of Agriculture. Lettuce, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=lettuce&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103358/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

428

Fukushima T, Tanaka K, Ushijima K, Moriyama M. Retrospective study of preventive effect of maize on mortality from Parkinson’s disease in Japan. Asia Pac J Clin Nutr. 2003;12(4):447–50. https://pubmed.ncbi.nlm.nih.gov/14672869/

429

McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/

430

Rossetto MRM, Vianello F, Saeki MJ, Lima GPP. Polyamines in conventional and organic vegetables exposed to exogenous ethylene. Food Chem. 2015;188:218–24. https://pubmed.ncbi.nlm.nih.gov/26041185/

431

Kalac¿ P, Krausová P. A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90(1–2):219–30. https://www.sciencedirect.com/science/article/abs/pii/S0308814604002961?via%3Dihub

432

Kozová M, Kalac P, Pelikánová T. Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food Chem. 2009;116(2):419–25. https://www.sciencedirect.com/science/article/abs/pii/S0308814609002441?via%3Dihub

433

.

434

Binh PNT, Soda K, Kawakami M. Gross domestic product and dietary pattern among 49 western countries with a focus on polyamine intake. Health. 2010;02(11):1327–34. https://www.scirp.org/journal/paperinformation.aspx?paperid=3116

435

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

436

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

437

Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac Fish. Published online March 16, 2021. https://www.sciencedirect.com/science/article/pii/S2468550X21000198. Accessed December 25, 2022.; https://www.sciencedirect.com/science/article/pii/S2468550X21000198

438

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

439

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

440

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

441

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

442

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

443

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

444

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

445

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

446

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

447

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

448

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

449

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

450

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

451

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

452

MacMillen H. Could consuming semen make you live longer? Cosmopolitan. https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553–20161201?ref=feed_1. Published online November 17, 2016. Accessed May 19, 2021.; https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553-20161201?ref=feed_1

453

Scott E. Drinking semen might help you live longer. Metro.co.uk. https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/. Published November 18, 2016. Accessed April 29, 2021.; https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/

454

Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl. 2005;26(4):459–69. https://pubmed.ncbi.nlm.nih.gov/15955884/

455

Fair WR, Clark RB, Wehner N. A correlation of seminal polyamine levels and semen analysis in the human. Fertil Steril. 1972;23(1):38–42. https://pubmed.ncbi.nlm.nih.gov/5008948/

456

Definition of testament. Merriam-Webster.com. https://www.merriam-webster.com/dictionary/testament. Accessed February 11, 2023.; https://www.merriam-webster.com/dictionary/testament

457

Agricultural Research Service, United States Department of Agriculture. Wheat germ, plain. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients

458

Liaqat H, Jeong E, Kim KJ, Kim JY. Effect of wheat germ on metabolic markers: a systematic review and meta-analysis of randomized controlled trials. Food Sci Biotechnol. 2020;29(6):739–49. https://pubmed.ncbi.nlm.nih.gov/32523783/

459

McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/

460

Cara L, Borel P, Armand M, et al. Plasma lipid lowering effects of wheat germ in hypercholesterolemic subjects. Plant Foods Hum Nutr. 1991;41(2):135–50. https://pubmed.ncbi.nlm.nih.gov/1649472/

461

Moreira-Rosário A, Pinheiro H, Marques C, Teixeira JA, Calhau C, Azevedo LF. Does intake of bread supplemented with wheat germ have a preventive role on cardiovascular disease risk markers in healthy volunteers? A randomised, controlled, crossover trial. BMJ Open. 2019;9(1):e023662. https://pubmed.ncbi.nlm.nih.gov/30659039/

462

Atallahi M, Amir Ali Akbari S, Mojab F, Alavi Majd H. Effects of wheat germ extract on the severity and systemic symptoms of primary dysmenorrhea: a randomized controlled clinical trial. Iran Red Crescent Med J. 2014;16(8). https://pubmed.ncbi.nlm.nih.gov/25389490/

463

Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr. 2013;109 Suppl 2:S81–5. https://pubmed.ncbi.nlm.nih.gov/23360884/

464

Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol. 2001;13(9):1021–5. https://pubmed.ncbi.nlm.nih.gov/11564949/

465

Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/

466

Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/

467

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

468

Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(2):227–34. https://pubmed.ncbi.nlm.nih.gov/19703328/

469

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

470

Matsumoto M, Aranami A, Ishige A, Watanabe K, Benno Y. LKM512 yogurt consumption improves the intestinal environment and induces the T-helper type 1 cytokine in adult patients with intractable atopic dermatitis. Clin Exp Allergy. 2007;37(3):358–70. https://pubmed.ncbi.nlm.nih.gov/17359386/

471

Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/

472

Kibe R, Kurihara S, Sakai Y, et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep. 2014;4(1):4548. https://pubmed.ncbi.nlm.nih.gov/24686447/

473

Matsumoto M, Kitada Y, Naito Y. Endothelial function is improved by inducing microbial polyamine production in the gut: a randomized placebo-controlled trial. Nutrients. 2019;11(5). https://pubmed.ncbi.nlm.nih.gov/31137855/

474

Matsumoto M. Prevention of atherosclerosis by the induction of microbial polyamine production in the intestinal lumen. Biol Pharm Bull. 2020;43(2):221–9. https://pubmed.ncbi.nlm.nih.gov/32009110/

475

Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/

476

de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/

477

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

478

Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/

479

Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol. 2020;10. https://pubmed.ncbi.nlm.nih.gov/33117715/

480

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

481

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

482

Barardo D, Thornton D, Thoppil H, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017;16(3):594–7. https://pubmed.ncbi.nlm.nih.gov/28299908/

483

DrugAge: database of ageing-related drugs. https://genomics.senescence.info/drugs/stats.php. Updated February 7, 2023. Accessed February 11, 2023.; https://genomics.senescence.info/drugs/stats.php

484

Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. https://pubmed.ncbi.nlm.nih.gov/32562114/

485

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

486

Larqué E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007;23(1):87–95. https://pubmed.ncbi.nlm.nih.gov/17113752/

487

Khandia R, Dadar M, Munjal A, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7):674. https://pubmed.ncbi.nlm.nih.gov/31277291/

488

Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.; https://pubmed.ncbi.nlm.nih.gov/13905658/

489

Zhang H, Simon AK. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy. 2020;16(1):181–2. https://pubmed.ncbi.nlm.nih.gov/31679458/

490

Luo J, Si H, Jia Z, Liu D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021;10(2):283. https://pubmed.ncbi.nlm.nih.gov/33668479/

491

Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch-Eur J Physiol. 2017;469(9):1051–9. https://pubmed.ncbi.nlm.nih.gov/28389776/

492

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

493

Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. https://pubmed.ncbi.nlm.nih.gov/29457783/

494

Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78(7):3333–54. https://pubmed.ncbi.nlm.nih.gov/33439271/

495

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

496

Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/

497

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

498

Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31. https://pubmed.ncbi.nlm.nih.gov/29054535/

499

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

500

de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/

501

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

502

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

503

Hofmann B. Young blood rejuvenates old bodies: a call for reflection when moving from mice to men. Transfus Med Hemother. 2018;45(1):67–71. https://pubmed.ncbi.nlm.nih.gov/29593463/

504

Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7. https://pubmed.ncbi.nlm.nih.gov/4507935/

505

Lavazza A, Garasic M. Vampires 2.0? The ethical quandaries of young blood infusion in the quest for eternal life. Med Health Care Philos. 2020;23(3):421–32. https://pubmed.ncbi.nlm.nih.gov/32447568/

506

Rebo J, Mehdipour M, Gathwala R, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7(1):13363. https://pubmed.ncbi.nlm.nih.gov/27874859/

507

Mehdipour M, Skinner C, Wong N, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12(10):8790–819. https://pubmed.ncbi.nlm.nih.gov/32474458/

508

Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. https://pubmed.ncbi.nlm.nih.gov/32715623/

509

Biller-Andorno N. Young blood for old hands? A recent anti-ageing trial prompts ethical questions. Swiss Med Wkly. 2016;146(3940):w14359. https://pubmed.ncbi.nlm.nih.gov/27684581/

510

Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082705/

511

Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16INK4a-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845101/

512

de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/

513

Chen X, Yi Z, Wong GT, et al. Is exercise a senolytic medicine? A systematic review. Aging Cell. 2021;20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811843/

514

Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17(3):e12746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946078/

515

Rusznyák S, Szent-Györgyi A. Vitamin P: flavonols as vitamins. Nature. 1936;138(3479):27. https://www.nature.com/articles/138027a0

516

Belinha I, Amorim MA, Rodrigues P, et al. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem. 2007;55(6):2446–51. https://pubmed.ncbi.nlm.nih.gov/17323973/

517

Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/

518

Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395/

519

Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/

520

Geng L, Liu Z, Wang S, et al. Low-dose quercetin positively regulates mouse healthspan. Protein Cell. 2019;10(10):770–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776572/

521

Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:1–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790550/

522

Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/

523

Mai F, Glomb MA. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem. 2013;61(11):2868–74. https://pubmed.ncbi.nlm.nih.gov/23473017/

524

Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/

525

Agricultural Research Service, United States Department of Agriculture. Onions, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/170000/nutrients. Published April 1, 2019. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients

526

Agricultural Research Service, United States Department of Agriculture. Onions, red, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/790577/nutrients. Published April 1, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients

527

Agricultural Research Service, United States Department of Agriculture. Apple, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients. Published October 30, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

528

Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/

529

Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci. 2019;30(5):555–72. https://pubmed.ncbi.nlm.nih.gov/30753166/

530

Vida RG, Fittler A, Somogyi-Végh A, Poór M. Dietary quercetin supplements: assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res. 2019;33(7):1912–20. https://pubmed.ncbi.nlm.nih.gov/31155780/

531

Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205. https://pubmed.ncbi.nlm.nih.gov/17698276/

532

Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796530/

533

Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267

534

Bondonno NP, Bondonno CP, Blekkenhorst LC, et al. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res. 2018;62(3). https://pubmed.ncbi.nlm.nih.gov/29086478/

535

Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://pubmed.ncbi.nlm.nih.gov/31940027/

536

Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://pubmed.ncbi.nlm.nih.gov/31017459/

537

Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71(9):1033–9. https://pubmed.ncbi.nlm.nih.gov/28537580/

538

Nakagawa T, Itoh M, Ohta K, et al. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport. 2016;27(9):671–6. https://pubmed.ncbi.nlm.nih.gov/27145228/

539

Nishimura M, Ohkawara T, Nakagawa T, et al. A randomized, double-blind, placebo-controlled study evaluating the effects of quercetin-rich onion on cognitive function in elderly subjects. FFHD. 2017;7(6):353–74. https://ffhdj.com/index.php/ffhd/article/view/334

540

Kalus U, Pindur G, Jung F, et al. Influence of the onion as an essential ingredient of the Mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung. 2000;50(9):795–801. https://pubmed.ncbi.nlm.nih.gov/11050695/

541

Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342(8878):1007–11. https://pubmed.ncbi.nlm.nih.gov/8105262/

542

Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267

543

Hwang HV, Tran DT, Rebuffatti MN, Li CS, Knowlton AA. Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE. 2018;13(1):e0190374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760026/

544

Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets. 2016;20(6):689–703. https://pubmed.ncbi.nlm.nih.gov/26667209/

545

Geng L, Liu Z, Zhang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell. 2019;10(6):417–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538594/

546

Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–71. https://pubmed.ncbi.nlm.nih.gov/20619334/

547

Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL–XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391241/

548

Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619/

549

Li W, Qin L, Feng R, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6. https://pubmed.ncbi.nlm.nih.gov/31077707/

550

Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/

551

Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. PNAS. 2006;103(44):16568–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637622/

552

Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://pubmed.ncbi.nlm.nih.gov/29541713/

553

Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/

554

U.S. National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=

555

Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/

556

Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/

557

Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/

558

Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/

559

Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/

560

Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/

561

Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/

562

Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/

563

Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/

564

Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/

565

Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/

566

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

567

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

568

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

569

Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/

570

Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/

571

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

572

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

573

Американская кантри-певица и киноактриса. – Примеч. ред.

574

BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm

575

Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/

576

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

577

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

578

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

579

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

580

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

581

Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/

582

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

583

Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–13. https://pubmed.ncbi.nlm.nih.gov/22186258/

584

Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://pubmed.ncbi.nlm.nih.gov/13054692/

585

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

586

Salzberg SL. Open questions: how many genes do we have? BMC Biol. 2018;16(1):94. https://pubmed.ncbi.nlm.nih.gov/30124169/

587

Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32. https://pubmed.ncbi.nlm.nih.gov/26937346/

588

vel Szic KS, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7(1):33. https://pubmed.ncbi.nlm.nih.gov/25861393/

589

Li X, Yi C. A novel epigenetic mark derived from vitamin C. Biochemistry. 2020;59(1):8–9. https://pubmed.ncbi.nlm.nih.gov/31538774/

590

Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. https://pubmed.ncbi.nlm.nih.gov/29268958/

591

Mitteldorf J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. In: Yashin AI, Jazwinski SM, eds. Aging and Health – A Systems Biology Perspective. Interdisciplinary Topics in Gerontology, vol 40. Karger, Basel;2015:49–62. https://pubmed.ncbi.nlm.nih.gov/25341512/

592

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

593

Vaiserman AM. Hormesis and epigenetics: is there a link? Ageing Res Rev. 2011;10(4):413–21. https://pubmed.ncbi.nlm.nih.gov/21292042/

594

Kawahata A, Sakamoto H. Some observations on sweating of the Aino. Jpn J Physiol. 1951;2(2):166–9. https://pubmed.ncbi.nlm.nih.gov/14897491/

595

Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115(10):1243–9. https://pubmed.ncbi.nlm.nih.gov/18715409/

596

Ornish D, Magbanua MJ, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/

597

Corona M, Velarde RA, Remolina S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci USA. 2007;104(17):7128–33. https://pubmed.ncbi.nlm.nih.gov/17438290/

598

Bacalini MG, Friso S, Olivieri F, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136–137:101–15. https://pubmed.ncbi.nlm.nih.gov/24388875/

599

Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. https://pubmed.ncbi.nlm.nih.gov/18339900/

600

Hadi A, Najafgholizadeh A, Aydenlu ES, et al. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: a meta-analysis. J Funct Foods. 2018;41:202–9. https://www.sciencedirect.com/science/article/abs/pii/S1756464617307284?via%3Dihub

601

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

602

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

603

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

604

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. https://pubmed.ncbi.nlm.nih.gov/11181995/

605

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

606

Устройство, выполняющее очень простое действие чрезвычайно сложным образом. Как правило, это происходит посредством длинной последовательности взаимодействий по «принципу домино». – Примеч. ред.

607

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

608

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

609

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

610

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

611

Social Security Administration. Actuarial life table. Period life table, 2017. Social Security Administration. https://www.ssa.gov/oact/STATS/table4c6.html. Accessed May 26, 2021.; https://www.ssa.gov/oact/STATS/table4c6.html

612

McCrory C, Fiorito G, Hernandez B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76(5):741–9. https://pubmed.ncbi.nlm.nih.gov/33211845/

613

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

614

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

615

Mitteldorf J. An incipient revolution in the testing of anti-aging strategies. Biochemistry (Mosc). 2018;83(12):1517–23. https://pubmed.ncbi.nlm.nih.gov/30878026/

616

Horvath S, Pirazzini C, Bacalini MG, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015;7(12):1159–70. https://pubmed.ncbi.nlm.nih.gov/26678252/

617

Declerck K, Vanden Berghe W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29. https://pubmed.ncbi.nlm.nih.gov/29337038/

618

Austad SN, Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology. 2015;62(1):40–6. https://pubmed.ncbi.nlm.nih.gov/25968226/

619

Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/

620

Beach SRH, Dogan MV, Lei MK, et al. Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J Am Geriatr Soc. 2015;63(12):2519–25. https://pubmed.ncbi.nlm.nih.gov/26566992/

621

Vyas CM, Hazra A, Chang SC, et al. Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry. 2019;9(1):118. https://pubmed.ncbi.nlm.nih.gov/30886137/

622

Pavanello S, Campisi M, Tona F, Dal Lin C, Iliceto S. Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age. Int J Environ Res Public Health. 2019;16(17):3074. https://pubmed.ncbi.nlm.nih.gov/31450859/

623

Chaix R, Alvarez-López MJ, Fagny M, et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology. 2017;85:210–4. https://pubmed.ncbi.nlm.nih.gov/28889075/

624

Maegawa S, Lu Y, Tahara T, et al. Caloric restriction delays age-related methylation drift. Nat Commun. 2017;8(1):539. https://pubmed.ncbi.nlm.nih.gov/28912502/

625

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

626

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

627

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

628

de Toro-Martín J, Guénard F, Tchernof A, et al. Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics. 2019;11(1):172. https://pubmed.ncbi.nlm.nih.gov/31791395/

629

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

630

Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://pubmed.ncbi.nlm.nih.gov/30669119/

631

Quach A, Levine ME, Tanaka T, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–37. https://pubmed.ncbi.nlm.nih.gov/28198702/

632

Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18. https://pubmed.ncbi.nlm.nih.gov/22022340/

633

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://pubmed.ncbi.nlm.nih.gov/29676998/

634

Dugué PA, Bassett JK, Joo JE, et al. Association of DNA methylation-based biological age with health risk factors and overall and cause-specific mortality. Am J Epidemiol. 2018;187(3):529–38. https://pubmed.ncbi.nlm.nih.gov/29020168/

635

Lind PM, Salihovic S, Lind L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ Int. 2018;113:109–13. https://pubmed.ncbi.nlm.nih.gov/29421399/

636

Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010;48(5):1311–5. https://pubmed.ncbi.nlm.nih.gov/20188779/

637

Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget. 2016;7(46):74510–25. https://pubmed.ncbi.nlm.nih.gov/27793020/

638

Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. J Gerontol A Biol Sci Med Sci. 2020;75(3):481–94. https://pubmed.ncbi.nlm.nih.gov/31001624/

639

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

640

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

641

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

642

Nobel Media AB 2021. Shinya Yamanaka – Facts. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/. Accessed June 5, 2021.; https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/

643

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://pubmed.ncbi.nlm.nih.gov/16904174/

644

Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. Regeneration. 2015;2(4):149–68. https://pubmed.ncbi.nlm.nih.gov/27499873/

645

Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588(7836):124–9. https://pubmed.ncbi.nlm.nih.gov/33268865/

646

Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. https://pubmed.ncbi.nlm.nih.gov/22961225/

647

Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. https://pubmed.ncbi.nlm.nih.gov/28275132/

648

Miles FL, Mashchak A, Filippov V, et al. DNA methylation profiles of vegans and non-vegetarians in the Adventist Health Study-2 cohort. Nutrients. 2020;12(12):3697. https://pubmed.ncbi.nlm.nih.gov/33266012/

649

Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014;100 Suppl 1:378S-85S. https://pubmed.ncbi.nlm.nih.gov/24898235/

650

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

651

McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/

652

Thaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2009;101(5):743–9. https://pubmed.ncbi.nlm.nih.gov/18684339/

653

Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94. https://pubmed.ncbi.nlm.nih.gov/23098078/

654

ElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961–76. https://pubmed.ncbi.nlm.nih.gov/30355391/

655

Miller JW. Factors associated with different forms of folate in human serum: the folate folio continues to grow. J Nutr. 2020;150(4):650–1. https://pubmed.ncbi.nlm.nih.gov/32119743/

656

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/

657

ter Borg S, Verlaan S, Hemsworth J, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206. https://pubmed.ncbi.nlm.nih.gov/25822905/

658

Jacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12. https://pubmed.ncbi.nlm.nih.gov/9649607/

659

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

660

Amenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults – a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–66. https://pubmed.ncbi.nlm.nih.gov/31977026/

661

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

662

Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. https://pubmed.ncbi.nlm.nih.gov/20933124/

663

Eaton SB, Eaton SB. Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr. 2000;39(2):67–70. https://pubmed.ncbi.nlm.nih.gov/10918987/

664

Метилентетрагидрофолатредуктаза, ключевой фермент фолатного цикла. – Примеч. ред.

665

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

666

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

667

Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(11). https://pubmed.ncbi.nlm.nih.gov/27854316/

668

Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11. https://pubmed.ncbi.nlm.nih.gov/11929966/

669

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

670

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

671

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

672

Seitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD. Alcohol and cancer. Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):137S-43S. https://pubmed.ncbi.nlm.nih.gov/15082451/

673

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

674

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

675

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

676

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

677

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification – its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84. https://pubmed.ncbi.nlm.nih.gov/22254102/

678

Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9. https://pubmed.ncbi.nlm.nih.gov/19706381/

679

Selhub J, Rosenberg IH. Excessive folic acid intake and relation to adverse health outcome. Biochimie. 2016;126:71–8. https://pubmed.ncbi.nlm.nih.gov/27131640/

680

Troen AM, Mitchell B, Sorensen B, et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006;136(1):189–94. https://pubmed.ncbi.nlm.nih.gov/16365081/

681

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

682

U.S. Preventive Services Task Force. Final recommendation statement: folic acid for the prevention of neural tube defects: preventive medication. U.S. Preventive Services Task Force. https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication. Published January 10, 2017. Accessed May 26, 2021.; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication

683

Dudeja PK, Torania SA, Said HM. Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. Am J Physiol. 1997;272(6Pt1):G1408–15. https://pubmed.ncbi.nlm.nih.gov/9227476/

684

Strozzi GP, Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol. 2008;42 Suppl 3 Pt 2:S179–84. https://pubmed.ncbi.nlm.nih.gov/18685499/

685

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

686

Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/

687

Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by processed animal feed: the role of Maillard reaction products and advanced glycation end-products (AGEs). Front Immunol. 2018;9:2088. https://pubmed.ncbi.nlm.nih.gov/30271411/

688

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

689

Unnikrishnan R, Anjana RM, Mohan V. Drugs affecting HbA1c levels. Indian J Endocrinol Metab. 2012;16(4):528–31. https://pubmed.ncbi.nlm.nih.gov/22837911/

690

American Diabetes Association. Understanding A1C. American Diabetes Association website. https://www.diabetes.org/a1c. Accessed June 2, 2021.; https://www.diabetes.org/a1c

691

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

692

Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31. https://pubmed.ncbi.nlm.nih.gov/10976109/

693

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

694

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

695

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

696

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

697

Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/

698

Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. Am J Lifestyle Med. 2019;13(4):384–404. https://pubmed.ncbi.nlm.nih.gov/31285723/

699

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/

700

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

701

Sergi D, Boulestin H, Campbell FM, Williams LM. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res. 2021;65(1):1900934. https://pubmed.ncbi.nlm.nih.gov/32246887/

702

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

703

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

704

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

705

Azman KF, Zakaria R. D-galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763–82. https://pubmed.ncbi.nlm.nih.gov/31538262/

706

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

707

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

708

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/

709

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

710

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/

711

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/

712

Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/

713

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

714

Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/

715

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

716

Sgarbieri VC, Amaya J, Tanaka M, Chichester CO. Response of rats to amino acid supplementation of brown egg albumin. J Nutr. 1973;103(12):1731–8. https://pubmed.ncbi.nlm.nih.gov/4201784/

717

Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/

718

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/

719

Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/

720

Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/

721

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

722

Babtan AM, Ilea A, Bosca BA, et al. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med. 2019;13(6):479–95. https://pubmed.ncbi.nlm.nih.gov/30968701/

723

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

724

Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/

725

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

726

Clarivate. Web of science. https://clarivate.com/webofsciencegroup/solutions/web-of-science/. Accessed June 5, 2021.; https://clarivate.com/webofsciencegroup/solutions/web-of-science/

727

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

728

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

729

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

730

Hellwig M, Gensberger-Reigl S, Henle T, Pischetsrieder M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin Cancer Biol. 2018;49:1–8. https://pubmed.ncbi.nlm.nih.gov/29174601/

731

Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, et al. Comparative evaluation of three different ELISA assays and HPLC-ESI–ITMS/MS for the analysis of Ne-carboxymethyl lysine in food samples. Food Chem. 2018;243:11–8. https://pubmed.ncbi.nlm.nih.gov/29146316/

732

Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/

733

Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep. 2021;14(5):46. https://pubmed.ncbi.nlm.nih.gov/33786175/

734

Morales FJ, Somoza V, Fogliano V. Physiological relevance of dietary melanoidins. Amino Acids. 2012;42(4):1097–109. https://pubmed.ncbi.nlm.nih.gov/20949365/

735

Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1–12. https://pubmed.ncbi.nlm.nih.gov/26236094/

736

Cai W, Gao Q, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002;8(7):337–46. https://pubmed.ncbi.nlm.nih.gov/12393931/

737

Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1025–33. https://pubmed.ncbi.nlm.nih.gov/9846884/

738

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

739

Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/

740

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

741

Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/

742

del Castillo MD, Iriondo-DeHond A, Iriondo-DeHond M, et al. Healthy eating recommendations: good for reducing dietary contribution to the body’s advanced glycation/lipoxidation end products pool? Nutr Res Rev. 2021;34(1):48–63. https://pubmed.ncbi.nlm.nih.gov/32450931/

743

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

744

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

745

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

746

Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/

747

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

748

Davis KE, Prasad C, Vijayagopal P, Juma S, Adams-Huet B, Imrhan V. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat. Br J Nutr. 2015;114(11):1797–806. https://pubmed.ncbi.nlm.nih.gov/26392152/

749

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/

750

Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64(6):886–90. https://pubmed.ncbi.nlm.nih.gov/15897309/

751

Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford). 2003;42(10):1242–6. https://pubmed.ncbi.nlm.nih.gov/12777635/

752

Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30. https://pubmed.ncbi.nlm.nih.gov/15243705/

753

Mahmoudi R, Jaisson S, Badr S, et al. Post-translational modification-derived products are associated with frailty status in elderly subjects. Clin Chem Lab Med. 2019;57(8):1153–61. https://pubmed.ncbi.nlm.nih.gov/30817296/

754

Cavero-Redondo I, Soriano-Cano A, Álvarez-Bueno C, et al. Skin autofluorescence – indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833. https://pubmed.ncbi.nlm.nih.gov/30371199/

755

Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J Alzheimers Dis. 2017;55(4):1481–7. https://pubmed.ncbi.nlm.nih.gov/27858716/

756

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

757

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

758

Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/

759

Holloway CJ, Cochlin LE, Emmanuel Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr. 2011;93(4):748–55. https://pubmed.ncbi.nlm.nih.gov/21270386/

760

Cai W, He JC, Zhu L, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902. https://pubmed.ncbi.nlm.nih.gov/17525257/

761

Akhter F, Chen D, Akhter A, et al. High dietary advanced glycation end products impair mitochondrial and cognitive function. J Alzheimers Dis. 2020;76(1):165–78. https://pubmed.ncbi.nlm.nih.gov/32444539/

762

Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/

763

Tsakiri EN, Iliaki KK, Höhn A, et al. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med. 2013;65:1155–63. https://pubmed.ncbi.nlm.nih.gov/23999505/

764

Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/

765

Cai W, He JC, Zhu L, et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173(2):327–36. https://pubmed.ncbi.nlm.nih.gov/18599606/

766

Negrean M, Stirban A, Stratmann B, et al. Effects of low– and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43. https://pubmed.ncbi.nlm.nih.gov/17490958/

767

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

768

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

769

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

770

Gaesser GA, Rodriguez J, Patrie JT, Whisner CM, Angadi SS. Effects of glycemic index and cereal fiber on postprandial endothelial function, glycemia, and insulinemia in healthy adults. Nutrients. 2019;11(10):2387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835298/

771

Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004;292(20):2482–90. https://pubmed.ncbi.nlm.nih.gov/15562127/

772

Jenkins DJ, Taylor RH, Goff DV, et al. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes. 1981;30(11):951–4. https://pubmed.ncbi.nlm.nih.gov/7028548/

773

Augustin LSA, Kendall CWC, Jenkins DJA, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. https://pubmed.ncbi.nlm.nih.gov/26160327/

774

Schnell O, Weng J, Sheu WH, et al. Acarbose reduces body weight irrespective of glycemic control in patients with diabetes: results of a worldwide, non-interventional, observational study data pool. J Diabetes Complicat. 2016;30(4):628–37. https://pubmed.ncbi.nlm.nih.gov/26935335/

775

Tsunosue M, Mashiko N, Ohta Y, et al. An a-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin Exp Med. 2010;10(2):139–41. https://pubmed.ncbi.nlm.nih.gov/19834782/

776

Newman JC, Milman S, Hashmi SK, et al. Strategies and challenges in clinical trials targeting human aging. J Gerontol A Biol Sci Med Sci. 2016;71(11):1424–34. https://pubmed.ncbi.nlm.nih.gov/27535968/

777

Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/

778

Jenkins D, Wolever T, Taylor R, Barker H, Fielden H. Exceptionally low blood glucose response to dried beans: comparison with other carbohydrate foods. BMJ. 1980;281(6240):578–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1713902/

779

Jenkins DJ, Wolever TM, Taylor RH, et al. Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr. 1982;35(6):1339–46. https://pubmed.ncbi.nlm.nih.gov/6282105/

780

Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR. Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988;48(4):1041–7. https://pubmed.ncbi.nlm.nih.gov/2844076/

781

Mollard RC, Wong CL, Luhovyy BL, Anderson GH. First and second meal effects of pulses on blood glucose, appetite, and food intake at a later meal. Appl Physiol Nutr Metab. 2011;36(5):634–42. https://pubmed.ncbi.nlm.nih.gov/21957874/

782

Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60. https://pubmed.ncbi.nlm.nih.gov/23089999/

783

Sievenpiper JL, Chiavaroli L, de Souza RJ, et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012;108(3):418–23. https://pubmed.ncbi.nlm.nih.gov/22354959/

784

Christensen AS, Viggers L, Hasselström K, Gregersen S. Effect of fruit restriction on glycemic control in patients with type 2 diabetes – a randomized trial. Nutr J. 2013;12:29. https://pubmed.ncbi.nlm.nih.gov/23497350/

785

Choo VL, Viguiliouk E, Mejia SB, et al. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ. 2018;363:k4644. https://pubmed.ncbi.nlm.nih.gov/30463844/

786

McSwiney FT, Doyle L. Low-carbohydrate ketogenic diets in male endurance athletes demonstrate different micronutrient contents and changes in corpuscular haemoglobin over 12 weeks. Sports (Basel). 2019;7(9):201. https://pubmed.ncbi.nlm.nih.gov/31480346/

787

Sweeney JS. Dietary factors that influence the dextrose tolerance test: a preliminary study. Arch Intern Med (Chic). 1927;40(6):818–30. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/535594

788

Manco M, Bertuzzi A, Salinari S, et al. The ingestion of saturated fatty acid triacylglycerols acutely affects insulin secretion and insulin sensitivity in human subjects. Br J Nutr. 2004;92(6):895–903. https://pubmed.ncbi.nlm.nih.gov/15613251/

789

Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism. 2016;65(11):1621–8. https://pubmed.ncbi.nlm.nih.gov/27733250/

790

Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed Res Int. 2014;2014:238485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966409/

791

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

792

Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/

793

Franz MJ. Protein and diabetes: much advice, little research. Curr Diab Rep. 2002;2(5):457–64. https://pubmed.ncbi.nlm.nih.gov/12643172/

794

Jones AW, Rössner S. False-positive breath-alcohol test after a ketogenic diet. Int J Obes (Lond). 2007;31(3):559–61. https://pubmed.ncbi.nlm.nih.gov/16894360/

795

Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/

796

Tey SL, Salleh NB, Henry CJ, Forde CG. Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. Eur J Clin Nutr. 2017;71(9):1129–32. https://pubmed.ncbi.nlm.nih.gov/28378852/

797

Coca-Cola. Nutrition facts – original 20 fl oz. https://us.coca-cola.com/products/coca-cola/original. Accessed December 26, 2022.; https://us.coca-cola.com/products/coca-cola/original

798

Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia– and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes (Lond). 2017;41(3):450–7. https://pubmed.ncbi.nlm.nih.gov/27956737/

799

Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36(9):2530–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747933/

800

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

801

Brand JC, Nicholson PL, Thorburn AW, Truswell AS. Food processing and the glycemic index. Am J Clin Nutr. 1985;42(6):1192–6. https://pubmed.ncbi.nlm.nih.gov/4072954/

802

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

803

Mofidi A, Ferraro ZM, Stewart KA, et al. The acute impact of ingestion of sourdough and whole-grain breads on blood glucose, insulin, and incretins in overweight and obese men. J Nutr Metab. 2012;2012:184710. https://pubmed.ncbi.nlm.nih.gov/22474577/

804

Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/

805

Jenkins DJ, Wesson V, Wolever TM, et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ. 1988;297(6654):958–60. https://pubmed.ncbi.nlm.nih.gov/3142566/

806

Breen C, Ryan M, Gibney MJ, Corrigan M, O’Shea D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013;39(3):376–86. https://pubmed.ncbi.nlm.nih.gov/23482513/

807

Reynolds AN, Mann J, Elbalshy M, et al. Wholegrain particle size influences postprandial glycemia in type 2 diabetes: a randomized crossover study comparing four wholegrain breads. Dia Care. 2020;43(2):476–9. https://pubmed.ncbi.nlm.nih.gov/31744812/

808

Burton P, Lightowler HJ. The impact of freezing and toasting on the glycaemic response of white bread. Eur J Clin Nutr. 2008;62(5):594–9. https://pubmed.ncbi.nlm.nih.gov/17426743/

809

Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/

810

Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/

811

de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM. Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr. 2017;57(2):372–90. https://pubmed.ncbi.nlm.nih.gov/25875451/

812

Narayanan J, Sanjeevi V, Rohini U, Trueman P, Viswanathan V. Postprandial glycaemic response of foxtail millet dosa in comparison to a rice dosa in patients with type 2 diabetes. Indian J Med Res. 2016;144(5):712–7. https://pubmed.ncbi.nlm.nih.gov/28361824/

813

Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/

814

Abdelgadir M, Abbas M, Järvi A, Elbagir M, Eltom M, Berne C. Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet Med. 2005;22(2):213–7. https://pubmed.ncbi.nlm.nih.gov/15660741/

815

Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/

816

Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M. Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants. Arch Med Sci. 2020;16(2):260–72. https://pubmed.ncbi.nlm.nih.gov/32190135/

817

Fernandes G, Velangi A, Wolever TMS. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005;105(4):557–62. https://pubmed.ncbi.nlm.nih.gov/15800557/

818

Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010;56(1):74–9. https://pubmed.ncbi.nlm.nih.gov/20068289/

819

Leeman M, Östman E, Björck I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr. 2005;59(11):1266–71. https://pubmed.ncbi.nlm.nih.gov/16034360/

820

Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit a-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem. 2011;59(6):2324–31. https://pubmed.ncbi.nlm.nih.gov/21329358/

821

Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: effect on fasting blood sugar and induced hyperglycemia in man. Indian J Med Res. 1977;65(3):422–9. https://pubmed.ncbi.nlm.nih.gov/336527/

822

Haldar S, Chia SC, Lee SH, et al. Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose-response randomized controlled crossover trial. Eur J Nutr. 2019;58(1):301–13. https://pubmed.ncbi.nlm.nih.gov/29236165/

823

Azzeh FS. Synergistic effect of green tea, cinnamon and ginger combination on enhancing postprandial blood glucose. Pak J Biol Sci. 2013;16(2):74–9. https://pubmed.ncbi.nlm.nih.gov/24199490/

824

Hajizadeh-Sharafabad F, Varshosaz P, Jafari-Vayghan H, Alizadeh M, Maleki V. Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: a systematic review. Complement Ther Med. 2020;48:102284. https://pubmed.ncbi.nlm.nih.gov/31987240/

825

Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/

826

Kermanian S, Mozaffari-Khosravi H, Dastgerdi G, Zavar-Reza J, Rahmanian M. The effect of chamomile tea versus black tea on glycemic control and blood lipid profiles in depressed patients with type 2 diabetes: a randomized clinical trial. JNFS, 2018;3(3):157–66. https://jnfs.ssu.ac.ir/article-1-197-en.pdf

827

Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/

828

Pirouzpanah S, Mahboob S, Sanayei M, Hajaliloo M, Safaeiyan A. The effect of chamomile tea consumption on inflammation among rheumatoid arthritis patients: randomized clinical trial. Prog Nutr. 2017;19(1-S)27–33. https://doi.org/10.23751/PN.V19I1-S.5171

829

Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016;72(2):306–15. https://pubmed.ncbi.nlm.nih.gov/26483209/

830

Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016;32(1):66–72. https://pubmed.ncbi.nlm.nih.gov/26437613/

831

Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Mol Nutr Food Res. 2017;61(12):1700566. https://pubmed.ncbi.nlm.nih.gov/28868668/

832

Bowen AJ, Reeves RL. Diurnal variation in glucose tolerance. Arch Intern Med. 1967;119(3):261–4. https://pubmed.ncbi.nlm.nih.gov/6019944/

833

Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997;18(5):716–38. https://pubmed.ncbi.nlm.nih.gov/9331550/

834

Bandín C, Scheer FA, Luque AJ, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond). 2015;39(5):828–33. https://pubmed.ncbi.nlm.nih.gov/25311083/

835

Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014;33(5):889–94. https://pubmed.ncbi.nlm.nih.gov/24135087/

836

3,2 км/ч. – Примеч. ред.

837

Colberg SR, Zarrabi L, Bennington L, et al. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009;10(6):394–7. https://pubmed.ncbi.nlm.nih.gov/19560716/

838

Haxhi J, Scotto di Palumbo A, Sacchetti M. Exercising for metabolic control: is timing important? Ann Nutr Metab. 2013;62(1):14–25. https://pubmed.ncbi.nlm.nih.gov/23208206/

839

Reynolds AN, Mann JI, Williams S, Venn BJ. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia. 2016;59(12):2572–8. https://pubmed.ncbi.nlm.nih.gov/27747394/

840

Rahmadi A, Steiner N, Münch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):385–91. https://pubmed.ncbi.nlm.nih.gov/21275816/

841

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

842

Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130(1):48–53. https://pubmed.ncbi.nlm.nih.gov/25871778/

843

Yamagishi S, Nakamura K, Matsui T, Inoue H, Takeuchi M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(3):666–8. https://pubmed.ncbi.nlm.nih.gov/17331665/

844

MIMS. Kremezin full prescribing information, dosage & side effects. https://www.mims.com/philippines/drug/info/kremezin?type=full. Accessed December 26, 2022.; https://www.mims.com/philippines/drug/info/kremezin?type=full

845

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

846

Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94(25):13915–20. https://pubmed.ncbi.nlm.nih.gov/9391127/

847

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

848

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

849

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

850

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4. https://pubmed.ncbi.nlm.nih.gov/8247153/

851

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

852

Partridge L, Harvey PH. Gerontology. Methuselah among nematodes. Nature. 1993;366(6454):404–5. https://pubmed.ncbi.nlm.nih.gov/8247143/

853

Мрачный жнец – образ смерти. – Примеч. ред.

854

Coffer P. OutFOXing the grim reaper: novel mechanisms regulating longevity by Forkhead transcription factors. Sci STKE. 2003;2003(201):PE39. https://pubmed.ncbi.nlm.nih.gov/14506287/

855

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

856

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

857

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

858

Vitale G, Pellegrino G, Vollery M, Hofland LJ. Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective. Front Endocrinol. 2019;10:27. https://pubmed.ncbi.nlm.nih.gov/30774624/

859

Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/

860

Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol. 2013;9(6):366–76. https://pubmed.ncbi.nlm.nih.gov/23591370/

861

Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/

862

Vitale G, Brugts MP, Ogliari G, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY). 2012;4(9):580–9. https://pubmed.ncbi.nlm.nih.gov/22983440/

863

Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/

864

Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/

865

Ben-Avraham D, Govindaraju DR, Budagov T, et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv. 2017;3(6):e1602025. https://pubmed.ncbi.nlm.nih.gov/28630896/

866

Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/

867

Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/

868

van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 2015;7(11):956–63. https://pubmed.ncbi.nlm.nih.gov/26568155/

869

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

870

Tazearslan C, Huang J, Barzilai N, Suh Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell. 2011;10(3):551–4. https://pubmed.ncbi.nlm.nih.gov/21388493/

871

Bartke A. Healthy aging: is smaller better? – a mini-review. Gerontology. 2012;58(4):337–43. https://pubmed.ncbi.nlm.nih.gov/22261798/

872

Michell AR. Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease. Vet Rec. 1999;145(22):625–9. https://pubmed.ncbi.nlm.nih.gov/10619607/

873

Sutter NB, Bustamante CD, Chase K, et al. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316(5821):112–5. https://pubmed.ncbi.nlm.nih.gov/17412960/

874

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

875

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/

876

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

877

Samaras TT, Elrick H, Storms LH. Is height related to longevity? Life Sci. 2003;72(16):1781–802. https://pubmed.ncbi.nlm.nih.gov/12586217/

878

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

879

Один дюйм равен 2,54 см. – Примеч. ред.

880

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/

881

Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/

882

Shors AR, Solomon C, McTiernan A, White E. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001;12(7):599–606. https://pubmed.ncbi.nlm.nih.gov/11552707/

883

Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/

884

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

885

Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17(9):2941–53. https://pubmed.ncbi.nlm.nih.gov/10561374/

886

Murphy N, Knuppel A, Papadimitriou N, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ~430 000 women. Ann Oncol. 2020;31(5):641–9. https://pubmed.ncbi.nlm.nih.gov/32169310/

887

Chi F, Wu R, Zeng Y, Xing R, Liu Y. Circulation insulin-like growth factor peptides and colorectal cancer risk: an updated systematic review and meta-analysis. Mol Biol Rep. 2013;40(5):3583–90. https://pubmed.ncbi.nlm.nih.gov/23269623/

888

Travis RC, Appleby PN, Martin RM, et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 2016;76(8):2288–300. https://pubmed.ncbi.nlm.nih.gov/26921328/

889

Cao H, Wang G, Meng L, et al. Association between circulating levels of IGF-1 and IGFBP-3 and lung cancer risk: a meta-analysis. PLoS One. 2012;7(11):e49884. https://pubmed.ncbi.nlm.nih.gov/23185474/

890

Li Y, Li Y, Zhang J, et al. Circulating insulin-like growth factor-1 level and ovarian cancer risk. Cell Physiol Biochem. 2016;38(2):589–97. https://pubmed.ncbi.nlm.nih.gov/26845340/

891

Gong Y, Zhang B, Liao Y, et al. Serum insulin-like growth factor axis and the risk of pancreatic cancer: systematic review and meta-analysis. Nutrients. 2017;9(4):394. https://pubmed.ncbi.nlm.nih.gov/28420208/

892

Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor I and risk of breast cancer. Lancet. 1998;351(9113):1393–6. https://pubmed.ncbi.nlm.nih.gov/9593409/

893

Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst. 2012;104(13):975–81. https://pubmed.ncbi.nlm.nih.gov/22761272/

894

Quan H, Tang H, Fang L, Bi J, Liu Y, Li H. IGF1(CA)19 and IGFBP-3–202A/C gene polymorphism and cancer risk: a meta-analysis. Cell Biochem Biophys. 2014;69(1):169–78. https://pubmed.ncbi.nlm.nih.gov/24310658/

895

Yokoyama NN, Denmon AP, Uchio EM, Jordan M, Mercola D, Zi X. When anti-aging studies meet cancer chemoprevention: can anti-aging agent kill two birds with one blow? Curr Pharmacol Rep. 2015;1(6):420–33. https://pubmed.ncbi.nlm.nih.gov/26756023/

896

Elia I, Doglioni G, Fendt SM. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 2018;28(8):673–84. https://pubmed.ncbi.nlm.nih.gov/29747903/

897

Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev. 2009;30(1):51–74. https://pubmed.ncbi.nlm.nih.gov/19075184/

898

Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/

899

Zhang Y, Ma B, Fan Q. Mechanisms of breast cancer bone metastasis. Cancer Lett. 2010;292(1):1–7. https://pubmed.ncbi.nlm.nih.gov/20006425/

900

Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/

901

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–19. https://pubmed.ncbi.nlm.nih.gov/25991828/

902

Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/

903

Piantanelli L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann N Y Acad Sci. 1988;521:99–109. https://pubmed.ncbi.nlm.nih.gov/3377369/

904

Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/

905

Stanta G, Campagner L, Cavallieri F, Giarelli L. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 1997;13(1):55–68. https://pubmed.ncbi.nlm.nih.gov/8995100/

906

Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/

907

Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of growth hormone: a new inborn error of metabolism? Isr J Med Sci 1966;2:152–5. https://pubmed.ncbi.nlm.nih.gov/5916640/

908

Guevara-Aguirre J, Bautista C, Torres C, et al. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord. 2021;22(1):59–70. https://pubmed.ncbi.nlm.nih.gov/33047268/

909

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

910

Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/

911

Boguszewski CL, Boguszewski MC da S. Growth hormone’s links to cancer. Endocr Rev. 2019;40(2):558–74. https://pubmed.ncbi.nlm.nih.gov/30500870/

912

Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/

913

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

914

Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol. 2014;77(6):917–28. https://pubmed.ncbi.nlm.nih.gov/24033707/

915

Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15(1):80–101. https://pubmed.ncbi.nlm.nih.gov/8156941/

916

Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://pubmed.ncbi.nlm.nih.gov/20145127/

917

Longo VD, Anderson RM. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell. 2022;185(9):1455–70. https://pubmed.ncbi.nlm.nih.gov/35487190/

918

Dunn SE, Kari FW, French J, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 1997;57(21):4667–72. https://pubmed.ncbi.nlm.nih.gov/9354418/

919

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

920

Schüler R, Markova M, Osterhoff MA, et al. Similar dietary regulation of IGF-1-and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr. https://link.springer.com/article/10.1007/s00394–021–02518-y. Published online March 8, 2021. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33686453/

921

Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/

922

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

923

Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/

924

Flood A, Mai V, Pfeiffer R, et al. The effects of a high-fruit and – vegetable, high-fiber, low-fat dietary intervention on serum concentrations of insulin, glucose, IGF-I and IGFBP-3. Eur J Clin Nutr. 2008;62(2):186–96. https://pubmed.ncbi.nlm.nih.gov/17487212/

925

Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/

926

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

927

Berrino F, Bellati C, Secreto G, et al. Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev. 2001;10(1):25–33. https://pubmed.ncbi.nlm.nih.gov/11205485/

928

Kaaks R, Bellati C, Venturelli E, et al. Effects of dietary intervention on IGF-I and IGF-binding proteins, and related alterations in sex steroid metabolism: the Diet and Androgens (DIANA) Randomised Trial. Eur J Clin Nutr. 2003;57(9):1079–88. https://pubmed.ncbi.nlm.nih.gov/12947426/

929

Pasanisi P, Bruno E, Venturelli E, et al. A dietary intervention to lower serum levels of IGF-I in BRCA mutation carriers. Cancers (Basel). 2018;10(9):309. https://pubmed.ncbi.nlm.nih.gov/30181513/

930

Gulick CN, Peddie MC, Cameron C, Bradbury K, Rehrer NJ. Physical activity, dietary protein and insulin-like growth factor 1: cross-sectional analysis utilising UK Biobank. Growth Horm IGF Res. 2020;55:101353. https://pubmed.ncbi.nlm.nih.gov/33002777/

931

Toden S, Belobrajdic DP, Bird AR, Topping DL, Conlon MA. Effects of dietary beef and chicken with and without high amylose maize starch on blood malondialdehyde, interleukins, IGF-I, insulin, leptin, MMP-2, and TIMP-2 concentrations in rats. Nutr Cancer. 2010;62(4):454–65. https://pubmed.ncbi.nlm.nih.gov/20432166/

932

Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(S7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/

933

Один галлон равен 4,55 л. – Примеч. ред.

934

Hoppe C, Kristensen M, Boiesen M, Kudsk J, Michaelsen KF, Mølgaard C. Short-term effects of replacing milk with cola beverages on insulin-like growth factor-I and insulin – glucose metabolism: a 10 d interventional study in young men. Br J Nutr. 2009;102(7):1047–51. https://pubmed.ncbi.nlm.nih.gov/15578035/

935

Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/

936

Adams AM, Smith AF. Risk perception and communication: recent developments and implications for anaesthesia. Anaesthesia. 2001;56(8):745–55. https://pubmed.ncbi.nlm.nih.gov/11493237/

937

Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/

938

Naghshi S, Sadeghi O, Larijani B, Esmaillzadeh A. High vs. low-fat dairy and milk differently affects the risk of all-cause, CVD, and cancer death: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021;Jan 5:1–15. https://pubmed.ncbi.nlm.nih.gov/33397132/

939

Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/

940

Jones CM, Heinrichs J. Growth charts for dairy heifers. Penn State Extension. https://extension.psu.edu/growth-charts-for-dairy-heifers. Updated July 28, 2017. Accessed June 9, 2021.; https://extension.psu.edu/growth-charts-for-dairy-heifers

941

Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/

942

Honegger A, Humbel RE. Insulin-like growth factors I and II in fetal and adult bovine serum. Purification, primary structures, and immunological cross-reactivities. J Biol Chem. 1986;261(2):569–75. https://pubmed.ncbi.nlm.nih.gov/3941093/

943

Collier RJ, Miller MA, Hildebrandt JR, et al. Factors affecting insulin-like growth factor-I concentration in bovine milk. J Dairy Sci. 1991;74(9):2905–11. https://pubmed.ncbi.nlm.nih.gov/1779049/

944

Kim WK, Ryu YH, Seo DS, Lee CY, Ko Y. Effects of oral administration of insulin-like growth factor-I on circulating concentration of insulin-like growth factor-I and growth of internal organs in weanling mice. Biol Neonate. 2006;89(3):199–204. https://pubmed.ncbi.nlm.nih.gov/16293962/

945

Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/

946

Allen NE, Key TJ. Re: plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst. 2001;93(8):649–51. https://pubmed.ncbi.nlm.nih.gov/11309444/

947

Conover CA. Discrepancies in insulin-like growth factor signaling? No, not really. Growth Horm IGF Res. 2016;30–31:42–4. https://pubmed.ncbi.nlm.nih.gov/27792888/

948

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

949

Clemmons DR, Seek MM, Underwood LE. Supplemental essential amino acids augment the somatomedin-C/insulin-like growth factor I response to refeeding after fasting. Metabolism. 1985;34(4):391–5. https://pubmed.ncbi.nlm.nih.gov/3884968/

950

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

951

Ten Have GAM, Engelen MPKJ, Soeters PB, Deutz NEP. Absence of post-prandial gut anabolism after intake of a low quality protein meal. Clin Nutr. 2012;31(2):273–82. https://pubmed.ncbi.nlm.nih.gov/22001026/

952

Katz DL, Doughty KN, Geagan K, Jenkins DA, Gardner CD. Perspective: the public health case for modernizing the definition of protein quality. Adv Nutr. 2019;10(5):755–64. https://pubmed.ncbi.nlm.nih.gov/31066877/

953

Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab. 2009;94(8):2880–6. https://pubmed.ncbi.nlm.nih.gov/19491226/

954

Friedlander AL, Butterfield GE, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab. 2001;86(4):1496–503. https://pubmed.ncbi.nlm.nih.gov/11297574/

955

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

956

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

957

Crimarco A, Springfield S, Petlura C, et al. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood – Meat Eating Alternative Trial (SWAP-MEAT). Am J Clin Nutr. 2020;112(5):1188–99. https://pubmed.ncbi.nlm.nih.gov/32780794/

958

Arjmandi BH, Khalil DA, Smith BJ, et al. Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab. 2003;88(3):1048–54. https://pubmed.ncbi.nlm.nih.gov/12629084/

959

Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH. Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr. 2002;132(9):2605–8. https://pubmed.ncbi.nlm.nih.gov/12221217/

960

Maskarinec G, Takata Y, Murphy SP, Franke AA, Kaaks R. Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women. Br J Nutr. 2005;94(3):362–7. https://pubmed.ncbi.nlm.nih.gov/16176606/

961

Messina M, Magee P. Does soy protein affect circulating levels of unbound IGF-1? Eur J Nutr. 2018;57(2):423–32. https://pubmed.ncbi.nlm.nih.gov/28434035/

962

Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/

963

Applegate CC, Rowles JL III, Ranard KM, Jeon S, Erdman JW Jr. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis. Nutrients. 2018;10(1):40. https://pubmed.ncbi.nlm.nih.gov/29300347/

964

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

965

Lousuebsakul-Matthews V, Thorpe DL, Knutsen R, Beeson WL, Fraser GE, Knutsen SF. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2. Public Health Nutr. 2014;17(10):2333–43. https://pubmed.ncbi.nlm.nih.gov/24103482/

966

Mazidi M, Katsiki N, Mikhailidis DP, et al. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/

967

Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153(5):289–98. https://pubmed.ncbi.nlm.nih.gov/20820038/

968

Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/

969

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

970

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

971

Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/

972

Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/

973

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

974

Sample I. Diets high in meat, eggs and dairy could be as harmful to health as smoking. Guardian. https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy. Published March 5, 2014. Accessed June 9, 2021.; https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy

975

Philip Morris, Europe. Second-hand tobacco smoke in perspective. What risks do you take? Philip Morris Records; Master Settlement Agreement. UCSF Industry Documents Library. https://www.industrydocuments.ucsf.edu/docs/pkdl0113. Produced 1994. Accessed February 11 https://www.industrydocuments.ucsf.edu/docs/pkdl0113

976

Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/

977

Soliman S, Aronson WJ, Barnard RJ. Analyzing serum-stimulated prostate cancer cell lines after low-fat, high-fiber diet and exercise intervention. Evid Based Complement Alternat Med. 2011;2011:529053. https://pubmed.ncbi.nlm.nih.gov/19376839/

978

Barnard RJ, Ngo TH, Leung PS, Aronson WJ, Golding LA. A low-fat diet and/or strenuous exercise alters the IGF axis in vivo and reduces prostate tumor cell growth in vitro. Prostate. 2003;56(3):201–6. https://pubmed.ncbi.nlm.nih.gov/12772189/

979

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–9. https://pubmed.ncbi.nlm.nih.gov/16094059/

980

Ornish D, Magbanua MJM, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/

981

Yang M, Kenfield SA, Van Blarigan EL, et al. Dairy intake after prostate cancer diagnosis in relation to disease-specific and total mortality. Int J Cancer. 2015;137(10):2462–9. https://pubmed.ncbi.nlm.nih.gov/25989745/

982

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

983

Mucci LA, Tamimi R, Lagiou P, et al. Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU Int. 2001;87(9):814–20. https://pubmed.ncbi.nlm.nih.gov/11412218/

984

Gunnell D, Oliver SE, Peters TJ, et al. Are diet – prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-I and IGFBP-3 in healthy middle-aged men. Br J Cancer. 2003;88(11):1682–6. https://pubmed.ncbi.nlm.nih.gov/12771980/

985

Walfisch S, Walfisch Y, Kirilov E, et al. Tomato lycopene extract supplementation decreases insulin-like growth factor-I levels in colon cancer patients. Eur J Cancer Prev. 2007;16(4):298–303. https://pubmed.ncbi.nlm.nih.gov/17554202/

986

Xie Z, Yang F. The effects of lycopene supplementation on serum insulin-like growth factor 1 (IGF-1) levels and cardiovascular disease: a dose-response meta-analysis of clinical trials. Complement Ther Med. 2021;56:102632. https://pubmed.ncbi.nlm.nih.gov/33259908/

987

Rickard SE, Yuan YV, Thompson LU. Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside. Cancer Lett. 2000;161(1):47–55. https://pubmed.ncbi.nlm.nih.gov/11078912/

988

Sturgeon SR, Volpe SL, Puleo E, et al. Dietary intervention of flaxseed: effect on serum levels of IGF-1, IGF-BP3, and C-peptide. Nutr Cancer. 2011;63(3):376–80. https://pubmed.ncbi.nlm.nih.gov/21462084/

989

Zhou JR, Yu L, Mai Z, Blackburn GL. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer. 2004;108(1):8–14. https://pubmed.ncbi.nlm.nih.gov/14618609/

990

Biernacka KM, Holly JMP, Martin RM, et al. Effect of green tea and lycopene on the insulin-like growth factor system: the ProDiet randomized controlled trial. Eur J Cancer Prev. 2019;28(6):569–75. https://pubmed.ncbi.nlm.nih.gov/30921005/

991

Samavat H, Wu AH, Ursin G, et al. Green tea catechin extract supplementation does not influence circulating sex hormones and insulin-like growth factor axis proteins in a randomized controlled trial of postmenopausal women at high risk of breast cancer. J Nutr. 2019;149(4):619–27. https://pubmed.ncbi.nlm.nih.gov/30926986/

992

Teas J, Irhimeh MR, Druker S, et al. Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutr Cancer. 2011;63(5):743–8. https://pubmed.ncbi.nlm.nih.gov/21711174/

993

Burgers AMG, Biermasz NR, Schoones JW, et al. Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab. 2011;96(9):2912–20. https://pubmed.ncbi.nlm.nih.gov/21795450/

994

LeRoith D. IGF-I: panacea or poison? J Clin Endocrinol Metab. 2010;95(10):4549–51. https://pubmed.ncbi.nlm.nih.gov/20926541/

995

Zhang WB, Aleksic S, Gao T, et al. Insulin-like growth factor-1 and IGF binding proteins predict all-cause mortality and morbidity in older adults. Cells. 2020;9(6):1368. https://pubmed.ncbi.nlm.nih.gov/32492897/

996

Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/

997

Hartley A, Sanderson E, Paternoster L, et al. Mendelian randomization provides evidence for a causal effect of higher serum IGF-1 concentration on risk of hip and knee osteoarthritis. Rheumatology (Oxford). 2020;60(4):1676–86. https://pubmed.ncbi.nlm.nih.gov/33027520/

998

Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/

999

Fan M, Li Y, Wang C, et al. Dietary protein consumption and the risk of type 2 diabetes: adose-response [sic] meta-analysis of prospective studies. Nutrients. 2019;11(11):2783. https://pubmed.ncbi.nlm.nih.gov/31731672/

1000

Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/

1001

Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/

1002

Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/

1003

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1004

Chainani-Wu N, Weidner G, Purnell DM, et al. Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol. 2011;108(4):498–507. https://pubmed.ncbi.nlm.nih.gov/21624543/

1005

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

1006

Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol. 2020;518:111003. https://pubmed.ncbi.nlm.nih.gov/32919021/

1007

McCarty MF. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Med Hypotheses. 2003;60(6):784–92. https://pubmed.ncbi.nlm.nih.gov/12699704/

1008

Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10. https://pubmed.ncbi.nlm.nih.gov/18946478/

1009

McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014;83(3):365–71. https://pubmed.ncbi.nlm.nih.gov/25015767/

1010

Piper MDW, Soultoukis GA, Blanc E, et al. Matching dietary amino acid balance to the in silico – translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 2017;25(3):610–21. https://pubmed.ncbi.nlm.nih.gov/28273481/

1011

Slavich GM. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav Immun. 2015;45:13–4. https://pubmed.ncbi.nlm.nih.gov/25449576/

1012

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1013

Rubio-Ruiz ME, Peredo-Escárcega AE, Cano-Martínez A, Guarner-Lans V. An evolutionary perspective of nutrition and inflammation as mechanisms of cardiovascular disease. Int J Evol Biol. 2015:2015:179791.; https://pubmed.ncbi.nlm.nih.gov/26693381/

1014

Rogers J. The inflammatory response in Alzheimer’s disease. J Periodontol. 2008;79(8 Suppl):1535–43. https://pubmed.ncbi.nlm.nih.gov/18673008/

1015

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1016

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

1017

Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–21. https://pubmed.ncbi.nlm.nih.gov/29094869/

1018

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

1019

Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/

1020

National Center for Injury Prevention and Control, CDC using WISQARSÔ.10 leading causes of death by age group, United States—2018. Centers for Disease Control and Prevention. https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg. Accessed June 29, 2021.; https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg

1021

Weyh C, Krüger K, Strasser B. Physical activity and diet shape the immune system during aging. Nutrients. 2020;12(3):622. https://pubmed.ncbi.nlm.nih.gov/32121049/

1022

Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8. https://pubmed.ncbi.nlm.nih.gov/8370415/

1023

Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://pubmed.ncbi.nlm.nih.gov/29375577/

1024

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/

1025

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/

1026

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

1027

Tait JL, Duckham RL, Milte CM, Main LC, Daly RM. Associations between inflammatory and neurological markers with quality of life and well-being in older adults. Exp Gerontol. 2019;125:110662. https://pubmed.ncbi.nlm.nih.gov/31323254/

1028

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

1029

Rajasekaran S, Tangavel C, Anand SV KS, et al. Inflammaging determines health and disease in lumbar discs – evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J. 2020;20(1):48–59. https://pubmed.ncbi.nlm.nih.gov/31125691/

1030

Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(Pt 23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/

1031

Barron E, Lara J, White M, Mathers JC. Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS ONE. 2015;10(6):e0127550. https://pubmed.ncbi.nlm.nih.gov/26039142/

1032

Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/

1033

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/

1034

Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/

1035

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38:329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1036

Bonafè M, Olivieri F, Cavallone L, et al. A gender – dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol. 2001;31(8):2357–61. https://pubmed.ncbi.nlm.nih.gov/11500818/

1037

Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/

1038

Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/

1039

Hu L, Mauro TM, Dang E, et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J Invest Dermatol. 2017;137(6):1277–85. https://pubmed.ncbi.nlm.nih.gov/28115059/

1040

Ye L, Mauro TM, Dang E, et al. Topical applications of an emollient reduce circulating pro-inflammatory cytokine levels in chronically aged humans: a pilot clinical study. J Eur Acad Dermatol Venereol. 2019;33(11):2197–201. https://pubmed.ncbi.nlm.nih.gov/30835878/

1041

Arai Y, Martin-Ruiz CM, Takayama M, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2(10):1549–58. https://pubmed.ncbi.nlm.nih.gov/26629551/

1042

Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://pubmed.ncbi.nlm.nih.gov/31806905/

1043

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1044

Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘garb-aging.’ Trends Endocrinol. Metab. 2017;28(3):199–212. https://pubmed.ncbi.nlm.nih.gov/27789101/

1045

Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev. 2017;165(Pt B):129–38. https://pubmed.ncbi.nlm.nih.gov/28038993/

1046

Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/

1047

Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232–44. https://pubmed.ncbi.nlm.nih.gov/23171381/

1048

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–63. https://pubmed.ncbi.nlm.nih.gov/28721154/

1049

Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25. https://pubmed.ncbi.nlm.nih.gov/19074987/

1050

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://pubmed.ncbi.nlm.nih.gov/14679176/

1051

Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. https://pubmed.ncbi.nlm.nih.gov/16150820/

1052

Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68. https://pubmed.ncbi.nlm.nih.gov/18327995/

1053

Welsh P, Polisecki E, Robertson M, et al. Unraveling the directional link between adiposity and inflammation: a bidirectional Mendelian randomization approach. J Clin Endocrinol Metab. 2010;95(1):93–9. https://pubmed.ncbi.nlm.nih.gov/28199503/

1054

Timpson NJ, Nordestgaard BG, Harbord RM, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond). 2011;35(2):300–8. https://pubmed.ncbi.nlm.nih.gov/20714329/

1055

Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/

1056

Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/

1057

Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/

1058

Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/

1059

Xu Z, McClure ST, Appel LJ. Dietary cholesterol intake and sources among U.S. adults: results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients. 2018;10(6):E771. https://pubmed.ncbi.nlm.nih.gov/29903993/

1060

Morgan-Bathke ME, Jensen MD. Preliminary evidence for reduced adipose tissue inflammation in vegetarians compared with omnivores. Nutr J. 2019;18(1):45. https://pubmed.ncbi.nlm.nih.gov/31405384/

1061

Hegsted DM. Dietary goals – a progressive view. Am J Clin Nutr. 1978;31(9):1504–9. https://pubmed.ncbi.nlm.nih.gov/28662/

1062

Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/

1063

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1064

Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol. 2021;143:111162. https://pubmed.ncbi.nlm.nih.gov/33253807/

1065

Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. https://pubmed.ncbi.nlm.nih.gov/15479938/

1066

Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res. 2012;61(8):789–807. https://pubmed.ncbi.nlm.nih.gov/22588278/

1067

Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/

1068

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1069

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1070

Egger G, Dixon J. Non-nutrient causes of low-grade, systemic inflammation: support for a ‘canary in the mineshaft’ view of obesity in chronic disease. Obes Rev. 2011;12(5):339–45. https://pubmed.ncbi.nlm.nih.gov/20701689/

1071

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1072

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1073

Ryu S, Shivappa N, Veronese N, et al. Secular trends in Dietary Inflammatory Index among adults in the United States, 1999–2014. Eur J Clin Nutr. 2019;73(10):1343–51. https://pubmed.ncbi.nlm.nih.gov/30542148/

1074

Xu H, Sjögren P, Ärnlöv J, et al. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr. 2015;145(4):729–35. https://pubmed.ncbi.nlm.nih.gov/25833776/

1075

Han YY, Forno E, Shivappa N, Wirth MD, Hébert JR, Celedón JC. The Dietary Inflammatory Index and current wheeze among children and adults in the United States. J Allergy Clin Immunol Pract. 2018;6(3):834–41. https://pubmed.ncbi.nlm.nih.gov/29426751/

1076

Cantero I, Abete I, Babio N, et al. Dietary Inflammatory Index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr. 2018;37(5):1736–43. https://pubmed.ncbi.nlm.nih.gov/28734553/

1077

Shivappa N, Godos J, Hébert JR, et al. Dietary Inflammatory Index and cardiovascular risk and mortality – a meta-analysis. Nutrients. 2018;10(2):200. https://pubmed.ncbi.nlm.nih.gov/29439509/

1078

Shivappa N, Wirth MD, Hurley TG, Hébert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey—1999–2002. Mol Nutr Food Res. 2017;61(4). https://pubmed.ncbi.nlm.nih.gov/29675557/

1079

García-Calzón S, Zalba G, Ruiz-Canela M, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102(4):897–904. https://pubmed.ncbi.nlm.nih.gov/26354530/

1080

Shivappa N, Stubbs B, Hébert JR, et al. The relationship between the Dietary Inflammatory Index and incident frailty: a longitudinal cohort study. J Am Med Dir Assoc. 2018;19(1):77–82. https://pubmed.ncbi.nlm.nih.gov/28943182/

1081

Cervo MMC, Scott D, Seibel MJ, et al. Proinflammatory diet increases circulating inflammatory biomarkers and falls risk in community-dwelling older men. J Nutr. 2020;150(2):373–81. https://pubmed.ncbi.nlm.nih.gov/31665502/

1082

Kheirouri S, Alizadeh M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol Rev. 2019;41(1):109–20. https://pubmed.ncbi.nlm.nih.gov/31565731/

1083

Phillips CM, Shivappa N, Hébert JR, Perry IJ. Dietary inflammatory index and mental health: a cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin Nutr. 2018;37(5):1485–91. https://pubmed.ncbi.nlm.nih.gov/28912008/

1084

Godos J, Ferri R, Caraci F, et al. Dietary inflammatory index and sleep quality in southern Italian adults. Nutrients. 2019;11(6):1324. https://pubmed.ncbi.nlm.nih.gov/31200445/

1085

Shivappa N, Jackson MD, Bennett F, Hébert JR. Increased dietary inflammatory index (DII) is associated with increased risk of prostate cancer in Jamaican men. Nutr Cancer. 2015;67(6):941–8. https://pubmed.ncbi.nlm.nih.gov/29439509/

1086

Shivappa N, Hébert JR, Jalilpiran Y, Faghih S. Association between dietary inflammatory index and prostate cancer in Shiraz province of Iran. Asian Pac J Cancer Prev. 2018;19(2):415–20. https://pubmed.ncbi.nlm.nih.gov/29479991/

1087

Shivappa N, Miao Q, Walker M, Hébert JR, Aronson KJ. Association between a dietary inflammatory index and prostate cancer risk in Ontario, Canada. Nutr Cancer. 2017;69(6):825–32. https://pubmed.ncbi.nlm.nih.gov/28718711/

1088

Huang WQ, Mo XF, Ye YB, et al. A higher Dietary Inflammatory Index score is associated with a higher risk of breast cancer among Chinese women: a case-control study. Br J Nutr. 2017;117(10):1358–67. https://pubmed.ncbi.nlm.nih.gov/32104043/

1089

Shivappa N, Sandin S, Löf M, Hébert JR, Adami HO, Weiderpass E. Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br J Cancer. 2015;113(7):1099–103. https://pubmed.ncbi.nlm.nih.gov/26335605/

1090

Shivappa N, Hébert JR, Zucchetto A, et al. Dietary inflammatory index and endometrial cancer risk in an Italian case-control study. Br J Nutr. 2016;115(1):138–46. https://pubmed.ncbi.nlm.nih.gov/26507451/

1091

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and ovarian cancer risk in a large Italian case-control study. Cancer Causes Control. 2016;27(7):897–906. https://pubmed.ncbi.nlm.nih.gov/27262447/

1092

Shivappa N, Zucchetto A, Serraino D, Rossi M, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of esophageal squamous cell cancer in a case-control study from Italy. Cancer Causes Control. 2015;26(10):1439–47. https://pubmed.ncbi.nlm.nih.gov/26208592/

1093

Shivappa N, Hébert JR, Ferraroni M, La Vecchia C, Rossi M. Association between dietary inflammatory index and gastric cancer risk in an Italian case-control study. Nutr Cancer. 2016;68(8):1262–8. https://pubmed.ncbi.nlm.nih.gov/27636679/

1094

Shivappa N, Hébert JR, Polesel J, et al. Inflammatory potential of diet and risk for hepatocellular cancer in a case-control study from Italy. Br J Nutr. 2016;115(2):324–31. https://pubmed.ncbi.nlm.nih.gov/26556602/

1095

Shivappa N, Bosetti C, Zucchetto A, Serraino D, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of pancreatic cancer in an Italian case-control study. Br J Nutr. 2015;113(2):292–8. https://pubmed.ncbi.nlm.nih.gov/25515552/

1096

Shivappa N, Godos J, Hébert JR, et al. Dietary inflammatory index and colorectal cancer risk – a meta-analysis. Nutrients. 2017 Sep 20;9(9):1043. https://pubmed.ncbi.nlm.nih.gov/28930191/

1097

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and renal cell carcinoma risk in an Italian case-control study. Nutr Cancer. 2017;69(6):833–9. https://pubmed.ncbi.nlm.nih.gov/28718670/

1098

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and risk of bladder cancer in a large Italian case-control study. Urology. 2017;100:84–9. https://pubmed.ncbi.nlm.nih.gov/27693878/

1099

Shivappa N, Hébert JR, Taborelli M, et al. Dietary inflammatory index and non-Hodgkin lymphoma risk in an Italian case-control study. Cancer Causes Control. 2017;28(7):791–9. https://pubmed.ncbi.nlm.nih.gov/28503716/

1100

Fowler ME, Akinyemiju TF. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int J Cancer. 2017;141(11):2215–27. https://pubmed.ncbi.nlm.nih.gov/28795402/

1101

Shivappa N, Hebert JR, Kivimaki M, Akbaraly T. Alternate Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br J Nutr. 2017;118(3):210–21. https://pubmed.ncbi.nlm.nih.gov/28831955/

1102

Edwards MK, Shivappa N, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. The association between physical activity and dietary inflammatory index on mortality risk in U.S. adults. Phys Sportsmed. 2018;46(2):249–54. https://pubmed.ncbi.nlm.nih.gov/29463180/

1103

Shivappa N, Harris H, Wolk A, Hebert JR. Association between inflammatory potential of diet and mortality among women in the Swedish Mammography Cohort. Eur J Nutr. 2016;55(5):1891–900. https://pubmed.ncbi.nlm.nih.gov/26227485/

1104

Shivappa N, Blair CK, Prizment AE, Jacobs DR, Steck SE, Hébert JR. Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur J Nutr. 2016;55(4):1491–502. https://pubmed.ncbi.nlm.nih.gov/26130324/

1105

Tomata Y, Shivappa N, Zhang S, et al. Dietary inflammatory index and disability-free survival in community-dwelling older adults. Nutrients. 2018;10(12):1896. https://pubmed.ncbi.nlm.nih.gov/30513971/

1106

Garcia-Arellano A, Martínez-González MA, Ramallal R, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38(3):1221–31. https://pubmed.ncbi.nlm.nih.gov/30651193/

1107

Nilsson MI, Bourgeois JM, Nederveen JP, et al. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One. 2019;14(1):e0210863. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210863

1108

Bautmans I, Salimans L, Njemini R, Beyer I, Lieten S, Liberman K. The effects of exercise interventions on the inflammatory profile of older adults: a systematic review of the recent literature. Exp Gerontol. 2021;146:111236. https://pubmed.ncbi.nlm.nih.gov/33453323/

1109

Ferrer MD, Capó X, Martorell M, et al. Regular practice of moderate physical activity by older adults ameliorates their anti-inflammatory status. Nutrients. 2018;10(11):1780. https://pubmed.ncbi.nlm.nih.gov/30453505/

1110

Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–8. https://pubmed.ncbi.nlm.nih.gov/30418471/

1111

Harvard T.H. Chan School of Public Health. Top food sources of saturated fat in the U.S. https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf. Accessed November 23, 2021.; https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf

1112

Exler J, Lemar L, Smith J. Fat and fatty acid content of selected foods containing trans-fatty acids: special purpose table no. 1. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf. Published January 1996. Accessed June 20, 2021.; https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf

1113

Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4. https://pubmed.ncbi.nlm.nih.gov/9036757/

1114

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1115

Kesteloot HE, Sasaki S. Nutrition and the aging process: a population study. Am J Geriatr Cardiol. 1994;3(2):8–19. https://pubmed.ncbi.nlm.nih.gov/11416305/

1116

Emerson SR, Kurti SP, Harms CA, et al. Magnitude and timing of the postprandial inflammatory response to a high-fat meal in healthy adults: a systematic review. Adv Nutr. 2017;8(2):213–25. https://pubmed.ncbi.nlm.nih.gov/28298267/

1117

Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12. https://pubmed.ncbi.nlm.nih.gov/10335721/

1118

Jonnalagadda SS, Egan SK, Heimbach JT, et al. Fatty acid consumption pattern of Americans: 1987–1988 USDA Nationwide Food Consumption Survey. Nutr Res. 1995;15(12):1767–81. https://agris.fao.org/agris-search/search.do?recordID=US19970167025

1119

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/

1120

Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–32. https://pubmed.ncbi.nlm.nih.gov/31363792/

1121

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1122

Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/

1123

Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/

1124

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1125

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1126

Одна американская унция = 28,3 грамма, но в данном случае это метафора, а не точное количество. – Примеч. ред.

1127

Wassenaar TM, Zimmermann K. Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol (Bp). 2018;8(3):63–9. https://pubmed.ncbi.nlm.nih.gov/30345085/

1128

Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7. https://pubmed.ncbi.nlm.nih.gov/18815435/

1129

Ghezzal S, Postal BG, Quevrain E, et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158530. https://pubmed.ncbi.nlm.nih.gov/31647994/

1130

Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/

1131

Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/

1132

Cho B, Kim MS, Chao K, Lawrence K, Park B, Kim K. Detection of fecal residue on poultry carcasses by laser-induced fluorescence imaging. J Food Sci. 2009;74(3):E154–9. https://pubmed.ncbi.nlm.nih.gov/19397721/

1133

Giombelli A, Gloria MB. Prevalence of Salmonella and Campylobacter on broiler chickens from farm to slaughter and efficiency of methods to remove visible fecal contamination. J Food Prot. 2014;77(11):1851–9. https://pubmed.ncbi.nlm.nih.gov/25364917/

1134

Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/

1135

Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/

1136

Tournas VH. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol. 2005;31(1):33–44. https://pubmed.ncbi.nlm.nih.gov/15839403/

1137

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1138

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1139

Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/

1140

Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(11):e016863. https://pubmed.ncbi.nlm.nih.gov/29170286/

1141

Chen CYO, Holbrook M, Duess MA, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. Nutr J. 2015;14:61. https://pubmed.ncbi.nlm.nih.gov/26080804/

1142

Li Z, Wong A, Henning SM, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013;4(3):384–91. https://pubmed.ncbi.nlm.nih.gov/23196671/

1143

Haskins CP, Henderson G, Champ CE. Meat, eggs, full-fat dairy, and nutritional boogeymen: does the way in which animals are raised affect health differently in humans? Crit Rev Food Sci Nutr. 2019;59(17):2709–19. https://pubmed.ncbi.nlm.nih.gov/29672133/

1144

Eaton SB. Humans, lipids and evolution. Lipids. 1992;27(10):814–20. https://pubmed.ncbi.nlm.nih.gov/1435101/

1145

Arya F, Egger S, Colquhoun D, Sullivan D, Pal S, Egger G. Differences in postprandial inflammatory responses to a ‘modern’ v. traditional meat meal: a preliminary study. Br J Nutr. 2010;104(5):724–8. https://pubmed.ncbi.nlm.nih.gov/20377925/

1146

Wang Y, Lehane C, Ghebremeskel K, et al. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr. 2010;13(3):400–8. https://pubmed.ncbi.nlm.nih.gov/19728900/

1147

Kollander B, Widemo F, Ågren E, Larsen EH, Löschner K. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets. Anal Bioanal Chem. 2017;409(7):1877–85. https://pubmed.ncbi.nlm.nih.gov/27966171/

1148

Metryka E, Chibowska K, Gutowska I, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci. 2018;19(6):1813. https://pubmed.ncbi.nlm.nih.gov/29925772/

1149

Хронически повышенный уровень LPS, вызванный высококалорийной диетой. – Примеч. ред.

1150

Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/

1151

National Cancer Institute. Identification of top food sources of various dietary components. Epidemiology and Genomics Research Program website. https://epi.grants.cancer.gov/diet/foodsources. Updated November 30, 2019. Accessed June 20, 2021.; https://epi.grants.cancer.gov/diet/foodsources

1152

Ghanim H, Batra M, Abuaysheh S, et al. Antiinflammatory and ROS suppressive effects of the addition of fiber to a high-fat high-calorie meal. J Clin Endocrinol Metab. 2017;102(3):858–69. https://pubmed.ncbi.nlm.nih.gov/27906549/

1153

Simon AH, Lima PR, Almerinda M, Alves VF, Bottini PV, de Faria JB. Renal haemodynamic responses to a chicken or beef meal in normal individuals. Nephrol Dial Transplant. 1998;13(9):2261–4. https://pubmed.ncbi.nlm.nih.gov/9761506/

1154

Kontessis P, Jones S, Dodds R, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990 Jul;38(1):136–44. https://pubmed.ncbi.nlm.nih.gov/2166857/

1155

Liu Z, Ho SC, Chen Y, Tang N, Woo J. Effect of whole soy and purified isoflavone daidzein on renal function – a 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin Biochem. 2014;47(13–14):1250–6. https://pubmed.ncbi.nlm.nih.gov/24877660/

1156

Fioretto P, Trevisan R, Valerio A, et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. Am J Physiol. 1990;258(3 Pt 2):F675–83. https://pubmed.ncbi.nlm.nih.gov/2316671/

1157

N-гликолилнейраминовая кислота. – Примеч. ред.

1158

Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun. 2017;83:134–42. https://pubmed.ncbi.nlm.nih.gov/28755952/

1159

Pham T, Gregg CJ, Karp F, et al. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009;114(25):5225–35. https://pubmed.ncbi.nlm.nih.gov/19828701/

1160

Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/

1161

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1162

Samraj AN, Pearce OMT, Läubli H, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542–7. https://pubmed.ncbi.nlm.nih.gov/25548184/

1163

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1164

Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/

1165

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1166

Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/

1167

Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/

1168

MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/

1169

Yi B, Titze J, Rykova M, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166(1):103–10. https://pubmed.ncbi.nlm.nih.gov/25497276/

1170

Mickleborough TD, Lindley MR, Ray S. Dietary salt, airway inflammation, and diffusion capacity in exercise-induced asthma. Med Sci Sports Exerc. 2005;37(6):904–14. https://pubmed.ncbi.nlm.nih.gov/15947713/

1171

Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. https://pubmed.ncbi.nlm.nih.gov/28556498/

1172

Krajina I, Stupin A, Šola M, Mihalj M. Oxidative stress induced by high salt diet – possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants (Basel). 2022;11(7):1269. https://pubmed.ncbi.nlm.nih.gov/35883760/

1173

Carranza-León DA, Oeser A, Marton A, et al. Tissue sodium content in patients with systemic lupus erythematosus: association with disease activity and markers of inflammation. Lupus. 2020;29(5):455–62. https://pubmed.ncbi.nlm.nih.gov/32070186/

1174

Jung SM, Kim Y, Kim J, et al. Sodium chloride aggravates arthritis via Th17 polarization. Yonsei Med J. 2019;60(1):88–97. https://pubmed.ncbi.nlm.nih.gov/30554495/

1175

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1176

United States Department of Health and Human Services, United States Department of Agriculture. Appendix 13. Food sources of dietary fiber. In: 2015–2020 Dietary Guidelines for Americans. 8th ed. DietaryGuidelines.gov. 2015:114–8.; https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015

1177

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/

1178

Haytowitz DB, Bhagwat S, Harnly J, Holden JM, Gebhardt SE. Sources of flavonoids in the U.S. diet using USDA’s updated database on the flavonoid content of selected foods. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf. Published 2006. Accessed July 20, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf

1179

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/

1180

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. In: Alt FW, ed. Advances in Immunology. Vol 121. Academic Press, Elsevier; 2014:91–119. https://pubmed.ncbi.nlm.nih.gov/24388214/

1181

Pukatzki S, Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 2013;4. https://pubmed.ncbi.nlm.nih.gov/24368907/

1182

Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52. https://pubmed.ncbi.nlm.nih.gov/24390544/

1183

McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/

1184

Nilsson AC, Östman EM, Knudsen KEB, Holst JJ, Björck IME. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr. 2010;140(11):1932–6. https://pubmed.ncbi.nlm.nih.gov/20810606/

1185

Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://pubmed.ncbi.nlm.nih.gov/20823773/

1186

Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/

1187

Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/

1188

Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831926/

1189

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434-45. https://pubmed.ncbi.nlm.nih.gov/30638909/

1190

Brewer RA, Gibbs VK, Smith DL Jr. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/

1191

Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39. https://pubmed.ncbi.nlm.nih.gov/25327485/

1192

Zhang X, Fang Z, Zhang C, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380489/

1193

Wolever TMS, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr. 2000;84(1):57–61. https://pubmed.ncbi.nlm.nih.gov/10961161/

1194

McCay CM, Ku CC, Woodward JC, Sehgal BS. Cellulose in the diet of rats and mice: two figures. J Nutr. 1934;8(4):435–47. https://academic.oup.com/jn/article-abstract/8/4/435/4727178

1195

Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19(1):130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567620/

1196

Hovey AL, Jones GP, Devereux HM, Walker KZ. Whole cereal and legume seeds increase faecal short chain fatty acids compared to ground seeds. Asia Pac J Clin Nutr. 2003;12(4):477–82. https://pubmed.ncbi.nlm.nih.gov/14672874/

1197

Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/

1198

Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/

1199

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1200

Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/

1201

Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/

1202

Säemann MD, Böhmig GA, Österreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2. https://pubmed.ncbi.nlm.nih.gov/11024006/

1203

Vitaglione P, Mennella I, Ferracane R, et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr. 2015;101(2):251–61. https://pubmed.ncbi.nlm.nih.gov/25646321/

1204

Kohl A, Gögebakan Ö, Möhlig M, et al. Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-ß-glycan consumption in overweight humans. Nutr Res. 2009;29(4):248–54. https://pubmed.ncbi.nlm.nih.gov/19410976/

1205

Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn’s disease. Scand J Gastroenterol. 1992;27(3):196–200. https://pubmed.ncbi.nlm.nih.gov/1502481/

1206

Cannistrà C, Finocchi V, Trivisonno A, Tambasco D. New perspectives in the treatment of hidradenitis suppurativa: surgery and brewer’s yeast-exclusion diet. Surgery. 2013;154(5):1126–30. https://pubmed.ncbi.nlm.nih.gov/23891479/

1207

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1208

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1209

Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27. https://pubmed.ncbi.nlm.nih.gov/23865797/

1210

Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/

1211

Sutliffe JT, Wilson LD, de Heer HD, Foster RL, Carnot MJ. C-reactive protein response to a vegan lifestyle intervention. Complement Ther Med. 2015;23(1):32–7. https://pubmed.ncbi.nlm.nih.gov/25637150/

1212

Macknin M, Kong T, Weier A, et al. Plant-based, no-added-fat or American Heart Association diets: impact on cardiovascular risk in obese children with hypercholesterolemia and their parents. J Pediatr. 2015;166(4):953–9.e1–3. https://pubmed.ncbi.nlm.nih.gov/25684089/

1213

Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/

1214

Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005;82(5):1052–8. https://pubmed.ncbi.nlm.nih.gov/16280438/

1215

Lee-Kwan SH, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in state-specific adult fruit and vegetable consumption – United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:1241–7. https://pubmed.ncbi.nlm.nih.gov/29145355/

1216

Baden MY, Satija A, Hu FB, Huang T. Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J Nutr. 2019;149(4):676–86. https://pubmed.ncbi.nlm.nih.gov/30927000/

1217

Ricker MA, Haas WC. Anti-inflammatory diet in clinical practice: a review. Nutr Clin Pract. 2017;32(3):318–25. https://pubmed.ncbi.nlm.nih.gov/28350517/

1218

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1219

Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor a: a meta-analysis. PLoS ONE. 2014;9(2):e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/

1220

Agricultural Research Service, United States Department of Agriculture. Search results: PUFA 22:6 n-3 (DHA) (g). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/?component=1272. Published April 1, 2019. Accessed July 19, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1272

1221

Stella AB, Cappellari GG, Barazzoni R, Zanetti M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: a review. Int J Mol Sci. 2018;19(1):218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796167/

1222

Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://pubmed.ncbi.nlm.nih.gov/28992469/

1223

Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/

1224

Raymond MR, Christensen KY, Thompson BA, Anderson HA. Associations between fish consumption and contaminant biomarkers with cardiovascular conditions among older male anglers in Wisconsin. J Occup Environ Med. 2016;58(7):676–82. https://pubmed.ncbi.nlm.nih.gov/27253229/

1225

Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70. https://pubmed.ncbi.nlm.nih.gov/27358416/

1226

Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/

1227

Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–81. https://pubmed.ncbi.nlm.nih.gov/26016863/

1228

Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/

1229

Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/

1230

Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://pubmed.ncbi.nlm.nih.gov/24858007/

1231

Franzini L, Ardigi D, Valtueña S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/20674303/

1232

Sun CH, Li Y, Zhang YB, Wang F, Zhou XL, Wang F. The effect of vitamin – mineral supplementation on CRP and IL-6: a systemic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(8):576–83. https://pubmed.ncbi.nlm.nih.gov/20399082/

1233

Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. https://pubmed.ncbi.nlm.nih.gov/31669599/

1234

do Rosario VA, Chang C, Spencer J, et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr. 2021;40(3):879–89. https://pubmed.ncbi.nlm.nih.gov/33071012/

1235

O’Hara C, Ojo B, Emerson SR, et al. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes. Nutr Metab Insights. 2019;12:1178638819869946. https://pubmed.ncbi.nlm.nih.gov/31452602/

1236

Wang P, Zhang Q, Hou H, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: a meta-analysis and systematic review. Complement Ther Med. 2020;49:102358. https://pubmed.ncbi.nlm.nih.gov/32147056/

1237

Aptekmann NP, Cesar TB. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67(4):343–7. https://pubmed.ncbi.nlm.nih.gov/20729016/

1238

McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011;36(6):976–84. https://pubmed.ncbi.nlm.nih.gov/22111516/

1239

Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83. https://pubmed.ncbi.nlm.nih.gov/16790484/

1240

Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71. https://pubmed.ncbi.nlm.nih.gov/17156994/

1241

Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/

1242

McHugh M. The health benefits of cherries and potential applications in sports. Scand J Med Sci Sports. 2011;21(5):615–6. https://pubmed.ncbi.nlm.nih.gov/21917014/

1243

Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/

1244

Overman T. Pegloticase: a new treatment for gout. Pharmacotherapy Update. 2011;14(2):1–3. https://pubmed.ncbi.nlm.nih.gov/29204266/

1245

Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). 2010;48(5):407–14. https://pubmed.ncbi.nlm.nih.gov/20586571/

1246

Fritsch PO, Sidoroff A. Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Am J Clin Dermatol. 2000;1(6):349–60. https://pubmed.ncbi.nlm.nih.gov/11702611/

1247

Wang M, Jiang X, Wu W, Zhang D. A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol. 2013;32(11):1641–8. https://pubmed.ncbi.nlm.nih.gov/23881436/

1248

Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53. https://pubmed.ncbi.nlm.nih.gov/22648933/

1249

Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10:21736. https://pubmed.ncbi.nlm.nih.gov/33303765/

1250

Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/

1251

Tran E, Dale HF, Jensen C, Lied GA. Effects of plant-based diets on weight status: a systematic review. Diabetes Metab Syndr Obes. 2020;13:3433–48. https://pubmed.ncbi.nlm.nih.gov/33061504/

1252

Shah B, Newman JD, Woolf K, et al. Anti-inflammatory effects of a vegan diet versus the American Heart Association – recommended diet in coronary artery disease trial. J Am Heart Assoc. 2018;7(23):e011367. https://pubmed.ncbi.nlm.nih.gov/30571591/

1253

Margolis KL, Manson JE, Greenland P, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165(5):500–8. https://pubmed.ncbi.nlm.nih.gov/15767524/

1254

Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/

1255

Gkrania-Klotsas E, Ye Z, Cooper AJ, et al. Differential white blood cell count and type 2 diabetes: systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One. 2010;5(10):e13405. https://pubmed.ncbi.nlm.nih.gov/20976133/

1256

Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/

1257

de Labry LO, Campion EW, Glynn RJ, Vokonas PS. White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J Clin Epidemiol. 1990;43(2):153–7. https://pubmed.ncbi.nlm.nih.gov/2303845/

1258

Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med. 2004;116(3):145–50. https://pubmed.ncbi.nlm.nih.gov/14749157/

1259

Swanson E. Prospective clinical study reveals significant reduction in triglyceride level and white blood cell count after liposuction and abdominoplasty and no change in cholesterol levels. Plast Reconstr Surg. 2011;128(3):182e-97e. https://pubmed.ncbi.nlm.nih.gov/21865992/

1260

Domene PA, Moir HJ, Pummell E, Knox A, Easton C. The health-enhancing efficacy of Zumba® fitness: an 8-week randomised controlled study. J Sports Sci. 2016;34(15):1396–404. https://pubmed.ncbi.nlm.nih.gov/26571136/

1261

Kjeldsen-Kragh J. Rheumatoid arthritis treated with vegetarian diets. Am J Clin Nutr. 1999;70(3 Suppl):594S-600S. https://pubmed.ncbi.nlm.nih.gov/10479237/

1262

Schultz H, Ying GS, Dunaief JL, Dunaief DM. Rising plasma beta-carotene is associated with diminishing C-reactive protein in patients consuming a dark green leafy vegetable – rich, Low Inflammatory Foods Everyday (LIFE) diet. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827619894954. Published December 21, 2019. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/34916884/

1263

Perzia B, Ying GS, Dunaief JL, Dunaief DM. Once-daily Low Inflammatory Foods Everyday (LIFE) smoothie or the full LIFE diet lowers C-reactive protein and raises plasma beta-carotene in 7 days. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827620962458. Published October 5, 2020. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/36389047/

1264

Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of ß-carotene and to a lesser extent of lutein in humans. J Nutr. 1999;129(2):349–55. https://pubmed.ncbi.nlm.nih.gov/10024612/

1265

Lin KH, Hsu CY, Huang YP, et al. Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells. J Med Food. 2013;16(10):886–98. https://pubmed.ncbi.nlm.nih.gov/24066944/

1266

Subramoniam A, Asha VV, Nair SA, et al. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-a gene by the same. Inflammation. 2012;35(3):959–66. https://pubmed.ncbi.nlm.nih.gov/22038065/

1267

Jiang Y, Wu SH, Shu XO, et al. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J Acad Nutr Diet. 2014;114(5):700–8.e2. https://pubmed.ncbi.nlm.nih.gov/25165394/

1268

Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6. https://pubmed.ncbi.nlm.nih.gov/21593509/

1269

Navarro SL, Schwarz Y, Song X, et al. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr. 2014;144(11):1850–7. https://pubmed.ncbi.nlm.nih.gov/25165394/

1270

López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38(2):745–52. https://pubmed.ncbi.nlm.nih.gov/29573889/

1271

Bentley J. Potatoes and tomatoes account for over half of U.S. vegetable availability. Economic Research Service, United States Department of Agriculture. https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability. Published September 8, 2015. Accessed June 20, 2021.; https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability/

1272

Ghavipour M, Saedisomeolia A, Djalali M, et al. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr. 2013;109(11):2031–5. https://pubmed.ncbi.nlm.nih.gov/23069270/

1273

Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56(4):622–31. https://pubmed.ncbi.nlm.nih.gov/22331646/

1274

Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J. 2009;11(10):598–601. https://pubmed.ncbi.nlm.nih.gov/20077945/

1275

Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/

1276

World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. American Institute for Cancer Research; 2007. https://www.researchgate.net/publication/315725512_Food_Nutrition_Physical_Activity_and_the_Prevention_of_Cancer_A_Global_Perspective_Summary

1277

American Heart Association. Types of whole grains. Heart.org. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains. Published January 1, 2015. Accessed November 5, 2021.; https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains

1278

Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/

1279

Jacobs DR, Andersen LF, Blomhoff R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2007;85(6):1606–14. https://pubmed.ncbi.nlm.nih.gov/17556700/

1280

Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/

1281

Afshin A, Sun PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

1282

Yu Z, Malik VS, Keum NN, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104(3):722–8. https://pubmed.ncbi.nlm.nih.gov/27465378/

1283

Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/

1284

Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/

1285

Xiao Y, Xia J, Ke Y, et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–43. https://pubmed.ncbi.nlm.nih.gov/29852452/

1286

Eftekhar Sadat B, Khadem Haghighian M, Alipoor B, Malek Mahdavi A, Asghari Jafarabadi M, Moghaddam A. Effects of sesame seed supplementation on clinical signs and symptoms in patients with knee osteoarthritis. Int J Rheum Dis. 2013;16(5):578–82. https://pubmed.ncbi.nlm.nih.gov/24164846/

1287

Rodriguez-Leyva D, Weighell W, Edel AL, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081–9. https://pubmed.ncbi.nlm.nih.gov/24126178/

1288

Rahimlou M, Jahromi NB, Hasanyani N, Ahmadi AR. Effects of flaxseed interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(6):1108–19. https://pubmed.ncbi.nlm.nih.gov/31115436/

1289

Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313(5):H903–18. https://pubmed.ncbi.nlm.nih.gov/28801523/

1290

Caligiuri SPB, Aukema HM, Ravandi A, Pierce GN. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp Gerontol. 2014;59:51–7. https://pubmed.ncbi.nlm.nih.gov/24747581/

1291

Srinivasan K. Anti-inflammatory influences of culinary spices and their bioactives. Food Rev Int. 2020;Nov:1–17. https://www.tandfonline.com/doi/abs/10.1080/87559129.2020.1839761?journalCode=lfri20

1292

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1293

Allijn IE, Vaessen SF, Quarles van Ufford LC, et al. Head-to-head comparison of anti-inflammatory performance of known natural products in vitro. PLoS ONE. 2016;11(5):e0155325. https://pubmed.ncbi.nlm.nih.gov/27163931/

1294

Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19(8):717–29. https://pubmed.ncbi.nlm.nih.gov/27533649/

1295

Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J Clin Diagn Res. 2014;8(8):HC19–24. https://pubmed.ncbi.nlm.nih.gov/25302215/

1296

Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8. https://pubmed.ncbi.nlm.nih.gov/23038702/

1297

Garg SK, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424. https://pubmed.ncbi.nlm.nih.gov/23076948/

1298

Khajehdehi P, Zanjaninejad B, Aflaki E, et al. Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J Ren Nutr. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/21742514/

1299

Vors C, Couillard C, Paradis ME, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr. 2018;148(3):379–88. https://pubmed.ncbi.nlm.nih.gov/29546309/

1300

Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. https://pubmed.ncbi.nlm.nih.gov/27392742/

1301

Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-a levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:234–42. https://pubmed.ncbi.nlm.nih.gov/27025786/

1302

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1303

Morvaridzadeh M, Fazelian S, Agah S, et al. Effect of ginger (Zingiber officinale) on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Cytokine. 2020;135:155224. https://pubmed.ncbi.nlm.nih.gov/32763761/

1304

Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene. 2019;698:179–185. https://pubmed.ncbi.nlm.nih.gov/30844477/

1305

Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoar Cartil. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/

1306

Haghighi M, Khalvat A, Toliat T, Jallaei SH. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med. 2005;8(4):267–71. https://www.researchgate.net/publication/235007127_Comparing_the_Effects_of_ginger_Zingiber_officinale_extract_and_ibuprofen_On_patients_with_osteoarthritis

1307

Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct. 2013;4(6):845–55. https://pubmed.ncbi.nlm.nih.gov/23612703/

1308

Caunedo-Alvarez A, Gómez-Rodríguez BJ, Romero-Vázquez J, et al. Macroscopic small bowel mucosal injury caused by chronic nonsteroidal anti-inflammatory drugs (NSAID) use as assessed by capsule endoscopy. Rev Esp Enferm Dig. 2010;102(2):80–5. https://pubmed.ncbi.nlm.nih.gov/20361843/

1309

Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytother Res. 2014;28(3):412–5. https://pubmed.ncbi.nlm.nih.gov/23657930/

1310

Kashefi F, Khajehei M, Alavinia M, Golmakani E, Asili J. Effect of ginger (Zingiber officinale) on heavy menstrual bleeding: a placebo-controlled, randomized clinical trial. Phytother Res. 2015;29(1):114–9. https://pubmed.ncbi.nlm.nih.gov/25298352/

1311

Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127(2):515–20. https://pubmed.ncbi.nlm.nih.gov/19833188/

1312

Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating C-reactive protein, tumor necrosis factor, and interleukin-6 in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2019;149(4):605–18. https://pubmed.ncbi.nlm.nih.gov/30949665/

1313

Moosavian SP, Paknahad Z, Habibagahi Z, Maracy M. The effects of garlic (Allium sativum) supplementation on inflammatory biomarkers, fatigue, and clinical symptoms in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2020;34(11):2953–62. https://pubmed.ncbi.nlm.nih.gov/32478922/

1314

Taghizadeh M, Hamedifard Z, Jafarnejad S. Effect of garlic supplementation on serum C-reactive protein level: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33(2):243–52. https://pubmed.ncbi.nlm.nih.gov/30370629/

1315

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

1316

Payahoo L, Ostadrahimi A, Mobasseri M, et al. Anethum graveolens L. supplementation has anti-inflammatory effect in type 2 diabetic patients. Indian J Tradit Knowl. 2014:13(3):461–5.; https://www.researchgate.net/publication/267032371_Anethum_graveolens_L_supplementation_has_anti-inflammatory_effect_in_type_2_diabetic_patients

1317

Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/

1318

Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum Zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/

1319

Vázquez-Agell M, Urpi-Sarda M, Sacanella E, et al. Cocoa consumption reduces NF-¿B activation in peripheral blood mononuclear cells in humans. Nutr Metab Cardiovasc Dis. 2013;23(3):257–63. https://pubmed.ncbi.nlm.nih.gov/21824756/

1320

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1321

Eshghpour M, Mortazavi H, Mohammadzadeh Rezaei NM, Nejat AH. Effectiveness of green tea mouthwash in postoperative pain control following surgical removal of impacted third molars: double blind randomized clinical trial. Daru. 2013;21(1):59. https://pubmed.ncbi.nlm.nih.gov/23866761/

1322

Sridharan S, Archer N, Manning N. Premature constriction of the fetal ductus arteriosus following the maternal consumption of camomile herbal tea. Ultrasound Obstet Gynecol. 2009;34(3):358–9. https://pubmed.ncbi.nlm.nih.gov/19705407/

1323

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-Activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

1324

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1325

Fuster V, Sweeny JM. Aspirin: a historical and contemporary therapeutic overview. Circulation. 2011;123(7):768–78. https://pubmed.ncbi.nlm.nih.gov/21343593/

1326

Saad M, Abdelaziz HK, Mehta JL. Aspirin for primary prevention in the elderly. Aging (Albany NY). 2019;11(17):6618–9. https://pubmed.ncbi.nlm.nih.gov/31492828/

1327

Patrono C, Baigent C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol. 2019;16(11):675–86. https://pubmed.ncbi.nlm.nih.gov/31243390/

1328

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1329

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1330

Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/

1331

Knutsen SF. Lifestyle and the use of health services. Am J Clin Nutr. 1994;59(5 Suppl):1171S-5S. https://pubmed.ncbi.nlm.nih.gov/8172119/

1332

McCarty MF. Dietary nitrate and reductive polyphenols may potentiate the vascular benefit and alleviate the ulcerative risk of low-dose aspirin. Med Hypotheses. 2013;80(2):186–90. https://pubmed.ncbi.nlm.nih.gov/23265354/

1333

Scheier L. Salicylic acid: one more reason to eat your fruits and vegetables. J Am Diet Assoc. 2001;101(12):1406–8. https://pubmed.ncbi.nlm.nih.gov/11762733/

1334

Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/

1335

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1336

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1337

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1338

Keszycka PK, Szkop M, Gajewska D. Overall content of salicylic acid and salicylates in food available on the European market. J Agric Food Chem. 2017;65(50):11085–91. https://pubmed.ncbi.nlm.nih.gov/29182277/

1339

Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/

1340

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1341

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1342

Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/

1343

Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/

1344

Популярное индийское блюдо, завезенное в Гоа португальскими моряками. – Примеч. ред.

1345

Традиционные индийские блюда, приправленные куркумой, перцем чили, чесноком, кумином, кориандром, имбирем, тамариндом, лимонной кислотой, растительным маслом, уксусом и солью. – Примеч. ред.

1346

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1347

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1348

Pasche B, Wang M, Pennison M, Jimenez H. Prevention and treatment of cancer with aspirin: where do we stand? Semin Oncol. 2014;41(3):397–401. https://pubmed.ncbi.nlm.nih.gov/25023355/

1349

Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/

1350

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1351

Pawelec G. Aging as an inflammatory disease and possible reversal strategies. J Allergy Clin Immunol. 2020;145(5):1355–6. https://pubmed.ncbi.nlm.nih.gov/32142747/

1352

Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/

1353

Assmann KE, Adjibade M, Shivappa N, et al. The inflammatory potential of the diet at midlife is associated with later healthy aging in French adults. J Nutr. 2018;148(3):437–44. https://pubmed.ncbi.nlm.nih.gov/29546305/

1354

Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/

1355

O’Keefe JH, Bell DSH. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol. 2007;100(5):899–904. https://pubmed.ncbi.nlm.nih.gov/17719342/

1356

Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. https://pubmed.ncbi.nlm.nih.gov/1102508/

1357

Garza-Lombó C, Gonsebatt ME. Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci. 2016;10:157. https://pubmed.ncbi.nlm.nih.gov/27378854/

1358

Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/

1359

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1360

Blagosklonny MV. TOR-driven aging: speeding car without brakes. Cell Cycle. 2009;8(24):4055–9. https://pubmed.ncbi.nlm.nih.gov/19923900/

1361

Schmeisser K, Parker JA. Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol. 2019;7. https://pubmed.ncbi.nlm.nih.gov/31572724/

1362

Vasunilashorn S, Finch CE, Crimmins EM, et al. Inflammatory gene variants in the Tsimane, an indigenous Bolivian population with a high infectious load. Biodemography Soc Biol. 2011;57(1):33–52. https://pubmed.ncbi.nlm.nih.gov/21845926/

1363

Huebbe P, Schloesser A, Rimbach G. A nutritional perspective on cellular rejuvenation. Oncotarget. 2015;6(16):13846–7. https://pubmed.ncbi.nlm.nih.gov/26116836/

1364

Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/

1365

Blagosklonny MV. Does rapamycin slow down time? Oncotarget. 2018;9(54):30210–2. https://pubmed.ncbi.nlm.nih.gov/30100983/

1366

Wei Y, Zhang YJ, Cai Y. Growth or longevity: the TOR’s decision on lifespan regulation. Biogerontology. 2013;14(4):353–63. https://pubmed.ncbi.nlm.nih.gov/23740528/

1367

Swindell WR. Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse. J Gerontol A Biol Sci Med Sci. 2017;72(8):1024–32. https://pubmed.ncbi.nlm.nih.gov/27519886/

1368

Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/

1369

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/

1370

Sharp ZD, Strong R. The role of mTOR signaling in controlling mammalian life span: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci. 2010;65A(6):580–9. https://pubmed.ncbi.nlm.nih.gov/20083554/

1371

Kaeberlein M, Kennedy BK. A midlife longevity drug? Nature. 2009;460(7253):331–2. https://pubmed.ncbi.nlm.nih.gov/19606132/

1372

Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/

1373

Arriola Apelo SI, Lamming DW. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci. 2016;71(7):841–9. https://pubmed.ncbi.nlm.nih.gov/27208895/

1374

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1375

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/

1376

Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23. https://pubmed.ncbi.nlm.nih.gov/15800227/

1377

Majumder S, Caccamo A, Medina DX, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1ß and enhancing NMDA signaling. Aging Cell. 2012;11(2):326–35. https://pubmed.ncbi.nlm.nih.gov/22212527/

1378

Wilkinson JE, Burmeister L, Brooks SV, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://pubmed.ncbi.nlm.nih.gov/22587563/

1379

An JY, Kerns KA, Ouellette A, et al. Rapamycin rejuvenates oral health in aging mice. Elife. 2020;9:e54318. https://pubmed.ncbi.nlm.nih.gov/32342860/

1380

Altschuler RA, Kanicki A, Martin C, Kohrman DC, Miller RA. Rapamycin but not acarbose decreases age-related loss of outer hair cells in the mouse cochlea. Hear Res. 2018;370:11–5. https://pubmed.ncbi.nlm.nih.gov/30245283/

1381

Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell. 2017;16(1):17–26. https://pubmed.ncbi.nlm.nih.gov/27660040/

1382

Zaseck LW, Miller RA, Brooks SV. Rapamycin attenuates age-associated changes in tibialis anterior tendon viscoelastic properties. J Gerontol A Biol Sci Med Sci. 2016;71(7):858–65. https://pubmed.ncbi.nlm.nih.gov/26809496/

1383

Dai DF, Karunadharma PP, Chiao YA, et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014;13(3):529–39. https://pubmed.ncbi.nlm.nih.gov/24612461/

1384

Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2016;71(7):876–81. https://pubmed.ncbi.nlm.nih.gov/27091134/

1385

Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. https://pubmed.ncbi.nlm.nih.gov/27549339/

1386

Urfer SR, Kaeberlein TL, Mailheau S, et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience. 2017;39(2):117–27. https://pubmed.ncbi.nlm.nih.gov/28374166/

1387

González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92. https://pubmed.ncbi.nlm.nih.gov/32130880/

1388

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1389

Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA. 2004;291(10):1226–30. https://pubmed.ncbi.nlm.nih.gov/15010444/

1390

Wazir U, Newbold RF, Jiang WG, Sharma AK, Mokbel K. Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol Rep. 2013;29(5):1969–74. https://pubmed.ncbi.nlm.nih.gov/23503572/

1391

Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31. https://pubmed.ncbi.nlm.nih.gov/21727255/

1392

Dar BA, Dar MA, Bashir S. Calorie restriction the fountain of youth. Food Nutr Sci. 2012;3(11):1522–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=24485

1393

Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7. https://pubmed.ncbi.nlm.nih.gov/16226298/

1394

Bourzac K. Interventions: live long and prosper. Nature. 2012;492(7427):S18–20. https://pubmed.ncbi.nlm.nih.gov/23222670/

1395

Nakagawa S, Lagisz M, Hector KL, Spencer HG. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell. 2012;11(3):401–9. https://pubmed.ncbi.nlm.nih.gov/22268691/

1396

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

1397

Ross MH. Length of life and nutrition in the rat. J Nutr. 1961;75:197–210. https://pubmed.ncbi.nlm.nih.gov/14494200/

1398

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1399

Fontana L, Partridge L, Longo VD. Extending healthy life span – from yeast to humans. Science. 2010;328(5976):321–6. https://pubmed.ncbi.nlm.nih.gov/20395504/

1400

Kitada M, Xu J, Ogura Y, Monno I, Koya D. Mechanism of activation of mechanistic target of rapamycin complex 1 by methionine. Front Cell Dev Biol. 2020;8:715. https://pubmed.ncbi.nlm.nih.gov/32850834/

1401

Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/

1402

Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ. The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009;139(6):1103–9. https://pubmed.ncbi.nlm.nih.gov/19403715/

1403

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

1404

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33951994/

1405

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

1406

Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev. 2019;177:186–200. https://pubmed.ncbi.nlm.nih.gov/30044947/

1407

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

1408

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

1409

Davinelli S, Willcox DC, Scapagnini G. Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing. 2012;9:9. https://pubmed.ncbi.nlm.nih.gov/22524452/

1410

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

1411

Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta. 2014;1842(7):1097–108. https://pubmed.ncbi.nlm.nih.gov/24726883/

1412

Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/

1413

Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J. 2017;31(2):598–609. https://pubmed.ncbi.nlm.nih.gov/28148781/

1414

Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/

1415

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1416

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1417

Moro T, Brightwell CR, Velarde B, et al. Whey protein hydrolysate increases amino acid uptake, mTORC1 signaling, and protein synthesis in skeletal muscle of healthy young men in a randomized crossover trial. J Nutr. 2019;149(7):1149–58. https://pubmed.ncbi.nlm.nih.gov/31095313/

1418

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1419

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1420

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1421

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1422

Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12:103. https://pubmed.ncbi.nlm.nih.gov/23883112/

1423

Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138(12):1584–90. https://pubmed.ncbi.nlm.nih.gov/12472346/

1424

Danby FW. Acne and milk, the diet myth, and beyond. J Am Acad Dermatol. 2005;52(2):360–2. https://pubmed.ncbi.nlm.nih.gov/15692488/

1425

Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A, Omidian M, Taheri F. Dairy intake and acne development: a meta-analysis of observational studies. Clin Nutr. 2019;38(3):1067–75. https://pubmed.ncbi.nlm.nih.gov/29778512/

1426

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1427

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1428

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1429

Baron JA, Weiderpass E, Newcomb PA, et al. Metabolic disorders and breast cancer risk (United States). Cancer Causes Control. 2001;12(10):875–80. https://pubmed.ncbi.nlm.nih.gov/11808705/

1430

Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer. 2007;121(12):2688–92. https://pubmed.ncbi.nlm.nih.gov/17724724/

1431

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1432

Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/

1433

Pettersson A, Kasperzyk JL, Kenfield SA, et al. Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev. 2012;21(3):428–36. https://pubmed.ncbi.nlm.nih.gov/22315365/

1434

Tognon G, Nilsson LM, Shungin D, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr. 2017;105(6):1502–11. https://pubmed.ncbi.nlm.nih.gov/28490510/

1435

Melnik BC, Schmitz G. Pasteurized non-fermented cow’s milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev. 2021;67:101270. https://pubmed.ncbi.nlm.nih.gov/33571703/

1436

Gao X, Jia H, Chen G, Li C, Hao M. Yogurt intake reduces all-cause and cardiovascular disease mortality: a meta-analysis of eight prospective cohort studies. Chin J Integr Med. 2020;26(6):462–8. https://pubmed.ncbi.nlm.nih.gov/31970674/

1437

Sahin K, Orhan C, Tuzcu M, et al. Tomato powder modulates NF-¿B, mTOR, and Nrf2 pathways during aging in healthy rats. J Aging Res. 2019;2019:1643243. https://pubmed.ncbi.nlm.nih.gov/30719353/

1438

Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014;105(3):252–7. https://pubmed.ncbi.nlm.nih.gov/24397737/

1439

Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3’-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev. 2016;74(7):432–43. https://pubmed.ncbi.nlm.nih.gov/27261275/

1440

Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-a induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol. 2019;10:1620. https://pubmed.ncbi.nlm.nih.gov/31396207/

1441

Zhang Y, Gilmour A, Ahn YH, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine. 2021;86:153062. https://pubmed.ncbi.nlm.nih.gov/31409554/

1442

Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021;360:130145. https://pubmed.ncbi.nlm.nih.gov/34034049/

1443

Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets. 2016;15(5):533–43. https://pubmed.ncbi.nlm.nih.gov/27071790/

1444

Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273–81. https://pubmed.ncbi.nlm.nih.gov/15184012/

1445

Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111(43):15550–5. https://pubmed.ncbi.nlm.nih.gov/25313065/

1446

Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://pubmed.ncbi.nlm.nih.gov/18513215/

1447

Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/

1448

Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–9. https://pubmed.ncbi.nlm.nih.gov/21300025/

1449

Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/

1450

Cassidy A, Chung M, Zhao N, et al. Dose – response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies. Adv Nutr. 2020;11(4):790–814. https://pubmed.ncbi.nlm.nih.gov/32073596/

1451

Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR) – rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6(5). https://pubmed.ncbi.nlm.nih.gov/27048303/

1452

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1453

Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc. 2016;17(11):963–6. https://pubmed.ncbi.nlm.nih.gov/27780571/

1454

Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY). 2010;2(5):265–73. https://pubmed.ncbi.nlm.nih.gov/20519781/

1455

Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://pubmed.ncbi.nlm.nih.gov/25735236/

1456

Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–6. https://pubmed.ncbi.nlm.nih.gov/21525248/

1457

Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75. https://pubmed.ncbi.nlm.nih.gov/19321567/

1458

Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging (Albany NY). 2019;11(16):5868–70. https://pubmed.ncbi.nlm.nih.gov/31454792/

1459

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1460

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1461

Тор (Tor) – в германо-скандинавской мифологии бог грома и молний, защищающий богов и людей от великанов и чудовищ с помощью боевого молота (hammer). – Примеч. ред.

1462

Lamming DW, Salmon AB. TORwards a victory over aging. J Gerontol A Biol Sci Med Sci. 2020;75(1):1–3. https://pubmed.ncbi.nlm.nih.gov/31544928/

1463

Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic “hammer” of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J Exp Bot. 2019;70(8):2217–25. https://pubmed.ncbi.nlm.nih.gov/30722050/

1464

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1465

Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. https://pubmed.ncbi.nlm.nih.gov/30674654/

1466

Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://pubmed.ncbi.nlm.nih.gov/20519118/

1467

Sansevero TB. The Profit Machine. Cultiva Libros; 2009.

1468

Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://pubmed.ncbi.nlm.nih.gov/5016631/

1469

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1470

Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/

1471

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1472

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/

1473

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1474

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/

1475

Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/

1476

Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/

1477

Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/

1478

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

1479

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

1480

Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/

1481

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1482

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1483

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/

1484

Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/

1485

Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/

1486

.

1487

Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub

1488

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1489

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1490

Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/

1491

Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/

1492

Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/

1493

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1494

Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/

1495

Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/

1496

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1497

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1498

Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/

1499

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

1500

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1501

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1502

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1503

What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf

1504

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1505

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1506

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1507

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1508

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

1509

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

1515

Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/

1516

Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/

1517

Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/

1518

Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/

1519

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1520

Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/

1521

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/

1522

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1523

Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/

1524

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1525

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1526

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/

1527

Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/

1528

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1529

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/

1530

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1531

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/

1532

Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/

1533

Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/

1534

Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/

1535

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1536

Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/

1537

Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/

1538

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1539

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1540

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1541

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1542

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1543

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1544

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1545

Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24. https://pubmed.ncbi.nlm.nih.gov/28109890/

1546

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1547

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1548

Coffey DS. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology. 2001;57(4 Suppl 1):31–8. https://pubmed.ncbi.nlm.nih.gov/11295592/

1549

Jallinoja P, Niva M, Helakorpi S, Kahma N. Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. Food Nutr Res. 2014;58:23552. https://pubmed.ncbi.nlm.nih.gov/25490960/

1550

Nestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25:43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view

1551

Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/

1552

Abbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers: an updated systematic review and meta-analysis. Nutr Cancer. 2021;73(5):721–39. https://pubmed.ncbi.nlm.nih.gov/32462920/

1553

Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/

1554

Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/

1555

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1556

Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/

1557

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1558

Bastin S, Henken K. Water content of fruits and vegetables. University of Kentucky College of Agriculture Cooperative Extension Service. https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables. Published December 1997. Accessed November 11, 2021.; https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables

1559

Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6 Pt 1):1309–15. https://pubmed.ncbi.nlm.nih.gov/9625058/

1560

Halliwell B. The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol. 2013;75(3):637–44. https://pubmed.ncbi.nlm.nih.gov/22420826/

1561

van Poppel G, Poulsen H, Loft S, Verhagen H. No influence of beta carotene on oxidative DNA damage in male smokers. J Natl Cancer Inst. 1995;87(4):310–1. https://pubmed.ncbi.nlm.nih.gov/7707423/

1562

Priemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion in smokers. Am J Clin Nutr. 1997;65(2):503–7. https://pubmed.ncbi.nlm.nih.gov/9022536/

1563

Cao G, Booth SL, Sadowski JA, Prior RL. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr. 1998;68(5):1081–7. https://pubmed.ncbi.nlm.nih.gov/9808226/

1564

Johnson SA, Feresin RG, Navaei N, et al. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017;8(1):372–80. https://pubmed.ncbi.nlm.nih.gov/28059417/

1565

Verhagen H, Poulsen HE, Loft S, van Poppel G, Willems MI, van Bladeren PJ. Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis. 1995;16(4):969–70. https://pubmed.ncbi.nlm.nih.gov/7728983/

1566

Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/

1567

Ha K, Kim K, Sakaki JR, Chun OK. Relative validity of dietary total antioxidant capacity for predicting all-cause mortality in comparison to diet quality indexes in US adults. Nutrients. 2020;12(5):1210. https://pubmed.ncbi.nlm.nih.gov/32344879/

1568

Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/

1569

Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/

1570

Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/

1571

Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3. https://pubmed.ncbi.nlm.nih.gov/10946914/

1572

Prior RL, Gu L, Wu X, et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26(2):170–81. https://pubmed.ncbi.nlm.nih.gov/17536129/

1573

Darvin ME, Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J. One-year study on the variation of carotenoid antioxidant substances in living human skin: influence of dietary supplementation and stress factors. J Biomed Opt. 2008;13(4):044028. https://pubmed.ncbi.nlm.nih.gov/19021355/

1574

Blacker BC, Snyder SM, Eggett DL, Parker TL. Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation. Br J Nutr. 2013;109(9):1670–7. https://pubmed.ncbi.nlm.nih.gov/22935321/

1575

Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/

1576

Del Bó C, Riso P, Campolo J, et al. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res. 2013;33(3):220–7. https://pubmed.ncbi.nlm.nih.gov/29019365/

1577

Szeto YT, Chu WK, Benzie IFF. Antioxidants in fruits and vegetables: a study of cellular availability and direct effects on human DNA. Biosci Biotechnol Biochem. 2006;70(10):2551–5. https://pubmed.ncbi.nlm.nih.gov/17031063/

1578

López-Uriarte P, Nogués R, Saez G, et al. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29(3):373–80. https://pubmed.ncbi.nlm.nih.gov/20064680/

1579

Porrini M, Riso P. Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr. 2000;130(2):189–92. https://pubmed.ncbi.nlm.nih.gov/10720168/

1580

Porrini M, Riso P, Oriani G. Spinach and tomato consumption increases lymphocyte DNA resistance to oxidative stress but this is not related to cell carotenoid concentrations. Eur J Nutr. 2002;41(3):95–100. https://pubmed.ncbi.nlm.nih.gov/12111045/

1581

Frugé AD, Smith KS, Riviere AJ, et al. A dietary intervention high in green leafy vegetables reduces oxidative DNA damage in adults at increased risk of colorectal cancer: biological outcomes of the randomized controlled meat and three greens (M3G) feasibility trial. Nutrients. 2021;13(4):1220. https://pubmed.ncbi.nlm.nih.gov/33917165/

1582

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1583

Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/

1584

Fogarty MC, Hughes CM, Burke G, Brown JC, Davison GW. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation. Br J Nutr. 2013;109(2):293–301. https://pubmed.ncbi.nlm.nih.gov/22475430/

1585

Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/

1586

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1587

Szeto YT, To TL, Pak SC, Kalle W. A study of DNA protective effect of orange juice supplementation. Appl Physiol Nutr Metab. 2013;38(5):533–6. https://pubmed.ncbi.nlm.nih.gov/23668761/

1588

Guarnieri S, Riso P, Porrini M. Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr. 2007;97(4):639–43. https://pubmed.ncbi.nlm.nih.gov/17349075/

1589

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1590

Collins BH, Horská A, Hotten PM, Riddoch C, Collins AR. Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutr Cancer. 2001;39(1):148–53. https://pubmed.ncbi.nlm.nih.gov/11588897/

1591

Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/

1592

Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/

1593

Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/

1594

Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/

1595

Collins AR, Azqueta A, Langie SAS. Effects of micronutrients on DNA repair. Eur J Nutr. 2012;51(3):261–79. https://pubmed.ncbi.nlm.nih.gov/22362552/

1596

Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/

1597

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

1598

Wang J, Deng N, Wang H, et al. Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules. 2020;25(2):351. https://pubmed.ncbi.nlm.nih.gov/31952185/

1599

Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4:e1879. https://pubmed.ncbi.nlm.nih.gov/27077003/

1600

Salehi B, Azzini E, Zucca P, et al. Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci. 2020;10(3):947. https://www.mdpi.com/2076-3417/10/3/947

1601

Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod. 2011;74(8):1713–20. https://pubmed.ncbi.nlm.nih.gov/21805983/

1602

Ferk F, Chakraborty A, Jäger W, et al. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res. 2011;715(1–2):61–71. https://pubmed.ncbi.nlm.nih.gov/21827773/

1603

Ferk F, Kundi M, Brath H, et al. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Mol Nutr Food Res. 2018;62(4). https://pubmed.ncbi.nlm.nih.gov/29193677/

1604

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

1605

Kampkötter A, Timpel C, Zurawski RF, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(2):314–23. https://pubmed.ncbi.nlm.nih.gov/18024103/

1606

Shimizu C, Wakita Y, Inoue T, et al. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep. 2019;9(1):3671. https://pubmed.ncbi.nlm.nih.gov/30842523/

1607

Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/

1608

Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/

1609

Bahadorani S, Hilliker AJ. Cocoa confers life span extension in Drosophila melanogaster. Nutr Res. 2008;28(6):377–82. https://pubmed.ncbi.nlm.nih.gov/19083435/

1610

Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/

1611

Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/

1612

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

1613

Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020;17:100499. https://pubmed.ncbi.nlm.nih.gov/31890983/

1614

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1615

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1616

Zhu C, Yan H, Zheng Y, Santos HO, Macit MS, Zhao K. Impact of cinnamon supplementation on cardiometabolic biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020;53:102517. https://pubmed.ncbi.nlm.nih.gov/33066854/

1617

Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005;93(2):257–66. https://pubmed.ncbi.nlm.nih.gov/15788119/

1618

Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612. https://pubmed.ncbi.nlm.nih.gov/33458848/

1619

Askari M, Mozaffari H, Darooghegi Mofrad M, et al. Effects of garlic supplementation on oxidative stress and antioxidative capacity biomarkers: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021;35(6):3032–45. https://pubmed.ncbi.nlm.nih.gov/33484037/

1620

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1621

Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: a systematic review and meta-analysis of interventional studies. Complement Ther Med. 2020;48:102240. https://pubmed.ncbi.nlm.nih.gov/31987247/

1622

Grassi D, Desideri G, Necozione S, et al. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens. 2015;33(2):294–303. https://pubmed.ncbi.nlm.nih.gov/25380152/

1623

Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290(8):1029–30. https://pubmed.ncbi.nlm.nih.gov/12941673/

1624

Carnevale R, Loffredo L, Pignatelli P, et al. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J Thromb Haemost. 2012;10(1):125–32. https://pubmed.ncbi.nlm.nih.gov/22066819/

1625

Parsaeyan N, Mozaffari-Khosravi H, Absalan A, Mozayan MR. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. J Diabetes Metab Disord. 2014;13(1):30. https://pubmed.ncbi.nlm.nih.gov/24495354/

1626

Onuegbu AJ, Olisekodiaka JM, Irogue SE, et al. Consumption of soymilk reduces lipid peroxidation but may lower micronutrient status in apparently healthy individuals. J Med Food. 2018;21(5):506–10. https://pubmed.ncbi.nlm.nih.gov/29432056/

1627

Ballard KD, Mah E, Guo Y, Pei R, Volek JS, Bruno RS. Low-fat milk ingestion prevents postprandial hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic syndrome. J Nutr. 2013;143(10):1602–10. https://pubmed.ncbi.nlm.nih.gov/23966328/

1628

Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93(3):500–5. https://pubmed.ncbi.nlm.nih.gov/21228265/

1629

Jablonski KL, Racine ML, Geolfos CJ, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61(3):335–43. https://pubmed.ncbi.nlm.nih.gov/23141486/

1630

McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit 7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/

1631

Chai SC, Davis K, Zhang Z, Zha L, Kirschner KF. Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults. Nutrients. 2019;11(2):228. https://pubmed.ncbi.nlm.nih.gov/30678193/

1632

Dourado GKZS, Cesar TB. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects. Food Nutr Res. 2015;59(1):28147. https://pubmed.ncbi.nlm.nih.gov/26490535/

1633

Shema-Didi L, Sela S, Ore L, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med. 2012;53(2):297–304. https://pubmed.ncbi.nlm.nih.gov/22609423/

1634

Ghavipour M, Sotoudeh G, Ghorbani M. Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr. 2015;34(5):805–9. https://pubmed.ncbi.nlm.nih.gov/25466953/

1635

Shyam R, Singh SN, Vats P, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. J Altern Complement Med. 2007;13(8):789–91. https://pubmed.ncbi.nlm.nih.gov/17983333/

1636

Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ. Low-calorie cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res. 2011;31(3):190–6. https://pubmed.ncbi.nlm.nih.gov/21481712/

1637

de Lima Tavares Toscano L, Silva AS, de França ACL, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr. 2020;59(7):2997–3007. https://pubmed.ncbi.nlm.nih.gov/31732851/

1638

Cao G, Russell RM, Lischner N, Prior RL. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr. 1998;128(12):2383–90. https://pubmed.ncbi.nlm.nih.gov/9868185/

1639

Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25(2):250–2. https://pubmed.ncbi.nlm.nih.gov/9667503/

1640

Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/

1641

Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/

1642

Xue KX, Wang S, Ma GJ, et al. Micronucleus formation in peripheral-blood lymphocytes from smokers and the influence of alcohol– and tea-drinking habits. Int J Cancer. 1992;50(5):702–5. https://pubmed.ncbi.nlm.nih.gov/1544703/

1643

Bloomer RJ, Trepanowski JF, Farney TM. Influence of acute coffee consumption on postprandial oxidative stress. Nutr Metab Insights. 2013;6:35–42. https://pubmed.ncbi.nlm.nih.gov/23935371/

1644

Takahashi M, Miyashita M, Suzuki K, et al. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr. 2014;112(9):1542–50. https://pubmed.ncbi.nlm.nih.gov/25230741/

1645

Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr. 2000;54(1):87–92. https://pubmed.ncbi.nlm.nih.gov/10694777/

1646

Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Addition of milk to tea infusions: helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Crit Rev Food Sci Nutr. 2017;57(15):3188–96. https://pubmed.ncbi.nlm.nih.gov/26517348/

1647

Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/

1648

Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/

1649

Dias TR, Alves MG, Tomás GD, Socorro S, Silva BM, Oliveira PF. White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea. J Agric Food Chem. 2014;62(3):608–17. https://pubmed.ncbi.nlm.nih.gov/24372402/

1650

Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–37. https://pubmed.ncbi.nlm.nih.gov/25527735/

1651

Leaf DA, Kleinman MT, Hamilton M, Deitrick RW. The exercise-induced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci. 1999;317(5):295–300. https://pubmed.ncbi.nlm.nih.gov/10334116/

1652

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

1653

Vollaard NBJ, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med. 2005;35(12):1045–62. https://pubmed.ncbi.nlm.nih.gov/16336008/

1654

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

1655

Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. https://pubmed.ncbi.nlm.nih.gov/19144121/

1656

Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70. https://pubmed.ncbi.nlm.nih.gov/19433800/

1657

Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4. https://pubmed.ncbi.nlm.nih.gov/22777327/

1658

Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10):E2389. https://pubmed.ncbi.nlm.nih.gov/31591287/

1659

Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9. https://pubmed.ncbi.nlm.nih.gov/29559721/

1660

Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J Sports Sci. 2010;28(12):1261–8. https://pubmed.ncbi.nlm.nih.gov/20845212/

1661

Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81. https://pubmed.ncbi.nlm.nih.gov/19403859/

1662

Funes L, Carrera-Quintanar L, Cerdán-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705. https://pubmed.ncbi.nlm.nih.gov/20967458/

1663

Ghezzi P, Jaquet V, Marcucci F, Schmidt HHHW. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017;174(12):1784–96. https://pubmed.ncbi.nlm.nih.gov/27425643/

1664

Scudellari M. The science myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1665

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1666

Milisav I, Ribaric S, Poljsak B. Antioxidant vitamins and ageing. Subcell Biochem. 2018;90:1–23. https://pubmed.ncbi.nlm.nih.gov/30779004/

1667

Smejkal GB, Kakumanu S. Enzymes and their turnover numbers. Expert Rev Proteom. 2019;16(7):543–4. https://pubmed.ncbi.nlm.nih.gov/31220960/

1668

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1669

Zang H, Mathew RO, Cui T. The dark side of Nrf2 in the heart. Front Physiol. 2020;11:722. https://pubmed.ncbi.nlm.nih.gov/32733266/

1670

Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro. 2020;12:1759091419899782. https://pubmed.ncbi.nlm.nih.gov/31964153/

1671

Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother. 2020;129:110373. https://pubmed.ncbi.nlm.nih.gov/32603894/

1672

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1673

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1674

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1675

Ferguson LR, Schlothauer RC. The potential role of nutritional genomics tools in validating high health foods for cancer control: broccoli as example. Mol Nutr Food Res. 2012;56(1):126–46. https://pubmed.ncbi.nlm.nih.gov/22147677/

1676

Sun Y, Yang T, Leak RK, Chen J, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targets. 2017;16(3):326–38. https://pubmed.ncbi.nlm.nih.gov/28042770/

1677

Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43(1):146–53. https://pubmed.ncbi.nlm.nih.gov/26970133/

1678

Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102. https://pubmed.ncbi.nlm.nih.gov/32730855/

1679

Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50(5):829–43. https://pubmed.ncbi.nlm.nih.gov/21031035/

1680

Tullet JMA, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38. https://pubmed.ncbi.nlm.nih.gov/18358814/

1681

Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14(1):76–85. https://pubmed.ncbi.nlm.nih.gov/18194654/

1682

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1683

Yu C, Li Y, Holmes A, et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE. 2011;6(11):e26729. https://pubmed.ncbi.nlm.nih.gov/22073188/

1684

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1685

Andziak B, O’Connor TP, Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev. 2005;126(11):1206–12. https://pubmed.ncbi.nlm.nih.gov/16087218/

1686

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1687

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1688

Zhou L, Zhang H, Davies KJA, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. https://pubmed.ncbi.nlm.nih.gov/28863281/

1689

Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471–9. https://pubmed.ncbi.nlm.nih.gov/32871230/

1690

Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/

1691

Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:5438179. https://pubmed.ncbi.nlm.nih.gov/29977456/

1692

Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. https://pubmed.ncbi.nlm.nih.gov/33067900/

1693

Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. https://pubmed.ncbi.nlm.nih.gov/29074861/

1694

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1695

Riso P, Martini D, Møller P, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595–602. https://pubmed.ncbi.nlm.nih.gov/20713433/

1696

Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/

1697

Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/

1698

Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/

1699

Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetable-enriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108(2):212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/

1700

Knatko EV, Ibbotson SH, Zhang Y, et al. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res (Phila). 2015;8(6):475–86. https://pubmed.ncbi.nlm.nih.gov/25804610/

1701

Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186. https://pubmed.ncbi.nlm.nih.gov/26881038/

1702

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

1703

Mori N, Shimazu T, Charvat H, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr. 2019;38(2):631–43. https://pubmed.ncbi.nlm.nih.gov/29739681/

1704

Grünwald S, Stellzig J, Adam IV, et al. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr. 2013;8(5):439–48. https://pubmed.ncbi.nlm.nih.gov/23321956/

1705

Hanschen FS. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020;321:126694. https://pubmed.ncbi.nlm.nih.gov/32244140/

1706

Hernández-Ruiz Á, García-Villanova B, Guerra-Hernández E, Amiano P, Ruiz-Canela M, Molina-Montes E. A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. 2019;11(4):774. https://pubmed.ncbi.nlm.nih.gov/30987200/

1707

Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18(3):579–90. https://pubmed.ncbi.nlm.nih.gov/15777097/

1708

Carvalho AM, Miranda AM, Santos FA, Loureiro APM, Fisberg RM, Marchioni DM. High intake of heterocyclic amines from meat is associated with oxidative stress. Br J Nutr. 2015;113(8):1301–7. https://pubmed.ncbi.nlm.nih.gov/25812604/

1709

Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/

1710

Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001;31(11):1388–95. https://pubmed.ncbi.nlm.nih.gov/11728810/

1711

Mohamed B, Mohamed I. The effects of residual blood of carcasses on poultry technological quality. Food Nutri Sci. 2012;03(10):1382–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=23386

1712

Alvarado CZ, Richards MP, O’Keefe SF, Wang H. The effect of blood removal on oxidation and shelf life of broiler breast meat. Poult Sci. 2007;86(1):156–61. https://pubmed.ncbi.nlm.nih.gov/17179431/

1713

Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/

1714

Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub

1715

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628. Published May 6, 2021. Accessed July 10, 2021.; https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628

1716

Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/

1717

Edalati S, Bagherzadeh F, Asghari Jafarabadi M, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr. 2021;125(5):568–76. https://pubmed.ncbi.nlm.nih.gov/32513316/

1718

Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/

1719

Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. https://pubmed.ncbi.nlm.nih.gov/33541846/

1720

Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal. 2010;13(10):1575–91. https://pubmed.ncbi.nlm.nih.gov/20222825/

1721

Burri BJ. Antioxidant status in vegetarians versus omnivores: a mechanism for longer life? Nutrition. 2000;16(2):149–50. https://pubmed.ncbi.nlm.nih.gov/10755825/

1722

Krajcovicová-Kudlácková M, Šimoncic R, Béderová A, Klvanová J, Brtková A, Grancicová E. Lipid and antioxidant blood levels in vegetarians. Nahrung. 1996;40(1):17–20. https://pubmed.ncbi.nlm.nih.gov/8975140/

1723

Kováciková Z, Cerhata D, Kadrabová J, Madaric A, Ginter E. Antioxidant status in vegetarians and nonvegetarians in Bratislava region (Slovakia). Z Ernahrungswiss. 1998;37(2):178–82. https://pubmed.ncbi.nlm.nih.gov/9698645/

1724

Nagyová A, Kudlácková M, Grancicová E, Magálová T. LDL oxidizability and antioxidative status of plasma in vegetarians. Ann Nutr Metab. 1998;42(6):328–32. https://pubmed.ncbi.nlm.nih.gov/9895420/

1725

Boanca MM, Colosi HA, Craciun EC. The impact of the lacto-ovo vegetarian diet on the erythrocyte superoxide dismutase activity: a study in the Romanian population. Eur J Clin Nutr. 2014;68(2):184–8. https://pubmed.ncbi.nlm.nih.gov/24105324/

1726

Krajcovicová-Kudlácková M, Valachovicová M, Pauková V, Dušinská M. Effects of diet and age on oxidative damage products in healthy subjects. Physiol Res. 2008;57(4):647–51. https://pubmed.ncbi.nlm.nih.gov/17705666/

1727

Somannavar MS, Kodliwadmath MV. Correlation between oxidative stress and antioxidant defence in South Indian urban vegetarians and non-vegetarians. Eur Rev Med Pharmacol Sci. 2012;16(3):351–4. https://pubmed.ncbi.nlm.nih.gov/22530352/

1728

Manjari V, Suresh Y, Sailaja Devi MM, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in South Indian vegetarians and non-vegetarians. Prostaglandins Leukot Essent Fatty Acids. 2001;64(1):53–9. https://pubmed.ncbi.nlm.nih.gov/11161585/

1729

Kim MK, Cho SW, Park YK. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr Res Pract. 2012;6(2):155–61. https://pubmed.ncbi.nlm.nih.gov/22586505/

1730

Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6. https://pubmed.ncbi.nlm.nih.gov/15474873/

1731

Gajski G, Geric M, Vucic Lovrencic M, et al. Analysis of health-related biomarkers between vegetarians and non-vegetarians: a multi-biomarker approach. J Funct Foods. 2018;48:643–53. https://www.sciencedirect.com/science/article/abs/pii/S1756464618304109?via%3Dihub

1732

Poornima K, Cariappa M, Asha K, Kedilaya HP, Nandini M. Oxidant and antioxidant status in vegetarians and fish eaters. Indian J Clin Biochem. 2003;18(2):197–205. https://pubmed.ncbi.nlm.nih.gov/23105412/

1733

Krajcovicová-Kudlácková M, Šimoncic R, Babinská K, Béderová A. Levels of lipid peroxidation and antioxidants in vegetarians. Eur J Epidemiol. 1995;11(2):207–11. https://pubmed.ncbi.nlm.nih.gov/7672077/

1734

Nadimi H, Yousefinejad A, Djazayery A, Hosseini M, Hosseini S. Association of vegan diet with RMR, body composition and oxidative stress. Acta Sci Pol Technol Aliment. 2013;12(3):311–8. https://pubmed.ncbi.nlm.nih.gov/24584960/

1735

Herrmann W, Schorr H, Purschwitz K, Rassoul F, Richter V. Total homocysteine, vitamin B12, and total antioxidant status in vegetarians. Clin Chem. 2001;47(6):1094–101. https://pubmed.ncbi.nlm.nih.gov/11375297/

1736

van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;11(2):E482. https://pubmed.ncbi.nlm.nih.gov/30823595/

1737

Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/

1738

Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/

1739

Wellington CL, Frikke-Schmidt R. Relation between plasma and brain lipids. Curr Opin Lipidol. 2016;27(3):225–32. https://pubmed.ncbi.nlm.nih.gov/27149391/

1740

Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/

1741

Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7. https://pubmed.ncbi.nlm.nih.gov/26150787/

1742

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1743

Iuliano L, Micheletta F, Natoli S, et al. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem. 2003;312(2):217–23. https://pubmed.ncbi.nlm.nih.gov/12531208/

1744

Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/

1745

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1746

Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/

1747

Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/

1748

Si R, Qu K, Jiang Z, Yang X, Gao P. Egg consumption and breast cancer risk: a meta-analysis. Breast Cancer. 2014;21(3):251–61. https://pubmed.ncbi.nlm.nih.gov/24504557/

1749

Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016;36(7):627–35. https://pubmed.ncbi.nlm.nih.gov/27333953/

1750

Asghari A, Umetani M. Obesity and cancer: 27-hydroxycholesterol, the missing link. Int J Mol Sci. 2020;21(14):4822. https://pubmed.ncbi.nlm.nih.gov/32650428/

1751

Nelson ER, Chang C, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol & Metab. 2014;25(12):649–55. https://pubmed.ncbi.nlm.nih.gov/25458418/

1752

Kaiser J. Cholesterol forges link between obesity and breast cancer. Science. 2013;342(6162):1028. https://pubmed.ncbi.nlm.nih.gov/24288308/

1753

Staprans I, Pan XM, Rapp JH, Feingold KR. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res. 2003;44(4):705–15. https://pubmed.ncbi.nlm.nih.gov/12562864/

1754

Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x

1755

Natella F, Macone A, Ramberti A, et al. Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. Br J Nutr. 2011;105(12):1718–23. https://pubmed.ncbi.nlm.nih.gov/21294933/

1756

Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/

1757

Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x

1758

Khan MI, Min JS, Lee SO, et al. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids Health Dis. 2015;14:89. https://pubmed.ncbi.nlm.nih.gov/26260472/

1759

Min JS, Lee SO, Khan MI, et al. Monitoring the formation of cholesterol oxidation products in model systems using response surface methodology. Lipids Health Dis. 2015;14:77. https://pubmed.ncbi.nlm.nih.gov/26201850/

1760

Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products

1761

Echarte M, Ansorena D, Astiasarán I. Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties. J Agric Food Chem. 2003;51(20):5941–5. https://pubmed.ncbi.nlm.nih.gov/13129298/

1762

Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products

1763

Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol. 2018;118:908–39. https://pubmed.ncbi.nlm.nih.gov/29940280/

1764

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1765

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1766

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1767

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1768

Jacobson MS. Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet. 1987;2(8560):656–8. https://pubmed.ncbi.nlm.nih.gov/2887943/

1769

Raheja BS. Ghee, cholesterol, and heart disease. Lancet. 1987;2(8568):1144–5. https://pubmed.ncbi.nlm.nih.gov/2890036/

1770

Connor JM. Global Price Fixing. 2nd ed. Springer-Verlag; 2008. https://worldcat.org/title/238586901

1771

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013;310(11):1178–9. https://pubmed.ncbi.nlm.nih.gov/24045742/

1772

Sadowska-Bartosz I, Bartosz G. Effect of antioxidants supplementation on aging and longevity. Biomed Res Int. 2014;2014:404680. https://pubmed.ncbi.nlm.nih.gov/24783202/

1773

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

1774

Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract. 2020;74(6):e13493. https://pubmed.ncbi.nlm.nih.gov/32091656/

1775

de Barcelos IP, Haas RH. CoQ10 and aging. Biology (Basel). 2019;8(2):28. https://pubmed.ncbi.nlm.nih.gov/31083534/

1776

Raizner AE, Quiñones MA. Coenzyme Q10 for patients with cardiovascular disease: JAAC Focus Seminar. J Am Coll Cardiol. 2021;77(5):609–19. https://pubmed.ncbi.nlm.nih.gov/33538259/

1777

Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/

1778

Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr. 2018;63(2):129–36. https://pubmed.ncbi.nlm.nih.gov/30279624/

1779

Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and its role in the dietary therapy against aging. Molecules. 2016;21(3):373. https://pubmed.ncbi.nlm.nih.gov/26999099/

1780

Asencio C, Rodríguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P. Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J. 2003;17(9):1135–7. https://pubmed.ncbi.nlm.nih.gov/12709403/

1781

Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, et al. The paradox of coenzyme Q10 in aging. Nutrients. 2019;11(9):E2221. https://pubmed.ncbi.nlm.nih.gov/31540029/

1782

Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36. https://pubmed.ncbi.nlm.nih.gov/28179205/

1783

Akbari A, Mobini GR, Agah S, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020;76(11):1483–99. https://pubmed.ncbi.nlm.nih.gov/32583356/

1784

Jafari M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the treatment of heart failure: a systematic review of systematic reviews. Indian Heart J. 2018;70(Suppl 1):S111–7. https://pubmed.ncbi.nlm.nih.gov/30122240/

1785

Sazali S, Badrin S, Norhayati MN, Idris NS. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine – a meta-analysis. BMJ Open. 2021;11(1):e039358. https://pubmed.ncbi.nlm.nih.gov/33402403/

1786

Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/

1787

Qu J, Ma L, Zhang J, Jockusch S, Washington I. Dietary chlorophyll metabolites catalyze the photoreduction of plasma ubiquinone. Photochem Photobiol. 2013;89(2):310–3. https://pubmed.ncbi.nlm.nih.gov/22928808/

1788

Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007;7S:S168–74. https://pubmed.ncbi.nlm.nih.gov/17482884/

1789

Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis. 2005;20(4):237–43. https://pubmed.ncbi.nlm.nih.gov/15956041/

1790

Fan S, Zhang Z, Su H, et al. Panax ginseng clinical trials: current status and future perspectives. Biomed Pharmacother. 2020;132:110832. https://pubmed.ncbi.nlm.nih.gov/33059260/

1791

Shergis JL, Zhang AL, Zhou W, Xue CC. Panax ginseng in randomised controlled trials: a systematic review. Phytother Res. 2013;27(7):949–65. https://pubmed.ncbi.nlm.nih.gov/22969004/

1792

Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine. 2016;95(6):e2584. https://pubmed.ncbi.nlm.nih.gov/26871778/

1793

Szeto YT, Sin YSP, Pak SC, Kalle W. American ginseng tea protects cellular DNA within 2¿h from consumption: results of a pilot study in healthy human volunteers. Int J Food Sci Nutr. 2015;66(7):815–8. https://pubmed.ncbi.nlm.nih.gov/26393910/

1794

Szeto YT, Lee LKY. Rapid but mild genoprotective effect on lymphocytic DNA with Panax notoginseng extract supplementation. J Intercult Ethnopharmacol. 2014;3(4):155–8. https://pubmed.ncbi.nlm.nih.gov/26401366/

1795

Szeto YT, Ko AW. Acute genoprotective effects on lymphocytic DNA with ginseng extract supplementation. J Aging Res Clin Practice. 2013;2(2):174–7. https://www.researchgate.net/publication/244990213_Acute_genoprotective_effects_on_lymphocytic_DNA_with_ginseng_extract_supplementation

1796

Kim HG, Yoo SR, Park HJ, et al. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol. 2011;49(9):2229–35. https://pubmed.ncbi.nlm.nih.gov/21699953/

1797

Dickman JR, Koenig RT, Ji LL. American ginseng supplementation induces an oxidative stress in postmenopausal women. J Am Coll Nutr. 2009;28(2):219–28. https://pubmed.ncbi.nlm.nih.gov/19828907/

1798

Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010;65(12):1275–84. https://pubmed.ncbi.nlm.nih.gov/20819793/

1799

Oh SI, Park JK, Park SK. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L–Cysteine in Caenorhabditis elegans. Clinics. 2015;70(5):380–6. https://pubmed.ncbi.nlm.nih.gov/26039957/

1800

Niraula P, Kim MS. N-Acetylcysteine extends lifespan of Drosophila via modulating ROS scavenger gene expression. Biogerontology. 2019;20(4):533–43. https://pubmed.ncbi.nlm.nih.gov/31115735/

1801

Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel). 2018;7(5):66. https://pubmed.ncbi.nlm.nih.gov/29758013/

1802

Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil. 2020;453(1–2):245–70. https://pubmed.ncbi.nlm.nih.gov/32836404/

1803

Duarte GBS, Reis BZ, Rogero MM, et al. Consumption of Brazil nuts with high selenium levels increased inflammation biomarkers in obese women: a randomized controlled trial. Nutrition. 2019;63–64:162–8. https://pubmed.ncbi.nlm.nih.gov/31026738/

1804

Xiang S, Dai Z, Man C, Fan Y. Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res. 2020;195(1):55–62. https://pubmed.ncbi.nlm.nih.gov/31368032/

1805

Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med. 2008;168(4):404–10. https://pubmed.ncbi.nlm.nih.gov/18299496/

1806

Rayman MP, Winther KH, Pastor-Barriuso R, et al. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med. 2018;127:46–54. https://pubmed.ncbi.nlm.nih.gov/29454039/

1807

Faghihi T, Radfar M, Barmal M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther. 2014;21(6):491–5. https://pubmed.ncbi.nlm.nih.gov/23633679/

1808

Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/

1809

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1810

Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci. 2016;73(8):1645–58. https://pubmed.ncbi.nlm.nih.gov/26846695/

1811

Schaus R. The ascorbic acid content of human pituitary, cerebral cortex, heart, and skeletal muscle and its relation to age. Am J Clin Nutr. 1957;5(1):39–41. https://pubmed.ncbi.nlm.nih.gov/13394538/

1812

Granger M, Eck P. Dietary vitamin C in human health. Adv Food Nutr Res. 2018;83:281–310. https://pubmed.ncbi.nlm.nih.gov/29477224/

1813

Duarte TL, Lunec J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res. 2005;39(7):671–86. https://pubmed.ncbi.nlm.nih.gov/16036346/

1814

Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/

1815

Mendes-da-Silva RF, Lopes-de-Morais AAC, Bandim-da-Silva ME, et al. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis. Neuropharmacology. 2014;86:155–60. https://pubmed.ncbi.nlm.nih.gov/25008558/

1816

Pallauf K, Bendall JK, Scheiermann C, et al. Vitamin C and lifespan in model organisms. Food Chem Toxicol. 2013;58:255–63. https://pubmed.ncbi.nlm.nih.gov/23643700/

1817

Brauchla M, Dekker MJ, Rehm CD. Trends in vitamin C consumption in the United States: 1999–2018. Nutrients. 2021;13(2):420. https://pubmed.ncbi.nlm.nih.gov/33525516/

1818

Thomas LDK, Elinder CG, Tiselius HG, Wolk A, Åkesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173(5):386–8. https://pubmed.ncbi.nlm.nih.gov/23381591/

1819

Fletcher RH. The risk of taking ascorbic acid. JAMA Intern Med. 2013;173(5):388. https://pubmed.ncbi.nlm.nih.gov/23381657/

1820

Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/

1821

Toledo C, Saltsman K. Genetics by the numbers. Inside Life Science. National Institute of General Medical Sciences. https://www.nigms.nih.gov/education/Inside-Life-Science/Pages/genetics-by-the-numbers.aspx. Published June 12, 2012. Accessed June 28, 2021.; https://nigms.nih.gov/education/Inside-Life-Science/Pages/Genetics-by-the-Numbers.aspx

1822

Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–95. https://pubmed.ncbi.nlm.nih.gov/21930182/

1823

Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/

1824

Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514220/

1825

Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317077/

1826

Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/

1827

Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416–30. https://pubmed.ncbi.nlm.nih.gov/24011076/

1828

Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. https://pubmed.ncbi.nlm.nih.gov/22367546/

1829

Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379

1830

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1831

Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312–23. https://pubmed.ncbi.nlm.nih.gov/18835033/

1832

Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24–34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386230/

1833

Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/

1834

Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191(7):1299–313. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010065/

1835

Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/

1836

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1837

Flachsbart F, Croucher PJP, Nikolaus S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol. 2006;41(1):98–102. https://pubmed.ncbi.nlm.nih.gov/16257164/

1838

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. https://pubmed.ncbi.nlm.nih.gov/22395773/

1839

Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/

1840

Xu W, Deng YY, Yang L, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res. 2015;166(5):451–8. https://pubmed.ncbi.nlm.nih.gov/26141671/

1841

Dang W. The controversial world of sirtuins. Drug Discov Today Technol. 2014;12:e9–17. https://pubmed.ncbi.nlm.nih.gov/25027380/

1842

Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/

1843

Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/

1844

Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Am Coll Nutr. 2018;37(3):223–33. https://pubmed.ncbi.nlm.nih.gov/29313746/

1845

Crujeiras AB, Parra D, Goyenechea E, Martínez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest. 2008;38(9):672–8. https://pubmed.ncbi.nlm.nih.gov/18837744/

1846

Draznin B, Wang C, Adochio R, Leitner JW, Cornier MA. Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Horm Metab Res. 2012;44(9):650–5. https://pubmed.ncbi.nlm.nih.gov/22674476/

1847

Lilja S, Stoll C, Krammer U, et al. Five days periodic fasting elevates levels of longevity related Christensenella and sirtuin expression in humans. Int J Mol Sci. 2021;22(5):2331. https://pubmed.ncbi.nlm.nih.gov/33652686/

1848

Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res. 2005;13(3):574–81. https://pubmed.ncbi.nlm.nih.gov/15833943/

1849

Mansur AP, Roggerio A, Goes MFS, et al. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: a randomized trial. Int J Cardiol. 2017;227:788–94. https://pubmed.ncbi.nlm.nih.gov/28029409/

1850

Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. https://pubmed.ncbi.nlm.nih.gov/17341128/

1851

Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/

1852

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1853

Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/

1854

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1855

Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules. 2014;19(11):17154–72. https://pubmed.ncbi.nlm.nih.gov/25347459/

1856

Pezzuto JM. Resveratrol: twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019;27(1):1–14. https://pubmed.ncbi.nlm.nih.gov/30332889/

1857

Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci. 2015;1348(1):150–60. https://pubmed.ncbi.nlm.nih.gov/26099945/

1858

Сравнительно низкий уровень сердечно-сосудистых и онкологических заболеваний у жителей Франции при высококалорийном рационе питания и обилии в нем жиров. – Примеч. ред.

1859

Visioli F, Panaite SA, Tomé-Carneiro J. Wine’s phenolic compounds and health: a Pythagorean view. Molecules. 2020;25(18):4105. https://pubmed.ncbi.nlm.nih.gov/32911765/

1860

Burr ML. Explaining the French paradox. J R Soc Health. 1995;115(4):217–9. https://pubmed.ncbi.nlm.nih.gov/7562866/

1861

Vang O. What is new for resveratrol? Is a new set of recommendations necessary? Ann N Y Acad Sci. 2013;1290:1–11. https://pubmed.ncbi.nlm.nih.gov/23855460/

1862

Resveratrol. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol. Accessed January 18, 2023.; https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol

1863

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1864

Rascón B, Hubbard BP, Sinclair DA, Amdam GV. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY). 2012;4(7):499–508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433935/

1865

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1866

Kim E, Ansell CM, Dudycha JL. Resveratrol and food effects on lifespan and reproduction in the model crustacean Daphnia. J Exp Zool A Ecol Genet Physiol. 2014;321(1):48–56. https://pubmed.ncbi.nlm.nih.gov/24133070/

1867

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1868

Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51. https://pubmed.ncbi.nlm.nih.gov/20061378/

1869

Cottart CH, Nivet-Antoine V, Beaudeux JL. Is resveratrol an imposter? Mol Nutr Food Res. 2015;59(1):7. https://pubmed.ncbi.nlm.nih.gov/25558005/

1870

Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol Res. 2014;90:88–115. https://pubmed.ncbi.nlm.nih.gov/25151891/

1871

Артефакт эксперимента (от лат. arte – «искусственно» + factus – «сделанный») – эффект в эксперименте, возникающий вследствие дефектов методики проведения опыта. – Примеч. ред.

1872

Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/

1873

Roehr B. Cardiovascular researcher fabricated data in studies of red wine. BMJ. 2012;344:e406. https://pubmed.ncbi.nlm.nih.gov/22250221/

1874

Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/

1875

Resveratrol clinical trial, humans from 2014/12/1–3000/12/12. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol&filter=pubt.clinicaltrial&filter=dates.2014%2F12%2F1–3000%2F12%2F12&filter=hum_ani.humans. Accessed January 18, 2023.; https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol&filter=pubt.clinicaltrial&filter=dates.2014%2F12%2F1-3000%2F12%2F12&filter=hum_ani.humans

1876

Rabassa M, Zamora-Ros R, Urpi-Sarda M, et al. Association of habitual dietary resveratrol exposure with the development of frailty in older age: the Invecchiare in Chianti study. Am J Clin Nutr. 2015;102(6):1534–42. https://pubmed.ncbi.nlm.nih.gov/26490492/

1877

Semba RD, Ferrucci L, Bartali B, et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014;174(7):1077–84. https://pubmed.ncbi.nlm.nih.gov/24819981/

1878

Omidian M, Abdolahi M, Daneshzad E, et al. The effects of resveratrol on oxidative stress markers: a systematic review and meta-analysis of randomized clinical trials. Endocr Metab Immune Disord Drug Targets. 2020;20(5):718–27. https://pubmed.ncbi.nlm.nih.gov/31738139/

1879

Koushki M, Lakzaei M, Khodabandehloo H, Hosseini H, Meshkani R, Panahi G. Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 2020;96(1134):197–205. https://pubmed.ncbi.nlm.nih.gov/31628212/

1880

Heger A, Ferk F, Nersesyan A, et al. Intake of a resveratrol-containing dietary supplement has no impact on DNA stability in healthy subjects. Mutat Res. 2012;749(1–2):82–6. https://pubmed.ncbi.nlm.nih.gov/22981768/

1881

Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr. 2021;114(5):1675–85. https://pubmed.ncbi.nlm.nih.gov/34320173/

1882

Zhang T, He Q, Liu Y, Chen Z, Hu H. Efficacy and safety of resveratrol supplements on blood lipid and blood glucose control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2021;2021:5644171. https://pubmed.ncbi.nlm.nih.gov/34484395/

1883

Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: an umbrella review of meta-analyses of randomized controlled trials. Am J Clin Nutr. 2021;114(5):1675–8. https://pubmed.ncbi.nlm.nih.gov/34320173/

1884

Bashmakov YK, Assaad-Khalil SH, Abou Seif M, et al. Resveratrol promotes foot ulcer size reduction in type 2 diabetes patients. ISRN Endocrinol. 2014;2014:816307. https://pubmed.ncbi.nlm.nih.gov/24701359/

1885

Moxey PW, Gogalniceanu P, Hinchliffe RJ, et al. Lower extremity amputations – a review of global variability in incidence. Diabet Med. 2011;28(10):1144–53. https://pubmed.ncbi.nlm.nih.gov/21388445/

1886

Bhattarai G, Poudel SB, Kook SH, Lee JC. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016;29:398–408. https://pubmed.ncbi.nlm.nih.gov/26497626/

1887

Zhen L, Fan DS, Zhang Y, Cao XM, Wang LM. Resveratrol ameliorates experimental periodontitis in diabetic mice through negative regulation of TLR4 signaling. Acta Pharmacol Sin. 2015;36(2):221–8. https://pubmed.ncbi.nlm.nih.gov/25530164/

1888

Javid AZ, Hormoznejad R, Yousefimanesh HA, Haghighi-Zadeh MH, Zakerkish M. Impact of resveratrol supplementation on inflammatory, antioxidant, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Diabetes Metab Syndr. 2019;13(4):2769–74. https://pubmed.ncbi.nlm.nih.gov/31405706/

1889

Samsamikor M, Daryani NE, Asl PR, Hekmatdoost A. Resveratrol supplementation and oxidative/anti-oxidative status in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res. 2016;47(4):304–9. https://pubmed.ncbi.nlm.nih.gov/27664491/

1890

Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res. 2015;46(4):280–5. https://pubmed.ncbi.nlm.nih.gov/26002728/

1891

Hussain SA, Marouf BH, Ali ZS, Ahmmad RS. Efficacy and safety of co-administration of resveratrol with meloxicam in patients with knee osteoarthritis: a pilot interventional study. Clin Interv Aging. 2018;13:1621–30. https://pubmed.ncbi.nlm.nih.gov/30233159/

1892

Qasem RJ. The estrogenic activity of resveratrol: a comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit Rev Toxicol. 2020;50(5):439–62. https://pubmed.ncbi.nlm.nih.gov/32744480/

1893

Dzator JSA, Howe PRC, Coupland KG, Wong RHX. A randomised, double-blind, placebo-controlled crossover trial of resveratrol supplementation for prophylaxis of hormonal migraine. Nutrients. 2022;14(9):1763. https://pubmed.ncbi.nlm.nih.gov/35565731/

1894

Mansour A, Samadi M, Sanginabadi M, et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin Nutr. 2021;40(6):4106–12. https://pubmed.ncbi.nlm.nih.gov/33610422/

1895

Zaw JJT, Howe PRC, Wong RHX. Long-term resveratrol supplementation improves pain perception, menopausal symptoms, and overall well-being in postmenopausal women: findings from a 24-month randomized, controlled, crossover trial. Menopause. 2020;28(1):40–9. https://pubmed.ncbi.nlm.nih.gov/32881835/

1896

Li Q, Yang G, Xu H, Tang S, Lee WYW. Effects of resveratrol supplementation on bone quality: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Med Ther. 2021;21(1):214. https://pubmed.ncbi.nlm.nih.gov/34420523/

1897

Johnson JJ, Nihal M, Siddiqui IA, et al. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol Nutr Food Res. 2011;55(8):1169–76. https://pubmed.ncbi.nlm.nih.gov/21714124/

1898

Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383-91 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626244/

1899

Gliemann L. What are the chances that resveratrol will be the drug of tomorrow? Pharmacol Res. 2018;129:139–40. https://pubmed.ncbi.nlm.nih.gov/29425727/

1900

Semba RD, Ferrucci L, Bartali B, et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014;174(7):1077–84. https://pubmed.ncbi.nlm.nih.gov/24819981/

1901

Wahab A, Gao K, Jia C, et al. Significance of resveratrol in clinical management of chronic diseases. Molecules. 2017;22(8):1329. https://pubmed.ncbi.nlm.nih.gov/28820474/

1902

Scribbans TD, Ma JK, Edgett BA, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. 2014;39(11):1305–13. https://pubmed.ncbi.nlm.nih.gov/25211703/

1903

Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(Pt 20):5047–59. https://pubmed.ncbi.nlm.nih.gov/23878368/

1904

Meng X, Zhou J, Zhao CN, Gan RY, Li HB. Health benefits and molecular mechanisms of resveratrol: a narrative review. Foods. 2020;9(3):340. https://pubmed.ncbi.nlm.nih.gov/32183376/

1905

45,36 кг. – Примеч. ред.

1906

Dybkowska E, Sadowska A, Swiderski F, Rakowska R, Wysocka K. The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review. Rocz Panstw Zakl Hig. 2018;69(1):5–14. https://pubmed.ncbi.nlm.nih.gov/29517181/

1907

Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/

1908

Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell. 2006;127(6):1109–22. https://pubmed.ncbi.nlm.nih.gov/17112576/

1909

Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22. https://pubmed.ncbi.nlm.nih.gov/22055504/

1910

Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol Res. 2014;90:88–115. https://pubmed.ncbi.nlm.nih.gov/25151891/

1911

Gliemann L, Olesen J, Biensø RS, et al. Reply from Lasse Gliemann, Jesper Olesen, Rasmus Sjørup Biensø, Stefan Peter Mortensen, Michael Nyberg, Jens Bangsbo, Henriette Pilegaard and Ylva Hellsten. J Physiol. 2014;592(Pt 3):553. https://pubmed.ncbi.nlm.nih.gov/24488075/

1912

Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/

1913

Li D, Cui Y, Wang X, Liu F, Li X. Apple polyphenol extract alleviates lipid accumulation in free-fatty-acid-exposed HepG2 cells via activating autophagy mediated by SIRT1/AMPK signaling. Phytother Res. 2021;35(3):1416–31. https://pubmed.ncbi.nlm.nih.gov/33037751/

1914

Gayer BA, Avendano EE, Edelson E, Nirmala N, Johnson EJ, Raman G. Effects of intake of apples, pears, or their products on cardiometabolic risk factors and clinical outcomes: a systematic review and meta-analysis. Curr Dev Nutr. 2019;3(10):nzz109. https://pubmed.ncbi.nlm.nih.gov/31667463/

1915

Hodgson JM, Prince RL, Woodman RJ, et al. Apple intake is inversely associated with all-cause and disease-specific mortality in elderly women. Br J Nutr. 2016;115(5):860–7. https://pubmed.ncbi.nlm.nih.gov/26787402/

1916

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

1917

Xiang L, Sun K, Lu J, et al. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Biosci Biotechnol Biochem. 2011;75(5):854–8. https://pubmed.ncbi.nlm.nih.gov/21597195/

1918

Peng C, Chan HYE, Huang Y, Yu H, Chen ZY. Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem. 2011;59(5):2097–106. https://pubmed.ncbi.nlm.nih.gov/21319854/

1919

Shaposhnikov M, Latkin D, Plyusnina E, et al. The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology. 2014;15(2):113–27. https://pubmed.ncbi.nlm.nih.gov/24305778/

1920

Palermo V, Mattivi F, Silvestri R, La Regina G, Falcone C, Mazzoni C. Apple can act as anti-aging on yeast cells. Oxid Med Cell Longev. 2012;2012:491759. https://pubmed.ncbi.nlm.nih.gov/22970337/

1921

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

1922

Sunagawa T, Shimizu T, Kanda T, Tagashira M, Sami M, Shirasawa T. Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans. Planta Med. 2011;77(2):122–7. https://pubmed.ncbi.nlm.nih.gov/20717869/

1923

Song B, Wang H, Xia W, Zheng B, Li T, Liu RH. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food Funct. 2020;11(7):6170–85. https://pubs.rsc.org/en/content/articlelanding/2020/FO/D0FO00718H

1924

Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich “MediterrAsian” diet? Oxid Med Cell Longev. 2013;2013:707421. https://pubmed.ncbi.nlm.nih.gov/24069505/

1925

Wu X, Cao N, Fenech M, Wang X. Role of sirtuins in maintenance of genomic stability: relevance to cancer and healthy aging. DNA Cell Biol. 2016;35(10):542–75. https://pubmed.ncbi.nlm.nih.gov/27380140/

1926

Khazdouz M, Daryani NE, Alborzi F, et al. Effect of selenium supplementation on expression of SIRT1 and PGC-1a genes in ulcerative colitis patients: a double blind randomized clinical trial. Clin Nutr Res. 2020;9(4):284–95. https://pubmed.ncbi.nlm.nih.gov/33204668/

1927

Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/

1928

Fusi J, Bianchi S, Daniele S, et al. An in vitro comparative study of the antioxidant activity and SIRT1 modulation of natural compounds. Biomed Pharmacother. 2018;101:805–19. https://pubmed.ncbi.nlm.nih.gov/29525677/

1929

Yang Y, Duan W, Lin Y, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667–79. https://pubmed.ncbi.nlm.nih.gov/23880291/

1930

Heshmati J, Golab F, Morvaridzadeh M, et al. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor ¿ coactivator 1a gene expression in polycystic ovarian syndrome (PCOS) patients: a randomized placebo-controlled clinical trial. Diabetes Metab Syndr. 2020;14(2):77–82. https://pubmed.ncbi.nlm.nih.gov/31991296/

1931

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/

1932

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom increases Sirtuin-1 and reduces inflammation in overweight or obese patients with non-alcoholic fatty liver disease: a double-blind randomized placebo-controlled clinical trial. Nutr Metab (Lond). 2018;15:63. https://pubmed.ncbi.nlm.nih.gov/30263038/

1933

Zhong Y, Chen AF, Zhao J, Gu YJ, Fu GX. Serum levels of cathepsin D, sirtuin1, and endothelial nitric oxide synthase are correlatively reduced in elderly healthy people. Aging Clin Exp Res. 2016;28(4):641–5. https://pubmed.ncbi.nlm.nih.gov/26462844/

1934

Kumar R, Mohan N, Upadhyay AD, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80. https://pubmed.ncbi.nlm.nih.gov/25100619/

1935

Kumar R, Chaterjee P, Sharma PK, et al. Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS One. 2013;8(4):e61560. https://pubmed.ncbi.nlm.nih.gov/23613875/

1936

Yanagisawa S, Papaioannou AI, Papaporfyriou A, et al. Decreased serum sirtuin-1 in COPD. Chest. 2017;152(2):343–52. https://pubmed.ncbi.nlm.nih.gov/28506610/

1937

Kazemi S, Yaghooblou F, Siassi F, et al. Cardamom supplementation improves inflammatory and oxidative stress biomarkers in hyperlipidemic, overweight, and obese pre-diabetic women: a randomized double-blind clinical trial. J Sci Food Agric. 2017;97(15):5296–301. https://pubmed.ncbi.nlm.nih.gov/28480505/

1938

Shekarchizadeh-Esfahani P, Arab A, Ghaedi E, Hadi A, Jalili C. Effects of cardamom supplementation on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res. 2020;34(3):475–85. https://pubmed.ncbi.nlm.nih.gov/31755188/

1939

Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: a double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med. 2019;19(1):59. https://pubmed.ncbi.nlm.nih.gov/30871514/

1940

Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70. https://pubmed.ncbi.nlm.nih.gov/18174544/

1941

Caito S, Rajendrasozhan S, Cook S, et al. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 2010;24(9):3145–59. https://pubmed.ncbi.nlm.nih.gov/20385619/

1942

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

1943

Rizzi L, Roriz-Cruz M. Sirtuin 1 and Alzheimer’s disease: an up-to-date review. Neuropeptides. 2018;71:54–60. https://pubmed.ncbi.nlm.nih.gov/30007474/

1944

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

1945

Potthast AB, Nebl J, Wasserfurth P, et al. Impact of nutrition on short-term exercise-induced sirtuin regulation: vegans differ from omnivores and lacto-ovo vegetarians. Nutrients. 2020;12(4):1004. https://pubmed.ncbi.nlm.nih.gov/32260570/

1946

Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379

1947

Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/

1948

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

1949

Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/

1950

Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 2007;8(9):715–22. https://pubmed.ncbi.nlm.nih.gov/17717516/

1951

Bonafè M, Sabbatinelli J, Olivieri F. Exploiting the telomere machinery to put the brakes on inflamm-aging. Ageing Res Rev. 2020;59:101027. https://pubmed.ncbi.nlm.nih.gov/32068123/

1952

Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere length and the cancer – atherosclerosis trade-off. PLoS Genet. 2016;12(7):e1006144. https://pubmed.ncbi.nlm.nih.gov/27386863/

1953

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

1954

Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/

1955

Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci. 2014;7(3):161–7. https://pubmed.ncbi.nlm.nih.gov/25612739/

1956

Wang J, Liu Y, Xia Q, et al. Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol. 2020;163:1060–78. https://pubmed.ncbi.nlm.nih.gov/32673712/

1957

Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/

1958

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1959

Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/

1960

Zhou J, Wang J, Shen Y, et al. The association between telomere length and frailty: a systematic review and meta-analysis. Exp Gerontol. 2018;106:16–20. https://pubmed.ncbi.nlm.nih.gov/29518479/

1961

Cohen S, Janicki-Deverts D, Turner RB, et al. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA. 2013;309(7):699–705. https://pubmed.ncbi.nlm.nih.gov/23423415/

1962

Zhan Y, Clements MS, Roberts RO, et al. Association of telomere length with general cognitive trajectories: a meta-analysis of four prospective cohort studies. Neurobiol Aging. 2018;69:111–6. https://pubmed.ncbi.nlm.nih.gov/29870951/

1963

Smith L, Luchini C, Demurtas J, et al. Telomere length and health outcomes: an umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res Rev. 2019;51:1–10. https://pubmed.ncbi.nlm.nih.gov/30776454/

1964

Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. J Cardiovasc Dev Dis. 2020;7(3):29. https://pubmed.ncbi.nlm.nih.gov/32781553/

1965

Zhan Y, Liu XR, Reynolds CA, Pedersen NL, Hägg S, Clements MS. Leukocyte telomere length and all-cause mortality: a between-within twin study with time-dependent effects using generalized survival models. Am J Epidemiol. 2018;187(10):2186–91. https://pubmed.ncbi.nlm.nih.gov/29961868/

1966

Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/

1967

Christensen K, Thinggaard M, McGue M, et al. Perceived age as clinically useful biomarker of ageing: cohort study. BMJ. 2009;339:b5262. https://pubmed.ncbi.nlm.nih.gov/20008378/

1968

Zhan Y, Hägg S. Association between genetically predicted telomere length and facial skin aging in the UK Biobank: a Mendelian randomization study. GeroScience. 2021;43(3):1519–25. https://pubmed.ncbi.nlm.nih.gov/33033864/

1969

Astuti Y, Wardhana A, Watkins J, Wulaningsih W. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–9. https://pubmed.ncbi.nlm.nih.gov/28704792/

1970

Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/

1971

Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci U S A. 2019;116(30):15122–7. https://pubmed.ncbi.nlm.nih.gov/31285335/

1972

Fick LJ, Fick GH, Li Z, et al. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530–6. https://pubmed.ncbi.nlm.nih.gov/23260664/

1973

Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun. 2019;10(1):4723. https://pubmed.ncbi.nlm.nih.gov/31624261/

1974

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/

1975

Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. https://pubmed.ncbi.nlm.nih.gov/30229407/

1976

Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. https://pubmed.ncbi.nlm.nih.gov/26785477/

1977

Tsuji A, Ishiko A, Takasaki T, Ikeda N. Estimating age of humans based on telomere shortening. Forensic Sci Int. 2002;126(3):197–9. https://pubmed.ncbi.nlm.nih.gov/12062940/

1978

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1979

Blackburn EH. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chemie Int Ed Engl. 2010;49(41):7405–21. https://pubmed.ncbi.nlm.nih.gov/20821774/

1980

Laberthonnière C, Magdinier F, Robin JD. Bring it to an end: does telomeres size matter? Cells. 2019;8(1):30. https://pubmed.ncbi.nlm.nih.gov/30626097/

1981

Saretzki G. Telomeres, telomerase and ageing. Subcell Biochem. 2018;90:221–308. https://pubmed.ncbi.nlm.nih.gov/30779012/

1982

Boccardi V, Mecocci P. Telomerase activation and human health-span: an open issue. Aging Clin Exp Res. 2018;30(2):221–3. https://pubmed.ncbi.nlm.nih.gov/28470632/

1983

Flanary BE, Kletetschka G. Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva. Biogerontology. 2005;6(2):101–11. https://pubmed.ncbi.nlm.nih.gov/16034678/

1984

Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9. https://pubmed.ncbi.nlm.nih.gov/8934879/

1985

Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33(5):787–91. https://pubmed.ncbi.nlm.nih.gov/9282118/

1986

Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/

1987

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

1988

Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9. https://pubmed.ncbi.nlm.nih.gov/21310811/

1989

Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2008;1(1):81–8. https://pubmed.ncbi.nlm.nih.gov/20195384/

1990

Tedone E, Arosio B, Gussago C, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014;58:90–5. https://pubmed.ncbi.nlm.nih.gov/24975295/

1991

Tedone E, Huang E, O’Hara R, et al. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell. 2019;18(1):e12859. https://pubmed.ncbi.nlm.nih.gov/30488553/

1992

Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: retrospective analysis and future prospects. Life Sci. 2020;257:118115. https://pubmed.ncbi.nlm.nih.gov/32698073/

1993

Boccardi V, Paolisso G. Telomerase activation: a potential key modulator for human healthspan and longevity. Ageing Res Rev. 2014;15:1–5. https://pubmed.ncbi.nlm.nih.gov/24561251/

1994

Bär C, Blasco MA. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000Res. 2016;5:89. https://pubmed.ncbi.nlm.nih.gov/27081482/

1995

Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008;135(4):609–22. https://pubmed.ncbi.nlm.nih.gov/19013273/

1996

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

1997

Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/

1998

Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science. 2000;287(5456):1253–8. https://pubmed.ncbi.nlm.nih.gov/10678830/

1999

Bär C, Bernardes de Jesus B, Serrano R, et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun. 2014;5:5863. https://pubmed.ncbi.nlm.nih.gov/25519492/

2000

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

2001

Eitan E, Tichon A, Gazit A, Gitler D, Slavin S, Priel E. Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med. 2012;4(4):313–29. https://pubmed.ncbi.nlm.nih.gov/22351600/

2002

Gilson E, Ségal-Bendirdjian E. The telomere story or the triumph of an open-minded research. Biochimie. 2010;92(4):321–6. https://pubmed.ncbi.nlm.nih.gov/20096746/

2003

Suram A, Herbig U. The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell. 2014;13(5):780–6. https://pubmed.ncbi.nlm.nih.gov/25040628/

2004

Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. https://pubmed.ncbi.nlm.nih.gov/30760854/

2005

Hornsby PJ. Telomerase and the aging process. Exp Gerontol. 2007;42(7):575–81. https://pubmed.ncbi.nlm.nih.gov/17482404/

2006

Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52. https://pubmed.ncbi.nlm.nih.gov/9454332/

2007

Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012;4(8):691–704. https://pubmed.ncbi.nlm.nih.gov/22585399/

2008

Huang Z, Liu C, Ruan Y, et al. Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience. 2021;43(2):645–54. https://pubmed.ncbi.nlm.nih.gov/33469834/

2009

Broer L, Codd V, Nyholt DR, et al. Meta-analysis of telomere length in 19713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–8. https://pubmed.ncbi.nlm.nih.gov/23321625/

2010

Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/

2011

Ip P, Chung BHY, Ho FKW, et al. Prenatal tobacco exposure shortens telomere length in children. Nicotine Tob Res. 2017;19(1):111–8. https://pubmed.ncbi.nlm.nih.gov/27194546/

2012

Zhao B, Vo HQ, Johnston FH, Negishi K. Air pollution and telomere length: a systematic review of 12,058 subjects. Cardiovasc Diagn Ther. 2018;8(4):480–92. https://pubmed.ncbi.nlm.nih.gov/30214863/

2013

Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741):20160436. https://pubmed.ncbi.nlm.nih.gov/29335375/

2014

Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/

2015

Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet. 1990;336(8708):129–33. https://pubmed.ncbi.nlm.nih.gov/1973470/

2016

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

2017

U.S. National Library of Medicine. Can lifestyle changes reverse early-stage Alzheimer’s disease. ClincalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04606420. Updated October 28, 2020. Accessed July 17, 2021.; https://clinicaltrials.gov/ct2/show/NCT04606420

2018

Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/

2019

Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/

2020

Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/

2021

Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/

2022

В российском прокате – «Отпуск по обмену». – Примеч. ред.

2023

Blackburn EH, Epel ES. Too toxic to ignore. Nature. 2012;490(7419):169–71. https://pubmed.ncbi.nlm.nih.gov/23060172/

2024

Epel ES, Lin J, Dhabhar FS, et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav Immun. 2010;24(4):531–9. https://pubmed.ncbi.nlm.nih.gov/20018236/

2025

Damjanovic AK, Yang Y, Glaser R, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol. 2007;179(6):4249–54. https://pubmed.ncbi.nlm.nih.gov/17785865/

2026

Schutte NS, Malouff JM, Keng SL. Meditation and telomere length: a meta-analysis. Psychol Health. 2020;35(8):901–15. https://pubmed.ncbi.nlm.nih.gov/31903785/

2027

Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8. https://pubmed.ncbi.nlm.nih.gov/18227361/

2028

Tucker LA. Walking and biologic ageing: evidence based on NHANES telomere data. J Sports Sci. 2020;38(9):1026–35. https://pubmed.ncbi.nlm.nih.gov/32175820/

2029

Lin X, Zhou J, Dong B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J Rehabil Med. 2019;51(7):473–8. https://pubmed.ncbi.nlm.nih.gov/31093683/

2030

Mundstock E, Zatti H, Louzada FM, et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res Rev. 2015;22:72–80. https://pubmed.ncbi.nlm.nih.gov/25956165/

2031

Abrahin O, Cortinhas-Alves EA, Vieira RP, Guerreiro JF. Elite athletes have longer telomeres than sedentary subjects: a meta-analysis. Exp Gerontol. 2019;119:138–45. https://pubmed.ncbi.nlm.nih.gov/30735724/

2032

Aguiar SS, Sousa CV, Santos PA, et al. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp Gerontol. 2021;146:111212. https://pubmed.ncbi.nlm.nih.gov/33387607/

2033

Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377. https://pubmed.ncbi.nlm.nih.gov/23936000/

2034

Werner C, Fürster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47. https://pubmed.ncbi.nlm.nih.gov/19948976/

2035

Friedenreich CM, Wang Q, Ting NS, et al. Effect of a 12-month exercise intervention on leukocyte telomere length: results from the ALPHA Trial. Cancer Epidemiol. 2018;56:67–74. https://pubmed.ncbi.nlm.nih.gov/30075329/

2036

Sjögren P, Fisher R, Kallings L, Svenson U, Roos G, Hellénius ML. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9. https://pubmed.ncbi.nlm.nih.gov/25185586/

2037

Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/

2038

Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/

2039

Werner CM, Hecksteden A, Morsch A, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. Eur Heart J. 2019;40(1):34–46. https://pubmed.ncbi.nlm.nih.gov/30496493/

2040

To-Miles FYL, Backman CL. What telomeres say about activity and health: a rapid review. Can J Occup Ther. 2016;83(3):143–53. https://pubmed.ncbi.nlm.nih.gov/27053148/

2041

Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54. https://pubmed.ncbi.nlm.nih.gov/23640743/

2042

Himbert C, Thompson H, Ulrich CM. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes Facts. 2017;10(6):648–65. https://pubmed.ncbi.nlm.nih.gov/29237161/

2043

Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57. https://pubmed.ncbi.nlm.nih.gov/18799354/

2044

Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/24051140/

2045

Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep. 2020;47(9):7181–8. https://pubmed.ncbi.nlm.nih.gov/32876842/

2046

Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/

2047

De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/

2048

Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/

2049

Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/

2050

Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González MA, Zalba G, Bes-Rastrollo M, Marti A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr. 2020;111(6):1259–66. https://pubmed.ncbi.nlm.nih.gov/32330232/

2051

Askari M, Heshmati J, Shahinfar H, Tripathi N, Daneshzad E. Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes (Lond). 2020;44(10):2080–91. https://pubmed.ncbi.nlm.nih.gov/32796919/

2052

Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr. 2021;125(3):308–18. https://pubmed.ncbi.nlm.nih.gov/32792031/

2053

Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkälä KH, Fyhrquist F. Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol. 2012;27(10):815–22. https://pubmed.ncbi.nlm.nih.gov/22875407/

2054

Maugeri A, Barchitta M, Magnano San Lio R, et al. The effect of alcohol on telomere length: a systematic review of epidemiological evidence and a pilot study during pregnancy. Int J Environ Res Public Health. 2021;18(9):5038. https://pubmed.ncbi.nlm.nih.gov/34068820/

2055

Huang Y, Cao D, Chen Z, et al. Red and processed meat consumption and cancer outcomes: umbrella review. Food Chem. 2021;356:129697. https://pubmed.ncbi.nlm.nih.gov/33838606/

2056

Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/

2057

De Meyer T, Bekaert S, De Buyzere ML, et al. Leukocyte telomere length and diet in the apparently healthy, middle-aged Asklepios population. Sci Rep. 2018;8(1):6540. https://pubmed.ncbi.nlm.nih.gov/29695838/

2058

Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/

2059

Galiè S, Canudas S, Muralidharan J, García-Gavilán J, Bulló M, Salas-Salvadó J. Impact of nutrition on telomere health: systematic review of observational cohort studies and randomized clinical trials. Adv Nutr. 2020;11(3):576–601. https://pubmed.ncbi.nlm.nih.gov/31688893/

2060

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

2061

Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA. 2010;303(3):250. https://pubmed.ncbi.nlm.nih.gov/20085953/

2062

Pawelczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Zurner N, Pawelczyk A. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:142–8. https://pubmed.ncbi.nlm.nih.gov/31098654/

2063

O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/

2064

Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/

2065

Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/

2066

Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/

2067

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

2068

Pitkänen N, Pahkala K, Rovio SP, et al. Effects of randomized controlled infancy-onset dietary intervention on leukocyte telomere length – the Special Turku Coronary Risk Factor Intervention Project (STRIP). Nutrients. 2021;13(2):318. https://pubmed.ncbi.nlm.nih.gov/33499376/

2069

Marin C, Delgado-Lista J, Ramirez R, et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age (Dordr). 2012;34(6):1309–16. https://pubmed.ncbi.nlm.nih.gov/21894446/

2070

Canudas S, Becerra-Tomás N, Hernández-Alonso P, et al. Mediterranean diet and telomere length: a systematic review and meta-analysis. Adv Nutr. 2020;11(6):1544–54. https://pubmed.ncbi.nlm.nih.gov/32730558/

2071

Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxid Med Cell Longev. 2019;2019:e1574021. https://pubmed.ncbi.nlm.nih.gov/31772698/

2072

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

2073

Tucker LA. Dietary fiber and telomere length in 5674 U.S. adults: an NHANES study of biological aging. Nutrients. 2018;10(4):400. https://pubmed.ncbi.nlm.nih.gov/29570620/

2074

Fretts AM, Howard BV, Siscovick DS, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8. https://pubmed.ncbi.nlm.nih.gov/22277554/

2075

Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/

2076

Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4. https://pubmed.ncbi.nlm.nih.gov/16112303/

2077

Institute of Medicine. Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/

2078

Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63. https://pubmed.ncbi.nlm.nih.gov/19279081/

2079

Min KB, Min JY. Association between leukocyte telomere length and serum carotenoid in US adults. Eur J Nutr. 2017;56(3):1045–52. https://pubmed.ncbi.nlm.nih.gov/26818530/

2080

Liu JJ, Crous-Bou M, Giovannucci E, De Vivo I. Coffee consumption is positively associated with longer leukocyte telomere length in the Nurses’ Health Study. J Nutr. 2016;146(7):1373–8. https://pubmed.ncbi.nlm.nih.gov/27281805/

2081

Tucker LA. Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond). 2017;14(1):10. https://pubmed.ncbi.nlm.nih.gov/28603543/

2082

Freitas-Simoes TM, Ros E, Sala-Vila A. Telomere length as a biomarker of accelerated aging: is it influenced by dietary intake? Curr Opin Clin Nutr Metab Care. 2018;21(6):430–6. https://pubmed.ncbi.nlm.nih.gov/30148739/

2083

Chan R, Woo J, Suen E, Leung J, Tang N. Chinese tea consumption is associated with longer telomere length in elderly Chinese men. Br J Nutr. 2010;103(1):107–13. https://pubmed.ncbi.nlm.nih.gov/19671205/

2084

Sheng R, Gu ZL, Xie ML. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol. 2013;162(3):199–209. https://pubmed.ncbi.nlm.nih.gov/22000973/

2085

Rusak G, Komes D, Likic S, Horžic D, Kovac M. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem. 2008;110(4):852–8. https://pubmed.ncbi.nlm.nih.gov/26047270/

2086

Hovanloo F, Fallah Huseini H, Hedayati M, Teimourian M. Effects of aerobic training combined with green tea extract on leukocyte telomere length, quality of life and body composition in elderly women. J Med Plants. 2016;15(59):47–57. https://www.researchgate.net/publication/309402738_Effects_of_Aerobic_Training_Combined_with_Green_Tea_Extract_on_Leukocyte_Telomere_Length_Quality_of_Life_and_Body_Composition_in_Elderly_Women

2087

Tran HTT, Schreiner M, Schlotz N, Lamy E. Short-term dietary intervention with cooked but not raw Brassica leafy vegetables increases telomerase activity in CD8+ lymphocytes in a randomized human trial. Nutrients. 2019;11(4):786. https://pubmed.ncbi.nlm.nih.gov/30959753/

2088

Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–84. https://pubmed.ncbi.nlm.nih.gov/18484782/

2089

Yu Z, Samavat H, Dostal AM, et al. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev Res (Phila). 2017;10(10):571–9. https://pubmed.ncbi.nlm.nih.gov/28765194/

2090

Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33. https://pubmed.ncbi.nlm.nih.gov/29580974/

2091

O’Callaghan N, Parletta N, Milte CM, Benassi-Evans B, Fenech M, Howe PRC. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ¿-3 fatty acid supplementation: a randomized controlled pilot study. Nutrition. 2014;30(4):489–91. https://pubmed.ncbi.nlm.nih.gov/24342530/

2092

Holub A, Mousa S, Abdolahi A, et al. The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutr Metab Cardiovasc Dis. 2020;30(10):1795–9. https://pubmed.ncbi.nlm.nih.gov/32723580/

2093

Kiecolt-Glaser JK, Epel ES, Belury MA, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain Behav Immun. 2013;28:16–24. https://pubmed.ncbi.nlm.nih.gov/23010452/

2094

Barden A, O’Callaghan N, Burke V, et al. n–3 fatty acid supplementation and leukocyte telomere length in patients with chronic kidney disease. Nutrients. 2016;8(3):175. https://pubmed.ncbi.nlm.nih.gov/27007392/

2095

García-Calzón S, Martínez-González MA, Razquin C, et al. Mediterranean diet and telomere length in high cardiovascular risk subjects from the PREDIMED-NAVARRA study. Clin Nutr. 2016;35(6):1399–405. https://pubmed.ncbi.nlm.nih.gov/27083496/

2096

Pusceddu I, Herrmann M, Kirsch SH, et al. Prospective study of telomere length and LINE-1 methylation in peripheral blood cells: the role of B vitamins supplementation. Eur J Nutr. 2016;55(5):1863–73. https://pubmed.ncbi.nlm.nih.gov/27083496/

2097

Sharif R, Thomas P, Zalewski P, Fenech M. Zinc supplementation influences genomic stability biomarkers, antioxidant activity, and zinc transporter genes in an elderly Australian population with low zinc status. Mol Nutr Food Res. 2015;59(6):1200–12. https://pubmed.ncbi.nlm.nih.gov/25755079/

2098

Zarei M, Zarezadeh M, Hamedi Kalajahi F, Javanbakht MH. The relationship between vitamin D and telomere/telomerase: a comprehensive review. J Frailty Aging. 2021;10(1):2–9. https://pubmed.ncbi.nlm.nih.gov/33331615/

2099

Zhu H, Guo D, Li K, et al. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int J Obes (Lond). 2012;36(6):805–9. https://pubmed.ncbi.nlm.nih.gov/21986705/

2100

Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: a 12-month randomized controlled trial. J Alzheimers Dis. 2020;78(4):1509–18. https://pubmed.ncbi.nlm.nih.gov/33164936/

2101

Guo Z, Lou Y, Kong M, Luo Q, Liu Z, Wu J. A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali radix: implications for Astragali radix as a personalized medicine. Int J Mol Sci. 2019;20(6):1463. https://pubmed.ncbi.nlm.nih.gov/30909474/

2102

Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis. 2017;8(6):868–86. https://pubmed.ncbi.nlm.nih.gov/29344421/

2103

Fauce SR, Jamieson BD, Chin AC, et al. Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol. 2008;181(10):7400–6. https://pubmed.ncbi.nlm.nih.gov/18981163/

2104

Dow CT, Harley CB. Evaluation of an oral telomerase activator for early age-related macular degeneration – a pilot study. Clin Ophthalmol. 2016;10:243–9. https://pubmed.ncbi.nlm.nih.gov/26869760/

2105

United States of America before the Federal Trade Commission in the matter of Telomerase Activation Sciences, Inc., and Noel Thomas Patton. Docket No. C-4644. FTC.gov. https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf. Updated April 19, 2018. Accessed December10, 2021.; https://www.ftc.gov/system/files/documents/cases/142_3103_-_telomerase_complaint_final.pdf

2106

Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/

2107

Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/

2108

Chandrika UG, Kumara PAASP. Gotu kola (Centella asiatica): nutritional properties and plausible health benefits. Adv Food Nutr Res. 2015;76:125–57. https://pubmed.ncbi.nlm.nih.gov/26602573/

2109

Tsoukalas D, Fragkiadaki P, Docea AO, et al. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep. 2019;20(4):3701–8. https://pubmed.ncbi.nlm.nih.gov/31485647/

2110

Puttarak P, Dilokthornsakul P, Saokaew S, et al. Effects of Centella asiatica (L.) Urb. on cognitive function and mood related outcomes: a systematic review and meta-analysis. Sci Rep. 2017;7(1):10646. https://pubmed.ncbi.nlm.nih.gov/28878245/

2111

Larrick JW, Mendelsohn AR. Telomerase redux: ready for prime time? Rejuvenation Res. 2015;18(2):185–7. https://pubmed.ncbi.nlm.nih.gov/25790341/

2112

Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28–34. https://pubmed.ncbi.nlm.nih.gov/21102320/

2113

Prieto-Oliveira P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem. 2021;476(2):599–607. https://pubmed.ncbi.nlm.nih.gov/33001374/

2114

Artandi SE, Depinho RA. Telomeres and telomerase in cancer. Carcinogenesis. 2010;31(1):9–18. https://pubmed.ncbi.nlm.nih.gov/19887512/

2115

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

2116

Skordalakes E. Telomerase and the benefits of healthy living. Lancet Oncol. 2008;9(11):1023–4. https://pubmed.ncbi.nlm.nih.gov/19012852/

2117

Huzen J, Wong LS, van Veldhuisen DJ, et al. Telomere length loss due to smoking and metabolic traits. J Intern Med. 2014;275(2):155–63. https://pubmed.ncbi.nlm.nih.gov/24118582/

2118

García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/

2119

Leung CW, Laraia BA, Needham BL, et al. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am J Public Health. 2014;104(12):2425–31. https://pubmed.ncbi.nlm.nih.gov/25322305/

2120

Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12. https://pubmed.ncbi.nlm.nih.gov/18996878/

2121

Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/

2122

Hou L, Savage SA, Blaser MJ, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(11):3103–9. https://pubmed.ncbi.nlm.nih.gov/19861514/

2123

Gu Y, Honig LS, Schupf N, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Dordr). 2015;37(2):9758. https://pubmed.ncbi.nlm.nih.gov/25750063/

2124

García-Calzón S, Moleres A, Martínez-González MA, et al. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin Nutr. 2015;34(4):694–9. https://pubmed.ncbi.nlm.nih.gov/25131600/

2125

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

2126

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

2127

Strong R, Miller RA, Antebi A, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an a-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84. https://pubmed.ncbi.nlm.nih.gov/27312235/

2128

Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/

2129

Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. https://pubmed.ncbi.nlm.nih.gov/23245604/

2130

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2131

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2132

Gebreslassie M, Sampaio F, Nystrand C, Ssegonja R, Feldman I. Economic evaluations of public health interventions for physical activity and healthy diet: a systematic review. Prev Med. 2020;136:106100. https://pubmed.ncbi.nlm.nih.gov/32353572/

2133

Das P, Samarasekera U. The story of GBD 2010: a “super-human” effort. Lancet. 2012;380(9859):2067–70. https://pubmed.ncbi.nlm.nih.gov/23259158/

2134

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2135

Dato S, Bellizzi D, Rose G, Passarino G. The impact of nutrients on the aging rate: a complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev. 2016;154:49–61. https://pubmed.ncbi.nlm.nih.gov/26876763/

2136

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92. https://pubmed.ncbi.nlm.nih.gov/31292558/

2137

Govindaraju T, Sahle BW, McCaffrey TA, McNeil JJ, Owen AJ. Dietary patterns and quality of life in older adults: a systematic review. Nutrients. 2018;10(8):971. https://pubmed.ncbi.nlm.nih.gov/30050006/

2138

Milte CM, McNaughton SA. Dietary patterns and successful ageing: a systematic review. Eur J Nutr. 2016;55(2):423–50. https://pubmed.ncbi.nlm.nih.gov/26695408/

2139

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2140

McCullough ML. Diet patterns and mortality: common threads and consistent results. J Nutr. 2014;144(6):795–6. https://pubmed.ncbi.nlm.nih.gov/24717365/

2141

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2142

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2143

Yip CSC, Chan W, Fielding R. The associations of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J Acad Nutr Diet. 2019;119(3):464–81. https://pubmed.ncbi.nlm.nih.gov/30639206/

2144

Fisher D. Study finds no link between secondhand smoke and cancer. Forbes. https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4. Published December 12, 2013. Accessed December 12, 2021.; https://www.forbes.com/sites/danielfisher/2013/12/12/study-finds-no-link-between-secondhand-smoke-and-cancer/?sh=77c79a2565d4

2145

Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ. 1997;315(7114):980–8. https://pubmed.ncbi.nlm.nih.gov/9365295/

2146

Gori GB, Mantel N. Mainstream and environmental tobacco smoke. Regul Toxicol Pharmacol. 1991;14(1):88–105. https://pubmed.ncbi.nlm.nih.gov/1947248/

2147

Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/

2148

Drope J, Chapman S. Tobacco industry efforts at discrediting scientific knowledge of environmental tobacco smoke: a review of internal industry documents. J Epidemiol Community Health. 2001;55(8):588–94. https://pubmed.ncbi.nlm.nih.gov/11449018/

2149

Barnes DE, Bero LA. Why review articles on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19):1566–70. https://pubmed.ncbi.nlm.nih.gov/9605902/

2150

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2151

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2152

Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177. https://pubmed.ncbi.nlm.nih.gov/30019766/

2153

Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/

2154

Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids – a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr. 2022;62(18):4982–97. https://pubmed.ncbi.nlm.nih.gov/33576691/

2155

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2156

Yip CSC, Lam W, Fielding R. A summary of meat intakes and health burdens. Eur J Clin Nutr. 2018;72(1):18–29. https://pubmed.ncbi.nlm.nih.gov/28792013/

2157

Spiegelhalter D. Microlives. Understanding Uncertainty. http://understandinguncertainty.org/microlives. Published November 22, 2011. Accessed August 30, 2021.; https://understandinguncertainty.org/microlives

2158

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2159

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2160

Zhuang P, Wu F, Mao L, et al. Egg and cholesterol consumption and mortality from cardiovascular and different causes in the United States: a population-based cohort study. PLoS Med. 2021;18(2):e1003508. https://pubmed.ncbi.nlm.nih.gov/33561122/

2161

Zeraatkar D, Han MA, Guyatt GH, et al. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Ann Intern Med. 2019;171(10):703–10. https://pubmed.ncbi.nlm.nih.gov/31569213/

2162

Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381

2163

Heard CL, Rakow T, Spiegelhalter D. Comparing comprehension and perception for alternative speed-of-ageing and standard hazard ratio formats. Appl Cognit Psychol. 2018;32(1):81–93. https://onlinelibrary.wiley.com/doi/abs/10.1002/acp.3381

2164

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf

2165

Chaffetz J. Letter on behalf of the U.S. House of Representatives Committee on Oversight and Government Reform of the 114th Congress to Francis S. Collins, M.D., Ph.D., Director, National Institutes of Health. September 26, 2016.; https://oversight.house.gov/wp-content/uploads/2016/09/2016-09-26-JEC-to-Collins-NIH-IARC-Funding-due-10-10.pdf

2166

Boobis AR, Cohen SM, Dellarco VL, et al. Classification schemes for carcinogenicity based on hazard-identification have become outmoded and serve neither science nor society. Regul Toxicol Pharmacol. 2016;82:158–66. https://pubmed.ncbi.nlm.nih.gov/27780763/

2167

Wild CP. Letter to Dr. Francis S. Collins re: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. October 5, 2016. https://monographs.iarc.who.int/ENG/News/LetterFromDrWild-to-DrCollins.pdf. Accessed December 19, 2021.; https://monographs.iarc.who.int/wp-content/uploads/2018/06/LetterFromDrWild-to-DrCollins.pdf

2168

International Agency for Research on Cancer. World Health Organization. Q&A on the carcinogenicity of the consumption of red meat and processed meat. 2015. https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf. Accessed December 28, 2022.; https://www.iarc.who.int/wp-content/uploads/2018/11/Monographs-QA_Vol114.pdf

2169

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Volume 114: Red Meat and Processed Meat. IARC Press; 2018. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf. Accessed December 19 https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono114.pdf

2170

Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Centers for Disease Control and Prevention (US); 2006. https://pubmed.ncbi.nlm.nih.gov/20669524/

2171

Modica C, Lewis JH, Bay C. Colorectal cancer: applying the value transformation framework to increase the percent of patients receiving screening in federally qualified health centers. Prev Med Rep. 2019;15:100894. https://pubmed.ncbi.nlm.nih.gov/31198660/

2172

Kim H, Caulfield LE, Rebholz CM. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J Nutr. 2018;148(4):624–31. https://pubmed.ncbi.nlm.nih.gov/29659968/

2173

Bamia C, Trichopoulos D, Ferrari P, et al. Dietary patterns and survival of older Europeans: the EPIC – Elderly Study (European Prospective Investigation into Cancer and Nutrition). Public Health Nutr. 2007;10(6):590–8. https://pubmed.ncbi.nlm.nih.gov/17381929/

2174

Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/

2175

Ekmekcioglu C. Nutrition and longevity – from mechanisms to uncertainties. Crit Rev Food Sci Nutr. 2020;60(18):3063–82. https://pubmed.ncbi.nlm.nih.gov/31631676/

2176

Everitt AV, Hilmer SN, Brand-Miller JC, et al. Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006;1(1):11–31. https://pubmed.ncbi.nlm.nih.gov/18047254/

2177

Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/

2178

O’Hara JK. The $11 trillion reward: how simple dietary changes can save lives and money, and how we get there. UCSusa.org. https://www.ucsusa.org/sites/default/files/2019–09/11-trillion-reward.pdf. Published August 2013. Accessed December 15, 2021.; https://www.ucsusa.org/sites/default/files/2019-09/11-trillion-reward.pdf

2179

Cross AJ, Pollock JRA, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60. https://pubmed.ncbi.nlm.nih.gov/12750250/

2180

Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: the Baltimore Longitudinal Study of Aging. J Nutr. 2005;135(3):556–61. https://pubmed.ncbi.nlm.nih.gov/15735093/

2181

Jenkins DJ, Kendall CW. The Garden of Eden: plant-based diets, the genetic drive to store fat and conserve cholesterol, and implications for epidemiology in the 21st century. Epidemiology. 2006;17(2):128–30. https://pubmed.ncbi.nlm.nih.gov/16477249/

2182

Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–9. https://pubmed.ncbi.nlm.nih.gov/2981409/

2183

Anderson JW, Konz EC, Jenkins DJ. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr. 2000;19(5):578–90. https://pubmed.ncbi.nlm.nih.gov/11022871/

2184

Hladik CM, Pasquet P. The human adaptations to meat eating: a reappraisal. Hum Evol. 2002;17(3–4):199–206. https://link.springer.com/article/10.1007/BF02436371

2185

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

2186

Jenkins DJA, Kendall CWC, Marchie A, et al. The Garden of Eden – plant based diets, the genetic drive to conserve cholesterol and its implications for heart disease in the 21st century. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):141–51. https://pubmed.ncbi.nlm.nih.gov/14527636/

2187

Larsen SC, Ängquist L, Sørensen TI, Heitmann BL. 24h urinary sodium excretion and subsequent change in weight, waist circumference and body composition. PLoS ONE. 2013;8(7):e69689. https://pubmed.ncbi.nlm.nih.gov/23936079/

2188

Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/

2189

Yin X, Tian M, Neal B. Sodium reduction: how big might the risks and benefits be? Heart Lung Circ. 2021;30(2):180–5. https://pubmed.ncbi.nlm.nih.gov/32855069/

2190

Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

2191

MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/

2192

Rudelt A, French S, Harnack L. Fourteen-year trends in sodium content of menu offerings at eight leading fast-food restaurants in the USA. Public Nutr. 2014;17(8):1682–8. https://pubmed.ncbi.nlm.nih.gov/24018166/

2193

Suckling RJ, He FJ, Markandu ND, MacGregor GA. Dietary salt influences postprandial plasma sodium concentration and systolic blood pressure. Kidney Int. 2012;81(4):407–11. https://pubmed.ncbi.nlm.nih.gov/22048126/

2194

Chobufo MD, Gayam V, Soluny J, et al. Prevalence and control rates of hypertension in the USA: 2017–2018. Int J Cardiol Hypertens. 2020;6:100044. https://pubmed.ncbi.nlm.nih.gov/33447770/

2195

Celermajer DS, Neal B. Excessive sodium intake and cardiovascular disease: a-salting our vessels. J Am Coll Cardiol. 2013;61(3):344–5. https://pubmed.ncbi.nlm.nih.gov/23141488/

2196

Mancilha-Carvalho J de J, de Souza e Silva NA. The Yanomami Indians in the INTERSALT Study. Arq Bras Cardiol. 2003;80(3):289–300. https://pubmed.ncbi.nlm.nih.gov/12856272/

2197

Roberts WC. High salt intake, its origins, its economic impact, and its effect on blood pressure. Am J Cardiol. 2001;88(11):1338–46. https://pubmed.ncbi.nlm.nih.gov/11728372/

2198

Cappuccio FP, Capewell S, Lincoln P, McPherson K. Policy options to reduce population salt intake. BMJ. 2011;343:d4995. https://pubmed.ncbi.nlm.nih.gov/21835876/

2199

Toldrá F, Barat JM. Strategies for salt reduction in foods. Recent Pat Food Nutr Agric. 2012;4(1):19–25. https://pubmed.ncbi.nlm.nih.gov/22316270/

2200

Appel LJ, Anderson CA. Compelling evidence for public health action to reduce salt intake. N Engl J Med. 2010;362(7):650–2. https://pubmed.ncbi.nlm.nih.gov/20089959/

2201

Drewnowski A, Rehm CD. Sodium intakes of US children and adults from foods and beverages by location of origin and by specific food source. Nutrients. 2013;5(6):1840–55. https://pubmed.ncbi.nlm.nih.gov/23760055/

2202

.;

2203

Select Committee on Nutrition and Human Needs. Dietary Goals for the United States – Supplemental Views. U.S. Government Printing Office; 1977. https://naldc.nal.usda.gov/catalog/1759572

2204

Foscolou A, Critselis E, Tyrovolas S, et al. The association of sodium intake with successful aging, in 3,349 middle-aged and older adults: results from the ATTICA and MEDIS cross-sectional epidemiological studies. Nutr Healthy Aging. 2020;5(4):287–96. https://content.iospress.com/articles/nutrition-and-healthy-aging/nha190080

2205

Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/

2206

Quirynen M, Avontroodt P, Soers C, Zhao H, Pauwels M, van Steenberghe D. Impact of tongue cleansers on microbial load and taste. J Clin Periodontol. 2004;31(7):506–10. https://pubmed.ncbi.nlm.nih.gov/15191584/

2207

Madiloggovit J, Chotechuang N, Trachootham D. Impact of self-tongue brushing on taste perception in Thai older adults: a pilot study. Geriatr Nurs. 2016;37(2):128–36. https://pubmed.ncbi.nlm.nih.gov/26747405/

2208

Sigurdsson EL. Salt: a taste of death? Scand J Prim Health Care. 2014;32(2):53–4. https://pubmed.ncbi.nlm.nih.gov/24939739/

2209

Maleki A, Soltanian AR, Zeraati F, Sheikh V, Poorolajal J. The flavor and acceptability of six different potassium-enriched (sodium reduced) iodized salts: a single-blind, randomized, crossover design. Clin Hypertens. 2016;22(1):18. https://pubmed.ncbi.nlm.nih.gov/28031983/

2210

Whelton PK, Appel LJ, Sacco RL, et al. Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations. Circulation. 2012;126(24):2880–9. https://pubmed.ncbi.nlm.nih.gov/23124030/

2211

Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am J Clin Nutr. 2012;96(3):647–57. https://pubmed.ncbi.nlm.nih.gov/22854410/

2212

Sebastian A, Cordain L, Frassetto L, Banerjee T, Morris RC. Postulating the major environmental condition resulting in the expression of essential hypertension and its associated cardiovascular diseases: dietary imprudence in daily selection of foods in respect of their potassium and sodium content resulting in oxidative stress-induced dysfunction of the vascular endothelium, vascular smooth muscle, and perivascular tissues. Med Hypotheses. 2018;119:110–9. https://pubmed.ncbi.nlm.nih.gov/30122481/

2213

Palmer BF, Clegg DJ. Achieving the benefits of a high-potassium, paleolithic diet, without the toxicity. Mayo Clin Proc. 2016;91(4):496–508. https://pubmed.ncbi.nlm.nih.gov/26948054/

2214

Jew S, AbuMweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/

2215

Drewnowski A, Maillot M, Rehm C. Reducing the sodium-potassium ratio in the US diet: a challenge for public health. Am J Clin Nutr. 2012;96(2):439–44. https://pubmed.ncbi.nlm.nih.gov/22760562/

2216

van Buren L, Dötsch-Klerk M, Seewi G, Newson RS. Dietary impact of adding potassium chloride to foods as a sodium reduction technique. Nutrients. 2016;8(4):235. https://pubmed.ncbi.nlm.nih.gov/27110818/

2217

Jafarnejad S, Mirzaei H, Clark CCT, Taghizadeh M, Ebrahimzadeh A. The hypotensive effect of salt substitutes in stage 2 hypertension: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;20(1):98. https://pubmed.ncbi.nlm.nih.gov/32106813/

2218

Chang HY, Hu YW, Yue CSJ, et al. Effect of potassium-enriched salt on cardiovascular mortality and medical expenses of elderly men. Am J Clin Nutr. 2006;83(6):1289–96. https://pubmed.ncbi.nlm.nih.gov/16762939/

2219

Lambert K, Conley M, Dumont R, et al. Letter to the editor on “Potential use of salt substitutes to reduce blood pressure.” J Clin Hypertens. 2019;21(10):1609–10. https://pubmed.ncbi.nlm.nih.gov/31448881/

2220

Farrand C, MacGregor G, Campbell NRC, Webster J. Potential use of salt substitutes to reduce blood pressure. J Clin Hypertens. 2019;21(3):350–4. https://pubmed.ncbi.nlm.nih.gov/30690859/

2221

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2222

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2223

Greer RC, Marklund M, Anderson CAM, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75(2):266–74. https://pubmed.ncbi.nlm.nih.gov/31838902/

2224

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2225

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2226

Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9. https://pubmed.ncbi.nlm.nih.gov/24572039/

2227

Devries S, Willett W, Bonow RO. Nutrition education in medical school, residency training, and practice. JAMA. 2019;321(14):1351–2. https://pubmed.ncbi.nlm.nih.gov/30896728/

2228

Freeman KJ, Grega ML, Friedman SM, et al. Lifestyle medicine reimbursement: a proposal for policy priorities informed by a cross-sectional survey of lifestyle medicine practitioners. Int J Environ Res Public Health. 2021;18(21):11632. https://pubmed.ncbi.nlm.nih.gov/34770148/

2229

Brody H. Pharmaceutical industry financial support for medical education: benefit, or undue influence? J Law Med Ethics. 2009;37(3):451–60. https://pubmed.ncbi.nlm.nih.gov/19723256/

2230

Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/

2231

Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, CDC. Tobacco use – United States, 1900–1999. JAMA. 1999;282(23):2202–4. https://pubmed.ncbi.nlm.nih.gov/10605963/

2232

Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011

2233

Editorial. The advertising of cigarettes. JAMA. 1948;138(9):652–3. https://jamanetwork.com/journals/jama/article-abstract/302011

2234

Proctor RN. The history of the discovery of the cigarette – lung cancer link: evidentiary traditions, corporate denial, global toll. Tob Control. 2012;21(2):87–91. https://pubmed.ncbi.nlm.nih.gov/22345227/

2235

Gugiu PC, Gugiu MR. Levels of evidence: a reply to Berger and Knoll. Eval Health Prof. 2011;34(1):127–30. https://journals.sagepub.com/doi/10.1177/0163278710391467

2236

Chopra M, Darnton-Hill I. Tobacco and obesity epidemics: not so different after all? BMJ. 2004;328(7455):1558–60. https://pubmed.ncbi.nlm.nih.gov/15217877/

2237

Industries. OpenSecrets.org. https://www.opensecrets.org/federal-lobbying/industries. Published July 23, 2021. Accessed August 31, 2021.; https://www.opensecrets.org/federal-lobbying/industries

2238

Maplight, Feed the Truth. Draining the Big Food swamp. FeedtheTruth.org. https://feedthetruth.org/wp-content/uploads/2021/08/FTT-DrainingTheSwamp-ExecSummary-FINAL.pdf. Published February 25, 2021. Accessed January 6, 2022.; https://www.readkong.com/page/draining-the-big-food-feed-the-truth-5969302

2239

Ищи, кому выгодно (лат.). – Примеч. ред.

2240

Sarna L, Bialous SA, Nandy K, Antonio ALM, Yang Q. Changes in smoking prevalences among health care professionals from 2003 to 2010–2011. JAMA. 2014;311(2):197–9. https://pubmed.ncbi.nlm.nih.gov/24399560/

2241

Jindeel A. Health care providers who smoke. Am J Nurs. 2010;110(6):11. https://pubmed.ncbi.nlm.nih.gov/20505442/

2242

Aggarwal M, Singh Ospina N, Kazory A, et al. The mismatch of nutrition and lifestyle beliefs and actions among physicians: a wake-up call. Am J Lifestyle Med. 2020;14(3):304–15. https://pubmed.ncbi.nlm.nih.gov/32477033/

2243

Bertozzi B, Tosti V, Fontana L. Beyond calories: an integrated approach to promote health, longevity and well-being. Gerontology. 2017;63(1):13–9. https://pubmed.ncbi.nlm.nih.gov/27173125/

2244

Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/

2245

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2246

Kenney WL, Chiu P. Influence of age on thirst and fluid intake. Med Sci Sports Exerc. 2001;33(9):1524–32. https://pubmed.ncbi.nlm.nih.gov/11528342/

2247

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients. 2019;11(8):E1857. https://pubmed.ncbi.nlm.nih.gov/31405072/

2248

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2249

Popkin BM, Armstrong LE, Bray GM, Caballero B, Frei B, Willett WC. A new proposed guidance system for beverage consumption in the United States. Am J Clin Nutr. 2006;83(3):529–42. https://pubmed.ncbi.nlm.nih.gov/16522898/

2250

Walsh NP, Fortes MB, Purslow C, Esmaeelpour M. Author response: is whole body hydration an important consideration in dry eye? Invest Ophthalmol Vis Sci. 2013;54(3):1713–4. https://pubmed.ncbi.nlm.nih.gov/23471906/

2251

Chan J, Knutsen SF, Blix GG, Lee JW, Fraser GE. Water, other fluids, and fatal coronary heart disease: the Adventist Health Study. Am J Epidemiol. 2002;155(9):827–33. https://pubmed.ncbi.nlm.nih.gov/11978586/

2252

Cui R, Iso H, Eshak ES, Maruyama K, Tamakoshi A, JACC Study Group. Water intake from foods and beverages and risk of mortality from CVD: the Japan Collaborative Cohort (JACC) Study. Public Health Nutr. 2018;21(16):3011–7. https://pubmed.ncbi.nlm.nih.gov/30107863/

2253

Stookey JD, Kavouras S¿, Suh H, Lang F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients. 2020;12(4):E905. https://pubmed.ncbi.nlm.nih.gov/32224908/

2254

Lim WH, Wong G, Lewis JR, et al. Total volume and composition of fluid intake and mortality in older women: a cohort study. BMJ Open. 2017;7(3):e011720. https://pubmed.ncbi.nlm.nih.gov/28341683/

2255

Kant AK, Graubard BI. A prospective study of water intake and subsequent risk of all-cause mortality in a national cohort. Am J Clin Nutr. 2017;105(1):212–20. https://pubmed.ncbi.nlm.nih.gov/27903521/

2256

Leurs LJ, Schouten LJ, Goldbohm RA, van den Brandt PA. Total fluid and specific beverage intake and mortality due to IHD and stroke in the Netherlands Cohort Study. Br J Nutr. 2010;104(8):1212–21. https://pubmed.ncbi.nlm.nih.gov/20456812/

2257

Loomba RS, Aggarwal S, Arora RR. Raw water consumption does not affect all-cause or cardiovascular mortality: a secondary analysis. Am J Ther. 2016;23(6):e1287–92. https://pubmed.ncbi.nlm.nih.gov/25611360/

2258

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech Ageing Dev. 2014;136–7:50–8. https://pubmed.ncbi.nlm.nih.gov/24333321/

2259

Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/

2260

McKenzie AL, Muñoz CX, Armstrong LE. Accuracy of urine color to detect equal to or greater than 2 % body mass loss in men. J Athl Train. 2015;50(12):1306–9. https://pubmed.ncbi.nlm.nih.gov/26642041/

2261

McKenzie AL, Armstrong LE. Monitoring body water balance in pregnant and nursing women: the validity of urine color. Ann Nutr Metab. 2017;70 Suppl 1:18–22. https://pubmed.ncbi.nlm.nih.gov/28614809/

2262

Perrier ET, Johnson EC, McKenzie AL, Ellis LA, Armstrong LE. Urine colour change as an indicator of change in daily water intake: a quantitative analysis. Eur J Nutr. 2016;55(5):1943–9. https://pubmed.ncbi.nlm.nih.gov/26286348/

2263

Kostelnik SB, Davy KP, Hedrick VE, Thomas DT, Davy BM. The validity of urine color as a hydration biomarker within the general adult population and athletes: a systematic review. J Am Coll Nutr. 2021;40(2):172–9. https://pubmed.ncbi.nlm.nih.gov/32330109/

2264

Hooper L, Abdelhamid A, Attreed NJ, et al. Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people. Cochrane Database Syst Rev. 2015;(4):CD009647. https://pubmed.ncbi.nlm.nih.gov/25924806/

2265

Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x

2266

Vivanti AP. Origins for the estimations of water requirements in adults. Eur J Clin Nutr. 2012;66(12):1282–9. https://pubmed.ncbi.nlm.nih.gov/23093341/

2267

Benelam B, Wyness L. Hydration and health: a review. Nutr Bull. 2010;35:3–25. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467–3010.2009.01795.x

2268

Masot O, Miranda J, Santamaría AL, Paraiso Pueyo E, Pascual A, Botigué T. Fluid intake recommendation considering the physiological adaptations of adults over 65 years: a critical review. Nutrients. 2020;12(11):E3383. https://pubmed.ncbi.nlm.nih.gov/33158071/

2269

Hoffman MD, Bross TL, Hamilton RT. Are we being drowned by overhydration advice on the Internet? Phys Sportsmed. 2016;44(4):343–8. https://pubmed.ncbi.nlm.nih.gov/27548748/

2270

Onufrak SJ, Park S, Sharkey JR, Sherry B. The relationship of perceptions of tap water safety with intake of sugar-sweetened beverages and plain water among US adults. Public Health Nutr. 2014;17(1):179–85. https://pubmed.ncbi.nlm.nih.gov/23098620/

2271

Saleh MA, Abdel-Rahman FH, Woodard BB, et al. Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008;43(4):335–47. https://pubmed.ncbi.nlm.nih.gov/18273738/

2272

Fardet A, Boirie Y. Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev. 2014;72(12):741–62. https://pubmed.ncbi.nlm.nih.gov/25406801/

2273

. Øverby NC, Lillegaard ITL, Johansson L, Andersen LF. High intake of added sugar among Norwegian children and adolescents. Public Health Nutr. 2004;7(2):285–93. https://pubmed.ncbi.nlm.nih.gov/15003136/

2274

Chikritzhs T, Stockwell T, Naimi T, Andreasson S, Dangardt F, Liang W. Has the leaning tower of presumed health benefits from ‘moderate’ alcohol use finally collapsed? Addiction. 2015;110(5):726–7. https://pubmed.ncbi.nlm.nih.gov/25613200/

2275

Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W. Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol. 2007;17(5 Suppl):S16–23. https://pubmed.ncbi.nlm.nih.gov/17478320/

2276

Johnson T, Gerson L, Hershcovici T, Stave C, Fass R. Systematic review: the effects of carbonated beverages on gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2010;31(6):607–14. https://pubmed.ncbi.nlm.nih.gov/20055784/

2277

Lesser LI, Ebbeling CB, Goozner M, Wypij D, Ludwig DS. Relationship between funding source and conclusion among nutrition-related scientific articles. PLoS Med. 2007;4(1):e5. https://pubmed.ncbi.nlm.nih.gov/17214504/

2278

Quik M. Smoking, nicotine and Parkinson’s disease. Trends Neurosci. 2004;27(9):561–8. https://pubmed.ncbi.nlm.nih.gov/15331239/

2279

Searles Nielsen S, Gallagher LG, Lundin JI, et al. Environmental tobacco smoke and Parkinson’s disease. Mov Disord. 2012;27(2):293–6. https://pubmed.ncbi.nlm.nih.gov/22095755/

2280

U.S. Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Centers for Disease Control and Prevention; 2014. https://www.cdc.gov/tobacco/sgr/50th-anniversary/index.htm#complete-report

2281

Nielsen SS, Franklin GM, Longstreth WT, Swanson PD, Checkoway H. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–7. https://pubmed.ncbi.nlm.nih.gov/23661325/

2282

Aune D, Rosenblatt DAN, Chan DSM, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101(1):87–117. https://pubmed.ncbi.nlm.nih.gov/25527754/

2283

Vasconcelos A, Santos T, Ravasco P, Neves PM. Dairy products: is there an impact on promotion of prostate cancer? A review of the literature. Front Nutr. 2019;6:62. https://pubmed.ncbi.nlm.nih.gov/31139629/

2284

Aune D, Lau R, Chan DSM, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45. https://pubmed.ncbi.nlm.nih.gov/21617020/

2285

Veettil SK, Ching SM, Lim KG, Saokaew S, Phisalprapa P, Chaiyakunapruk N. Effects of calcium on the incidence of recurrent colorectal adenomas: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Medicine. 2017;96(32):e7661. https://pubmed.ncbi.nlm.nih.gov/28796047/

2286

Gonzales JF, Barnard ND, Jenkins DJA, et al. Applying the precautionary principle to nutrition and cancer. J Am Coll Nutr. 2014;33(3):239–46. https://pubmed.ncbi.nlm.nih.gov/24870117/

2287

Bridges, M. Moo-ove over, cow’s milk: the rise of plant-based dairy alternatives. Pract Gastroenterol. 2018;42(1):20–7. https://practicalgastro.com/2019/07/29/moo-ove-over-cows-milk-the-rise-of-plant-based-dairy-alternatives/

2288

Boland, MA. Milk processors are going bankrupt as Americans ditch dairy. Bloomberg. https://www.bloomberg.com/news/articles/2020–01–10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court. Published January 10, 2020. Accessed January 6, 2022.; https://www.bloomberg.com/news/articles/2020-01-10/distaste-for-dairy-sends-milk-processors-to-bankruptcy-court?leadSource=uverify%20wall

2289

Silva ARA, Silva MMN, Ribeiro BD. Health issues and technological aspects of plant-based alternative milk. Food Res Int. 2020;131:108972. https://pubmed.ncbi.nlm.nih.gov/32247441/

2290

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2291

Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55(1):10–20. https://pubmed.ncbi.nlm.nih.gov/29358791/

2292

Непереносимость лактозы. – Примеч. ред.

2293

Storhaug CL, Fosse SK, Fadnes LT. Country, regional, and global estimates for lactose malabsorption in adults: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017;2(10):738–46. https://pubmed.ncbi.nlm.nih.gov/28690131/

2294

National Institute of Child Health and Human Development. Lactose intolerance: information for health care providers. U.S. Dept. of Health and Human Services, National Institutes of Health. http://purl.access.gpo.gov/GPO/LPS80173. Published January 2006. Accessed January 6, 2022.; https://purl.access.gpo.gov/GPO/LPS80173

2295

Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91(3):151–7. https://pubmed.ncbi.nlm.nih.gov/10203917/

2296

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2297

Jacobs ET, Foote JA, Kohler LN, Skiba MB, Thomson CA. Re-examination of dairy as a single commodity in US dietary guidance. Nutr Rev. 2020;78(3):225–34. https://pubmed.ncbi.nlm.nih.gov/31904838/

2298

Godlee F, Malone R, Timmis A, et al. Journal policy on research funded by the tobacco industry. Thorax. 2013;68(12):1090–1. https://pubmed.ncbi.nlm.nih.gov/24130154/

2299

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2300

Zhang L, Jie G, Zhang J, Zhao B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med. 2009;46(3):414–21. https://pubmed.ncbi.nlm.nih.gov/19061950/

2301

Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell. 2013;12(6):1041–9. https://pubmed.ncbi.nlm.nih.gov/23834676/

2302

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2303

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

2304

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

2305

Jochmann N, Lorenz M, von Krosigk A, et al. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br J Nutr. 2008;99(4):863–8. https://pubmed.ncbi.nlm.nih.gov/17916273/

2306

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

2307

Ahmad AF, Rich L, Koch H, et al. Effect of adding milk to black tea on vascular function in healthy men and women: a randomised controlled crossover trial. Food Funct. 2018;9(12):6307–14. https://pubmed.ncbi.nlm.nih.gov/30411751/

2308

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

2309

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

2310

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

2311

Получают из побегов аспалатуса линейного, кустарника из семейства бобовых. – Примеч. ред.

2312

Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine. 2013;20(3–4):380–6. https://pubmed.ncbi.nlm.nih.gov/23218401/

2313

Yoo KM, Hwang IK, Moon B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79–4 cells. J Food Sci. 2009;74(6):C419–25. https://pubmed.ncbi.nlm.nih.gov/19723177/

2314

Damiani E, Carloni P, Rocchetti G, et al. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal tea. Antioxidants (Basel). 2019;8(10):499. https://pubmed.ncbi.nlm.nih.gov/31640245/

2315

Cleverdon R, Elhalaby Y, McAlpine MD, Gittings W, Ward WE. Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages. 2018;4(1):15. https://www.mdpi.com/2306-5710/4/1/15

2316

Peterson J, Dwyer J, Jacques P, Rand W, Prior R, Chui K. Tea variety and brewing techniques influence flavonoid content of black tea. J Food Compost Anal. 2004;17(3–4):397–405. https://www.sciencedirect.com/science/article/abs/pii/S0889157504000614

2317

Saklar S, Ertas E, Ozdemir IS, Karadeniz B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J Food Sci Technol. 2015;52(10):6639–46. https://pubmed.ncbi.nlm.nih.gov/26396411/

2318

Pérez-Burillo S, Giménez R, Rufián-Henares JA, Pastoriza S. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: relationship with sensory properties. Food Chem. 2018;248:111–8. https://pubmed.ncbi.nlm.nih.gov/29329833/

2319

Nikniaz Z, Mahdavi R, Ghaemmaghami SJ, Yagin NL, Nikniaz L. Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.). Avicenna J Phytomed. 2016;6(3):313–21. https://pubmed.ncbi.nlm.nih.gov/27462554/

2320

Malik VS, Li Y, Pan A, et al. Long-term consumption of sugar-sweetened and artificially sweetened beverages and risk of mortality in US adults. Circulation. 2019;139(18):2113–25. https://pubmed.ncbi.nlm.nih.gov/30882235/

2321

Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/

2322

Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis. 2014;234(1):11–6. https://pubmed.ncbi.nlm.nih.gov/24583500/

2323

Imamura F, O’Connor L, Ye Z, et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ. 2015;351:h3576. https://pubmed.ncbi.nlm.nih.gov/26199070/

2324

Zhang YB, Jiang YW, Chen JX, Xia PF, Pan A. Association of consumption of sugar-sweetened beverages or artificially sweetened beverages with mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2021;12(2):374–83. https://pubmed.ncbi.nlm.nih.gov/33786594/

2325

Gardener H, Elkind MSV. Artificial sweeteners, real risks. Stroke. 2019;50(3):549–51. https://pubmed.ncbi.nlm.nih.gov/30760171/

2326

Huang CW, Wang HD, Bai H, et al. Tequila regulates insulin-like signaling and extends life span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2015;70(12):1461–9. https://pubmed.ncbi.nlm.nih.gov/26265729/

2327

Didelot G, Molinari F, Tchénio P, et al. Tequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila. Science. 2006;313(5788):851–3. https://pubmed.ncbi.nlm.nih.gov/16902143/

2328

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

2329

Degenhardt L, Charlson F, Ferrari A, et al. The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry. 2018;5(12):987–1012. https://pubmed.ncbi.nlm.nih.gov/30392731/

2330

CDC Morbidity and Mortality Weekly Report. Alcohol-attributable deaths and years of potential life lost – United States, 2001. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm. Published September 24, 2004. Accessed October 31. 2021.; https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5337a2.htm

2331

Martinez P, Kerr WC, Subbaraman MS, Roberts SCM. New estimates of the mean ethanol content of beer, wine, and spirits sold in the United States show a greater increase in per capita alcohol consumption than previous estimates. Alcohol Clin Exp Res. 2019;43(3):509–21. https://pubmed.ncbi.nlm.nih.gov/30742317/

2332

Editorial. Alcohol and health: time for an overdue conversation. Lancet Gastroenterol Hepatol. 2020;5(3):229. https://pubmed.ncbi.nlm.nih.gov/32061324/

2333

Seyedsadjadi N, Grant R. The potential benefit of monitoring oxidative stress and inflammation in the prevention of non-communicable diseases (NCDs). Antioxidants (Basel). 2020;10(1):15. https://pubmed.ncbi.nlm.nih.gov/33375428/

2334

Guest J, Guillemin GJ, Heng B, Grant R. Lycopene pretreatment ameliorates acute ethanol induced NAD+ depletion in human astroglial cells. Oxid Med Cell Longev. 2015;2015:1–8. https://pubmed.ncbi.nlm.nih.gov/26075038/

2335

Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/

2336

Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/

2337

Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/

2338

Choi YJ, Myung SK, Lee JH. Light alcohol drinking and risk of cancer: a meta-analysis of cohort studies. Cancer Res Treat. 2018;50(2):474–87. https://pubmed.ncbi.nlm.nih.gov/28546524/

2339

Testino G, Leone S, Sumberaz A, Borro P. Alcohol and cancer. Alcohol Clin Exp Res. 2015;39(11):2261. https://pubmed.ncbi.nlm.nih.gov/26332802/

2340

Brien SE, Ronksley PE, Turner BJ, Mukamal KJ, Ghali WA. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies. BMJ. 2011;342:d636. https://pubmed.ncbi.nlm.nih.gov/21343206/

2341

Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. https://pubmed.ncbi.nlm.nih.gov/22607825/

2342

Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease – a Mendelian randomisation study. PLoS One. 2008;3(8):e2986. https://pubmed.ncbi.nlm.nih.gov/18714375/

2343

Britton AR, Grobbee DE, den Ruijter HM, et al. Alcohol consumption and common carotid intima-media thickness: the USE-IMT Study. Alcohol Alcohol. 2017;52(4):483–6. https://pubmed.ncbi.nlm.nih.gov/28525540/

2344

Отложение солей кальция на стенках артерий, питающих сердце. – Примеч. ред.

2345

Pletcher MJ, Varosy P, Kiefe CI, Lewis CE, Sidney S, Hulley SB. Alcohol consumption, binge drinking, and early coronary calcification: findings from the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2005;161(5):423–33. https://pubmed.ncbi.nlm.nih.gov/15718478/

2346

McFadden CB, Brensinger CM, Berlin JA, Townsend RR. Systematic review of the effect of daily alcohol intake on blood pressure. Am J Hypertens. 2005;18(2):276–86. https://pubmed.ncbi.nlm.nih.gov/15752957/

2347

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2348

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2349

Stockwell T, Zhao J. Alcohol’s contribution to cancer is underestimated for exactly the same reason that its contribution to cardioprotection is overestimated. Addiction. 2017;112(2):230–2. https://pubmed.ncbi.nlm.nih.gov/27891690/

2350

Doll R, Peto R, Boreham J, Sutherland I. Mortality from cancer in relation to smoking: 50 years observations on British doctors. Br J Cancer. 2005;92(3):426–9. https://pubmed.ncbi.nlm.nih.gov/15668706/

2351

Stockwell T, Zhao J, Panwar S, Roemer A, Naimi T, Chikritzhs T. Do “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. J Stud Alcohol Drugs. 2016;77(2):185–98. https://pubmed.ncbi.nlm.nih.gov/26997174/

2352

Sattar N, Preiss D. Reverse causality in cardiovascular epidemiological research: more common than imagined? Circulation. 2017;135(24):2369–72. https://pubmed.ncbi.nlm.nih.gov/28606949/

2353

Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/

2354

Huynh K. Reducing alcohol intake improves heart health. Nat Rev Cardiol. 2014;11(9):495. https://pubmed.ncbi.nlm.nih.gov/25072907/

2355

Stott DJ. Alcohol and mortality in older people: understanding the J-shaped curve. Age Ageing. 2020;49(3):332–3. https://pubmed.ncbi.nlm.nih.gov/32343789/

2356

Costantino G, Montano N, Casazza G. When should we change our clinical practice based on the results of a clinical study? The hierarchy of evidence. Intern Emerg Med. 2015;10(6):745–7. https://pubmed.ncbi.nlm.nih.gov/25860505/

2357

Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife. 2020;9:e58914. https://pubmed.ncbi.nlm.nih.gov/33063668/

2358

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2359

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2360

Goulden R. Moderate alcohol consumption is not associated with reduced all-cause mortality. Am J Med. 2016;129(2):180–6.e4. https://pubmed.ncbi.nlm.nih.gov/26524703/

2361

Zuccolo L, Holmes MV. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol. 2017;46(3):962–5. https://pubmed.ncbi.nlm.nih.gov/28025256/

2362

Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2014;349:g4164. https://pubmed.ncbi.nlm.nih.gov/25011450/

2363

Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in U.S. adults. J Am Coll Cardiol. 2017;70(8):913–22. https://pubmed.ncbi.nlm.nih.gov/28818200/

2364

Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/

2365

Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/

2366

Skovenborg E, Grønbæk M, Ellison RC. Benefits and hazards of alcohol-the J-shaped curve and public health. DAT. 2021;21(1):54–69. https://portal.findresearcher.sdu.dk/en/publications/benefits-and-hazards-of-alcohol-the-j-shaped-curve-and-public-hea

2367

Golder S, McCambridge J. Alcohol, cardiovascular disease and industry funding: a co-authorship network analysis of systematic reviews. Soc Sci Med. 2021;289:114450. https://pubmed.ncbi.nlm.nih.gov/34607052/

2368

Costanzo S, de Gaetano G, Di Castelnuovo A, Djoussé L, Poli A, van Velden DP. Moderate alcohol consumption and lower total mortality risk: justified doubts or established facts? Nutr Metab Cardiovasc Dis. 2019;29(10):1003–8. https://pubmed.ncbi.nlm.nih.gov/31400826/

2369

Connor J. Why do alcohol’s assumed benefits have any role in policymaking? J Stud Alcohol Drugs. 2016;77(2):201–2. https://pubmed.ncbi.nlm.nih.gov/26997176/

2370

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2371

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2372

Rabin RC. Major study of drinking will be shut down. The New York Times. https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html. Published June 15, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/06/15/health/alcohol-nih-drinking.html

2373

Rabin RC. Federal agency courted alcohol industry to fund study on benefits of moderate drinking. The New York Times. https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html. Published March 17, 2018. Accessed October 21, 2021.; https://www.nytimes.com/2018/03/17/health/nih-alcohol-study-liquor-industry.html

2374

Braillon A, Wilson M. Does moderate alcohol consumption really have health benefits? BMJ. 2018;362:k3888. https://pubmed.ncbi.nlm.nih.gov/30224550/

2375

Oppenheimer GM, Bayer R. Is moderate drinking protective against heart disease? The science, politics and history of a public health conundrum. Milbank Q. 2020;98(1):39–56. https://pubmed.ncbi.nlm.nih.gov/31803980/

2376

Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/

2377

Burton R, Sheron N. No level of alcohol consumption improves health. Lancet. 2018;392(10152):987–8. https://pubmed.ncbi.nlm.nih.gov/30146328/

2378

Britton A. Moderate alcohol consumption and total mortality risk: do not advocate drinking for “health benefits.” Nutr Metab Cardiovasc Dis. 2019;29(10):1009–10. https://pubmed.ncbi.nlm.nih.gov/31362849/

2379

Manolis TA, Manolis AA, Manolis AS. Cardiovascular effects of alcohol: a double-edged sword / how to remain at the nadir point of the J-curve? Alcohol. 2019;76:117–29. https://pubmed.ncbi.nlm.nih.gov/30735906/

2380

Arora M, ElSayed A, Beger B, et al. The impact of alcohol consumption on cardiovascular health: myths and measures. Glob Heart. 2022;17(1):45. https://pubmed.ncbi.nlm.nih.gov/36051324/

2381

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

2382

Holahan CJ, Schutte KK, Brennan PL, et al. Wine consumption and 20-year mortality among late-life moderate drinkers. J Stud Alcohol Drugs. 2012;73(1):80–8. https://pubmed.ncbi.nlm.nih.gov/24588326/

2383

Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet. 1993;341(8843):454–7. https://pubmed.ncbi.nlm.nih.gov/8094487/

2384

Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/

2385

Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev. 2014;2014:681318. https://pubmed.ncbi.nlm.nih.gov/24876915/

2386

Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/

2387

Schrieks IC, van den Berg R, Sierksma A, Beulens JWJ, Vaes WHJ, Hendriks HFJ. Effect of red wine consumption on biomarkers of oxidative stress. Alcohol Alcohol. 2013;48(2):153–9. https://pubmed.ncbi.nlm.nih.gov/22859618/

2388

Chiva-Blanch G, Urpi-Sarda M, Ros E, et al. Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication. Circ Res. 2012;111(8):1065–8. https://pubmed.ncbi.nlm.nih.gov/22955728/

2389

Naissides M, Mamo JCL, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177(2):401–8. https://pubmed.ncbi.nlm.nih.gov/15530916/

2390

Williams MJA, Sutherland WHF, Whelan AP, McCormick MP, de Jong SA. Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism. 2004;53(3):318–23. https://pubmed.ncbi.nlm.nih.gov/15015143/

2391

Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N. Does a glass of red wine improve endothelial function? Eur Heart J. 2000;21(1):74–8. https://pubmed.ncbi.nlm.nih.gov/10610747/

2392

Hashimoto M, Kim S, Eto M, et al. Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery. Am J Cardiol. 2001;88(12):1457–60. https://pubmed.ncbi.nlm.nih.gov/11741577/

2393

Boban M, Modun D, Music I, et al. Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates. J Cardiovasc Pharmacol. 2006;47(5):695–701. https://pubmed.ncbi.nlm.nih.gov/16775510/

2394

Whelan AP, Sutherland WHF, McCormick MP, Yeoman DJ, de Jong SA, Williams MJA. Effects of white and red wine on endothelial function in subjects with coronary artery disease. Intern Med J. 2004;34(5):224–8. https://pubmed.ncbi.nlm.nih.gov/15151666/

2395

Karatzi K, Papamichael C, Aznaouridis K, et al. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis. 2004;15(8):485–90. https://pubmed.ncbi.nlm.nih.gov/15585989/

2396

Shukitt-Hale B, Carey A, Simon L, Mark DA, Joseph JA. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition. 2006;22(3):295–302. https://pubmed.ncbi.nlm.nih.gov/16412610/

2397

Smith JM, Stouffer EM. Concord grape juice reverses the age-related impairment in latent learning in rats. Nutr Neurosci. 2014;17(2):81–7. https://pubmed.ncbi.nlm.nih.gov/23541291/

2398

Американская компания, с 1956 года принадлежит Национальной виноградной кооперативной ассоциации, кооперативу производителей винограда. – Примеч. ред.

2399

Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103(5):730–4. https://pubmed.ncbi.nlm.nih.gov/20028599/

2400

Wang DD, Li Y, Bhupathiraju SN, et al. Fruit and vegetable intake and mortality: results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation. 2021;143(17):1642–54. https://pubmed.ncbi.nlm.nih.gov/33641343/

2401

Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9. https://pubmed.ncbi.nlm.nih.gov/16945610/

2402

Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9. https://pubmed.ncbi.nlm.nih.gov/16945610/

2403

Mee KA, Gee DL. Apple fiber and gum arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia. J Am Diet Assoc. 1997;97(4):422–4. https://pubmed.ncbi.nlm.nih.gov/9120199/

2404

Buscemi S, Rosafio G, Arcoleo G, et al. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. Am J Clin Nutr. 2012;95(5):1089–95. https://pubmed.ncbi.nlm.nih.gov/22492368/

2405

Hägele FA, Büsing F, Nas A, et al. High orange juice consumption with or in-between three meals a day differently affects energy balance in healthy subjects. Nutr Diabetes. 2018;8(1):19. https://pubmed.ncbi.nlm.nih.gov/29695707/

2406

Silaste ML, Alfthan G, Aro A, Kesäniemi YA, Hörkkö S. Tomato juice decreases LDL cholesterol levels and increases LDL resistance to oxidation. Br J Nutr. 2007;98(6):1251–8. https://pubmed.ncbi.nlm.nih.gov/17617941/

2407

Samaras A, Tsarouhas K, Paschalidis E, et al. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol. 2014;69:231–6. https://pubmed.ncbi.nlm.nih.gov/24705018/

2408

Mazidi M, Katsiki N, George ES, Banach M. Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: a population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). Br J Nutr. 2020;124(12):1303–10. https://pubmed.ncbi.nlm.nih.gov/31434581/

2409

Pan B, Ge L, Lai H, et al. Association of soft drink and 100 % fruit juice consumption with all-cause mortality, cardiovascular diseases mortality, and cancer mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021;Jun 13:1–12. https://pubmed.ncbi.nlm.nih.gov/34121531/

2410

Scheffers FR, Boer JMA. Sugar intake and all-cause mortality-differences between sugar-sweetened beverages, artificially sweetened beverages, and pure fruit juices. BMC Med. 2020;18(1):112. https://pubmed.ncbi.nlm.nih.gov/32316967/

2411

Yip CSC, Chan W, Fielding R. The associations of fruit and vegetable intakes with burden of diseases: a systematic review of meta-analyses. J Acad Nutr Diet. 2019;119(3):464–81. https://pubmed.ncbi.nlm.nih.gov/30639206/

2412

Leaf A. Long-lived populations: extreme old age. J Am Geriatr Soc. 1982;30(8):485–7. https://pubmed.ncbi.nlm.nih.gov/6212609/

2413

Zak N. Evidence that Jeanne Calment died in 1934, not 1997. Rejuvenation Res. 2019;22(1):3–12. https://pubmed.ncbi.nlm.nih.gov/30696353/

2414

Leaf A. Long-lived populations: extreme old age. J Am Geriatr Soc. 1982;30(8):485–7. https://pubmed.ncbi.nlm.nih.gov/6212609/

2415

Mazess RB, Forman SH. Longevity and age exaggeration in Vilcabamba, Ecuador. J Gerontol. 1979;34(1):94–8. https://pubmed.ncbi.nlm.nih.gov/759498/

2416

Poulain M, Herm A, Pes G. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res. 2014;11:87–108. https://www.researchgate.net/publication/255508953_The_Blue_Zones_areas_of_exceptional_longevity_around_the_world

2417

Willcox BJ, Willcox DC, Ferrucci L. Secrets of healthy aging and longevity from exceptional survivors around the globe: lessons from octogenarians to supercentenarians. J Gerontol A Biol Sci Med Sci. 2008;63(11):1181–5. https://pubmed.ncbi.nlm.nih.gov/19038832/

2418

Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/

2419

Poulain M, Herm A, Pes G. The Blue Zones: areas of exceptional longevity around the world. Vienna Yearb Popul Res. 2014;11:87–108. https://www.researchgate.net/publication/255508953_The_Blue_Zones_areas_of_exceptional_longevity_around_the_world

2420

Carter ED. Making the Blue Zones: neoliberalism and nudges in public health promotion. Soc Sci Med. 2015;133:374–82. https://pubmed.ncbi.nlm.nih.gov/25605430/

2421

Madrigal-Leer F, Martìnez-Montandòn A, Solìs-Umaña M, et al. Clinical, functional, mental and social profile of the Nicoya Peninsula centenarians, Costa Rica, 2017. Aging Clin Exp Res. 2020;32(2):313–21. https://pubmed.ncbi.nlm.nih.gov/30919261/

2422

Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/

2423

Marston HR, Niles-Yokum K, Silva PA. A commentary on Blue Zones®: a critical review of age-friendly environments in the 21st century and beyond. Int J Environ Res Public Health. 2021;18(2):837. https://pubmed.ncbi.nlm.nih.gov/33478140/

2424

Panagiotakos DB, Chrysohoou C, Siasos G, et al. Sociodemographic and lifestyle statistics of oldest old people (80 years) living in Ikaria Island: the Ikaria Study. Cardiol Res Pract. 2011;2011:679187. https://pubmed.ncbi.nlm.nih.gov/21403883/

2425

Food guidelines. BlueZones.com. https://www.bluezones.com/recipes/food-guidelines/. Accessed December 28, 2022.; https://www.bluezones.com/recipes/food-guidelines/

2426

Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: an elixir of life. An overview. Antioxidants (Basel). 2021;10(4):507. https://pubmed.ncbi.nlm.nih.gov/33805092/

2427

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

2428

Food guidelines. BlueZones.com. https://www.bluezones.com/recipes/food-guidelines/. Accessed December 28, 2022.; https://www.bluezones.com/recipes/food-guidelines/

2429

Weber H. A lecture on means for the prolongation of life: delivered before the Royal College of Physicians of London. BMJ. 1903;2(2240):1445–51. https://pubmed.ncbi.nlm.nih.gov/20761218/

2430

Stathakos D, Pratsinis H, Zachos I, et al. Greek centenarians: assessment of functional health status and life-style characteristics. Exp Gerontol. 2005;40(6):512–8. https://pubmed.ncbi.nlm.nih.gov/15935588/

2431

Chen C. A survey of the dietary nutritional composition of centenarians. Chin Med J (Engl). 2001;114(10):1095–7. https://pubmed.ncbi.nlm.nih.gov/11677774/

2432

Li Y, Bai Y, Tao QL, et al. Lifestyle of Chinese centenarians and their key beneficial factors in Chongqing, China. Asia Pac J Clin Nutr. 2014;23(2):309–14. https://pubmed.ncbi.nlm.nih.gov/24901102/

2433

Ye JJ, Li JC, Peng L, et al. Nonagenarians and centenarians in a rural Han Chinese population: lifestyle and epidemics: letters to the editor. J Am Geriatr Soc. 2009;57(9):1723–4. https://pubmed.ncbi.nlm.nih.gov/19895443/

2434

Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/

2435

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. National Geographic; 2012. https://worldcat.org/title/777659970

2436

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

2437

Agricultural Research Service, United States Department of Agriculture. Beans, NFS. FoodDataCentral. https://fdc.nal.usda.gov/fdc-app.html#/food-details/1100362/portions. Published October 30, 2020. Accessed February 16, 2022.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/1100362/portions

2438

Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/

2439

U.S. Department of Agriculture. Beans, peas, and lentils. MyPlate.gov. https://www.myplate.gov/eat-healthy/protein-foods/beans-and-peas. Accessed February 16, 2022.; https://www.myplate.gov/eat-healthy/protein-foods/beans-and-peas

2440

Drewnowski A, Rehm CD. Vegetable cost metrics show that potatoes and beans provide most nutrients per penny. PLoS One. 2013;8(5):e63277. https://pubmed.ncbi.nlm.nih.gov/23691007/

2441

Kabagambe EK, Baylin A, Ruiz-Narvarez E, Siles X, Campos H. Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction. J Nutr. 2005;135(7):1770–5. https://pubmed.ncbi.nlm.nih.gov/15987863/

2442

Luyken R, Pikaar NA, Polman H, Schippers FA. The influence of legumes on the serum cholesterol level. Voeding. 1962;23:447–53. https://pubmed.ncbi.nlm.nih.gov/14467529/

2443

Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61(1):85–96. https://pubmed.ncbi.nlm.nih.gov/31983216/

2444

Abeysekara S, Chilibeck PD, Vatanparast H, Zello GA. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br J Nutr. 2012;108 Suppl 1:S103–10. https://pubmed.ncbi.nlm.nih.gov/22916805/

2445

Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43. https://pubmed.ncbi.nlm.nih.gov/21559039/

2446

Kou T, Wang Q, Cai J, et al. Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials. Food Funct. 2017;8(8):2663–71. https://pubmed.ncbi.nlm.nih.gov/28675204/

2447

Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103. https://pubmed.ncbi.nlm.nih.gov/19939654/

2448

Sievenpiper JL, Kendall CW, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52(8):1479–95. https://pubmed.ncbi.nlm.nih.gov/19526214/

2449

Palmer SM, Winham DM, Hradek C. Knowledge gaps of the health benefits of beans among low-income women. Am J Health Behav. 2018;42(1):27–38. https://pubmed.ncbi.nlm.nih.gov/29320336/

2450

Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/

2451

Mirmiran P, Hosseinpour-Niazi S, Azizi F. Therapeutic lifestyle change diet enriched in legumes reduces oxidative stress in overweight type 2 diabetic patients: a crossover randomised clinical trial. Eur J Clin Nutr. 2018;72(1):174–6. https://pubmed.ncbi.nlm.nih.gov/28722030/

2452

Mullins AP, Arjmandi BH. Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases. Nutrients. 2021;13(2):519. https://pubmed.ncbi.nlm.nih.gov/33562498/

2453

Mathur KS, Khan MA, Sharma RD. Hypocholesterolaemic effect of Bengal gram: a long-term study in man. Br Med J. 1968;1(5583):30–1. https://pubmed.ncbi.nlm.nih.gov/5636741/

2454

Esselstyn CB. In cholesterol lowering, moderation kills. Cleve Clin J Med. 2000;67(8):560–4. https://pubmed.ncbi.nlm.nih.gov/10946449/

2455

Геометрическая схема, которая используется для моделирования множеств и для схематичного изображения и отношений между ними. – Примеч. ред.

2456

Tor-Roca A, Garcia-Aloy M, Mattivi F, Llorach R, Andres-Lacueva C, Urpi-Sarda M. Phytochemicals in legumes: a qualitative reviewed analysis. J Agric Food Chem. 2020;68(47):13486–96. https://pubmed.ncbi.nlm.nih.gov/33169614/

2457

Bruno JA, Feldman CH, Konas DW, Kerrihard AL, Matthews EL. Incorporating sprouted chickpea flour in pasta increases brachial artery flow-mediated dilation. Physiol Int. 2019;106(3):207–12. https://pubmed.ncbi.nlm.nih.gov/31564118/

2458

Zahradka P, Wright B, Weighell W, et al. Daily non-soy legume consumption reverses vascular impairment due to peripheral artery disease. Atherosclerosis. 2013;230(2):310–4. https://pubmed.ncbi.nlm.nih.gov/24075762/

2459

West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6. https://pubmed.ncbi.nlm.nih.gov/9082983/

2460

Levine HJ. Rest heart rate and life expectancy. J Am Coll Cardiol. 1997;30(4):1104–6. https://pubmed.ncbi.nlm.nih.gov/9316546/

2461

Cook S, Hess OM. Resting heart rate and cardiovascular events: time for a new crusade? Eur Heart J. 2010;31(5):517–9. https://pubmed.ncbi.nlm.nih.gov/19933283/

2462

Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur J Prev Cardiol. 2014;21(6):719–26. https://pubmed.ncbi.nlm.nih.gov/22718796/

2463

Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. Eur J Prev Cardiol. 2014;21(6):719–26. https://pubmed.ncbi.nlm.nih.gov/22718796/

2464

Teodorescu C, Reinier K, Uy-Evanado A, Gunson K, Jui J, Chugh SS. Resting heart rate and risk of sudden cardiac death in the general population: influence of left ventricular systolic dysfunction and heart rate-modulating drugs. Heart Rhythm. 2013;10(8):1153–8. https://pubmed.ncbi.nlm.nih.gov/23680897/

2465

Cooney MT, Vartiainen E, Laatikainen T, Juolevi A, Dudina A, Graham IM. Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women. Am Heart J. 2010;159(4):612–9.e3. https://pubmed.ncbi.nlm.nih.gov/20362720/

2466

Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60. https://pubmed.ncbi.nlm.nih.gov/23089999/

2467

Sloan RP, Shapiro PA, DeMeersman RE, et al. The effect of aerobic training and cardiac autonomic regulation in young adults. Am J Public Health. 2009;99(5):921–8. https://pubmed.ncbi.nlm.nih.gov/19299682/

2468

Viguiliouk E, Glenn AJ, Nishi SK, et al. Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: an umbrella review and updated systematic review and meta-analysis of prospective cohort studies. Adv Nutr. 2019;10(Suppl_4):S308–19. https://pubmed.ncbi.nlm.nih.gov/31728500/

2469

Fadnes LT, Økland JM, Haaland ØA, Johansson KA. Estimating impact of food choices on life expectancy: a modeling study. PLoS Med. 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/

2470

Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73. https://pubmed.ncbi.nlm.nih.gov/28446499/

2471

Liu W, Hu B, Dehghan M, et al. Fruit, vegetable, and legume intake and the risk of all-cause, cardiovascular, and cancer mortality: a prospective study. Clin Nutr. 2021;40(6):4316–23. https://pubmed.ncbi.nlm.nih.gov/33581953/

2472

Krebs-Smith SM, Guenther PM, Subar AF, Kirkpatrick SI, Dodd KW. Americans do not meet federal dietary recommendations. J Nutr. 2010;140(10):1832–8. https://pubmed.ncbi.nlm.nih.gov/20702750/

2473

Desrochers N, Brauer PM. Legume promotion in counselling: an e-mail survey of dietitians. Can J Diet Pract Res. 2001;62(4):193–8. https://pubmed.ncbi.nlm.nih.gov/11742561/

2474

Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10(1):128. https://pubmed.ncbi.nlm.nih.gov/22104320/

2475

Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10(1):128. https://pubmed.ncbi.nlm.nih.gov/22104320/

2476

Steggerda FR, Dimmick JF. Effects of bean diets on concentration of carbon dioxide in flatus. Am J Clin Nutr. 1966;19(2):120–4. https://pubmed.ncbi.nlm.nih.gov/5916034/

2477

McEligot AJ, Gilpin EA, Rock CL, et al. High dietary fiber consumption is not associated with gastrointestinal discomfort in a diet intervention trial. J Am Diet Assoc. 2002;102(4):549–51. https://pubmed.ncbi.nlm.nih.gov/11985415/

2478

How you can limit your gas production. 12 tips for dealing with flatulence. Harv Health Lett. 2007;32(12):3. https://pubmed.ncbi.nlm.nih.gov/18246621/

2479

Zartl B, Silberbauer K, Loeppert R, Viernstein H, Praznik W, Mueller M. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food Funct. 2018;9(3):1638–46. https://pubmed.ncbi.nlm.nih.gov/29465736/

2480

Winham DM, Hutchins AM. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr J. 2011;10:128. https://pubmed.ncbi.nlm.nih.gov/22104320/

2481

Spiro HM. Fat, foreboding, and flatulence. Ann Intern Med. 1999;130(4 Pt 1):320–2. https://pubmed.ncbi.nlm.nih.gov/10068391/

2482

Schneiderman N, Chirinos DA, Avilés-Santa ML, Heiss G. Challenges in preventing heart disease in hispanics: early lessons learned from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Prog Cardiovasc Dis. 2014;57(3):253–61. https://pubmed.ncbi.nlm.nih.gov/25212986/

2483

Kochanek KD, Murphy SL, Xu J, Arias E. Mortality in the United States, 2013. Centers for Disease Control and Prevention. NCHS Data Brief. No. 178. Published December 2014. Accessed December 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/25549183/

2484

The Hispanic paradox. Lancet. 2015;385(9981):1918. https://pubmed.ncbi.nlm.nih.gov/26090624/

2485

Colón-Ramos U, Thompson FE, Yaroch AL, et al. Differences in fruit and vegetable intake among Hispanic subgroups in California: results from the 2005 California Health Interview Survey. J Am Diet Assoc. 2009;109(11):1878–85. https://pubmed.ncbi.nlm.nih.gov/19857629/

2486

Reyes-Ortiz CA, Ju H, Eschbach K, Kuo YF, Goodwin JS. Neighbourhood ethnic composition and diet among Mexican-Americans. Public Health Nutr. 2009;12(12):2293–301. https://pubmed.ncbi.nlm.nih.gov/19254428/

2487

Nieddu A, Vindas L, Errigo A, Vindas J, Pes GM, Dore MP. Dietary habits, anthropometric features and daily performance in two independent long-lived populations from Nicoya peninsula (Costa Rica) and Ogliastra (Sardinia). Nutrients. 2020;12(6):E1621. https://pubmed.ncbi.nlm.nih.gov/32492804/

2488

Reyes-Ortiz CA, Ju H, Eschbach K, Kuo YF, Goodwin JS. Neighbourhood ethnic composition and diet among Mexican-Americans. Public Health Nutr. 2009;12(12):2293–301. https://pubmed.ncbi.nlm.nih.gov/19254428/

2489

Shen J, Shan J, Zhu X, et al. Sex specific effects of capsaicin on longevity regulation. Exp Gerontol. 2020;130:110788. https://pubmed.ncbi.nlm.nih.gov/31790803/

2490

Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Chili pepper consumption and mortality in Italian adults. J Am Coll Cardiol. 2019;74(25):3139–49. https://pubmed.ncbi.nlm.nih.gov/31856971/

2491

Chopan M, Littenberg B. The association of hot red chili pepper consumption and mortality: a large population-based cohort study. PLoS One. 2017;12(1):e0169876. https://pubmed.ncbi.nlm.nih.gov/28068423/

2492

Lv J, Qi L, Yu C, et al. Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ. 2015;351:h3942. https://pubmed.ncbi.nlm.nih.gov/26242395/

2493

Hashemian M, Poustchi H, Murphy G, et al. Turmeric, pepper, cinnamon, and saffron consumption and mortality. J Am Heart Assoc. 2019;8(18):e012240. https://www.ahajournals.org/doi/10.1161/JAHA.119.012240

2494

Janssens PLHR, Hursel R, Martens EAP, Westerterp-Plantenga MS. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS One. 2013;8(7):e67786. https://pubmed.ncbi.nlm.nih.gov/23844093/

2495

Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Chili pepper consumption and mortality in Italian adults. J Am Coll Cardiol. 2019;74(25):3139–49. https://pubmed.ncbi.nlm.nih.gov/31856971/

2496

American Heart Association News. Retired? Hardly – at 99, this pioneering heart doctor is still leading the way. American Heart Association. https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way. Published October 18, 2019. Accessed December 27, 2021.; https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way

2497

Stamler J. Toward a modern Mediterranean diet for the 21st century. Nutr Metab Cardiovasc Dis. 2013;23(12):1159–62. https://pubmed.ncbi.nlm.nih.gov/24238655/

2498

Nestle M. Mediterranean diets: historical and research overview. Am J Clin Nutr. 1995;61(6 Suppl):1313S-20S. https://pubmed.ncbi.nlm.nih.gov/7754981/

2499

Keys A, Menotti A, Karvonen MJ, et al. The diet and 15-year death rate in the Seven Countries Study. Am J Epidemiol. 1986;124(6):903–15. https://pubmed.ncbi.nlm.nih.gov/3776973/

2500

Davinelli S, Trichopoulou A, Corbi G, De Vivo I, Scapagnini G. The potential nutrigeroprotective role of Mediterranean diet and its functional components on telomere length dynamics. Ageing Res Rev. 2019;49:1–10. https://pubmed.ncbi.nlm.nih.gov/30448616/

2501

Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr. 1995;61(6 Suppl):1321S-3S. https://pubmed.ncbi.nlm.nih.gov/7754982/

2502

Russo GL, Siani A, Fogliano V, et al. The Mediterranean diet from past to future: key concepts from the second “Ancel Keys” International Seminar. Nutr Metab Cardiovasc Dis. 2021;31(3):717–32. https://pubmed.ncbi.nlm.nih.gov/33558092/

2503

Voukiklaris GE, Kafatos A, Dontas AS. Changing prevalence of coronary heart disease risk factors and cardiovascular diseases in men of a rural area of Crete from 1960 to 1991. Angiology. 1996;47(1):43–9. https://pubmed.ncbi.nlm.nih.gov/8546344/

2504

Altomare R, Cacciabaudo F, Damiano G, et al. The Mediterranean diet: a history of health. Iran J Public Health. 2013;42(5):449–57. https://pubmed.ncbi.nlm.nih.gov/23802101/

2505

Keys A. Mediterranean diet and public health: personal reflections. Am J Clin Nutr. 1995;61(6 Suppl):1321S-3S. https://pubmed.ncbi.nlm.nih.gov/7754982/

2506

Sofi F, Macchi C, Abbate R, Gensini GF, Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17(12):2769–82. https://pubmed.ncbi.nlm.nih.gov/24476641/

2507

Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–313. https://pubmed.ncbi.nlm.nih.gov/21392646/

2508

Soltani S, Jayedi A, Shab-Bidar S, Becerra-Tomás N, Salas-Salvadó J. Adherence to the Mediterranean diet in relation to all-cause mortality: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2019;10(6):1029–39. https://pubmed.ncbi.nlm.nih.gov/31111871/

2509

Bellavia A, Tektonidis TG, Orsini N, Wolk A, Larsson SC. Quantifying the benefits of Mediterranean diet in terms of survival. Eur J Epidemiol. 2016;31(5):527–30. https://pubmed.ncbi.nlm.nih.gov/26848763/

2510

Critselis E, Panagiotakos D. Adherence to the Mediterranean diet and healthy ageing: current evidence, biological pathways, and future directions. Crit Rev Food Sci Nutr. 2020;60(13):2148–57. https://pubmed.ncbi.nlm.nih.gov/31272195/

2511

Wang Y, Hao Q, Su L, Liu Y, Liu S, Dong B. Adherence to the Mediterranean diet and the risk of frailty in old people: a systematic review and meta-analysis. J Nutr Health Aging. 2018;22(5):613–8. https://pubmed.ncbi.nlm.nih.gov/29717762/

2512

Eleftheriou D, Benetou V, Trichopoulou A, La Vecchia C, Bamia C. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br J Nutr. 2018;120(10):1081–97. https://pubmed.ncbi.nlm.nih.gov/30401007/

2513

Pett KD, Willett WC, Vartiainen E, Katz DL. The Seven Countries Study. Eur Heart J. 2017;38(42):3119–21. https://pubmed.ncbi.nlm.nih.gov/29121230/

2514

Montani JP. Ancel Keys: the legacy of a giant in physiology, nutrition, and public health. Obes Rev. 2021;22 Suppl 2:e13196. https://pubmed.ncbi.nlm.nih.gov/33496369/

2515

Sparling PB. Legacy of nutritionist Ancel Keys. Mayo Clin Proc. 2020;95(3):615–7. https://pubmed.ncbi.nlm.nih.gov/32138891/

2516

American Heart Association News. Retired? Hardly – at 99, this pioneering heart doctor is still leading the way. American Heart Association. https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way. Published October 18, 2019. Accessed December 27, 2021.; https://www.heart.org/en/news/2019/10/18/retired-hardly-at-99-this-pioneering-heart-doctor-is-still-leading-the-way

2517

Paul M. As Jeremiah Stamler turns 100, ‘he continues to do brilliant science’. Northwestern Now. https://news.northwestern.edu/stories/2019/10/jeremiah-stamler/. Published October 29, 2019. Accessed December 27, 2021.; https://news.northwestern.edu/stories/2019/10/jeremiah-stamler/

2518

Winter L. “Father of Preventive Cardiology” Jeremiah Stamler dies at 102. The Scientist. https://www.the-scientist.com/news-opinion/father-of-preventive-cardiology-jeremiah-stamler-dies-at-102–69718. Published February 18, 2022. Accessed April 4, 2022.; https://www.the-scientist.com/news-opinion/father-of-preventive-cardiology-jeremiah-stamler-dies-at-102-69718

2519

Bes-Rastrollo M, Sánchez-Villegas A, de la Fuente C, de Irala J, Martínez JA, Martínez-González MA. Olive oil consumption and weight change: the SUN prospective cohort study. Lipids. 2006;41(3):249–56. https://pubmed.ncbi.nlm.nih.gov/16711599/

2520

Guasch-Ferré M, Liu G, Li Y, et al. Olive oil consumption and cardiovascular risk in U.S. adults. J Am Coll Cardiol. 2020;75(15):1729–39. https://pubmed.ncbi.nlm.nih.gov/35027106/

2521

Blankenhorn DH, Johnson RL, Mack WJ, El Zein HA, Vailas LI. The influence of diet on the appearance of new lesions in human coronary arteries. JAMA. 1990;263(12):1646–52. https://pubmed.ncbi.nlm.nih.gov/2407875/

2522

Schwingshackl L, Bogensberger B, Bencic A, Knüppel S, Boeing H, Hoffmann G. Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. J Lipid Res. 2018;59(9):1771–82. https://pubmed.ncbi.nlm.nih.gov/30006369/

2523

Tentolouris N, Arapostathi C, Perrea D, Kyriaki D, Revenas C, Katsilambros N. Differential effects of two isoenergetic meals rich in saturated or monounsaturated fat on endothelial function in subjects with type 2 diabetes. Diabetes Care. 2008;31(12):2276–8. https://pubmed.ncbi.nlm.nih.gov/18835957/

2524

Cortés B, Núñez I, Cofán M, et al. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. J Am Coll Cardiol. 2006;48(8):1666–71. https://pubmed.ncbi.nlm.nih.gov/17045905/

2525

Vogel RA, Corretti MC, Plotnick GD. The postprandial effect of components of the Mediterranean diet on endothelial function. J Am Coll Cardiol. 2000;36(5):1455–60. https://pubmed.ncbi.nlm.nih.gov/11079642/

2526

Vogel RA. Brachial artery ultrasound: a noninvasive tool in the assessment of triglyceride-rich lipoproteins. Clin Cardiol. 1999;22(Suppl II):II-34–9. https://pubmed.ncbi.nlm.nih.gov/10376195/

2527

Rueda-Clausen CF, Silva FA, Lindarte MA, et al. Olive, soybean and palm oils intake have a similar acute detrimental effect over the endothelial function in healthy young subjects. Nutr Metab Cardiovasc Dis. 2007;17(1):50–7. https://pubmed.ncbi.nlm.nih.gov/17174226/

2528

Ong PJ, Dean TS, Hayward CS, Della Monica PL, Sanders TAB, Collins P. Effect of fat and carbohydrate consumption on endothelial function. Lancet. 1999;354(9196):2134. https://pubmed.ncbi.nlm.nih.gov/10609824/

2529

Casas-Agustench P, López-Uriarte P, Ros E, Bulló M, Salas-Salvadó J. Nuts, hypertension and endothelial function. Nutr Metab Cardiovasc Dis. 2011;21 Suppl 1:S21–33. https://pubmed.ncbi.nlm.nih.gov/20031380/

2530

Park E, Edirisinghe I, Burton-Freeman B. Avocado fruit on postprandial markers of cardio-metabolic risk: a randomized controlled dose response trial in overweight and obese men and women. Nutrients. 2018;10(9):E1287. https://pubmed.ncbi.nlm.nih.gov/30213052/

2531

Традиционный соус, в состав которого входят оливковое масло, бальзамический уксус, мед, горчица и чеснок. – Примеч. ред.

2532

Agricultural Research Service, United States Department of Agriculture. Olives, ripe, canned (jumbo-super colossal). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169095/nutrients. Published April 1, 2019. Accessed December 28, 2022.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169095/nutrients

2533

Martínez-González MÁ, Corella D, Salas-Salvadó J, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85. https://pubmed.ncbi.nlm.nih.gov/21172932/

2534

Martínez-González MÁ, Corella D, Salas-Salvadó J, et al. Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol. 2012;41(2):377–85. https://pubmed.ncbi.nlm.nih.gov/21172932/

2535

Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. https://pubmed.ncbi.nlm.nih.gov/29897866/

2536

Agarwal A, Ioannidis JPA. PREDIMED trial of Mediterranean diet: retracted, republished, still trusted? BMJ. 2019;364:l341. https://pubmed.ncbi.nlm.nih.gov/30733217/

2537

Rees K, Takeda A, Martin N, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019;3:CD009825. https://pubmed.ncbi.nlm.nih.gov/30864165/

2538

Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/

2539

Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/

2540

Sala-Vila A, Romero-Mamani ES, Gilabert R, et al. Changes in ultrasound-assessed carotid intima-media thickness and plaque with a Mediterranean diet: a substudy of the PREDIMED trial. Arterioscler Thromb Vasc Biol. 2014;34(2):439–45. https://pubmed.ncbi.nlm.nih.gov/24285581/

2541

Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/

2542

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/

2543

Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34. https://pubmed.ncbi.nlm.nih.gov/29897866/

2544

Guasch-Ferré M, Bulló M, Martínez-González MÁ, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164. https://pubmed.ncbi.nlm.nih.gov/23866098/

2545

Guasch-Ferré M, Hu FB, Martínez-González MA, et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med. 2014;12:78. https://pubmed.ncbi.nlm.nih.gov/24886626/

2546

Keys A. Olive oil and coronary heart disease. Lancet. 1987;1(8539):983–4. https://pubmed.ncbi.nlm.nih.gov/2882379/

2547

Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103. https://pubmed.ncbi.nlm.nih.gov/25961184/

2548

Martínez-González MÁ, Toledo E, Arós F, et al. Extra-virgin olive oil consumption reduces risk of atrial fibrillation: the PREDIMED trial. Circulation. 2014;130(1):18–26. https://pubmed.ncbi.nlm.nih.gov/24787471/

2549

Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA. Association of Mediterranean diet with peripheral artery disease: the PREDIMED randomized trial. JAMA. 2014;311(4):415–7. https://pubmed.ncbi.nlm.nih.gov/24449321/

2550

Salas-Salvadó J, Bulló M, Estruch R, et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann Intern Med. 2014;160(1):1–10. https://pubmed.ncbi.nlm.nih.gov/24573661/

2551

Díaz-López A, Babio N, Martínez-González MA, et al. Erratum. Mediterranean diet, retinopathy, nephropathy, and microvascular diabetes complications: a post hoc analysis of a randomized trial. Diabetes Care 2015;38:2134–2141. Diabetes Care. 2018;41(10):2260–1. https://pubmed.ncbi.nlm.nih.gov/26370380/

2552

Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging. 2013;17(6):544–52. https://pubmed.ncbi.nlm.nih.gov/23732551/

2553

Toledo E, Salas-Salvadó J, Donat-Vargas C, et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: a randomized clinical trial. JAMA Intern Med. 2015;175(11):1752–60. https://pubmed.ncbi.nlm.nih.gov/26365989/

2554

Bogani P, Galli C, Villa M, Visioli F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007;190(1):181–6. https://pubmed.ncbi.nlm.nih.gov/16488419/

2555

Visioli F, Caruso D, Galli C, Viappiani S, Galli G, Sala A. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem Biophys Res Commun. 2000;278(3):797–9. https://pubmed.ncbi.nlm.nih.gov/11095986/

2556

Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive polyphenols: antioxidant and anti-inflammatory properties. Antioxidants (Basel). 2021;10(7):1044. https://pubmed.ncbi.nlm.nih.gov/34209636/

2557

Tiong SH, Saparin N, Teh HF, et al. Natural organochlorines as precursors of 3-monochloropropanediol esters in vegetable oils. J Agric Food Chem. 2018;66(4):999–1007. https://pubmed.ncbi.nlm.nih.gov/29260544/

2558

Gao B, Li Y, Huang G, Yu L. Fatty acid esters of 3-monochloropropanediol: a review. Annu Rev Food Sci Technol. 2019;10:259–84. https://pubmed.ncbi.nlm.nih.gov/30908955/

2559

Yan J, Oey SB, van Leeuwen SPJ, van Ruth SM. Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chem. 2018;248:93–100. https://pubmed.ncbi.nlm.nih.gov/29329876/

2560

Mossoba MM, Azizian H, Fardin-Kia AR, Karunathilaka SR, Kramer JKG. First application of newly developed FT-NIR spectroscopic methodology to predict authenticity of extra virgin olive oil retail products in the USA. Lipids. 2017;52(5):443–55. https://pubmed.ncbi.nlm.nih.gov/28401382/

2561

Frankel EN, Mailed RJ, Wang SC, et al. Evaluation of extra-virgin olive oil sold in California. UC Davis Olive Center. https://olivecenter.ucdavis.edu/media/files/report2011three.pdf. Published April 2011. Accessed December 28, 2021.; https://issuu.com/oliveoiltimes/docs/report_041211_final_reduced

2562

Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/

2563

Huedo-Medina TB, Garcia M, Bihuniak JD, Kenny A, Kerstetter J. Methodologic quality of meta-analyses and systematic reviews on the Mediterranean diet and cardiovascular disease outcomes: a review. Am J Clin Nutr. 2016;103(3):841–50. https://pubmed.ncbi.nlm.nih.gov/26864357/

2564

Galbete C, Schwingshackl L, Schwedhelm C, Boeing H, Schulze MB. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: an umbrella review of meta-analyses. Eur J Epidemiol. 2018;33(10):909–31. https://pubmed.ncbi.nlm.nih.gov/30030684/

2565

Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/

2566

Galbete C, Schwingshackl L, Schwedhelm C, Boeing H, Schulze MB. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: an umbrella review of meta-analyses. Eur J Epidemiol. 2018;33(10):909–31. https://pubmed.ncbi.nlm.nih.gov/30030684/

2567

Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/

2568

White C. Suspected research fraud: difficulties of getting at the truth. BMJ. 2005;331(7511):281–8. https://pubmed.ncbi.nlm.nih.gov/16052022/

2569

Horton R. Expression of concern: Indo-Mediterranean diet heart study. Lancet. 2005;366(9483):354–6. https://pubmed.ncbi.nlm.nih.gov/16054927/

2570

de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9. https://pubmed.ncbi.nlm.nih.gov/7911176/

2571

Simopoulos AP. Omega-3 fatty acids and antioxidants in edible wild plants. Biol Res. 2004;37(2):263–77. https://pubmed.ncbi.nlm.nih.gov/15455656/

2572

Pourrajab B, Sharifi-Zahabi E, Soltani S, Shahinfar H, Shidfar F. Comparison of canola oil and olive oil consumption on the serum lipid profile in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. Published online July 22, 2022:1–15.; https://pubmed.ncbi.nlm.nih.gov/35866510/

2573

Vogel RA, Corretti MC, Plotnick GD. The postprandial effect of components of the Mediterranean diet on endothelial function. J Am Coll Cardiol. 2000;36(5):1455–60. https://pubmed.ncbi.nlm.nih.gov/11079642/

2574

de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9. https://pubmed.ncbi.nlm.nih.gov/7911176/

2575

de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85. https://pubmed.ncbi.nlm.nih.gov/9989963/

2576

Esselstyn CB, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014;63(7):356–64b. https://pubmed.ncbi.nlm.nih.gov/25198208/

2577

Rimm EB, Stampfer MJ. Diet, lifestyle, and longevity – the next steps? JAMA. 2004;292(12):1490–2. https://pubmed.ncbi.nlm.nih.gov/15383521/

2578

Drewnowski A, Hill JO, Wansink B, Murray R, Diekman C. Achieve better health with nutrient-rich foods. Nutr Today. 2012;47(1):23–9. https://journals.lww.com/nutritiontodayonline/Abstract/2012/01000/Achieve_Better_Health_With_Nutrient_Rich_Foods.5.aspx

2579

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2580

Willcox DC, Willcox BJ, He Q, Wang NC, Suzuki M. They really are that old: a validation study of centenarian prevalence in Okinawa. J Gerontol A Biol Sci Med Sci. 2008;63(4):338–49. https://pubmed.ncbi.nlm.nih.gov/18426957/

2581

Shao A, Drewnowski A, Willcox DC, et al. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur J Nutr. 2017;56(Suppl 1):1–21. https://pubmed.ncbi.nlm.nih.gov/28474121/

2582

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–137:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2583

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

2584

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

2585

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2586

Suzuki M, Willcox DC, Rosenbaum MW, Willcox BJ. Oxidative stress and longevity in Okinawa: an investigation of blood lipid peroxidation and tocopherol in Okinawan centenarians. Curr Gerontol Geriatr Res. 2010;2010:380460. https://pubmed.ncbi.nlm.nih.gov/21490698/

2587

Suzuki M, Wilcox BJ, Wilcox CD. Implications from and for food cultures for cardiovascular disease: longevity. Asia Pac J Clin Nutr. 2001;10(2):165–71. https://pubmed.ncbi.nlm.nih.gov/11710359/

2588

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2589

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2590

Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/

2591

Chen X, Jiao J, Zhuang P, et al. Current intake levels of potatoes and all-cause mortality in China: a population-based nationwide study. Nutrition. 2021;81:110902. https://pubmed.ncbi.nlm.nih.gov/32739659/

2592

Center for Science in the Public Interest. 10 Best Foods. https://cspinet.org/eating-healthy/what-eat/10-best-foods. Accessed January 5, 2022.; https://cspinet.org/eating-healthy/what-eat/10-best-foods

2593

Wilson CD, Pace RD, Bromfield E, Jones G, Lu JY. Consumer acceptance of vegetarian sweet potato products intended for space missions. Life Support Biosph Sci. 1998;5(3):339–46. https://pubmed.ncbi.nlm.nih.gov/11876201/

2594

Drewnowski A. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost? J Acad Nutr Diet. 2013;113(9):1182–7. https://pubmed.ncbi.nlm.nih.gov/23714199/

2595

Sunthonkun P, Palajai R, Somboon P, Suan CL, Ungsurangsri M, Soontorngun N. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci Rep. 2019;9(1):18061. https://pubmed.ncbi.nlm.nih.gov/31792269/

2596

Chen W, Müller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53. https://pubmed.ncbi.nlm.nih.gov/23470220/

2597

Zuo Y, Peng C, Liang Y, et al. Black rice extract extends the lifespan of fruit flies. Food Funct. 2012;3(12):1271–9. https://pubmed.ncbi.nlm.nih.gov/22930061/

2598

Lu X, Zhou Y, Wu T, Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct. 2014;5(11):2892–7. https://pubmed.ncbi.nlm.nih.gov/25190075/

2599

Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem. 2005;69(5):979–88. https://pubmed.ncbi.nlm.nih.gov/15914919/

2600

Majid M, Nasir B, Zahra SS, Khan MR, Mirza B, Haq I. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complement Altern Med. 2018;18(1):216. https://pubmed.ncbi.nlm.nih.gov/30005651/

2601

Wang YJ, Zheng YL, Lu J, et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int. 2010;56(3):424–30. https://pubmed.ncbi.nlm.nih.gov/19941923/

2602

Wu DM, Lu J, Zheng YL, Zhou Z, Shan Q, Ma DF. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiol Learn Mem. 2008;90(1):19–27. https://pubmed.ncbi.nlm.nih.gov/18316211/

2603

Sun C, Diao Q, Lu J, et al. Purple sweet potato color attenuated NLRP3 inflammasome by inducing autophagy to delay endothelial senescence. J Cell Physiol. 2019;234(5):5926–39. https://pubmed.ncbi.nlm.nih.gov/30585631/

2604

Su W, Zhang C, Chen F, et al. Purple sweet potato color protects against hepatocyte apoptosis through Sirt1 activation in high-fat-diet-treated mice. Food Nutr Res. 2020;64:10.29219/fnr.v64.1509. https://pubmed.ncbi.nlm.nih.gov/32110174/

2605

Han Y, Guo Y, Cui SW, Li H, Shan Y, Wang H. Purple Sweet Potato Extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster. Exp Gerontol. 2021;144:111190. https://pubmed.ncbi.nlm.nih.gov/33301922/

2606

Zhang X, Yang Y, Wu Z, Weng P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J Agric Food Chem. 2016;64(12):2582–90. https://pubmed.ncbi.nlm.nih.gov/26975278/

2607

Suda I, Ishikawa F, Hatakeyama M, et al. Intake of purple sweet potato beverage affects on serum hepatic biomarker levels of healthy adult men with borderline hepatitis. Eur J Clin Nutr. 2008;62(1):60–7. https://pubmed.ncbi.nlm.nih.gov/17299464/

2608

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2609

Shi Z, Zhang T, Byles J, Martin S, Avery JC, Taylor AW. Food habits, lifestyle factors and mortality among oldest old Chinese: the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Nutrients. 2015;7(9):7562–79. https://pubmed.ncbi.nlm.nih.gov/26371039/

2610

Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/

2611

Mosallanezhad Z, Mahmoodi M, Ranjbar S, et al. Soy intake is associated with lowering blood pressure in adults: a systematic review and meta-analysis of randomized double-blind placebo-controlled trials. Complement Ther Med. 2021;59:102692. https://pubmed.ncbi.nlm.nih.gov/33636295/

2612

Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103. https://pubmed.ncbi.nlm.nih.gov/19939654/

2613

Mejia SB, Messina M, Li SS, et al. A meta-analysis of 46 studies identified by the FDA demonstrates that soy protein decreases circulating LDL and total cholesterol concentrations in adults. J Nutr. 2019;149(6):968–81. https://pubmed.ncbi.nlm.nih.gov/31006811/

2614

Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114(6):831–43. https://pubmed.ncbi.nlm.nih.gov/21559039/

2615

Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24(7):735–47. https://pubmed.ncbi.nlm.nih.gov/28067550/

2616

Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/

2617

D’elia L, Rossi G, Ippolito R, Cappuccio FP, Strazzullo P. Habitual salt intake and risk of gastric cancer: a meta-analysis of prospective studies. Clin Nutr. 2012;31(4):489–98. https://pubmed.ncbi.nlm.nih.gov/22296873/

2618

Kanda A, Hoshiyama Y, Kawaguchi T. Association of lifestyle parameters with the prevention of hypertension in elderly Japanese men and women: a four-year follow-up of normotensive subjects. Asia Pac J Public Health. 1999;11(2):77–81. https://pubmed.ncbi.nlm.nih.gov/11195162/

2619

Ito K. Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate. Environ Health Prev Med. 2020;25(1):45. https://pubmed.ncbi.nlm.nih.gov/32867671/

2620

Kondo H, Tomari HS, Yamakawa S, et al. Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertens Res. 2019;42(11):1757–67. https://pubmed.ncbi.nlm.nih.gov/31371810/

2621

Du DD, Yoshinaga M, Sonoda M, Kawakubo K, Uehara Y. Blood pressure reduction by Japanese traditional Miso is associated with increased diuresis and natriuresis through dopamine system in Dahl salt-sensitive rats. Clin Exp Hypertens. 2014;36(5):359–66. https://pubmed.ncbi.nlm.nih.gov/24047246/

2622

Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/

2623

Iso H, Kubota Y. Nutrition and disease in the Japan Collaborative Cohort Study for evaluation of cancer (JACC). Asian Pac J Cancer Prev. 2007;8 Suppl:35–80. https://pubmed.ncbi.nlm.nih.gov/18260705/

2624

Lashmanova E, Proshkina E, Zhikrivetskaya S, et al. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res. 2015;100:228–41. https://pubmed.ncbi.nlm.nih.gov/26292053/

2625

Zhao T, Zhang Q, Qi H, Liu X, Li Z. Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacol Res. 2008;57(1):67–72. https://pubmed.ncbi.nlm.nih.gov/18221885/

2626

Wada K, Nakamura K, Tamai Y, et al. Seaweed intake and blood pressure levels in healthy pre-school Japanese children. Nutr J. 2011;10:83. https://pubmed.ncbi.nlm.nih.gov/21827710/

2627

Ono A, Shibaoka M, Yano J, Asai Y, Fujita T. Eating habits and intensity of medication in elderly hypertensive outpatients. Hypertens Res. 2000;23(3):195–200. https://pubmed.ncbi.nlm.nih.gov/10821126/

2628

Teas J, Baldeón ME, Chiriboga DE, Davis JR, Sarriés AJ, Braverman LE. Could dietary seaweed reverse the metabolic syndrome? Asia Pac J Clin Nutr. 2009;18(2):145–54. https://pubmed.ncbi.nlm.nih.gov/19713172/

2629

Ma W, He X, Braverman L. Iodine content in milk alternatives. Thyroid. 2016;26(9):1308–10. https://pubmed.ncbi.nlm.nih.gov/27358189/

2630

Flachowsky G, Franke K, Meyer U, Leiterer M, Schöne F. Influencing factors on iodine content of cow milk. Eur J Nutr. 2014;53(2):351–65. https://pubmed.ncbi.nlm.nih.gov/24185833/

2631

Teas J, Pino S, Critchley A, Braverman LE. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14(10):836–41. https://pubmed.ncbi.nlm.nih.gov/15588380/

2632

Combet E. Iodine status, thyroid function, and vegetarianism. In: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Elsevier; 2017:769–90. https://worldcat.org/title/988275855

2633

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2634

Sánchez JE, Jiménez-Pérez G, Liedo P. Can consumption of antioxidant rich mushrooms extend longevity?: antioxidant activity of Pleurotus spp. and its effects on Mexican fruit flies’ (Anastrepha ludens) longevity. Age (Dordr). 2015;37(6):107. https://pubmed.ncbi.nlm.nih.gov/26499817/

2635

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2636

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2637

Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci U S A. 2018;115(43):10836–44. https://pubmed.ncbi.nlm.nih.gov/30322941/

2638

Smith E, Ottosson F, Hellstrand S, et al. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart. 2020;106(9):691–7. https://pubmed.ncbi.nlm.nih.gov/31672783/

2639

Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010;17(7):1134–40. https://pubmed.ncbi.nlm.nih.gov/19911007/

2640

Beelman RB, Kalaras MD, Phillips AT, Richie JP. Is ergothioneine a ‘longevity vitamin’ limited in the American diet? J Nutr Sci. 2020;9:e52. https://pubmed.ncbi.nlm.nih.gov/33244403/

2641

Beelman RB, Kalaras MD, Richie JP. Micronutrients and bioactive compounds in mushrooms: a recipe for healthy aging? Nutr Today. 2019;54(1):16–22. https://journals.lww.com/nutritiontodayonline/Abstract/2019/01000/Micronutrients_and_Bioactive_Compounds_in.5.aspx

2642

Ba DM, Gao X, Al-Shaar L, et al. Prospective study of dietary mushroom intake and risk of mortality: results from continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a meta-analysis. Nutr J. 2021;20(1):80. https://pubmed.ncbi.nlm.nih.gov/34548082/

2643

Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/

2644

Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. Proc Natl Acad Sci U S A. 2020;117(17):9483–9. https://pubmed.ncbi.nlm.nih.gov/32295884/

2645

Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem Biophys Res Commun. 2016;478(1):162–7. https://pubmed.ncbi.nlm.nih.gov/27444382/

2646

Lagrange E, Vernoux JP. Warning on false or true morels and button mushrooms with potential toxicity linked to hydrazinic toxins: an update. Toxins (Basel). 2020;12(8):482. https://pubmed.ncbi.nlm.nih.gov/32751277/

2647

Heer RS, Patel NB, Mandal AKJ, Lewis F, Missouris CG. Not a fungi to be with: shiitake mushroom flagellate dermatitis. Am J Emerg Med. 2020;38(2):412.e1–2. https://pubmed.ncbi.nlm.nih.gov/31864870/

2648

Stijve T, Pittet A. Absence of agaritine in Pleurotus species and in other cultivated and wild-growing mushrooms not belonging to the genus Agaricus. Dtsch Lebensm-Rundsch. 2000;96(7):251–4. https://www.researchgate.net/publication/286669322_Absence_of_Agaritine_in_Pleurotus_species_and_in_other_cultivated_and_wild-growing_mushrooms_not_belonging_to_the_genus_Agaricus

2649

Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/

2650

Money NP. Are mushrooms medicinal? Fungal Biol. 2016;120(4):449–53. https://pubmed.ncbi.nlm.nih.gov/27020147/

2651

Litten W. The most poisonous mushrooms. Sci Am. 1975;232(3):90–101. https://pubmed.ncbi.nlm.nih.gov/1114308/

2652

Lim CS, Chhabra N, Leikin S, Fischbein C, Mueller GM, Nelson ME. Atlas of select poisonous plants and mushrooms. Dis Mon. 2016;62(3):41–66. https://pubmed.ncbi.nlm.nih.gov/26965743/

2653

Грибы рода Amanita. В Европе это Amanita virosa, а в восточной и западной части Северной Америки – A. bisporigera и A. ocreata. В России известен как бледная поганка (Amanita phalloides). – Примеч. ред.

2654

Culliton BJ. The destroying angel: a story of a search for an antidote. Science. 1974;185(4151):600–1. https://pubmed.ncbi.nlm.nih.gov/17791229/

2655

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2656

Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/

2657

Pan Y, Lin Z. Anti-aging effect of Ganoderma (Lingzhi) with health and fitness. Adv Exp Med Bio. 2019;1182:299–309. https://pubmed.ncbi.nlm.nih.gov/31777025/

2658

Cuong VT, Chen W, Shi J, et al. The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp Gerontol. 2019;117:99–105. https://pubmed.ncbi.nlm.nih.gov/28750751/

2659

Wang J, Cao B, Zhao H, Feng J. Emerging roles of Ganoderma lucidum in anti-aging. Aging Dis. 2017;8(6):691–707. https://pubmed.ncbi.nlm.nih.gov/29344411/

2660

Hsu KD, Cheng KC. From nutraceutical to clinical trial: frontiers in Ganoderma development. App Microbiol Biotechnol. 2018;102(21). https://pubmed.ncbi.nlm.nih.gov/30182215/

2661

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2662

Loyd AL, Richter BS, Jusino MA, et al. Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial reishi products. Front Microbiol. 2018;9:1557. https://pubmed.ncbi.nlm.nih.gov/30061872/

2663

Totelin L. When foods become remedies in ancient Greece: The curious case of garlic and other substances. J Ethnopharmacol. 2015;167:30–7. https://pubmed.ncbi.nlm.nih.gov/25173971/

2664

Shi X, Lv Y, Mao C, et al. Garlic consumption and all-cause mortality among Chinese oldest-old individuals: a population-based cohort study. Nutrients. 2019;11(7):E1504. https://pubmed.ncbi.nlm.nih.gov/31262080/

2665

Lau KK, Chan YH, Wong YK, et al. Garlic intake is an independent predictor of endothelial function in patients with ischemic stroke. J Nutr Health Aging. 2013;17(7):600–4. https://pubmed.ncbi.nlm.nih.gov/23933870/

2666

Mahdavi-Roshan M, Mirmiran P, Arjmand M, Nasrollahzadeh J. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol. 2017;18(2):116–21. https://pubmed.ncbi.nlm.nih.gov/28554988/

2667

Mahdavi-Roshan M, Zahedmehr A, Mohammad-Zadeh A, et al. Effect of garlic powder tablet on carotid intima-media thickness in patients with coronary artery disease: a preliminary randomized controlled trial. Nutr Health. 2013;22(2):143–55. https://pubmed.ncbi.nlm.nih.gov/25573347/

2668

Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/

2669

Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2015;22(3):352–61. https://pubmed.ncbi.nlm.nih.gov/25837272/

2670

Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications. 2016;30(4):723–7. https://pubmed.ncbi.nlm.nih.gov/26954484/

2671

Soleimani D, Paknahad Z, Askari G, Iraj B, Feizi A. Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Adv Biomed Res. 2016;5:2. https://pubmed.ncbi.nlm.nih.gov/26955623/

2672

Shabani E, Sayemiri K, Mohammadpour M. The effect of garlic on lipid profile and glucose parameters in diabetic patients: a systematic review and meta-analysis. Prim Care Diabetes. 2019;13(1):28–42. https://pubmed.ncbi.nlm.nih.gov/30049636/

2673

Rajan TV, Hein M, Porte P, Wikel S. A double-blinded, placebo-controlled trial of garlic as a mosquito repellant: a preliminary study. Med Vet Entomol. 2005;19(1):84–9. https://pubmed.ncbi.nlm.nih.gov/15752181/

2674

Stjernberg L, Berglund J. Garlic as an insect repellent. JAMA. 2000;284(7):831. https://pubmed.ncbi.nlm.nih.gov/10938169/

2675

Tunón H. Garlic as a tick repellent. JAMA. 2001;285(1):41–2. https://pubmed.ncbi.nlm.nih.gov/11150101/

2676

Yusof YAM. Gingerol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:177–207. https://pubmed.ncbi.nlm.nih.gov/27771925/

2677

Liu J, Shi JZ, Yu LM, Goyer RA, Waalkes MP. Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med (Maywood). 2008;233(7):810–7. https://pubmed.ncbi.nlm.nih.gov/18445765/

2678

Anh NH, Kim SJ, Long NP, et al. Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. 2020;12(1):E157. https://pubmed.ncbi.nlm.nih.gov/31935866/

2679

Bodagh MN, Maleki I, Hekmatdoost A. Ginger in gastrointestinal disorders: a systematic review of clinical trials. Food Sci Nutr. 2018;7(1):96–108. https://pubmed.ncbi.nlm.nih.gov/30680163/

2680

Mowrey DB, Clayson DE. Motion sickness, ginger, and psychophysics. Lancet. 1982;1(8273):655–7. https://pubmed.ncbi.nlm.nih.gov/30680163/

2681

Palatty PL, Haniadka R, Valder B, Arora R, Baliga MS. Ginger in the prevention of nausea and vomiting: a review. Crit Rev Food Sci Nutr. 2013;53(7):659–69. https://pubmed.ncbi.nlm.nih.gov/23638927/

2682

Adib-Hajbaghery M, Hosseini FS. Investigating the effects of inhaling ginger essence on post-nephrectomy nausea and vomiting. Complement Ther Med. 2015;23(6):827–31. https://pubmed.ncbi.nlm.nih.gov/26645524/

2683

Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoarthritis Cartilage. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/

2684

Khayat S, Kheirkhah M, Behboodi Moghadam Z, Fanaei H, Kasaeian A, Javadimehr M. Effect of treatment with ginger on the severity of premenstrual syndrome symptoms. ISRN Obstet Gynecol. 2014;2014:792708. https://pubmed.ncbi.nlm.nih.gov/24944825/

2685

Ozgoli G, Goli M, Moattar F. Comparison of effects of ginger, mefenamic acid, and ibuprofen on pain in women with primary dysmenorrhea. J Altern Complement Med. 2009;15(2):129–32. https://pubmed.ncbi.nlm.nih.gov/19216660/

2686

Martins LB, Rodrigues AMdS, Monteze NM, et al. Double-blind placebo-controlled randomized clinical trial of ginger (Zingiber officinale Rosc.) in the prophylactic treatment of migraine. Cephalalgia. 2020;40(1):88–95. https://pubmed.ncbi.nlm.nih.gov/29768938/

2687

Chen L, Cai Z. The efficacy of ginger for the treatment of migraine: a meta-analysis of randomized controlled studies. Am J Emerg Med. 2021;46:567–71. https://pubmed.ncbi.nlm.nih.gov/33293189/

2688

Pourmasoumi M, Hadi A, Rafie N, Najafgholizadeh A, Mohammadi H, Rouhani MH. The effect of ginger supplementation on lipid profile: a systematic review and meta-analysis of clinical trials. Phytomedicine. 2018;43:28–36. https://pubmed.ncbi.nlm.nih.gov/29747751/

2689

Makhdoomi Arzati M, Mohammadzadeh Honarvar N, Saedisomeolia A, et al. The effects of ginger on fasting blood sugar, hemoglobin A1c, and lipid profiles in patients with type 2 diabetes. Int J Endocrinol Metab. 2017;15(4):e57927. https://pubmed.ncbi.nlm.nih.gov/29344037/

2690

Hasani H, Arab A, Hadi A, Pourmasoumi M, Ghavami A, Miraghajani M. Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytother Res. 2019;33(6):1639–47. https://pubmed.ncbi.nlm.nih.gov/30972845/

2691

Maharlouei N, Tabrizi R, Lankarani KB, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2018:1–14.; https://pubmed.ncbi.nlm.nih.gov/29393665/

2692

Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612. https://pubmed.ncbi.nlm.nih.gov/33458848/

2693

Mazidi M, Gao HK, Rezaie P, Ferns GA. The effect of ginger supplementation on serum C-reactive protein, lipid profile and glycaemia: a systematic review and meta-analysis. Food Nutr Res. 2016;60:32613. https://pubmed.ncbi.nlm.nih.gov/27806832/

2694

Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther. 2018;182:56–69. https://pubmed.ncbi.nlm.nih.gov/28842272/

2695

Bischoff-Kont I, Fürst R. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals (Basel). 2021;14(6):571. https://pubmed.ncbi.nlm.nih.gov/34203813/

2696

Teschke R, Xuan TD. Viewpoint: a contributory role of shell ginger (Alpinia zerumbet) for human longevity in Okinawa, Japan? Nutrients. 2018;10(2):166. https://pubmed.ncbi.nlm.nih.gov/29385084/

2697

Upadhyay A, Chompoo J, Taira N, Fukuta M, Tawata S. Significant longevity-extending effects of Alpinia zerumbet leaf extract on the life span of Caenorhabditis elegans. Biosci Biotechnol Biochem. 2013;77(2):217–23. https://pubmed.ncbi.nlm.nih.gov/23391900/

2698

Rasheed N. Ginger and its active constituents as therapeutic agents: recent perspectives with molecular evidences. Int J Health Sci (Qassim). 2020;14(6):1–3. https://pubmed.ncbi.nlm.nih.gov/33192225/

2699

Lee EB, Kim JH, Kim YJ, et al. Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Arch Pharm Res. 2018;41(7):743–52. https://pubmed.ncbi.nlm.nih.gov/29978428/

2700

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

2701

Stepien K, Wojdyla D, Nowak K, Molon M. Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology. 2020;21(1):109–23. https://pubmed.ncbi.nlm.nih.gov/31659616/

2702

Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev. 2011;132(10):480–7. https://pubmed.ncbi.nlm.nih.gov/21855561/

2703

Suckow BK, Suckow MA. Lifespan extension by the antioxidant curcumin in Drosophila melanogaster. Int J Biomed Sci. 2006;2(4):402–5. https://pubmed.ncbi.nlm.nih.gov/23675008/

2704

Kitani K, Osawa T, Yokozawa T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology. 2007;8(5):567–73. https://pubmed.ncbi.nlm.nih.gov/17516143/

2705

Lao CD, Ruffin MT IV, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. https://pubmed.ncbi.nlm.nih.gov/16545122/

2706

Bala K, Tripathy BC, Sharma D. Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology. 2006;7(2):81–9. https://pubmed.ncbi.nlm.nih.gov/16802111/

2707

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

2708

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

2709

DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79. https://pubmed.ncbi.nlm.nih.gov/23013352/

2710

Rakha A, Rehman K, Babar Imran M, Shahid M, Jahan N. Mitigation of 131-I induced oxidative stress by supplementation of turmeric and green cardamom in thyroid patients. Int J Radiat Res. 2022;20(1):29–36. https://ijrr.com/article-1-4063-en.html

2711

Thorogood M, Appleby PN, Key TJ, Mann J. Relation between body mass index and mortality in an unusually slim cohort. J Epidemiol Community Health. 2003;57(2):130–3. https://pubmed.ncbi.nlm.nih.gov/12540689/

2712

Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://pubmed.ncbi.nlm.nih.gov/27146380/

2713

Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology. 2006;7(3):173–7. https://pubmed.ncbi.nlm.nih.gov/16810568/

2714

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2715

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

2716

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

2717

Willcox BJ, Willcox DC. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications. Curr Opin Clin Nutr Metab Care. 2014;17(1):51–8. https://pubmed.ncbi.nlm.nih.gov/24316687/

2718

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

2719

Gavrilova NS, Gavrilov LA. Comments on dietary restriction, Okinawa diet and longevity. Gerontology. 2012;58(3):221–3. https://pubmed.ncbi.nlm.nih.gov/21893946/

2720

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28 Suppl:500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2721

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2722

Martínez-González MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res. 2019;124(5):779–98. https://pubmed.ncbi.nlm.nih.gov/30817261/

2723

Marston HR, Niles-Yokum K, Silva PA. A commentary on Blue Zones®: a critical review of age-friendly environments in the 21st century and beyond. Int J Environ Res Public Health. 2021;18(2):837. https://pubmed.ncbi.nlm.nih.gov/33478140/

2724

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2725

Cockerham WC, Yamori Y. Okinawa: an exception to the social gradient of life expectancy in Japan. Asia Pac J Clin Nutr. 2001;10(2):154–8. https://pubmed.ncbi.nlm.nih.gov/11710357/

2726

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

2727

Bajpai P. World’s 5 richest nations by GDP per capita. Nasdaq. https://www.nasdaq.com/articles/worlds-5-richest-nations-by-gdp-per-capita-2021–05–20. Published May 20, 2021. Accessed January 10, 2022.; https://www.nasdaq.com/articles/worlds-5-richest-nations-by-gdp-per-capita-2021-05-20

2728

Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/

2729

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

2730

Kent LM, Morton DP, Ward EJ, et al. The influence of religious affiliation on participant responsiveness to the Complete Health Improvement Program (CHIP) lifestyle intervention. J Relig Health. 2016;55(5):1561–73. https://pubmed.ncbi.nlm.nih.gov/26472654/

2731

Fraser GE. Diet as primordial prevention in Seventh-Day Adventists. Prev Med. 1999;29(6):S18–23. https://pubmed.ncbi.nlm.nih.gov/10641813/

2732

Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/

2733

Sloan RP, Bagiella E, Powell T. Religion, spirituality, and medicine. Lancet. 1999;353(9153):664–7. https://pubmed.ncbi.nlm.nih.gov/10030348/

2734

Chida Y, Steptoe A, Powell LH. Religiosity/spirituality and mortality: a systematic quantitative review. Psychother Psychosom. 2009;78(2):81–90. https://pubmed.ncbi.nlm.nih.gov/19142047/

2735

Sullivan AR. Mortality differentials and religion in the United States: religious affiliation and attendance. J Sci Study Relig. 2010;49(4):740–53. https://pubmed.ncbi.nlm.nih.gov/21318110/

2736

Schnall E, Wassertheil-Smoller S, Swencionis C, et al. The relationship between religion and cardiovascular outcomes and all-cause mortality in the Women’s Health Initiative Observational Study. Psychol Health. 2010;25(2):249–63. https://pubmed.ncbi.nlm.nih.gov/20391218/

2737

Hill TD, Ellison CG, Burdette AM, Taylor J, Friedman KL. Dimensions of religious involvement and leukocyte telomere length. Soc Sci Med. 2016;163:168–75. https://pubmed.ncbi.nlm.nih.gov/27174242/

2738

Koenig HG, Nelson B, Shaw SF, Saxena S, Cohen HJ. Religious involvement and telomere length in women family caregivers. J Nerv Ment Dis. 2016;204(1):36–42. https://pubmed.ncbi.nlm.nih.gov/26669979/

2739

Schnall E, Wassertheil-Smoller S, Swencionis C, et al. The relationship between religion and cardiovascular outcomes and all-cause mortality in the Women’s Health Initiative Observational Study. Psychol Health. 2010;25(2):249–63. https://pubmed.ncbi.nlm.nih.gov/20391218/

2740

Sloan RP, Bagiella E, Powell T. Religion, spirituality, and medicine. Lancet. 1999;353(9153):664–7. https://pubmed.ncbi.nlm.nih.gov/10030348/

2741

Morton D, Rankin P, Kent L, Dysinger W. The Complete Health Improvement Program (CHIP): history, evaluation, and outcomes. Am J Lifestyle Med. 2016;10(1):64–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124862/

2742

Kent LM, Morton DP, Ward EJ, et al. The influence of religious affiliation on participant responsiveness to the Complete Health Improvement Program (CHIP) lifestyle intervention. J Relig Health. 2016;55(5):1561–73. https://pubmed.ncbi.nlm.nih.gov/26472654/

2743

World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press; 2010. https://apps.who.int/iris/handle/10665/44261

2744

Orzylowska EM, Jacobson JD, Bareh GM, Ko EY, Corselli JU, Chan PJ. Food intake diet and sperm characteristics in a blue zone: a Loma Linda Study. Eur J Obstet Gynecol Reprod Biol. 2016;203:112–5. https://pubmed.ncbi.nlm.nih.gov/27280539/

2745

Messina M, Watanabe S, Setchell KDR. Report on the 8th international symposium on the role of soy in health promotion and chronic disease prevention and treatment. J Nutr. 2009;139(4):796S-802S. https://pubmed.ncbi.nlm.nih.gov/19225130/

2746

Zhang Y, Hood WR. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms. J Exp Biol. 2016;219(Pt 20):3177–89. https://pubmed.ncbi.nlm.nih.gov/27802148/

2747

Mukhopadhyay A, Tissenbaum HA. Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol. 2007;17(2):65–71. https://pubmed.ncbi.nlm.nih.gov/17187981/

2748

Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6. https://pubmed.ncbi.nlm.nih.gov/10360574/

2749

Flatt T, Min KJ, D’Alterio C, et al. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A. 2008;105(17):6368–73. https://pubmed.ncbi.nlm.nih.gov/18434551/

2750

American Veterinary Medical Association. Banfield: spaying, neutering correlate with longer lives. JAVMA News. https://www.avma.org/javma-news/2013–07–01/banfield-spaying-neutering-correlate-longer-lives. Published June 19, 2013. Accessed January 10, 2022.; https://www.avma.org/javma-news/2013-07-01/banfield-spaying-neutering-correlate-longer-lives

2751

Banfield Pet Hospital. State of Pet Health 2013 Report. Banfield.com. https://www.banfield.com/-/media/Project/Banfield/Main/en/general/SOPH-Infographic/PDFs/Banfield-State-of-Pet-Health-Report_2013.pdf?rev=a8612f3fa39141e3bf2876a5ed6760de&hash=D79B771D2C3539DF737353E65D310504. Accessed February 21, 2022.; https://www.banfield.com/en/pet-health/State-of-pet-health

2752

Min KJ, Lee CK, Park HN. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3. https://pubmed.ncbi.nlm.nih.gov/23017989/

2753

Reilly PR. Involuntary sterilization in the United States: a surgical solution. Q Rev Biol. 1987;62(2):153–70. https://pubmed.ncbi.nlm.nih.gov/3299450/

2754

Buck v. Bell, 274 US 200 (1927).; https://supreme.justia.com/cases/federal/us/274/200/

2755

Hamilton JB, Mestler GE. Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J Gerontol. 1969;24(4):395–411. https://pubmed.ncbi.nlm.nih.gov/5362349/

2756

Hsu CH, Posegga O, Fischbach K, Engelhardt H. Examining the trade-offs between human fertility and longevity over three centuries using crowdsourced genealogy data. PLoS One. 2021;16(8):e0255528. https://pubmed.ncbi.nlm.nih.gov/34351988/

2757

Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. Exceptional longevity is associated with decreased reproduction. Aging (Albany NY). 2011;3(12):1202–5. https://pubmed.ncbi.nlm.nih.gov/22199025/

2758

Zwaan B, Bijlsma R, Hoekstra RF. Direct selection on life span in Drosophila melanogaster. Evolution. 1995;49(4):649–59. https://pubmed.ncbi.nlm.nih.gov/28565142/

2759

Mukhopadhyay A, Tissenbaum HA. Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol. 2007;17(2):65–71. https://pubmed.ncbi.nlm.nih.gov/17187981/

2760

Franklin JC, Scheile BC, Brozek J, Keys A. Observations on human behavior in experimental semi-starvation and rehabilitation. J Clin Psychol. 1948;4(1):28–45. https://pubmed.ncbi.nlm.nih.gov/18903450/

2761

Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol. 2018;217(1):93–106. https://pubmed.ncbi.nlm.nih.gov/29074705/

2762

Chen X, Liu Y, Sun X, et al. Age at menarche and risk of all-cause and cardiovascular mortality: a systematic review and dose-response meta-analysis. Menopause. 2018;26(6):670–6. https://pubmed.ncbi.nlm.nih.gov/30562317/

2763

Fuhrman BJ, Moore SC, Byrne C, et al. Association of the age at menarche with site-specific cancer risks in pooled data from nine cohorts. Cancer Res. 2021;81(8):2246–55. https://pubmed.ncbi.nlm.nih.gov/33820799/

2764

Chen X, Liu Y, Sun X, et al. Age at menarche and risk of all-cause and cardiovascular mortality: a systematic review and dose-response meta-analysis. Menopause. 2018;26(6):670–6. https://pubmed.ncbi.nlm.nih.gov/30562317/

2765

Goldberg M, D’Aloisio AA, O’Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020;22(1):112. https://pubmed.ncbi.nlm.nih.gov/33109223/

2766

Fuhrman BJ, Moore SC, Byrne C, et al. Association of the age at menarche with site-specific cancer risks in pooled data from nine cohorts. Cancer Res. 2021;81(8):2246–55. https://pubmed.ncbi.nlm.nih.gov/33820799/

2767

Lee HS. Why should we be concerned about early menarche? Clin Exp Pediatr. 2020;64(1):26–7. https://pubmed.ncbi.nlm.nih.gov/32683812/

2768

Martinez GM. Trends and patterns in menarche in the United States: 1995 through 2013–2017. Natl Health Stat Report. 2020;(146):1–12. https://pubmed.ncbi.nlm.nih.gov/33054923/

2769

Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(4):e195881. https://pubmed.ncbi.nlm.nih.gov/32040143/

2770

Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JMP, Dunger DB. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. J Clin Endocrinol Metab. 2012;97(5):E786–90. https://pubmed.ncbi.nlm.nih.gov/22419724/

2771

Günther ALB, Karaolis-Danckert N, Kroke A, Remer T, Buyken AE. Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr. 2010;140(3):565–71. https://pubmed.ncbi.nlm.nih.gov/20042466/

2772

Nguyen NTK, Fan HY, Tsai MC, et al. Nutrient intake through childhood and early menarche onset in girls: systematic review and meta-analysis. Nutrients. 2020;12(9):2544. https://pubmed.ncbi.nlm.nih.gov/32842616/

2773

Rogers IS, Northstone K, Dunger DB, Cooper AR, Ness AR, Emmett PM. Diet throughout childhood and age at menarche in a contemporary cohort of British girls. Public Health Nutr. 2010;13(12):2052–63. https://pubmed.ncbi.nlm.nih.gov/20529402/

2774

Jansen EC, Marín C, Mora-Plazas M, Villamor E. Higher childhood red meat intake frequency is associated with earlier age at menarche. J Nutr. 2015;146(4):792–8. https://pubmed.ncbi.nlm.nih.gov/26962195/

2775

Schecter A, Cramer P, Boggess K, Stanley J, Olson JR. Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States. Chemosphere. 1997;34(5–7):1437–47. https://pubmed.ncbi.nlm.nih.gov/9134677/

2776

Ouyang F, Perry MJ, Venners SA, et al. Serum DDT, age at menarche, and abnormal menstrual cycle length. Occup Environ Med. 2005;62(12):878–84. https://pubmed.ncbi.nlm.nih.gov/16299097/

2777

Kahleova H, Levin S, Barnard ND. Plant-based diets for healthy aging. J Am Coll Nutr. 2021;40(5):478–9. https://pubmed.ncbi.nlm.nih.gov/32643581/

2778

Fraser GE, Cosgrove CM, Mashchak AD, Orlich MJ, Altekruse SF. Lower rates of cancer and all-cause mortality in an Adventist cohort compared with a US Census population. Cancer. 2020;126(5):1102–11. https://pubmed.ncbi.nlm.nih.gov/31762009/

2779

Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/

2780

Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary patterns, and noncommunicable disease in Asian Indians. Am J Clin Nutr. 2014;100 Suppl 1:359S-64S. https://pubmed.ncbi.nlm.nih.gov/24847857/

2781

Singh PN, Sabaté J, Fraser GE. Does low meat consumption increase life expectancy in humans? Am J Clin Nutr. 2003;78(3 Suppl):526S-32S. https://pubmed.ncbi.nlm.nih.gov/12936945/

2782

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

2783

Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2015;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/

2784

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

2785

Lin CL, Wang JH, Chang CC, Chiu THT, Lin MN. Vegetarian diets and medical expenditure in Taiwan – a matched cohort study. Nutrients. 2019;11(11):E2688. https://pubmed.ncbi.nlm.nih.gov/32102976/

2786

Kahleova H, Hrachovinova T, Hill M, et al. Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med. 2013;30(1):127–9. https://pubmed.ncbi.nlm.nih.gov/23050853/

2787

Trapp C, Barnard N, Katcher H. A plant-based diet for type 2 diabetes. Diabetes Educ. 2010;36(1):33–48. https://pubmed.ncbi.nlm.nih.gov/20185610/

2788

Barnard N, Scialli AR, Bertron P, Hurlick D, Edmondset K. Acceptability of a therapeutic low-fat, vegan diet in premenopausal women. J Nutr Educ. 2000;32(6):314–9. https://www.researchgate.net/publication/223584518_Acceptability_of_a_Therapeutic_Low-Fat_Vegan_Diet_in_Premenopausal_Women

2789

Trapp C, Barnard N, Katcher H. A plant-based diet for type 2 diabetes. Diabetes Educ. 2010;36(1):33–48. https://pubmed.ncbi.nlm.nih.gov/20185610/

2790

Hemler EC, Hu FB. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr Atheroscler Rep. 2019;21(5):18. https://pubmed.ncbi.nlm.nih.gov/30895476/

2791

Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/

2792

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

2793

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

2794

Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169(6):562–71. https://pubmed.ncbi.nlm.nih.gov/19307518/

2795

Popkin BM. Reducing meat consumption has multiple benefits for the world’s health. Arch Intern Med. 2009;169(6):543. https://pubmed.ncbi.nlm.nih.gov/19307515/

2796

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

2797

Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9. https://pubmed.ncbi.nlm.nih.gov/33839765/

2798

Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9. https://pubmed.ncbi.nlm.nih.gov/33839765/

2799

Norman K, Klaus S. Veganism, aging and longevity: new insight into old concepts. Curr Opin Clin Nutr Metab Care. 2020;23(2):145–50. https://pubmed.ncbi.nlm.nih.gov/31895244/

2800

Eleftheriou D, Benetou V, Trichopoulou A, La Vecchia C, Bamia C. Mediterranean diet and its components in relation to all-cause mortality: meta-analysis. Br J Nutr. 2018;120(10):1081–97. https://pubmed.ncbi.nlm.nih.gov/30401007/

2801

Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100 Suppl 1:320S-8S. https://pubmed.ncbi.nlm.nih.gov/24871477/

2802

Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/

2803

Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/

2804

Kaiser Permanente. Plant-based eating: using the healthy plate to eat well. Center for Healthy Living. https://thrive.kaiserpermanente.org/care-near-you/southern-california/center-for-healthy-living/wp-content/uploads/sites/30/2020/03/plant_based_diet_e.pdf. Updated 2019. Accessed January 17, 2022.; https://thrive.kaiserpermanente.org/care-near-you/southern-california/center-for-healthy-living/wp-content/uploads/sites/30/2020/03/plant_based_diet_e.pdf

2805

Martínez-González MÁ, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients. 2017;9(11):E1226. https://pubmed.ncbi.nlm.nih.gov/29117146/

2806

Avital K, Buch A, Hollander I, Brickner T, Goldbourt U. Adherence to a Mediterranean diet by vegetarians and vegans as compared to omnivores. Int J Food Sci Nutr. 2020;71(3):378–87. https://pubmed.ncbi.nlm.nih.gov/31558068/

2807

M Nestle. Mediterranean diets: historical and research overview. Am J Clin Nutr. 1995;61(6):1313S–20S. https://pubmed.ncbi.nlm.nih.gov/7754981/

2808

Sofi F, Dinu M, Pagliai G, et al. Low-calorie vegetarian versus Mediterranean diets for reducing body weight and improving cardiovascular risk profile: CARDIVEG study (cardiovascular prevention with vegetarian diet). Circulation. 2018;137(11):1103–13. https://pubmed.ncbi.nlm.nih.gov/29483085/

2809

Barnard ND, Alwarith J, Rembert E, et al. A Mediterranean diet and low-fat vegan diet to improve body weight and cardiometabolic risk factors: a randomized, cross-over trial. J Am Nutr Assoc. 2022;41(2):127–39. https://pubmed.ncbi.nlm.nih.gov/33544066/

2810

Tuso PJ, Ismail MH, Ha BP, Bartolotto C. Nutritional update for physicians: plant-based diets. Perm J. 2013;17(2):61–6. https://pubmed.ncbi.nlm.nih.gov/23704846/

2811

Lane MM, Davis JA, Beattie S, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev. 2021;22(3):e13146. https://pubmed.ncbi.nlm.nih.gov/33167080/

2812

Katz DL. Plant-based diets for reversing disease and saving the planet: past, present, and future. Adv Nutr. 2019;10(Suppl_4):S304–7. https://pubmed.ncbi.nlm.nih.gov/31728489/

2813

Gehring J, Touvier M, Baudry J, et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J Nutr. 2021;151(1):120–31. https://pubmed.ncbi.nlm.nih.gov/32692345/

2814

Radnitz C, Ni J, Dennis D, Cerrito B. Health benefits of a vegan diet: current insights. Nutr Diet Suppl. 2020;12:57–85. https://www.dovepress.com/health-benefits-of-a-vegan-diet-current-insights-peer-reviewed-fulltext-article-NDS

2815

Neff RA, Edwards D, Palmer A, Ramsing R, Righter A, Wolfson J. Reducing meat consumption in the USA: a nationally representative survey of attitudes and behaviours. Public Health Nutr. 2018;21(10):1835–44. https://pubmed.ncbi.nlm.nih.gov/29576031/

2816

Radnitz C, Ni J, Dennis D, Cerrito B. Health benefits of a vegan diet: current insights. Nutr Diet Suppl. 2020;12:57–85. https://www.dovepress.com/health-benefits-of-a-vegan-diet-current-insights-peer-reviewed-fulltext-article-NDS

2817

Almost half of UK vegans made the change in the last year, according to new data. Vegan Trade Journal. https://www.vegantradejournal.com/almost-half-of-uk-vegans-made-the-change-in-the-last-year-according-to-new-data/. November 19, 2018. Accessed December 28, 2022.; https://www.vegantradejournal.com/almost-half-of-uk-vegans-made-the-change-in-the-last-year-according-to-new-data/

2818

Radnitz C, Beezhold B, DiMatteo J. Investigation of lifestyle choices of individuals following a vegan diet for health and ethical reasons. Appetite. 2015;90:31–6. https://pubmed.ncbi.nlm.nih.gov/25725486/

2819

Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/

2820

Rocha JP, Laster J, Parag B, Shah NU. Multiple health benefits and minimal risks associated with vegetarian diets. Curr Nutr Rep. 2019;8(4):374–81. https://pubmed.ncbi.nlm.nih.gov/31705483/

2821

Singh PN, Arthur KN, Orlich MJ, et al. Global epidemiology of obesity, vegetarian dietary patterns, and noncommunicable disease in Asian Indians. Am J Clin Nutr. 2014;100 Suppl 1:359S-64S. https://pubmed.ncbi.nlm.nih.gov/24847857/

2822

Campbell EK, Fidahusain M, Campbell TM II. Evaluation of an eight-week whole-food plant-based lifestyle modification program. Nutrients. 2019;11(9):E2068. https://pubmed.ncbi.nlm.nih.gov/31484341/

2823

Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet. Mech Ageing Dev. 2014;136–7:148–62. https://pubmed.ncbi.nlm.nih.gov/24462788/

2824

Everitt AV, Hilmer SN, Brand-Miller JC, et al. Dietary approaches that delay age-related diseases. Clin Interv Aging. 2006;1(1):11–31. https://pubmed.ncbi.nlm.nih.gov/18047254/

2825

Jacobs DR Jr, Orlich MJ. Diet pattern and longevity: do simple rules suffice? A commentary. Am J Clin Nutr. 2014;100(Suppl 1):313S-9S. https://pubmed.ncbi.nlm.nih.gov/24871470/

2826

Kim H, Caulfield LE, Rebholz CM. Healthy plant-based diets are associated with lower risk of all-cause mortality in US adults. J Nutr. 2018;148(4):624–31. https://pubmed.ncbi.nlm.nih.gov/29659968/

2827

Orlich MJ, Chiu THT, Dhillon PK, et al. Vegetarian epidemiology: review and discussion of findings from geographically diverse cohorts. Adv Nutr. 2019;10(Suppl_4):S284–95. https://pubmed.ncbi.nlm.nih.gov/31728496/

2828

Hemler EC, Hu FB. Plant-based diets for cardiovascular disease prevention: all plant foods are not created equal. Curr Atheroscler Rep. 2019;21(5):18. https://pubmed.ncbi.nlm.nih.gov/30895476/

2829

Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/

2830

Martínez-González MA, Sánchez-Tainta A, Corella D, et al. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2014;100 Suppl 1:320S-8S. https://pubmed.ncbi.nlm.nih.gov/24871477/

2831

Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. Published online August 11, 2021.; https://pubmed.ncbi.nlm.nih.gov/34379193/

2832

Keaver L, Ruan M, Chen F, et al. Plant– and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/

2833

Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Coresh J, Rebholz CM. Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults. J Am Heart Assoc. 2019;8(16):e012865. https://pubmed.ncbi.nlm.nih.gov/31387433/

2834

Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. Published online August 11, 2021.; https://pubmed.ncbi.nlm.nih.gov/34379193/

2835

Baden MY, Liu G, Satija A, et al. Changes in plant-based diet quality and total and cause-specific mortality. Circulation. 2019;140(12):979–91. https://pubmed.ncbi.nlm.nih.gov/31401846/

2836

Keaver L, Ruan M, Chen F, et al. Plant– and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/

2837

McCarty MF. Proposal for a dietary “phytochemical index.” Med Hypotheses. 2004;63(5):813–7. https://pubmed.ncbi.nlm.nih.gov/15488652/

2838

U.S. Department of Agriculture, Economic Research Service. Loss-adjusted food availability. https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7. Updated August 26, 2019. Accessed January 17, 2022.; https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7

2839

U.S. Department of Agriculture, Economic Research Service. Loss-adjusted food availability. https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7. Updated August 26, 2019. Accessed January 17, 2022.; https://www.ers.usda.gov/webdocs/DataFiles/50472/calories.xls?v=7455.7

2840

Mirmiran P, Bahadoran Z, Golzarand M, Shiva N, Azizi F. Association between dietary phytochemical index and 3-year changes in weight, waist circumference and body adiposity index in adults: Tehran Lipid and Glucose study. Nutr Metab (Lond). 2012;9(1):108. https://pubmed.ncbi.nlm.nih.gov/23206375/

2841

Golzarand M, Bahadoran Z, Mirmiran P, Sadeghian-Sharif S, Azizi F. Dietary phytochemical index is inversely associated with the occurrence of hypertension in adults: a 3-year follow-up (the Tehran Lipid and Glucose Study). Eur J Clin Nutr. 2015;69(3):392–8. https://pubmed.ncbi.nlm.nih.gov/25387902/

2842

Abshirini M, Mahaki B, Bagheri F, Siassi F, Koohdani F, Sotoudeh G. Higher intake of phytochemical-rich foods is inversely related to prediabetes: a case-control study. Int J Prev Med. 2018;9:64. https://pubmed.ncbi.nlm.nih.gov/30147853/

2843

Kim M, Park K. Association between phytochemical index and metabolic syndrome. Nutr Res Pract. 2020;14(3):252–61. https://pubmed.ncbi.nlm.nih.gov/32528632/

2844

Golzarand M, Mirmiran P, Bahadoran Z, Alamdari S, Azizi F. Dietary phytochemical index and subsequent changes of lipid profile: a 3-year follow-up in Tehran Lipid and Glucose Study in Iran. ARYA Atheroscler. 2014;10(4):203–10. https://pubmed.ncbi.nlm.nih.gov/25258636/

2845

Darooghegi Mofrad M, Siassi F, Guilani B, Bellissimo N, Azadbakht L. Association of dietary phytochemical index and mental health in women: a cross-sectional study. Br J Nutr. 2019;121(9):1049–56. https://pubmed.ncbi.nlm.nih.gov/33298144/

2846

Aghababayan S, Sheikhi Mobarakeh Z, Qorbani M, et al. Dietary phytochemical index and benign breast diseases: a case-control study. Nutr Cancer. 2020;72(6):1067–73. https://pubmed.ncbi.nlm.nih.gov/31475586/

2847

Bahadoran Z, Karimi Z, Houshiar-Rad A, Mirzayi HR, Rashidkhani B. Dietary phytochemical index and the risk of breast cancer: a case control study in a population of Iranian women. Asian Pac J Cancer Prev. 2013;14(5):2747–51. https://pubmed.ncbi.nlm.nih.gov/23803026/

2848

Bellavia A, Larsson SC, Bottai M, Wolk A, Orsini N. Fruit and vegetable consumption and all-cause mortality: a dose-response analysis. Am J Clin Nutr. 2013;98(2):454–9. https://pubmed.ncbi.nlm.nih.gov/23803880/

2849

Juraske R, Mutel CL, Stoessel F, Hellweg S. Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere. 2009;77(7):939–45. https://pubmed.ncbi.nlm.nih.gov/19729188/

2850

Bellavia A, Larsson SC, Bottai M, Wolk A, Orsini N. Fruit and vegetable consumption and all-cause mortality: a dose-response analysis. Am J Clin Nutr. 2013;98(2):454–9. https://pubmed.ncbi.nlm.nih.gov/23803880/

2851

Nicklett EJ, Semba RD, Xue QL, et al. Fruit and vegetable intake, physical activity, and mortality in older community-dwelling women. J Am Geriatr Soc. 2012;60(5):862–8. https://pubmed.ncbi.nlm.nih.gov/22587851/

2852

Lo YT, Chang YH, Wahlqvist ML, Huang HB, Lee MS. Spending on vegetable and fruit consumption could reduce all-cause mortality among older adults. Nutr J. 2012;11:113. https://pubmed.ncbi.nlm.nih.gov/23253183/

2853

Dórea JG. Vegetarian diets and exposure to organochlorine pollutants, lead, and mercury. Am J Clin Nutr. 2004;80(1):237–8. https://pubmed.ncbi.nlm.nih.gov/15213054/

2854

Hergenrather J, Hlady G, Wallace B, Savage E. Pollutants in breast milk of vegetarians. N Engl J Med. 1981;304(13):792. https://pubmed.ncbi.nlm.nih.gov/7464895/

2855

Key TJ, Appleby PN, Spencer EA, et al. Cancer incidence in British vegetarians. Br J Cancer. 2009;101(1):192–7. https://pubmed.ncbi.nlm.nih.gov/19536095/

2856

Dearfield KL, Edwards SR, O’Keefe MM, et al. Dietary estimates of dioxins consumed in U.S. Department of Agriculture – regulated meat and poultry products. J Food Prot. 2013;76(9):1597–607. https://pubmed.ncbi.nlm.nih.gov/23992505/

2857

Hernández ÁR, Boada LD, Mendoza Z, et al. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ Sci Pollut Res Int. 2017;24(5):4261–73. https://pubmed.ncbi.nlm.nih.gov/25893622/

2858

U.S. Department of Agriculture, Economic Research Service. Per capita red meat and poultry consumption expected to decrease modestly in 2022. https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=103767. Last updated April 15, 2022. Accessed December 28, 2022.; https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=103767

2859

Hernández ÁR, Boada LD, Mendoza Z, et al. Consumption of organic meat does not diminish the carcinogenic potential associated with the intake of persistent organic pollutants (POPs). Environ Sci Pollut Res Int. 2017;24(5):4261–73. https://pubmed.ncbi.nlm.nih.gov/25893622/

2860

Ta CA, Zee JA, Desrosiers T, et al. Binding capacity of various fibre to pesticide residues under simulated gastrointestinal conditions. Food Chem Toxicol. 1999;37(12):1147–51. https://pubmed.ncbi.nlm.nih.gov/10654590/

2861

Lee YM, Shin JY, Kim SA, Jacobs DR, Lee DH. Can habitual exercise help reduce serum concentrations of lipophilic chemical mixtures? Association between physical activity and persistent organic pollutants. Diabetes Metab J. 2020;44(5):764–74. https://pubmed.ncbi.nlm.nih.gov/32174058/

2862

Genuis SJ, Lane K, Birkholz D. Human elimination of organochlorine pesticides: blood, urine, and sweat study. Biomed Res Int. 2016;2016:1624643. https://pubmed.ncbi.nlm.nih.gov/27800487/

2863

Yiamouyiannis CA, Sanders RA, Watkins JB III, Martin BJ. Chronic physical activity: hepatic hypertrophy and increased total biotransformation enzyme activity. Biochem Pharmacol. 1992;44(1):121–7. https://pubmed.ncbi.nlm.nih.gov/8474015/

2864

Watkins JB, Crawford ST, Sanders RA. Chronic voluntary exercise may alter hepatobiliary clearance of endogenous and exogenous chemicals in rats. Drug Metab Dispos. 1994;22(4):537–43. https://pubmed.ncbi.nlm.nih.gov/7956727/

2865

Lupton SJ, O’Keefe M, Muñiz-Ortiz JG, Clinch N, Basu P. Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and non-ortho-polychlorinated biphenyls in US meat and poultry, 2012–13: toxic equivalency levels, patterns, temporal trends and implications. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017;34(11):1970–81. https://pubmed.ncbi.nlm.nih.gov/28632453/

2866

González N, Marquès M, Nadal M, Domingo JL. Meat consumption: which are the current global risks? A review of recent (2010–2020) evidences. Food Res Int. 2020;137:109341. https://pubmed.ncbi.nlm.nih.gov/33233049/

2867

Melina V, Craig W, Levin S. Position of the Academy of Nutrition and Dietetics: vegetarian diets. J Acad Nutr Diet. 2016;116(12):1970–80. https://pubmed.ncbi.nlm.nih.gov/27886704/

2868

Johnston PK. Recognition: Mervyn G Hardinge. Am J Clin Nutr. 1999;70(3):431s-2s. https://pubmed.ncbi.nlm.nih.gov/10479213/

2869

Ma Y, Pagoto SL, Griffith JA, et al. A dietary quality comparison of popular weight-loss plans. J Am Diet Assoc. 2007;107(10):1786–91. https://pubmed.ncbi.nlm.nih.gov/17904938/

2870

Clarys P, Deliens T, Huybrechts I, et al. Comparison of nutritional quality of the vegan, vegetarian, semi-vegetarian, pesco-vegetarian and omnivorous diet. Nutrients. 2014;6(3):1318–32. https://pubmed.ncbi.nlm.nih.gov/24667136/

2871

Farmer B, Larson BT, Fulgoni VL, Rainville AJ, Liepa GU. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the National Health and Nutrition Examination Survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27. https://pubmed.ncbi.nlm.nih.gov/21616194/

2872

Van Horn L. Achieving nutrient density: a vegetarian approach. J Am Diet Assoc. 2011;111(6):799. https://pubmed.ncbi.nlm.nih.gov/21616188/

2873

Keenan S, Mitts KG, Kurtz CA. Scurvy presenting as a medial head tear of the gastrocnemius. Orthopedics. 2002;25(6):689–91. https://pubmed.ncbi.nlm.nih.gov/12083582/

2874

Mariotti F, ed. Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press; 2017. https://worldcat.org/title/988275855

2875

Armstrong BK. Absorption of vitamin B12 from the human colon. Am J Clin Nutr. 1968;21(4):298–9. https://pubmed.ncbi.nlm.nih.gov/5647478/

2876

Gupta ES, Sheth SP, Ganjiwale JD. Association of vitamin B12 deficiency and use of reverse osmosis processed water for drinking: a cross-sectional study from Western India. J Clin Diagn Res. 2016;10(5):OC37–40. https://pubmed.ncbi.nlm.nih.gov/27437269/

2877

Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/

2878

Herrmann W, Geisel J. Vegetarian lifestyle and monitoring of vitamin B-12 status. Clin Chim Acta. 2002;326(1–2):47–59. https://pubmed.ncbi.nlm.nih.gov/12417096/

2879

Mariotti F, ed. Vegetarian and Plant-Based Diets in Health and Disease Prevention. Academic Press; 2017. https://worldcat.org/title/988275855

2880

Eitenmiller R, Ye L, Landen WO Jr. Vitamin Analysis for the Health and Food Sciences. 2nd ed. CRC Press; 2007:469.Book

2881

Del Bo’ C, Riso P, Gardana C, Brusamolino A, Battezzati A, Ciappellano S. Effect of two different sublingual dosages of vitamin B12 on cobalamin nutritional status in vegans and vegetarians with a marginal deficiency: a randomized controlled trial. Clin Nutr. 2019;38(2):575–83. https://pubmed.ncbi.nlm.nih.gov/29499976/

2882

MacFarlane AJ, Shi Y, Greene-Finestone LS. High-dose compared with low-dose vitamin B-12 supplement use is not associated with higher vitamin B-12 status in children, adolescents, and older adults. J Nutr. 2014;144(6):915–20. https://pubmed.ncbi.nlm.nih.gov/24699807/

2883

Rajan S, Wallace JI, Brodkin KI, Beresford SA, Allen RH, Stabler SP. Response of elevated methylmalonic acid to three dose levels of oral cobalamin in older adults. J Am Geriatr Soc. 2002;50(11):1789–95. https://pubmed.ncbi.nlm.nih.gov/12410896/

2884

Eussen S, de Groot L, Clarke R, et al. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: a dose-finding trial. Arch Intern Med. 2005;165(10):1167–72. https://pubmed.ncbi.nlm.nih.gov/15911731/

2885

Rizzo G, Laganà AS, Rapisarda AMC, et al. Vitamin B12 among vegetarians: status, assessment and supplementation. Nutrients. 2016;8(12):767. https://pubmed.ncbi.nlm.nih.gov/27916823/

2886

Crane MG, Sample C, Patchett S, Register UD. Vitamin B12 studies in total vegetarians (vegans). J Nutr Med. 1994;4(4):419–30. https://www.tandfonline.com/doi/abs/10.3109/13590849409003591

2887

Briani C, Dalla Torre C, Citton V, et al. Cobalamin deficiency: clinical picture and radiological findings. Nutrients. 2013;5(11):4521–39. https://pubmed.ncbi.nlm.nih.gov/24248213/

2888

Crane MG, Sample C, Patchett S, Register UD. Vitamin B12 studies in total vegetarians (vegans). J Nutr Med. 1994;4(4):419–30. https://www.tandfonline.com/doi/abs/10.3109/13590849409003591

2889

Mott A, Bradley T, Wright K, et al. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int. 2019;30(8):1543–59. https://pubmed.ncbi.nlm.nih.gov/31076817/

2890

EFSA Panel on Dietetic Products, Nutrition and Allergies, Turck D, Bresson JL, et al. Dietary reference values for vitamin K. EFSA J. 2017;15(5):e04780. https://pubmed.ncbi.nlm.nih.gov/32625486/

2891

Nakagawa K, Hirota Y, Sawada N, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010;468(7320):117–21. https://pubmed.ncbi.nlm.nih.gov/20953171/

2892

Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29. https://pubmed.ncbi.nlm.nih.gov/30971126/

2893

Shea MK, Barger K, Booth SL, et al. Vitamin K status, cardiovascular disease, and all-cause mortality: a participant-level meta-analysis of 3 US cohorts. Am J Clin Nutr. 2020;111(6):1170–7. https://pubmed.ncbi.nlm.nih.gov/32359159/

2894

Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/

2895

Stranges S, Takeda A, Martin N, Rees K. Cochrane corner: does the Mediterranean-style diet help in the prevention of cardiovascular disease? Heart. 2019;105(22):1691–4. https://pubmed.ncbi.nlm.nih.gov/31439660/

2896

Wizard Edison says doctors of future will give no medicine. The Newark Advocate. https://archive.org/details/newark-advocate-1903–01–02/mode/1up?view=theater. Published January 2, 1903;46:47:1. Accessed February 21 https://archive.org/details/newark-advocate-1903-01-02/mode/1up?view=theater

2897

American College of Lifestyle Medicine. About us. http://lifestylemedicine.org/about-us/. Accessed December 28, 2022.; https://lifestylemedicine.org/about-us/

2898

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2899

Vodovotz Y, Barnard N, Hu FB, et al. Prioritized research for the prevention, treatment, and reversal of chronic disease: recommendations from the Lifestyle Medicine Research Summit. Front Med (Lausanne). 2020;7:585744. https://pubmed.ncbi.nlm.nih.gov/33415115/

2900

Zhang YB, Pan XF, Chen J, et al. Combined lifestyle factors, all-cause mortality and cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. J Epidemiol Community Health. 2021;75(1):92–9. https://pubmed.ncbi.nlm.nih.gov/32892156/

2901

Willcox BJ, Willcox DC, Ferrucci L. Secrets of healthy aging and longevity from exceptional survivors around the globe: lessons from octogenarians to supercentenarians. J Gerontol A Biol Sci Med Sci. 2008;63(11):1181–5. https://pubmed.ncbi.nlm.nih.gov/19038832/

2902

Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition – Potsdam study. Arch Intern Med. 2009;169(15):1355–62. https://pubmed.ncbi.nlm.nih.gov/19667296/

2903

Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control. 2000;11(7):579–88. https://pubmed.ncbi.nlm.nih.gov/10977102/

2904

Ford ES, Bergmann MM, Kröger J, Schienkiewitz A, Weikert C, Boeing H. Healthy living is the best revenge: findings from the European Prospective Investigation Into Cancer and Nutrition – Potsdam study. Arch Intern Med. 2009;169(15):1355–62. https://pubmed.ncbi.nlm.nih.gov/19667296/

2905

Wahls TL. The seventy percent solution. J Gen Intern Med. 2011;26(10):1215–6. https://pubmed.ncbi.nlm.nih.gov/21253878/

2906

Khaw KT, Wareham N, Bingham S, Welch A, Luben R, Day N. Combined impact of health behaviours and mortality in men and women: the EPIC-Norfolk prospective population study. PLoS Med. 2008;5(1):e12. https://pubmed.ncbi.nlm.nih.gov/18184033/

2907

Машина из фильма «Назад в будущее». – Примеч. ред.

2908

Wang K, Li Y, Liu G, et al. Healthy lifestyle for prevention of premature death among users and nonusers of common preventive medications: a prospective study in 2 US cohorts. JAHA. 2020;9(13):e016692. https://pubmed.ncbi.nlm.nih.gov/32578485/

2909

King DE, Mainous AG III, Geesey ME. Turning back the clock: adopting a healthy lifestyle in middle age. Am J Med. 2007;120(7):598–603. https://pubmed.ncbi.nlm.nih.gov/17602933/

2910

Nyberg ST, Singh-Manoux A, Pentti J, et al. Association of healthy lifestyle with years lived without major chronic diseases. JAMA Intern Med. 2020;180(5):760–8. https://pubmed.ncbi.nlm.nih.gov/32250383/

2911

Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/

2912

Zhang S, Tomata Y, Discacciati A, et al. Combined healthy lifestyle behaviors and disability-free survival: the Ohsaki Cohort 2006 Study. J Gen Intern Med. 2019;34(9):1724–9. https://pubmed.ncbi.nlm.nih.gov/31144283/

2913

Vallance JK, Gardiner PA, Lynch BM, et al. Evaluating the evidence on sitting, smoking, and health: is sitting really the new smoking? Am J Public Health. 2018;108(11):1478–82. https://pubmed.ncbi.nlm.nih.gov/30252516/

2914

Rezende LFM, Sá TH, Mielke GI, Viscondi JYK, Rey-López JP, Garcia LMT. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51(2):253–63. https://pubmed.ncbi.nlm.nih.gov/27017420/

2915

Vallance JK, Gardiner PA, Lynch BM, et al. Evaluating the evidence on sitting, smoking, and health: is sitting really the new smoking? Am J Public Health. 2018;108(11):1478–82. https://pubmed.ncbi.nlm.nih.gov/30252516/

2916

Taylor DH Jr, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation for longevity. Am J Public Health. 2002;92(6):990–6. https://pubmed.ncbi.nlm.nih.gov/12036794/

2917

Engelhard CL, Garson A, Dorn S. Reducing obesity: policy strategies from the tobacco wars. Methodist Debakey Cardiovasc J. 2009;5(4):46–50. https://pubmed.ncbi.nlm.nih.gov/20143597/

2918

Cornelius ME, Wang TW, Jamal A, Loretan CG, Neff LJ. Tobacco product use among adults – United States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69(46):1736–42. https://pubmed.ncbi.nlm.nih.gov/33211681/

2919

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2920

Barnard ND. The physician’s role in nutrition-related disorders: from bystander to leader. Virtual Mentor. 2013;15(4):367–72. https://pubmed.ncbi.nlm.nih.gov/23566788/

2921

Ding D, Grunseit AC, Chau JY, Vo K, Byles J, Bauman AE. Retirement – a transition to a healthier lifestyle?: evidence from a large Australian study. Am J Prev Med. 2016;51(2):170–8. https://pubmed.ncbi.nlm.nih.gov/26972491/

2922

Rebelo-Marques A, Lages ADS, Andrade R, et al. Aging hallmarks: the benefits of physical exercise. Front Endocrinol (Lausanne). 2018;9:258. https://pubmed.ncbi.nlm.nih.gov/29887832/

2923

Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev. 2021;200:111584. https://pubmed.ncbi.nlm.nih.gov/34673082/

2924

Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001–24. https://pubmed.ncbi.nlm.nih.gov/25639909/

2925

Lin YH, Chen Y-C, Tseng Y-C, Tsai S-T, Tseng Y-H. Physical activity and successful aging among middle-aged and older adults: a systematic review and meta-analysis of cohort studies. Aging (Albany NY). 2020;12(9):7704–16. https://pubmed.ncbi.nlm.nih.gov/32350152/

2926

Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. https://pubmed.ncbi.nlm.nih.gov/18091006/

2927

Pedersen BK. Which type of exercise keeps you young? Curr Opin Clin Nutr Metab Care. 2019;22(2):167–73. https://pubmed.ncbi.nlm.nih.gov/30640736/

2928

Di Lorito C, Long A, Byrne A, et al. Exercise interventions for older adults: a systematic review of meta-analyses. J Sport Health Sci. 2021;10(1):29–47. https://pubmed.ncbi.nlm.nih.gov/32525097/

2929

Pahor M, Guralnik JM, Ambrosius WT, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387–96. https://pubmed.ncbi.nlm.nih.gov/24866862/

2930

Sherrington C, Fairhall N, Kwok W, et al. Evidence on physical activity and falls prevention for people aged 65+ years: systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act. 2020;17(1):144. https://pubmed.ncbi.nlm.nih.gov/33239019/

2931

de Souto Barreto P, Rolland Y, Vellas B, Maltais M. Association of long-term exercise training with risk of falls, fractures, hospitalizations, and mortality in older adults: a systematic review and meta-analysis. JAMA Intern Med. 2019;179(3):394–405. https://pubmed.ncbi.nlm.nih.gov/30592475/

2932

Soltani S, Hunter GR, Kazemi A, Shab-Bidar S. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2016;27(9):2655–71. https://pubmed.ncbi.nlm.nih.gov/27154437/

2933

García-Hermoso A, Ramirez-Vélez R, Sáez de Asteasu ML, et al. Safety and effectiveness of long-term exercise interventions in older adults: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 2020;50(6):1095–106. https://pubmed.ncbi.nlm.nih.gov/32020543/

2934

Di Lorito C, Long A, Byrne A, et al. Exercise interventions for older adults: a systematic review of meta-analyses. J Sport Health Sci. 2021;10(1):29–47. https://pubmed.ncbi.nlm.nih.gov/32525097/

2935

Blumenthal JA, Babyak MA, Doraiswamy PM, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. 2007;69(7):587–96. https://pubmed.ncbi.nlm.nih.gov/17846259/

2936

Gerbild H, Larsen CM, Graugaard C, Areskoug Josefsson K. Physical activity to improve erectile function: a systematic review of intervention studies. Sex Med. 2018;6(2):75–89. https://pubmed.ncbi.nlm.nih.gov/29661646/

2937

Marquez DX, Aguiñaga S, Vásquez PM, et al. A systematic review of physical activity and quality of life and well-being. Transl Behav Med. 2020;10(5):1098–109. https://pubmed.ncbi.nlm.nih.gov/33044541/

2938

Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541–56. https://pubmed.ncbi.nlm.nih.gov/28708630/

2939

Fock KM, Khoo J. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol. 2013;28 Suppl 4:59–63. https://pubmed.ncbi.nlm.nih.gov/24251706/

2940

Archer E, Hand GA, Blair SN. Correction: Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS One. 2013;8(10):10.1371/annotation/c313df3a-52bd-4cbe-af14–6676480d1a43. https://pubmed.ncbi.nlm.nih.gov/24130784/

2941

Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2. https://pubmed.ncbi.nlm.nih.gov/19136507/

2942

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2943

Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94. https://pubmed.ncbi.nlm.nih.gov/30496105/

2944

Mokdad AH, Ballestros K, Echko M, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

2945

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019;571(7764):183–92. https://pubmed.ncbi.nlm.nih.gov/31292558/

2946

World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization; 2009. https://apps.who.int/iris/handle/10665/44203

2947

Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet. 2012;380(9838):219–29. https://pubmed.ncbi.nlm.nih.gov/22818936/

2948

Strain T, Brage S, Sharp SJ, et al. Use of the prevented fraction for the population to determine deaths averted by existing prevalence of physical activity: a descriptive study. Lancet Glob Health. 2020;8(7):e920–30. https://pubmed.ncbi.nlm.nih.gov/32562648/

2949

Wade KH, Richmond RC, Smith GD. Physical activity and longevity: how to move closer to causal inference. Br J Sports Med. 2018;52(14):890–1. https://pubmed.ncbi.nlm.nih.gov/29545236/

2950

Richard A, Martin B, Wanner M, Eichholzer M, Rohrmann S. Effects of leisure-time and occupational physical activity on total mortality risk in NHANES III according to sex, ethnicity, central obesity, and age. J Phys Act Health. 2015;12(2):184–92. https://pubmed.ncbi.nlm.nih.gov/24770336/

2951

Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. Br J Sports Med. 2018;52(14):914–8. https://pubmed.ncbi.nlm.nih.gov/29545237/

2952

Karvinen S, Waller K, Silvennoinen M, et al. Physical activity in adulthood: genes and mortality. Sci Rep. 2015;5:18259. https://pubmed.ncbi.nlm.nih.gov/26666586/

2953

O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/

2954

O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/

2955

O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5. https://pubmed.ncbi.nlm.nih.gov/25128073/

2956

Lee D, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a key lifestyle medicine for longevity. Prog Cardiovasc Dis. 2017;60(1):45–55. https://pubmed.ncbi.nlm.nih.gov/28365296/

2957

Montgomery MJ, Kandi D. QuickStats: percentage of adults who met federal guidelines for aerobic physical activity through leisure-time activity, by race/ethnicity – National Health Interview Survey, 2008–2017. MMWR Morb Mortal Wkly Rep. 2019;68:292. https://pubmed.ncbi.nlm.nih.gov/30921300/

2958

Lee D, Lavie CJ, Sui X, Blair SN. Running and mortality: is more actually worse? Mayo Clin Proc. 2016;91(4):534–6. https://pubmed.ncbi.nlm.nih.gov/27046526/

2959

Schnohr P, Marott JL, O’Keefe JH. Reply: exercise and mortality reduction: recurring reverse J– or U-curves. J Am Coll Cardiol. 2015;65(24):2674–6. https://pubmed.ncbi.nlm.nih.gov/26088316/

2960

Спортом на выносливость считаются спортивная ходьба; бег на средние и длинные дистанции; марафонский бег; велоспорт; плавание; гребля на академических лодках, байдарках, каноэ; лыжные гонки; конькобежный спорт; биатлон; спортивное ориентирование; триатлон. – Примеч. ред.

2961

Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/

2962

Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/

2963

Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–23. https://pubmed.ncbi.nlm.nih.gov/28620111/

2964

Smith MM, Trexler ET, Sommer AJ, et al. Unrestricted paleolithic diet is associated with unfavorable changes to blood lipids in healthy subjects. Int J Exerc Sci. 2014;7(2):128–39. Note this study has been retracted https://retractionwatch.com/2017/06/30/researcher-tangled-crossfit-loses-two-papers/

2965

Barnard RJ, Ugianskis EJ, Martin DA, Inkeles SB. Role of diet and exercise in the management of hyperinsulinemia and associated atherosclerotic risk factors. Am J Cardiol. 1992;69(5):440–4. https://pubmed.ncbi.nlm.nih.gov/1736602/

2966

Smith MM, Trexler ET, Sommer AJ, et al. Unrestricted paleolithic diet is associated with unfavorable changes to blood lipids in healthy subjects. Int J Exerc Sci. 2014;7(2):128–39. Note this study has been retracted https://retractionwatch.com/2017/06/30/researcher-tangled-crossfit-loses-two-papers/

2967

Craddock JC, Neale EP, Peoples GE, Probst YC. Plant-based eating patterns and endurance performance: a focus on inflammation, oxidative stress and immune responses. Nutr Bull. 2020;45(2):123–32. https://onlinelibrary.wiley.com/doi/abs/10.1111/nbu.12427

2968

В российском прокате – «Переломный момент». – Примеч. ред.

2969

Barnard ND, Goldman DM, Loomis JF, et al. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients. 2019;11(1):130. https://pubmed.ncbi.nlm.nih.gov/30634559/

2970

Lynch HM, Wharton CM, Johnston CS. Cardiorespiratory fitness and peak torque differences between vegetarian and omnivore endurance athletes: a cross-sectional study. Nutrients. 2016;8(11):E726. https://pubmed.ncbi.nlm.nih.gov/27854281/

2971

Boutros GH, Landry-Duval MA, Garzon M, Karelis AD. Is a vegan diet detrimental to endurance and muscle strength? Eur J Clin Nutr. 2020;74(11):1550–5. https://pubmed.ncbi.nlm.nih.gov/32332862/

2972

Król W, Price S, Sliz D, et al. A vegan athlete’s heart – is it different? Morphology and function in echocardiography. Diagnostics (Basel). 2020;10(7):E477. https://pubmed.ncbi.nlm.nih.gov/32674452/

2973

Veleba J, Matoulek M, Hill M, Pelikanova T, Kahleova H. “A vegetarian vs. conventional hypocaloric diet: the effect on physical fitness in response to aerobic exercise in patients with type 2 diabetes.” A parallel randomized study. Nutrients. 2016;8(11):671. https://pubmed.ncbi.nlm.nih.gov/27792174/

2974

Veleba J, Matoulek M, Hill M, Pelikanova T, Kahleova H. “A vegetarian vs. conventional hypocaloric diet: the effect on physical fitness in response to aerobic exercise in patients with type 2 diabetes.” A parallel randomized study. Nutrients. 2016;8(11):671. https://pubmed.ncbi.nlm.nih.gov/27792174/

2975

Kahleova H, Hrachovinova T, Hill M, Pelikanova T. Vegetarian diet in type 2 diabetes – improvement in quality of life, mood and eating behaviour. Diabet Med. 2013;30(1):127–9. https://pubmed.ncbi.nlm.nih.gov/23050853/

2976

Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/

2977

Dumas JA, Bunn JY, Nickerson J, et al. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metab Clin Exp. 2016;65(10):1582–8. https://pubmed.ncbi.nlm.nih.gov/27621193/

2978

Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/

2979

Kahleova H, Matoulek M, Malinska H, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med. 2011;28(5):549–59. https://pubmed.ncbi.nlm.nih.gov/21480966/

2980

Roderka MN, Puri S, Batsis JA. Addressing obesity to promote healthy aging. Clin Geriatr Med. 2020;36(4):631–43. https://pubmed.ncbi.nlm.nih.gov/33010899/

2981

Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 2020;(360):1–8. https://pubmed.ncbi.nlm.nih.gov/32487284/

2982

Pontzer H, Yamada Y, Sagayama H, et al. Daily energy expenditure through the human life course. Science. 2021;373(6556):808–12. https://pubmed.ncbi.nlm.nih.gov/34385400/

2983

Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/

2984

Himbert C, Thompson H, Ulrich CM. Effects of intentional weight loss on markers of oxidative stress, DNA repair and telomere length – a systematic review. Obes Facts. 2017;10(6):648–65. https://pubmed.ncbi.nlm.nih.gov/29237161/

2985

Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN. 2018;28:21–35. https://pubmed.ncbi.nlm.nih.gov/30390883/

2986

Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/

2987

Ronan L, Alexander-Bloch AF, Wagstyl K, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70. https://pubmed.ncbi.nlm.nih.gov/27562529/

2988

Albanese E, Launer LJ, Egger M, et al. Body mass index in midlife and dementia: systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimers Dement (Amst). 2017;8:165–78. https://pubmed.ncbi.nlm.nih.gov/28761927/

2989

Chuang YF, An Y, Bilgel M, et al. Midlife adiposity predicts earlier onset of Alzheimer’s dementia, neuropathology and presymptomatic cerebral amyloid accumulation. Mol Psychiatry. 2016;21(7):910–5. https://pubmed.ncbi.nlm.nih.gov/26324099/

2990

Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45. https://pubmed.ncbi.nlm.nih.gov/15784668/

2991

Ludwig DS. Lifespan weighed down by diet. JAMA. 2016;315(21):2269–70. https://pubmed.ncbi.nlm.nih.gov/27043490/

2992

Mann CC. Provocative study says obesity may reduce U.S. life expectancy. Science. 2005;307(5716):1716–7. https://pubmed.ncbi.nlm.nih.gov/15774742/

2993

Sun Q, Townsend MK, Okereke OI, Franco OH, Hu FB, Grodstein F. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ. 2009;339:b3796. https://pubmed.ncbi.nlm.nih.gov/20101015/

2994

Santos-Lozano A, Pareja-Galeano H, Fuku N, et al. Implications of obesity in exceptional longevity. Ann Transl Med. 2016;4(20):416. https://pubmed.ncbi.nlm.nih.gov/27867968/

2995

Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4):e12991. https://pubmed.ncbi.nlm.nih.gov/32020741/

2996

Pararasa C, Bailey CJ, Griffiths HR. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology. 2015;16(2):235–48. https://pubmed.ncbi.nlm.nih.gov/25367746/

2997

Rubin R. Postmenopausal women with a “normal” BMI might be overweight or even obese. JAMA. 2018;319(12):1185–7. https://pubmed.ncbi.nlm.nih.gov/29516084/

2998

Jayedi A, Soltani S, Zargar MS, Khan TA, Shab-Bidar S. Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ. 2020;370:m3324. https://pubmed.ncbi.nlm.nih.gov/32967840/

2999

Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://pubmed.ncbi.nlm.nih.gov/15201411/

3000

Blackburn G. Effect of degree of weight loss on health benefits. Obes Res. 1995;3 Suppl 2:211s-6s. https://pubmed.ncbi.nlm.nih.gov/8581779/

3001

Klein S, Fontana L, Young VL, et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med. 2004;350(25):2549–57. https://pubmed.ncbi.nlm.nih.gov/15201411/

3002

Chaston TB, Dixon JB. Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond). 2008;32(4):619–28. https://pubmed.ncbi.nlm.nih.gov/18180786/

3003

Haywood C, Sumithran P. Treatment of obesity in older persons – a systematic review. Obes Rev. 2019;20(4):588–98. https://pubmed.ncbi.nlm.nih.gov/30645010/

3004

Muzumdar R, Allison DB, Huffman DM, et al. Visceral adipose tissue modulates mammalian longevity. Aging Cell. 2008;7(3):438–40. https://pubmed.ncbi.nlm.nih.gov/18363902/

3005

Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: a systematic review and meta-analysis. PLoS Med. 2020;17(7):e1003206. https://pubmed.ncbi.nlm.nih.gov/32722673/

3006

Kritchevsky SB, Beavers KM, Miller ME, et al. Intentional weight loss and all-cause mortality: a meta-analysis of randomized clinical trials. PLoS One. 2015;10(3):e0121993. https://pubmed.ncbi.nlm.nih.gov/25794148/

3007

Wright N, Wilson L, Smith M, Duncan B, McHugh P. The BROAD study: a randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr Diabetes. 2017;7(3):e256. https://pubmed.ncbi.nlm.nih.gov/28319109/

3008

Hall KD, Guo J, Courville AB, et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat Med. 2021;27(2):344–53. https://pubmed.ncbi.nlm.nih.gov/33479499/

3009

Piers LS, Walker KZ, Stoney RM, Soares MJ, O’Dea K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br J Nutr. 2003;90(3):717–27. https://pubmed.ncbi.nlm.nih.gov/13129479/

3010

Rosqvist F, Iggman D, Kullberg J, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68. https://pubmed.ncbi.nlm.nih.gov/24550191/

3011

Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr. 2014;53(3):691–710. https://pubmed.ncbi.nlm.nih.gov/24363161/

3012

Jonnalagadda SS, Egan SK, Heimbach JT, et al. Fatty acid consumption pattern of Americans: 1987–1988 USDA Nationwide Food Consumption Survey. Nutr Res. 1995;15(12):1767–81. https://agris.fao.org/agris-search/search.do?recordID=US19970167025

3013

Pimenta AS, Gaidhu MP, Habib S, et al. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. J Cell Physiol. 2008;217(2):478–85. https://pubmed.ncbi.nlm.nih.gov/18561258/

3014

Chen YC, Cypess AM, Chen YC, et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med. 2013;54(9):1584–7. https://pubmed.ncbi.nlm.nih.gov/23868958/

3015

Darcy J, Tseng YH. ComBATing aging – does increased brown adipose tissue activity confer longevity? GeroScience. 2019;41(3):285–96. https://pubmed.ncbi.nlm.nih.gov/31230192/

3016

Darcy J, Tseng YH. ComBATing aging – does increased brown adipose tissue activity confer longevity? GeroScience. 2019;41(3):285–96. https://pubmed.ncbi.nlm.nih.gov/31230192/

3017

Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, et al. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 2012;15(3):382–94. https://pubmed.ncbi.nlm.nih.gov/22405073/

3018

Vatner DE, Zhang J, Oydanich M, et al. Enhanced longevity and metabolism by brown adipose tissue with disruption of the regulator of G protein signaling 14. Aging Cell. 2018;17(4):e12751. https://pubmed.ncbi.nlm.nih.gov/29654651/

3019

Hoffman JM, Valencak TG. Sex differences and aging: is there a role of brown adipose tissue? Mol Cell Endocrinol. 2021;531:111310. https://pubmed.ncbi.nlm.nih.gov/33989715/

3020

Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med. 2018;12(2):130–8. https://pubmed.ncbi.nlm.nih.gov/29119382/

3021

Rogers NH. Brown adipose tissue during puberty and with aging. Ann Med. 2015;47(2):142–9. https://pubmed.ncbi.nlm.nih.gov/24888388/

3022

Fuse S, Endo T, Tanaka R, et al. Effects of capsinoid intake on brown adipose tissue vascular density and resting energy expenditure in healthy, middle-aged adults: a randomized, double-blind, placebo-controlled study. Nutrients. 2020;12(9):E2676. https://pubmed.ncbi.nlm.nih.gov/32887379/

3023

Smeets AJ, Janssens PL, Westerterp-Plantenga MS. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. J Nutr. 2013;143(4):442–7. https://pubmed.ncbi.nlm.nih.gov/23406619/

3024

Sugita J, Yoneshiro T, Hatano T, et al. Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men. Br J Nutr. 2013;110(4):733–8. https://pubmed.ncbi.nlm.nih.gov/23308394/

3025

Maharlouei N, Tabrizi R, Lankarani KB, et al. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2018:1–14.; https://pubmed.ncbi.nlm.nih.gov/29393665/

3026

Pellagra: secondary to antiobesity diet. Postgrad Med. 1955;17(3):37. https://pubmed.ncbi.nlm.nih.gov/14371224/

3027

Afshin A, Forouzanfar MH, Reitsma BS, et al. Correspondence: health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://pubmed.ncbi.nlm.nih.gov/28604169/

3028

Berrigan D, Troiano RP, Graubard BI. BMI and mortality: the limits of epidemiological evidence. Lancet. 2016;388(10046):734–6. https://pubmed.ncbi.nlm.nih.gov/27423263/

3029

Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med. 2010;363(23):2211–9. https://pubmed.ncbi.nlm.nih.gov/21121834/

3030

Afshin A, Forouzanfar MH, Reitsma BS, et al. Correspondence: health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://pubmed.ncbi.nlm.nih.gov/28604169/

3031

Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://pubmed.ncbi.nlm.nih.gov/27146380/

3032

Greger M, Stone G. How Not to Die. Flatiron Books; 2015. https://www.worldcat.org/title/946602582

3033

Rae DE, Ebrahim I, Roden LC. Sleep: a serious contender for the prevention of obesity and non-communicable diseases. JEMDSA. 2016;21(1):1–2. https://www.tandfonline.com/doi/full/10.1080/16089677.2016.1150574

3034

Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci. 2019;219:231–7. https://pubmed.ncbi.nlm.nih.gov/30630005/

3035

Möller-Levet CS, Archer SN, Bucca G, et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A. 2013;110(12):E1132–41. https://pubmed.ncbi.nlm.nih.gov/23440187/

3036

Calvin AD, Covassin N, Kremers WK, et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J Am Heart Assoc. 2014;3(6):e001143. https://pubmed.ncbi.nlm.nih.gov/25424573/

3037

Kohansieh M, Makaryus AN. Sleep deficiency and deprivation leading to cardiovascular disease. Int J Hypertens. 2015;2015:615681. https://pubmed.ncbi.nlm.nih.gov/26495139/

3038

Calvin AD, Covassin N, Kremers WK, et al. Experimental sleep restriction causes endothelial dysfunction in healthy humans. J Am Heart Assoc. 2014;3(6):e001143. https://pubmed.ncbi.nlm.nih.gov/25424573/

3039

Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional population-based study. Am J Epidemiol. 2009;169(9):1052–63. https://pubmed.ncbi.nlm.nih.gov/19299406/

3040

Golem DL, Martin-Biggers JT, Koenings MM, Davis KF, Byrd-Bredbenner C. An integrative review of sleep for nutrition professionals. Adv Nutr. 2014;5(6):742–59. https://pubmed.ncbi.nlm.nih.gov/25398735/

3041

Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/

3042

Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/

3043

Bosman ES, Albert AY, Lui H, Dutz JP, Vallance BA. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome. Front Microbiol. 2019;10:2410. https://pubmed.ncbi.nlm.nih.gov/31708890/

3044

Shen J, Yang P, Luo X, et al. Green light extends Drosophila longevity. Exp Gerontol. 2021;147:111268. https://pubmed.ncbi.nlm.nih.gov/33539986/

3045

Li Q, Kobayashi M, Wakayama Y, et al. Effect of phytoncide from trees on human natural killer cell function. Int J Immunopathol Pharmacol. 2009;22(4):951–9. https://pubmed.ncbi.nlm.nih.gov/20074458/

3046

Opperhuizen AL, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. Light at night acutely impairs glucose tolerance in a time-, intensity– and wavelength-dependent manner in rats. Diabetologia. 2017;60(7):1333–43. https://pubmed.ncbi.nlm.nih.gov/28374068/

3047

Kurina LM, McClintock MK, Chen JH, Waite LJ, Thisted RA, Lauderdale DS. Sleep duration and all-cause mortality: a critical review of measurement and associations. Ann Epidemiol. 2013;23(6):361–70. https://pubmed.ncbi.nlm.nih.gov/23622956/

3048

He M, Deng X, Zhu Y, Huan L, Niu W. The relationship between sleep duration and all-cause mortality in the older people: an updated and dose-response meta-analysis. BMC Public Health. 2020;20(1):1179. https://pubmed.ncbi.nlm.nih.gov/32723316/

3049

Yetish G, Kaplan H, Gurven M, et al. Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol. 2015;25(21):2862–8. https://pubmed.ncbi.nlm.nih.gov/26480842/

3050

Shen X, Wu Y, Zhang D. Nighttime sleep duration, 24-hour sleep duration and risk of all-cause mortality among adults: a meta-analysis of prospective cohort studies. Sci Rep. 2016;6:21480. https://pubmed.ncbi.nlm.nih.gov/26900147/

3051

García-Perdomo HA, Zapata-Copete J, Rojas-Cerón CA. Sleep duration and risk of all-cause mortality: a systematic review and meta-analysis. Epidemiol Psychiatr Sci. 2018;Jul 30:1–11. https://pubmed.ncbi.nlm.nih.gov/30058510/

3052

Knutson KL, Turek FW. The U-shaped association between sleep and health: the 2 peaks do not mean the same thing. Sleep. 2006;29(7):878–9. https://pubmed.ncbi.nlm.nih.gov/16895253/

3053

Grandner MA, Drummond SPA. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Med Rev. 2007;11(5):341–60. https://pubmed.ncbi.nlm.nih.gov/17625932/

3054

Kurina LM, McClintock MK, Chen JH, Waite LJ, Thisted RA, Lauderdale DS. Sleep duration and all-cause mortality: a critical review of measurement and associations. Ann Epidemiol. 2013;23(6):361–70. https://pubmed.ncbi.nlm.nih.gov/23622956/

3055

Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–3. https://pubmed.ncbi.nlm.nih.gov/29073412/

3056

Pourmotabbed A, Boozari B, Babaei A, et al. Sleep and frailty risk: a systematic review and meta-analysis. Sleep Breath. 2020;24(3):1187–97. https://pubmed.ncbi.nlm.nih.gov/32215833/

3057

Pourmotabbed A, Ghaedi E, Babaei A, et al. Sleep duration and sarcopenia risk: a systematic review and dose-response meta-analysis. Sleep Breath. 2020;24(4):1267–78. https://pubmed.ncbi.nlm.nih.gov/31832982/

3058

Schwarz EI, Puhan MA, Schlatzer C, Stradling JR, Kohler M. Effect of CPAP therapy on endothelial function in obstructive sleep apnoea: a systematic review and meta-analysis. Respirology. 2015;20(6):889–95. https://pubmed.ncbi.nlm.nih.gov/26073295/

3059

Bjorvatn B, Fiske E, Pallesen S. A self-help book is better than sleep hygiene advice for insomnia: a randomized controlled comparative study. Scand J Psychol. 2011;52(6):580–5. https://pubmed.ncbi.nlm.nih.gov/21790620/

3060

Ancoli-Israel S. Sleep problems in older adults: putting myths to bed. Geriatrics. 1997;52(1):20–30. https://pubmed.ncbi.nlm.nih.gov/9003201/

3061

Miner B, Kryger MH. Sleep in the aging population. Sleep Med Clin. 2017;12(1):31–8. https://pubmed.ncbi.nlm.nih.gov/28159095/

3062

Lovato N, Lack L. Insomnia and mortality: a meta-analysis. Sleep Med Rev. 2019;43:71–83. https://pubmed.ncbi.nlm.nih.gov/30529432/

3063

Barclay NL, Kocevska D, Bramer WM, Van Someren EJW, Gehrman P. The heritability of insomnia: a meta-analysis of twin studies. Genes Brain Behav. 2021;20(4):e12717. https://pubmed.ncbi.nlm.nih.gov/33222383/

3064

Machado FV, Louzada LL, Cross NE, Camargos EF, Dang-Vu TT, Nóbrega OT. More than a quarter century of the most prescribed sleeping pill: systematic review of zolpidem use by older adults. Exp Gerontol. 2020;136:110962. https://pubmed.ncbi.nlm.nih.gov/32360985/

3065

Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open. 2012;2(1):1–10. https://pubmed.ncbi.nlm.nih.gov/22371848/

3066

Baber R. Climacteric commentaries. Better sleep but higher mortality risk. Climacteric. 2012;15(4):401. https://pubmed.ncbi.nlm.nih.gov/22950121/

3067

Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open. 2012;2(1):1–10. https://pubmed.ncbi.nlm.nih.gov/22371848/

3068

Rabin RC. New worries about sleeping pills. The New York Times: Well. https://well.blogs.nytimes.com/2012/03/12/new-worries-about-sleeping-pills. Published March 12, 2012. Accessed April 17, 2019.; https://well.blogs.nytimes.com/2012/03/12/new-worries-about-sleeping-pills

3069

Kripke DF. Mortality risk of hypnotics: strengths and limits of evidence. Drug Saf. 2016;39(2):93–107. https://pubmed.ncbi.nlm.nih.gov/26563222/

3070

Bianchi MT, Thomas RJ, Ellenbogen JM. Hypnotics and mortality risk. J Clin Sleep Med. 2012;8(4):351–2. https://pubmed.ncbi.nlm.nih.gov/22893762/

3071

Kripke DF, Langer RD, Kline LE. Do no harm: not even to some degree. J Clin Sleep Med. 2012;8(4):353–4. https://pubmed.ncbi.nlm.nih.gov/22893763/

3072

Huedo-Medina TB, Kirsch I, Middlemass J, Klonizakis M, Siriwardena AN. Effectiveness of non-benzodiazepine hypnotics in treatment of adult insomnia: meta-analysis of data submitted to the Food and Drug Administration. BMJ. 2012;345. https://pubmed.ncbi.nlm.nih.gov/23248080/

3073

Buscemi N, Vandermeer B, Friesen C, et al. The efficacy and safety of drug treatments for chronic insomnia in adults: a meta-analysis of RCTs. J Gen Intern Med. 2007;22(9):1335–50. https://pubmed.ncbi.nlm.nih.gov/17619935/

3074

Kripke DF, Langer RD, Kline LE. Do no harm: not even to some degree. J Clin Sleep Med. 2012;08(04):353–4. https://pubmed.ncbi.nlm.nih.gov/22893763/

3075

Matheson E, Hainer BL. Insomnia: pharmacologic therapy. Am Fam Physician. 2017;96(1):29–35. https://pubmed.ncbi.nlm.nih.gov/28671376/

3076

Brown RF, Thorsteinsson EB, Smithson M, Birmingham CL, Aljarallah H, Nolan C. Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle? Eat Weight Disord. 2017;22(4):599–608. https://pubmed.ncbi.nlm.nih.gov/28929462/

3077

Brown RF, Thorsteinsson EB, Smithson M, Birmingham CL, Aljarallah H, Nolan C. Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle? Eat Weight Disord. 2017;22(4):599–608. https://pubmed.ncbi.nlm.nih.gov/28929462/

3078

Sung EJ, Tochihara Y. Effects of bathing and hot footbath on sleep in winter. J Physiol Anthropol Appl Human Sci. 2000;19(1):21–7. https://pubmed.ncbi.nlm.nih.gov/10979246/

3079

Aghamohammadi V, Salmani R, Ivanbagha R, Effati-Daryani F, Nasiri K. Footbath as a safe, simple, and non-pharmacological method to improve sleep quality of menopausal women. Res Nurs Health. 2020;43(6):621–8. https://pubmed.ncbi.nlm.nih.gov/33112004/

3080

Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Before-bedtime passive body heating by warm shower or bath to improve sleep: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:124–35. https://pubmed.ncbi.nlm.nih.gov/31102877/

3081

Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Before-bedtime passive body heating by warm shower or bath to improve sleep: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:124–35. https://pubmed.ncbi.nlm.nih.gov/31102877/

3082

Liao WC, Wang L, Kuo CP, Lo C, Chiu MJ, Ting H. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial. Int J Nurs Stud. 2013;50(12):1607–16. https://pubmed.ncbi.nlm.nih.gov/23669188/

3083

Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Warm feet promote the rapid onset of sleep. Nature. 1999;401(6748):36–7. https://pubmed.ncbi.nlm.nih.gov/10485703/

3084

Ko Y, Lee JY. Effects of feet warming using bed socks on sleep quality and thermoregulatory responses in a cool environment. J Physiol Anthropol. 2018;37(1):13. https://pubmed.ncbi.nlm.nih.gov/29699592/

3085

Matheson E, Hainer BL. Insomnia: pharmacologic therapy. Am Fam Physician. 2017;96(1):29–35. https://pubmed.ncbi.nlm.nih.gov/28671376/

3086

Morin CM, Inoue Y, Kushida C, et al. Endorsement of European guideline for the diagnosis and treatment of insomnia by the World Sleep Society. Sleep Med. 2021;81:124–6. https://pubmed.ncbi.nlm.nih.gov/33667998/

3087

Fatemeh G, Sajjad M, Niloufar R, Neda S, Leila S, Khadijeh M. Effect of melatonin supplementation on sleep quality: a systematic review and meta-analysis of randomized controlled trials. J Neurol. 2022;269(1):205–16. https://pubmed.ncbi.nlm.nih.gov/33417003/

3088

Brzezinski A, Vangel MG, Wurtman RJ, et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev. 2005;9(1):41–50. https://pubmed.ncbi.nlm.nih.gov/15649737/

3089

Williamson B, Tomlinson A, Naylor S, Gleich G. Contaminants in commercial preparations of melatonin. Mayo Clin Proc. 1997;72(11):1094–5. https://pubmed.ncbi.nlm.nih.gov/9374988/

3090

Poeggeler B. Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine. 2005;27(2):201–12. https://pubmed.ncbi.nlm.nih.gov/16217133/

3091

Oaknin-Bendahan S, Anis Y, Nir I, Zisapel N. Effects of long-term administration of melatonin and a putative antagonist on the ageing rat. Neuroreport. 1995;6(5):785–8. https://pubmed.ncbi.nlm.nih.gov/7605949/

3092

Kim J, Lee SL, Kang I, et al. Natural products from single plants as sleep aids: a systematic review. J Med Food. 2018;21(5):433–44. https://pubmed.ncbi.nlm.nih.gov/29356580/

3093

Taibi DM, Landis CA, Petry H, Vitiello MV. A systematic review of valerian as a sleep aid: safe but not effective. Sleep Med Rev. 2007;11(3):209–30. https://pubmed.ncbi.nlm.nih.gov/17517355/

3094

Afrasiabian F, Ardakani MM, Rahmani K, et al. Aloysia citriodora Palau (lemon verbena) for insomnia patients: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Phytother Res. 2019;33(2):350–9. https://pubmed.ncbi.nlm.nih.gov/30450627/

3095

Zick SM, Wright BD, Sen A, Arnedt JT. Preliminary examination of the efficacy and safety of a standardized chamomile extract for chronic primary insomnia: a randomized placebo-controlled pilot study. BMC Complement Altern Med. 2011;11:78. https://pubmed.ncbi.nlm.nih.gov/21939549/

3096

Hieu TH, Dibas M, Dila KAS, et al. Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: a systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytother Res. 2019;33(6):1604–15. https://pubmed.ncbi.nlm.nih.gov/31006899/

3097

St-Onge MP, Roberts A, Shechter A, Choudhury AR. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J Clin Sleep Med. 2016;12(1):19–24. https://pubmed.ncbi.nlm.nih.gov/26156950/

3098

Grandner MA, Kripke DF, Naidoo N, Langer RD. Relationships among dietary nutrients and subjective sleep, objective sleep, and napping in women. Sleep Med. 2010;11(2):180. https://pubmed.ncbi.nlm.nih.gov/20005774/

3099

McClernon FJ, Yancy WS, Eberstein JA, Atkins RC, Westman EC. The effects of a low-carbohydrate ketogenic diet and a low-fat diet on mood, hunger, and other self-reported symptoms. Obesity (Silver Spring). 2007;15(1):182–7. https://pubmed.ncbi.nlm.nih.gov/17228046/

3100

Lana A, Struijk EA, Arias-Fernandez L, et al. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019;10(2):267–77. https://pubmed.ncbi.nlm.nih.gov/31011478/

3101

Hansen AL, Dahl L, Olson G, et al. Fish consumption, sleep, daily functioning, and heart rate variability. J Clin Sleep Med. 2014;10(5):567–75. https://pubmed.ncbi.nlm.nih.gov/24812543/

3102

Lana A, Struijk EA, Arias-Fernandez L, et al. Habitual meat consumption and changes in sleep duration and quality in older adults. Aging Dis. 2019;10(2):267–77. https://pubmed.ncbi.nlm.nih.gov/31011478/

3103

Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr. 2003;77(1):128–32. https://pubmed.ncbi.nlm.nih.gov/12499331/

3104

Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores improves mood: a pilot randomized controlled trial. Nutr J. 2012;11:9. https://pubmed.ncbi.nlm.nih.gov/22333737/

3105

Merrill RM, Aldana SG, Greenlaw RL, Diehl HA, Salberg A. The effects of an intensive lifestyle modification program on sleep and stress disorders. J Nutr Health Aging. 2007;11(3):242–8. https://pubmed.ncbi.nlm.nih.gov/17508101/

3106

St-Onge MP, Crawford A, Aggarwal B. Plant-based diets: reducing cardiovascular risk by improving sleep quality? Curr Sleep Med Rep. 2018;4(1):74–8. https://pubmed.ncbi.nlm.nih.gov/29910998/

3107

Harsha SN, Anilakumar KR. Anxiolytic property of Lactuca sativa, effect on anxiety behaviour induced by novel food and height. Asian Pac J Trop Med. 2013;6(7):532–6. https://pubmed.ncbi.nlm.nih.gov/23768824/

3108

Gonzálex-lima F, Valedón A, Stiehil WL. Depressant pharmacological effects of a component isolated from lettuce, Lactuca sativa. Int J Crude Drug Res. 1986;24(3):154–66. https://www.tandfonline.com/doi/abs/10.3109/13880208609060893

3109

Kim H-W, Suh HJ, Choi H-S, Hong K-B, Jo K. Effectiveness of the sleep enhancement by green romaine lettuce (Lactuca sativa) in a rodent model. Biol Pharm Bull. 2019;42(10):1726–32. https://pubmed.ncbi.nlm.nih.gov/31582660/

3110

Kim HD, Hong K-B, Noh DO, Suh HJ. Sleep-inducing effect of lettuce (Lactuca sativa) varieties on pentobarbital-induced sleep. Food Sci Biotechnol. 2017;26(3):807–14. https://pubmed.ncbi.nlm.nih.gov/30263607/

3111

Pour ZS, Hosseinkhani A, Asadi N, et al. Double-blind randomized placebo-controlled trial on efficacy and safety of Lactuca sativa L. seeds on pregnancy-related insomnia. J Ethnopharmacol. 2018;227:176–80. https://pubmed.ncbi.nlm.nih.gov/30172900/

3112

Thomas T. Perls, MD, MPH, FACP. Boston University School of Medicine website. https://www.bumc.bu.edu/busm/profile/thomas-perls/. Accessesd April 3, 2022.; https://www.bumc.bu.edu/busm/profile/thomas-perls/

3113

Sebastiani P, Perls TT. The genetics of extreme longevity: lessons from the New England Centenarian Study. Front Gene. 2012;3:277. https://pubmed.ncbi.nlm.nih.gov/23226160/

3114

Tomiyama AJ. Stress and obesity. Annu Rev Psychol. 2019;70:703–18. https://pubmed.ncbi.nlm.nih.gov/29927688/

3115

Baxter AJ, Scott KM, Ferrari AJ, Norman RE, Vos T, Whiteford HA. Challenging the myth of an “epidemic” of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010. Depress Anxiety. 2014;31(6):506–16. https://pubmed.ncbi.nlm.nih.gov/24448889/

3116

Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007;91(4):449–58. https://pubmed.ncbi.nlm.nih.gov/17543357/

3117

Tomiyama A. Stress and obesity. Annu Rev Psychol. 2019;70:703–18. https://pubmed.ncbi.nlm.nih.gov/29927688/

3118

Zellner DA, Loaiza S, Gonzalez Z, et al. Food selection changes under stress. Physiol Behav. 2006;87(4):789–93. https://pubmed.ncbi.nlm.nih.gov/16519909/

3119

Buchmann AF, Laucht M, Schmid B, Wiedemann K, Mann K, Zimmermann US. Cigarette craving increases after a psychosocial stress test and is related to cortisol stress response but not to dependence scores in daily smokers. J Psychopharmacol. 2010;24(2):247–55. https://pubmed.ncbi.nlm.nih.gov/18957475/

3120

Magrys SA, Olmstead MC. Acute stress increases voluntary consumption of alcohol in undergraduates. Alcohol Alcohol. 2015;50(2):213–8. https://pubmed.ncbi.nlm.nih.gov/25557606/

3121

Sinha R, Garcia M, Paliwal P, Kreek MJ, Rounsaville BJ. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch Gen Psychiatry. 2006;63(3):324–31. https://pubmed.ncbi.nlm.nih.gov/16520439/

3122

Rutters F, Pilz S, Koopman AD, et al. The association between psychosocial stress and mortality is mediated by lifestyle and chronic diseases: the Hoorn Study. Soc Sci Med. 2014;118:166–72. https://pubmed.ncbi.nlm.nih.gov/25137635/

3123

Rodgers J, Cuevas AG, Williams DR, Kawachi I, Subramanian SV. The relative contributions of behavioral, biological, and psychological risk factors in the association between psychosocial stress and all-cause mortality among middle– and older-aged adults in the USA. Geroscience. 2021;43(2):655–72. https://pubmed.ncbi.nlm.nih.gov/33511488/

3124

Strøm A, Jensen RA. Mortality from circulatory diseases in Norway 1940–1945. Lancet. 1951;1(6647):126–9. https://pubmed.ncbi.nlm.nih.gov/14795790/

3125

Keys A. Coronary heart disease – the global picture. Atherosclerosis. 1975;22(2):149–92. https://pubmed.ncbi.nlm.nih.gov/1103902/

3126

Malmros H. The relation of nutrition to health; a statistical study of the effect of the war-time on arteriosclerosis https://pubmed.ncbi.nlm.nih.gov/14789502/

3127

Cronkite W. Poverty and want rip Netherlands; troops say Dutch suffered hunger https://www.nytimes.com/1944/09/29/archives/poverty-and-want-rip-netherlands-troops-say-dutch-suffered-hunger.html

3128

Diet and stress in vascular disease. JAMA. 1961;176(9):806–7. https://pubmed.ncbi.nlm.nih.gov/14447689/

3129

Hitchcott PK, Fastame MC, Penna MP. More to Blue Zones than long life: positive psychological characteristics. Health Risk Soc. 2018;20(3–4):163–81. https://www.tandfonline.com/doi/full/10.1080/13698575.2018.1496233

3130

Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/

3131

Ennis J, Majid U. “Death from a broken heart”: a systematic review of the relationship between spousal bereavement and physical and physiological health outcomes. Death Stud. 2021;45(7):538–51. https://pubmed.ncbi.nlm.nih.gov/31535594/

3132

Friedmann E, Katcher AH, Lynch JJ, Thomas SA. Animal companions and one-year survival of patients after discharge from a coronary care unit. Public Health Rep. 1980;95(4):307–12. https://pubmed.ncbi.nlm.nih.gov/6999524/

3133

Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/

3134

Manzoli L, Villari P, M Pirone G, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64(1):77–94. https://pubmed.ncbi.nlm.nih.gov/17011690/

3135

Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10(2):227–37. https://pubmed.ncbi.nlm.nih.gov/25910392/

3136

Rico-Uribe LA, Caballero FF, Martín-María N, Cabello M, Ayuso-Mateos JL, Miret M. Association of loneliness with all-cause mortality: a meta-analysis. PLoS One. 2018;13(1):e0190033. https://pubmed.ncbi.nlm.nih.gov/29300743/

3137

Shor E, Roelfs DJ. Social contact frequency and all-cause mortality: a meta-analysis and meta-regression. Soc Sci Med. 2015;128:76–86. https://pubmed.ncbi.nlm.nih.gov/25594955/

3138

Stickley A, Koyanagi A, Roberts B, et al. Loneliness: its correlates and association with health behaviours and outcomes in nine countries of the former Soviet Union. PLoS One. 2013;8(7):e67978. https://pubmed.ncbi.nlm.nih.gov/23861843/

3139

Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10(2):227–37. https://pubmed.ncbi.nlm.nih.gov/25910392/

3140

Kramer CK, Mehmood S, Suen RS. Dog ownership and survival: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005554. https://pubmed.ncbi.nlm.nih.gov/31592726/

3141

Nagasawa M, Mitsui S, En S, et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science. 2015;348(6232):333–6. https://pubmed.ncbi.nlm.nih.gov/25883356/

3142

Friedmann E, Katcher AH, Lynch JJ, Thomas SA. Animal companions and one-year survival of patients after discharge from a coronary care unit. Public Health Rep. 1980;95(4):307–12. https://pubmed.ncbi.nlm.nih.gov/6999524/

3143

Herzog H. The impact of pets on human health and psychological well-being: fact, fiction, or hypothesis? Curr Dir Psychol Sci. 2011;20(4):236–9. https://journals.sagepub.com/doi/10.1177/0963721411415220

3144

Kazi DS. Who is rescuing whom? Dog ownership and cardiovascular health. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005887. https://pubmed.ncbi.nlm.nih.gov/31592727/

3145

Kazi DS. Who is rescuing whom? Dog ownership and cardiovascular health. Circ Cardiovasc Qual Outcomes. 2019;12(10):e005887. https://pubmed.ncbi.nlm.nih.gov/31592727/

3146

Ko HJ, Youn CH, Kim SH, Kim SY. Effect of pet insects on the psychological health of community-dwelling elderly people: a single-blinded, randomized, controlled trial. Gerontology. 2016;62(2):200–9. https://pubmed.ncbi.nlm.nih.gov/26383099/

3147

Puterbaugh JS. The emperor’s tailors: the failure of the medical weight loss paradigm and its causal role in the obesity of America. Diabetes Obes Metab. 2009;11(6):557–70. https://pubmed.ncbi.nlm.nih.gov/19383033/

3148

Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/

3149

Gupta T, Das N, Imran S. The prevention and therapy of osteoporosis: a review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J Diet Suppl. 2019;16(6):699–713. https://pubmed.ncbi.nlm.nih.gov/29985715/

3150

Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/

3151

Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/

3152

Lorentzon M, Cummings SR. Osteoporosis: the evolution of a diagnosis. J Intern Med. 2015;277(6):650–61. https://pubmed.ncbi.nlm.nih.gov/25832448/

3153

Gupta T, Das N, Imran S. The prevention and therapy of osteoporosis: a review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J Diet Suppl. 2019;16(6):699–713. https://pubmed.ncbi.nlm.nih.gov/29985715/

3154

Sahota O, Masud T. Osteoporosis: fact, fiction, fallacy and the future. Age Ageing. 1999;28(5):425–8. https://pubmed.ncbi.nlm.nih.gov/10529034/

3155

Michaëlsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165(16):1825–30. https://pubmed.ncbi.nlm.nih.gov/16157825/

3156

Kanis JA, Odén A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23(9):2239–56. https://pubmed.ncbi.nlm.nih.gov/22419370/

3157

Final recommendation statement: osteoporosis to prevent fractures: screening. U.S. Preventative Services Task Force website. https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/osteoporosis-screening. Published June 26, 2018. Accessed March 6, 2022.; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/osteoporosis-screening

3158

Luo H, Fan Q, Xiao S, Chen K. Changes in proton pump inhibitor prescribing trend over the past decade and pharmacists’ effect on prescribing practice at a tertiary hospital. BMC Health Serv Res. 2018;18(1):537. https://pubmed.ncbi.nlm.nih.gov/29996830/

3159

Poly TN, Islam MM, Yang HC, Wu CC, Li YCJ. Proton pump inhibitors and risk of hip fracture: a meta-analysis of observational studies. Osteoporos Int. 2019;30(1):103–14. https://pubmed.ncbi.nlm.nih.gov/30539272/

3160

Xun X, Yin Q, Fu Y, He X, Dong Z. Proton pump inhibitors and the risk of community-acquired pneumonia: an updated meta-analysis. Ann Pharmacother. 2022;56(5):524–32. https://pubmed.ncbi.nlm.nih.gov/34425689/

3161

Moayyedi P, Lewis MA. Proton pump inhibitors and dementia: deciphering the data. Am J Gastroenterol. 2017;112(12):1809–11. https://pubmed.ncbi.nlm.nih.gov/29215629/

3162

Vengrus CS, Delfino VD, Bignardi PR. Proton pump inhibitors use and risk of chronic kidney disease and end-stage renal disease. Minerva Urol Nephrol. 2021;73(4):462–70. https://pubmed.ncbi.nlm.nih.gov/33769018/

3163

D’Silva KM, Mehta R, Mitchell M, et al. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(5):697–703. https://pubmed.ncbi.nlm.nih.gov/33465501/

3164

Salvo EM, Ferko NC, Cash SB, Gonzalez A, Kahrilas PJ. Umbrella review of 42 systematic reviews with meta-analyses: the safety of proton pump inhibitors. Aliment Pharmacol Ther. 2021;54(2):129–43. https://pubmed.ncbi.nlm.nih.gov/34114655/

3165

Sun S, Cui Z, Zhou M, et al. Proton pump inhibitor monotherapy and the risk of cardiovascular events in patients with gastro-esophageal reflux disease: a meta-analysis. Neurogastroenterol Motil. 2017;29(2):e12926. https://pubmed.ncbi.nlm.nih.gov/27577963/

3166

Ben-Eltriki M, Green CJ, Maclure M, Musini V, Bassett KL, Wright JM. Do proton pump inhibitors increase mortality? A systematic review and in-depth analysis of the evidence. Pharmacol Res Perspect. 2020;8(5):e00651. https://pubmed.ncbi.nlm.nih.gov/32996701/

3167

Safer DJ. Overprescribed medications for US adults: four major examples. J Clin Med Res. 2019;11(9):617–22. https://pubmed.ncbi.nlm.nih.gov/31523334/

3168

Safer DJ. Overprescribed medications for US adults: four major examples. J Clin Med Res. 2019;11(9):617–22. https://pubmed.ncbi.nlm.nih.gov/31523334/

3169

Ness-Jensen E, Hveem K, El-Serag H, Lagergren J. Lifestyle intervention in gastroesophageal reflux disease. Clin Gastroenterol Hepatol. 2016;14(2):175–82.e1–3. https://pubmed.ncbi.nlm.nih.gov/25956834/

3170

Andrici J, Cox MR, Eslick GD. Cigarette smoking and the risk of Barrett’s esophagus: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2013;28(8):1258–73. https://pubmed.ncbi.nlm.nih.gov/23611750/

3171

Fan WJ, Hou YT, Sun XH, et al. Effect of high-fat, standard, and functional food meals on esophageal and gastric pH in patients with gastroesophageal reflux disease and healthy subjects. J Dig Dis. 2018;19(11):664–73. https://pubmed.ncbi.nlm.nih.gov/30270576/

3172

Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol. 2013;108(3):308–28. https://pubmed.ncbi.nlm.nih.gov/23419381/

3173

Newberry C, Lynch K. The role of diet in the development and management of gastroesophageal reflux disease: why we feel the burn. J Thorac Dis. 2019;11(Suppl 12):S1594–601. https://pubmed.ncbi.nlm.nih.gov/31489226/

3174

Jung JG, Kang HW. Vegetarianism and the risk of gastroesophageal reflux disease. In: Vegetarian and Plant-Based Diets in Health and Disease Prevention. Elsevier; 2017:463–72. https://www.sciencedirect.com/science/article/abs/pii/B9780128039687000253?via%3Dihub

3175

Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ. 1997;315(7112):841–6. https://pubmed.ncbi.nlm.nih.gov/9353503/

3176

Patel RA, Wilson RF, Patel PA, Palmer RM. The effect of smoking on bone healing. Bone Joint Res. 2013;2(6):102–11. https://pubmed.ncbi.nlm.nih.gov/23836474/

3177

Kim JH, Patel S. Is it worth discriminating against patients who smoke? A systematic literature review on the effects of tobacco use in foot and ankle surgery. J Foot Ankle Surg. 2017;56(3):594–9. https://pubmed.ncbi.nlm.nih.gov/28476393/

3178

Bourne D, Plinke W, Hooker ER, Nielson CM. Cannabis use and bone mineral density: NHANES 2007–2010. Arch Osteoporos. 2017;12(1):29. https://pubmed.ncbi.nlm.nih.gov/28286929/

3179

Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH. Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med. 2017;130(2):214–21. https://pubmed.ncbi.nlm.nih.gov/27593602/

3180

Cosman F, de Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. https://pubmed.ncbi.nlm.nih.gov/25182228/

3181

Wright J. Marketing disease: is osteoporosis an example of “disease mongering”? Br J Nurs. 2009;18(17):1064–7. https://pubmed.ncbi.nlm.nih.gov/19798007/

3182

Hudson B, Zarifeh A, Young L, Wells JE. Patients’ expectations of screening and preventive treatments. Ann Fam Med. 2012;10(6):495–502. https://pubmed.ncbi.nlm.nih.gov/23149525/

3183

Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med. 2016;374(21):2096–7. https://pubmed.ncbi.nlm.nih.gov/26789873/

3184

Lems WF, Raterman HG. Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther Adv Musculoskelet Dis. 2017;9(12):299–316. https://pubmed.ncbi.nlm.nih.gov/29201155/

3185

Kolata G. Fearing drugs’ rare side effects, millions take their chances with osteoporosis. The New York Times. https://www.nytimes.com/2016/06/02/health/osteoporosis-drugs-bones.html. Published June 1, 2016. Accessed March 6, 2022.; https://www.nytimes.com/2016/06/02/health/osteoporosis-drugs-bones.html

3186

Sales LP, Pinto AJ, Rodrigues SF, et al. Creatine supplementation (3 g/d) and bone health in older women: a 2-year, randomized, placebo-controlled trial. J Gerontol A Biol Sci Med Sci. 2020;75(5):931–8. https://pubmed.ncbi.nlm.nih.gov/31257405/

3187

Candow DG, Forbes SC, Kirk B, Duque G. Current evidence and possible future applications of creatine supplementation for older adults. Nutrients. 2021;13(3):745. https://pubmed.ncbi.nlm.nih.gov/33652673/

3188

NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95. https://pubmed.ncbi.nlm.nih.gov/11440324/

3189

Nestle M, Nesheim MC. To supplement or not to supplement: the U.S. Preventive Services Task Force recommendations on calcium and vitamin D. Ann Intern Med. 2013;158(9):701–2. https://pubmed.ncbi.nlm.nih.gov/23440174/

3190

Grossman DC, Curry SJ, Owens DK, et al. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(15):1592–9. https://pubmed.ncbi.nlm.nih.gov/29677309/

3191

Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf. 2013;4(5):199–210. https://pubmed.ncbi.nlm.nih.gov/25114781/

3192

Reid IR, Bristow SM, Bolland MJ. Calcium supplements: benefits and risks. J Intern Med. 2015;278(4):354–68. https://pubmed.ncbi.nlm.nih.gov/26174589/

3193

Reid IR, Bolland MJ. Risk factors: calcium supplements and cardiovascular risk. Nat Rev Cardiol. 2012;9(9):497–8. https://pubmed.ncbi.nlm.nih.gov/22776986/

3194

Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium intake and hip fracture risk in men and women: a meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr. 2007;86(6):1780–90. https://pubmed.ncbi.nlm.nih.gov/18065599/

3195

Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf. 2013;4(5):199–210. https://pubmed.ncbi.nlm.nih.gov/25114781/

3196

Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/

3197

Dawson-Hughes B, Jacques P, Shipp C. Dietary calcium intake and bone loss from the spine in healthy postmenopausal women. Am J Clin Nutr. 1987;46(4):685–7. https://pubmed.ncbi.nlm.nih.gov/3661483/

3198

Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22. https://pubmed.ncbi.nlm.nih.gov/20460620/

3199

Ginde AA, Blatchford P, Breese K, et al. High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial. J Am Geriatr Soc. 2017;65(3):496–503. https://pubmed.ncbi.nlm.nih.gov/27861708/

3200

Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175–83. https://pubmed.ncbi.nlm.nih.gov/26747333/

3201

Smith LM, Gallagher JC, Suiter C. Medium doses of vitamin D decrease falls and higher doses of daily vitamin D3 increase falls: a randomized clinical trial. J Steroid Biochem Mol Biol. 2017;173:317–22. https://pubmed.ncbi.nlm.nih.gov/28323044/

3202

Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength: a randomized clinical trial. JAMA. 2019;322(8):736–45. https://pubmed.ncbi.nlm.nih.gov/31454046/

3203

Burt LA, Billington EO, Rose MS, Kremer R, Hanley DA, Boyd SK. Adverse effects of high-dose vitamin D supplementation on volumetric bone density are greater in females than males. J Bone Miner Res. 2020;35(12):2404–14. https://pubmed.ncbi.nlm.nih.gov/31454046/

3204

Iuliano S, Hill TR. Dairy foods and bone health throughout the lifespan: a critical appraisal of the evidence. Br J Nutr. 2019;121(7):763–72. https://pubmed.ncbi.nlm.nih.gov/30638442/

3205

Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/

3206

Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/

3207

Phillip A. Study: milk may not be very good for bones or the body. The Washington Post. https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/. Published October 31, 2014. Accessed March 23, 2022.; https://www.washingtonpost.com/news/to-your-health/wp/2014/10/31/study-milk-may-not-be-very-good-for-bones-or-the-body/

3208

Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://pubmed.ncbi.nlm.nih.gov/25352269/

3209

Cui X, Wang L, Zuo P, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology. 2004;5(5):317–25. https://pubmed.ncbi.nlm.nih.gov/15547319/

3210

Cui X, Zuo P, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res. 2006;84(3):647–54. https://pubmed.ncbi.nlm.nih.gov/16555301/

3211

Simoons FJ. A geographic approach to senile cataracts: possible links with milk consumption, lactase activity, and galactose metabolism. Dig Dis Sci. 1982;27(3):257–64. https://pubmed.ncbi.nlm.nih.gov/6804198/

3212

Sella R, Afshari NA. Nutritional effect on age-related cataract formation and progression. Curr Opin Ophthalmol. 2019;30(1):63–9. https://pubmed.ncbi.nlm.nih.gov/30320615/

3213

Ding M, Li J, Qi L, et al. Associations of dairy intake with risk of mortality in women and men: three prospective cohort studies. BMJ. 2019;367:l6204. https://pubmed.ncbi.nlm.nih.gov/31776125/

3214

Grey A, Bolland M. Web of industry, advocacy, and academia in the management of osteoporosis. BMJ. 2015;351:h3170. https://pubmed.ncbi.nlm.nih.gov/26198274/

3215

Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/

3216

Willett WC, Ludwig DS. Milk and health. N Engl J Med. 2020;382(7):644–54. https://pubmed.ncbi.nlm.nih.gov/32053300/

3217

Dai Z, Kroeger CM, Lawrence M, Scrinis G, Bero L. Comparison of methodological quality between the 2007 and 2019 Canadian dietary guidelines. Public Health Nutr. 2020;23(16):2879–85. https://pubmed.ncbi.nlm.nih.gov/32552917/

3218

Ausman LM, Oliver LM, Goldin BR, Woods MN, Gorbach SL, Dwyer JT. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores. J Ren Nutr. 2008;18(5):456–65. https://pubmed.ncbi.nlm.nih.gov/18721741/

3219

Kerstetter JE, O’Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab. 2005;90(1):26–31. https://pubmed.ncbi.nlm.nih.gov/15546911/

3220

Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008;87(3):662–5. https://pubmed.ncbi.nlm.nih.gov/18326605/

3221

Groesbeck DK, Bluml RM, Kossoff EH. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev Med Child Neurol. 2006;48(12):978–81. https://pubmed.ncbi.nlm.nih.gov/17109786/

3222

Heikura IA, Burke LM, Hawley JA, et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front Endocrinol (Lausanne). 2020;10:880. https://pubmed.ncbi.nlm.nih.gov/32038477/

3223

Simm PJ, Bicknell-Royle J, Lawrie J, et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res. 2017;136:62–6. https://pubmed.ncbi.nlm.nih.gov/28778055/

3224

Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr. 2008;88(6):1678–84. https://pubmed.ncbi.nlm.nih.gov/19064531/

3225

Yancy WS, Olsen MK, Dudley T, Westman EC. Acid-base analysis of individuals following two weight loss diets. Eur J Clin Nutr. 2007;61(12):1416–22. https://pubmed.ncbi.nlm.nih.gov/17299473/

3226

Gunaratnam K, Vidal C, Gimble JM, Duque G. Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology. 2014;155(1):108–16. https://pubmed.ncbi.nlm.nih.gov/24169557/

3227

Mozaffari H, Djafarian K, Mofrad MD, Shab-Bidar S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int. 2018;29(9):1949–61. https://pubmed.ncbi.nlm.nih.gov/29947872/

3228

Frassetto L, Sebastian A. Age and systemic acid-base equilibrium: analysis of published data. J Gerontol A Biol Sci Med Sci. 1996;51(1):B91–9. https://pubmed.ncbi.nlm.nih.gov/8548506/

3229

Frassetto L, Banerjee T, Powe N, Sebastian A. Acid balance, dietary acid load, and bone effects – a controversial subject. Nutrients. 2018;10(4):517. https://pubmed.ncbi.nlm.nih.gov/29690515/

3230

Cao JJ, Whigham LD, Jahns L. Depletion and repletion of fruit and vegetable intake alters serum bone turnover markers: a 28-week single-arm experimental feeding intervention. Br J Nutr. 2018;120(5):500–7. https://pubmed.ncbi.nlm.nih.gov/30022739/

3231

Hayhoe RPG, Abdelhamid A, Luben RN, Khaw KT, Welch AA. Dietary acid-base load and its association with risk of osteoporotic fractures and low estimated skeletal muscle mass. Eur J Clin Nutr. 2020;74(Suppl 1):33–42. https://pubmed.ncbi.nlm.nih.gov/32873955/

3232

Macdonald R, Black A, Sandison R, Aucott L, et al. Two year double blind randomized controlled trial in postmenopausal women shows no gain in BMD with potassium citrate treatment. Paper presented at: 28th Annual Meeting of the American Society of Bone and Mineral Research; September 15–19 https://pubmed.ncbi.nlm.nih.gov/18689384/

3233

Dawson-Hughes B. Acid-base balance of the diet-implications for bone and muscle. Eur J Clin Nutr. 2020;74(Suppl 1):7–13. https://pubmed.ncbi.nlm.nih.gov/32873951/

3234

Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(1):207–17. https://pubmed.ncbi.nlm.nih.gov/23162100/

3235

Fang Y, Zhu J, Fan J, et al. Dietary Inflammatory Index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos Int. 2021;32(4):633–43. https://pubmed.ncbi.nlm.nih.gov/32740669/

3236

Mun H, Liu B, Pham THA, Wu Q. C-reactive protein and fracture risk: an updated systematic review and meta-analysis of cohort studies through the use of both frequentist and Bayesian approaches. Osteoporos Int. 2021;32(3):425–35. https://pubmed.ncbi.nlm.nih.gov/32935169/

3237

Zhao F, Guo L, Wang X, Zhang Y. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: a systematic review and meta-analysis. Arch Osteoporos. 2021;16(1):4. https://pubmed.ncbi.nlm.nih.gov/33400044/

3238

Brondani JE, Comim FV, Flores LM, Martini LA, Premaor MO. Fruit and vegetable intake and bones: a systematic review and meta-analysis. PLoS One. 2019;14(5):e0217223. https://pubmed.ncbi.nlm.nih.gov/31150426/

3239

Zeng LF, Luo MH, Liang GH, et al. Can dietary intake of vitamin C – oriented foods reduce the risk of osteoporosis, fracture, and BMD loss? Systematic review with meta-analyses of recent studies. Front Endocrinol (Lausanne). 2019;10:844. https://pubmed.ncbi.nlm.nih.gov/32117042/

3240

Sun Y, Liu C, Bo Y, et al. Dietary vitamin C intake and the risk of hip fracture: a dose-response meta-analysis. Osteoporos Int. 2018;29(1):79–87. https://pubmed.ncbi.nlm.nih.gov/29101410/

3241

Mühlbauer RC, Lozano A, Reinli A, Wetli H. Various selected vegetables, fruits, mushrooms and red wine residue inhibit bone resorption in rats. J Nutr. 2003;133(11):3592–7. https://pubmed.ncbi.nlm.nih.gov/14608079/

3242

Hooshmand S, Kern M, Metti D, et al. The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: a randomized, controlled trial. Osteoporos Int. 2016;27(7):2271–9. https://pubmed.ncbi.nlm.nih.gov/26902092/

3243

Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct. 2016;7(2):902–12. https://pubmed.ncbi.nlm.nih.gov/26686359/

3244

Mackinnon ES, Rao AV, Josse RG, Rao LG. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22(4):1091–101. https://pubmed.ncbi.nlm.nih.gov/20552330/

3245

Russo C, Ferro Y, Maurotti S, et al. Lycopene and bone: an in vitro investigation and a pilot prospective clinical study. J Transl Med. 2020;18(1):43. https://pubmed.ncbi.nlm.nih.gov/31996227/

3246

Gunn CA, Weber JL, McGill AT, Kruger MC. Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women. Nutrients. 2015;7(4):2499–517. https://pubmed.ncbi.nlm.nih.gov/25856221/

3247

Cheraghi Z, Doosti-Irani A, Almasi-Hashiani A, et al. The effect of alcohol on osteoporosis: a systematic review and meta-analysis. Drug Alcohol Depend. 2019;197:197–202. https://pubmed.ncbi.nlm.nih.gov/30844616/

3248

Godos J, Giampieri F, Chisari E, et al. Alcohol consumption, bone mineral density, and risk of osteoporotic fractures: a dose-response meta-analysis. Int J Environ Res Public Health. 2022;19(3):1515. https://pubmed.ncbi.nlm.nih.gov/35162537/

3249

Lems WF, Raterman HG. Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther Adv Musculoskelet Dis. 2017;9(12):299–316. https://pubmed.ncbi.nlm.nih.gov/29201155/

3250

Ahn H, Park YK. Sugar-sweetened beverage consumption and bone health: a systematic review and meta-analysis. Nutr J. 2021;20(1):41. https://pubmed.ncbi.nlm.nih.gov/33952276/

3251

Fatahi S, Namazi N, Larijani B, Azadbakht L. The association of dietary and urinary sodium with bone mineral density and risk of osteoporosis: a systematic review and meta-analysis. J Am Coll Nutr. 2018;37(6):522–32. https://pubmed.ncbi.nlm.nih.gov/29617220/

3252

Mortensen SJ, Beeram I, Florance J, et al. Modifiable lifestyle factors associated with fragility hip fracture: a systematic review and meta-analysis. J Bone Miner Metab. 2021;39(5):893–902. https://pubmed.ncbi.nlm.nih.gov/33991260/

3253

Shen CL, Chyu MC, Yeh JK, et al. Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial. Osteoporos Int. 2012;23(5):1541–52. https://pubmed.ncbi.nlm.nih.gov/21766228/

3254

Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS. Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int. 2008;19(7):979–90. https://pubmed.ncbi.nlm.nih.gov/18084689/

3255

Dostal AM, Arikawa A, Espejo L, Kurzer MS. Long-term supplementation of green tea extract does not modify adiposity or bone mineral density in a randomized trial of overweight and obese postmenopausal women. J Nutr. 2016;146(2):256–64. https://pubmed.ncbi.nlm.nih.gov/26701796/

3256

Platt ID, Josse AR, Kendall CWC, Jenkins DJA, El-Sohemy A. Postprandial effects of almond consumption on human osteoclast precursors – an ex vivo study. Metabolism. 2011;60(7):923–9. https://pubmed.ncbi.nlm.nih.gov/20947104/

3257

Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/

3258

Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. https://pubmed.ncbi.nlm.nih.gov/12117397/

3259

Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008;74(13):1656–65. https://pubmed.ncbi.nlm.nih.gov/18843590/

3260

McCarty MF. Isoflavones made simple – genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses. 2006;66(6):1093–114. https://pubmed.ncbi.nlm.nih.gov/16513288/

3261

Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/

3262

Sansai K, Na Takuathung M, Khatsri R, Teekachunhatean S, Hanprasertpong N, Koonrungsesomboon N. Effects of isoflavone interventions on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2020;31(10):1853–64. https://pubmed.ncbi.nlm.nih.gov/32524173/

3263

Morabito N, Crisafulli A, Vergara C, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res. 2002;17(10):1904–12. https://pubmed.ncbi.nlm.nih.gov/12369794/

3264

Lydeking-Olsen E, Beck-Jensen JE, Setchell KDR, Holm-Jensen T. Soymilk or progesterone for prevention of bone loss: a 2 year randomized, placebo-controlled trial. Eur J Nutr. 2004;43(4):246–57. https://pubmed.ncbi.nlm.nih.gov/15309425/

3265

Koch L. Nutrition: High isoflavone intake delays puberty onset and may reduce breast cancer risk in girls. Nat Rev Endocrinol. 2010;6(11):595. https://pubmed.ncbi.nlm.nih.gov/21038502/

3266

Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control. 1998;9(6):553–7. https://pubmed.ncbi.nlm.nih.gov/10189040/

3267

Fujisawa T, Ohashi Y, Shin R, Narai-Kanayama A, Nakagaki T. The effect of soymilk intake on the fecal microbiota, particularly Bifidobacterium species, and intestinal environment of healthy adults: a pilot study. Biosci Microbiota Food Health. 2017;36(1):33–7. https://pubmed.ncbi.nlm.nih.gov/28243549/

3268

Eslami O, Shidfar F, Maleki Z, et al. Effect of soy milk on metabolic status of patients with nonalcoholic fatty liver disease: a randomized clinical trial. J Am Coll Nutr. 2019;38(1):51–8. https://pubmed.ncbi.nlm.nih.gov/30028245/

3269

Mitchell JH, Collins AR. Effects of a soy milk supplement on plasma cholesterol levels and oxidative DNA damage in men – a pilot study. Eur J Nutr. 1999;38(3):143–8. https://pubmed.ncbi.nlm.nih.gov/10443336/

3270

Maleki Z, Jazayeri S, Eslami O, et al. Effect of soy milk consumption on glycemic status, blood pressure, fibrinogen and malondialdehyde in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Complement Ther Med. 2019;44:44–50. https://pubmed.ncbi.nlm.nih.gov/31126574/

3271

Liao YH, Chen CN, Hu CY, Tsai SC, Kuo YC. Soymilk ingestion immediately after therapeutic exercise enhances rehabilitation outcomes in chronic stroke patients: a randomized controlled trial. NeuroRehabilitation. 2019;44(2):217–29. https://pubmed.ncbi.nlm.nih.gov/30856124/

3272

Rivas M, Garay RP, Escanero JF, Cia P, Cia P, Alda JO. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J Nutr. 2002;132(7):1900–2. https://pubmed.ncbi.nlm.nih.gov/12097666/

3273

Onuegbu AJ, Olisekodiaka JM, Onibon MO, Adesiyan AA, Igbeneghu CA. Consumption of soymilk lowers atherogenic lipid fraction in healthy individuals. J Med Food. 2011;14(3):257–60. https://pubmed.ncbi.nlm.nih.gov/21142946/

3274

Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55(1):10–20. https://pubmed.ncbi.nlm.nih.gov/29358791/

3275

Shi Y, Zhan Y, Chen Y, Jiang Y. Effects of dairy products on bone mineral density in healthy postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos. 2020;15(1):48. https://pubmed.ncbi.nlm.nih.gov/32185512/

3276

Byberg L, Warensjö-Lemming E. Milk consumption for the prevention of fragility fractures. Nutrients. 2020;12(9):E2720. https://pubmed.ncbi.nlm.nih.gov/32899514/

3277

Akhavan Zanjani M, Rahmani S, Mehranfar S, et al. Soy foods and the risk of fracture: a systematic review of prospective cohort studies. Complement Med Res. 2022;29(2):172–81. https://pubmed.ncbi.nlm.nih.gov/34547749/

3278

Zhang X, Shu XO, Li H, et al. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005;165(16):1890–5. https://pubmed.ncbi.nlm.nih.gov/16157834/

3279

Chen Z, Zheng W, Custer LJ, et al. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer. 1999;33(1):82–7. https://pubmed.ncbi.nlm.nih.gov/10227048/

3280

Prabhakaran MP. Isoflavone levels and the effect of processing on the content of isoflavones during the preparation of soymilk and tofu. Thesis submitted for the degree of doctor of philosophy to the National University of Singapore. 2005.; https://scholarbank.nus.edu.sg/handle/10635/15175

3281

Petroski W, Minich DM. Is there such a thing as “anti-nutrients”? A narrative review of perceived problematic plant compounds. Nutrients. 2020;12(10):2929. https://pubmed.ncbi.nlm.nih.gov/32987890/

3282

Berg J, Seyedsadjadi N, Grant R. Increased consumption of plant foods is associated with increased bone mineral density. J Nutr Health Aging. 2020;24(4):388–97. https://pubmed.ncbi.nlm.nih.gov/32242206/

3283

Melaku YA, Gill TK, Appleton SL, Taylor AW, Adams R, Shi Z. Prospective associations of dietary and nutrient patterns with fracture risk: a 20-year follow-up study. Nutrients. 2017;9(11):1198. https://pubmed.ncbi.nlm.nih.gov/29088104/

3284

Iguacel I, Miguel-Berges ML, Gómez-Bruton A, Moreno LA, Julián C. Veganism, vegetarianism, bone mineral density, and fracture risk: a systematic review and meta-analysis. Nutr Rev. 2019;77(1):1–18. https://pubmed.ncbi.nlm.nih.gov/30376075/

3285

Karavasiloglou N, Selinger E, Gojda J, Rohrmann S, Kühn T. Differences in bone mineral density between adult vegetarians and nonvegetarians become marginal when accounting for differences in anthropometric factors. J Nutr. 2020;150(5):1266–71. https://pubmed.ncbi.nlm.nih.gov/32055831/

3286

Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol. 2016;230(3):R115–30. https://pubmed.ncbi.nlm.nih.gov/27352896/

3287

Tong TYN, Appleby PN, Armstrong MEG, et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. BMC Med. 2020;18(1):353. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01815-3

3288

Tong TYN, Appleby PN, Armstrong MEG, et al. Vegetarian and vegan diets and risks of total and site-specific fractures: results from the prospective EPIC-Oxford study. Table S6. Risks of hip fractures by age, sex, menopausal status, physical activity and BMI. BMC Med. 2020;18(1):353. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-020-01815-3

3289

Yao P, Bennett D, Mafham M, et al. Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis. JAMA Netw Open. 2019;2(12):e1917789. https://pubmed.ncbi.nlm.nih.gov/31860103/

3290

Heaney RP. The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol. 2005;97(1–2):13–9. https://pubmed.ncbi.nlm.nih.gov/16026981/

3291

Appleby P, Roddam A, Allen N, Key T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr. 2007;61(12):1400–6. https://pubmed.ncbi.nlm.nih.gov/17299475/

3292

Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12. https://pubmed.ncbi.nlm.nih.gov/15125798/

3293

Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):E878. https://pubmed.ncbi.nlm.nih.gov/29710770/

3294

Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):E878. https://pubmed.ncbi.nlm.nih.gov/29710770/

3295

Lu YH, Rosner B, Chang G, Fishman LM. Twelve-minute daily yoga regimen reverses osteoporotic bone loss. Top Geriatr Rehabil. 2016;32(2):81–7. https://pubmed.ncbi.nlm.nih.gov/27226695/

3296

Sfeir JG, Drake MT, Sonawane VJ, Sinaki M. Vertebral compression fractures associated with yoga: a case series. Eur J Phys Rehabil Med. 2018;54(6):947–51. https://pubmed.ncbi.nlm.nih.gov/29687967/

3297

Cramer H, Ostermann T, Dobos G. Injuries and other adverse events associated with yoga practice: a systematic review of epidemiological studies. J Sci Med Sport. 2018;21(2):147–54. https://pubmed.ncbi.nlm.nih.gov/28958637/

3298

Cramer H, Quinker D, Schumann D, Wardle J, Dobos G, Lauche R. Adverse effects of yoga: a national cross-sectional survey. BMC Complement Altern Med. 2019;19(1):190. https://pubmed.ncbi.nlm.nih.gov/31357980/

3299

Zhu JK, Wu LD, Zheng RZ, Lan SH. Yoga is found hazardous to the meniscus for Chinese women. Chin J Traumatol. 2012;15(3):148–51. https://pubmed.ncbi.nlm.nih.gov/22663908/

3300

Boddu P, Patel S, Shahrrava A. Sudden cardiac arrest from heat stroke: hidden dangers of hot yoga. Am J Med. 2016;129(8):e129–30. https://pubmed.ncbi.nlm.nih.gov/27107927/

3301

insightSlice. Bone densitometer market global sales are expected to grow steadily to reach US$1.75 billion by 2031. Globe Newswire. https://www.globenewswire.com/news-release/2021/07/12/2261344/0/en/Bone-Densitometer-Market-Global-Sales-are-Expected-to-Grow-Steadily-to-Reach-US-1–75-billion-by-2031.html. Published July 12, 2021. Accessed March 18, 2022.; https://www.globenewswire.com/news-release/2021/07/12/2261344/0/en/Bone-Densitometer-Market-Global-Sales-are-Expected-to-Grow-Steadily-to-Reach-US-1-75-billion-by-2031.html

3302

Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54. https://pubmed.ncbi.nlm.nih.gov/14606506/

3303

De Laet CEDH, van Hout BA, Burger H, Hofman A, Pols HAP. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ. 1997;315(7102):221–5. https://pubmed.ncbi.nlm.nih.gov/9253270/

3304

Järvinen TLN, Sievänen H, Khan KM, Heinonen A, Kannus P. Shifting the focus in fracture prevention from osteoporosis to falls. BMJ. 2008;336(7636):124–6. https://pubmed.ncbi.nlm.nih.gov/18202065/

3305

Nordström P, Eklund F, Björnstig U, et al. Do both areal BMD and injurious falls explain the higher incidence of fractures in women than in men? Calcif Tissue Int. 2011;89(3):203–10. https://pubmed.ncbi.nlm.nih.gov/21667164/

3306

Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaëlsson K. Simply ask them about their balance – future fracture risk in a nationwide cohort study of twins. Am J Epidemiol. 2009;169(2):143–9. https://pubmed.ncbi.nlm.nih.gov/19064648/

3307

Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947–54. https://pubmed.ncbi.nlm.nih.gov/14606506/

3308

Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/

3309

Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone. 1987;8(4):207–9. https://pubmed.ncbi.nlm.nih.gov/3446256/

3310

Michaëlsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165(16):1825–30. https://pubmed.ncbi.nlm.nih.gov/16157825/

3311

Wagner H, Melhus H, Pedersen NL, Michaëlsson K. Heritability of impaired balance: a nationwide cohort study in twins. Osteoporos Int. 2009;20(4):577–83. https://pubmed.ncbi.nlm.nih.gov/18802660/

3312

Burger H, de Laet CEDH, Weel AEAM, Hofman A, Pols HAP. Added value of bone mineral density in hip fracture risk scores. Bone. 1999;25(3):369–74. https://pubmed.ncbi.nlm.nih.gov/10495142/

3313

Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/

3314

Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet. 2005;366(9500):1885–93. https://pubmed.ncbi.nlm.nih.gov/16310556/

3315

Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/

3316

Tinetti ME. Preventing falls in elderly persons. N Engl J Med. 2003;348(1):42–9. https://pubmed.ncbi.nlm.nih.gov/12510042/

3317

Sernbo I, Johnell O. Consequences of a hip fracture: a prospective study over 1 year. Osteoporos Int. 1993;3(3):148–53. https://pubmed.ncbi.nlm.nih.gov/8481591/

3318

Tricco AC, Thomas SM, Veroniki AA, et al. Comparisons of interventions for preventing falls in older adults: a systematic review and meta-analysis. JAMA. 2017;318(17):1687–99. https://pubmed.ncbi.nlm.nih.gov/29114830/

3319

Dautzenberg L, Beglinger S, Tsokani S, et al. Interventions for preventing falls and fall-related fractures in community-dwelling older adults: a systematic review and network meta-analysis. J Am Geriatr Soc. 2021;69(10):2973–84. https://pubmed.ncbi.nlm.nih.gov/34318929/

3320

Sherrington C, Fairhall NJ, Wallbank GK, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424. https://pubmed.ncbi.nlm.nih.gov/31792067/

3321

Wong RMY, Chong KC, Law SW, et al. The effectiveness of exercises on fall and fracture prevention amongst community elderlies: a systematic review and meta-analysis. J Orthop Translat. 2020;24:58–65. https://pubmed.ncbi.nlm.nih.gov/32695605/

3322

Karinkanta S, Heinonen A, Sievänen H, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int. 2007;18(4):453–62. https://pubmed.ncbi.nlm.nih.gov/17103296/

3323

Karinkanta S, Kannus P, Uusi-Rasi K, Heinonen A, Sievänen H. Combined resistance and balance-jumping exercise reduces older women’s injurious falls and fractures: 5-year follow-up study. Age Ageing. 2015;44(5):784–9. https://pubmed.ncbi.nlm.nih.gov/25990940/

3324

Korall AMB, Feldman F, Scott VJ, et al. Facilitators of and barriers to hip protector acceptance and adherence in long-term care facilities: a systematic review. J Am Med Dir Assoc. 2015;16(3):185–93. https://pubmed.ncbi.nlm.nih.gov/25704127/

3325

Santesso N, Carrasco-Labra A, Brignardello-Petersen R. Hip protectors for preventing hip fractures in older people. Cochrane Database Syst Rev. 2014;(3):CD001255. https://pubmed.ncbi.nlm.nih.gov/24687239/

3326

Dautzenberg L, Beglinger S, Tsokani S, et al. Interventions for preventing falls and fall-related fractures in community-dwelling older adults: a systematic review and network meta-analysis. J Am Geriatr Soc. 2021;69(10):2973–84. https://pubmed.ncbi.nlm.nih.gov/34318929/

3327

STEADI. What you can do to prevent falls. Centers for Disease Control and Prevention. https://www.cdc.gov/steadi/pdf/STEADI-Brochure-WhatYouCanDo-508.pdf. Published 2017. Accessed March 11, 2022.; https://www.cdc.gov/steadi/patient.html

3328

STEADI. Family caregivers: protect your loved ones from falling. Centers for Disease Control and Prevention. https://www.cdc.gov/steadi/pdf/patient/customizable/Caregiver-Brochure-Final-Customizable-508.pdf. Published 2018. Accessed March 11, 2022.; https://www.cdc.gov/steadi/patient.html

3329

Pirruccio K, Ahn J. Fractures while walking leashed dogs – reply. JAMA Surg. 2019;154(11):1078. https://pubmed.ncbi.nlm.nih.gov/31389985/

3330

Law MR, Wald NJ, Meade TW. Strategies for prevention of osteoporosis and hip fracture. BMJ. 1991;303(6800):453–9. https://pubmed.ncbi.nlm.nih.gov/1912840/

3331

Järvinen TLN, Michaëlsson K, Aspenberg P, Sievänen H. Osteoporosis: the emperor has no clothes. J Intern Med. 2015;277(6):662–73. https://pubmed.ncbi.nlm.nih.gov/25809279/

3332

Sullivan R. A brief journey into medical care and disease in ancient Egypt. J R Soc Med. 1995;88(3):141–5. https://pubmed.ncbi.nlm.nih.gov/7752157/

3333

Chen TS, Chen PS. Gastroenterology in ancient Egypt. J Clin Gastroenterol. 1991;13(2):182–7. https://pubmed.ncbi.nlm.nih.gov/2033225/

3334

Holl RM. Bowel movement: the sixth vital sign. Holist Nurs Pract. 2014;28(3):195–7. https://pubmed.ncbi.nlm.nih.gov/24722614/

3335

Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/

3336

Johanson JF, Kralstein J. Chronic constipation: a survey of the patient perspective. Aliment Pharmacol Ther. 2007;25(5):599–608. https://pubmed.ncbi.nlm.nih.gov/17305761/

3337

Gokce AH, Gokce FS. Effects of bilateral transcutaneous tibial nerve stimulation on constipation severity in geriatric patients: a prospective clinical study. Geriatr Gerontol Int. 2020;20(2):101–5. https://pubmed.ncbi.nlm.nih.gov/31793185/

3338

Sonnenberg A, Koch TR. Physician visits in the United States for constipation: 1958 to 1986. Dig Dis Sci. 1989;34(4):606–11. https://pubmed.ncbi.nlm.nih.gov/2784759/

3339

Luthra P, Camilleri M, Burr NE, Quigley EMM, Black CJ, Ford AC. Efficacy of drugs in chronic idiopathic constipation: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2019;4(11):831–44. https://pubmed.ncbi.nlm.nih.gov/31474542/

3340

Chen J, Liu X, Bai T, Hou X. Impact of clinical outcome measures on placebo response rates in clinical trials for chronic constipation: a systematic review and meta-analysis. Clin Transl Gastroenterol. 2020;11(11):e00255. https://pubmed.ncbi.nlm.nih.gov/33259160/

3341

Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/

3342

Lämås K, Karlsson S, Nolén A, Lövheim H, Sandman PO. Prevalence of constipation among persons living in institutional geriatric-care settings – a cross-sectional study. Scand J Caring Sci. 2017;31(1):157–63. https://pubmed.ncbi.nlm.nih.gov/27327073/

3343

Tvistholm N, Munch L, Danielsen AK. Constipation is casting a shadow over everyday life – a systematic review on older people’s experience of living with constipation. J Clin Nurs. 2017;26(7–8):902–14. https://pubmed.ncbi.nlm.nih.gov/27271918/

3344

Belsey J, Greenfield S, Candy D, Geraint M. Systematic review: impact of constipation on quality of life in adults and children. Aliment Pharmacol Ther. 2010;31(9):938–49. https://pubmed.ncbi.nlm.nih.gov/20180788/

3345

Tvistholm N, Munch L, Danielsen AK. Constipation is casting a shadow over everyday life – a systematic review on older people’s experience of living with constipation. J Clin Nurs. 2017;26(7–8):902–14. https://pubmed.ncbi.nlm.nih.gov/27271918/

3346

Emmanuel A, Mattace-Raso F, Neri MC, Petersen KU, Rey E, Rogers J. Constipation in older people: a consensus statement. Int J Clin Pract. 2017;71(1):e12920. https://discovery.ucl.ac.uk/id/eprint/1533175/

3347

Pekmezaris R, Aversa L, Wolf-Klein G, Cedarbaum J, Reid-Durant M. The cost of chronic constipation. J Am Med Dir Assoc. 2002;3(4):224–8. https://pubmed.ncbi.nlm.nih.gov/12807642/

3348

Modi RM, Hinton A, Pinkhas D, et al. Implementation of a defecation posture modification device. J Clin Gastroenterol. 2019;53(3):216–9. https://pubmed.ncbi.nlm.nih.gov/30346317/

3349

Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/

3350

Burkitt DP. Hiatus hernia: is it preventable? Am J Clin Nutr. 1981;34(3):428–31. https://pubmed.ncbi.nlm.nih.gov/6259926/

3351

Burkitt DP, James PA. Low-residue diets and hiatus hernia. Lancet. 1973;2(7821):128–30. https://pubmed.ncbi.nlm.nih.gov/4124047/

3352

Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/

3353

Fox A, Tietze PH, Ramakrishnan K. Anorectal conditions: anal fissure and anorectal fistula. FP Essent. 2014;419:20–7. https://pubmed.ncbi.nlm.nih.gov/24742084/

3354

Burkitt DP. Two blind spots in medical knowledge. Nurs Times. 1976;72(1):24–7. https://pubmed.ncbi.nlm.nih.gov/54904/

3355

Burkitt DP. Hiatus hernia: is it preventable? Am J Clin Nutr. 1981;34(3):428–31. https://pubmed.ncbi.nlm.nih.gov/6259926/

3356

Burkitt DP. Dietary fibre and “pressure diseases.” J R Coll Physicians Lond. 1975;9(2):138–46. https://pubmed.ncbi.nlm.nih.gov/1127617/

3357

Kapoor WN, Peterson J, Karpf M. Defecation syncope: a symptom with multiple etiologies. Arch Intern Med. 1986;146(12):2377–9. https://pubmed.ncbi.nlm.nih.gov/3778072/

3358

Greenfield JC, Rembert JC, Tindall GT. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke. 1984;15(1):76–9. https://pubmed.ncbi.nlm.nih.gov/6229907/

3359

Benchimol A, Wang TF, Desser KB, Gartlan JL. The Valsalva maneuver and coronary arterial blood flow velocity. Studies in man. Ann Intern Med. 1972;77(3):357–60. https://pubmed.ncbi.nlm.nih.gov/5053728/

3360

McGuire J, Green RS, Courter S, et al. Bed pan deaths. J Lab Clin Med. 1948;33(11):1457. https://pubmed.ncbi.nlm.nih.gov/18890042/

3361

Emmanuel A, Mattace-Raso F, Neri MC, Petersen KU, Rey E, Rogers J. Constipation in older people: a consensus statement. Int J Clin Pract. 2017;71(1):e12920. https://discovery.ucl.ac.uk/id/eprint/1533175/

3362

Annells M, Koch T. Faecal impaction: older people’s experiences and nursing practice. Br J Community Nurs. 2002;7(3):118–26. https://pubmed.ncbi.nlm.nih.gov/11904547/

3363

Annells M, Koch T. Older people seeking solutions to constipation: the laxative mire. J Clin Nurs. 2002;11(5):603–12. https://pubmed.ncbi.nlm.nih.gov/12201887/

3364

Sakakibara R, Tsunoyama K, Hosoi H, et al. Influence of body position on defecation in humans. Low Urin Tract Symptoms. 2010;2(1):16–21. https://pubmed.ncbi.nlm.nih.gov/26676214/

3365

Isbit J. Is the porcelain throne to blame? Tech Coloproctol. 2015;19(3):193–4. https://pubmed.ncbi.nlm.nih.gov/25579878/

3366

Davies GJ, Crowder M, Reid B, Dickerson JW. Bowel function measurements of individuals with different eating patterns. Gut. 1986;27(2):164–9. https://pubmed.ncbi.nlm.nih.gov/3005140/

3367

Choi YI, Kim KO, Chung JW, et al. Effects of automatic abdominal massage device in treatment of chronic constipation patients: a prospective study. Dig Dis Sci. 2021;66(9):3105–12. https://pubmed.ncbi.nlm.nih.gov/33001346/

3368

Rao SSC, Lembo A, Chey WD, Friedenberg K, Quigley EMM. Effects of the vibrating capsule on colonic circadian rhythm and bowel symptoms in chronic idiopathic constipation. Neurogastroenterol Motil. 2020;32(11):e13890. https://pubmed.ncbi.nlm.nih.gov/32449277/

3369

Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/

3370

Knowles CH, Grossi U, Chapman M, et al. Surgery for constipation: systematic review and practice recommendations: Results I: colonic resection. Colorectal Dis. 2017;19 Suppl 3:17–36. https://pubmed.ncbi.nlm.nih.gov/28960923/

3371

Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/

3372

Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/

3373

Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/

3374

Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/

3375

Noergaard M, Traerup Andersen J, Jimenez-Solem E, Bring Christensen M. Long term treatment with stimulant laxatives – clinical evidence for effectiveness and safety? Scand J Gastroenterol. 2019;54(1):27–34. https://pubmed.ncbi.nlm.nih.gov/30700194/

3376

Riemann JF, Schmidt H, Zimmermann W. The fine structure of colonic submucosal nerves in patients with chronic laxative abuse. Scand J Gastroenterol. 1980;15(6):761–8. https://pubmed.ncbi.nlm.nih.gov/7209384/

3377

Serrano-Falcón B, Rey E. The safety of available treatments for chronic constipation. Expert Opin Drug Saf. 2017;16(11):1243–53. https://pubmed.ncbi.nlm.nih.gov/28756692/

3378

Rao SSC, Brenner DM. Efficacy and safety of over-the-counter therapies for chronic constipation: an updated systematic review. Am J Gastroenterol. 2021;116(6):1156–81. https://pubmed.ncbi.nlm.nih.gov/33767108/

3379

Leth PM, Gregersen M. Ethylene glycol poisoning. Forensic Sci Int. 2005;155(2–3):179–84. https://pubmed.ncbi.nlm.nih.gov/16226155/

3380

Serrano-Falcón B, Rey E. The safety of available treatments for chronic constipation. Expert Opin Drug Saf. 2017;16(11):1243–53. https://pubmed.ncbi.nlm.nih.gov/28756692/

3381

Lacy BE, Shea EP, Manuel M, Abel JL, Jiang H, Taylor DCA. Lessons learned: chronic idiopathic constipation patient experiences with over-the-counter medications. PLoS One. 2021;16(1):e0243318. https://pubmed.ncbi.nlm.nih.gov/33428631/

3382

Lucak S, Lunsford TN, Harris LA. Evaluation and treatment of constipation in the geriatric population. Clin Geriatr Med. 2021;37(1):85–102. https://pubmed.ncbi.nlm.nih.gov/33213776/

3383

Annells M, Koch T. Older people seeking solutions to constipation: the laxative mire. J Clin Nurs. 2002;11(5):603–12. https://pubmed.ncbi.nlm.nih.gov/12201887/

3384

Wilson PB. Associations between physical activity and constipation in adult Americans: results from the National Health and Nutrition Examination Survey. Neurogastroenterol Motil. 2020;32(5):e13789. https://pubmed.ncbi.nlm.nih.gov/31905422/

3385

Liu F, Kondo T, Toda Y. Brief physical inactivity prolongs colonic transit time in elderly active men. Int J Sports Med. 1993;14(8):465–7. https://pubmed.ncbi.nlm.nih.gov/8300274/

3386

Asnicar F, Leeming ER, Dimidi E, et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut. 2021;70(9):1665–74. https://pubmed.ncbi.nlm.nih.gov/33722860/

3387

Gao R, Tao Y, Zhou C, et al. Exercise therapy in patients with constipation: a systematic review and meta-analysis of randomized controlled trials. Scand J Gastroenterol. 2019;54(2):169–77. https://pubmed.ncbi.nlm.nih.gov/30843436/

3388

Mari A, Mahamid M, Amara H, Baker FA, Yaccob A. Chronic constipation in the elderly patient: updates in evaluation and management. Korean J Fam Med. 2020;41(3):139–45. https://pubmed.ncbi.nlm.nih.gov/32062960/

3389

Pont LG, Fisher M, Williams K. Appropriate use of laxatives in the older person. Drugs Aging. 2019;36(11):999–1005. https://pubmed.ncbi.nlm.nih.gov/31478168/

3390

Burkitt DP. A deficiency of dietary fiber may be one cause of certain colonic and venous disorders. Am J Dig Dis. 1976;21(2):104–8. https://pubmed.ncbi.nlm.nih.gov/1274909/

3391

Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012;142(7):1390S-401S. https://pubmed.ncbi.nlm.nih.gov/22649260/

3392

Sanjoaquin MA, Appleby PN, Spencer EA, Key TJ. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20630 men and women in EPIC-Oxford. Public Health Nutr. 2004 Feb;7(1):77–83. https://pubmed.ncbi.nlm.nih.gov/14972075/

3393

Schmier JK, Miller PE, Levine JA, et al. Cost savings of reduced constipation rates attributed to increased dietary fiber intakes: a decision-analytic model. BMC Public Health. 2014;14:374. https://pubmed.ncbi.nlm.nih.gov/24739472/

3394

Oh SJ, Fuller G, Patel D, et al. Chronic constipation in the United States: results from a population-based survey assessing healthcare seeking and use of pharmacotherapy. Am J Gastroenterol. 2020;115(6):895–905. https://pubmed.ncbi.nlm.nih.gov/32324606/

3395

Christodoulides S, Dimidi E, Fragkos KC, Farmer AD, Whelan K, Scott SM. Systematic review with meta-analysis: effect of fibre supplementation on chronic idiopathic constipation in adults. Aliment Pharmacol Ther. 2016;44(2):103–16. https://pubmed.ncbi.nlm.nih.gov/27170558/

3396

Staller K, Cash BD. Myths and misconceptions about constipation: a new view for the 2020s. Am J Gastroenterol. 2020;115(11):1741–5. https://pubmed.ncbi.nlm.nih.gov/33156087/

3397

Jalanka J, Major G, Murray K, et al. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int J Mol Sci. 2019;20(2):E433. https://pubmed.ncbi.nlm.nih.gov/30669509/

3398

Hefny AF, Ayad AZ, Matev N, Bashir MO. Intestinal obstruction caused by a laxative drug (Psyllium): a case report and review of the literature. Int J Surg Case Rep. 2018;52:59–62. https://pubmed.ncbi.nlm.nih.gov/30321826/

3399

Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16. https://pubmed.ncbi.nlm.nih.gov/33208922/

3400

Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/

3401

Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021;18(2):101–16. https://pubmed.ncbi.nlm.nih.gov/33208922/

3402

Maskarinec G, Takata Y, Pagano I, et al. Trends and dietary determinants of overweight and obesity in a multiethnic population. Obesity (Silver Spring). 2006;14(4):717–26. https://pubmed.ncbi.nlm.nih.gov/16741275/

3403

Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88. https://pubmed.ncbi.nlm.nih.gov/24389767/

3404

Fatahi S, Matin SS, Sohouli MH, et al. Association of dietary fiber and depression symptom: a systematic review and meta-analysis of observational studies. Complement Ther Med. 2021;56:102621. https://pubmed.ncbi.nlm.nih.gov/33220451/

3405

Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73. https://pubmed.ncbi.nlm.nih.gov/25143474/

3406

Threapleton DE, Greenwood DC, Evans CEL, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/

3407

Wolever TM, Jenkins DJ. What is a high fiber diet? Adv Exp Med Biol. 1997;427:35–42. https://pubmed.ncbi.nlm.nih.gov/9361828/

3408

Shaper AG, Jones KW. Serum-cholesterol, diet, and coronary heart-disease in Africans and Asians in Uganda: 1959. Int J Epidemiol. 2012;41(5):1221–5. https://pubmed.ncbi.nlm.nih.gov/23045195/

3409

Singh SA, Trowell HC. A case of coronary heart disease in an African. East Afr Med J. 1956;33(10):391–4. https://pubmed.ncbi.nlm.nih.gov/13375489/

3410

Ikem I, Sumpio BE. Cardiovascular disease: the new epidemic in sub-Saharan Africa. Vascular. 2011;19(6):301–7. https://pubmed.ncbi.nlm.nih.gov/21940758/

3411

Burkitt DP, Walker AR, Painter NS. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet. 1972;2(7792):1408–12. https://pubmed.ncbi.nlm.nih.gov/4118696/

3412

Dietary fiber market to reach $3.25 billion by 2017. Neutraceuticals World. https://nutraceuticalsworld.com/contents/view_breaking-news/2012–10–29/dietary-fiber-market-to-reach-325-billion-by-2017. Published October 29, 2012. Accessed March 29, 2022.; https://nutraceuticalsworld.com/contents/view_breaking-news/2012-10-29/dietary-fiber-market-to-reach-325-billion-by-2017

3413

Eastwood M, Kritchevsky D. Dietary fiber: how did we get where we are? Annu Rev Nutr. 2005;25:1–8. https://pubmed.ncbi.nlm.nih.gov/16011456/

3414

Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879. https://pubmed.ncbi.nlm.nih.gov/24355537/

3415

Eastwood M, Kritchevsky D. Dietary fiber: how did we get where we are? Annu Rev Nutr. 2005;25:1–8. https://pubmed.ncbi.nlm.nih.gov/16011456/

3416

McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):90–7. https://pubmed.ncbi.nlm.nih.gov/25972618/

3417

Agricultural Research Service, United States Department of Agriculture. Seeds, flaxseeds. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients. Published April 1, 2019. Accessed February 22, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients

3418

Soltanian N, Janghorbani M. A randomized trial of the effects of flaxseed to manage constipation, weight, glycemia, and lipids in constipated patients with type 2 diabetes. Nutr Metab (Lond). 2018;15:36. https://pubmed.ncbi.nlm.nih.gov/29760761/

3419

Soltanian N, Janghorbani M. Effect of flaxseed or psyllium vs. placebo on management of constipation, weight, glycemia, and lipids: a randomized trial in constipated patients with type 2 diabetes. Clin Nutr ESPEN. 2019;29:41–8. https://pubmed.ncbi.nlm.nih.gov/30661699/

3420

Sun J, Bai H, Ma J, et al. Effects of flaxseed supplementation on functional constipation and quality of life in a Chinese population: a randomized trial. Asia Pac J Clin Nutr. 2020;29(1):61–7. https://pubmed.ncbi.nlm.nih.gov/32229443/

3421

Hongisto SM, Paajanen L, Saxelin M, Korpela R. A combination of fibre-rich rye bread and yoghurt containing Lactobacillus GG improves bowel function in women with self-reported constipation. Eur J Clin Nutr. 2006;60(3):319–24. https://pubmed.ncbi.nlm.nih.gov/16251881/

3422

Almario CV, Almario AA, Cunningham ME, Fouladian J, Spiegel BMR. Old farts – fact or fiction? Results from a population-based survey of 16,000 Americans examining the association between age and flatus. Clin Gastroenterol Hepatol. 2017;15(8):1308–10. https://pubmed.ncbi.nlm.nih.gov/28344066/

3423

Behm RM. A special recipe to banish constipation. Geriatr Nurs. 1985;6(4):216–7. https://pubmed.ncbi.nlm.nih.gov/2989122/

3424

Hull MA, McIntire DD, Atnip SD, et al. Randomized trial comparing 2 fiber regimens for the reduction of symptoms of constipation. Female Pelvic Med Reconstr Surg. 2011;17(3):128–33. https://pubmed.ncbi.nlm.nih.gov/22453784/

3425

Lever E, Cole J, Scott SM, Emery PW, Whelan K. Systematic review: the effect of prunes on gastrointestinal function. Aliment Pharmacol Ther. 2014;40(7):750–8. https://pubmed.ncbi.nlm.nih.gov/25109788/

3426

Sanjoaquin MA, Appleby PN, Spencer EA, Key TJ. Nutrition and lifestyle in relation to bowel movement frequency: a cross-sectional study of 20 630 men and women in EPIC – Oxford. Public Health Nutr. 2004;7(1):77–83. https://pubmed.ncbi.nlm.nih.gov/14972075/

3427

Attaluri A, Donahoe R, Valestin J, Brown K, Rao SSC. Randomised clinical trial: dried plums (prunes) vs. psyllium for constipation. Aliment Pharmacol Ther. 2011;33(7):822–8. https://pubmed.ncbi.nlm.nih.gov/21323688/

3428

Baek HI, Ha KC, Kim HM, et al. Randomized, double-blind, placebo-controlled trial of Ficus carica paste for the management of functional constipation. Asia Pac J Clin Nutr. 2016;25(3):487–96. https://pubmed.ncbi.nlm.nih.gov/27440682/

3429

Venancio VP, Kim H, Sirven MA, et al. Polyphenol-rich mango (Mangifera indica L.) ameliorate functional constipation symptoms in humans beyond equivalent amount of fiber. Mol Nutr Food Res. 2018;62(12):e1701034. https://pubmed.ncbi.nlm.nih.gov/29733520/

3430

Ojo B, El-Rassi GD, Payton ME, et al. Mango supplementation modulates gut microbial dysbiosis and short-chain fatty acid production independent of body weight reduction in C57BL/6 mice fed a high-fat diet. J Nutr. 2016;146(8):1483–91. https://pubmed.ncbi.nlm.nih.gov/27358411/

3431

Kim H, Venancio VP, Fang C, Dupont AW, Talcott ST, Mertens-Talcott SU. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res. 2020;75:85–94. https://pubmed.ncbi.nlm.nih.gov/32109839/

3432

What are the key statistics about colorectal cancer? American Cancer Society website. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics. Updated January 12, 2022. Accessed March 29, 2022.; https://www.cancer.org/cancer/types/colon-rectal-cancer/about/key-statistics.html

3433

American Cancer Society. Cancer Facts & Figures 2014. American Cancer Society; 2014. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2014.html

3434

U.S. Preventive Services Task Force. Screening for colorectal cancer. U.S. Preventive Services Task Force website. http://www.uspreventiveservicestaskforce.org/Home/GetFile/1/467/colcancsumm/pdf. Accessed March 29, 2022.; https://www.uspreventiveservicestaskforce.org/Home/GetFile/1/467/colcancsumm/pdf

3435

Wender RC. Colorectal cancer screening should begin at 45. J Gastroenterol Hepatol. 2020;35(9):1461–3. https://pubmed.ncbi.nlm.nih.gov/32944996/

3436

Anderson JC, Samadder JN. To screen or not to screen adults 45–49 years of age: that is the question. Am J Gastroenterol. 2018;113(12):1750–3. https://pubmed.ncbi.nlm.nih.gov/30385833/

3437

Davidson KW, Barry MJ, Mangione CM, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(19):1965–77. https://pubmed.ncbi.nlm.nih.gov/34003218/

3438

Mannucci A, Zuppardo RA, Rosati R, Leo MD, Perea J, Cavestro GM. Colorectal cancer screening from 45 years of age: thesis, antithesis and synthesis. World J Gastroenterol. 2019;25(21):2565–80. https://pubmed.ncbi.nlm.nih.gov/31210710/

3439

Anderson JC, Samadder JN. To screen or not to screen adults 45–49 years of age: that is the question. Am J Gastroenterol. 2018;113(12):1750–3. https://pubmed.ncbi.nlm.nih.gov/30385833/

3440

Hussan H, Patel A, Le Roux M, et al. Rising incidence of colorectal cancer in young adults corresponds with increasing surgical resections in obese patients. Clin Transl Gastroenterol. 2020;11(4):e00160. https://pubmed.ncbi.nlm.nih.gov/32352680/

3441

Dairi O, Anderson JC, Butterly LF. Why is colorectal cancer increasing in younger age groups in the United States? Expert Rev Gastroenterol Hepatol. 2021;15(6):623–32. https://pubmed.ncbi.nlm.nih.gov/33480301/

3442

U.S. Cancer Statistics Working Group. U.S. Cancer Statistics data visualizations tool, based on 2020 submission data (1999–2018). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. www.cdc.gov/cancer/dataviz. Published June 2021. Accessed May 11, 2022.; https://gis.cdc.gov/Cancer/USCS/?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcancer%2Fdataviz%2Findex.htm#/AtAGlance/

3443

Khan AM, Mucci LA. Concerning trends in colorectal cancer in the wake of Chadwick Boseman’s death. J Cancer Policy. 2020;26:100260. https://pubmed.ncbi.nlm.nih.gov/35656888/

3444

Mueller NM, Hyams T, King-Marshall EC, Curbow BA. Colorectal cancer knowledge and perceptions among individuals below the age of 50. Psychooncology. 2022;31(3):436–41. https://pubmed.ncbi.nlm.nih.gov/34546622/

3445

Imperiale TF, Kahi CJ, Rex DK. Lowering the starting age for colorectal cancer screening to 45 years: who will come… and should they? Clin Gastroenterol Hepatol. 2018;16(10):1541–4. https://pubmed.ncbi.nlm.nih.gov/30114484/

3446

Davidson KW, Barry MJ, Mangione CM, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2021;325(19):1965–77. https://pubmed.ncbi.nlm.nih.gov/34003218/

3447

Yabroff KR, Klabunde CN, Yuan G, et al. Are physicians’ recommendations for colorectal cancer screening guideline – consistent? J Gen Intern Med. 2011;26(2):177–84. https://pubmed.ncbi.nlm.nih.gov/20949328/

3448

Swan H, Siddiqui AA, Myers RE. International colorectal cancer screening programs: population contact strategies, testing methods and screening rates. Pract Gastroenter. 2012;36(8):20–9. https://www.researchgate.net/publication/286884668_International_colorectal_cancer_screening_programs_Population_contact_strategies_testing_methods_and_screening_rates

3449

Swan H, Siddiqui AA, Myers RE. International colorectal cancer screening programs: population contact strategies, testing methods and screening rates. Pract Gastroenter. 2012;36(8):20–9. https://www.researchgate.net/publication/286884668_International_colorectal_cancer_screening_programs_Population_contact_strategies_testing_methods_and_screening_rates

3450

Butterfield S. Changes coming for colon cancer screening. ACP Internist. 2014;34(7):10–11. https://acpinternist.org/archives/2014/07/colonoscopy.htm

3451

Hoffman RM, Levy BT, Allison JE. Rising use of multitarget stool DNA testing for colorectal cancer. JAMA Netw Open. 2021;4(9):e2122328. https://pubmed.ncbi.nlm.nih.gov/34473264/

3452

Wang K, Ma W, Wu K, et al. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: a nationwide cohort study. PLoS Med. 2021;18(2):e1003522. https://pubmed.ncbi.nlm.nih.gov/33524029/

3453

Larsen IK, Grotmol T, Almendingen K, Hoff G. Impact of colorectal cancer screening on future lifestyle choices: a three-year randomized controlled trial. Clin Gastroenterol Hepatol. 2007;5(4):477–83. https://pubmed.ncbi.nlm.nih.gov/17363335/

3454

Hoff G, Thiis-Evensen E, Grotmol T, Sauar J, Vatn MH, Moen IE. Do undesirable effects of screening affect all-cause mortality in flexible sigmoidoscopy programmes? Experience from the Telemark Polyp Study 1983–1996. Eur J Cancer Prev. 2001;10(2):131–7. https://pubmed.ncbi.nlm.nih.gov/19483252/

3455

Berstad P, Løberg M, Larsen IK, et al. Long-term lifestyle changes after colorectal cancer screening: randomised controlled trial. Gut. 2015;64(8):1268–76. https://pubmed.ncbi.nlm.nih.gov/25183203/

3456

Wang K, Ma W, Wu K, et al. Healthy lifestyle, endoscopic screening, and colorectal cancer incidence and mortality in the United States: a nationwide cohort study. PLoS Med. 2021;18(2):e1003522. https://pubmed.ncbi.nlm.nih.gov/33524029/

3457

Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control. 2000;11(7):579–88. https://pubmed.ncbi.nlm.nih.gov/10977102/

3458

O’Keefe SJD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://pubmed.ncbi.nlm.nih.gov/25919227/

3459

O’Keefe SJD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://pubmed.ncbi.nlm.nih.gov/25919227/

3460

Weber C. Nutrition. Diet change alters microbiota and might affect cancer risk. Nat Rev Gastroenterol Hepatol. 2015;12(6):314. https://pubmed.ncbi.nlm.nih.gov/25963512/

3461

Zhao Y, Zhan J, Wang Y, Wang D. The relationship between plant-based diet and risk of digestive system cancers: a meta-analysis based on 3,059,009 subjects. Front Public Health. 2022;10. https://pubmed.ncbi.nlm.nih.gov/35719615/

3462

McCarty MF. Mortality from Western cancers rose dramatically among African-Americans during the 20th century: are dietary animal products to blame? Med Hypotheses. 2001;57(2):169–74. https://pubmed.ncbi.nlm.nih.gov/11461167/

3463

Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/

3464

Wieland LS, Shrestha N, Lassi ZS, Panda S, Chiaramonte D, Skoetz N. Yoga for treating urinary incontinence in women. Cochrane Database Syst Rev. 2019;2:CD012668. https://pubmed.ncbi.nlm.nih.gov/30816997/

3465

Pearlman A, Kreder K. Evaluation and treatment of urinary incontinence in the aging male. Postgrad Med. 2020;132(sup4):9–17. https://pubmed.ncbi.nlm.nih.gov/33017202/

3466

Faleiro DJA, Menezes EC, Capeletto E, Fank F, Porto RM, Mazo GZ. Association of physical activity with urinary incontinence in older women: a systematic review. J Aging Phys Act. 2019;27(4):906–13. https://pubmed.ncbi.nlm.nih.gov/30859902/

3467

Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/

3468

Muller N. Myths about incontinence in aging adults. Ostomy Wound Manage. 2009;55(5):22. https://pubmed.ncbi.nlm.nih.gov/20560204/

3469

Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/

3470

Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/

3471

Pizzol D, Demurtas J, Celotto S, et al. Urinary incontinence and quality of life: a systematic review and meta-analysis. Aging Clin Exp Res. 2021;33(1):25–35. https://pubmed.ncbi.nlm.nih.gov/32964401/

3472

Milsom I, Gyhagen M. The prevalence of urinary incontinence. Climacteric. 2019;22(3):217–22. https://pubmed.ncbi.nlm.nih.gov/30572737/

3473

Ashton-Miller JA, DeLancey JOL. Functional anatomy of the female pelvic floor. Ann N Y Acad Sci. 2007;1101:266–96. https://pubmed.ncbi.nlm.nih.gov/17416924/

3474

Kuh D, Cardozo L, Hardy R. Urinary incontinence in middle aged women: childhood enuresis and other lifetime risk factors in a British prospective cohort. J Epidemiol Community Health. 1999;53(8):453–8. https://pubmed.ncbi.nlm.nih.gov/10562862/

3475

Danforth KN, Townsend MK, Lifford K, Curhan GC, Resnick NM, Grodstein F. Risk factors for urinary incontinence among middle-aged women. Am J Obstet Gynecol. 2006;194(2):339–45. https://pubmed.ncbi.nlm.nih.gov/16458626/

3476

Robinson D, Giarenis I, Cardozo L. You are what you eat: the impact of diet on overactive bladder and lower urinary tract symptoms. Maturitas. 2014;79(1):8–13. https://pubmed.ncbi.nlm.nih.gov/25033724/

3477

Imamura M, Williams K, Wells M, McGrother C. Lifestyle interventions for the treatment of urinary incontinence in adults. Cochrane Database Syst Rev. 2015;(12):CD003505. https://pubmed.ncbi.nlm.nih.gov/26630349/

3478

Subak LL, Wing R, West DS, et al. Weight loss to treat urinary incontinence in overweight and obese women. N Engl J Med. 2009;360(5):481–90. https://pubmed.ncbi.nlm.nih.gov/19179316/

3479

Stewart WF, Van Rooyen JB, Cundiff GW, et al. Prevalence and burden of overactive bladder in the United States. World J Urol. 2003;20(6):327–36. https://pubmed.ncbi.nlm.nih.gov/12811491/

3480

Flore K, Fauber J, Wynn M. Drug firms helped create $3 billion overactive bladder market. Milwaukee Journal Sentinel. https://www.jsonline.com/story/news/investigations/2016/10/16/overactive-bladder-drug-companies-helped-create-3-billion-market/92030360/. Published October 15, 2016. Accessed August 24, 2022.; https://www.jsonline.com/story/news/investigations/2016/10/16/overactive-bladder-drug-companies-helped-create-3-billion-market/92030360/

3481

Mitcheson HD, Samanta S, Muldowney K, et al. Vibegron (RVT-901/MK-4618/KRP-114V) administered once daily as monotherapy or concomitantly with tolterodine in patients with an overactive bladder: a multicenter, phase IIb, randomized, double-blind, controlled trial. Eur Urol. 2019;75(2):274–82. https://pubmed.ncbi.nlm.nih.gov/30661513/

3482

Cho A, Eidelberg A, Butler DJ, et al. Efficacy of daily intake of dried cranberry 500 mg in women with overactive bladder: a randomized, double-blind, placebo controlled study. J Urol. 2021;205(2):507–13. https://pubmed.ncbi.nlm.nih.gov/32945735/

3483

Ernst M, Gonka J, Povcher O, Kim J. Diet modification for overactive bladder: an evidence-based review. Curr Bladder Dysfunct Rep. 2015;10(1):25–30. https://link.springer.com/article/10.1007/s11884-014-0285-0

3484

Dallosso H, Matthews R, McGrother C, Donaldson M. Diet as a risk factor for the development of stress urinary incontinence: a longitudinal study in women. Eur J Clin Nutr. 2004;58(6):920–6. https://pubmed.ncbi.nlm.nih.gov/15164113/

3485

Robinson D, Giarenis I, Cardozo L. You are what you eat: the impact of diet on overactive bladder and lower urinary tract symptoms. Maturitas. 2014;79(1):8–13. https://pubmed.ncbi.nlm.nih.gov/25033724/

3486

Urinary Incontinence and Pelvic Organ Prolapse in Women: Management. National Institute for Health and Care Excellence (NICE); 2019. https://pubmed.ncbi.nlm.nih.gov/31008559/

3487

Burkhard FC, Bosch JLHR, Cruz F, et al. EAU guidelines on urinary incontinence. Vol 3. Eur Urol. 2011;59(3):387–400. https://pubmed.ncbi.nlm.nih.gov/21130559/

3488

Le Berre M, Presse N, Morin M, et al. What do we really know about the role of caffeine on urinary tract symptoms? A scoping review on caffeine consumption and lower urinary tract symptoms in adults. Neurourol Urodyn. 2020;39(5):1217–33. https://pubmed.ncbi.nlm.nih.gov/32270903/

3489

Sun S, Liu D, Jiao Z. Coffee and caffeine intake and risk of urinary incontinence: a meta-analysis of observational studies. BMC Urol. 2016;16(1):61. https://pubmed.ncbi.nlm.nih.gov/27716171/

3490

Muller N. Myths about incontinence in aging adults. Ostomy Wound Manage. 2009;55(5):22. https://pubmed.ncbi.nlm.nih.gov/20560204/

3491

Dasgupta J, Elliott RA, Doshani A, Tincello DG. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca2+ influx. Toxicol Appl Pharmacol. 2006;217(2):216–24. https://pubmed.ncbi.nlm.nih.gov/17046038/

3492

Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/

3493

Riemsma R, Hagen S, Kirschner-Hermanns R, et al. Can incontinence be cured? A systematic review of cure rates. BMC Med. 2017;15(1):63. https://pubmed.ncbi.nlm.nih.gov/28335792/

3494

Wagg A, Compion G, Fahey A, Siddiqui E. Persistence with prescribed antimuscarinic therapy for overactive bladder: a UK experience. BJU Int. 2012;110(11):1767–74. https://pubmed.ncbi.nlm.nih.gov/22409769/

3495

Hu JS, Pierre EF. Urinary incontinence in women: evaluation and management. Am Fam Physician. 2019;100(6):339–48. https://pubmed.ncbi.nlm.nih.gov/31524367/

3496

Riemsma R, Hagen S, Kirschner-Hermanns R, et al. Can incontinence be cured? A systematic review of cure rates. BMC Med. 2017;15(1):63. https://pubmed.ncbi.nlm.nih.gov/28335792/

3497

Cody JD, Jacobs ML, Richardson K, Moehrer B, Hextall A. Oestrogen therapy for urinary incontinence in post-menopausal women. Cochrane Database Syst Rev. 2012;2012(10):CD001405. https://pubmed.ncbi.nlm.nih.gov/23076892/

3498

Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/

3499

Cody JD, Jacobs ML, Richardson K, Moehrer B, Hextall A. Oestrogen therapy for urinary incontinence in post-menopausal women. Cochrane Database Syst Rev. 2012;2012(10):CD001405. https://pubmed.ncbi.nlm.nih.gov/23076892/

3500

Russo E, Caretto M, Giannini A, et al. Management of urinary incontinence in postmenopausal women: an EMAS clinical guide. Maturitas. 2021;143:223–30. https://pubmed.ncbi.nlm.nih.gov/33008675/

3501

Kegel AH. Stress incontinence and genital relaxation; a nonsurgical method of increasing the tone of sphincters and their supporting structures. Ciba Clin Symp. 1952;4(2):35–51. https://pubmed.ncbi.nlm.nih.gov/14905555/

3502

Kegel exercises: a how-to guide for women. Mayo Clinic. https://www.mayoclinic.org/healthy-lifestyle/womens-health/in-depth/kegel-exercises/art-20045283. Published September 15, 2020. Accessed August 24, 2022.; https://www.mayoclinic.org/healthy-lifestyle/womens-health/in-depth/kegel-exercises/art-20045283

3503

Specht JKP. 9 myths of incontinence in older adults: both clinicians and the over-65 set need to know more. Am J Nurs. 2005;105(6):58–68. https://pubmed.ncbi.nlm.nih.gov/15930873/

3504

Nazarpour S, Simbar M, Ramezani Tehrani F, Alavi Majd H. Effects of sex education and Kegel exercises on the sexual function of postmenopausal women: a randomized clinical trial. J Sex Med. 2017;14(7):959–67. https://pubmed.ncbi.nlm.nih.gov/28601506/

3505

Vaughan CP, Markland AD. Urinary incontinence in women. Ann Intern Med. 2020;172(3):ITC17. https://pubmed.ncbi.nlm.nih.gov/32016335/

3506

Kilpatrick KA, Paton P, Subbarayan S, et al. Non-pharmacological, non-surgical interventions for urinary incontinence in older persons: a systematic review of systematic reviews. The SENATOR project ONTOP series. Maturitas. 2020;133:42–8. https://pubmed.ncbi.nlm.nih.gov/32005422/

3507

Dumoulin C, Cacciari LP, Hay-Smith EJC. Pelvic floor muscle training versus no treatment, or inactive control treatments, for urinary incontinence in women. Cochrane Database Syst Rev. 2018;(10). https://pubmed.ncbi.nlm.nih.gov/30288727/

3508

Faleiro DJA, Menezes EC, Capeletto E, Fank F, Porto RM, Mazo GZ. Association of physical activity with urinary incontinence in older women: a systematic review. J Aging Phys Act. 2019;27(4):906–13. https://pubmed.ncbi.nlm.nih.gov/30859902/

3509

Huang AJ, Chesney M, Lisha N, et al. A group-based yoga program for urinary incontinence in ambulatory women: feasibility, tolerability, and change in incontinence frequency over 3 months in a single-center randomized trial. Am J Obstet Gynecol. 2019;220(1):87.e1–13. https://pubmed.ncbi.nlm.nih.gov/30595143/

3510

Wei JT, Calhoun E, Jacobsen SJ. Urologic Diseases in America Project: benign prostatic hyperplasia. J Urol. 2008;179(5 Suppl):S75–80. https://pubmed.ncbi.nlm.nih.gov/18405761/

3511

Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/

3512

Trumble BC, Stieglitz J, Rodriguez DE, Linares EC, Kaplan HS, Gurven MD. Challenging the inevitability of prostate enlargement: low levels of benign prostatic hyperplasia among Tsimane forager-horticulturalists. J Gerontol A Biol Sci Med Sci. 2015;70(10):1262–8. https://pubmed.ncbi.nlm.nih.gov/25922348/

3513

Taub DA, Wei JT. The economics of benign prostatic hyperplasia and lower urinary tract symptoms in the United States. Curr Urol Rep. 2006;7(4):272–81. https://pubmed.ncbi.nlm.nih.gov/16930498/

3514

Zhang AY, Xu X. Prevalence, burden, and treatment of lower urinary tract symptoms in men aged 50 and older: a systematic review of the literature. SAGE Open Nurs. 2018;4:2377960818811773. https://pubmed.ncbi.nlm.nih.gov/33415211/

3515

Traish AM, Mulgaonkar A, Giordano N. The dark side of 5a-reductase inhibitors’ therapy: sexual dysfunction, high Gleason grade prostate cancer and depression. Korean J Urol. 2014;55(6):367–79. https://pubmed.ncbi.nlm.nih.gov/24955220/

3516

Cindolo L, Pirozzi L, Fanizza C, et al. Drug adherence and clinical outcomes for patients under pharmacological therapy for lower urinary tract symptoms related to benign prostatic hyperplasia: population-based cohort study. Eur Urol. 2015;68(3):418–25. https://pubmed.ncbi.nlm.nih.gov/25465970/

3517

Roehrborn CG, Bruskewitz R, Nickel JC, et al. Sustained decrease in incidence of acute urinary retention and surgery with finasteride for 6 years in men with benign prostatic hyperplasia. J Urol. 2004;171(3):1194–8. https://pubmed.ncbi.nlm.nih.gov/14767299/

3518

Irwig MS. How routine pharmacovigilance failed to identify finasteride’s persistent sexual side effects. Andrology. 2022;10(2):207–8. https://pubmed.ncbi.nlm.nih.gov/34713622/

3519

Zhang AY, Xu X. Prevalence, burden, and treatment of lower urinary tract symptoms in men aged 50 and older: a systematic review of the literature. SAGE Open Nurs. 2018;4:2377960818811773. https://pubmed.ncbi.nlm.nih.gov/33415211/

3520

Metcalfe C, Poon KS. Long-term results of surgical techniques and procedures in men with benign prostatic hyperplasia. Curr Urol Rep. 2011;12(4):265–73. https://pubmed.ncbi.nlm.nih.gov/21484456/

3521

Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/

3522

Burnett AL, Wein AJ. Benign prostatic hyperplasia in primary care: what you need to know. J Urol. 2006;175(3 Pt 2):S19–24. https://pubmed.ncbi.nlm.nih.gov/16458735/

3523

Gu F. Epidemiological survey of benign prostatic hyperplasia and prostatic cancer in China. Chin Med J. 2000;113(4):299–302. https://pubmed.ncbi.nlm.nih.gov/11775222/

3524

Kraft TS, Stieglitz J, Trumble BC, Martin M, Kaplan H, Gurven M. Nutrition transition in 2 lowland Bolivian subsistence populations. Am J Clin Nutr. 2018;108(6):1183–95. https://pubmed.ncbi.nlm.nih.gov/30383188/

3525

Trumble BC, Stieglitz J, Rodriguez DE, Linares EC, Kaplan HS, Gurven MD. Challenging the inevitability of prostate enlargement: low levels of benign prostatic hyperplasia among Tsimane forager-horticulturalists. J Gerontol A Biol Sci Med Sci. 2015;70(10):1262–8. https://pubmed.ncbi.nlm.nih.gov/25922348/

3526

Cicero AFG, Allkanjari O, Busetto GM, et al. Nutraceutical treatment and prevention of benign prostatic hyperplasia and prostate cancer. Arch Ital Urol Androl. 2019;91(3). https://pubmed.ncbi.nlm.nih.gov/31577095/

3527

Koskimäki J, Hakama M, Huhtala H, Tammela TL. Association of dietary elements and lower urinary tract symptoms. Scand J Urol Nephrol. 2000;34(1):46–50. https://pubmed.ncbi.nlm.nih.gov/10757270/

3528

Bravi F, Bosetti C, Dal Maso L, et al. Food groups and risk of benign prostatic hyperplasia. Urology. 2006;67(1):73–9. https://pubmed.ncbi.nlm.nih.gov/16413336/

3529

Galeone C, Pelucchi C, Talamini R, et al. Onion and garlic intake and the odds of benign prostatic hyperplasia. Urology. 2007;70(4):672–6. https://pubmed.ncbi.nlm.nih.gov/17991535/

3530

Bravi F, Bosetti C, Dal Maso L, et al. Food groups and risk of benign prostatic hyperplasia. Urology. 2006;67(1):73–9. https://pubmed.ncbi.nlm.nih.gov/16413336/

3531

Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed April 15, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf

3532

Wong SYS, Lau WWY, Leung PC, Leung JCS, Woo J. The association between isoflavone and lower urinary tract symptoms in elderly men. Br J Nutr. 2007;98(6):1237–42. https://pubmed.ncbi.nlm.nih.gov/17640419/

3533

Zhou Z, Wang Z, Chen C, et al. Transurethral prostate vaporization using an oval electrode in 82 cases of benign prostatic hyperplasia. Chin Med J. 1998;111(1):52–5. https://pubmed.ncbi.nlm.nih.gov/10322654/

3534

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–9. https://pubmed.ncbi.nlm.nih.gov/16094059/

3535

Barnard RJ, Gonzalez JH, Liva ME, Ngo TH. Effects of a low-fat, high-fiber diet and exercise program on breast cancer risk factors in vivo and tumor cell growth and apoptosis in vitro. Nutr Cancer. 2006;55(1):28–34. https://pubmed.ncbi.nlm.nih.gov/16965238/

3536

Barnard RJ, Kobayashi N, Aronson WJ. Effect of diet and exercise intervention on the growth of prostate epithelial cells. Prostate Cancer Prostatic Dis. 2008;11(4):362–6. https://pubmed.ncbi.nlm.nih.gov/18283296/

3537

Карликовая пальма, произрастающая на восточном побережье Северной Америки. – Примеч. ред.

3538

Keehn A, Taylor J, Lowe FC. Phytotherapy for benign prostatic hyperplasia. Curr Urol Rep. 2016;17(7):53. https://pubmed.ncbi.nlm.nih.gov/27180172/

3539

Trivisonno LF, Sgarbossa N, Alvez GA, et al. Serenoa repens for the treatment of lower urinary tract symptoms due to benign prostatic enlargement: a systematic review and meta-analysis. Investig Clin Urol. 2021;62(5):520–34. https://pubmed.ncbi.nlm.nih.gov/34488251/

3540

Zendehdel A, Ansari M, Khatami F, Mansoursamaei S, Dialameh H. The effect of vitamin D supplementation on the progression of benign prostatic hyperplasia: a randomized controlled trial. Clin Nutr. 2021;40(5):3325–31. https://pubmed.ncbi.nlm.nih.gov/33213976/

3541

Safwat AS, Hasanain A, Shahat A, et al. Cholecalciferol for the prophylaxis against recurrent urinary tract infection among patients with benign prostatic hyperplasia: a randomized, comparative study. World J Urol. 2019;37(7):1347–52. https://pubmed.ncbi.nlm.nih.gov/30361957/

3542

Zhang W, Wang X, Liu Y, et al. Effects of dietary flaxseed lignan extract on symptoms of benign prostatic hyperplasia. J Med Food. 2008;11(2):207–14. https://pubmed.ncbi.nlm.nih.gov/18358071/

3543

Vahlensieck W, Theurer C, Pfitzer E, Patz B, Banik N, Engelmann U. Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urol Int. 2015;94(3):286–95. https://pubmed.ncbi.nlm.nih.gov/25196580/

3544

Assessment report on Cucurbita pepo L., semen. European Medicines Agency. https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-cucurbita-pepo-l-semen_en.pdf. Published September 13, 2011. Accessed August 22, 2022.; https://www.ema.europa.eu/en/medicines/herbal/cucurbitae-semen

3545

Matsuo T, Miyata Y, Sakai H. Effect of salt intake reduction on nocturia in patients with excessive salt intake. Neurourol Urodyn. 2019;38(3):927–33. https://pubmed.ncbi.nlm.nih.gov/30706965/

3546

Bradley CS, Erickson BA, Messersmith EE, et al. Evidence for the impact of diet, fluid intake, caffeine, alcohol and tobacco on lower urinary tract symptoms: a systematic review. J Urol. 2017;198(5):1010–20. https://pubmed.ncbi.nlm.nih.gov/28479236/

3547

Xue Z, Lin Y, Jiang Y, Wei N, Bi J. The evaluation of nocturia in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia and the analysis of the curative effect after medical or placebo therapy for nocturia: a randomized placebo-controlled study. BMC Urol. 2018;18(1):115. https://pubmed.ncbi.nlm.nih.gov/30545338/

3548

Johnson TM II, Sattin RW, Parmelee P, Fultz NH, Ouslander JG. Evaluating potentially modifiable risk factors for prevalent and incident nocturia in older adults. J Am Geriatr Soc. 2005;53(6):1011–6. https://pubmed.ncbi.nlm.nih.gov/15935026/

3549

Tani M, Hirayama A, Torimoto K, Matsushita C, Yamada A, Fujimoto K. Guidance on water intake effectively improves urinary frequency in patients with nocturia. Int J Urol. 2014;21(6):595–600. https://pubmed.ncbi.nlm.nih.gov/24405404/

3550

Soda T, Masui K, Okuno H, Terai A, Ogawa O, Yoshimura K. Efficacy of nondrug lifestyle measures for the treatment of nocturia. J Urol. 2010;184(3):1000–4. https://pubmed.ncbi.nlm.nih.gov/20643422/

3551

Cho SY, Lee SL, Kim IS, Koo DH, Kim HK, Oh SJ. Short-term effects of systematized behavioral modification program for nocturia: a prospective study. Neurourol Urodyn. 2012;31(1):64–8. https://pubmed.ncbi.nlm.nih.gov/21826726/

3552

Johnson TM. The chicken-or-egg dilemma with nocturia: which matters most, the water or the salt? J Clin Hypertens. 2020;22(4):639–41. https://pubmed.ncbi.nlm.nih.gov/32073711/

3553

Matsuo T, Miyata Y, Sakai H. Daily salt intake is an independent risk factor for pollakiuria and nocturia. Int J Urol. 2017;24(5):384–9. https://pubmed.ncbi.nlm.nih.gov/28295650/

3554

Alwis US, Monaghan TF, Haddad R, et al. Dietary considerations in the evaluation and management of nocturia. F1000Res. 2020;9(F1000 Faculty Rev):165. https://pubmed.ncbi.nlm.nih.gov/32185022/

3555

Matsuo T, Miyata Y, Sakai H. Effect of salt intake reduction on nocturia in patients with excessive salt intake. Neurourol Urodyn. 2019;38(3):927–33. https://pubmed.ncbi.nlm.nih.gov/30706965/

3556

Monaghan TF, Michelson KP, Wu ZD, et al. Sodium restriction improves nocturia in patients at a cardiology clinic. J Clin Hypertens (Greenwich). 2020;22(4):633–8. https://pubmed.ncbi.nlm.nih.gov/32049435/

3557

Alwis US, Delanghe J, Dossche L, et al. Could evening dietary protein intake play a role in nocturnal polyuria? J Clin Med. 2020;9(8):E2532. https://pubmed.ncbi.nlm.nih.gov/32764521/

3558

Vidlar A, Student V, Vostalova J, et al. Cranberry fruit powder (Flowens™) improves lower urinary tract symptoms in men: a double-blind, randomized, placebo-controlled study. World J Urol. 2016;34(3):419–24. https://pubmed.ncbi.nlm.nih.gov/26049866/

3559

An YJ, Lee JY, Kim Y, Jun W, Lee YH. Cranberry powder attenuates benign prostatic hyperplasia in rats. J Med Food. 2020;23(12):1296–302. https://pubmed.ncbi.nlm.nih.gov/33136465/

3560

Vidlar A, Vostalova J, Ulrichova J, et al. The effectiveness of dried cranberries (Vaccinium macrocarpon) in men with lower urinary tract symptoms. Br J Nutr. 2010;104(8):1181–9. https://pubmed.ncbi.nlm.nih.gov/20804630/

3561

Vidlar A, Student V, Vostalova J, et al. Cranberry fruit powder (Flowens™) improves lower urinary tract symptoms in men: a double-blind, randomized, placebo-controlled study. World J Urol. 2016;34(3):419–24. https://pubmed.ncbi.nlm.nih.gov/26049866/

3562

Ledda A, Belcaro G, Dugall M, et al. Supplementation with high titer cranberry extract (Anthocran®) for the prevention of recurrent urinary tract infections in elderly men suffering from moderate prostatic hyperplasia: a pilot study. Eur Rev Med Pharmacol Sci. 2016;20(24):5205–9. https://pubmed.ncbi.nlm.nih.gov/28051247/

3563

Spettel S, Chughtai B, Feustel P, Kaufman A, Levin RM, De E. A prospective randomized double-blind trial of grape juice antioxidants in men with lower urinary tract symptoms. Neurourol Urodyn. 2013;32(3):261–5. https://pubmed.ncbi.nlm.nih.gov/22907790/

3564

Edinger MS, Koff WJ. Effect of the consumption of tomato paste on plasma prostate – specific antigen levels in patients with benign prostate hyperplasia. Braz J Med Biol Res. 2006;39(8):1115–9. https://pubmed.ncbi.nlm.nih.gov/16906286/

3565

Durak lker, Yilmaz E, Devrim E, Perk H, Kaçmaz M. Consumption of aqueous garlic extract leads to significant improvement in patients with benign prostate hyperplasia and prostate cancer. Nutr Res. 2003;23(2):199–204. https://www.sciencedirect.com/science/article/abs/pii/S0271531702004955?via%3Dihub

3566

Jani B, Rajkumar C. Ageing and vascular ageing. Postgrad Med J. 2006;82(968):357–62. https://pubmed.ncbi.nlm.nih.gov/16754702/

3567

Mosca L, Ferris A, Fabunmi R, Robertson RM, American Heart Association. Tracking women’s awareness of heart disease: an American Heart Association national study. Circulation. 2004;109(5):573–9. https://pubmed.ncbi.nlm.nih.gov/14761901/

3568

Xu J. Mortality among centenarians in the United States, 2000–2014. NCHS Data Brief. 2016;(233):1–8. https://pubmed.ncbi.nlm.nih.gov/26828422/

3569

Cushman M, Shay CM, Howard VJ, et al. Ten-year differences in women’s awareness related to coronary heart disease: results of the 2019 American Heart Association national survey: a special report from the American Heart Association. Circulation. 2021;143(7):e239–48. https://pubmed.ncbi.nlm.nih.gov/32954796/

3570

Tao J, Qiu Y. All disease stems from vessels. Aging Med (Milton). 2020;3(4):224–5. https://pubmed.ncbi.nlm.nih.gov/33392426/

3571

Jin K. A microcirculatory theory of aging. Aging Dis. 2019;10(3):676–83. https://pubmed.ncbi.nlm.nih.gov/31165010/

3572

Möbius-Winkler S, Linke A, Adams V, Schuler G, Erbs S. How to improve endothelial repair mechanisms: the lifestyle approach. Expert Rev Cardiovasc Ther. 2010;8(4):573–80. https://pubmed.ncbi.nlm.nih.gov/20397830/

3573

Sharma S, Pandey NN, Sinha M, et al. Randomized, double-blind, placebo-controlled trial to evaluate safety and therapeutic efficacy of angiogenesis induced by intraarterial autologous bone marrow-derived stem cells in patients with severe peripheral arterial disease. J Vasc Interv Radiol. 2021;32(2):157–63. https://pubmed.ncbi.nlm.nih.gov/33248918/

3574

Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: how currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev. 2016;159:49–62. https://pubmed.ncbi.nlm.nih.gov/26919825/

3575

Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol (1985). 2007;102(3):847–52. https://pubmed.ncbi.nlm.nih.gov/17158243/

3576

Wang M, Monticone RE, McGraw KR. Proinflammation, profibrosis, and arterial aging. Aging Med (Milton). 2020;3(3):159–68. https://pubmed.ncbi.nlm.nih.gov/33103036/

3577

Weech M, Altowaijri H, Mayneris-Perxachs J, et al. Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating endothelial progenitor cells and decreases numbers of microparticles: findings from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am J Clin Nutr. 2018;107(6):876–82. https://pubmed.ncbi.nlm.nih.gov/29741564/

3578

Shi Q, Hubbard GB, Kushwaha RS, et al. Endothelial senescence after high-cholesterol, high-fat diet challenge in baboons. Am J Physiol Heart Circ Physiol. 2007;292(6):H2913–20. https://pubmed.ncbi.nlm.nih.gov/17277030/

3579

Jeong HS, Kim S, Hong SJ, et al. Black raspberry extract increased circulating endothelial progenitor cells and improved arterial stiffness in patients with metabolic syndrome: a randomized controlled trial. J Med Food. 2016;19(4):346–52. https://pubmed.ncbi.nlm.nih.gov/26891216/

3580

Choi EY, Lee H, Woo JS, et al. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition. 2015;31(9):1131–5. https://pubmed.ncbi.nlm.nih.gov/26233871/

3581

Kim W, Jeong MH, Cho SH, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J. 2006;70(8):1052–7. https://pubmed.ncbi.nlm.nih.gov/16864941/

3582

Keith M, Kuliszewski MA, Liao C, et al. A modified portfolio diet complements medical management to reduce cardiovascular risk factors in diabetic patients with coronary artery disease. Clin Nutr. 2015;34(3):541–8. https://pubmed.ncbi.nlm.nih.gov/25023926/

3583

Steinberg D, Blumenthal S, Carleton RA, et al. Lowering blood cholesterol to prevent heart disease: NIH Consensus Development Conference statement. Nutr Rev. 1985;43(9):283–91. https://pubmed.ncbi.nlm.nih.gov/4058807/

3584

Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/

3585

Roberts WC. It’s the cholesterol, stupid! Am J Cardiol. 2010;106(9):1364–6. https://pubmed.ncbi.nlm.nih.gov/21029840/

3586

Roberts WC. William Clifford Roberts, MD curriculum vitae. http://www.iscvdp.org/docs/WCRoberts-CV.pdf. Accessed May 13, 2022.;http://www.iscvdp.org/storage/app/media/william-clifford-roberts.pdf

3587

Roberts WC. Quantitative extent of atherosclerotic plaque in the major epicardial coronary arteries in patients with fatal coronary heart disease, in coronary endarterectomy specimens, in aorta – coronary saphenous venous conduits, and means to prevent the plaques: a review after studying the coronary arteries for 50 years. Am J Cardiol. 2018;121(11):1413–35. https://pubmed.ncbi.nlm.nih.gov/29753395/

3588

Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/

3589

Fernández-Friera L, Fuster V, López-Melgar B, et al. Normal LDL – cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70(24):2979–91. https://pubmed.ncbi.nlm.nih.gov/29241485/

3590

Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70(24):2992–4. https://pubmed.ncbi.nlm.nih.gov/29241486/

3591

Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/

3592

Fernández-Friera L, Fuster V, López-Melgar B, et al. Normal LDL – cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol. 2017;70(24):2979–91. https://pubmed.ncbi.nlm.nih.gov/29241485/

3593

Gitin A, Pfeffer MA, Hennekens CH. Editorial commentary: the lower the LDL the better but how and how much? Trends Cardiovasc Med. 2018;28(5):355–6. https://pubmed.ncbi.nlm.nih.gov/29428160/

3594

Law MR, Wald NJ. Risk factor thresholds: their existence under scrutiny. BMJ. 2002;324(7353):1570–6. https://pubmed.ncbi.nlm.nih.gov/12089098/

3595

Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/

3596

O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dL: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43(11):2142–6. https://pubmed.ncbi.nlm.nih.gov/15172426/

3597

Anderson JW, Konz EC, Jenkins DJ. Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr. 2000;19(5):578–90. https://pubmed.ncbi.nlm.nih.gov/11022871/

3598

Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/

3599

Law MR, Wald NJ. Risk factor thresholds: their existence under scrutiny. BMJ. 2002;324(7353):1570–6. https://pubmed.ncbi.nlm.nih.gov/12089098/

3600

Roberts WC. Quantitative extent of atherosclerotic plaque in the major epicardial coronary arteries in patients with fatal coronary heart disease, in coronary endarterectomy specimens, in aorta – coronary saphenous venous conduits, and means to prevent the plaques: a review after studying the coronary arteries for 50 years. Am J Cardiol. 2018;121(11):1413–35. https://pubmed.ncbi.nlm.nih.gov/29753395/

3601

Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/

3602

Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/

3603

Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70(24):2992–4. https://pubmed.ncbi.nlm.nih.gov/29241486/

3604

Hong KN, Fuster V, Rosenson RS, Rosendorff C, Bhatt DL. How low to go with glucose, cholesterol, and blood pressure in primary prevention of CVD. J Am Coll Cardiol. 2017;70(17):2171–85. https://pubmed.ncbi.nlm.nih.gov/29050566/

3605

Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://pubmed.ncbi.nlm.nih.gov/21067804/

3606

Guber K, Pemmasani G, Malik A, Aronow WS, Yandrapalli S, Frishman WH. Statins and higher diabetes mellitus risk: incidence, proposed mechanisms, and clinical implications. Cardiol Rev. 2021;29(6):314–22. https://pubmed.ncbi.nlm.nih.gov/32947479/

3607

Hong KN, Fuster V, Rosenson RS, Rosendorff C, Bhatt DL. How low to go with glucose, cholesterol, and blood pressure in primary prevention of CVD. J Am Coll Cardiol. 2017;70(17):2171–85. https://pubmed.ncbi.nlm.nih.gov/29050566/

3608

Glenn AJ, Li J, Lo K, et al. The Portfolio Diet and incident type 2 diabetes: findings from the Women’s Health Initiative prospective cohort study. Diabetes Care. 2023;46(1):28–37. https://pubmed.ncbi.nlm.nih.gov/36162007/

3609

Sliding scale for LDL: how low should you go? The target for the safest amount of “bad” cholesterol continues to drift downward. Harv Heart Lett. 2011;21(12):5. https://pubmed.ncbi.nlm.nih.gov/21991609/

3610

How low should your cholesterol go? Even lower may be better. For those at highest risk, very low cholesterol levels may help prevent a second heart attack or stroke. Health News. 2004;10(10):6. https://pubmed.ncbi.nlm.nih.gov/15584114/

3611

De Biase SG, Fernandes SFC, Gianini RJ, Duarte JLG. Vegetarian diet and cholesterol and triglycerides levels. Arq Bras Cardiol. 2007;88(1):35–9. https://pubmed.ncbi.nlm.nih.gov/17364116/

3612

Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61. https://pubmed.ncbi.nlm.nih.gov/29800598/

3613

The US Burden of Disease Collaborators, Mokdad AH, Ballestros K, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

3614

Huang Z, Xu A, Cheung BMY. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep. 2017;19(4):28. https://pubmed.ncbi.nlm.nih.gov/28337713/

3615

Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies [published correction appears in Lancet. 2003;361(9362):1060]. Lancet. 2002;360(9349):1903–13. https://pubmed.ncbi.nlm.nih.gov/12493255/

3616

Kramer H, Cooper R. Pros and cons of intensive systolic blood pressure lowering. Curr Hypertens Rep. 2018;20(2):16. https://pubmed.ncbi.nlm.nih.gov/29511979/

3617

Kjeldsen SE, Os I, Westheim A. Could adverse events offset the benefit of intensive blood pressure lowering treatment in the Systolic Blood Pressure Intervention Trial? J Hypertens. 2019;37(5):902–4. https://pubmed.ncbi.nlm.nih.gov/30920495/

3618

Fuster V. No such thing as ideal blood pressure: a case for personalized medicine. J Am Coll Cardiol. 2016;67(25):3014–5. https://pubmed.ncbi.nlm.nih.gov/27339499/

3619

Goldhamer A, Lisle D, Parpia B, Anderson SV, Campbell TC. Medically supervised water-only fasting in the treatment of hypertension. J Manipulative Physiol Ther. 2001;24(5):335–9. https://pubmed.ncbi.nlm.nih.gov/11416824/

3620

McDougall J, Litzau K, Haver E, Saunders V, Spiller GA. Rapid reduction of serum cholesterol and blood pressure by a twelve-day, very low fat, strictly vegetarian diet. J Am Coll Nutr. 1995;14(5):491–6. https://pubmed.ncbi.nlm.nih.gov/8522729/

3621

Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/

3622

McGill HC, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol. 1998;82(10B):30T-6T. https://pubmed.ncbi.nlm.nih.gov/9860371/

3623

Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281(8):727–35. https://pubmed.ncbi.nlm.nih.gov/10052443/

3624

Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation. 2008;118(6):672–7. https://pubmed.ncbi.nlm.nih.gov/18678783/

3625

Myerburg RJ, Junttila MJ. 2012. Sudden cardiac death caused by coronary heart disease. Circulation. 28;125(8):1043–52. https://pubmed.ncbi.nlm.nih.gov/22371442/

3626

Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/

3627

Steinberg D, Glass CK, Witztum JL. Evidence mandating earlier and more aggressive treatment of hypercholesterolemia. Circulation. 2008;118(6):672–7. https://pubmed.ncbi.nlm.nih.gov/18678783/

3628

Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5. https://pubmed.ncbi.nlm.nih.gov/15654334/

3629

Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. https://pubmed.ncbi.nlm.nih.gov/16554528/

3630

Robinson JG, Gidding SS. Curing atherosclerosis should be the next major cardiovascular prevention goal. J Am Coll Cardiol. 2014;63(25):2779–85. https://pubmed.ncbi.nlm.nih.gov/24814489/

3631

Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/

3632

Wang N, Fulcher J, Abeysuriya N, et al. Intensive LDL cholesterol – lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327¿037 participants. Lancet Diabetes Endocrinol. 2020;8(1):36–49. https://pubmed.ncbi.nlm.nih.gov/31862150/

3633

Shapiro MD, Bhatt DL. “Cholesterol-years” for ASCVD risk prediction and treatment. J Am Coll Cardiol. 2020;76(13):1517–20. https://pubmed.ncbi.nlm.nih.gov/32972527/

3634

Kaplan H, Thompson RC, Trumble BC, et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet. 2017;389(10080):1730–9. https://pubmed.ncbi.nlm.nih.gov/28320601/

3635

Penson PE, Pirro M, Banach M. LDL–C: lower is better for longer – even at low risk. BMC Med. 2020;18(1):320. https://pubmed.ncbi.nlm.nih.gov/33032586/

3636

Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://pubmed.ncbi.nlm.nih.gov/28444290/

3637

Brown MS, Goldstein JL. Biomedicine. Lowering LDL – not only how low, but how long? Science. 2006;311(5768):1721–3. https://pubmed.ncbi.nlm.nih.gov/16556829/

3638

Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61. https://pubmed.ncbi.nlm.nih.gov/29800598/

3639

O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dL: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43(11):2142–6. https://pubmed.ncbi.nlm.nih.gov/15172426/

3640

Roberts WC. Cholesterol is the cause of atherosclerosis. Am J Cardiol. 2017;120(9):1696. https://pubmed.ncbi.nlm.nih.gov/28847597/

3641

Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis. 2015;242(2):490–5. https://pubmed.ncbi.nlm.nih.gov/26298740/

3642

Diamond DM, Ravnskov U. How statistical deception created the appearance that statins are safe and effective in primary and secondary prevention of cardiovascular disease. Expert Rev Clin Pharmacol. 2015;8(2):201–10. https://pubmed.ncbi.nlm.nih.gov/25672965/

3643

Trewby PN, Reddy AV, Trewby CS, Ashton VJ, Brennan G, Inglis J. Are preventive drugs preventive enough? A study of patients’ expectation of benefit from preventive drugs. Clin Med (Lond). 2002;2(6):527–33. https://pubmed.ncbi.nlm.nih.gov/12528966/

3644

Salami JA, Warraich H, Valero-Elizondo J, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the Medical Expenditure Panel Survey. JAMA Cardiol. 2017;2(1):56–65. https://pubmed.ncbi.nlm.nih.gov/29358195/

3645

Diprose W, Verster F. The preventive-pill paradox: how shared decision making could increase cardiovascular morbidity and mortality. Circulation. 2016;134(21):1599–600. https://pubmed.ncbi.nlm.nih.gov/27881503/

3646

Ziaeian B, Fonarow GC. Statins and the prevention of heart disease. JAMA Cardiol. 2017;2(4):464. https://pubmed.ncbi.nlm.nih.gov/28122083/

3647

ASCVD Risk Estimator Plus. American College of Cardiology. https://tools.acc.org/ASCVD-Risk-Estimator/. Accessed April 3, 2022.; https://tools.acc.org/ASCVD-Risk-Estimator/

3648

Framingham Risk Score. Medscape. https://reference.medscape.com/calculator/framingham-cardiovascular-disease-risk. Accessed April 3, 2022.; https://reference.medscape.com/calculator/252/framingham-risk-score-2008

3649

Reynolds Risk Score. https://www.reynoldsriskscore.org. Accessed April 3, 2022.; https://www.reynoldsriskscore.org/

3650

Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153–67. https://pubmed.ncbi.nlm.nih.gov/30586766/

3651

Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153–67. https://pubmed.ncbi.nlm.nih.gov/30586766/

3652

Curry SJ, Krist AH, Owens DK, et al. Risk assessment for cardiovascular disease with nontraditional risk factors: US Preventive Services Task Force recommendation statement. JAMA. 2018;320(3):272–80. https://pubmed.ncbi.nlm.nih.gov/29998297/

3653

Diamond DM, de Lorgeril M, Kendrick M, Ravnskov U, Rosch PJ. Formal comment on “Systematic review of the predictors of statin adherence for the primary prevention of cardiovascular disease.” PLoS One. 2019;14(1):e0205138. https://pubmed.ncbi.nlm.nih.gov/30653537/

3654

Wei MY, Ito MK, Cohen JD, Brinton EA, Jacobson TA. Predictors of statin adherence, switching, and discontinuation in the USAGE survey: understanding the use of statins in America and gaps in patient education. J Clin Lipidol. 2013;7(5):472–83. https://pubmed.ncbi.nlm.nih.gov/24079289/

3655

Ward NC, Watts GF, Eckel RH. Statin toxicity: mechanistic insights and clinical implications. Circ Res. 2019;124(2):328–50. https://pubmed.ncbi.nlm.nih.gov/30653440/

3656

Zaleski AL, Taylor BA, Thompson PD. Coenzyme Q10 as treatment for statin-associated muscle symptoms – a good idea, but…. Adv Nutr. 2018;9(4):519S-23S. https://pubmed.ncbi.nlm.nih.gov/30032220/

3657

Banach M, Serban C, Sahebkar A, et al. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc. 2015;90(1):24–34. https://pubmed.ncbi.nlm.nih.gov/25440725/

3658

Armour R, Zhou L. Outcomes of statin myopathy after statin withdrawal. J Clin Neuromuscul Dis. 2013;14(3):103–9. https://pubmed.ncbi.nlm.nih.gov/23492461/

3659

Majeed A, Molokhia M. Urgent need to establish the true incidence of the side effects of statins. BMJ. 2014;348:g3650. https://pubmed.ncbi.nlm.nih.gov/24920685/

3660

Finegold JA, Manisty CH, Goldacre B, Barron AJ, Francis DP. What proportion of symptomatic side effects in patients taking statins are genuinely caused by the drug? Systematic review of randomized placebo-controlled trials to aid individual patient choice. Eur J Prev Cardiol. 2014;21(4):464–74. https://pubmed.ncbi.nlm.nih.gov/24623264/

3661

Climent E, Benaiges D, Pedro-Botet J. Statin treatment and increased diabetes risk. Possible mechanisms. Clínica e Investigación en Arteriosclerosis. 2019;31(5):228–32. https://pubmed.ncbi.nlm.nih.gov/30737072/

3662

Mansi IA, English J, Zhang S, Mortensen EM, Halm EA. Long-term outcomes of short-term statin use in healthy adults: a retrospective cohort study. Drug Saf. 2016;39(6):543–59. https://pubmed.ncbi.nlm.nih.gov/26979831/

3663

The Panel on Food Additives and Nutrient Sources, Aggett P, Aguilar F, et al. Scientific opinion on the safety of monacolins in red yeast rice. EFSA J. 2018;16(80):5368. https://pubmed.ncbi.nlm.nih.gov/32626016/

3664

Gordon RY, Cooperman T, Obermeyer W, Becker DJ. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch Intern Med. 2010;170(19):1722–7. https://pubmed.ncbi.nlm.nih.gov/20975018/

3665

Righetti L, Dall’Asta C, Bruni R. Risk assessment of RYR food supplements: perception vs. reality. Front Nutr. 2021;8:792529. https://pubmed.ncbi.nlm.nih.gov/34950692/

3666

Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief, No. 427. https://www.cdc.gov/nchs/products/databriefs/db427.htm. Published December 2021. Accessed January 3, 2023.; https://www.cdc.gov/nchs/products/databriefs/db427.htm

3667

Jukema JW, Cannon CP, de Craen AJM, Westendorp RGJ, Trompet S. The controversies of statin therapy: weighing the evidence. J Am Coll Cardiol. 2012;60(10):875–81. https://pubmed.ncbi.nlm.nih.gov/22902202/

3668

Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38–81. https://pubmed.ncbi.nlm.nih.gov/30580575/

3669

Redberg RF, Katz MH. Statins for primary prevention: the debate is intense, but the data are weak. JAMA. 2016;316(19):1979–81. https://pubmed.ncbi.nlm.nih.gov/27838702/

3670

Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280(23):2001–7. https://pubmed.ncbi.nlm.nih.gov/9863851/

3671

Kelly J, Karlsen M, Steinke G. Type 2 diabetes remission and lifestyle medicine: a position statement from the American College of Lifestyle Medicine. Am J Lifestyle Med. 2020;14(4):406–19. https://pubmed.ncbi.nlm.nih.gov/33281521/

3672

Esselstyn CB Jr, Gendy G, Doyle J, Golubic M, Roizen MF. A way to reverse CAD? J Fam Pract. 2014;63(7):356–64b. https://pubmed.ncbi.nlm.nih.gov/25198208/

3673

Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/

3674

Steinberg D, Witztum JL. Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci U S A. 2009;106(24):9546–7. https://pubmed.ncbi.nlm.nih.gov/19506257/

3675

Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5. https://pubmed.ncbi.nlm.nih.gov/15654334/

3676

Jaworski K, Jankowski P, Kosior DA. PCSK9 inhibitors – from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci. 2017;13(4):914–29. https://pubmed.ncbi.nlm.nih.gov/28721159/

3677

Qamar A, Bhatt DL. Effect of low cholesterol on steroid hormones and vitamin E levels: just a theory or real concern? Circ Res. 2015;117(8):662–4. https://pubmed.ncbi.nlm.nih.gov/26405182/

3678

Blom DJ, Djedjos CS, Monsalvo ML, et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ Res. 2015;117(8):731–41. https://pubmed.ncbi.nlm.nih.gov/26228031/

3679

Qamar A, Libby P. Low-density lipoprotein cholesterol after an acute coronary syndrome: how low to go? Curr Cardiol Rep. 2019;21(8):77. https://pubmed.ncbi.nlm.nih.gov/31250329/

3680

Hochholzer W, Giugliano RP. Lipid lowering goals: back to nature? Ther Adv Cardiovasc Dis. 2010;4(3):185–91. https://pubmed.ncbi.nlm.nih.gov/20400493/

3681

Glueck CJ, Gartside P, Fallat RW, Sielski J, Steiner PM. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med. 1976;88(6):941–57. https://pubmed.ncbi.nlm.nih.gov/186545/

3682

Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/

3683

Gotto AM. Low-density lipoprotein cholesterol and cardiovascular risk reduction: how low is low enough without causing harm? JAMA Cardiol. 2018;3(9):802–3. https://pubmed.ncbi.nlm.nih.gov/30073330/

3684

Packard CJ. LDL cholesterol: How low to go? Trends Cardiovasc Med. 2018;28(5):348–54. https://pubmed.ncbi.nlm.nih.gov/29336946/

3685

Steinberg D. The cholesterol controversy is over. Why did it take so long? Circulation. 1989;80(4):1070–8. https://pubmed.ncbi.nlm.nih.gov/2676235/

3686

Morgan DJ, Dhruva SS, Coon ER, Wright SM, Korenstein D. 2018 update on medical overuse. JAMA Intern Med. 2019;179(2):240–6. https://pubmed.ncbi.nlm.nih.gov/30508032/

3687

Lyu H, Xu T, Brotman D, et al. Overtreatment in the United States. PLoS One. 2017;12(9):e0181970. https://pubmed.ncbi.nlm.nih.gov/28877170/

3688

Rothberg MB, Scherer L, Kashef MA, et al. The effect of information presentation on beliefs about the benefits of elective percutaneous coronary intervention. JAMA Intern Med. 2014;174(10):1623–9. https://pubmed.ncbi.nlm.nih.gov/25156687/

3689

Rothberg MB, Sivalingam SK, Ashraf J, et al. Summaries for patients: patients’ and cardiologists’ beliefs about a common heart procedure. Ann Intern Med. 2010;153(5):I46. https://pubmed.ncbi.nlm.nih.gov/20820040/

3690

Laukkanen JA, Kunutsor SK, Lavie CJ. Percutaneous coronary intervention versus medical therapy in the treatment of stable coronary artery disease: an updated meta-analysis of contemporary randomized controlled trials. J Invasive Cardiol. 2021;33(8):E647–57. https://pubmed.ncbi.nlm.nih.gov/34338654/

3691

Harvard Heart Letter. COURAGE to make choices. Harvard Health Publishing. https://www.health.harvard.edu/newsletter_article/courage-to-make-choices. Published June 1, 2007. Accessed April 5, 2022.; https://www.health.harvard.edu/newsletter_article/courage-to-make-choices

3692

Al-Lamee R, Thompson D, Dehbi HM, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40. https://pubmed.ncbi.nlm.nih.gov/29103656/

3693

Kolata G. ‘Unbelievable’: heart stents fail to ease chest pain. The New York Times. https://www.nytimes.com/2017/11/02/health/heart-disease-stents.html. Published November 2, 2017. Accessed April 5, 2022.; https://www.nytimes.com/2017/11/02/health/heart-disease-stents.html

3694

Al-Lamee R, Thompson D, Dehbi HM, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40. https://pubmed.ncbi.nlm.nih.gov/29103656/

3695

Doenst T, Haverich A, Serruys P, et al. PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. J Am Coll Cardiol. 2019;73(8):964–76. https://pubmed.ncbi.nlm.nih.gov/30819365/

3696

Rothberg MB. Coronary artery disease as clogged pipes: a misconceptual model. Circ Cardiovasc Qual Outcomes. 2013;6(1):129–32. https://pubmed.ncbi.nlm.nih.gov/23322809/

3697

Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/

3698

World Health Organization. Countdown to 2023: WHO report on global trans-fat elimination 2021. Geneva: 2021.; https://www.who.int/publications/i/item/9789240031876

3699

Wanders AJ, Zock PL, Brouwer IA. Trans fat intake and its dietary sources in general populations worldwide: a systematic review. Nutrients. 2017;9(8):E840. https://pubmed.ncbi.nlm.nih.gov/28783062/

3700

Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of top food sources of various food components. Epidemiology and Genomics Research Program. https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf. Updated November 30, 2019. Accessed April 5, 2022.; https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf

3701

Xu Z, McClure ST, Appel LJ. Dietary cholesterol intake and sources among U.S. adults: results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients. 2018;10(6):E771. https://pubmed.ncbi.nlm.nih.gov/29903993/

3702

Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of top food sources of various food components. Epidemiology and Genomics Research Program. https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf. Updated November 30, 2019. Accessed April 5, 2022.; https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf

3703

Riccardi G, Giosuè A, Calabrese I, Vaccaro O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc Res. 2022;118(5):1188–204. https://pubmed.ncbi.nlm.nih.gov/34229346/

3704

Кокрейновская база данных систематических обзоров и метаанализов, которые обобщают и интерпретируют результаты медицинских исследований. – Примеч. ред.

3705

Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015;(6):CD011737. https://pubmed.ncbi.nlm.nih.gov/26068959/

3706

Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–30. https://pubmed.ncbi.nlm.nih.gov/28620111/

3707

Hughes S. AHA issues ‘Presidential Advisory’ on harms of saturated fat. Medscape. https://www.medscape.com/viewarticle/881689. Published June 15, 2017. Accessed April 3, 2022.; https://www.medscape.com/viewarticle/881689

3708

Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–30. https://pubmed.ncbi.nlm.nih.gov/28620111/

3709

Bergeron N, Chiu S, Williams PT, M King S, Krauss RM. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr. 2019;110(1):24–33. https://pubmed.ncbi.nlm.nih.gov/31161217/

3710

Maki KC, Van Elswyk ME, Alexander DD, Rains TM, Sohn EL, McNeill S. A meta-analysis of randomized controlled trials that compare the lipid effects of beef versus poultry and/or fish consumption. J Clin Lipidol. 2012;6(4):352–61. https://pubmed.ncbi.nlm.nih.gov/22836072/

3711

Connor WE, Connor SL. Dietary cholesterol and coronary heart disease. Curr Atheroscler Rep. 2002;4(6):425–32. https://pubmed.ncbi.nlm.nih.gov/12361489/

3712

Khalighi Sikaroudi M, Soltani S, Kolahdouz-Mohammadi R, et al. The responses of different dosages of egg consumption on blood lipid profile: an updated systematic review and meta-analysis of randomized clinical trials. J Food Biochem. 2020;44(8):e13263. https://pubmed.ncbi.nlm.nih.gov/32524644/

3713

Barnard ND, Long MB, Ferguson JM, Flores R, Kahleova H. Industry funding and cholesterol research: a systematic review. Am J Lifestyle Med. 2021;15(2):165–72. https://pubmed.ncbi.nlm.nih.gov/33786032/

3714

Choi Y, Chang Y, Lee JE, et al. Egg consumption and coronary artery calcification in asymptomatic men and women. Atherosclerosis. 2015;241(2):305–12. https://pubmed.ncbi.nlm.nih.gov/26062990/

3715

Zhong VW, Van Horn L, Cornelis MC, et al. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA. 2019;321(11):1081–95. https://pubmed.ncbi.nlm.nih.gov/30874756/

3716

Abbasi J. Study puts eggs and dietary cholesterol back on the radar. JAMA. 2019;321(20):1959–61. https://pubmed.ncbi.nlm.nih.gov/31066864/

3717

Physicians Comm for Responsible Med v. Vilsack, № 16-cv-00069-LB, 2016 US Dist LEXIS 141489, 2016 WL 5930585 (ND Cal 2016).; https://casetext.com/case/physicians-comm-for-responsible-med-v-vilsack-2

3718

U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2015–2020. 8th ed. http://health.gov/dietaryguidelines/2015/guidelines/. Published December 2015. Accessed May 25, 2022; https://health.gov/dietaryguidelines/2015/guidelines/

3719

U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2020–2025. 9th ed. https://www.dietaryguidelines.gov/sites/default/files/2020–12/Dietary_Guidelines_for_Americans_2020–2025.pdf. Published December 2020. Accessed April 5, 2022.; https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf

3720

Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/

3721

David Spence J. Dietary cholesterol and egg yolk should be avoided by patients at risk of vascular disease. J Transl Int Med. 2016;4(1):20–4. https://pubmed.ncbi.nlm.nih.gov/28191513/

3722

Enas EA, Varkey B, Dharmarajan TS, Pare G, Bahl VK. Lipoprotein(a): an independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J. 2019;71(2):99–112. https://pubmed.ncbi.nlm.nih.gov/31280836/

3723

Kotani K, Serban MC, Penson P, Lippi G, Banach M. Evidence-based assessment of lipoprotein(a) as a risk biomarker for cardiovascular diseases – some answers and still many questions. Crit Rev Clin Lab Sci. 2016;53(6):370–8. https://pubmed.ncbi.nlm.nih.gov/27173621/

3724

Stulnig TM, Morozzi C, Reindl-Schwaighofer R, Stefanutti C. Looking at Lp(a) and related cardiovascular risk: from scientific evidence and clinical practice. Curr Atheroscler Rep. 2019;21(10):37. https://pubmed.ncbi.nlm.nih.gov/31350625/

3725

Kostner KM, Kostner GM, Wierzbicki AS. Is Lp(a) ready for prime time use in the clinic? A pros-and-cons debate. Atherosclerosis. 2018;274:16–22. https://pubmed.ncbi.nlm.nih.gov/29747086/

3726

Stender S. In equal amounts, the major ruminant trans fatty acid is as bad for LDL cholesterol as industrially produced trans fatty acids, but the latter are easier to remove from foods. Am J Clin Nutr. 2015;102(6):1301–2. https://pubmed.ncbi.nlm.nih.gov/26561633/

3727

Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial. Am J Clin Nutr. 2015;102(6):1339–46. https://pubmed.ncbi.nlm.nih.gov/26561632/

3728

Вариант вегетарианства, при котором разрешены не только продукты растительного происхождения, но также молоко и яйца. – Примеч. ред.

3729

Masarei JR, Rouse IL, Lynch WJ, Robertson K, Vandongen R, Beilin LJ. Effects of a lacto-ovo vegetarian diet on serum concentrations of cholesterol, triglyceride, HDL–C, HDL2-C, HDL3-C, apoprotein-B, and Lp(a). Am J Clin Nutr. 1984;40(3):468–78. https://pubmed.ncbi.nlm.nih.gov/6089540/

3730

Sahebkar A, Katsiki N, Ward N, Reiner Ž. Flaxseed supplementation reduces plasma lipoprotein(a) levels: a meta-analysis. Altern Ther Health Med. 2021;27(3):50–3. https://pubmed.ncbi.nlm.nih.gov/31634874/

3731

Biswas TK, Chakrabarti S, Pandit S, Jana U, Dey SK. Pilot study evaluating the use of Emblica officinalis standardized fruit extract in cardio-respiratory improvement and antioxidant status of volunteers with smoking history. J Herb Med. 2014;4(4):188–94. https://www.sciencedirect.com/science/article/abs/pii/S2210803314000633

3732

Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018;41(8):1062–8. https://pubmed.ncbi.nlm.nih.gov/30014498/

3733

Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(A) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97. https://pubmed.ncbi.nlm.nih.gov/28386638/

3734

Najjar RS, Moore CE, Montgomery BD. A defined, plant-based diet utilized in an outpatient cardiovascular clinic effectively treats hypercholesterolemia and hypertension and reduces medications. Clin Cardiol. 2018;41(3):307–13. https://pubmed.ncbi.nlm.nih.gov/29575002/

3735

Najjar RS, Moore CE, Montgomery BD. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin Cardiol. 2018;41(8):1062–8. https://pubmed.ncbi.nlm.nih.gov/30014498/

3736

Li H, Zeng X, Wang Y, et al. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur J Nutr. 2022;61(1):387–98. https://pubmed.ncbi.nlm.nih.gov/34379193/

3737

Keaver L, Ruan M, Chen F, et al. Plant– and animal-based diet quality and mortality among US adults: a cohort study. Br J Nutr. 2021;125(12):1405–15. https://pubmed.ncbi.nlm.nih.gov/32943123/

3738

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

3739

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13.; https://pubmed.ncbi.nlm.nih.gov/33951994/

3740

Remde A, DeTurk SN, Almardini A, Steiner L, Wojda T. Plant-predominant eating patterns – how effective are they for treating obesity and related cardiometabolic health outcomes? – a systematic review. Nutr Rev. 2022;80(5):1094–104. https://pubmed.ncbi.nlm.nih.gov/34498070/

3741

Benatar JR, Stewart RAH. Cardiometabolic risk factors in vegans; a meta-analysis of observational studies. PLoS One. 2018;13(12):e0209086. https://pubmed.ncbi.nlm.nih.gov/30571724/

3742

Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term low-calorie low-protein vegan diet and endurance exercise are associated with low cardiometabolic risk. Rejuvenation Res. 2007;10(2):225–34. https://pubmed.ncbi.nlm.nih.gov/17158430/

3743

Chen GC, Chen PY, Su YC, et al. Vascular, cognitive, and psychomental survey on elderly recycling volunteers in Northern Taiwan. Front Neurol. 2018;9:1176. https://pubmed.ncbi.nlm.nih.gov/30687225/

3744

McDougall J, Thomas LE, McDougall C, et al. Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J. 2014;13:99. https://pubmed.ncbi.nlm.nih.gov/25311617/

3745

Bloomer RJ, Kabir MM, Canale RE, et al. Effect of a 21 day Daniel Fast on metabolic and cardiovascular disease risk factors in men and women. Lipids Health Dis. 2010;9:94. https://pubmed.ncbi.nlm.nih.gov/20815907/

3746

Friedman SM, Barnett CH, Franki R, Pollock B, Garver B, Barnett TD. Jumpstarting health with a 15-day whole-food plant-based program. Am J Lifestyle Med. Published online April 8, 2021:155982762110063.; https://pubmed.ncbi.nlm.nih.gov/35706593/

3747

Kapur NK, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag. 2008;4(2):341–53. https://pubmed.ncbi.nlm.nih.gov/18561510/

3748

Friedman SM, Barnett CH, Franki R, Pollock B, Garver B, Barnett TD. Jumpstarting health with a 15-day whole-food plant-based program. Am J Lifestyle Med. Published online April 8, 2021:155982762110063.; https://pubmed.ncbi.nlm.nih.gov/35706593/

3749

Paz MA, de-La-Sierra A, Sáez M, et al. Treatment efficacy of anti-hypertensive drugs in monotherapy or combination: ATOM systematic review and meta-analysis of randomized clinical trials according to PRISMA statement. Medicine (Baltimore). 2016;95(30):e4071. https://pubmed.ncbi.nlm.nih.gov/27472680/

3750

Lin CL, Fang TC, Gueng MK. Vascular dilatory functions of ovo-lactovegetarians compared with omnivores. Atherosclerosis. 2001;158(1):247–51. https://pubmed.ncbi.nlm.nih.gov/11500198/

3751

Ernst E, Pietsch L, Matrai A, Eisenberg J. Blood rheology in vegetarians. Br J Nutr. 1986;56(3):555–60. https://pubmed.ncbi.nlm.nih.gov/3676231/

3752

McCarty MF. Favorable impact of a vegan diet with exercise on hemorheology: implications for control of diabetic neuropathy. Med Hypotheses. 2002;58(6):476–86. https://pubmed.ncbi.nlm.nih.gov/12323113/

3753

Dintenfass L. Effect of low-fat, low-protein diet on blood viscosity factors. Med J Aust. 1982;1(13):543. https://onlinelibrary.wiley.com/doi/abs/10.5694/j.1326–5377.1982.tb124177.x

3754

Ernst E, Franz A. Blood fluidity score during vegetarian and hypocaloric diets – a pilot study. Complement Ther Med. 1995;3(2):70–1. https://www.sciencedirect.com/science/article/abs/pii/S0965229995800026?via%3Dihub

3755

Tong TYN, Appleby PN, Bradbury KE, et al. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study. BMJ. Published online September 4, 2019:l4897.; https://pubmed.ncbi.nlm.nih.gov/31484644/

3756

Petermann-Rocha F, Parra-Soto S, Gray S, et al. Vegetarians, fish, poultry, and meat-eaters: who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. Eur Heart J. 2021;42(12):1136–43. https://pubmed.ncbi.nlm.nih.gov/33313747/

3757

Chiu THT, Chang HR, Wang LY, Chang CC, Lin MN, Lin CL. Vegetarian diet and incidence of total, ischemic, and hemorrhagic stroke in 2 cohorts in Taiwan. Neurology. 2020;94(11):e1112–21. https://pubmed.ncbi.nlm.nih.gov/32102976/

3758

Baden MY, Shan Z, Wang F, et al. Quality of plant-based diet and risk of total, ischemic, and hemorrhagic stroke. Neurology. 2021;96(15):e1940–53. https://pubmed.ncbi.nlm.nih.gov/33692165/

3759

Lu JW, Yu LH, Tu YK, et al. Risk of incident stroke among vegetarians compared to nonvegetarians: a systematic review and meta-analysis of prospective cohort studies. Nutrients. 2021;13(9):3019. https://pubmed.ncbi.nlm.nih.gov/34578897/

3760

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13.; https://pubmed.ncbi.nlm.nih.gov/33951994/

3761

Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/

3762

Schutz Y, Montani JP, Dulloo AG. Low-carbohydrate ketogenic diets in body weight control: a recurrent plaguing issue of fad diets? Obes Rev. 2021;22 Suppl 2:e13195. https://pubmed.ncbi.nlm.nih.gov/33471427/

3763

Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/

3764

Fleming RM. The effect of high-protein diets on coronary blood flow. Angiology. 2000;51(10):817–26. https://pubmed.ncbi.nlm.nih.gov/11108325/

3765

Schwingshackl L, Hoffmann G. Low-carbohydrate diets impair flow-mediated dilatation: evidence from a systematic review and meta-analysis. Br J Nutr. 2013;110(5):969–70. https://pubmed.ncbi.nlm.nih.gov/23829973/

3766

Nicholls SJ, Lundman P, Harmer JA, et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. 2006;48(4):715–20. https://pubmed.ncbi.nlm.nih.gov/16904539/

3767

Phillips SA, Jurva JW, Syed AQ, et al. Benefit of low-fat over low-carbohydrate diet on endothelial health in obesity. Hypertension. 2008;51(2):376–82. https://pubmed.ncbi.nlm.nih.gov/18195164/

3768

Schwingshackl L, Hoffmann G. Low-carbohydrate diets impair flow-mediated dilatation: evidence from a systematic review and meta-analysis. Br J Nutr. 2013;110(5):969–70. https://pubmed.ncbi.nlm.nih.gov/23829973/

3769

Mazidi M, Katsiki N, Mikhailidis DP, Sattar N, Banach M. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/

3770

Young NJ, Metcalfe C, Gunnell D, et al. A cross-sectional analysis of the association between diet and insulin-like growth factor (IGF)-I, IGF-II, IGF-binding protein (IGFBP)-2, and IGFBP-3 in men in the United Kingdom. Cancer Causes Control. 2012;23(6):907–17. https://pubmed.ncbi.nlm.nih.gov/22527168/

3771

Lee DH, Lee IK, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care. 2006;29(7):1638–44. https://pubmed.ncbi.nlm.nih.gov/16801591/

3772

Ax E, Lampa E, Lind L, et al. Circulating levels of environmental contaminants are associated with dietary patterns in older adults. Environ Int. 2015;75:93–102. https://pubmed.ncbi.nlm.nih.gov/25461418/

3773

Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23(2):e20–30. https://pubmed.ncbi.nlm.nih.gov/12588785/

3774

Shepherd CJ, Jackson AJ. Global fishmeal and fish-oil supply: inputs, outputs and markets. J Fish Biol. 2013;83(4):1046–66. https://pubmed.ncbi.nlm.nih.gov/24090562/

3775

Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177. https://pubmed.ncbi.nlm.nih.gov/30019766/

3776

de Magalhães JP, Müller M, Rainger GEd, Steegenga W. Fish oil supplements, longevity and aging. Aging (Albany NY). 2016;8(8):1578–82. https://pubmed.ncbi.nlm.nih.gov/27564420/

3777

Bowman L, Mafham M, Wallendszus K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50. https://pubmed.ncbi.nlm.nih.gov/30146932/

3778

Kalstad AA, Myhre PL, Laake K, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation. 2021;143(6):528–39. https://pubmed.ncbi.nlm.nih.gov/33191772/

3779

Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324(22):2268–80. https://pubmed.ncbi.nlm.nih.gov/33190147/

3780

Manson JE, Cook NR, Lee IM, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380(1):23–32. https://pubmed.ncbi.nlm.nih.gov/30415637/

3781

Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22. https://pubmed.ncbi.nlm.nih.gov/30415628/

3782

Park S, Lee S, Kim Y, et al. Causal effects of serum levels of n-3 or n-6 polyunsaturated fatty acids on coronary artery disease: Mendelian randomization study. Nutrients. 2021;13(5):1490. https://pubmed.ncbi.nlm.nih.gov/33924952/

3783

Nicholls SJ, Nelson AJ. The fish-oil paradox. Curr Opin Lipidol. 2020;31(6):356–61. https://pubmed.ncbi.nlm.nih.gov/33027227/

3784

Wennberg M, Tornevi A, Johansson I, Hörnell A, Norberg M, Bergdahl IA. Diet and lifestyle factors associated with fish consumption in men and women: a study of whether gender differences can result in gender-specific confounding. Nutr J. 2012;11:101. https://pubmed.ncbi.nlm.nih.gov/23210480/

3785

Mariotti F. Animal and plant protein sources and cardiometabolic health. Adv Nutr. 2019;10(Suppl_4):S351–66. https://pubmed.ncbi.nlm.nih.gov/31728490/

3786

Krittanawong C, Isath A, Hahn J, et al. Fish consumption and cardiovascular health: a systematic review. Am J Med. 2021;134(6):713–20. https://pubmed.ncbi.nlm.nih.gov/33444594/

3787

Gardner CD, Mehta T, Bernstein A, Aronson D. Three factors that need to be addressed more consistently in nutrition studies: “Instead of what?”, “In what context?”, and “For what?.” Am J Health Promot. 2021;35(6):881–2. https://journals.sagepub.com/doi/full/10.1177/08901171211016191d

3788

Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/

3789

Rimm EB, Appel LJ, Chiuve SE, et al. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. Circulation. 2018;138(1):e35–47. https://pubmed.ncbi.nlm.nih.gov/29773586/

3790

Guasch-Ferré M, Satija A, Blondin SA, et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation. 2019;139(15):1828–45. https://pubmed.ncbi.nlm.nih.gov/30958719/

3791

Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/

3792

Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/

3793

Song M, Fung TT, Hu FB, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med. 2016;176(10):1453–63. https://pubmed.ncbi.nlm.nih.gov/27479196/

3794

Esselstyn CB. Resolving the coronary artery disease epidemic through plant-based nutrition. Prev Cardiol. 2001;4(4):171–7. https://pubmed.ncbi.nlm.nih.gov/11832674/

3795

Affairs of the Heart. Frontier profile: Bill Castelli. Scientific American Frontiers. http://www.pbs.org/saf/1104/features/castelli3.htm. Accessed February 24, 2023.; https://www.pbs.org/saf/1104/features/castelli3.htm

3796

Keogh EV, Walsh RJ. Rate of greying of human hair. Nature. 1965;207(999):877–8. https://pubmed.ncbi.nlm.nih.gov/5885957/

3797

Seiberg M. Age-induced hair greying – the multiple effects of oxidative stress. Int J Cosmet Sci. 2013;35(6):532–8. https://pubmed.ncbi.nlm.nih.gov/24033376/

3798

Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/

3799

Commo S, Gaillard O, Thibaut S, Thibaut S, Bernard BA. Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res. 2004;17(5):488–97. https://pubmed.ncbi.nlm.nih.gov/15357835/

3800

Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J. 2005;272(10):2407–15. https://pubmed.ncbi.nlm.nih.gov/15885091/

3801

Wood JM, Decker H, Hartmann H, et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 2009;23(7):2065–75. https://pubmed.ncbi.nlm.nih.gov/19237503/

3802

Pandhi D, Khanna D. Premature graying of hair. Indian J Dermatol Venereol Leprol. 2013;79(5):641–53. https://pubmed.ncbi.nlm.nih.gov/23974581/

3803

Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54. https://pubmed.ncbi.nlm.nih.gov/11162910/

3804

Fernandez-Flores A, Saeb-Lima M, Cassarino DS. Histopathology of aging of the hair follicle. J Cutan Pathol. 2019;46(7):508–19. https://pubmed.ncbi.nlm.nih.gov/30932205/

3805

Mahendiratta S, Sarma P, Kaur H, et al. Premature graying of hair: risk factors, co-morbid conditions, pharmacotherapy and reversal – a systematic review and meta-analysis. Dermatol Ther. 2020;33(6):e13990. https://pubmed.ncbi.nlm.nih.gov/32654282/

3806

Daulatabad D, Singal A, Grover C, Sharma SB, Chhillar N. Assessment of oxidative stress in patients with premature canities. Int J Trichology. 2015;7(3):91–4. https://pubmed.ncbi.nlm.nih.gov/26622150/

3807

Babadjouni A, Foulad DP, Hedayati B, Evron E, Mesinkovska N. The effects of smoking on hair health: a systematic review. Skin Appendage Disord. 2021;7(4):251–64. https://pubmed.ncbi.nlm.nih.gov/34307472/

3808

Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/

3809

Acer E, Kaya Erdogan H, Igrek A, Parlak H, Saraçoglu ZN, Bilgin M. Relationship between diet, atopy, family history, and premature hair graying. J Cosmet Dermatol. 2019;18(2):665–70. https://pubmed.ncbi.nlm.nih.gov/30556257/

3810

Addolorato G, Leggio L, Ojetti V, Capristo E, Gasbarrini G, Gasbarrini A. Effects of short-term moderate alcohol administration on oxidative stress and nutritional status in healthy males. Appetite. 2008;50(1):50–6. https://pubmed.ncbi.nlm.nih.gov/17602789/

3811

Mahendiratta S, Sarma P, Kaur H, et al. Premature graying of hair: risk factors, co-morbid conditions, pharmacotherapy and reversal – a systematic review and meta-analysis. Dermatol Ther. 2020;33(6):e13990. https://pubmed.ncbi.nlm.nih.gov/32654282/

3812

Acer E, Kaya Erdogan H, Igrek A, Parlak H, Saraçoglu ZN, Bilgin M. Relationship between diet, atopy, family history, and premature hair graying. J Cosmet Dermatol. 2019;18(2):665–70. https://pubmed.ncbi.nlm.nih.gov/30556257/

3813

Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/

3814

Noppakun N, Swasdikul D. Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Arch Dermatol. 1986;122(8):896–9. https://pubmed.ncbi.nlm.nih.gov/3740873/

3815

Kumar AB, Shamim H, Nagaraju U. Premature graying of hair: review with updates. Int J Trichology. 2018;10(5):198–203. https://pubmed.ncbi.nlm.nih.gov/30607038/

3816

Tobin DJ, Paus R. Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol. 2001;36(1):29–54. https://pubmed.ncbi.nlm.nih.gov/11162910/

3817

Tai SY, Hsieh HM, Huang SP, Wu MT. Hair dye use, regular exercise, and the risk and prognosis of prostate cancer: multicenter case-control and case-only studies. BMC Cancer. 2016;16:242. https://pubmed.ncbi.nlm.nih.gov/26996776/

3818

Towle KM, Grespin ME, Monnot AD. Personal use of hair dyes and risk of leukemia: a systematic literature review and meta-analysis. Cancer Med. 2017;6(10):2471–86. https://pubmed.ncbi.nlm.nih.gov/28925101/

3819

Odutola MK, Nnakelu E, Giles GG, van Leeuwen MT, Vajdic CM. Lifestyle and risk of follicular lymphoma: a systematic review and meta-analysis of observational studies. Cancer Causes Control. 2020;31(11):979–1000. https://pubmed.ncbi.nlm.nih.gov/32851495/

3820

Tai SY, Hsieh HM, Huang SP, Wu MT. Hair dye use, regular exercise, and the risk and prognosis of prostate cancer: multicenter case-control and case-only studies. BMC Cancer. 2016;16:242. https://pubmed.ncbi.nlm.nih.gov/26996776/

3821

Takkouche B, Regueira-Méndez C, Montes-Martínez A. Risk of cancer among hairdressers and related workers: a meta-analysis. Int J Epidemiol. 2009;38(6):1512–31. https://pubmed.ncbi.nlm.nih.gov/19755396/

3822

Qin L, Deng HY, Chen SJ, Wei W. A meta-analysis on the relationship between hair dye and the incidence of non-Hodgkin’s lymphoma. Med Princ Pract. 2019;28(3):222–30. https://pubmed.ncbi.nlm.nih.gov/30583293/

3823

Park AM, Khan S, Rawnsley J. Hair biology: growth and pigmentation. Facial Plast Surg Clin North Am. 2018;26(4):415–24. https://pubmed.ncbi.nlm.nih.gov/30213423/

3824

Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp Dermatol. 2020;29(7):588–97. https://pubmed.ncbi.nlm.nih.gov/32358903/

3825

Sadick NS, Callender VD, Kircik LH, Kogan S. New insight into the pathophysiology of hair loss trigger a paradigm shift in the treatment approach. J Drugs Dermatol. 2017;16(11):s135–40. https://pubmed.ncbi.nlm.nih.gov/29141068/

3826

English RS Jr. A hypothetical pathogenesis model for androgenic alopecia: clarifying the dihydrotestosterone paradox and rate-limiting recovery factors. Med Hypotheses. 2018;111:73–81. https://pubmed.ncbi.nlm.nih.gov/29407002/

3827

Carmina E, Azziz R, Bergfeld W, et al. Female pattern hair loss and androgen excess: a report from the multidisciplinary Androgen Excess and PCOS committee. J Clin Endocrinol Metab. 2019;104(7):2875–91. https://pubmed.ncbi.nlm.nih.gov/30785992/

3828

Varothai S, Bergfeld WF. Androgenetic alopecia: an evidence-based treatment update. Am J Clin Dermatol. 2014;15(3):217–30. https://pubmed.ncbi.nlm.nih.gov/24848508/

3829

Grymowicz M, Rudnicka E, Podfigurna A, et al. Hormonal effects on hair follicles. Int J Mol Sci. 2020;21(15):E5342. https://pubmed.ncbi.nlm.nih.gov/32731328/

3830

Tai T, Kochhar A. Physiology and medical treatments for alopecia. Facial Plast Surg Clin North Am. 2020;28(2):149–59. https://pubmed.ncbi.nlm.nih.gov/32312501/

3831

Hibberts NA, Howell AE, Randall VA. Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. J Endocrinol. 1998;156(1):59–65. https://pubmed.ncbi.nlm.nih.gov/9496234/

3832

Grymowicz M, Rudnicka E, Podfigurna A, et al. Hormonal effects on hair follicles. Int J Mol Sci. 2020;21(15):E5342. https://pubmed.ncbi.nlm.nih.gov/32731328/

3833

Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/

3834

English RS Jr. A hypothetical pathogenesis model for androgenic alopecia: clarifying the dihydrotestosterone paradox and rate-limiting recovery factors. Med Hypotheses. 2018;111:73–81. https://pubmed.ncbi.nlm.nih.gov/29407002/

3835

Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/

3836

Hamilton JB. Effect of castration in adolescent and young adult males upon further changes in the proportions of bare and hairy scalp. J Clin Endocrinol Metab. 1960;20:1309–18. https://pubmed.ncbi.nlm.nih.gov/13711016/

3837

Collins DT. Children of sorrow: a history of the mentally retarded in Kansas. Bull Hist Med. 1965;39:53–78. https://pubmed.ncbi.nlm.nih.gov/14284409/

3838

Kempton W, Kahn E. Sexuality and people with intellectual disabilities: a historical perspective. Sex Disabil. 1991;9(2):93–111. https://link.springer.com/article/10.1007/BF01101735

3839

Flood E. Notes on the castration of idiot children. Am J Psychol. 1899;10(2):296–301. https://www.jstor.org/stable/1412485?origin=crossref

3840

Lombardo PA. Preface & acknowledgments. In: Lombardo PA, ed. A Century of Eugenics in America: From the Indiana Experiment to the Human Genome Era. Indiana University Press; 2011:ix. https://worldcat.org/title/703156879

3841

Scott ES. Sterilization of mentally retarded persons: reproductive rights and family privacy. Duke Law J. 1986;1986(5):806–65. https://pubmed.ncbi.nlm.nih.gov/11658848/

3842

Wittmann E. To what extent were ideas and beliefs about eugenics held in Nazi Germany shared in Britain and the United States prior to the Second World War? Vesalius. 2004;10(1):16–9. https://pubmed.ncbi.nlm.nih.gov/15386878/

3843

Bolland MJ, Ames RW, Grey AB, et al. Does degree of baldness influence vitamin D status? Med J Aust. 2008;189(11–12):674–5. https://pubmed.ncbi.nlm.nih.gov/19061473/

3844

Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/

3845

Sinclair RD, English DR, Giles GG. Are bald men more virile than their well thatched contemporaries? Med J Aust. 2013;199(11):811–2. https://pubmed.ncbi.nlm.nih.gov/24329675/

3846

Jin T, Wu T, Luo Z, Duan X, Deng S, Tang Y. Association between male pattern baldness and prostate disease: a meta-analysis. Urol Oncol. 2018;36(2):80.e7–15. https://pubmed.ncbi.nlm.nih.gov/29054497/

3847

Mohammadi-Shemirani P, Chong M, Pigeyre M, Morton RW, Gerstein HC, Paré G. Effects of lifelong testosterone exposure on health and disease using Mendelian randomization. Elife. 2020;9:e58914. https://pubmed.ncbi.nlm.nih.gov/33063668/

3848

Ata Korkmaz HA. Relationship between androgenic alopecia and white matter hyperintensities in apparently healthy subjects. Brain Imaging Behav. 2020;14(2):527–33. https://pubmed.ncbi.nlm.nih.gov/31250269/

3849

Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/

3850

Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/

3851

Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/

3852

Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/

3853

van Zuuren EJ, Fedorowicz Z, Schoones J. Interventions for female pattern hair loss. Cochrane Database Syst Rev. 2016;(5):CD007628. https://pubmed.ncbi.nlm.nih.gov/27225981/

3854

Lam SM. Hair loss and hair restoration in women. Facial Plast Surg Clin North Am. 2020;28(2):205–23. https://pubmed.ncbi.nlm.nih.gov/32312508/

3855

Lam SM. Hair loss and hair restoration in women. Facial Plast Surg Clin North Am. 2020;28(2):205–23. https://pubmed.ncbi.nlm.nih.gov/32312508/

3856

Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/

3857

Bauer M, Glenn T, Pilhatsch M, Pfennig A, Whybrow PC. Gender differences in thyroid system function: relevance to bipolar disorder and its treatment. Bipolar Disord. 2014;16(1):58–71. https://pubmed.ncbi.nlm.nih.gov/24245529/

3858

Lin RL, Garibyan L, Kimball AB, Drake LA. Systemic causes of hair loss. Ann Med. 2016;48(6):393–402. https://pubmed.ncbi.nlm.nih.gov/27145919/

3859

Williams R, Pawlus AD, Thornton MJ. Getting under the skin of hair aging: the impact of the hair follicle environment. Exp Dermatol. 2020;29(7):588–97. https://pubmed.ncbi.nlm.nih.gov/32358903/

3860

Chien Yin GO, Siong-See JL, Wang ECE. Telogen Effluvium – a review of the science and current obstacles. J Dermatol Sci. 2021;101(3):156–63. https://pubmed.ncbi.nlm.nih.gov/33541773/

3861

Sharquie KE, Jabbar RI. COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci. Published online August 31, 2021.; https://pubmed.ncbi.nlm.nih.gov/34467470/

3862

Malkud S. Telogen effluvium: a review. J Clin Diagn Res. 2015;9(9):WE01–3. https://pubmed.ncbi.nlm.nih.gov/26500992/

3863

Bertoli MJ, Sadoughifar R, Schwartz RA, Lotti TM, Janniger CK. Female pattern hair loss: a comprehensive review. Dermatol Ther. 2020;33(6):e14055. https://pubmed.ncbi.nlm.nih.gov/32700775/

3864

Malkud S. Telogen effluvium: a review. J Clin Diagn Res. 2015;9(9):WE01–3. https://pubmed.ncbi.nlm.nih.gov/26500992/

3865

Sharquie KE, Jabbar RI. COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci. Published online August 31, 2021.; https://pubmed.ncbi.nlm.nih.gov/34467470/

3866

Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. https://pubmed.ncbi.nlm.nih.gov/25150481/

3867

Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e-801e. https://pubmed.ncbi.nlm.nih.gov/23629119/

3868

Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review. Endocrine. 2017;57(1):9–17. https://pubmed.ncbi.nlm.nih.gov/28349362/

3869

DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/

3870

Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/

3871

Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e-801e. https://pubmed.ncbi.nlm.nih.gov/23629119/

3872

Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/

3873

D’Andrea S, Spaggiari G, Barbonetti A, Santi D. Endogenous transient doping: physical exercise acutely increases testosterone levels – results from a meta-analysis. J Endocrinol Invest. 2020;43(10):1349–71. https://pubmed.ncbi.nlm.nih.gov/32297287/

3874

Wedick NM, Mantzoros CS, Ding EL, et al. The effects of caffeinated and decaffeinated coffee on sex hormone – binding globulin and endogenous sex hormone levels: a randomized controlled trial. Nutr J. 2012;11:86. https://pubmed.ncbi.nlm.nih.gov/23078574/

3875

Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e–801e. https://pubmed.ncbi.nlm.nih.gov/23629119/

3876

Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/

3877

Babadjouni A, Foulad DP, Hedayati B, Evron E, Mesinkovska N. The effects of smoking on hair health: a systematic review. Skin Appendage Disord. 2021;7(4):251–64. https://pubmed.ncbi.nlm.nih.gov/34307472/

3878

Lai CH, Chu NF, Chang CW, et al. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8(12):e79789. https://pubmed.ncbi.nlm.nih.gov/24386074/

3879

Yu V, Juhász M, Chiang A, Atanaskova Mesinkovska N. Alopecia and associated toxic agents: a systematic review. Skin Appendage Disord. 2018;4(4):245–60. https://pubmed.ncbi.nlm.nih.gov/30410891/

3880

Clarkson TW. The three modern faces of mercury. Environ Health Perspect. 2002;110(Suppl 1):11–23. https://pubmed.ncbi.nlm.nih.gov/11834460/

3881

Ross JJ. Shakespeare’s chancre: did the bard have syphilis? Clin Infect Dis. 2005;40(3):399–404. https://pubmed.ncbi.nlm.nih.gov/15668863/

3882

Centers for Disease Control and Prevention. Executive summary. Fourth National Report on Human Exposure to Environmental Chemicals. 2009.; https://cfpub.epa.gov/ncea/risk/hhra/recordisplay.cfm?deid=23995

3883

Peters JB, Warren MP. Reversible alopecia associated with high blood mercury levels and early menopause: a report of two cases. Menopause. 2019;26(8):915–8. https://pubmed.ncbi.nlm.nih.gov/30939539/

3884

Campo D, D’Acunzo V. Doctors and baldness: a five thousand year old challenge. G Ital Dermatol Venereol. 2016;151(1):93–101. https://pubmed.ncbi.nlm.nih.gov/25387848/

3885

Nanda S, De Bedout V, Miteva M. Alopecia as a systemic disease. Clin Dermatol. 2019;37(6):618–28. https://pubmed.ncbi.nlm.nih.gov/31864440/

3886

Park AM, Khan S, Rawnsley J. Hair biology: growth and pigmentation. Facial Plast Surg Clin North Am. 2018;26(4):415–24. https://pubmed.ncbi.nlm.nih.gov/30213423/

3887

Sadick NS, Callender VD, Kircik LH, Kogan S. New insight into the pathophysiology of hair loss trigger a paradigm shift in the treatment approach. J Drugs Dermatol. 2017;16(11):s135–40. https://pubmed.ncbi.nlm.nih.gov/29141068/

3888

Sand JP. Follicular unit transplantation. Facial Plast Surg Clin North Am. 2020;28(2):161–7. https://pubmed.ncbi.nlm.nih.gov/32312502/

3889

Stoneburner J, Shauly O, Carey J, Patel KM, Stevens WG, Gould DJ. Contemporary management of alopecia: a systematic review and meta-analysis for surgeons. Aesthetic Plast Surg. 2020;44(1):97–113. https://pubmed.ncbi.nlm.nih.gov/31667549/

3890

Vogel JE. Hair restoration complications: an approach to the unnatural-appearing hair transplant. Facial Plast Surg. 2008;24(4):453–61. https://pubmed.ncbi.nlm.nih.gov/19034821/

3891

Rose PT. Advances in hair restoration. Dermatol Clin. 2018;36(1):57–62. https://pubmed.ncbi.nlm.nih.gov/29108547/

3892

Umar S. Hair transplantation in patients with inadequate head donor supply using nonhead hair: report of 3 cases. Ann Plast Surg. 2011;67(4):332–5. https://pubmed.ncbi.nlm.nih.gov/21540728/

3893

Stoneburner J, Shauly O, Carey J, Patel KM, Stevens WG, Gould DJ. Contemporary management of alopecia: a systematic review and meta-analysis for surgeons. Aesthetic Plast Surg. 2020;44(1):97–113. https://pubmed.ncbi.nlm.nih.gov/31667549/

3894

Gatherwright J, Liu MT, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to female alopecia: a study of identical twins. Plast Reconstr Surg. 2012;130(6):1219–26. https://pubmed.ncbi.nlm.nih.gov/22878477/

3895

Nadimi S. Complications with hair transplantation. Facial Plast Surg Clin North Am. 2020;28(2):225–35. https://pubmed.ncbi.nlm.nih.gov/32312509/

3896

Gupta AK, Mays RR, Dotzert MS, Versteeg SG, Shear NH, Piguet V. Efficacy of non-surgical treatments for androgenetic alopecia: a systematic review and network meta-analysis. J Eur Acad Dermatol Venereol. 2018;32(12):2112–25. https://pubmed.ncbi.nlm.nih.gov/29797431/

3897

Lotti T, Goren A, Verner I, D’Alessio PA, Franca K. Platelet rich plasma in androgenetic alopecia: a systematic review. Dermatol Ther. 2019;32(3):e12837. https://pubmed.ncbi.nlm.nih.gov/30667146/

3898

Carloni R, Pechevy L, Postel F, Zielinski M, Gandolfi S. Is there a therapeutic effect of botulinum toxin on scalp alopecia? Physiopathology and reported cases: a systematic review of the literature. J Plast Reconstr Aesthet Surg. 2020;73(12):2210–6. https://pubmed.ncbi.nlm.nih.gov/32536461/

3899

Wang Y, Zhang H, Zheng Q, Tang K, Fang R, Sun Q. Botulinum toxin as a double-edged sword in alopecia: a systematic review. J Cosmet Dermatol. 2020;19(10):2560–5. https://pubmed.ncbi.nlm.nih.gov/32745302/

3900

Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: a clinician’s guide to home-use devices cleared by the Federal Drug Administration. J Cosmet Laser Ther. 2018;20(3):159–67. https://pubmed.ncbi.nlm.nih.gov/29020478/

3901

Simunovic Z, Trobonjaca T, Trobonjaca Z. Treatment of medial and lateral epicondylitis – tennis and golfer’s elbow – with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J Clin Laser Med Surg. 1998;16(3):145–51. https://pubmed.ncbi.nlm.nih.gov/9743652/

3902

Cohen PR. A case report of scrotal rejuvenation: laser treatment of angiokeratomas of the scrotum. Dermatol Ther (Heidelb). 2019;9(1):185–92. https://pubmed.ncbi.nlm.nih.gov/30478818/

3903

Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/

3904

Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/

3905

Egger A, Resnik SR, Aickara D, et al. Examining the safety and efficacy of low-level laser therapy for male and female pattern hair loss: a review of the literature. Skin Appendage Disord. 2020;6(5):259–67. https://pubmed.ncbi.nlm.nih.gov/33088809/

3906

Ledoux S, Flamant M, Calabrese D, Bogard C, Sami O, Coupaye M. What are the micronutrient deficiencies responsible for the most common nutritional symptoms after bariatric surgery? Obes Surg. 2020;30(5):1891–7. https://pubmed.ncbi.nlm.nih.gov/31960214/

3907

DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/

3908

Thompson KG, Kim N. Dietary supplements in dermatology: a review of the evidence for zinc, biotin, vitamin D, nicotinamide, and Polypodium. J Am Acad Dermatol. 2021;84(4):1042–50. https://pubmed.ncbi.nlm.nih.gov/32360756/

3909

Patel DP, Swink SM, Castelo-Soccio L. A review of the use of biotin for hair loss. Skin Appendage Disord. 2017;3(3):166–9. https://pubmed.ncbi.nlm.nih.gov/28879195/

3910

FDA in brief: FDA reminds patients, health care professionals and laboratory personnel about the potential for biotin interference with certain test results, especially specific tests to aid in heart attack diagnoses. U.S. Food and Drug Administration. https://www.fda.gov/news-events/fda-brief/fda-brief-fda-reminds-patients-health-care-professionals-and-laboratory-personnel-about-potential#:~:text=Today%2C%20the%20U.S.%20Food%20and,and%20cause%20incorrect%20results%20that. Published November 5, 2019. Accessed July 2, 2022.; https://www.fda.gov/news-events/fda-brief/fda-brief-fda-reminds-patients-health-care-professionals-and-laboratory-personnel-about-potential

3911

MacFarquhar JK, Broussard DL, Melstrom P, et al. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med. 2010;170(3):256–61. https://pubmed.ncbi.nlm.nih.gov/20142570/

3912

Almohanna HM, Ahmed AA, Tsatalis JP, Tosti A. The role of vitamins and minerals in hair loss: a review. Dermatol Ther (Heidelb). 2018;9(1):51–70. https://pubmed.ncbi.nlm.nih.gov/30547302/

3913

Guo EL, Katta R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol Pract Concept. 2017;7(1):1–10. https://pubmed.ncbi.nlm.nih.gov/28243487/

3914

DiMarco G, McMichael A. Hair loss myths. J Drugs Dermatol. 2017;16(7):690–4. https://pubmed.ncbi.nlm.nih.gov/28697221/

3915

Bater K, Rieder E. Over-the-counter hair loss treatments: help or hype? J Drugs Dermatol. 2018;17(12):1317–21. https://pubmed.ncbi.nlm.nih.gov/30586264/

3916

Yi Y, Qiu J, Jia J, et al. Severity of androgenetic alopecia associated with poor sleeping habits and carnivorous eating and junk food consumption – a web-based investigation of male pattern hair loss in China. Dermatol Ther. 2020;33(2):e13273. https://pubmed.ncbi.nlm.nih.gov/32061036/

3917

Fortes C, Mastroeni S, Mannooranparampil T, Abeni D, Panebianco A. Mediterranean diet: fresh herbs and fresh vegetables decrease the risk of Androgenetic Alopecia in males. Arch Dermatol Res. 2018;310(1):71–6. https://pubmed.ncbi.nlm.nih.gov/29181579/

3918

Lai CH, Chu NF, Chang CW, et al. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8(12):e79789. https://pubmed.ncbi.nlm.nih.gov/24386074/

3919

Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci. 2019;41(4):332–45. https://pubmed.ncbi.nlm.nih.gov/31240739/

3920

Hosking AM, Juhasz M, Atanaskova Mesinkovska N. Complementary and alternative treatments for alopecia: a comprehensive review. Skin Appendage Disord. 2019;5(2):72–89. https://pubmed.ncbi.nlm.nih.gov/30815439/

3921

Herman A, Herman AP. Topically used herbal products for the treatment of hair loss: preclinical and clinical studies. Arch Dermatol Res. 2017;309(8):595–610. https://pubmed.ncbi.nlm.nih.gov/28695329/

3922

Grothe T, Wandrey F, Schuerch C. Short communication: clinical evaluation of pea sprout extract in the treatment of hair loss. Phytother Res. 2020;34(2):428–31. https://pubmed.ncbi.nlm.nih.gov/31680356/

3923

Harada N, Okajima K, Arai M, Kurihara H, Nakagata N. Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia. Growth Horm IGF Res. 2007;17(5):408–15. https://pubmed.ncbi.nlm.nih.gov/17569567/

3924

Troconis-Torres IG, Rojas-López M, Hernández-Rodríguez C, et al. Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J Biomed Biotech. 2012;2012:1–11. https://pubmed.ncbi.nlm.nih.gov/22665993/

3925

Cho H, Kwon Y. Development of a database of capsaicinoid contents in foods commonly consumed in Korea. Food Sci Nutr. 2020;8(8):4611–24. https://pubmed.ncbi.nlm.nih.gov/32884741/

3926

Harada N, Okajima K, Arai M, Kurihara H, Nakagata N. Administration of capsaicin and isoflavone promotes hair growth by increasing insulin-like growth factor-I production in mice and in humans with alopecia. Growth Horm IGF Res. 2007;17(5):408–15. https://pubmed.ncbi.nlm.nih.gov/17569567/

3927

Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed April 15, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf

3928

Cho YH, Lee SY, Jeong DW, et al. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: a randomized, double-blind, placebo-controlled trial. Evid Based Complement Alternat Med. 2014;2014:549721. https://pubmed.ncbi.nlm.nih.gov/24864154/

3929

Octa Sabal Plus. tradeKorea.com. https://www.tradekorea.com/product/detail/P291943/Octa-Sabal-Plus-.html. Accessed July 5, 2022.; https://www.tradekorea.com/product/detail/P291943/Octa-Sabal-Plus-.html

3930

Hajhashemi V, Rajabi P, Mardani M. Beneficial effects of pumpkin seed oil as a topical hair growth promoting agent in a mice model. Avicenna J Phytomed. 2019;9(6):499–504. https://pubmed.ncbi.nlm.nih.gov/31763209/

3931

Ibrahim IM, Hasan MS, Elsabaa KI, Elsaie ML. Pumpkin seed oil vs. minoxidil 5 % topical foam for the treatment of female pattern hair loss: a randomized comparative trial. J Cosmet Dermatol. 2021;20(9):2867–73. https://pubmed.ncbi.nlm.nih.gov/33544448/

3932

Dhurat R, Chitallia J, May TW, et al. An open-label randomized multicenter study assessing the noninferiority of a caffeine-based topical liquid 0. 2 % versus minoxidil 5 % solution in male androgenetic alopecia. Skin Pharmacol Physiol. 2017;30(6):298–305. https://pubmed.ncbi.nlm.nih.gov/29055953/

3933

Daniels G, Akram S, Westgate GE, Tamburic S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int J Cosmet Sci. 2019;41(4):332–45. https://pubmed.ncbi.nlm.nih.gov/31240739/

3934

Randall VA, Ebling FJ. Seasonal changes in human hair growth. Br J Dermatol. 1991;124(2):146–51. https://pubmed.ncbi.nlm.nih.gov/2003996/

3935

Fischer TW, Herczeg-Lisztes E, Funk W, Zillikens D, Bíró T, Paus R. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-ß2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro. Br J Dermatol. 2014;171(5):1031–43. https://pubmed.ncbi.nlm.nih.gov/24836650/

3936

Dressler C, Blumeyer A, Rosumeck S, Arayesh A, Nast A. Efficacy of topical caffeine in male androgenetic alopecia. J Dtsch Dermatol Ges. 2017;15(7):734–41. https://pubmed.ncbi.nlm.nih.gov/28677188/

3937

Bussoletti C, Tolaini MV, Celleno L. Efficacy of a cosmetic phyto-caffeine shampoo in female androgenetic alopecia. G Ital Dermatol Venereol. 2020;155(4):492–9. https://pubmed.ncbi.nlm.nih.gov/29512972/

3938

Dressler C, Blumeyer A, Rosumeck S, Arayesh A, Nast A. Efficacy of topical caffeine in male androgenetic alopecia. J Dtsch Dermatol Ges. 2017;15(7):734–41. https://pubmed.ncbi.nlm.nih.gov/28677188/

3939

Kwon OS, Han JH, Yoo HG, et al. Human hair growth enhancement in vitro by green tea epigallocatechin-3-gallate (EGCG). Phytomedicine. 2007;14(7–8):551–5. https://pubmed.ncbi.nlm.nih.gov/17092697/

3940

Liao S, Hiipakka RA. Selective inhibition of steroid 5 a-reductase isozymes by tea epicatechin-3-gallate and epigallocatechin-3-gallate. Biochem Biophys Res Commun. 1995;214(3):833–8. https://pubmed.ncbi.nlm.nih.gov/7575552/

3941

Kim YY, Up No S, Kim MH, et al. Effects of topical application of EGCG on testosterone-induced hair loss in a mouse model. Exp Dermatol. 2011;20(12):1015–7. https://pubmed.ncbi.nlm.nih.gov/21951062/

3942

Berger RS, Fu JL, Smiles KA, et al. The effects of minoxidil, 1 % pyrithione zinc and a combination of both on hair density: a randomized controlled trial. Br J Dermatol. 2003;149(2):354–62. https://pubmed.ncbi.nlm.nih.gov/27552261/

3943

Miao Y, Sun Y, Wang W, et al. 6-gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice. PLoS One. 2013;8(2):e57226. https://pubmed.ncbi.nlm.nih.gov/23437345/

3944

Li Y, Han M, Lin P, He Y, Yu J, Zhao R. Hair growth promotion activity and its mechanism of Polygonum multiflorum. Evid Based Complement Alternat Med. 2015;2015:517901. https://pubmed.ncbi.nlm.nih.gov/26294926/

3945

Shin JY, Choi YH, Kim J, et al. Polygonum multiflorum extract support hair growth by elongating anagen phase and abrogating the effect of androgen in cultured human dermal papilla cells. BMC Complement Med Ther. 2020;20(1):144. https://pubmed.ncbi.nlm.nih.gov/32398000/

3946

Teka T, Wang L, Gao J, et al. Polygonum multiflorum: recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. J Ethnopharmacol. 2021;271:113864. https://pubmed.ncbi.nlm.nih.gov/33485980/

3947

Hay IC, Jamieson M, Ormerod AD. Randomized trial of aromatherapy: successful treatment for alopecia areata. Arch Dermatol. 1998;134(11):1349–52. https://pubmed.ncbi.nlm.nih.gov/9828867/

3948

Sharquie KE, Al-Obaidi HK. Onion juice (Allium cepa L.), a new topical treatment for alopecia areata. J Dermatol. 2002;29(6):343–6. https://pubmed.ncbi.nlm.nih.gov/12126069/

3949

Hajheydari Z, Jamshidi M, Akbari J, Mohammadpour R. Combination of topical garlic gel and betamethasone valerate cream in the treatment of localized alopecia areata: a double-blind randomized controlled study. Indian J Dermatol Venereol Leprol. 2007;73(1):29–32. https://pubmed.ncbi.nlm.nih.gov/17314444/

3950

Panahi Y, Taghizadeh M, Marzony ET, Sahebkar A. Rosemary oil vs minoxidil 2 % for the treatment of androgenetic alopecia: a randomized comparative trial. Skinmed. 2015;13(1):15–21. https://pubmed.ncbi.nlm.nih.gov/25842469/

3951

Ajmani GS, Suh HH, Wroblewski KE, Pinto JM. Smoking and olfactory dysfunction: a systematic literature review and meta-analysis. Laryngoscope. 2017;127(8):1753–61. https://pubmed.ncbi.nlm.nih.gov/28561327/

3952

Desiato VM, Levy DA, Byun YJ, Nguyen SA, Soler ZM, Schlosser RJ. The prevalence of olfactory dysfunction in the general population: a systematic review and meta-analysis. Am J Rhinol Allergy. 2021;35(2):195–205. https://pubmed.ncbi.nlm.nih.gov/32746612/

3953

Stevens JC, Cain WS, Demarque A, Ruthruff AM. On the discrimination of missing ingredients: aging and salt flavor. Appetite. 1991;16(2):129–40. https://pubmed.ncbi.nlm.nih.gov/2064391/

3954

Schäfer L, Schriever VA, Croy I. Human olfactory dysfunction: causes and consequences. Cell Tissue Res. 2021;383(1):569–79. https://pubmed.ncbi.nlm.nih.gov/33496882/

3955

Nolan LS. Age-related hearing loss: why we need to think about sex as a biological variable. J Neurosci Res. 2020;98(9):1705–20. https://pubmed.ncbi.nlm.nih.gov/32557661/

3956

Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/

3957

Committee on Accessible and Affordable Hearing Health Care for Adults. Blazer DG, Domnitz S, Liverman CT, eds. Hearing Health Care for Adults: Priorities for Improving Access and Affordability. National Academies Press; 2016. https://pubmed.ncbi.nlm.nih.gov/27280276/

3958

Goman AM, Lin FR. Prevalence of hearing loss by severity in the United States. Am J Public Health. 2016;106(10):1820–2. https://pubmed.ncbi.nlm.nih.gov/27552261/

3959

Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/

3960

Wattamwar K, Qian ZJ, Otter J, et al. Increases in the rate of age-related hearing loss in the older old. JAMA Otolaryngol Head Neck Surg. 2017;143(1):41–5. https://pubmed.ncbi.nlm.nih.gov/27632707/

3961

Shukla A, Harper M, Pedersen E, et al. Hearing loss, loneliness, and social isolation: a systematic review. Otolaryngol Head Neck Surg. 2020;162(5):622–33. https://pubmed.ncbi.nlm.nih.gov/32151193/

3962

Lawrence BJ, Jayakody DMP, Bennett RJ, Eikelboom RH, Gasson N, Friedland PL. Hearing loss and depression in older adults: a systematic review and meta-analysis. Gerontologist. 2020;60(3):e137–54. https://pubmed.ncbi.nlm.nih.gov/30835787/

3963

Wattamwar K, Qian ZJ, Otter J, et al. Increases in the rate of age-related hearing loss in the older old. JAMA Otolaryngol Head Neck Surg. 2017;143(1):41–5. https://pubmed.ncbi.nlm.nih.gov/27632707/

3964

Goman AM, Lin FR. Hearing loss in older adults – from epidemiological insights to national initiatives. Hear Res. 2018;369:29–32. https://pubmed.ncbi.nlm.nih.gov/29653842/

3965

Brennan-Jones CG, Weeda E, Ferguson M. Cochrane corner: hearing aids for mild to moderate hearing loss in adults. Int J Audiol. 2018;57(7):479–82. https://pubmed.ncbi.nlm.nih.gov/29383941/

3966

Mahmoudi E, Basu T, Langa K, et al. Can hearing aids delay time to diagnosis of dementia, depression, or falls in older adults? J Am Geriatr Soc. 2019;67(11):2362–9. https://pubmed.ncbi.nlm.nih.gov/31486068/

3967

Goman AM, Lin FR. Hearing loss in older adults – from epidemiological insights to national initiatives. Hear Res. 2018;369:29–32. https://pubmed.ncbi.nlm.nih.gov/29653842/

3968

Franck KH, Rathi VK. Regulation of over-the-counter hearing aids – deafening silence from the FDA. N Engl J Med. 2020;383(21):1997–2000. https://pubmed.ncbi.nlm.nih.gov/33207090/

3969

Fact Sheet: cheaper hearing aids now in stores thanks to Biden-Harris administration competition agenda. WhiteHouse.gov. https://www.whitehouse.gov/briefing-room/statements-releases/2022/10/17/fact-sheet-cheaper-hearing-aids-now-in-stores-thanks-to-biden-harris-administration-competition-agenda/. Published October 17, 2022. Accessed January 3, 2023.; https://www.whitehouse.gov/briefing-room/statements-releases/2022/10/17/fact-sheet-cheaper-hearing-aids-now-in-stores-thanks-to-biden-harris-administration-competition-agenda

3970

Michaud HN, Duchesne L. Aural rehabilitation for older adults with hearing loss: impacts on quality of life – a systematic review of randomized controlled trials. J Am Acad Audiol. 2017;28(7):596–609. https://pubmed.ncbi.nlm.nih.gov/28722643/

3971

Ferguson MA, Kitterick PT, Chong LY, Edmondson-Jones M, Barker F, Hoare DJ. Hearing aids for mild to moderate hearing loss in adults. Cochrane Database Syst Rev. 2017;2017(9):CD012023. https://pubmed.ncbi.nlm.nih.gov/28944461/

3972

Brennan-Jones CG, Weeda E, Ferguson M. Cochrane corner: hearing aids for mild to moderate hearing loss in adults. Int J Audiol. 2018;57(7):479–82. https://pubmed.ncbi.nlm.nih.gov/29383941/

3973

Lerner S. Limitations of conventional hearing aids: examining common complaints and issues that can and cannot be remedied. Otolaryngol Clin North Am. 2019;52(2):211–20. https://pubmed.ncbi.nlm.nih.gov/30612754/

3974

Davis A, McMahon CM, Pichora-Fuller KM, et al. Aging and hearing health: the life-course approach. Gerontologist. 2016;56 Suppl 2:S256–67. https://pubmed.ncbi.nlm.nih.gov/26994265/

3975

McCormack A, Fortnum H. Why do people fitted with hearing aids not wear them? Int J Audiol. 2013;52(5):360–8. https://pubmed.ncbi.nlm.nih.gov/23473329/

3976

Blustein J, Weinstein BE, Chodosh J. Marketing claims about using hearing aids to forestall or prevent dementia. JAMA Otolaryngol Head Neck Surg. 2020;146(8):765–6. https://pubmed.ncbi.nlm.nih.gov/32556250/

3977

World Health Organization. Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. World Health Organization; 2019. https://www.who.int/publications/i/item/9789241550543

3978

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3979

Nagala S, Singh P, Tostevin P. Extent of cotton-bud use in ears. Br J Gen Pract. 2011;61(592):662–3. https://pubmed.ncbi.nlm.nih.gov/22054319/

3980

Baxter P. Association between use of cotton tipped swabs and cerumen plugs. BMJ. 1983;287(6401):1260. https://pubmed.ncbi.nlm.nih.gov/6416358/

3981

Barton RT. Q-tip otalgia. JAMA. 1972;220(12):1619. https://pubmed.ncbi.nlm.nih.gov/5067751/

3982

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3983

Oron Y, Zwecker-Lazar I, Levy D, Kreitler S, Roth Y. Cerumen removal: comparison of cerumenolytic agents and effect on cognition among the elderly. Arch Gerontol Geriatr. 2011;52(2):228–32. https://pubmed.ncbi.nlm.nih.gov/20417976/

3984

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3985

Lee LM, Govindaraju R, Hon SK. Cotton bud and ear cleaning – a loose tip cotton bud? Med J Malaysia. 2005;60(1):85–8. https://pubmed.ncbi.nlm.nih.gov/16250286/

3986

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3987

Goldman SA, Ankerstjerne JK, Welker KB, Chen DA. Fatal meningitis and brain abscess resulting from foreign body-induced otomastoiditis. Otolaryngol Head Neck Surg. 1998;118(1):6–8. https://pubmed.ncbi.nlm.nih.gov/9450821/

3988

Aaron K, Cooper TE, Warner L, Burton MJ. Ear drops for the removal of ear wax. Cochrane ENT Group, ed. Cochrane Database of Systematic Reviews. 2018;7(CD012171). https://pubmed.ncbi.nlm.nih.gov/30043448/

3989

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3990

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3991

Coppin R, Wicke D, Little P. Managing earwax in primary care: efficacy of self-treatment using a bulb syringe. Br J Gen Pract. 2008;58(546):44–9. https://pubmed.ncbi.nlm.nih.gov/18186996/

3992

Coppin R, Wicke D, Little P. Randomized trial of bulb syringes for earwax: impact on health service utilization. Ann Fam Med. 2011;9(2):110–4. https://pubmed.ncbi.nlm.nih.gov/21403136/

3993

Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/

3994

Dinsdale RC, Roland PS, Manning SC, Meyerhoff WL. Catastrophic otologic injury from oral jet irrigation of the external auditory canal. Laryngoscope. 1991;101(1 Pt 1):75–8. https://pubmed.ncbi.nlm.nih.gov/1984556/

3995

Seely DR, Quigley SM, Langman AW. Ear candles – efficacy and safety. Laryngoscope. 1996;106(10):1226–9. https://pubmed.ncbi.nlm.nih.gov/8849790/

3996

Seely DR, Quigley SM, Langman AW. Ear candles – efficacy and safety. Laryngoscope. 1996;106(10):1226–9. https://pubmed.ncbi.nlm.nih.gov/8849790/

3997

Schwartz SR, Magit AE, Rosenfeld RM, et al. Clinical practice guideline (update): earwax (cerumen impaction). Otolaryngol Head Neck Surg. 2017;156(1_suppl):S1–29. https://pubmed.ncbi.nlm.nih.gov/28045591/

3998

Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/

3999

Donnison CP. Blood pressure in the African native. Lancet. 1929;213(5497):6–7. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)49248-2/fulltext

4000

Morse WR, McGill MD, Beh YT. Blood pressure amongst aboriginal ethnic groups of Szechwan Province, West China. Lancet. 1937;229(5929):966–8. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(00)86708-2/fulltext

4001

Mueller NT, Noya-Alarcon O, Contreras M, Appel LJ, Dominguez-Bello MG. Association of age with blood pressure across the lifespan in isolated Yanomami and Yekwana villages. JAMA Cardiol. 2018;3(12):1247–9. https://pubmed.ncbi.nlm.nih.gov/30427998/

4002

Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/

4003

Goycoolea MV, Goycoolea HG, Farfan CR, Rodriguez LG, Martinez GC, Vidal R. Effect of life in industrialized societies on hearing in natives of Easter Island. Laryngoscope. 1986;96(12):1391–6. https://pubmed.ncbi.nlm.nih.gov/3784745/

4004

Wu PZ, O’Malley JT, de Gruttola V, Liberman MC. Age-related hearing loss is dominated by damage to inner ear sensory cells, not the cellular battery that powers them. J Neurosci. 2020;40(33):6357–66. https://pubmed.ncbi.nlm.nih.gov/32690619/

4005

Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/

4006

Momi SK, Wolber LE, Fabiane SM, MacGregor AJ, Williams FMK. Genetic and environmental factors in age-related hearing impairment. Twin Res Hum Genet. 2015;18(4):383–92. https://pubmed.ncbi.nlm.nih.gov/26081266/

4007

Mao Z, Zhao L, Pu L, Wang M, Zhang Q, He DZZ. How well can centenarians hear? PLoS One. 2013;8(6):e65565. https://pubmed.ncbi.nlm.nih.gov/23755251/

4008

Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies. J Clin Med. 2020;9(1):E218. https://pubmed.ncbi.nlm.nih.gov/31947524/

4009

Attarha M, Bigelow J, Merzenich MM. Unintended consequences of white noise therapy for tinnitus – otolaryngology’s cobra effect: a review. JAMA Otolaryngol Head Neck Surg. 2018;144(10):938–43. https://pubmed.ncbi.nlm.nih.gov/30178067/

4010

Attarha M, Bigelow J, Merzenich MM. No evidence of broadband noise having any harmful effect on hearing. JAMA Otolaryngol Head Neck Surg. 2019;145(3):292–3. https://pubmed.ncbi.nlm.nih.gov/30676625/

4011

Nieman CL, Oh ES. Hearing loss. Ann Intern Med. 2020;173(11):ITC81–96. https://pubmed.ncbi.nlm.nih.gov/33253610/

4012

Joo Y, Cruickshanks KJ, Klein BEK, Klein R, Hong O, Wallhagen MI. The contribution of ototoxic medications to hearing loss among older adults. J Gerontol A Biol Sci Med Sci. 2020;75(3):561–6. https://pubmed.ncbi.nlm.nih.gov/31282945/

4013

Panda NK, Modi R, Munjal S, Virk RS. Auditory changes in mobile users: is evidence forthcoming? Otolaryngol Head Neck Surg. 2011;144(4):581–5. https://pubmed.ncbi.nlm.nih.gov/21493239/

4014

Alsanosi AA, Al-Momani MO, Hagr AA, Almomani FM, Shami IM, Al-Habeeb SF. The acute auditory effects of exposure for 60 minutes to mobile’s electromagnetic field. Saudi Med J. 2013;34(2):142–6. https://pubmed.ncbi.nlm.nih.gov/23396459/

4015

Mandalà M, Colletti V, Sacchetto L, et al. Effect of Bluetooth headset and mobile phone electromagnetic fields on the human auditory nerve. Laryngoscope. 2014;124(1):255–9. https://pubmed.ncbi.nlm.nih.gov/23619813/

4016

Rosen S, Olin P. Hearing loss and coronary heart disease. Arch Otolaryngol. 1965;82:236–43. https://pubmed.ncbi.nlm.nih.gov/14327021/

4017

Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):1269–324. https://pubmed.ncbi.nlm.nih.gov/29133354/

4018

Rosen S, Olin P. Hearing loss and coronary heart disease. Arch Otolaryngol. 1965;82:236–43. https://pubmed.ncbi.nlm.nih.gov/14327021/

4019

Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/

4020

Curhan SG, Halpin C, Wang M, Eavey RD, Curhan GC. Prospective study of dietary patterns and hearing threshold elevation. Am J Epidemiol. 2020;189(3):204–14. https://pubmed.ncbi.nlm.nih.gov/31608356/

4021

Rosen S, Bergman M, Plester D, El-Mofty A, Satti MH. Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol. 1962;71:727–43. https://pubmed.ncbi.nlm.nih.gov/13974856/

4022

Gopinath B, Flood VM, McMahon CM, Burlutsky G, Brand-Miller J, Mitchell P. Dietary glycemic load is a predictor of age-related hearing loss in older adults. J Nutr. 2010;140(12):2207–12. https://pubmed.ncbi.nlm.nih.gov/20926604/

4023

Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: a review. Ageing Res Rev. 2021;71:101423. https://pubmed.ncbi.nlm.nih.gov/34384902/

4024

Prasad MPR, Rao BD, Kalpana K, Rao MV, Patil JV. Glycaemic index and glycaemic load of sorghum products. J Sci Food Agric. 2015;95(8):1626–30. https://pubmed.ncbi.nlm.nih.gov/25092385/

4025

Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/

4026

Honkura Y, Matsuo H, Murakami S, et al. NRF2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci Rep. 2016;6:19329. https://pubmed.ncbi.nlm.nih.gov/26776972/

4027

Yang JR, Hidayat K, Chen CL, Li YH, Xu JY, Qin LQ. Body mass index, waist circumference, and risk of hearing loss: a meta-analysis and systematic review of observational study. Environ Health Prev Med. 2020;25(1):25. https://pubmed.ncbi.nlm.nih.gov/32590951/

4028

Wang J, Puel JL. Presbycusis: an update on cochlear mechanisms and therapies. J Clin Med. 2020;9(1):E218. https://pubmed.ncbi.nlm.nih.gov/31947524/

4029

de Rivera C, Shukitt-Hale B, Joseph JA, Mendelson JR. The effects of antioxidants in the senescent auditory cortex. Neurobiol Aging. 2006;27(7):1035–44. https://pubmed.ncbi.nlm.nih.gov/15950320/

4030

Seidman MD, Khan MJ, Bai U, Shirwany N, Quirk WS. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss. Am J Otol. 2000;21(2):161–7. https://pubmed.ncbi.nlm.nih.gov/10733178/

4031

Sanz-Fernández R, Sánchez-Rodriguez C, Granizo JJ, Durio-Calero E, Martín-Sanz E. Accuracy of auditory steady state and auditory brainstem responses to detect the preventive effect of polyphenols on age-related hearing loss in Sprague-Dawley rats. Eur Arch Otorhinolaryngol. 2016;273(2):341–7. https://pubmed.ncbi.nlm.nih.gov/25673025/

4032

Polanski JF, Cruz OL. Evaluation of antioxidant treatment in presbyacusis: prospective, placebo-controlled, double-blind, randomised trial. J Laryngol Otol. 2013;127(2):134–41. https://pubmed.ncbi.nlm.nih.gov/23318104/

4033

Durga J, Verhoef P, Anteunis LJC, Schouten E, Kok FJ. Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med. 2007;146(1):1–9. https://pubmed.ncbi.nlm.nih.gov/17200216/

4034

Agricultural Research Service, United States Department of Agriculture. Lentils, mature seeds, cooked, boiled, without salt. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=kale&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172421/nutrients. Published April 1, 2019. Accessed April 21, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=kale&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172421/nutrients

4035

Agricultural Research Service, United States Department of Agriculture. Edamame, frozen, prepared. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168411/nutrients. Published April 1, 2019. Accessed February 21, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169414/nutrients

4036

Rodrigo L, Campos-Asensio C, Rodríguez MÁ, Crespo I, Olmedillas H. Role of nutrition in the development and prevention of age-related hearing loss: a scoping review. J Formos Med Assoc. 2021;120(1 Pt 1):107–20. https://pubmed.ncbi.nlm.nih.gov/32473863/

4037

Pillsbury HC. Hypertension, hyperlipoproteinemia, chronic noise exposure: is there synergism in cochlear pathology? Laryngoscope. 1986;96(10):1112–38. https://pubmed.ncbi.nlm.nih.gov/3762287/

4038

Sikora MA, Morizono T, Ward WD, Paparella MM, Leslie K. Diet-induced hyperlipidemia and auditory dysfunction. Acta Oto-Laryngologica. 1986;102(5–6):372–81. https://pubmed.ncbi.nlm.nih.gov/3788535/

4039

Momi SK, Wolber LE, Fabiane SM, MacGregor AJ, Williams FMK. Genetic and environmental factors in age-related hearing impairment. Twin Res Hum Genet. 2015;18(4):383–92. https://pubmed.ncbi.nlm.nih.gov/26081266/

4040

Gopinath B, Flood VM, Teber E, McMahon CM, Mitchell P. Dietary intake of cholesterol is positively associated and use of cholesterol-lowering medication is negatively associated with prevalent age-related hearing loss. J Nutr. 2011;141(7):1355–61. https://pubmed.ncbi.nlm.nih.gov/21613455/

4041

Erkan AF, Beriat GK, Ekici B, Dogan C, Kocatürk S, Töre HF. Link between angiographic extent and severity of coronary artery disease and degree of sensorineural hearing loss. Herz. 2015;40(3):481–6. https://pubmed.ncbi.nlm.nih.gov/24049023/

4042

Croll PH, Bos D, Vernooij MW, et al. Carotid atherosclerosis is associated with poorer hearing in older adults. J Am Med Dir Assoc. 2019;20(12):1617–22.e1. https://pubmed.ncbi.nlm.nih.gov/31399361/

4043

Fischer ME, Schubert CR, Nondahl DM, et al. Subclinical atherosclerosis and increased risk of hearing impairment. Atherosclerosis. 2015;238(2):344–9. https://pubmed.ncbi.nlm.nih.gov/25555266/

4044

Fischer ME, Schubert CR, Nondahl DM, et al. Subclinical atherosclerosis and increased risk of hearing impairment. Atherosclerosis. 2015;238(2):344–9. https://pubmed.ncbi.nlm.nih.gov/25555266/

4045

Erkan AF, Beriat GK, Ekici B, Dogan C, Kocatürk S, Töre HF. Link between angiographic extent and severity of coronary artery disease and degree of sensorineural hearing loss. Herz. 2015;40(3):481–6. https://pubmed.ncbi.nlm.nih.gov/24049023/

4046

Sikora MA, Morizono T, Ward WD, Paparella MM, Leslie K. Diet-induced hyperlipidemia and auditory dysfunction. Acta Oto-Laryngologica. 1986;102(5–6):372–81. https://pubmed.ncbi.nlm.nih.gov/3788535/

4047

Saito T, Sato K, Saito H. An experimental study of auditory dysfunction associated with hyperlipoproteinemia. Arch Otorhinolaryngol. 1986;243(4):242–5. https://pubmed.ncbi.nlm.nih.gov/3778299/

4048

Turpeinen O, Roine P, Pekkarinen M, et al. Effect on serum-cholesterol level of replacement of dietary milk fat by soybean oil. Lancet. January 23, 1960;196–9. https://pubmed.ncbi.nlm.nih.gov/13839984/

4049

Hearing loss and coronary heart disease. JAMA. 1965;194(4):452 https://pubmed.ncbi.nlm.nih.gov/5897421/

4050

Puga AM, Pajares MA, Varela-Moreiras G, Partearroyo T. Interplay between nutrition and hearing loss: state of art. Nutrients. 2018;11(1):E35. https://pubmed.ncbi.nlm.nih.gov/30586880/

4051

Hearing loss and coronary heart disease. JAMA. 1965;194(4):452. https://pubmed.ncbi.nlm.nih.gov/5897421/

4052

Rosen S, Olin P, Rosen HV. Dietary prevention of hearing loss. Acta Oto-Laryngologica. 1970;70(4):242–7. https://pubmed.ncbi.nlm.nih.gov/5491161/

4053

Nobus D. The madness of Princess Alice: Sigmund Freud, Ernst Simmel and Alice of Battenberg at Kurhaus Schloß Tegel. Hist Psychiatry. 2020;31(2):147–62. https://pubmed.ncbi.nlm.nih.gov/31969019/

4054

Brown-Séquard. Note on the effects produced on man by subcutaneous injections of a liquid obtained from the testicles of animals. Lancet. 1889;134(3438):105–7. https://www.sciencedirect.com/science/article/abs/pii/S0140673600641181

4055

Kahn A. Regaining lost youth: the controversial and colorful beginnings of hormone replacement therapy in aging. J Gerontol A Biol Sci Med Sci. 2005;60(2):142–7. https://pubmed.ncbi.nlm.nih.gov/15814854/

4056

Blue E. The strange career of Leo Stanley: remaking manhood and medicine at San Quentin State Penitentiary, 1913–1951. Pac Hist Rev. 2009;78(2):210–41. https://www.researchgate.net/publication/236335739_The_Strange_Career_of_Leo_Stanley_Remaking_Manhood_and_Medicine_at_San_Quentin_State_Penitentiary_1913-1951

4057

Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/

4058

Irwig MS, Fleseriu M, Jonklaas J, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53. https://pubmed.ncbi.nlm.nih.gov/32163313/

4059

Regelson W. Growth hormone use. Science. 1987;235(4784):14c-5c. https://pubmed.ncbi.nlm.nih.gov/17769289/

4060

Barkan AL. Growth hormone as an anti-aging therapy – do the benefits outweigh the risks? Nat Clin Pract Endocrinol Metab. 2007;3(7):508–9. https://pubmed.ncbi.nlm.nih.gov/17534272/

4061

Irwig MS, Fleseriu M, Jonklaas J, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53. https://pubmed.ncbi.nlm.nih.gov/32163313/

4062

Mullur RS. Making a difference in adrenal fatigue. Endocr Pract. 2018;24(12):1103–5. https://pubmed.ncbi.nlm.nih.gov/30289314/

4063

Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC Endocr Disord. 2016;16(1):48. https://pubmed.ncbi.nlm.nih.gov/27557747/

4064

Nippoldt T. Mayo Clinic office visit. Adrenal fatigue: an interview with Todd Nippoldt, M.D. Mayo Clin Womens Healthsource. 2010;14(3):6. https://pubmed.ncbi.nlm.nih.gov/20110864/

4065

Chimote BN, Chimote NM. Dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) in mammalian reproduction: known roles and novel paradigms. Vitam Horm. 2018;108:223–50. https://pubmed.ncbi.nlm.nih.gov/30029728/

4066

Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? J Endocrinol Invest. 2005;28(11 Suppl Proceedings):5–14. https://pubmed.ncbi.nlm.nih.gov/16760618/

4067

Peixoto C, Carrilho CG, Barros JA, et al. The effects of dehydroepiandrosterone on sexual function: a systematic review. Climacteric. 2017;20(2):129–37. https://pubmed.ncbi.nlm.nih.gov/28118059/

4068

Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R. Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs. 2014;74(11):1195–207. https://pubmed.ncbi.nlm.nih.gov/25022952/

4069

ConsumerLab.com tests DHEA supplements, warns of differences in dose and price. ConsumerLab.com. https://www.consumerlab.com/news/dhea-dose-price/07–22–2015/. Published July 22, 2015. Accessed May 5, 2022.; https://www.consumerlab.com/news/dhea-dose-price/07-22-2015

4070

Celec P, Stárka L. Dehydroepiandrosterone – is the fountain of youth drying out? Physiol Res. 2003;52(4):397–407. https://pubmed.ncbi.nlm.nih.gov/12899651/

4071

Peixoto C, Carrilho CG, Barros JA, et al. The effects of dehydroepiandrosterone on sexual function: a systematic review. Climacteric. 2017;20(2):129–37. https://pubmed.ncbi.nlm.nih.gov/28118059/

4072

Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Hum Reprod. 2010;25(10):2496–500. https://pubmed.ncbi.nlm.nih.gov/22456062/

4073

Tartagni M, Cicinelli MV, Baldini D, et al. Dehydroepiandrosterone decreases the age-related decline of the in vitro fertilization outcome in women younger than 40 years old. Reprod Biol Endocrinol. 2015;13:18. https://ncbi.nlm.nih.gov/pmc/articles/PMC4355976/

4074

Thompson RD, Carlson M. Liquid chromatographic determination of dehydroepiandrosterone (DHEA) in dietary supplement products. J AOAC Int. 2000;83(4):847–57. https://pubmed.ncbi.nlm.nih.gov/10995111/

4075

Trichopoulou A, Bamia C, Kalapothaki V, Spanos E, Naska A, Trichopoulos D. Dehydroepiandrosterone relations to dietary and lifestyle variables in a general population sample. Ann Nutr Metab. 2003;47(3–4):158–64. https://pubmed.ncbi.nlm.nih.gov/12743468/

4076

Remer T, Pietrzik K, Manz F. The short-term effect of dietary pectin on plasma levels and renal excretion of dehydroepiandrosterone sulfate. Z Ernahrungswiss. 1996;35(1):32–8. https://pubmed.ncbi.nlm.nih.gov/8776832/

4077

Remer T, Pietrzik K, Manz F. Short-term impact of a lactovegetarian diet on adrenocortical activity and adrenal androgens. J Clin Endocrinol Metab. 1998;83(6):2132–7. https://pubmed.ncbi.nlm.nih.gov/9626151/

4078

Hill P, Wynder EL, Garbaczewski L, Walker AR. Effect of diet on plasma and urinary hormones in South African black men with prostatic cancer. Cancer Res. 1982;42(9):3864–9. https://pubmed.ncbi.nlm.nih.gov/6179613/

4079

Hill P, Garbaczewski L, Helman P, Huskisson J, Sporangisa E, Wynder EL. Diet, lifestyle, and menstrual activity. Am J Clin Nutr. 1980;33(6):1192–8. https://pubmed.ncbi.nlm.nih.gov/7386408/

4080

Remer T, Pietrzik K, Manz F. Short-term impact of a lactovegetarian diet on adrenocortical activity and adrenal androgens. J Clin Endocrinol Metab. 1998;83(6):2132–7. https://pubmed.ncbi.nlm.nih.gov/9626151/

4081

Grande M, Borobio V, Jimenez JM, et al. Antral follicle count as a marker of ovarian biological age to reflect the background risk of fetal aneuploidy. Hum Reprod. 2014;29(6):1337–43. https://pubmed.ncbi.nlm.nih.gov/24682614/

4082

Bozdag G, Calis P, Zengin D, Tanacan A, Karahan S. Age related normogram for antral follicle count in general population and comparison with previous studies. Eur J Obstet Gynecol Reprod Biol. 2016;206:120–4. https://pubmed.ncbi.nlm.nih.gov/27689809/

4083

Souter I, Chiu YH, Batsis M, et al. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. BJOG. 2017;124(10):1547–55. https://pubmed.ncbi.nlm.nih.gov/28278351/

4084

Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones in food. Food Chem (Oxf). 1998;62(1):7–20. https://www.sciencedirect.com/science/article/abs/pii/S0308814697001507?via%3Dihub

4085

Brinkman MT, Baglietto L, Krishnan K, et al. Consumption of animal products, their nutrient components and postmenopausal circulating steroid hormone concentrations. Eur J Clin Nutr. 2010;64(2):176–83. https://pubmed.ncbi.nlm.nih.gov/19904296/

4086

Andersson AM, Skakkebaek NE. Exposure to exogenous estrogens in food: possible impact on human development and health. Eur J Endocrinol. 1999;140(6):477–85. https://pubmed.ncbi.nlm.nih.gov/10366402/

4087

Souter I, Chiu YH, Batsis M, et al. The association of protein intake (amount and type) with ovarian antral follicle counts among infertile women: results from the EARTH prospective study cohort. BJOG. 2017;124(10):1547–55. https://pubmed.ncbi.nlm.nih.gov/28278351/

4088

Lumsden MA, Sassarini J. The evolution of the human menopause. Climacteric. 2019;22(2):111–6. https://pubmed.ncbi.nlm.nih.gov/30712396/

4089

National Center for Health Statistics. Health, United States, 2010: With Special Feature on Death and Dying. https://www.cdc.gov/nchs/data/hus/hus10.pdf. Published February 2011. Accessed May 5, 2022.; https://www.cdc.gov/nchs/data/hus/hus10.pdf

4090

Llarena N, Hine C. Reproductive longevity and aging: geroscience approaches to maintain long-term ovarian fitness. J Gerontol A Biol Sci Med Sci. 2021;76(9):1551–60. https://pubmed.ncbi.nlm.nih.gov/32808646/

4091

Gagnon A. Natural fertility and longevity. Fertil Steril. 2015;103(5):1109–16. https://pubmed.ncbi.nlm.nih.gov/25934597/

4092

Giri R, Vincent AJ. Prevalence and risk factors of premature ovarian insufficiency/early menopause. Semin Reprod Med. 2020;38(4–05):237–46. https://pubmed.ncbi.nlm.nih.gov/33434933/

4093

Stanford JL, Hartge P, Brinton LA, Hoover RN, Brookmeyer R. Factors influencing the age at natural menopause. J Chronic Dis. 1987;40(11):995–1002. https://pubmed.ncbi.nlm.nih.gov/3654908/

4094

Boutot ME, Purdue-Smithe A, Whitcomb BW, et al. Dietary protein intake and early menopause in the Nurses’ Health Study II. Am J Epidemiol. 2018;187(2):270–7. https://pubmed.ncbi.nlm.nih.gov/28992246/

4095

Conway F. Menopause matters: attending to the vitality of older women. J Women Aging. 2020;32(5):489–90. https://pubmed.ncbi.nlm.nih.gov/33225875/

4096

Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/

4097

Johnson A, Roberts L, Elkins G. Complementary and alternative medicine for menopause. J Evid Based Integr Med. 2019;24:2515690X19829380. https://pubmed.ncbi.nlm.nih.gov/30868921/

4098

Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/

4099

Pirhadi R, Sinai Talaulikar V, Onwude J, Manyonda I. It is all in the name: the importance of correct terminology in hormone replacement therapy. Post Reprod Health. 2020;26(3):142–6. https://pubmed.ncbi.nlm.nih.gov/32390508/

4100

Hunter MM, Huang AJ, Wallhagen MI. “I’m going to stay young”: belief in anti-aging efficacy of menopausal hormone therapy drives prolonged use despite medical risks. PLoS One. 2020;15(5):e0233703. https://pubmed.ncbi.nlm.nih.gov/32469976/

4101

Wilson RA, Wilson TA. The fate of the nontreated postmenopausal woman: a plea for the maintenance of adequate estrogen from puberty to the grave. J Am Geriatr Soc. 1963;11:347–62. https://pubmed.ncbi.nlm.nih.gov/14001078/

4102

Wilson RA, Wilson TA. The basic philosophy of estrogen maintenance. J Am Geriatr Soc.1972;20(11):521–3. https://pubmed.ncbi.nlm.nih.gov/5082121/

4103

Chew F, Wu X. Sources of information influencing the state-of-the-science gap in hormone replacement therapy usage. PLoS One. 2017;12(2):e0171189. https://pubmed.ncbi.nlm.nih.gov/28158240/

4104

Fugh-Berman A. The science of marketing: how pharmaceutical companies manipulated medical discourse on menopause. Women’s Reprod Health. 2015;2(1):18–23. https://www.tandfonline.com/doi/full/10.1080/23293691.2015.1039448

4105

Rubinstein H. Defining what is normal at menopause: how women’s and clinician’s different understandings may lead to a lack of provision for those in most need. Hum Fertil (Camb). 2014;17(3):218–22. https://pubmed.ncbi.nlm.nih.gov/24989874/

4106

Tatsioni A, Siontis GCM, Ioannidis JPA. Partisan perspectives in the medical literature: a study of high frequency editorialists favoring hormone replacement therapy. J Gen Intern Med. 2010;25(9):914–9. https://pubmed.ncbi.nlm.nih.gov/20425148/

4107

Rubinstein H. Defining what is normal at menopause: how women’s and clinician’s different understandings may lead to a lack of provision for those in most need. Hum Fertil (Camb). 2014;17(3):218–22. https://pubmed.ncbi.nlm.nih.gov/24989874/

4108

Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/

4109

Verkooijen HM, Bouchardy C, Vinh-Hung V, Rapiti E, Hartman M. The incidence of breast cancer and changes in the use of hormone replacement therapy: a review of the evidence. Maturitas. 2009;64(2):80–5. https://pubmed.ncbi.nlm.nih.gov/19709827/

4110

Auchincloss H, Haagensen CD. Cancer of the breast possibly induced by estrogenic substance. JAMA. 1940;114(16):1517–23. https://jamanetwork.com/journals/jama/article-abstract/1160126

4111

Anderson G, Cummings S, Freedman LS, et al. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19(1):61–109. https://pubmed.ncbi.nlm.nih.gov/9492970/

4112

Cummings SR. Evaluating the benefits and risks of postmenopausal hormone therapy. Am J Med. 1991;91(5B):14S-8S. https://pubmed.ncbi.nlm.nih.gov/1750410/

4113

Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33. https://pubmed.ncbi.nlm.nih.gov/12117397/

4114

Marsden J. Hormone replacement therapy and female malignancy: what has the Million Women Study added to our knowledge? J Fam Plann Reprod Health Care. 2007;33(4):237–43. https://pubmed.ncbi.nlm.nih.gov/17925102/

4115

Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–12. https://pubmed.ncbi.nlm.nih.gov/15082697/

4116

Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/

4117

Katz A. Observations and advertising: controversies in the prescribing of hormone replacement therapy. Health Care Women Int. 2003;24(10):927–39. https://pubmed.ncbi.nlm.nih.gov/14742130/

4118

Majumdar SR, Almasi EA, Stafford RS. Promotion and prescribing of hormone therapy after report of harm by the Women’s Health Initiative. JAMA. 2004;292(16):1983–8. https://pubmed.ncbi.nlm.nih.gov/15507584/

4119

Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med. 2007;356(16):1670–4. https://pubmed.ncbi.nlm.nih.gov/17442911/

4120

Fugh-Berman A. The science of marketing: how pharmaceutical companies manipulated medical discourse on menopause. Women’s Reprod Health. 2015;2(1):18–23. https://www.tandfonline.com/doi/full/10.1080/23293691.2015.1039448

4121

Roth JA, Etzioni R, Waters TM, et al. Economic return from the Women’s Health Initiative estrogen plus progestin clinical trial: a modeling study. Ann Intern Med. 2014;160(9):594–602. https://pubmed.ncbi.nlm.nih.gov/24798522/

4122

Majumdar SR, Almasi EA, Stafford RS. Promotion and prescribing of hormone therapy after report of harm by the Women’s Health Initiative. JAMA. 2004;292(16):1983–8. https://pubmed.ncbi.nlm.nih.gov/15507584/

4123

Carstens AJ. HRT prescriptions linked to 25 % of breast cancers in California. S Afr Med J. 2009;99(5):280. https://pubmed.ncbi.nlm.nih.gov/19588781/

4124

Fugh-Berman AJ. The haunting of medical journals: how ghostwriting sold “HRT.” PLoS Med. 2010;7(9):e1000335. https://pubmed.ncbi.nlm.nih.gov/20838656/

4125

Fugh-Berman A, Scialli AR. Gynecologists and estrogen: an affair of the heart. Perspect Biol Med. 2006;49(1):115–30. https://pubmed.ncbi.nlm.nih.gov/16489281/

4126

Fugh-Berman AJ. The haunting of medical journals: how ghostwriting sold “HRT.” PLoS Med. 2010;7(9):e1000335. https://pubmed.ncbi.nlm.nih.gov/20838656/

4127

Egilman AC, Kesselheim AS, Krumholz HM, Ross JS, Kim J, Kapczynski A. Confidentiality orders and public interest in drug and medical device litigation. JAMA Intern Med. 2020;180(2):292–9. https://pubmed.ncbi.nlm.nih.gov/31657836/

4128

Fugh-Berman A, Scialli AR. Gynecologists and estrogen: an affair of the heart. Perspect Biol Med. 2006;49(1):115–30. https://pubmed.ncbi.nlm.nih.gov/16489281/

4129

Tatsioni A, Siontis GCM, Ioannidis JPA. Partisan perspectives in the medical literature: a study of high frequency editorialists favoring hormone replacement therapy. J Gen Intern Med. 2010;25(9):914–9. https://pubmed.ncbi.nlm.nih.gov/20425148/

4130

Fugh-Berman A, Pearson C. The overselling of hormone replacement therapy. Pharmacotherapy. 2002;22(9):1205–8. https://pubmed.ncbi.nlm.nih.gov/12222561/

4131

Akesson A, Weismayer C, Newby PK, Wolk A. Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med. 2007;167(19):2122–7. https://pubmed.ncbi.nlm.nih.gov/17954808/

4132

American Academy of Family Physicians. Clinical preventative service recommendation: hormone replacement therapy. https://www.aafp.org/family-physician/patient-care/clinical-recommendations/all-clinical-recommendations/hrt.html. Accessed Aug 2, 2022.; https://www.aafp.org/family-physician/patient-care/clinical-recommendations/all-clinical-recommendations/hrt.html

4133

Fick DM, Semla TP, Steinman M, et al. American Geriatrics Society 2019 updated AGS Beers criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–94. https://pubmed.ncbi.nlm.nih.gov/30693946/

4134

Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update. J Am Coll Cardiol. 2011;57(12):1404–23. https://pubmed.ncbi.nlm.nih.gov/21325087/

4135

Grossman DC, Curry SJ, Owens DK, et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: US Preventive Services Task Force recommendation statement. JAMA. 2017;318(22):2224–33. https://pubmed.ncbi.nlm.nih.gov/29677309/

4136

ACOG Committee Opinion No. 565: Hormone therapy and heart disease. Obstet Gynecol. 2013;121(6):1407–10. https://pubmed.ncbi.nlm.nih.gov/23812486/

4137

Maclennan AH, Broadbent JL, Lester S, Moore V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst Rev. 2004;(4):CD002978. https://pubmed.ncbi.nlm.nih.gov/15495039/

4138

Santoro N, Allshouse A, Neal-Perry G, et al. Longitudinal changes in menopausal symptoms comparing women randomized to low-dose oral conjugated estrogens or transdermal estradiol plus micronized progesterone versus placebo: the Kronos Early Estrogen Prevention Study (KEEPS). Menopause. 2017;24(3):238–46. https://pubmed.ncbi.nlm.nih.gov/27779568/

4139

Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/

4140

Marjoribanks J, Farquhar C, Roberts H, Lethaby A, Lee J. Long-term hormone therapy for perimenopausal and postmenopausal women. Cochrane Database Syst Rev. 2017;1:CD004143. https://pubmed.ncbi.nlm.nih.gov/28093732/

4141

Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/

4142

Manson JE, Bassuk SS, Kaunitz AM, Pinkerton JV. The Women’s Health Initiative trials of menopausal hormone therapy: lessons learned. Menopause. 2020;27(8):918–28. https://pubmed.ncbi.nlm.nih.gov/32345788/

4143

Kim JJ, Chapman-Davis E. Role of progesterone in endometrial cancer. Semin Reprod Med. 2010;28(1):81–90. https://pubmed.ncbi.nlm.nih.gov/20104432/

4144

Maclennan AH, Broadbent JL, Lester S, Moore V. Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Syst Rev. 2004;(4):CD002978. https://pubmed.ncbi.nlm.nih.gov/15495039/

4145

Marjoribanks J, Farquhar CM, Roberts H, Lethaby A. Cochrane corner: long-term hormone therapy for perimenopausal and postmenopausal women. Heart. 2018;104(2):93–5. https://pubmed.ncbi.nlm.nih.gov/28739806/

4146

Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/

4147

Chew F, Wu X. Sources of information influencing the state-of-the-science gap in hormone replacement therapy usage. PLoS One. 2017;12(2):e0171189. https://pubmed.ncbi.nlm.nih.gov/28158240/

4148

Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol. 2014;142:16–29. https://pubmed.ncbi.nlm.nih.gov/24176763/

4149

ClinCalc DrugStats database. The top 300 of 2019. ClinCalc.com. https://clincalc.com/DrugStats/Top300Drugs.aspx. Updated September 12, 2021. Accessed May 5, 2022.; https://clincalc.com/DrugStats/Top300Drugs.aspx

4150

Kling J. The strange case of Premarin. Mod Drug Discov. 2000;3(8):46–52. https://pubsapp.acs.org/subscribe/archive/mdd/v03/i08/html/kling.html

4151

Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/

4152

ACOG Practice Bulletin No. 141: management of menopausal symptoms. Obstet Gynecol. 2014;123(1):202–16. https://pubmed.ncbi.nlm.nih.gov/24463691/

4153

Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/

4154

Brawley OW, O’Regan RM. Breast cancer screening: time for rational discourse. Cancer. 2014;120(18):2800–2. https://pubmed.ncbi.nlm.nih.gov/24925095/

4155

Biller-Andorno N, Jüni P. Abolishing mammography screening programs? A view from the Swiss Medical Board. N Engl J Med. 2014;370(21):1965–7. https://pubmed.ncbi.nlm.nih.gov/24738641/

4156

Nelson AL. Controversies regarding mammography, breast self-examination, and clinical breast examination. Obstet Gynecol Clin North Am. 2013;40(3):413–27. https://pubmed.ncbi.nlm.nih.gov/24021250/

4157

Loh KP, Stefan MS, Friderici J, et al. Healthcare professionals’ perceptions and knowledge of the USPSTF guidelines on breast self-examination. South Med J. 2015;108(8):459–62. https://pubmed.ncbi.nlm.nih.gov/26280768/

4158

Welch HG. Screening mammography – a long run for a short slide? N Engl J Med. 2010;363(13):1276–8. https://pubmed.ncbi.nlm.nih.gov/20860510/

4159

Gigerenzer G. Women’s perception of the benefit of breast cancer screening. Maturitas. 2010;67(1):5–6. https://pubmed.ncbi.nlm.nih.gov/20609537/

4160

Atkins CD. Potential hazards of mammography. J Clin Oncol. 2007;25(5):604. https://pubmed.ncbi.nlm.nih.gov/17290073/

4161

Barratt A. Overdiagnosis in mammography screening: a 45 year journey from shadowy idea to acknowledged reality. BMJ. 2015;350:h867. https://pubmed.ncbi.nlm.nih.gov/25736426/

4162

Gøtzsche PC, Jørgensen KJ, Zahl PH, Mæhlen J. Why mammography screening has not lived up to expectations from the randomised trials. Cancer Causes Control. 2012;23(1):15–21. https://pubmed.ncbi.nlm.nih.gov/22072221/

4163

Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA. 2014;311(13):1327–35. https://pubmed.ncbi.nlm.nih.gov/24691608/

4164

Gøtzsche PC, Jørgensen KJ, Zahl PH, Mæhlen J. Why mammography screening has not lived up to expectations from the randomised trials. Cancer Causes Control. 2012;23(1):15–21. https://pubmed.ncbi.nlm.nih.gov/22072221/

4165

Sohn E. Screening: don’t look now. Nature. 2015;527(7578):S118–9. https://pubmed.ncbi.nlm.nih.gov/26580162/

4166

Gotzsche P. Commentary: screening: a seductive paradigm that has generally failed us. Int J Epidemiol. 2015;44(1):278–80. https://pubmed.ncbi.nlm.nih.gov/25596213/

4167

Derbyshire SWG. Second opinion: doctors, diseases and decisions in modern medicine. BMJ. 2003;327(7411):399. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1126826/

4168

Jørgensen KJ, Gøtzsche PC. The background review for the USPSTF recommendation on screening for breast cancer. Ann Intern Med. 2010;152(8):538; author reply 538–9. https://pubmed.ncbi.nlm.nih.gov/20157097/

4169

Domenighetti G, D’Avanzo B, Egger M, et al. Women’s perception of the benefits of mammography screening: population-based survey in four countries. Int J Epidemiol. 2003;32(5):816–21. https://pubmed.ncbi.nlm.nih.gov/14559757/

4170

Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://pubmed.ncbi.nlm.nih.gov/33501848/

4171

National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer stat facts: female breast cancer. https://seer.cancer.gov/statfacts/html/breast.html. Accessed May 5, 2022.; https://seer.cancer.gov/statfacts/html/breast.html

4172

Parise CA, Caggiano V. Breast cancer survival defined by the ER/PR/HER2 subtypes and a surrogate classification according to tumor grade and immunohistochemical biomarkers. J Cancer Epidemiol. 2014;2014:469251. https://pubmed.ncbi.nlm.nih.gov/24955090/

4173

Romanos-Nanclares A, Willett WC, Rosner BA, et al. Healthful and unhealthful plant-based diets and risk of breast cancer in U.S. women: results from the Nurses’ Health Studies. Cancer Epidemiol Biomarkers Prev. 2021;30(10):1921–31. https://pubmed.ncbi.nlm.nih.gov/34289970/

4174

Link LB, Canchola AJ, Bernstein L, et al. Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am J Clin Nutr. 2013;98(6):1524–32. https://pubmed.ncbi.nlm.nih.gov/24108781/

4175

Hankinson SE. Circulating levels of sex steroids and prolactin in premenopausal women and risk of breast cancer. In: Li JJ, Li SA, Mohla S, Rochefort H, Maudelonde T, eds. Hormonal Carcinogenesis V. Springer; 2008:161–9. https://pubmed.ncbi.nlm.nih.gov/18497040/

4176

Key T, Appleby P, Barnes I, et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606–16. https://pubmed.ncbi.nlm.nih.gov/11959894/

4177

Hankinson SE. Circulating levels of sex steroids and prolactin in premenopausal women and risk of breast cancer. In: Li JJ, Li SA, Mohla S, Rochefort H, Maudelonde T, eds. Hormonal Carcinogenesis V. Springer; 2008:161–9. https://pubmed.ncbi.nlm.nih.gov/18497040/

4178

Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–42. https://pubmed.ncbi.nlm.nih.gov/19372199/

4179

Shultz TD, Leklem JE. Nutrient intake and hormonal status of premenopausal vegetarian Seventh-day Adventists and premenopausal nonvegetarians. Nutr Cancer. 1983;4(4):247–59. https://pubmed.ncbi.nlm.nih.gov/6224137/

4180

Barbosa JC, Shultz TD, Filley SJ, Nieman DC. The relationship among adiposity, diet, and hormone concentrations in vegetarian and nonvegetarian postmenopausal women. Am J Clin Nutr. 1990;51(5):798–803. https://pubmed.ncbi.nlm.nih.gov/2159209/

4181

Shultz TD, Howie BJ. In vitro binding of steroid hormones by natural and purified fibers. Nutr Cancer. 1986;8(2):141–7. https://pubmed.ncbi.nlm.nih.gov/3010251/

4182

Goldin BR, Woods MN, Spiegelman DL, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74(3 Suppl):1125–31. https://pubmed.ncbi.nlm.nih.gov/8039147/

4183

Jew S, AbuMweis SS, Jones PJH. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/

4184

Goldin BR, Adlercreutz H, Dwyer JT, Swenson L, Warram JH, Gorbach SL. Effect of diet on excretion of estrogens in pre– and postmenopausal women. Cancer Res. 1981;41(9 Pt 2):3771–3. https://pubmed.ncbi.nlm.nih.gov/7260944/

4185

Goldin BR, Adlercreutz H, Gorbach SL, et al. Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. N Engl J Med. 1982;307(25):1542–7. https://pubmed.ncbi.nlm.nih.gov/7144835/

4186

Beezhold B, Radnitz C, McGrath RE, Feldman A. Vegans report less bothersome vasomotor and physical menopausal symptoms than omnivores. Maturitas. 2018;112:12–7. https://pubmed.ncbi.nlm.nih.gov/29704911/

4187

Beezhold B, Radnitz C, McGrath RE, Feldman A. Vegans report less bothersome vasomotor and physical menopausal symptoms than omnivores. Maturitas. 2018;112:12–7. https://pubmed.ncbi.nlm.nih.gov/29704911/

4188

Noll PRES, Campos CAS, Leone C, et al. Dietary intake and menopausal symptoms in postmenopausal women: a systematic review. Climacteric. 2021;24(2):128–38. https://pubmed.ncbi.nlm.nih.gov/33112163/

4189

Cagnacci A, Cannoletta M, Palma F, Bellafronte M, Romani C, Palmieri B. Relation between oxidative stress and climacteric symptoms in early postmenopausal women. Climacteric. 2015;18(4):631–6. https://pubmed.ncbi.nlm.nih.gov/25536006/

4190

Aslani Z, Abshirini M, Heidari-Beni M, et al. Dietary inflammatory index and dietary energy density are associated with menopausal symptoms in postmenopausal women: a cross-sectional study. Menopause. 2020;27(5):568–78. https://pubmed.ncbi.nlm.nih.gov/32068687/

4191

Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/

4192

Woyka J. Consensus statement for non-hormonal-based treatments for menopausal symptoms. Post Reprod Health. 2017;23(2):71–5. https://pubmed.ncbi.nlm.nih.gov/28643614/

4193

Prentice RL, Howard BV, Van Horn L, et al. Nutritional epidemiology and the Women’s Health Initiative: a review. Am J Clin Nutr. 2021;113(5):1083–92. https://pubmed.ncbi.nlm.nih.gov/33876183/

4194

Patterson RE, Kristal A, Rodabough R, et al. Changes in food sources of dietary fat in response to an intensive low-fat dietary intervention: early results from the Women’s Health Initiative. J Am Diet Assoc. 2003;103(4):454–60. https://pubmed.ncbi.nlm.nih.gov/12669007/

4195

Patterson RE, Prentice RL, Beresford S, et al. Dietary adherence in the Women’s Health Initiative dietary modification trial. J Am Diet Assoc. 2004;104(4):654–8. https://pubmed.ncbi.nlm.nih.gov/15054353/

4196

Kroenke CH, Caan BJ, Stefanick ML, et al. Effects of a dietary intervention and weight change on vasomotor symptoms in the Women’s Health Initiative. Menopause. 2012;19(9):980–8. https://pubmed.ncbi.nlm.nih.gov/22781782/

4197

Rotolo O, Zinzi I, Veronese N, et al. Women in LOVe: lacto-ovo-vegetarian diet rich in omega-3 improves vasomotor symptoms in postmenopausal women. An exploratory randomized controlled trial. Endocr Metab Immune Disord Drug Targets. 2019;19(8):1232–9. https://pubmed.ncbi.nlm.nih.gov/31132980/

4198

Cetisli NE, Saruhan A, Kivcak B. The effects of flaxseed on menopausal symptoms and quality of life. Holist Nurs Pract. 2015;29(3):151–7. https://pubmed.ncbi.nlm.nih.gov/25882265/

4199

Messina M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients. 2016;8(12):E754. https://pubmed.ncbi.nlm.nih.gov/27886135/

4200

Thomas AJ, Ismail R, Taylor-Swanson L, et al. Effects of isoflavones and amino acid therapies for hot flashes and co-occurring symptoms during the menopausal transition and early postmenopause: a systematic review. Maturitas. 2014;78(4):263–76. https://pubmed.ncbi.nlm.nih.gov/24951101/

4201

Avis NE, Crawford SL, Greendale G, et al. Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Intern Med. 2015;175(4):531–9. https://pubmed.ncbi.nlm.nih.gov/25686030/

4202

Avis NE, Kaufert PA, Lock M, McKinlay SM, Vass K. The evolution of menopausal symptoms. Baillieres Clin Endocrinol Metab. 1993;7(1):17–32. https://pubmed.ncbi.nlm.nih.gov/8435051/

4203

Thomas AJ, Ismail R, Taylor-Swanson L, et al. Effects of isoflavones and amino acid therapies for hot flashes and co-occurring symptoms during the menopausal transition and early postmenopause: a systematic review. Maturitas. 2014;78(4):263–76. https://pubmed.ncbi.nlm.nih.gov/24951101/

4204

Lock M. Contested meanings of the menopause. Lancet. 1991;337(8752):1270–2. https://pubmed.ncbi.nlm.nih.gov/1674073/

4205

Avis NE, Kaufert PA, Lock M, McKinlay SM, Vass K. The evolution of menopausal symptoms. Baillieres Clin Endocrinol Metab. 1993;7(1):17–32. https://pubmed.ncbi.nlm.nih.gov/8435051/

4206

Lock M. Contested meanings of the menopause. Lancet. 1991;337(8752):1270–2. https://pubmed.ncbi.nlm.nih.gov/1674073/

4207

Lock M. Ambiguities of aging: Japanese experience and perceptions of menopause. Cult Med Psychiatry. 1986;10(1):23–46. https://pubmed.ncbi.nlm.nih.gov/3486095/

4208

Avis NE, Stellato R, Crawford S, et al. Is there a menopausal syndrome? Menopausal status and symptoms across racial/ethnic groups. Soc Sci Med. 2001;52(3):345–56. https://pubmed.ncbi.nlm.nih.gov/11330770/

4209

Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity: systematic review and meta-analysis of randomized controlled trials. Menopause. 2012;19(7):776–90. https://pubmed.ncbi.nlm.nih.gov/22433977/

4210

Ghazanfarpour M, Sadeghi R, Roudsari RL. The application of soy isoflavones for subjective symptoms and objective signs of vaginal atrophy in menopause: a systematic review of randomised controlled trials. J Obstet Gynaecol. 2016;36(2):160–71. https://pubmed.ncbi.nlm.nih.gov/26440219/

4211

Lambert MNT, Hu LM, Jeppesen PB. A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri– and postmenopausal women. Am J Clin Nutr. 2017;106(3):801–11. https://pubmed.ncbi.nlm.nih.gov/28768649/

4212

Su BYW, Tung TH, Chien WH. Effects of phytoestrogens on depressive symptoms in climacteric women: a meta-analysis of randomized controlled trials. J Altern Complement Med. 2018;24(8):850–1. https://pubmed.ncbi.nlm.nih.gov/29717895/

4213

Cheng PF, Chen JJ, Zhou XY, et al. Do soy isoflavones improve cognitive function in postmenopausal women? A meta-analysis. Menopause. 2015;22(2):198–206. https://pubmed.ncbi.nlm.nih.gov/25003621/

4214

Schmidt M, Arjomand-Wölkart K, Birkhäuser MH, et al. Consensus: soy isoflavones as a first-line approach to the treatment of menopausal vasomotor complaints. Gynecol Endocrinol. 2016;32(6):427–30. https://pubmed.ncbi.nlm.nih.gov/26943176/

4215

Welty FK, Lee KS, Lew NS, Nasca M, Zhou JR. The association between soy nut consumption and decreased menopausal symptoms. J Womens Health (Larchmt). 2007;16(3):361–9. https://pubmed.ncbi.nlm.nih.gov/17439381/

4216

Barnard ND, Kahleova H, Holtz DN, et al. A dietary intervention for vasomotor symptoms of menopause: a randomized, controlled trial. Menopause. 2023;30(1):80–7. https://pubmed.ncbi.nlm.nih.gov/36253903/

4217

Barnard ND, Kahleova H, Holtz DN, et al. The Women’s Study for the Alleviation of Vasomotor Symptoms (WAVS): a randomized, controlled trial of a plant-based diet and whole soybeans for postmenopausal women. Menopause. 2021;28(10):1150–6. https://pubmed.ncbi.nlm.nih.gov/34260478/

4218

Buja A, Pierbon M, Lago L, Grotto G, Baldo V. Breast cancer primary prevention and diet: an umbrella review. Int J Environ Res Public Health. 2020;17(13):E4731. https://pubmed.ncbi.nlm.nih.gov/32630215/

4219

Messina M, Messina VL. Exploring the soyfood controversy. Nutr Today. 2013;48(2):68. https://www.researchgate.net/publication/271683198_Exploring_the_Soyfood_Controversy

4220

Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/

4221

Kelsey JL. A review of the epidemiology of human breast cancer. Epidemiol Rev. 1979;1:74–109. https://pubmed.ncbi.nlm.nih.gov/398270/

4222

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://pubmed.ncbi.nlm.nih.gov/33433946/

4223

Fraser GE, Jaceldo-Siegl K, Orlich M, Mashchak A, Sirirat R, Knutsen S. Dairy, soy, and risk of breast cancer: those confounded milks. Int J Epidemiol. 2020;49(5):1526–37. https://pubmed.ncbi.nlm.nih.gov/32095830/

4224

Shu XO, Zheng Y, Cai H, et al. Soy food intake and breast cancer survival. JAMA. 2009;302(22):2437–43. https://pubmed.ncbi.nlm.nih.gov/19996398/

4225

Guha N, Kwan ML, Quesenberry CP, Weltzien EK, Castillo AL, Caan BJ. Soy isoflavones and risk of cancer recurrence in a cohort of breast cancer survivors: the Life After Cancer Epidemiology study. Breast Cancer Res Treat. 2009;118(2):395–405. https://pubmed.ncbi.nlm.nih.gov/19221874/

4226

Kang X, Zhang Q, Wang S, Huang X, Jin S. Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. CMAJ. 2010;182(17):1857–62. https://pubmed.ncbi.nlm.nih.gov/20956506/

4227

Rock CL, Doyle C, Demark-Wahnefried W, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74. https://pubmed.ncbi.nlm.nih.gov/22539238/

4228

Caan BJ, Natarajan L, Parker B, et al. Soy food consumption and breast cancer prognosis. Cancer Epidemiol Biomarkers Prev. 2011;20(5):854–8. https://pubmed.ncbi.nlm.nih.gov/21357380/

4229

Zhang YF, Kang HB, Li BL, Zhang RM. Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev. 2012;13(2):479–82. https://pubmed.ncbi.nlm.nih.gov/22524810/

4230

Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/

4231

Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12. https://pubmed.ncbi.nlm.nih.gov/23725149/

4232

Kang HB, Zhang YF, Yang JD, Lu KL. Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev. 2012;13(3):995–8. https://pubmed.ncbi.nlm.nih.gov/22631686/

4233

Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr. 2010;92(1):141–53. https://pubmed.ncbi.nlm.nih.gov/20463043/

4234

McCann SE, Thompson LU, Nie J, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat. 2010;122(1):229–35. https://pubmed.ncbi.nlm.nih.gov/20033482/

4235

Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res. 2005;11(10):3828–35. https://pubmed.ncbi.nlm.nih.gov/15897583/

4236

Calado A, Neves PM, Santos T, Ravasco P. The effect of flaxseed in breast cancer: a literature review. Front Nutr. 2018;5:4. https://pubmed.ncbi.nlm.nih.gov/29468163/

4237

Hadi A, Askarpour M, Salamat S, Ghaedi E, Symonds ME, Miraghajani M. Effect of flaxseed supplementation on lipid profile: an updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials. Pharmacol Res. 2020;152:104622. https://pubmed.ncbi.nlm.nih.gov/31899314/

4238

Khandouzi N, Zahedmehr A, Mohammadzadeh A, Sanati HR, Nasrollahzadeh J. Effect of flaxseed consumption on flow-mediated dilation and inflammatory biomarkers in patients with coronary artery disease: a randomized controlled trial. Eur J Clin Nutr. 2019;73(2):258–65. https://pubmed.ncbi.nlm.nih.gov/30127374/

4239

Ursoniu S, Sahebkar A, Andrica F, et al. Effects of flaxseed supplements on blood pressure: a systematic review and meta-analysis of controlled clinical trial. Clin Nutr. 2016;35(3):615–25. https://pubmed.ncbi.nlm.nih.gov/26071633/

4240

Khandouzi N, Zahedmehr A, Mohammadzadeh A, Sanati HR, Nasrollahzadeh J. Effect of flaxseed consumption on flow-mediated dilation and inflammatory biomarkers in patients with coronary artery disease: a randomized controlled trial. Eur J Clin Nutr. 2019;73(2):258–65. https://pubmed.ncbi.nlm.nih.gov/30127374/

4241

Hadi A, Askarpour M, Ziaei R, Venkatakrishnan K, Ghaedi E, Ghavami A. Impact of flaxseed supplementation on plasma lipoprotein(A) concentrations: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2020;34(7):1599–608. https://pubmed.ncbi.nlm.nih.gov/32073724/

4242

Almehmadi A, Lightowler H, Chohan M, Clegg ME. The effect of a split portion of flaxseed on 24-h blood glucose response. Eur J Nutr. 2021;60(3):1363–73. https://pubmed.ncbi.nlm.nih.gov/32699911/

4243

Ghazanfarpour M, Sadeghi R, Latifnejad Roudsari R, et al. Effects of flaxseed and Hypericum perforatum on hot flash, vaginal atrophy and estrogen-dependent cancers in menopausal women: a systematic review and meta-analysis. Avicenna J Phytomed. 2016;6(3):273–83. https://pubmed.ncbi.nlm.nih.gov/27462550/

4244

Franco OH, Chowdhury R, Troup J, et al. Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA. 2016;315(23):2554–63. https://pubmed.ncbi.nlm.nih.gov/27327802/

4245

Milligan SR, Kalita JC, Heyerick A, Rong H, De Cooman L, De Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab. 1999;84(6):2249–52. https://pubmed.ncbi.nlm.nih.gov/10372741/

4246

Milligan S, Kalita J, Pocock V, et al. Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction. 2002;123(2):235–42. https://pubmed.ncbi.nlm.nih.gov/11866690/

4247

Bradbury RB, White DE. 761. The chemistry of subterranean clover. Part I. Isolation of formononetin and genistein. J Chem Soc. 1951;(0):3447–9. https://pubs.rsc.org/en/content/articlelanding/1951/jr/jr9510003447

4248

Gavaler JS, Rosenblum ER, Deal SR, Bowie BT. The phytoestrogen congeners of alcoholic beverages: current status. Proc Soc Exp Biol Med. 1995;208(1):98–102. https://pubmed.ncbi.nlm.nih.gov/7892304/

4249

Pedrera-Zamorano JD, Lavado-Garcia JM, Roncero-Martin R, Calderon-Garcia JF, Rodriguez-Dominguez T, Canal-Macias ML. Effect of beer drinking on ultrasound bone mass in women. Nutrition. 2009;25(10):1057–63. https://pubmed.ncbi.nlm.nih.gov/19527924/

4250

Aghamiri V, Mirghafourvand M, Mohammad-Alizadeh-Charandabi S, Nazemiyeh H. The effect of Hop (Humulus lupulus L.) on early menopausal symptoms and hot flashes: a randomized placebo-controlled trial. Complement Ther Clin Pract. 2016;23:130–5. https://pubmed.ncbi.nlm.nih.gov/25982391/

4251

Schaefer O, Hümpel M, Fritzemeier KH, Bohlmann R, Schleuning WD. 8-Prenyl naringenin is a potent ERa selective phytoestrogen present in hops and beer. J Steroid Biochem Mol Biol. 2003;84(2–3):359–60. https://pubmed.ncbi.nlm.nih.gov/12711023/

4252

Fugh-Berman A. “Bust enhancing” herbal products. Obstet Gynecol. 2003;101(6):1345–9. https://pubmed.ncbi.nlm.nih.gov/12798545/

4253

Lê MG, Hill C, Kramar A, Flamanti R. Alcoholic beverage consumption and breast cancer in a French case-control study. Am J Epidemiol. 1984;120(3):350–7. https://pubmed.ncbi.nlm.nih.gov/6475912/

4254

Salehi-Pourmehr H, Ostadrahimi A, Ebrahimpour-Mirzarezaei M, Farshbaf-Khalili A. Does aromatherapy with lavender affect physical and psychological symptoms of menopausal women? A systematic review and meta-analysis. Complement Ther Clin Pract. 2020;39:101150. https://pubmed.ncbi.nlm.nih.gov/32379682/

4255

Kazemzadeh R, Nikjou R, Rostamnegad M, Norouzi H. Effect of lavender aromatherapy on menopause hot flushing: a crossover randomized clinical trial. J Chin Med Assoc. 2016;79(9):489–92. https://pubmed.ncbi.nlm.nih.gov/27388435/

4256

Nikjou R, Kazemzadeh R, Asadzadeh F, Fathi R, Mostafazadeh F. The effect of lavender aromatherapy on the symptoms of menopause. J Natl Med Assoc. 2018;110(3):265–9. https://pubmed.ncbi.nlm.nih.gov/29778129/

4257

Dos Reis Lucena L, Dos Santos-Junior JG, Tufik S, Hachul H. Lavender essential oil on postmenopausal women with insomnia: double-blind randomized trial. Complement Ther Med. 2021;59:102726. https://pubmed.ncbi.nlm.nih.gov/33905827/

4258

Donelli D, Antonelli M, Bellinazzi C, Gensini GF, Firenzuoli F. Effects of lavender on anxiety: a systematic review and meta-analysis. Phytomedicine. 2019;65:153099. https://pubmed.ncbi.nlm.nih.gov/31655395/

4259

Farshbaf-Khalili A, Kamalifard M, Namadian M. Comparison of the effect of lavender and bitter orange on anxiety in postmenopausal women: a triple-blind, randomized, controlled clinical trial. Complement Ther Clin Pract. 2018;31:132–8. https://pubmed.ncbi.nlm.nih.gov/29705445/

4260

Kamalifard M, Farshbaf-Khalili A, Namadian M, Ranjbar Y, Herizchi S. Comparison of the effect of lavender and bitter orange on sleep quality in postmenopausal women: a triple-blind, randomized, controlled clinical trial. Women Health. 2018;58(8):851–65. https://pubmed.ncbi.nlm.nih.gov/28749734/

4261

Latiff LA, Parhizkar S, Dollah MA, Hassan STS. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci. 2014;17(12):980–5. https://pubmed.ncbi.nlm.nih.gov/25859301/

4262

Rahimi Kian F, Bekhradi R, Rahimi R, Golzareh P, Mehran A. Evaluating the effect of fennel soft capsules on the quality of life and its different aspects in menopausal women: a randomized clinical trial. Nurs Pract Today. 2017;4(2):87–95. https://www.researchgate.net/publication/319183067_Evaluating_the_effect_of_fennel_soft_capsules_on_the_quality_of_life_and_its_different_aspects_in_menopausal_women_A_randomized_clinical_trial_ARTICLE_INFO_ABSTRACT

4263

Khan TM, Wu DBC, Dolzhenko AV. Effectiveness of fenugreek as a galactagogue: a network meta-analysis. Phytother Res. 2018;32(3):402–12. https://pubmed.ncbi.nlm.nih.gov/29193352/

4264

Hakimi S, Charandabi SMA, Shadbad MRS, et al. Effect of Fenugreek seed on early menopausal symptoms. Pharm Sci. 2005;(2):83–90. https://www.researchgate.net/publication/236619683_Effect_of_Fenugreek_seed_on_early_menopausal_symptoms

4265

Tariq SH, Haren MT, Kim MJ, Morley JE. Andropause: is the emperor wearing any clothes? Rev Endocr Metab Disord. 2005;6(2):77–84. https://pubmed.ncbi.nlm.nih.gov/15843878/

4266

Saad F, Gooren LJ. Late onset hypogonadism of men is not equivalent to the menopause. Maturitas. 2014;79(1):52–7. https://pubmed.ncbi.nlm.nih.gov/25042874/

4267

Tariq SH, Haren MT, Kim MJ, Morley JE. Andropause: is the emperor wearing any clothes? Rev Endocr Metab Disord. 2005;6(2):77–84. https://pubmed.ncbi.nlm.nih.gov/15843878/

4268

Swee DS, Gan EH. Late-onset hypogonadism as primary testicular failure. Front Endocrinol (Lausanne). 2019;10:372. https://pubmed.ncbi.nlm.nih.gov/31244778/

4269

Vitry AI, Mintzes B. Disease mongering and low testosterone in men: the tale of two regulatory failures. Med J Aust. 2012;196(10):619–21. https://pubmed.ncbi.nlm.nih.gov/22676868/

4270

Schwartz LM, Woloshin S. Low “T” as in “template”: how to sell disease. JAMA Intern Med. 2013;173(15):1460–2. https://pubmed.ncbi.nlm.nih.gov/23939516/

4271

Perls T, Handelsman DJ. Disease mongering of age-associated declines in testosterone and growth hormone levels. J Am Geriatr Soc. 2015;63(4):809–11. https://pubmed.ncbi.nlm.nih.gov/25809947/

4272

Eder S. Many players in the concerto of sex. Science. 2007;315(5817):1370. https://www.science.org/doi/abs/10.1126/science.1139058

4273

Shomali ME. The use of anti-aging hormones. Melatonin, growth hormone, testosterone, and dehydroepiandrosterone: consumer enthusiasm for unproven therapies. Md Med J. 1997;46(4):181–6. https://pubmed.ncbi.nlm.nih.gov/9114695/

4274

Rengachary SS, Colen C, Guthikonda M. Charles-Édouard Brown-Séquard: an eccentric genius. Neurosurgery. 2008;62(4):954–64. https://pubmed.ncbi.nlm.nih.gov/18496202/

4275

Kim MJ, Morley JE. The hormonal fountains of youth: myth or reality? J Endocrinol Invest. 2005;28(11 Suppl Proceedings):5–14. https://pubmed.ncbi.nlm.nih.gov/16760618/

4276

Swee DS, Gan EH. Late-onset hypogonadism as primary testicular failure. Front Endocrinol (Lausanne). 2019;10:372. https://pubmed.ncbi.nlm.nih.gov/31244778/

4277

Sartorius G, Spasevska S, Idan A, et al. Serum testosterone, dihydrotestosterone and estradiol concentrations in older men self-reporting very good health: the healthy man study. Clin Endocrinol (Oxf). 2012;77(5):755–63. https://pubmed.ncbi.nlm.nih.gov/22563890/

4278

Saad F, Gooren LJ. Late onset hypogonadism of men is not equivalent to the menopause. Maturitas. 2014;79(1):52–7. https://pubmed.ncbi.nlm.nih.gov/25042874/

4279

Busnelli A, Somigliana E, Vercellini P. ‘Forever young’—testosterone replacement therapy: a blockbuster drug despite flabby evidence and broken promises. Human Reproduction. 2017;32(4):719–24. https://pubmed.ncbi.nlm.nih.gov/28333214/

4280

Handelsman DJ. Irrational exuberance in testosterone prescribing: when will the bubble burst? Med Care. 2015;53(9):743–5. https://pubmed.ncbi.nlm.nih.gov/26270825/

4281

Perls T, Handelsman DJ. Disease mongering of age-associated declines in testosterone and growth hormone levels. J Am Geriatr Soc. 2015;63(4):809–11. https://pubmed.ncbi.nlm.nih.gov/25809947/

4282

Vitry AI, Mintzes B. Disease mongering and low testosterone in men: the tale of two regulatory failures. Med J Aust. 2012;196(10):619–21. https://pubmed.ncbi.nlm.nih.gov/22676868/

4283

Mintzes B. The marketing of testosterone treatments for age-related low testosterone or “Low T.” Curr Opin Endocrinol Diabetes Obes. 2018;25(3):224–30. https://pubmed.ncbi.nlm.nih.gov/29570470/

4284

Morley JE, Perry HM III, Kevorkian RT, Patrick P. Comparison of screening questionnaires for the diagnosis of hypogonadism. Maturitas. 2006;53(4):424–9. https://pubmed.ncbi.nlm.nih.gov/16140484/

4285

Vitry AI, Mintzes B. Disease mongering and low testosterone in men: the tale of two regulatory failures. Med J Aust. 2012;196(10):619–21. https://pubmed.ncbi.nlm.nih.gov/22676868/

4286

Dunn M, Mulrooney KJ, Forlini C, van de Ven K, Underwood M. The pharmaceuticalisation of “healthy” ageing: testosterone enhancement for longevity. Int J Drug Policy. 2021;95:103159. https://pubmed.ncbi.nlm.nih.gov/33583680/

4287

Fugh-Berman A, Hogenmiller A. CME stands for commercial medical education: and ACCME still won’t address the issue. J Med Ethics. 2016;42(3):172–3. https://pubmed.ncbi.nlm.nih.gov/26676848/

4288

Handelsman DJ. Irrational exuberance in testosterone prescribing: when will the bubble burst? Med Care. 2015;53(9):743–5. https://pubmed.ncbi.nlm.nih.gov/26270825/

4289

Shores MM, Matsumoto AM. Testosterone, aging and survival: biomarker or deficiency. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):209–16. https://pubmed.ncbi.nlm.nih.gov/24722173/

4290

Perls T, Handelsman DJ. Disease mongering of age-associated declines in testosterone and growth hormone levels. J Am Geriatr Soc. 2015;63(4):809–11. https://pubmed.ncbi.nlm.nih.gov/25809947/

4291

Al-Sharefi A, Quinton R. Current national and international guidelines for the management of male hypogonadism: helping clinicians to navigate variation in diagnostic criteria and treatment recommendations. Endocrinol Metab (Seoul). 2020;35(3):526–40. https://pubmed.ncbi.nlm.nih.gov/32981295/

4292

Mok SF, Fennell C, Savkovic S, et al. Testosterone for androgen deficiency – like symptoms in men without pathologic hypogonadism: a randomized, placebo-controlled cross-over with masked choice extension clinical trial. J Gerontol A Biol Sci Med Sci. 2020;75(9):1723–31. https://pubmed.ncbi.nlm.nih.gov/31425577/

4293

Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4–5):395–402. https://pubmed.ncbi.nlm.nih.gov/29174614/

4294

Huo S, Scialli AR, McGarvey S, et al. Treatment of men for “low testosterone”: a systematic review. PLoS One. 2016;11(9):e0162480. https://pubmed.ncbi.nlm.nih.gov/27655114/

4295

Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4–5):395–402. https://pubmed.ncbi.nlm.nih.gov/29174614/

4296

Irwig MS, Fleseriu M, Jonklaas J, et al. Off-label use and misuse of testosterone, growth hormone, thyroid hormone, and adrenal supplements: risks and costs of a growing problem. Endocr Pract. 2020;26(3):340–53. https://pubmed.ncbi.nlm.nih.gov/32163313/

4297

Wu FCW, Tajar A, Beynon JM, et al. Identification of late-onset hypogonadism in middle-aged and elderly men. N Engl J Med. 2010;363(2):123–35. https://pubmed.ncbi.nlm.nih.gov/20554979/

4298

Miner M, Barkin J, Rosenberg MT. Testosterone deficiency: myth, facts, and controversy. Can J Urol. 2014;21(Suppl 2):39–54. https://pubmed.ncbi.nlm.nih.gov/24978631/

4299

Salter CA, Mulhall JP. Guideline of guidelines: testosterone therapy for testosterone deficiency. BJU Int. 2019;124(5):722–9. https://pubmed.ncbi.nlm.nih.gov/31420972/

4300

Grossmann M. Serum testosterone concentrations in older men: one size does not fit all. J Clin Endocrinol Metab. 2020;105(8):dgaa400. https://pubmed.ncbi.nlm.nih.gov/32584983/

4301

Giagulli VA, Castellana M, Lisco G, Triggiani V. Critical evaluation of different available guidelines for late-onset hypogonadism. Andrology. 2020;8(6):1628–41. https://pubmed.ncbi.nlm.nih.gov/32593233/

4302

Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4–5):395–402. https://pubmed.ncbi.nlm.nih.gov/29174614/

4303

Fugh-Berman A. Treating aging with testosterone. Am Fam Physician. 2017;96(7):428–30. https://pubmed.ncbi.nlm.nih.gov/29094915/

4304

The truth about testosterone replacement therapy. Fountain of youth – or harbinger of health woes? Johns Hopkins Med Lett Health After 50. 2014;29(5):1–2. https://pubmed.ncbi.nlm.nih.gov/25097952/

4305

Sansone A, Sansone M, Lenzi A, Romanelli F. Testosterone replacement therapy: the emperor’s new clothes. Rejuvenation Res. 2017;20(1):9–14. https://pubmed.ncbi.nlm.nih.gov/27124096/

4306

Layton JB, Li D, Meier CR, et al. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000 to 2011. J Clin Endocrinol Metab. 2014;99(3):835–42. https://pubmed.ncbi.nlm.nih.gov/24423353/

4307

Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4–5):395–402. https://pubmed.ncbi.nlm.nih.gov/29174614/

4308

Busnelli A, Somigliana E, Vercellini P. ‘Forever young’—testosterone replacement therapy: a blockbuster drug despite flabby evidence and broken promises. Human Reproduction. 2017;32(4):719–24. https://pubmed.ncbi.nlm.nih.gov/28333214/

4309

Tariq SH, Haren MT, Kim MJ, Morley JE. Andropause: is the emperor wearing any clothes? Rev Endocr Metab Disord. 2005;6(2):77–84. https://pubmed.ncbi.nlm.nih.gov/15843878/

4310

Mok SF, Fennell C, Savkovic S, et al. Testosterone for androgen deficiency – like symptoms in men without pathologic hypogonadism: a randomized, placebo-controlled cross-over with masked choice extension clinical trial. J Gerontol A Biol Sci Med Sci. 2020;75(9):1723–31. https://pubmed.ncbi.nlm.nih.gov/31425577/

4311

Fox CA, Ismail AA, Love DN, Kirkham KE, Loraine JA. Studies on the relationship between plasma testosterone levels and human sexual activity. J Endocrinol. 1972;52(1):51–8. https://pubmed.ncbi.nlm.nih.gov/5061159/

4312

Effects of sexual activity on beard growth in man. Nature. 1970;226(5248):869–70. https://pubmed.ncbi.nlm.nih.gov/5444635/

4313

Jannini EA, Screponi E, Carosa E, et al. Lack of sexual activity from erectile dysfunction is associated with a reversible reduction in serum testosterone. Int J Androl. 1999;22(6):385–92. https://pubmed.ncbi.nlm.nih.gov/10624607/

4314

Dabbs JM, Mohammed S. Male and female salivary testosterone concentrations before and after sexual activity. Physiol Behav. 1992;52(1):195–7. https://pubmed.ncbi.nlm.nih.gov/1529008/

4315

Mok SF, Fennell C, Savkovic S, et al. Testosterone for androgen deficiency – like symptoms in men without pathologic hypogonadism: a randomized, placebo-controlled cross-over with masked choice extension clinical trial. J Gerontol A Biol Sci Med Sci. 2020;75(9):1723–31. https://pubmed.ncbi.nlm.nih.gov/31425577/

4316

Handelsman DJ. Testosterone and male aging: faltering hope for rejuvenation. JAMA. 2017;317(7):699–701. https://pubmed.ncbi.nlm.nih.gov/28241336/

4317

Corona G, Guaraldi F, Rastrelli G, Sforza A, Maggi M. Testosterone deficiency and risk of cognitive disorders in aging males. World J Mens Health. 2021;39(1):9–18. https://pubmed.ncbi.nlm.nih.gov/32378366/

4318

Zhang Z, Kang D, Li H. Testosterone and cognitive impairment or dementia in middle-aged or aging males: causation and intervention, a systematic review and meta-analysis. J Geriatr Psychiatry Neurol. 2021;34(5):405–17. https://pubmed.ncbi.nlm.nih.gov/32602403/

4319

Sari Motlagh R, Quhal F, Mori K, et al. The risk of new onset dementia and/or Alzheimer disease among patients with prostate cancer treated with androgen deprivation therapy: a systematic review and meta-analysis. J Urol. 2021;205(1):60–7. https://pubmed.ncbi.nlm.nih.gov/32856962/

4320

Resnick SM, Matsumoto AM, Stephens-Shields AJ, et al. Testosterone treatment and cognitive function in older men with low testosterone and age-associated memory impairment. JAMA. 2017;317(7):717–27. https://pubmed.ncbi.nlm.nih.gov/28241356/

4321

Corona G, Guaraldi F, Rastrelli G, Sforza A, Maggi M. Testosterone deficiency and risk of cognitive disorders in aging males. World J Mens Health. 2021;39(1):9–18. https://pubmed.ncbi.nlm.nih.gov/32378366/

4322

Handelsman DJ. Testosterone and male aging: faltering hope for rejuvenation. JAMA. 2017;317(7):699–701. https://pubmed.ncbi.nlm.nih.gov/28241336/

4323

Snyder PJ, Bhasin S, Cunningham GR, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016;374(7):611–24. https://pubmed.ncbi.nlm.nih.gov/26886521/

4324

Diem SJ, Greer NL, MacDonald R, et al. Efficacy and safety of testosterone treatment in men: an evidence report for a clinical practice guideline by the American College of Physicians. Ann Intern Med. 2020;172(2):105–18. https://pubmed.ncbi.nlm.nih.gov/31905375/

4325

Bandari J, Ayyash OM, Emery SL, Wessel CB, Davies BJ. Marketing and testosterone treatment in the USA: a systematic review. Eur Urol Focus. 2017;3(4–5):395–402. https://pubmed.ncbi.nlm.nih.gov/29174614/

4326

Huo S, Scialli AR, McGarvey S, et al. Treatment of men for “low testosterone”: a systematic review. PLoS One. 2016;11(9):e0162480. https://pubmed.ncbi.nlm.nih.gov/27655114/

4327

Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med. 2017;177(4):471–9. https://pubmed.ncbi.nlm.nih.gov/28241231/

4328

Zhang Z, Kang D, Li H. The effects of testosterone on bone health in males with testosterone deficiency: a systematic review and meta-analysis. BMC Endocr Disord. 2020;20(1):33. https://pubmed.ncbi.nlm.nih.gov/32145741/

4329

Snyder PJ, Bhasin S, Cunningham GR, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016;374(7):611–24. https://pubmed.ncbi.nlm.nih.gov/26886521/

4330

Huo S, Scialli AR, McGarvey S, et al. Treatment of men for “low testosterone”: a systematic review. PLoS One. 2016;11(9):e0162480. https://pubmed.ncbi.nlm.nih.gov/27655114/

4331

Maggi M, Filippi S, Vignozzi L, Rastrelli G. Controversial aspects of testosterone in the regulation of sexual function in late-onset hypogonadism. Andrology. 2020;8(6):1580–9. https://pubmed.ncbi.nlm.nih.gov/32248652/

4332

Corona G, Rastrelli G, Morgentaler A, Sforza A, Mannucci E, Maggi M. Meta-analysis of results of testosterone therapy on sexual function based on international index of erectile function scores. Eur Urol. 2017;72(6):1000–11. https://pubmed.ncbi.nlm.nih.gov/28434676/

4333

Maggi M, Filippi S, Vignozzi L, Rastrelli G. Controversial aspects of testosterone in the regulation of sexual function in late-onset hypogonadism. Andrology. 2020;8(6):1580–9. https://pubmed.ncbi.nlm.nih.gov/32248652/

4334

Kwan M, Greenleaf WJ, Mann J, Crapo L, Davidson JM. The nature of androgen action on male sexuality: a combined laboratory-self-report study on hypogonadal men. J Clin Endocrinol Metab. 1983;57(3):557–62. https://pubmed.ncbi.nlm.nih.gov/6874890/

4335

Maggi M, Filippi S, Vignozzi L, Rastrelli G. Controversial aspects of testosterone in the regulation of sexual function in late-onset hypogonadism. Andrology. 2020;8(6):1580–9. https://pubmed.ncbi.nlm.nih.gov/32248652/

4336

Adlin EV. Age-related low testosterone. Ann Intern Med. 2020;172(2):151–2. https://pubmed.ncbi.nlm.nih.gov/31905380/

4337

Lang PO, Samaras D, Samaras N. Testosterone replacement therapy in reversing “andropause”: what is the proof-of-principle? Rejuvenation Res. 2012;15(5):453–65. https://pubmed.ncbi.nlm.nih.gov/22656862/

4338

Corona G, Isidori AM, Buvat J, et al. Testosterone supplementation and sexual function: a meta-analysis study. J Sex Med. 2014;11(6):1577–92. https://pubmed.ncbi.nlm.nih.gov/24697970/

4339

Adlin EV. Age-related low testosterone. Ann Intern Med. 2020;172(2):151–2. https://pubmed.ncbi.nlm.nih.gov/31905380/

4340

Lang PO, Samaras D, Samaras N. Testosterone replacement therapy in reversing “andropause”: what is the proof-of-principle? Rejuvenation Res. 2012;15(5):453–65. https://pubmed.ncbi.nlm.nih.gov/22656862/

4341

Fisher AD, Corona G, Bandini E, et al. Psychobiological correlates of extramarital affairs and differences between stable and occasional infidelity among men with sexual dysfunctions. J Sex Med. 2009;6(3):866–75. https://pubmed.ncbi.nlm.nih.gov/19143911/

4342

Wagels L, Votinov M, Kellermann T, Eisert A, Beyer C, Habel U. Exogenous testosterone enhances the reactivity to social provocation in males. Front Behav Neurosci. 2018;12:37. https://pubmed.ncbi.nlm.nih.gov/29551966/

4343

Handelsman DJ. Pharmacoepidemiology of testosterone: impact of reimbursement policy on curbing off-label prescribing. Pharmacoepidemiol Drug Saf. 2020;29(9):1030–6. https://pubmed.ncbi.nlm.nih.gov/32743911/

4344

Bhasin S, Brito JP, Cunningham GR, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(5):1715–44. https://pubmed.ncbi.nlm.nih.gov/29562364/

4345

Shin YS, Park JK. The optimal indication for testosterone replacement therapy in late onset hypogonadism. J Clin Med. 2019;8(2):209. https://pubmed.ncbi.nlm.nih.gov/30736442/

4346

Roy CN, Snyder PJ, Stephens-Shields AJ, et al. Association of testosterone levels with anemia in older men: a controlled clinical trial. JAMA Intern Med. 2017;177(4):480–90. https://pubmed.ncbi.nlm.nih.gov/28241237/

4347

Swee DS, Gan EH. Late-onset hypogonadism as primary testicular failure. Front Endocrinol (Lausanne). 2019;10:372. https://pubmed.ncbi.nlm.nih.gov/31244778/

4348

Basaria S, Coviello AD, Travison TG, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22. https://pubmed.ncbi.nlm.nih.gov/20592293/

4349

Information update – possible cardiovascular problems associated with testosterone products. Government of Canada. https://recalls-rappels.canada.ca/en/alert-recall/information-update-possible-cardiovascular-problems-associated-testosterone-products. Published July 15, 2014. Accessed May 5, 2022.; https://recalls-rappels.canada.ca/en/alert-recall/information-update-possible-cardiovascular-problems-associated-testosterone-products

4350

Warren CJ, Wisener J, Ward B, et al. YouTube as a patient education resource for male hypogonadism and testosterone therapy. Sex Med. 2021;9(2):100324. https://pubmed.ncbi.nlm.nih.gov/33752104/

4351

Sansone A, Sansone M, Lenzi A, Romanelli F. Testosterone replacement therapy: the emperor’s new clothes. Rejuvenation Res. 2017;20(1):9–14. https://pubmed.ncbi.nlm.nih.gov/27124096/

4352

Warren CJ, Wisener J, Ward B, et al. YouTube as a patient education resource for male hypogonadism and testosterone therapy. Sex Med. 2021;9(2):100324. https://pubmed.ncbi.nlm.nih.gov/33752104/

4353

Huo S, Scialli AR, McGarvey S, et al. Treatment of men for “low testosterone”: a systematic review. PLoS One. 2016;11(9):e0162480. https://pubmed.ncbi.nlm.nih.gov/27655114/

4354

Kohn TP, Mata DA, Ramasamy R, Lipshultz LI. Effects of testosterone replacement therapy on lower urinary tract symptoms: a systematic review and meta-analysis. Eur Urol. 2016;69(6):1083–90. https://pubmed.ncbi.nlm.nih.gov/26874809/

4355

Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293–7. https://pubmed.ncbi.nlm.nih.gov/12050481/

4356

Perlmutter MA, Lepor H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol. 2007;9(Suppl 1):S3–8. https://pubmed.ncbi.nlm.nih.gov/17387371/

4357

Miner M, Barkin J, Rosenberg MT. Testosterone deficiency: myth, facts, and controversy. Can J Urol. 2014;21(Suppl 2):39–54. https://pubmed.ncbi.nlm.nih.gov/24978631/

4358

Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349(4):366–81. https://pubmed.ncbi.nlm.nih.gov/12878745/

4359

Salter CA, Mulhall JP. Guideline of guidelines: testosterone therapy for testosterone deficiency. BJU Int. 2019;124(5):722–9. https://pubmed.ncbi.nlm.nih.gov/31420972/

4360

Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med. 2003;349(4):366–81. https://pubmed.ncbi.nlm.nih.gov/12878745/

4361

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4362

Draisma G, Etzioni R, Tsodikov A, et al. Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst. 2009;101(6):374–83. https://pubmed.ncbi.nlm.nih.gov/19276453/

4363

Division of Cancer Prevention and Control, Centers for Disease Control and Prevention. Prostate cancer statistics. CDC.gov. http://www.cdc.gov/cancer/prostate/statistics/index.htm. Updated September 2, 2014. Accessed May 15, 2022.; https://www.cdc.gov/cancer/prostate/statistics/index.htm

4364

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4365

Moyer VA, LeFevre ML, Sui AL, et al. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157(2):120–34. https://pubmed.ncbi.nlm.nih.gov/22801674/

4366

Livingston CJ, Freeman RJ, Mohammad A, et al. Choosing Wisely® in preventive medicine. Am J Prev Med. 2016;51(1):141–9. https://pubmed.ncbi.nlm.nih.gov/27155735/

4367

Mulhem E, Fulbright N, Duncan N. Prostate cancer screening. Am Fam Physician. 2015;92(8):683–8. https://pubmed.ncbi.nlm.nih.gov/26554408/

4368

Ivlev I, Jerabkova S, Mishra M, Cook LA, Eden KB. Prostate cancer screening patient decision aids: a systematic review and meta-analysis. Am J Prev Med. 2018;55(6):896–907. https://pubmed.ncbi.nlm.nih.gov/30337235/

4369

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4370

Carter HB. American Urological Association (AUA) guideline on prostate cancer detection: process and rationale. BJU Int. 2013;112(5):543–7. https://pubmed.ncbi.nlm.nih.gov/23924423/

4371

Wilt TJ, Harris RP, Qaseem A, et al. Screening for cancer: advice for high-value care from the American College of Physicians. Ann Intern Med. 2015;162(10):718–25. https://pubmed.ncbi.nlm.nih.gov/25984846/

4372

American Cancer Society recommendations for prostate cancer early detection. American Cancer Society. https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html. Updated April 23, 2021. Accessed May 5, 2022.; https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/acs-recommendations.html

4373

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4374

Tikkinen KAO, Dahm P, Lytvyn L, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ. 2018;362:k3581. https://pubmed.ncbi.nlm.nih.gov/30185545/

4375

Gigerenzer G, Mata J, Frank R. Public knowledge of benefits of breast and prostate cancer screening in Europe. J Natl Cancer Inst. 2009;101(17):1216–20. https://pubmed.ncbi.nlm.nih.gov/19671770/

4376

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4377

Tikkinen KAO, Dahm P, Lytvyn L, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ. 2018;362:k3581. https://pubmed.ncbi.nlm.nih.gov/30185545/

4378

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4379

Grossman DC, Curry SJ, Owens DK, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA. 2018;319(18):1901–13. https://pubmed.ncbi.nlm.nih.gov/29801017/

4380

Early detection of prostate cancer. Harding Center for Risk Literacy. https://www.hardingcenter.de/sites/default/files/2021–11/fact%20%20box_PSA_EN_new_design_20201123_final.pdf. Updated November 2020. Accessed May 4, 2022.; https://www.hardingcenter.de/en/transfer-and-impact/fact-boxes/early-detection-of-cancer/early-detection-of-prostate-cancer-with-psa-testing

4381

Early detection of prostate cancer. Harding Center for Risk Literacy. https://www.hardingcenter.de/sites/default/files/2021–11/fact%20%20box_PSA_EN_new_design_20201123_final.pdf. Updated November 2020. Accessed May 4, 2022.; https://www.hardingcenter.de/en/transfer-and-impact/fact-boxes/early-detection-of-cancer/early-detection-of-prostate-cancer-with-psa-testing

4382

Our History. Endocrine Society. https://www.endocrine.org/our-community/advancing-endocrinology-and-public-health/history. Accessed May 5, 2022.; https://www.endocrine.org/our-community/advancing-endocrinology-and-public-health/history

4383

Al-Sharefi A, Quinton R. Current national and international guidelines for the management of male hypogonadism: helping clinicians to navigate variation in diagnostic criteria and treatment recommendations. Endocrinol Metab (Seoul). 2020;35(3):526–40. https://pubmed.ncbi.nlm.nih.gov/32981295/

4384

Swee DS, Gan EH. Late-onset hypogonadism as primary testicular failure. Front Endocrinol (Lausanne). 2019;10:372. https://pubmed.ncbi.nlm.nih.gov/31244778/

4385

Rastrelli G, Carter EL, Ahern T, et al. Development of and recovery from secondary hypogonadism in aging men: prospective results from the EMAS. J Clin Endocrinol Metab. 2015;100(8):3172–82. https://pubmed.ncbi.nlm.nih.gov/26000545/

4386

Davidson LM, Millar K, Jones C, Fatum M, Coward K. Deleterious effects of obesity upon the hormonal and molecular mechanisms controlling spermatogenesis and male fertility. Hum Fertil (Camb). 2015;18(3):184–93. https://pubmed.ncbi.nlm.nih.gov/26205254/

4387

Camacho EM, Huhtaniemi IT, O’Neill TW, et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol. 2013;168(3):445–55. https://pubmed.ncbi.nlm.nih.gov/23425925/

4388

Corona G, Rastrelli G, Monami M, et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol. 2013;168(6):829–43. https://pubmed.ncbi.nlm.nih.gov/23482592/

4389

Armamento-Villareal R, Aguirre LE, Qualls C, Villareal DT. Effect of lifestyle intervention on the hormonal profile of frail, obese older men. J Nutr Health Aging. 2016;20(3):334–40. https://pubmed.ncbi.nlm.nih.gov/26892583/

4390

Hayes LD, Elliott BT. Short-term exercise training inconsistently influences basal testosterone in older men: a systematic review and meta-analysis. Front Physiol. 2018;9:1878. https://pubmed.ncbi.nlm.nih.gov/30692929/

4391

Fukui H, Yamashita M. The effects of music and visual stress on testosterone and cortisol in men and women. Neuro Endocrinol Lett. 2003;24(3–4):173–80. https://pubmed.ncbi.nlm.nih.gov/14523353/

4392

Fukui H. Music and testosterone. A new hypothesis for the origin and function of music. Ann N Y Acad Sci. 2001;930:448–51. https://pubmed.ncbi.nlm.nih.gov/11458865/

4393

Leproult R, Van Cauter E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men. JAMA. 2011;305(21):2173–4. https://pubmed.ncbi.nlm.nih.gov/21632481/

4394

Sarkola T, Eriksson CJP. Testosterone increases in men after a low dose of alcohol. Alcohol Clin Exp Res. 2003;27(4):682–5. https://pubmed.ncbi.nlm.nih.gov/12711931/

4395

Sierksma A, Sarkola T, Eriksson CJP, van der Gaag MS, Grobbee DE, Hendriks HFJ. Effect of moderate alcohol consumption on plasma dehydroepiandrosterone sulfate, testosterone, and estradiol levels in middle-aged men and postmenopausal women: a diet-controlled intervention study. Alcohol Clin Exp Res. 2004;28(5):780–5. https://pubmed.ncbi.nlm.nih.gov/15166654/

4396

Hang D, Kværner AS, Ma W, et al. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am J Clin Nutr. 2019;109(3):635–47. https://pubmed.ncbi.nlm.nih.gov/30834441/

4397

Wedick NM, Mantzoros CS, Ding EL, et al. The effects of caffeinated and decaffeinated coffee on sex hormone – binding globulin and endogenous sex hormone levels: a randomized controlled trial. Nutr J. 2012;11:86. https://pubmed.ncbi.nlm.nih.gov/23078574/

4398

Balasubramanian A, Thirumavalavan N, Srivatsav A, Yu J, Lipshultz LI, Pastuszak AW. Testosterone imposters: an analysis of popular online testosterone boosting supplements. J Sex Med. 2019;16(2):203–12. https://pubmed.ncbi.nlm.nih.gov/32257853/

4399

Clemesha CG, Thaker H, Samplaski MK. ‘Testosterone boosting’ supplements composition and claims are not supported by the academic literature. World J Mens Health. 2020;38(1):115–22. https://pubmed.ncbi.nlm.nih.gov/31385468/

4400

Park HJ, Lee KS, Lee EK, Park NC. Efficacy and safety of a mixed extract of Trigonella foenum-graecum seed and Lespedeza cuneata in the treatment of testosterone deficiency syndrome: a randomized, double-blind, placebo-controlled clinical trial. World J Mens Health. 2018;36(3):230–8. https://pubmed.ncbi.nlm.nih.gov/29623697/

4401

Idris S, Mishra A, Khushtar M. Recent therapeutic interventions of fenugreek seed: a mechanistic approach. Drug Res (Stuttg). 2021;71(4):180–92. https://pubmed.ncbi.nlm.nih.gov/33378775/

4402

Khodamoradi K, Khosropanah MH, Ayati Z, et al. The effects of fenugreek on cardiometabolic risk factors in adults: a systematic review and meta-analysis. Complement Ther Med. 2020;52:102416. https://pubmed.ncbi.nlm.nih.gov/32951700/

4403

Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: a systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol. 2020;253:112538. https://pubmed.ncbi.nlm.nih.gov/32087319/

4404

Mansoori A, Hosseini S, Zilaee M, Hormoznejad R, Fathi M. Effect of fenugreek extract supplement on testosterone levels in male: a meta-analysis of clinical trials. Phytother Res. 2020;34(7):1550–5. https://pubmed.ncbi.nlm.nih.gov/32048383/

4405

Rao A, Steels E, Inder WJ, Abraham S, Vitetta L. Testofen, a specialised Trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study. The Aging Male. 2016;19(2):134–42. https://pubmed.ncbi.nlm.nih.gov/26791805/

4406

Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: a systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol. 2020;253:112538. https://pubmed.ncbi.nlm.nih.gov/32087319/

4407

Khodamoradi K, Khosropanah MH, Ayati Z, et al. The effects of fenugreek on cardiometabolic risk factors in adults: a systematic review and meta-analysis. Complement Ther Med. 2020;52:102416. https://pubmed.ncbi.nlm.nih.gov/32951700/

4408

Mebazaa R, Rega B, Camel V. Analysis of human male armpit sweat after fenugreek ingestion: characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chem. 2011;128(1):227–35. https://pubmed.ncbi.nlm.nih.gov/25214354/

4409

Pearce KL, Tremellen K. The effect of macronutrients on reproductive hormones in overweight and obese men: a pilot study. Nutrients. 2019;11(12):3059. https://pubmed.ncbi.nlm.nih.gov/31847341/

4410

Tremellen K, Hill A, Pearce K. Mechanistic insights into the aetiology of post-prandial decline in testosterone in reproductive-aged men. Andrologia. 2019;51(10):e13418. https://pubmed.ncbi.nlm.nih.gov/31475727/

4411

Tremellen K, McPhee N, Pearce K, Benson S, Schedlowski M, Engler H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am J Physiol Endocrinol Metab. 2018;314(3):E206–13. https://pubmed.ncbi.nlm.nih.gov/29183872/

4412

Lehtihet M, Arver S, Bartuseviciene I, Pousette A. S-testosterone decrease after a mixed meal in healthy men independent of SHBG and gonadotrophin levels. Andrologia. 2012;44(6):405–10. https://pubmed.ncbi.nlm.nih.gov/22524522/

4413

Tremellen K, Hill A, Pearce K. Mechanistic insights into the aetiology of post-prandial decline in testosterone in reproductive-aged men. Andrologia. 2019;51(10):e13418. https://pubmed.ncbi.nlm.nih.gov/31475727/

4414

Lindgren O, Carr RD, Deacon CF, et al. Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab. 2011;96(8):2519–24. https://pubmed.ncbi.nlm.nih.gov/21593115/

4415

Jeibmann A, Zahedi S, Simoni M, Nieschlag E, Byrne MM. Glucagon-like peptide-1 reduces the pulsatile component of testosterone secretion in healthy males. Eur J Clin Invest. 2005;35(9):565–72. https://pubmed.ncbi.nlm.nih.gov/16128863/

4416

Tremellen K, Hill A, Pearce K. Mechanistic insights into the aetiology of post-prandial decline in testosterone in reproductive-aged men. Andrologia. 2019;51(10):e13418. https://pubmed.ncbi.nlm.nih.gov/31475727/

4417

Anderson KE, Rosner W, Khan MS, et al. Diet-hormone interactions: protein/carbohydrate ratio alters reciprocally the plasma levels of testosterone and cortisol and their respective binding globulins in man. Life Sci. 1987;40(18):1761–8. https://pubmed.ncbi.nlm.nih.gov/3573976/

4418

Cook TM, Russell JM, Barker ME. Dietary advice for muscularity, leanness and weight control in Men’s Health magazine: a content analysis. BMC Public Health. 2014;14:1062. https://pubmed.ncbi.nlm.nih.gov/25304148/

4419

Schwartz A, Hunschede S, Lacombe RJS, et al. Acute decrease in plasma testosterone and appetite after either glucose or protein beverages in adolescent males. Clin Endocrinol (Oxf). 2019;91(2):295–303. https://pubmed.ncbi.nlm.nih.gov/31055857/

4420

Whittaker J, Harris M. Low-carbohydrate diets and men’s cortisol and testosterone: systematic review and meta-analysis. Nutr Health. 2022;28(4):543–54. https://pubmed.ncbi.nlm.nih.gov/35254136/

4421

Schwartz A, Hunschede S, Lacombe RJS, et al. Acute decrease in plasma testosterone and appetite after either glucose or protein beverages in adolescent males. Clin Endocrinol (Oxf). 2019;91(2):295–303. https://pubmed.ncbi.nlm.nih.gov/31055857/

4422

Messina M. Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril. 2010;93(7):2095–104. https://pubmed.ncbi.nlm.nih.gov/20378106/

4423

Hamilton-Reeves JM, Vazquez G, Duval SJ, Phipps WR, Kurzer MS, Messina MJ. Clinical studies show no effects of soy protein or isoflavones on reproductive hormones in men: results of a meta-analysis. Fertil Steril. 2010;94(3):997–1007. https://pubmed.ncbi.nlm.nih.gov/19524224/

4424

Shultz TD, Bonorden WR, Seaman WR. Effect of short-term flaxseed consumption on lignan and sex hormone metabolism in men. Nutr Res. 1991;11(10):1089–100. https://www.sciencedirect.com/science/article/abs/pii/S0271531705806876

4425

Takenaka T, Nagano M, Yamashita K, Kikuchi K. Flaxseed oil stimulates gynecomastia. BMJ Case Rep. 2020;13(12):e237948. https://pubmed.ncbi.nlm.nih.gov/33303502/

4426

Schwartz LM, Woloshin S. Low “T” as in “template”: how to sell disease. JAMA Intern Med. 2013;173(15):1460–2. https://pubmed.ncbi.nlm.nih.gov/23939516/

4427

Shores MM, Matsumoto AM. Testosterone, aging and survival: biomarker or deficiency. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):209–16. https://pubmed.ncbi.nlm.nih.gov/24722173/

4428

Fugh-Berman A. Treating aging with testosterone. Am Fam Physician. 2017;96(7):428–30. https://pubmed.ncbi.nlm.nih.gov/29094915/

4429

Lee JH, Shah PH, Uma D, Salvi DJ, Rabbani R, Hamid P. Testosterone replacement therapy in hypogonadal men and myocardial infarction risk: systematic review & meta-analysis. Cureus. 2021;13(8):e17475. https://pubmed.ncbi.nlm.nih.gov/34513525/

4430

Vigen R, O’Donnell CI, Barón AE, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310(17):1829–36. https://pubmed.ncbi.nlm.nih.gov/24193080/

4431

Regan JC, Partridge L. Gender and longevity: why men die earlier than women? Comparative and experimental evidence. Best Pract Res Clin Endocrinol Metab. 2013;27(4):467–79. https://pubmed.ncbi.nlm.nih.gov/24054925/

4432

Tremellen K. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING) – a novel theory for the development of late onset hypogonadism in obese men. Basic Clin Androl. 2016;26:7. https://pubmed.ncbi.nlm.nih.gov/27340554/

4433

Lang PO, Samaras D, Samaras N. Testosterone replacement therapy in reversing “andropause”: what is the proof-of-principle? Rejuvenation Res. 2012;15(5):453–65. https://pubmed.ncbi.nlm.nih.gov/22656862/

4434

Regan JC, Partridge L. Gender and longevity: why men die earlier than women? Comparative and experimental evidence. Best Pract Res Clin Endocrinol Metab. 2013;27(4):467–79. https://pubmed.ncbi.nlm.nih.gov/24054925/

4435

Tremellen K. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING) – a novel theory for the development of late onset hypogonadism in obese men. Basic Clin Androl. 2016;26:7. https://pubmed.ncbi.nlm.nih.gov/27340554/

4436

Garratt M, Stout MB. Hormone actions controlling sex-specific life-extension. Aging (Albany NY). 2018;10(3):293–4. https://pubmed.ncbi.nlm.nih.gov/29514132/

4437

Drori D, Folman Y. Interactive environmental and genetic effects on longevity in the male rat: litter size, exercise, electric shocks and castration. Exp Aging Res. 1986;12(2):59–64. https://pubmed.ncbi.nlm.nih.gov/3569385/

4438

Min KJ, Lee CK, Park HN. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3. https://pubmed.ncbi.nlm.nih.gov/23017989/

4439

Le Bourg É. No ground for advocating that Korean eunuchs lived longer than intact men. Gerontology. 2015;62(1):69–70. https://pubmed.ncbi.nlm.nih.gov/26138349/

4440

Nieschlag E, Nieschlag S, Behre HM. Lifespan and testosterone. Nature. 1993;366(6452):215. https://pubmed.ncbi.nlm.nih.gov/8232579/

4441

Spiegel AM. The Jeremiah Metzger lecture: a brief history of eugenics in America: implications for medicine in the 21st century. Trans Am Clin Climatol Assoc. 2019;130:216–34. https://pubmed.ncbi.nlm.nih.gov/31516187/

4442

Buck v Bell, 274 US 200 (1927).; https://supreme.justia.com/cases/federal/us/274/200/

4443

Hamilton JB, Mestler GE. Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J Gerontol. 1969;24(4):395–411. https://pubmed.ncbi.nlm.nih.gov/5362349/

4444

Handelsman DJ. Testosterone and male aging: faltering hope for rejuvenation. JAMA. 2017;317(7):699–701. https://pubmed.ncbi.nlm.nih.gov/28241336/

4445

Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123(3):958–65. https://pubmed.ncbi.nlm.nih.gov/23454758/

4446

Alam I, Almajwal AM, Alam W, et al. The immune-nutrition interplay in aging – facts and controversies. Nutr Healthy Aging. 2019;5(2):73–95. https://content.iospress.com/articles/nutrition-and-healthy-aging/nha170034

4447

Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol. 2020;42(5):559–72. https://pubmed.ncbi.nlm.nih.gov/33165716/

4448

Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16:25. https://pubmed.ncbi.nlm.nih.gov/31528180/

4449

Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8. https://pubmed.ncbi.nlm.nih.gov/8370415/

4450

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/

4451

Crimmins EM. Age-related vulnerability to coronavirus disease 2019 (COVID-19): biological, contextual, and policy-related factors. Public Policy Aging Rep. 2020;30(4):142–6. https://pubmed.ncbi.nlm.nih.gov/33214754/

4452

Painter SD, Ovsyannikova IG, Poland GA. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33(36):4422–9. https://pubmed.ncbi.nlm.nih.gov/26163925/

4453

Neidich SD, Green WD, Rebeles J, et al. Increased risk of influenza among vaccinated adults who are obese. Int J Obes (Lond). 2017;41(9):1324–30. https://pubmed.ncbi.nlm.nih.gov/28584297/

4454

Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34. https://pubmed.ncbi.nlm.nih.gov/23163728/

4455

Jahn J, Spielau M, Brandsch C, et al. Decreased NK cell functions in obesity can be reactivated by fat mass reduction. Obesity (Silver Spring). 2015;23(11):2233–41. https://pubmed.ncbi.nlm.nih.gov/26390898/

4456

Walsh NP, Gleeson M, Shephard RJ, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63. https://pubmed.ncbi.nlm.nih.gov/21446352/

4457

Nieman DC. Moderate exercise improves immunity and decreases illness rates. Am J Lifestyle Med. 2011;5(4):338–45. https://www.researchgate.net/publication/254075198_Moderate_Exercise_Improves_Immunity_and_Decreases_Illness_Rates

4458

Bigley AB, Rezvani K, Chew C, et al. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–71. https://pubmed.ncbi.nlm.nih.gov/24200514/

4459

McTiernan A, Friedenreich CM, Katzmarzyk PT, et al. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc. 2019;51(6):1252–61. https://pubmed.ncbi.nlm.nih.gov/31095082/

4460

Kohut ML, Arntson BA, Lee W, et al. Moderate exercise improves antibody response to influenza immunization in older adults. Vaccine. 2004;22(17–18):2298–306. https://pubmed.ncbi.nlm.nih.gov/15149789/

4461

Ranadive SM, Cook M, Kappus RM, et al. Effect of acute aerobic exercise on vaccine efficacy in older adults. Med Sci Sports Exerc. 2014;46(3):455–61. https://pubmed.ncbi.nlm.nih.gov/23924918/

4462

Long JE, Ring C, Drayson M, et al. Vaccination response following aerobic exercise: can a brisk walk enhance antibody response to pneumococcal and influenza vaccinations? Brain Behav Immun. 2012;26(4):680–7. https://pubmed.ncbi.nlm.nih.gov/22386744/

4463

Antonelli M, Barbieri G, Donelli D. Effects of forest bathing (shinrin-yoku) on levels of cortisol as a stress biomarker: a systematic review and meta-analysis. Int J Biometeorol. 2019;63(8):1117–34. https://pubmed.ncbi.nlm.nih.gov/31001682/

4464

Li Q, Kawada T. Effect of forest environments on human natural killer (NK) activity. Int J Immunopathol Pharmacol. 2011;24(1 Suppl):39S-44S. https://pubmed.ncbi.nlm.nih.gov/21329564/

4465

Li Q, Morimoto K, Kobayashi M, et al. Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol. 2008;21(1):117–27. https://pubmed.ncbi.nlm.nih.gov/18336737/

4466

Sumitomo K, Akutsu H, Fukuyama S, et al. Conifer-derived monoterpenes and forest walking. Mass Spectrom (Tokyo). 2015;4(1):A0042. https://pubmed.ncbi.nlm.nih.gov/26819913/

4467

Li Q, Nakadai A, Matsushima H, et al. Phytoncides (wood essential oils) induce human natural killer cell activity. Immunopharmacol Immunotoxicol. 2006;28(2):319–33. https://pubmed.ncbi.nlm.nih.gov/16873099/

4468

Shibata H, Fujiwara R, Iwamoto M, Matsuoka H, Yokoyama MM. Immunological and behavioral effects of fragrance in mice. Int J Neurosci. 1991;57(1–2):151–9. https://pubmed.ncbi.nlm.nih.gov/1938152/

4469

Li Q, Kobayashi M, Wakayama Y, et al. Effect of phytoncide from trees on human natural killer cell function. Int J Immunopathol Pharmacol. 2009;22(4):951–9. https://pubmed.ncbi.nlm.nih.gov/20074458/

4470

Fujimori H, Hisama M, Shibayama H, Iwaki M. Protecting effect of phytoncide solution, on normal human dermal fibroblasts against reactive oxygen species. J Oleo Sci. 2009;58(8):429–36. https://pubmed.ncbi.nlm.nih.gov/19584569/

4471

Li Q, Kobayashi M, Kawada T. Relationships between percentage of forest coverage and standardized mortality ratios (SMR) of cancers in all prefectures in Japan. Open Public Health J. 2008;1(1):1–7. https://openpublichealthjournal.com/VOLUME/1/PAGE/1/ABSTRACT/

4472

Ahmadi F, Ahmadi N. Nature as the most important coping strategy among cancer patients: a Swedish survey. J Relig Health. 2015;54(4):1177–90. https://pubmed.ncbi.nlm.nih.gov/24363200/

4473

Brown R, Pang G, Husband AJ, King MG. Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg Immunol. 1989;2(5):321–5. https://pubmed.ncbi.nlm.nih.gov/2562046/

4474

Toth LA, Rehg JE. Effects of sleep deprivation and other stressors on the immune and inflammatory responses of influenza-infected mice. Life Sci. 1998;63(8):701–9. https://pubmed.ncbi.nlm.nih.gov/9718099/

4475

Renegar KB, Floyd RA, Krueger JM. Effects of short-term sleep deprivation on murine immunity to influenza virus in young adult and senescent mice. Sleep. 1998;21(3):241–8. https://pubmed.ncbi.nlm.nih.gov/9595602/

4476

Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch. 2012;463(1):121–37. https://pubmed.ncbi.nlm.nih.gov/22071480/

4477

Prather AA, Hall M, Fury JM, et al. Sleep and antibody response to hepatitis B vaccination. Sleep. 2012;35(8):1063–9. https://pubmed.ncbi.nlm.nih.gov/22851802/

4478

Prather AA, Pressman SD, Miller GE, Cohen S. Temporal links between self-reported sleep and antibody responses to the influenza vaccine. Int J Behav Med. 2021;28(1):151–8. https://pubmed.ncbi.nlm.nih.gov/32236831/

4479

Lange T, Perras B, Fehm HL, Born J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med. 2003;65(5):831–5. https://pubmed.ncbi.nlm.nih.gov/14508028/

4480

Lange T, Dimitrov S, Bollinger T, Diekelmann S, Born J. Sleep after vaccination boosts immunological memory. J Immunol. 2011;187(1):283–90. https://pubmed.ncbi.nlm.nih.gov/21632713/

4481

Spiegel K, Sheridan JF, Van Cauter E. Effect of sleep deprivation on response to immunization. JAMA. 2002;288(12):1471–2. https://pubmed.ncbi.nlm.nih.gov/12243633/

4482

Irwin M, McClintick J, Costlow C, Fortner M, White J, Gillin JC. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J. 1996;10(5):643–53. https://pubmed.ncbi.nlm.nih.gov/8621064/

4483

Irwin M, Mascovich A, Gillin JC, Willoughby R, Pike J, Smith TL. Partial sleep deprivation reduces natural killer cell activity in humans. Psychosom Med. 1994;56(6):493–8. https://pubmed.ncbi.nlm.nih.gov/7871104/

4484

Patel SR, Malhotra A, Gao X, Hu FB, Neuman MI, Fawzi WW. A prospective study of sleep duration and pneumonia risk in women. Sleep. 2012;35(1):97–101. https://pubmed.ncbi.nlm.nih.gov/22215923/

4485

Cohen S, Doyle WJ, Alper CM, Janicki-Deverts D, Turner RB. Sleep habits and susceptibility to the common cold. Arch Intern Med. 2009;169(1):62–7. https://pubmed.ncbi.nlm.nih.gov/19139325/

4486

Prather AA, Janicki-Deverts D, Hall MH, Cohen S. Behaviorally assessed sleep and susceptibility to the common cold. Sleep. 2015;38(9):1353–9. https://pubmed.ncbi.nlm.nih.gov/26118561/

4487

Besedovsky L, Born J. Sleep, don’t sneeze: longer sleep reduces the risk of catching a cold. Sleep. 2015;38(9):1341–2. https://pubmed.ncbi.nlm.nih.gov/26285007/

4488

Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://pubmed.ncbi.nlm.nih.gov/29375577/

4489

Lesourd B. Nutritional factors and immunological ageing. Proc Nutr Soc. 2006;65(3):319–25. https://pubmed.ncbi.nlm.nih.gov/16923315/

4490

Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol. 2020;42(5):559–72. https://pubmed.ncbi.nlm.nih.gov/33165716/

4491

Averill HM, Averill JE. The effect of daily apple consumption on dental caries experience, oral hygiene status and upper respiratory infections. N Y State Dent J. 1968;34(7):403–9. https://pubmed.ncbi.nlm.nih.gov/4385913/

4492

Charland KM, Buckeridge DL, Hoen AG, et al. Relationship between community prevalence of obesity and associated behavioral factors and community rates of influenza-related hospitalizations in the United States. Influenza Other Respir Viruses. 2013;7(5):718–28. https://pubmed.ncbi.nlm.nih.gov/23136926/

4493

U.S. Centers for Disease Control and Prevention. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. 1997;46(RR-08):1–24. https://pubmed.ncbi.nlm.nih.gov/9132580/

4494

Gibson A, Edgar J, Neville C et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr. 2012;96(6):1429–36. https://pubmed.ncbi.nlm.nih.gov/23134881/

4495

Skinner MA. Gold kiwifruit for immune support and reducing symptoms of cold and influenza. J Food Drug Anal. 2012;20:261–4. https://pubmed.ncbi.nlm.nih.gov/21349229/

4496

Orhan F, Karakas T, Cakir M, Aksoy A, Baki A, Gedik Y. Prevalence of immunoglobulin E – mediated food allergy in 6–9-year-old urban schoolchildren in the eastern Black Sea region of Turkey. Clin Exp Allergy. 2009;39(7):1027–35. https://pubmed.ncbi.nlm.nih.gov/19400894/

4497

Rancé F, Grandmottet X, Grandjean H. Prevalence and main characteristics of schoolchildren diagnosed with food allergies in France. Clin Exp Allergy. 2005;35(2):167–72. https://pubmed.ncbi.nlm.nih.gov/15725187/

4498

Hunter DC, Skinner MA, Wolber FM, et al. Consumption of gold kiwifruit reduces severity and duration of selected upper respiratory tract infection symptoms and increases plasma vitamin C concentration in healthy older adults. Br J Nutr. 2012;108(7):1235–45. https://pubmed.ncbi.nlm.nih.gov/22172428/

4499

Jefferson T, Jones M, Doshi P, Spencer EA, Onakpoya I, Heneghan CJ. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. https://pubmed.ncbi.nlm.nih.gov/24811411/

4500

van der Gaag EJ, Hummel TZ. Food or medication? The therapeutic effects of food on the duration and incidence of upper respiratory tract infections: a review of the literature. Crit Rev Food Sci Nutr. 2021;61(16):2691–704. https://pubmed.ncbi.nlm.nih.gov/32648776/

4501

Hawkins J, Baker C, Cherry L, Dunne E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Ther Med. 2019;42:361–5. https://pubmed.ncbi.nlm.nih.gov/30670267/

4502

Macknin M, Wolski K, Negrey J, Mace S. Elderberry extract outpatient influenza treatment for emergency room patients ages 5 and above: a randomized, double-blind, placebo-controlled trial. J Gen Intern Med. 2020;35(11):3271–7. https://pubmed.ncbi.nlm.nih.gov/32929634/

4503

Rothberg MB. Influenza, like COVID-19, needs randomized trials. J Gen Intern Med. 2021;36(6):1490–1. https://pubmed.ncbi.nlm.nih.gov/33483821/

4504

David S, Cunningham R. Echinacea for the prevention and treatment of upper respiratory tract infections: a systematic review and meta-analysis. Complement Ther Med. 2019;44:18–26. https://pubmed.ncbi.nlm.nih.gov/31126553/

4505

Weissman S, Lo A, Patel R, et al. An unusual culprit of drug-induced pancreatitis. Dig Dis Sci. 2020;65(5):1549–52. https://pubmed.ncbi.nlm.nih.gov/31571105/

4506

Elderberry for influenza. Med Lett Drugs Ther. 2019;61(1566):32. https://pubmed.ncbi.nlm.nih.gov/30845105/

4507

Pogorzelski E. Formation of cyanide as a product of decomposition of cyanogenic glucosides in the treatment of elderberry fruit (Sambucus nigra). J Sci Food Agric. 1982;33(5):496–8. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.2740330516

4508

Centers for Disease Control. Poisoning from elderberry juice – California. MMWR Morb Mortal Wkly Rep. 1984;33(13):173–4. https://pubmed.ncbi.nlm.nih.gov/6422238/

4509

McAnulty LS, Collier SR, Landram MJ, et al. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr Res. 2014;34(7):577–84. https://pubmed.ncbi.nlm.nih.gov/25150116/

4510

Majdalawieh AF, Carr RI. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food. 2010;13(2):371–81. https://pubmed.ncbi.nlm.nih.gov/20210607/

4511

Pan P, Kang S, Wang Y, et al. Black raspberries enhance natural killer cell infiltration into the colon and suppress the progression of colorectal cancer. Front Immunol. 2017;8:997. https://pubmed.ncbi.nlm.nih.gov/28861089/

4512

Huang YW, Lin CW, Pan P, et al. Black raspberries suppress colorectal cancer by enhancing Smad4 expression in colonic epithelium and natural killer cells. Front Immunol. 2020;11:570683. https://pubmed.ncbi.nlm.nih.gov/33424832/

4513

Wang H, Gao T, Du Y, et al. Anticancer and immunostimulating activities of a novel homogalacturonan from Hippophae rhamnoides L. berry. Carbohydr Polym. 2015;131:288–96. https://pubmed.ncbi.nlm.nih.gov/26256187/

4514

Larmo P, Alin J, Salminen E, Kallio H, Tahvonen R. Effects of sea buckthorn berries on infections and inflammation: a double-blind, randomized, placebo-controlled trial. Eur J Clin Nutr. 2008;62(9):123–30. https://pubmed.ncbi.nlm.nih.gov/17593932/

4515

Agricultural Research Service, United States Department of Agriculture. Gogi berries, dried. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=goji&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/173032/nutrients. Published April 1, 2019. Accessed May 20, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=goji&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/173032/nutrients

4516

Vidal K, Bucheli P, Gao Q, et al. Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: a randomized, double-blind, placebo-controlled trial. Rejuvenation Res. 2012;15(1):89–97. https://pubmed.ncbi.nlm.nih.gov/22352435/

4517

Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91(2):549–99. https://pubmed.ncbi.nlm.nih.gov/27722929/

4518

Kapeleka JA, Sauli E, Ndakidemi PA. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. Int J Environ Health Res. 2021;31(7):805–22. https://pubmed.ncbi.nlm.nih.gov/31736325/

4519

Hemler EC, Chavarro JE, Hu FB. Organic foods for cancer prevention – worth the investment? JAMA Intern Med. 2018;178(12):1606–7. https://pubmed.ncbi.nlm.nih.gov/30422205/

4520

Hemler EC, Chavarro JE, Hu FB. Organic foods for cancer prevention – worth the investment? JAMA Intern Med. 2018;178(12):1606–7. https://pubmed.ncbi.nlm.nih.gov/30422205/

4521

Juraske R, Mutel CL, Stoessel F, Hellweg S. Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere. 2009;77(7):939–45. https://pubmed.ncbi.nlm.nih.gov/19729188/

4522

Watzl B, Bub A, Brandstetter BR, Rechkemmer G. Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables. Br J Nutr. 1999;82(5):383–9. https://pubmed.ncbi.nlm.nih.gov/10673911/

4523

Watzl B, Bub A, Briviba K, Rechkemmer G. Supplementation of a low-carotenoid diet with tomato or carrot juice modulates immune functions in healthy men. Ann Nutr Metab. 2003;47(6):255–61. https://pubmed.ncbi.nlm.nih.gov/14520020/

4524

Briviba K, Kulling SE, Möseneder J, Watzl B, Rechkemmer G, Bub A. Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers. Carcinogenesis. 2004;25(12):2373–8. https://pubmed.ncbi.nlm.nih.gov/15308586/

4525

Watzl B, Bub A, Blockhaus M, et al. Prolonged tomato juice consumption has no effect on cell-mediated immunity of well-nourished elderly men and women. J Nutr. 2000;130(7):1719–23. https://pubmed.ncbi.nlm.nih.gov/10867042/

4526

Müller L, Meyer M, Bauer RN, et al. Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: a randomized, double-blind study. PLoS One. 2016;11(1):e0147742. https://pubmed.ncbi.nlm.nih.gov/26820305/

4527

Lord SJ, Rajotte RV, Korbutt GS, Bleackley RC. Granzyme B: a natural born killer. Immunol Rev. 2003;193:31–8. https://pubmed.ncbi.nlm.nih.gov/12752668/

4528

Noah TL, Zhang H, Zhou H, et al. Effect of broccoli sprouts on nasal response to live attenuated influenza virus in smokers: a randomized, double-blind study. PLoS One. 2014;9(6):e98671. https://pubmed.ncbi.nlm.nih.gov/24910991/

4529

Cho HY, Imani F, Miller-DeGraff L, et al. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med. 2009;179(2):138–50. https://pubmed.ncbi.nlm.nih.gov/18931336/

4530

Wu CC, Chuang HY, Lin CY, et al. Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog. 2013;52(12):946–58. https://pubmed.ncbi.nlm.nih.gov/22641235/

4531

Harvey CJ, Thimmulappa RK, Sethi S, et al. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med. 2011;3(78):78ra32. https://pubmed.ncbi.nlm.nih.gov/21490276/

4532

Gasper AV, Al-janobi A, Smith JA, et al. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr. 2005;82(6):1283–91. https://pubmed.ncbi.nlm.nih.gov/16332662/

4533

Ritz T, Trueba AF, Vogel PD, Auchus RJ, Rosenfield D. Exhaled nitric oxide and vascular endothelial growth factor as predictors of cold symptoms after stress. Biol Psychol. 2018;132:116–24. https://pubmed.ncbi.nlm.nih.gov/29162553/

4534

Sanders SP, Siekierski ES, Richards SM, Porter JD, Imani F, Proud D. Rhinovirus infection induces expression of type 2 nitric oxide synthase in human respiratory epithelial cells in vitro and in vivo. J Allergy Clin Immunol. 2001;107(2):235–43. https://pubmed.ncbi.nlm.nih.gov/9444985/

4535

Domínguez R, Cuenca E, Maté-Muñoz JL, et al. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review. Nutrients. 2017;9(1):43. https://pubmed.ncbi.nlm.nih.gov/28067808/

4536

Swathi Krishna S, Thennavan A, Kanthlal SK. Dietary foods containing nitric oxide donors can be early curators of SARS-CoV-2 infection: a possible role in the immune system. J Food Biochem. 2022;46(3):e13884. https://pubmed.ncbi.nlm.nih.gov/34374096/

4537

Ritz T, Werchan CA, Kroll JL, Rosenfield D. Beetroot juice supplementation for the prevention of cold symptoms associated with stress: a proof-of-concept study. Physiol Behav. 2019;202:45–51. https://pubmed.ncbi.nlm.nih.gov/30682333/

4538

Brown ES, Allsopp PJ, Magee PJ, et al. Seaweed and human health. Nutr Rev. 2014;72(3):205–16. https://pubmed.ncbi.nlm.nih.gov/24697280/

4539

Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev. 2021;79(7):814–23. https://pubmed.ncbi.nlm.nih.gov/32498269/

4540

Miyake Y, Sasaki S, Ohya Y, et al. Dietary intake of seaweed and minerals and prevalence of allergic rhinitis in Japanese pregnant females: baseline data from the Osaka Maternal and Child Health Study. Ann Epidemiol. 2006;16(8):614–21. https://pubmed.ncbi.nlm.nih.gov/16406247/

4541

Shan BE, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int J Immunopharmacol. 1999;21(1):59–70. https://pubmed.ncbi.nlm.nih.gov/10411282/

4542

Cooper R, Dragar C, Elliot K, Fitton JH, Godwin J, Thompson K. GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes. BMC Complement Altern Med. 2002;2:11. https://pubmed.ncbi.nlm.nih.gov/16685055/

4543

Ryan-Borchers TA, Park JS, Chew BP, McGuire MK, Fournier LR, Beerman KA. Soy isoflavones modulate immune function in healthy postmenopausal women. Am J Clin Nutr. 2006;83(5):1118–25. https://pubmed.ncbi.nlm.nih.gov/16965235/

4544

Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer. 2006;55(1):1–12. https://pubmed.ncbi.nlm.nih.gov/15050097/

4545

Teas J, Hebert JR, Fitton JH, Zimba PV. Algae – a poor man’s HAART? Med Hypotheses. 2004;62(4):507–10. https://pubmed.ncbi.nlm.nih.gov/33341894/

4546

Tamama K. Potential benefits of dietary seaweeds as protection against COVID-19. Nutr Rev. 2021;79(7):814–23. https://pubmed.ncbi.nlm.nih.gov/32498269/

4547

Jung SJ, Jang HY, Jung ES, et al. Effects of Porphyra tenera supplementation on the immune system: a randomized, double-blind, and placebo-controlled clinical trial. Nutrients. 2020;12(6):E1642. https://fdc.nal.usda.gov/fdc-app.html?query=nori&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/168458/nutrients

4548

Agricultural Research Service, United States Department of Agriculture. Seaweed, laver, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=nori&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/168458/nutrients. Published April 1, 2019. Accessed May 20, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/790577/nutrients

4549

Jung SJ, Jang HY, Jung ES, et al. Effects of Porphyra tenera supplementation on the immune system: a randomized, double-blind, and placebo-controlled clinical trial. Nutrients. 2020;12(6):E1642. https://fdc.nal.usda.gov/fdc-app.html?query=nori&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/168458/nutrients

4550

Ishihara K, Oyamada C, Sato Y, et al. Relationships between quality parameters and content of glycerol galactoside and porphyra-334 in dried laver nori Porphyra yezoensis. Fisheries Sci. 2008;74(1):167–73. https://pubmed.ncbi.nlm.nih.gov/18580401/

4551

Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008 Jul;40(7):1228–36. https://pubmed.ncbi.nlm.nih.gov/18580401/

4552

.;

4553

Dietzen DJ. Amino acids, peptides, and proteins. In: Principles and Applications of Molecular Diagnostics. Elsevier; 2018:345–80. https://profiles.wustl.edu/en/publications/amino-acids-peptides-and-proteins

4554

Otsuki T, Shimizu K, Iemitsu M, Kono I. Salivary secretory immunoglobulin A secretion increases after 4-weeks ingestion of chlorella-derived multicomponent supplement in humans: a randomized cross over study. Nutr J. 2011 Sep 9;10:91. https://pubmed.ncbi.nlm.nih.gov/21906314/

4555

Nakano S, Takekoshi H, Nakano M. Chlorella (Chlorella pyrenoidosa) supplementation decreases dioxin and increases immunoglobulin a concentrations in breast milk. J Med Food. 2007;10(1):134–42. https://pubmed.ncbi.nlm.nih.gov/17472477/

4556

Halperin SA, Smith B, Nolan C, Shay J, Kralovec J. Safety and immunoenhancing effect of a Chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebo-controlled trial. CMAJ. 2003;169(2):111–7. https://pubmed.ncbi.nlm.nih.gov/12874157/

4557

Otsuki T, Shimizu K, Iemitsu M, Kono I. Salivary secretory immunoglobulin A secretion increases after 4-weeks ingestion of chlorella-derived multicomponent supplement in humans: a randomized cross over study. Nutr J. 2011;10:91. https://pubmed.ncbi.nlm.nih.gov/21906314/

4558

Kwak JH, Baek SH, Woo Y, et al. Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of Natural Killer cell activity and early inflammatory response (randomized, double-blinded, placebo-controlled trial). Nutr J. 2012;11:53. https://pubmed.ncbi.nlm.nih.gov/22849818/

4559

Azocar J, Diaz A. Efficacy and safety of Chlorella supplementation in adults with chronic hepatitis C virus infection. World J Gastroenterol. 2013;19(7):1085–90. https://pubmed.ncbi.nlm.nih.gov/23467073/

4560

Fallah AA, Sarmast E, Habibian Dehkordi S, et al. Effect of Chlorella supplementation on cardiovascular risk factors: a meta-analysis of randomized controlled trials. Clin Nutr. 2018;37(6 Pt A):1892–901. https://pubmed.ncbi.nlm.nih.gov/29037431/

4561

Selvaraj V, Singh H, Ramaswamy S. Chlorella-induced psychosis. Psychosomatics. 2013;54(3):303–4. https://pubmed.ncbi.nlm.nih.gov/23680061/

4562

Petrovska BB, Cekovska S. Extracts from the history and medical properties of garlic. Pharmacogn Rev. 2010;4(7):106–10. https://pubmed.ncbi.nlm.nih.gov/22228949/

4563

Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating C-reactive protein, tumor necrosis factor, and interleukin-6 in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2019;149(4):605–18. https://pubmed.ncbi.nlm.nih.gov/30949665/

4564

Louca P, Murray B, Klaser K, et al. Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutr Prev Health. 2021;4(1):149–57. https://pubmed.ncbi.nlm.nih.gov/34308122/

4565

Lawson LD, Hunsaker SM. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients. 2018;10(7):812. https://pubmed.ncbi.nlm.nih.gov/29937536/

4566

Locatelli DA, Altamirano JC, González RE, Camargo AB. Home-cooked garlic remains a healthy food. J Funct Food. 2015;16:1–8. https://www.sciencedirect.com/science/article/abs/pii/S1756464615001851

4567

Lawson LD, Hunsaker SM. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients. 2018;10(7):812. https://pubmed.ncbi.nlm.nih.gov/29937536/

4568

Wong A, Townley S. Herbal medicines and anaesthesia. Cont Educ Anaesth Crit Care Pain. 2011;11(1):14–7. https://academic.oup.com/bjaed/article/11/1/14/285726

4569

Gadkari JV, Joshi VD. Effect of ingestion of raw garlic on serum cholesterol level, clotting time and fibrinolytic activity in normal subjects. J Postgrad Med. 1991;37(3):128–31. https://pubmed.ncbi.nlm.nih.gov/1784022/

4570

Scharbert G, Kalb ML, Duris M, Marschalek C, Kozek-Langenecker SA. Garlic at dietary doses does not impair platelet function. Anesth Analg. 2007;105(5):1214–8. https://pubmed.ncbi.nlm.nih.gov/17959943/

4571

Munch R, Barringer SA. Deodorization of garlic breath volatiles by food and food components. J Food Sci. 2014;79(4):C526–33. https://pubmed.ncbi.nlm.nih.gov/24592995/

4572

Jeong SC, Koyyalamudi SR, Pang G. Dietary intake of Agaricus bisporus white button mushroom accelerates salivary immunoglobulin A secretion in healthy volunteers. Nutrition. 2012;28(5):527–31. https://pubmed.ncbi.nlm.nih.gov/22113068/

4573

Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (ß-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res. 2014;28(3):471–4. https://pubmed.ncbi.nlm.nih.gov/23744488/

4574

Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/

4575

Xu Y, Na L, Ren Z, et al. Effect of dietary supplementation with white button mushrooms on host resistance to influenza infection and immune function in mice. Br J Nutr. 2013;109(6):1052–61. https://pubmed.ncbi.nlm.nih.gov/23200185/

4576

Bobovcák M, Kuniaková R, Gabriž J, Majtán J. Effect of Pleuran (ß-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes. Appl Physiol Nutr Metab. 2010;35(6):755–62. https://pubmed.ncbi.nlm.nih.gov/21164546/

4577

Cerletti C, Esposito S, Iacoviello L. Edible mushrooms and beta-glucans: impact on human health. Nutrients. 2021;13(7):2195. https://pubmed.ncbi.nlm.nih.gov/34202377/

4578

Bergendiova K, Tibenska E, Majtan J. Pleuran (ß-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur J Appl Physiol. 2011;111(9):2033–40. https://pubmed.ncbi.nlm.nih.gov/21249381/

4579

Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG. Oral administration of a new soluble branched ß-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol. 2006;143(1):65–9. https://pubmed.ncbi.nlm.nih.gov/16367935/

4580

Zhong K, Liu Z, Lu Y, Xu X. Effects of yeast ß-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis. Eur J Nutr. 2021;60(8):4175–87. https://pubmed.ncbi.nlm.nih.gov/33900466/

4581

Kohl A, Gögebakan O, Möhlig M, et al. Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-ß-glycan consumption in overweight humans. Nutr Res. 2009;29(4):248–54. https://pubmed.ncbi.nlm.nih.gov/19410976/

4582

Yenidogan E, Akgul GG, Gulcelik MA, Dinc S, Colakoglu MK, Kayaoglu HA. Effect of ß-glucan on drain fluid and amount of drainage following modified radical mastectomy. Adv Ther. 2014;31(1):130–9. https://pubmed.ncbi.nlm.nih.gov/24421054/

4583

Koray M, Ak G, Kürklü E, et al. The effect of ß-glucan on recurrent aphthous stomatitis. J Altern Complement Med. 2009;15(2):111–2. https://pubmed.ncbi.nlm.nih.gov/19216661/

4584

Mosikanon K, Arthan D, Kettawan A, Tungtrongchitr R, Prangthip P. Yeast ß-glucan modulates inflammation and waist circumference in overweight and obese subjects. J Diet Suppl. 2017;14(2):173–85. https://pubmed.ncbi.nlm.nih.gov/27715351/

4585

Santas J, Lázaro E, Cuñé J. Effect of a polysaccharide-rich hydrolysate from Saccharomyces cerevisiae (LipiGo®) in body weight loss: randomised, double-blind, placebo-controlled clinical trial in overweight and obese adults. J Sci Food Agric. 2017;97(12):4250–7. https://pubmed.ncbi.nlm.nih.gov/28251654/

4586

Vlassopoulou M, Yannakoulia M, Pletsa V, Zervakis GI, Kyriacou A. Effects of fungal beta-glucans on health – a systematic review of randomized controlled trials. Food Funct. 2021;12(8):3366–80. https://pubmed.ncbi.nlm.nih.gov/33876798/

4587

Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn’s disease. Scand J Gastroenterol. 1992;27(3):196–200. https://pubmed.ncbi.nlm.nih.gov/1502481/

4588

Cannistrà C, Finocchi V, Trivisonno A, Tambasco D. New perspectives in the treatment of hidradenitis suppurativa: surgery and brewer’s yeast – exclusion diet. Surgery. 2013;154(5):1126–30. https://pubmed.ncbi.nlm.nih.gov/23891479/

4589

Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014;13:38. https://pubmed.ncbi.nlm.nih.gov/24774968/

4590

van Steenwijk HP, Bast A, de Boer A. Immunomodulating effects of fungal beta-glucans: from traditional use to medicine. Nutrients. 2021;13(4):1333. https://pubmed.ncbi.nlm.nih.gov/33920583/

4591

Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014;13:38. https://pubmed.ncbi.nlm.nih.gov/24774968/

4592

Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF. Antigens in tea-beverage prime human V¿2Vd2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci U S A. 2003;100(10):6009–14. https://pubmed.ncbi.nlm.nih.gov/12719524/

4593

Bukowski JF, Morita CT, Brenner MB. Human ¿d T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity. 1999;11(1):57–65. https://pubmed.ncbi.nlm.nih.gov/10435579/

4594

Hartmann T. Nachweis von n-butylamin in äpfeln. Experientia. 1967;23(8):680–1. https://pubmed.ncbi.nlm.nih.gov/6051708/

4595

Ibe A, Saito K, Nakazato M, Kikuchi Y, Fujinuma K, Nishima T. Quantitative determination of amines in wine by liquid chromatography. J Assoc Off Anal Chem. 1991;74(4):695–8. https://pubmed.ncbi.nlm.nih.gov/1917817/

4596

Jones BM, Al-Fattani M, Gooch H. The determination of amines in the vaginal secretions of women in health and disease. Int J STD AIDS. 1994;5(1):52–5. https://pubmed.ncbi.nlm.nih.gov/8142529/

4597

Rowe CA, Nantz MP, Bukowski JF, Percival SS. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma,delta T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr. 2007;26(5):445–52. https://pubmed.ncbi.nlm.nih.gov/17914132/

4598

Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF. Antigens in tea-beverage prime human V¿2Vd2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci U S A. 2003;100(10):6009–14. https://pubmed.ncbi.nlm.nih.gov/12719524/

4599

Park M, Yamada H, Matsushita K, et al. Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan. J Nutr. 2011;141(10):1862–70. https://pubmed.ncbi.nlm.nih.gov/21832025/

4600

Watanabe I, Kuriyama S, Kakizaki M, et al. Green tea and death from pneumonia in Japan: the Ohsaki cohort study. Am J Clin Nutr. 2009;90(3):672–9. https://pubmed.ncbi.nlm.nih.gov/19625686/

4601

Rowe CA, Nantz MP, Bukowski JF, Percival SS. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances ¿d T cell function: a randomized, double-blind, placebo-controlled study. J Am Coll Nutr. 2007;26(5):445–52. https://pubmed.ncbi.nlm.nih.gov/17914132/

4602

Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S. Anti-influenza with green tea catechins: a systematic review and meta-analysis. Molecules. 2021;26(13):4014. https://pubmed.ncbi.nlm.nih.gov/34209247/

4603

Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complement Altern Med. 2011;11:15. https://pubmed.ncbi.nlm.nih.gov/21338496/

4604

Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S. Anti-influenza with green tea catechins: a systematic review and meta-analysis. Molecules. 2021;26(13):4014. https://pubmed.ncbi.nlm.nih.gov/34209247/

4605

Furushima D, Nishimura T, Takuma N, et al. Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: a randomized, placebo-controlled trial. Nutrients. 2019;12(1):E4. https://pubmed.ncbi.nlm.nih.gov/31861349/

4606

Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 2005;68:66–74. https://pubmed.ncbi.nlm.nih.gov/16137775/

4607

Furushima D, Otake Y, Koike N, et al. Investigation of the oral retention of tea catechins in humans: an exploratory interventional study. Nutrients. 2021;13(9):3024. https://pubmed.ncbi.nlm.nih.gov/34578903/

4608

Satomura K, Kitamura T, Kawamura T, et al. Prevention of upper respiratory tract infections by gargling: a randomized trial. Am J Prev Med. 2005;29(4):302–7. https://pubmed.ncbi.nlm.nih.gov/16242593/

4609

Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S. Anti-influenza with green tea catechins: a systematic review and meta-analysis. Molecules. 2021;26(13):4014. https://pubmed.ncbi.nlm.nih.gov/34209247/

4610

Ide K, Yamada H, Kawasaki Y. Effect of gargling with tea and ingredients of tea on the prevention of influenza infection: a meta-analysis. BMC Public Health. 2016;16:396. https://pubmed.ncbi.nlm.nih.gov/27175786/

4611

Goodall EC, Granados AC, Luinstra K, et al. Vitamin D3 and gargling for the prevention of upper respiratory tract infections: a randomized controlled trial. BMC Infect Dis. 2014;14:273. https://pubmed.ncbi.nlm.nih.gov/24885201/

4612

Chow EP, Howden BP, Walker S, et al. Antiseptic mouthwash against pharyngeal Neisseria gonorrhoeae: a randomised controlled trial and an in vitro study. Sex Transm Infect. 2017;93(2):88–93. https://pubmed.ncbi.nlm.nih.gov/27998950/

4613

Maddaford K, Fairley CK, Trumpour S, Chung M, Chow EPF. Sites in the oropharynx reached by different methods of using mouthwash: clinical implication for oropharyngeal gonorrhoea prevention. Sex Transm Infect. 2020;96(5):358–60. https://pubmed.ncbi.nlm.nih.gov/31628249/

4614

Phillips TR, Fairley C, Maddaford K, et al. Duration of gargling and rinsing among frequent mouthwash users: a cross-sectional study. BMJ Open. 2020;10(9):e040754. https://pubmed.ncbi.nlm.nih.gov/32994261/

4615

Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 2017;18(1):18–31. https://pubmed.ncbi.nlm.nih.gov/27862824/

4616

Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein – coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9. https://pubmed.ncbi.nlm.nih.gov/12496283/

4617

Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation – protective or causative? Front Immunol. 2016;7:28. https://pubmed.ncbi.nlm.nih.gov/26870043/

4618

Jiao J, Xu JY, Zhang W, Han S, Qin LQ. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9. https://pubmed.ncbi.nlm.nih.gov/25578759/

4619

Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG, Wood LG. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients. 2017;9(1):57. https://pubmed.ncbi.nlm.nih.gov/28075383/

4620

Van Landingham CB, Keast DR, Longnecker MP. Serum concentration of antibodies to mumps, but not measles, rubella, or varicella, is associated with intake of dietary fiber in the NHANES, 1999–2004. Nutrients. 2021;13(3):813. https://pubmed.ncbi.nlm.nih.gov/33801237/

4621

Hagan T, Cortese M, Rouphael N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell. 2019;178(6):1313–28.e13. https://pubmed.ncbi.nlm.nih.gov/31491384/

4622

Yeh TL, Shih PC, Liu SJ, et al. The influence of prebiotic or probiotic supplementation on antibody titers after influenza vaccination: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2018;12:217–30. https://pubmed.ncbi.nlm.nih.gov/29416317/

4623

Haak BW, Littmann ER, Chaubard JL, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood. 2018;131(26):2978–86. https://pubmed.ncbi.nlm.nih.gov/29674425/

4624

Williams LM, Stoodley IL, Berthon BS, Wood LG. The effects of prebiotics, synbiotics, and short-chain fatty acids on respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr. 2022;13(1):167–92. https://pubmed.ncbi.nlm.nih.gov/34543378/

4625

Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2015;(2):CD006895. https://pubmed.ncbi.nlm.nih.gov/25927096/

4626

Guillemard E, Tondu F, Lacoin F, Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr. 2010;103(1):58–68. https://pubmed.ncbi.nlm.nih.gov/19747410/

4627

Fujita R, Iimuro S, Shinozaki T, et al. Decreased duration of acute upper respiratory tract infections with daily intake of fermented milk: a multicenter, double-blinded, randomized comparative study in users of day care facilities for the elderly population. Am J Infect Control. 2013;41(12):1231–5. https://pubmed.ncbi.nlm.nih.gov/23890374/

4628

Turchet P, Laurenzano M, Auboiron S, Antoine JM. Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: a randomised, controlled pilot study. J Nutr Health Aging. 2003;7(2):75–7. https://pubmed.ncbi.nlm.nih.gov/12679825/

4629

Xu W, Wong G, Hwang YY, Larbi A. The untwining of immunosenescence and aging. Semin Immunopathol. 2020;42(5):559–72. https://pubmed.ncbi.nlm.nih.gov/33165716/

4630

Malter M, Schriever G, Eilber U. Natural killer cells, vitamins, and other blood components of vegetarian and omnivorous men. Nutr Cancer. 1989;12(3):271–8. https://pubmed.ncbi.nlm.nih.gov/2771803/

4631

Franco EL. The sexually transmitted disease model for cervical cancer: incoherent epidemiologic findings and the role of misclassification of human papillomavirus infection. Epidemiology. 1991;2(2):98–106. https://pubmed.ncbi.nlm.nih.gov/1657209/

4632

Skrabanek P. Cervical cancer in nuns and prostitutes: a plea for scientific continence. J Clin Epidemiol. 1988;41(6):577–82. https://pubmed.ncbi.nlm.nih.gov/3290397/

4633

Snijders PJF, Steenbergen RDM, Heideman DAM, Meijer CJLM. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006;208(2):152–64. https://pubmed.ncbi.nlm.nih.gov/16362994/

4634

Goldstein MA, Goodman A, del Carmen MG, Wilbur DC. Case 10–2009: a 23-year-old woman with an abnormal Papanicolaou smear. Cabot RC, Harris NL, Shepard JAO, et al., eds. N Engl J Med. 2009;360(13):1337–44. https://pubmed.ncbi.nlm.nih.gov/19321871/

4635

Srivastava S, Gupta S, Roy JK. High prevalence of oncogenic HPV-16 in cervical smears of asymptomatic women of eastern Uttar Pradesh, India: a population-based study. J Biosci. 2012;37(1):63–72. https://pubmed.ncbi.nlm.nih.gov/22357204/

4636

Sedjo RL, Roe DJ, Abrahamsen M, et al. Vitamin A, carotenoids, and risk of persistent oncogenic human papillomavirus infection. Cancer Epidemiol Biomarkers Prev. 2002;11(9):876–84. https://pubmed.ncbi.nlm.nih.gov/12223432/

4637

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

4638

Haddad EH, Berk LS, Kettering JD, Hubbard RW, Peters WR. Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr. 1999;70(3 Suppl):586S-93S. https://pubmed.ncbi.nlm.nih.gov/10479236/

4639

Merino J, Joshi AD, Nguyen LH, et al. Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut. 2021;70(11):2096–104. https://pubmed.ncbi.nlm.nih.gov/34489306/

4640

Hyun SH, Ahn HY, Kim HJ, et al. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res. 2021;45(1):191–8. https://pubmed.ncbi.nlm.nih.gov/33437171/

4641

Kim MS. Korean red ginseng tonic extends lifespan in D. melanogaster. Biomol Ther (Seoul). 2013;21(3):241–5. https://pubmed.ncbi.nlm.nih.gov/24265871/

4642

Wang H, Zhang S, Zhai L, et al. Ginsenoside extract from ginseng extends lifespan and health span in Caenorhabditis elegans. Food Funct. 2021;12(15):6793–808. https://pubmed.ncbi.nlm.nih.gov/34109970/

4643

Bittles AH, Fulder SJ, Grant EC, Nicholls MR. The effect of ginseng on lifespan and stress responses in mice. Gerontology. 1979;25(3):125–31. https://pubmed.ncbi.nlm.nih.gov/571386/

4644

Carabin IG, Burdock GA, Chatzidakis C. Safety assessment of Panax ginseng. Int J Toxicol. 2000;19(4):293–301. https://www.researchgate.net/publication/247768227_Safety_Assessment_of_Panax_Ginseng

4645

Hyun SH, Ahn HY, Kim HJ, et al. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res. 2021;45(1):191–8. https://pubmed.ncbi.nlm.nih.gov/33437171/

4646

Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp Clin Res. 1990;16(10):537–42. https://pubmed.ncbi.nlm.nih.gov/2100737/

4647

Antonelli M, Donelli D, Firenzuoli F. Ginseng integrative supplementation for seasonal acute upper respiratory infections: a systematic review and meta-analysis. Complement Ther Med. 2020;52:102457. https://pubmed.ncbi.nlm.nih.gov/32951718/

4648

Siegel RK. Ginseng abuse syndrome. Problems with the panacea. JAMA. 1979;241(15):1614–5. https://pubmed.ncbi.nlm.nih.gov/430716/

4649

Norelli LJ, Xu C. Manic psychosis associated with ginseng: a report of two cases and discussion of the literature. J Diet Suppl. 2015;12(2):119–25. https://pubmed.ncbi.nlm.nih.gov/24689505/

4650

Kakisaka Y, Ohara T, Tozawa H, et al. Panax ginseng: a newly identified cause of gynecomastia. Tohoku J Exp Med. 2012;228(2):143–5. https://pubmed.ncbi.nlm.nih.gov/23006978/

4651

Viviano A, Steele D, Edsell M, Jahangiri M. Over-the-counter natural products in cardiac surgery: a case of ginseng-related massive perioperative bleeding. BMJ Case Rep. 2017;2017:bcr-2016–218068. https://pubmed.ncbi.nlm.nih.gov/28784871/

4652

Antonelli M, Donelli D, Firenzuoli F. Ginseng integrative supplementation for seasonal acute upper respiratory infections: a systematic review and meta-analysis. Complement Ther Med. 2020;52:102457. https://pubmed.ncbi.nlm.nih.gov/32951718/

4653

Alam I, Almajwal AM, Alam W, et al. The immune – nutrition interplay in aging – facts and controversies. Nutr Healthy Aging. 2019;5(2):73–95. https://content.iospress.com/articles/nutrition-and-healthy-aging/nha170034

4654

Lesourd B. Nutritional factors and immunological ageing. Proc Nutr Soc. 2006;65(3):319–25. https://pubmed.ncbi.nlm.nih.gov/16923315/

4655

Chandra RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. Lancet. 1992;340(8828):1124–7. https://pubmed.ncbi.nlm.nih.gov/1359211/

4656

Lesourd B. Nutritional factors and immunological ageing. Proc Nutr Soc. 2006;65(3):319–25. https://pubmed.ncbi.nlm.nih.gov/16923315/

4657

Editors of The Lancet. Retraction – effect of vitamin and trace-element supplementation on immune responses and infection in elderly subject. Lancet. 2016;387(10017):417. https://pubmed.ncbi.nlm.nih.gov/26869554/

4658

Retraction and closure – Nutr Res 2002;22: 5–11 and Nutr Res 2002;22: 85–87. Nutr Res. 2016;36(7):756. https://pubmed.ncbi.nlm.nih.gov/27333962/

4659

Roberts S, Sternberg S. Do nutritional supplements improve cognitive function in the elderly? Nutrition. 2003;19(11–12):976–8. https://pubmed.ncbi.nlm.nih.gov/14624947/

4660

Pryse-Phillips W. Inquiry into Dr. RK Chandra’s submitted paper to the BMJ #00/5797. Published October 23, 2009. Accessed Aug 10, 2021.; https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)00166-5/fulltext

4661

Vlieg-Boerstra B, de Jong N, Meyer R, et al. Nutrient supplementation for prevention of viral respiratory tract infections in healthy subjects: a systematic review and meta-analysis. Allergy. 2022;77(5):1373–88. https://pubmed.ncbi.nlm.nih.gov/34626488/

4662

Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin – mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. JAMA. 2002;288(6):715–21. https://pubmed.ncbi.nlm.nih.gov/12169075/

4663

Liu BA, McGeer A, McArthur MA, et al. Effect of multivitamin and mineral supplementation on episodes of infection in nursing home residents: a randomized, placebo-controlled study. J Am Geriatr Soc. 2007;55(1):35–42. https://pubmed.ncbi.nlm.nih.gov/17233683/

4664

Girodon F, Galan P, Monget AL, et al. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: a randomized controlled trial. Arch Intern Med. 1999;159(7):748–54. https://pubmed.ncbi.nlm.nih.gov/10218756/

4665

Carpenter KJ. The discovery of vitamin C. Ann Nutr Metab. 2012;61(3):259–64. https://pubmed.ncbi.nlm.nih.gov/23183299/

4666

Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;(1):CD000980. https://pubmed.ncbi.nlm.nih.gov/23440782/

4667

Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;(1):CD000980. https://pubmed.ncbi.nlm.nih.gov/23440782/

4668

Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol. 2004;15(12):3225–32. https://pubmed.ncbi.nlm.nih.gov/15579526/

4669

Thomas LDK, Elinder CG, Tiselius HG, Wolk A, Åkesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173(5):386. https://pubmed.ncbi.nlm.nih.gov/23381591/

4670

Thomas LDK, Elinder CG, Tiselius HG, Wolk A, Åkesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173(5):386. https://pubmed.ncbi.nlm.nih.gov/23381591/

4671

Goncalves-Mendes N, Talvas J, Dualé C, et al. Impact of vitamin D supplementation on influenza vaccine response and immune functions in deficient elderly persons: a randomized placebo-controlled trial. Front Immunol. 2019;10:65. https://pubmed.ncbi.nlm.nih.gov/30800121/

4672

Jolliffe DA, Camargo CA, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–92. https://pubmed.ncbi.nlm.nih.gov/33798465/

4673

Meydani SN, Meydani M, Blumberg JB, et al. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA. 1997;277(17):1380–6. https://pubmed.ncbi.nlm.nih.gov/9134944/

4674

Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin – mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. JAMA. 2002;288(6):715–21. https://pubmed.ncbi.nlm.nih.gov/12169075/

4675

Klein EA, Thompson IM, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306(14):1549–56. https://pubmed.ncbi.nlm.nih.gov/21990298/

4676

Curtis AJ, Bullen M, Piccenna L, McNeil JJ. Vitamin E supplementation and mortality in healthy people: a meta-analysis of randomised controlled trials. Cardiovasc Drugs Ther. 2014;28(6):563–73. https://pubmed.ncbi.nlm.nih.gov/25398301/

4677

Kasprak A. Did a noted pathologist write this viral coronavirus advice letter? Snopes. https://www.snopes.com/fact-check/zinc-lozenges-coronavirus/. Published March 2, 2020. Updated March 13, 2020. Accessed May 22, 2022.; https://www.snopes.com/fact-check/zinc-lozenges-coronavirus

4678

Monto AS. Medical reviews. Coronaviruses. Yale J Biol Med. 1974;47(4):234–51. https://pubmed.ncbi.nlm.nih.gov/4617423/

4679

Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017;8(5):2054270417694291. https://pubmed.ncbi.nlm.nih.gov/28515951/

4680

Hemilä H, Petrus EJ, Fitzgerald JT, Prasad A. Zinc acetate lozenges for treating the common cold: an individual patient data meta-analysis. Br J Clin Pharmacol. 2016;82(5):1393–8. https://pubmed.ncbi.nlm.nih.gov/27378206/

4681

Hemilä H, Chalker E. The effectiveness of high dose zinc acetate lozenges on various common cold symptoms: a meta-analysis. BMC Fam Pract. 2015;16:24. https://pubmed.ncbi.nlm.nih.gov/25888289/

4682

Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017;8(5):2054270417694291. https://pubmed.ncbi.nlm.nih.gov/28515951/

4683

Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013;(6):CD001364. https://pubmed.ncbi.nlm.nih.gov/23775705/

4684

Sempértegui F, Estrella B, Rodríguez O, et al. Zinc as an adjunct to the treatment of severe pneumonia in Ecuadorian children: a randomized controlled trial. Am J Clin Nutr. 2014;99(3):497–505. https://pubmed.ncbi.nlm.nih.gov/24429536/

4685

Prasad AS. Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr. 2009;28(3):257–65. https://pubmed.ncbi.nlm.nih.gov/20150599/

4686

Ervin RB, Kennedy-Stephenson J. Mineral intakes of elderly adult supplement and non-supplement users in the third National Health and Nutrition Examination Survey. J Nutr. 2002;132(11):3422–7. https://pubmed.ncbi.nlm.nih.gov/12421862/

4687

King JC. Yet again, serum zinc concentrations are unrelated to zinc intakes. J Nutr. 2018;148(9):1399–401. https://pubmed.ncbi.nlm.nih.gov/30184229/

4688

Agricultural Research Service, United States Department of Agriculture. Mollusks, oysters, eastern, canned. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=oysters&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/171981/nutrients. Published April 1, 2019. Accessed May 20, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=oysters&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/171981/nutrients

4689

Agricultural Research Service, United States Department of Agriculture. Beans, baked, canned, plain or vegetarian. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=baked+beans&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/175182/nutrients. Published April 1, 2019. Accessed May 20, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=baked+beans&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/175182/nutrients

4690

Abioye AI, Bromage S, Fawzi W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. BMJ Glob Health. 2021;6(1):e003176. https://pubmed.ncbi.nlm.nih.gov/33472840/

4691

Bogden JD, Oleske JM, Lavenhar MA, et al. Effects of one year of supplementation with zinc and other micronutrients on cellular immunity in the elderly. J Am Coll Nutr. 1990;9(3):214–25. https://pubmed.ncbi.nlm.nih.gov/2358617/

4692

Duchateau J, Delepesse G, Vrijens R, Collet H. Beneficial effects of oral zinc supplementation on the immune response of old people. Am J Med. 1981;70(5):1001–4. https://pubmed.ncbi.nlm.nih.gov/6972165/

4693

Provinciali M, Montenovo A, Di Stefano G, et al. Effect of zinc or zinc plus arginine supplementation on antibody titre and lymphocyte subsets after influenza vaccination in elderly subjects: a randomized controlled trial. Age Ageing. 1998;27(6):715–22. https://pubmed.ncbi.nlm.nih.gov/10408666/

4694

Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013;(6):CD001364. https://pubmed.ncbi.nlm.nih.gov/23775705/

4695

Davidson TM, Smith WM. The Bradford Hill criteria and zinc-induced anosmia: a causality analysis. Arch Otolaryngol Head Neck Surg. 2010;136(7):673–6. https://pubmed.ncbi.nlm.nih.gov/20644061/

4696

Eby GA. Treatment of acute lymphocytic leukemia using zinc adjuvant with chemotherapy and radiation – a case history and hypothesis. Med Hypotheses. 2005;64(6):1124–6. https://pubmed.ncbi.nlm.nih.gov/15823699/

4697

Centers for Disease Control and Prevention. Ten great public health achievements – United States, 1900–1999. MMWR Morb Mortal Wkly Rep. 1999;48(12):241–3. https://pubmed.ncbi.nlm.nih.gov/10220250/

4698

Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018;50(2):110–20. https://pubmed.ncbi.nlm.nih.gov/29172780/

4699

Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708–20. https://pubmed.ncbi.nlm.nih.gov/24803000/

4700

Slifka AM, Park B, Gao L, Slifka MK. Incidence of tetanus and diphtheria in relation to adult vaccination schedules. Clin Infect Dis. 2021;72(2):285–92. https://pubmed.ncbi.nlm.nih.gov/32095828/

4701

National Center for Immunization and Respiratory Diseases. Adult immunization schedule by vaccine and age group: recommendations for ages 19 years or older, United States, 2022. Centers for Disease Control and Prevention. https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html. Updated February 17, 2022. Accessed May 18, 2022.; https://www.cdc.gov/vaccines/schedules/hcp/imz/adult.html

4702

Gidengil C, Goetz MB, Newberry S, et al. Safety of vaccines used for routine immunization in the United States: an updated systematic review and meta-analysis. Vaccine. 2021;39(28):3696–716. https://pubmed.ncbi.nlm.nih.gov/34049735/

4703

Dudley MZ, Halsey NA, Omer SB, et al. The state of vaccine safety science: systematic reviews of the evidence. Lancet Infect Dis. 2020;20(5):e80–9. https://pubmed.ncbi.nlm.nih.gov/32278359/

4704

Rolfes MA, Foppa IM, Garg S, et al. Annual estimates of the burden of seasonal influenza in the United States: a tool for strengthening influenza surveillance and preparedness. Influenza Other Respir Viruses. 2018;12(1):132–7. https://pubmed.ncbi.nlm.nih.gov/29446233/

4705

Hunter P, Fryhofer SA, Szilagyi PG. Vaccination of adults in general medical practice. Mayo Clin Proc. 2020;95(1):169–83. https://pubmed.ncbi.nlm.nih.gov/31902413/

4706

Resnick B, Gravenstein S, Schaffner W, Sobczyk E, Douglas RG. Beyond prevention of influenza: the value of flu vaccines. J Gerontol A Biol Sci Med Sci. 2018;73(12):1635–7. https://pubmed.ncbi.nlm.nih.gov/30418526/

4707

Grohskopf LA, Alyanak E, Broder KR, Walter EB, Fry AM, Jernigan DB. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices – United States, 2019–20 influenza season. MMWR Recomm Rep. 2019;68(3):1–21. https://pubmed.ncbi.nlm.nih.gov/31441906/

4708

Hunter P, Fryhofer SA, Szilagyi PG. Vaccination of adults in general medical practice. Mayo Clin Proc. 2020;95(1):169–83. https://pubmed.ncbi.nlm.nih.gov/31902413/

4709

Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine. 2006;24(8):1159–69. https://pubmed.ncbi.nlm.nih.gov/16213065/

4710

Effectiveness of seasonal flu vaccines from the 2005–2021 flu seasons. Centers for Disease Control and Prevention. https://www.cdc.gov/flu/images/vaccines-work/Vaccine-Effectiveness-Graphs-2021.pptx. Updated March 11, 2022. Accessed May 23, 2022.; https://www.cdc.gov/flu/images/vaccines-work/Vaccine-Effectiveness-Graphs-2021.pptx

4711

Demicheli V, Rivetti D, Deeks JJ, Jefferson TO. Vaccines for preventing influenza in healthy adults. Cochrane Database Syst Rev. 2004;(3):CD001269. https://pubmed.ncbi.nlm.nih.gov/15266445/

4712

Demicheli V, Jefferson T, Di Pietrantonj C, et al. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev. 2018;2:CD004876.4 https://pubmed.ncbi.nlm.nih.gov/29388197/

4713

Coll PP, Costello VW, Kuchel GA, Bartley J, McElhaney JE. The prevention of infections in older adults: vaccination. J Am Geriatr Soc. 2020;68(1):207–14. https://pubmed.ncbi.nlm.nih.gov/31613000/

4714

Influenza vaccine for 2019–2020. Med Lett Drugs Ther. 2019;61(1583):161–6. https://pubmed.ncbi.nlm.nih.gov/31770355/

4715

Coll PP, Costello VW, Kuchel GA, Bartley J, McElhaney JE. The prevention of infections in older adults: vaccination. J Am Geriatr Soc. 2020;68(1):207–14. https://pubmed.ncbi.nlm.nih.gov/31613000/

4716

Dudley MZ, Halsey NA, Omer SB, et al. The state of vaccine safety science: systematic reviews of the evidence. Lancet Infect Dis. 2020;20(5):e80–9. https://pubmed.ncbi.nlm.nih.gov/32278359/

4717

Influenza vaccine for 2019–2020. Med Lett Drugs Ther. 2019;61(1583):161–6. https://pubmed.ncbi.nlm.nih.gov/31770355/

4718

Demicheli V, Jefferson T, Di Pietrantonj C, et al. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev. 2018;2:CD004876.4 https://pubmed.ncbi.nlm.nih.gov/29388197/

4719

Kwong JC, Schwartz KL, Campitelli MA, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(4):345–53. https://pubmed.ncbi.nlm.nih.gov/29365305/

4720

Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. Lancet Infect Dis. 2010;10(2):83–92. https://pubmed.ncbi.nlm.nih.gov/20113977/

4721

Cheng Y, Cao X, Cao Z, et al. Effects of influenza vaccination on the risk of cardiovascular and respiratory diseases and all-cause mortality. Ageing Res Rev. 2020;62:101124. https://pubmed.ncbi.nlm.nih.gov/32683040/

4722

Okoli GN, Lam OLT, Racovitan F, et al. Seasonal influenza vaccination in older people: a systematic review and meta-analysis of the determining factors. PLoS One. 2020;15(6):e0234702. https://pubmed.ncbi.nlm.nih.gov/32555628/

4723

Yedlapati SH, Khan SU, Talluri S, et al. Effects of influenza vaccine on mortality and cardiovascular outcomes in patients with cardiovascular disease: a systematic review and meta-analysis. J Am Heart Assoc. 2021;10(6):e019636. https://pubmed.ncbi.nlm.nih.gov/33719496/

4724

Clar C, Oseni Z, Flowers N, Keshtkar-Jahromi M, Rees K. Influenza vaccines for preventing cardiovascular disease. Cochrane Database Syst Rev. 2015;(5):CD005050. https://pubmed.ncbi.nlm.nih.gov/25940444/

4725

Nyhan B, Reifler J. Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information. Vaccine. 2015;33(3):459–64. https://pubmed.ncbi.nlm.nih.gov/25499651/

4726

Nyhan B, Reifler J, Richey S, Freed GL. Effective messages in vaccine promotion: a randomized trial. Pediatrics. 2014;133(4):e835–42. https://pubmed.ncbi.nlm.nih.gov/24590751/

4727

Meszaros JR, Asch DA, Baron J, Hershey JC, Kunreuther H, Schwartz-Buzaglo J. Cognitive processes and the decisions of some parents to forego pertussis vaccination for their children. J Clin Epidemiol. 1996;49(6):697–703. https://pubmed.ncbi.nlm.nih.gov/8656233/

4728

Nyhan B, Reifler J. Does correcting myths about the flu vaccine work? An experimental evaluation of the effects of corrective information. Vaccine. 2015;33(3):459–64. https://pubmed.ncbi.nlm.nih.gov/25499651/

4729

. “Father of modern medicine”: the Johns Hopkins School of Medicine, 1889–1905. William Osler-Profiles in Science. NIH National Library of Medicine. https://profiles.nlm.nih.gov/spotlight/gf/feature/father-of-modern-medicine-the-johns-hopkins-school-of-medicine-1889-1905. Accessed May 20, 2022.; https://profiles.nlm.nih.gov/spotlight/gf/feature/father-of-modern-medicine-the-johns-hopkins-school-of-medicine-1889-1905

4730

Brancati FL, Chow JW, Wagener MM, Vacarello SJ, Yu VL. Is pneumonia really the old man’s friend? Two-year prognosis after community-acquired pneumonia. Lancet. 1993;342(8862):30–3. https://pubmed.ncbi.nlm.nih.gov/8100295/

4731

The top 10 causes of death. World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Published December 9, 2022. Accessed May 20, 2022.; https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death

4732

Heron M. Deaths: leading causes for 2019. Natl Vital Stat Rep. 2021;70(9):1–114. https://pubmed.ncbi.nlm.nih.gov/34520342/

4733

van Werkhoven CH, Huijts SM. Vaccines to prevent pneumococcal community-acquired pneumonia. Clin Chest Med. 2018;39(4):733–52. https://pubmed.ncbi.nlm.nih.gov/30390745/

4734

van Werkhoven CH, Huijts SM. Vaccines to prevent pneumococcal community-acquired pneumonia. Clin Chest Med. 2018;39(4):733–52. https://pubmed.ncbi.nlm.nih.gov/30390745/

4735

US Department of Health and Human Services. Antibiotics resistance threats in the United States: 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Centers for Disease Control and Prevention, US Dept of Health and Human Services. Updated December 2019. Accessed May 20, 2022.; https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf

4736

Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16:25. https://pubmed.ncbi.nlm.nih.gov/31528180/

4737

Thomas RE. Pneumococcal pneumonia and invasive pneumococcal disease in those 65 and older: rates of detection, risk factors, vaccine effectiveness, hospitalisation and mortality. Geriatrics (Basel). 2021;6(1):13. https://pubmed.ncbi.nlm.nih.gov/33557406/

4738

Jaiswal V, Ang SP, Lnu K, et al. Effect of pneumococcal vaccine on mortality and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Med. 2022;11(13):3799. https://pubmed.ncbi.nlm.nih.gov/35807082/

4739

Ecarnot F, Bernabei R, Gabutti G, et al. Adult vaccination as the cornerstone of successful ageing: the case of herpes zoster vaccination. A European Interdisciplinary Council on Ageing (EICA) expert focus group. Aging Clin Exp Res. 2019;31(3):301–7. https://pubmed.ncbi.nlm.nih.gov/30805865/

4740

McElhaney JE, Verschoor C, Pawelec G. Zoster vaccination in older adults: efficacy and public health implications. J Gerontol A Biol Sci Med Sci. 2019;74(8):1239–43. https://pubmed.ncbi.nlm.nih.gov/30945744/

4741

Gagliardi AMZ, Andriolo BNG, Torloni MR, et al. Vaccines for preventing herpes zoster in older adults. Cochrane Database Syst Rev. 2019;2019(11):CD008858. https://pubmed.ncbi.nlm.nih.gov/26937872/

4742

Schmader K. Herpes zoster. Ann Intern Med. 2018;169(3):ITC17. https://pubmed.ncbi.nlm.nih.gov/30083718/

4743

Schmader K. Herpes zoster. Ann Intern Med. 2018;169(3):ITC17. https://pubmed.ncbi.nlm.nih.gov/30083718/

4744

Zuin M, Rigatelli G, Adami A. Cerebrovascular events after herpes zoster infection: a risk that should be not underestimated. J Neurovirol. 2019;25(4):439–47. https://pubmed.ncbi.nlm.nih.gov/31069708/

4745

Johnson RW, Levin MJ. Herpes zoster and its prevention by vaccination. Interdiscip Top Gerontol Geriatr. 2020;43:131–45. https://pubmed.ncbi.nlm.nih.gov/32305975/

4746

Coll PP, Costello VW, Kuchel GA, Bartley J, McElhaney JE. The prevention of infections in older adults: vaccination. J Am Geriatr Soc. 2020;68(1):207–14. https://pubmed.ncbi.nlm.nih.gov/31613000/

4747

Shafran SD. Prevention of shingles: better protection and better value with recombinant vaccine. Ann Intern Med. 2019;170(6):416–7. https://pubmed.ncbi.nlm.nih.gov/30776802/

4748

Schmader K. Herpes zoster. Ann Intern Med. 2018;169(3):ITC17. https://pubmed.ncbi.nlm.nih.gov/30083718/

4749

Shafran SD. Prevention of shingles: better protection and better value with recombinant vaccine. Ann Intern Med. 2019;170(6):416–7. https://pubmed.ncbi.nlm.nih.gov/30776802/

4750

Johnson RW, Levin MJ. Herpes zoster and its prevention by vaccination. Interdiscip Top Gerontol Geriatr. 2020;43:131–45. https://pubmed.ncbi.nlm.nih.gov/32305975/

4751

Le P. Which shingles vaccine for older adults? BMJ. 2018;363:k4203. https://pubmed.ncbi.nlm.nih.gov/30361204/

4752

Thijssen E, van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford). 2015;54(4):588–600. https://pubmed.ncbi.nlm.nih.gov/25504962/

4753

Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22–8. https://pubmed.ncbi.nlm.nih.gov/27180156/

4754

Charlesworth J, Fitzpatrick J, Perera NKP, Orchard J. Osteoarthritis – a systematic review of long-term safety implications for osteoarthritis of the knee. BMC Musculoskelet Disord. 2019;20(1):151. https://pubmed.ncbi.nlm.nih.gov/30961569/

4755

Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med. 2020;132(4):377–84. https://pubmed.ncbi.nlm.nih.gov/32100608/

4756

Gress K, Charipova K, An D, et al. Treatment recommendations for chronic knee osteoarthritis. Best Pract Res Clin Anaesthesiol. 2020;34(3):369–82. https://pubmed.ncbi.nlm.nih.gov/33004154/

4757

Leopoldino AO, Machado GC, Ferreira PH, et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst Rev. 2019;2019(2):CD013273. https://pubmed.ncbi.nlm.nih.gov/30801133/

4758

Negrini F, Negrini S. Is paracetamol better than placebo for knee and hip osteoarthritis? A Cochrane review summary with commentary. Int J Rheum Dis. 2020;23(4):595–6. https://pubmed.ncbi.nlm.nih.gov/32286015/

4759

Leopoldino AO, Machado GC, Ferreira PH, et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst Rev. 2019;2019(2):CD013273. https://pubmed.ncbi.nlm.nih.gov/30801133/

4760

Negrini F, Negrini S. Is paracetamol better than placebo for knee and hip osteoarthritis? A Cochrane review summary with commentary. Int J Rheum Dis. 2020;23(4):595–6. https://pubmed.ncbi.nlm.nih.gov/32286015/

4761

Bunchorntavakul C, Reddy KR. Acetaminophen (APAP or N-acetyl-p-aminophenol) and acute liver failure. Clin Liver Dis. 2018;22(2):325–46. https://pubmed.ncbi.nlm.nih.gov/29605069/

4762

Conaghan PG, Arden N, Avouac B, Migliore A, Rizzoli R. Safety of paracetamol in osteoarthritis: what does the literature say? Drugs Aging. 2019;36(Suppl 1):7–14. https://pubmed.ncbi.nlm.nih.gov/31073920/

4763

Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo controlled trials. BMJ. 2015;350:h1225. https://pubmed.ncbi.nlm.nih.gov/25828856/

4764

Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med. 2020;132(4):377–84. https://pubmed.ncbi.nlm.nih.gov/32100608/

4765

Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020;2020:8293921. https://pubmed.ncbi.nlm.nih.gov/32189997/

4766

Cooper C, Chapurlat R, Al-Daghri N, et al. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: what does the literature say? Drugs Aging. 2019;36(Suppl 1):15–24. https://pubmed.ncbi.nlm.nih.gov/31073921/

4767

Ho KY, Cardosa MS, Chaiamnuay S, et al. Practice advisory on the appropriate use of NSAIDs in primary care. J Pain Res. 2020;13:1925–39. https://pubmed.ncbi.nlm.nih.gov/32821151/

4768

Cooper C, Chapurlat R, Al-Daghri N, et al. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: what does the literature say? Drugs Aging. 2019;36(Suppl 1):15–24. https://pubmed.ncbi.nlm.nih.gov/31073921/

4769

Ong CKS, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res. 2007;5(1):19–34. https://pubmed.ncbi.nlm.nih.gov/17456832/

4770

Bally M, Dendukuri N, Rich B, et al. Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data. BMJ. 2017;357:j1909. https://pubmed.ncbi.nlm.nih.gov/28487435/

4771

Cooper C, Chapurlat R, Al-Daghri N, et al. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: what does the literature say? Drugs Aging. 2019;36(Suppl 1):15–24. https://pubmed.ncbi.nlm.nih.gov/31073921/

4772

Zhang X, Donnan PT, Bell S, Guthrie B. Non-steroidal anti-inflammatory drug induced acute kidney injury in the community dwelling general population and people with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol. 2017;18(1):256. https://pubmed.ncbi.nlm.nih.gov/28764659/

4773

American Geriatrics Society recommends opioids as second-line therapy for chronic pain, instead of NSAIDs. Topics in Pain Management. 2009;25(1):9–10. https://journals.lww.com/topicsinpainmanagement/Citation/2009/08000/American_Geriatrics_Society_Recommends_Opioids_as.3.aspx

4774

Cooper C, Chapurlat R, Al-Daghri N, et al. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis: what does the literature say? Drugs Aging. 2019;36(Suppl 1):15–24. https://pubmed.ncbi.nlm.nih.gov/31073921/

4775

Nissen SE. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2017;376(14):1390. https://pubmed.ncbi.nlm.nih.gov/28379793/

4776

Ho KY, Cardosa MS, Chaiamnuay S, et al. Practice advisory on the appropriate use of NSAIDs in primary care. J Pain Res. 2020;13:1925–39. https://pubmed.ncbi.nlm.nih.gov/32821151/

4777

Reginster JY, Bruyère O, Conaghan PG, McAlindon T, Cooper C. Importance of safety in the management of osteoarthritis and the need for updated meta-analyses and recommendations for reporting of harms. Drugs Aging. 2019;36(Suppl 1):3–6. https://pubmed.ncbi.nlm.nih.gov/31073919/

4778

FDA approves three drugs for nonprescription use through Rx-to-OTC switch process. U.S. Food & Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-three-drugs-nonprescription-use-through-rx-otc-switch-process. Published February 14, 2020. Accessed June 1, 2022.; https://www.fda.gov/news-events/press-announcements/fda-approves-three-drugs-nonprescription-use-through-rx-otc-switch-process

4779

Derry S, Conaghan P, Da Silva JAP, Wiffen PJ, Moore RA. Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev. 2016;4:CD007400. https://pubmed.ncbi.nlm.nih.gov/27103611/

4780

Reginster JY, Bruyère O, Conaghan PG, McAlindon T, Cooper C. Importance of safety in the management of osteoarthritis and the need for updated meta-analyses and recommendations for reporting of harms. Drugs Aging. 2019;36(Suppl 1):3–6. https://pubmed.ncbi.nlm.nih.gov/31073919/

4781

Honvo G, Leclercq V, Geerinck A, et al. Safety of topical non-steroidal anti-inflammatory drugs in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging. 2019;36(Suppl 1):45–64. https://pubmed.ncbi.nlm.nih.gov/31073923/

4782

Lim CC, Ang ATW, Kadir HBA, et al. Short-course systemic and topical non-steroidal anti-inflammatory drugs: impact on adverse renal events in older adults with co-morbid disease. Drugs Aging. 2021;38(2):147–56. https://pubmed.ncbi.nlm.nih.gov/33251568/

4783

Lin T, Solomon DH, Tedeschi SK, Yoshida K, Kao Yang Y. Comparative risk of cardiovascular outcomes between topical and oral nonselective NSAIDs in Taiwanese patients with rheumatoid arthritis. JAHA. 2017;6(11):e006874. https://pubmed.ncbi.nlm.nih.gov/29079568/

4784

Koenig KM, Ong KL, Lau EC, et al. The use of hyaluronic acid and corticosteroid injections among Medicare patients with knee osteoarthritis. J Arthroplasty. 2016;31(2):351–5. https://pubmed.ncbi.nlm.nih.gov/26421601/

4785

Latourte A, Lellouche H. Update on corticosteroid, hyaluronic acid and platelet-rich plasma injections in the management of osteoarthritis. Joint Bone Spine. 2021;88(6):105204. https://pubmed.ncbi.nlm.nih.gov/33962034/

4786

McAlindon TE, LaValley MP, Harvey WF, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA. 2017;317(19):1967–75. https://pubmed.ncbi.nlm.nih.gov/28510679/

4787

Orchard JW. Is there a place for intra-articular corticosteroid injections in the treatment of knee osteoarthritis? BMJ. 2020;368:l6923. https://pubmed.ncbi.nlm.nih.gov/31941647/

4788

Kompel AJ, Roemer FW, Murakami AM, Diaz LE, Crema MD, Guermazi A. Intra-articular corticosteroid injections in the hip and knee: perhaps not as safe as we thought? Radiology. 2019;293(3):656–63. https://pubmed.ncbi.nlm.nih.gov/31617798/

4789

McAlindon TE, LaValley MP, Harvey WF, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis. JAMA. 2017;317(19):1967–75. https://pubmed.ncbi.nlm.nih.gov/28510679/

4790

Bliddal H, Henriksen M. Osteoarthritis: time to put steroid injections behind us? Nat Rev Rheumatol. 2017;13(9):519–20. https://pubmed.ncbi.nlm.nih.gov/28747801/

4791

Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21(9):571–6. https://pubmed.ncbi.nlm.nih.gov/23996988/

4792

Moseley JB, O’Malley K, Petersen NJ, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347(2):81–8. https://pubmed.ncbi.nlm.nih.gov/12110735/

4793

Maffulli N. We are operating too much. J Orthop Traumatol. 2017;18(4):289–92. https://pubmed.ncbi.nlm.nih.gov/28879556/

4794

Moseley JB, O’Malley K, Petersen NJ, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347(2):81–8. https://pubmed.ncbi.nlm.nih.gov/12110735/

4795

McCormack RG, Hutchinson MR. Rocking the shoulder surgeon’s world. Br J Sports Med. 2017;51(24):1727. https://pubmed.ncbi.nlm.nih.gov/28646099/

4796

Horton R. Surgical research or comic opera: questions, but few answers. Lancet. 1996;347(9007):984–5. https://pubmed.ncbi.nlm.nih.gov/8606606/

4797

Lim HC, Adie S, Naylor JM, Harris IA. Randomised trial support for orthopaedic surgical procedures. PLoS One. 2014;9(6):e96745. https://pubmed.ncbi.nlm.nih.gov/24927114/

4798

Wartolowska K, Judge A, Hopewell S, et al. Use of placebo controls in the evaluation of surgery: systematic review. BMJ. 2014;348:g3253. https://pubmed.ncbi.nlm.nih.gov/24850821/

4799

Thorlund JB, Juhl CB, Roos EM, Lohmander LS. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ. 2015;350:h2747. https://pubmed.ncbi.nlm.nih.gov/26080045/

4800

Rongen JJ, Rovers MM, van Tienen TG, Buma P, Hannink G. Increased risk for knee replacement surgery after arthroscopic surgery for degenerative meniscal tears: a multi-center longitudinal observational study using data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2017;25(1):23–9. https://pubmed.ncbi.nlm.nih.gov/27712957/

4801

Moseley JB, O’Malley K, Petersen NJ, et al. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2002;347(2):81–8. https://pubmed.ncbi.nlm.nih.gov/12110735/

4802

Thorlund JB. Deconstructing a popular myth: why knee arthroscopy is no better than placebo surgery for degenerative meniscal tears. Br J Sports Med. 2017;51(22):1630–1. https://pubmed.ncbi.nlm.nih.gov/28615215/

4803

Zhang W. The powerful placebo effect in osteoarthritis. Clin Exp Rheumatol. 2019;37 Suppl 120(5):118–23. https://pubmed.ncbi.nlm.nih.gov/31621561/

4804

Radiation dose. RadiologyInfo.org. https://www.radiologyinfo.org/en/info/safety-xray#81426d679d504b8f9a595b2b5d7d1eff. Published February 1, 2021. Accessed May 31, 2022.; https://www.radiologyinfo.org/en/info/safety-xray#81426d679d504b8f9a595b2b5d7d1eff

4805

Mahler EAM, Minten MJM, Leseman-Hoogenboom MM, et al. Effectiveness of low-dose radiation therapy on symptoms in patients with knee osteoarthritis: a randomised, double-blinded, sham-controlled trial. Ann Rheum Dis. 2019;78(1):83–90. https://pubmed.ncbi.nlm.nih.gov/30366945/

4806

Blackwell B, Bloomfield SS, Buncher CR. Demonstration to medical students of placebo responses and non-drug factors. Lancet. 1972;1(7763):1279–82. https://pubmed.ncbi.nlm.nih.gov/4113531/

4807

de Craen AJM, Roos PJ, de Vries AL, Kleijnen J. Effect of colour of drugs: systematic review of perceived effect of drugs and of their effectiveness. BMJ. 1996;313(7072):1624–6. https://pubmed.ncbi.nlm.nih.gov/8991013/

4808

Branthwaite A, Cooper P. Analgesic effects of branding in treatment of headaches. BMJ. 1981;282(6276):1576–8. https://pubmed.ncbi.nlm.nih.gov/6786566/

4809

Waber RL, Shiv B, Carmon Z, Ariely D. Commercial features of placebo and therapeutic efficacy. JAMA. 2008;299(9):1016–7. https://pubmed.ncbi.nlm.nih.gov/18319411/

4810

Zhang W, Zou K, Doherty M. Placebos for knee osteoarthritis: reaffirmation of “needle is better than pill.” Ann Intern Med. 2015;163(5):392–3. https://pubmed.ncbi.nlm.nih.gov/26215902/

4811

Previtali D, Merli G, Di Laura Frattura G, Candrian C, Zaffagnini S, Filardo G. The long-lasting effects of “placebo injections” in knee osteoarthritis: a meta-analysis. Cartilage. 2021;13(1_suppl):185S-96S. https://pubmed.ncbi.nlm.nih.gov/32186401/

4812

Zhang W. The powerful placebo effect in osteoarthritis. Clin Exp Rheumatol. 2019;37 Suppl 120(5):118–23. https://pubmed.ncbi.nlm.nih.gov/31621561/

4813

Kaptchuk TJ, Stason WB, Davis RB, et al. Sham device v inert pill: randomised controlled trial of two placebo treatments. BMJ. 2006;332(7538):391–7. https://pubmed.ncbi.nlm.nih.gov/16452103/

4814

Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21(9):571–6. https://pubmed.ncbi.nlm.nih.gov/23996988/

4815

Starfield B. Is US health really the best in the world? JAMA. 2000;284(4):483–5. https://pubmed.ncbi.nlm.nih.gov/10904513/

4816

Fässler M, Meissner K, Schneider A, Linde K. Frequency and circumstances of placebo use in clinical practice – a systematic review of empirical studies. BMC Med. 2010;8:15. https://pubmed.ncbi.nlm.nih.gov/20178561/

4817

Zhang W. The powerful placebo effect in osteoarthritis. Clin Exp Rheumatol. 2019;37 Suppl 120(5):118–23. https://pubmed.ncbi.nlm.nih.gov/31621561/

4818

Plato. The Republic. The Project Gutenberg. https://www.gutenberg.org/files/1497/1497-h/1497-h.htm. Published October 1998. Updated September 11, 2021. Accessed June 5, 2022.; https://www.gutenberg.org/files/1497/1497-h/1497-h.htm

4819

Doherty M, Dieppe P. The “placebo” response in osteoarthritis and its implications for clinical practice. Osteoarthritis Cartilage. 2009;17(10):1255–62. https://pubmed.ncbi.nlm.nih.gov/19410027/

4820

The humble humbug. Lancet. 1954;264(6833):321. https://sciencedirect.com/science/article/abs/pii/S0140673654902457

4821

de Campos GC. Placebo effect in osteoarthritis: why not use it to our advantage? World J Orthop. 2015;6(5):416–20. https://pubmed.ncbi.nlm.nih.gov/26085983/

4822

Leslie A. Ethics and practice of placebo therapy. Am J Med. 1954;16(6):854–62. https://pubmed.ncbi.nlm.nih.gov/13158374/

4823

Bortoluzzi A, Furini F, Scirè CA. Osteoarthritis and its management – Epidemiology, nutritional aspects and environmental factors. Autoimmun Rev. 2018;17(11):1097–104. https://pubmed.ncbi.nlm.nih.gov/30213694/

4824

Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22–8. https://pubmed.ncbi.nlm.nih.gov/27180156/

4825

Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674–81. https://pubmed.ncbi.nlm.nih.gov/30209413/

4826

Bortoluzzi A, Furini F, Scirè CA. Osteoarthritis and its management – Epidemiology, nutritional aspects and environmental factors. Autoimmun Rev. 2018;17(11):1097–104. https://pubmed.ncbi.nlm.nih.gov/30213694/

4827

Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis. 2012;2(2012):17470. https://pubmed.ncbi.nlm.nih.gov/22662293/

4828

Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ. Weight loss reduces the risk for symptomatic knee osteoarthritis in women. Framingham Study. Ann Intern Med. 1992;116(7):535–9. https://pubmed.ncbi.nlm.nih.gov/1543306/

4829

Gersing AS, Schwaiger BJ, Nevitt MC, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology. 2017;284(2):508–20. https://pubmed.ncbi.nlm.nih.gov/28463057/

4830

Christensen R, Astrup A, Bliddal H. Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr Cartil. 2005;13(1):20–7. https://pubmed.ncbi.nlm.nih.gov/15639633/

4831

Bernstein J. Not the last word: safety alert: one in 200 knee replacement patients die within 90 days of surgery. Clin Orthop Relat Res. 2017;475(2):318–23. https://pubmed.ncbi.nlm.nih.gov/27942969/

4832

Albanes D, Jones DY, Micozzi MS, Mattson ME. Associations between smoking and body weight in the US population: analysis of NHANES II. Am J Public Health. 1987;77(4):439–44. https://pubmed.ncbi.nlm.nih.gov/3493709/

4833

Hui M, Doherty M, Zhang W. Does smoking protect against osteoarthritis? Meta-analysis of observational studies. Ann Rheum Dis. 2011;70(7):1231–7. https://pubmed.ncbi.nlm.nih.gov/21474488/

4834

Amin S, Niu J, Guermazi A, et al. Cigarette smoking and the risk for cartilage loss and knee pain in men with knee osteoarthritis. Ann Rheum Dis. 2007;66(1):18–22. https://pubmed.ncbi.nlm.nih.gov/17158140/

4835

Järvholm B, Lewold S, Malchau H, Vingård E. Age, bodyweight, smoking habits and the risk of severe osteoarthritis in the hip and knee in men. Eur J Epidemiol. 2005;20(6):537–42. https://pubmed.ncbi.nlm.nih.gov/16121763/

4836

Palmieri-Smith RM, Cameron KL, DiStefano LJ, et al. The role of athletic trainers in preventing and managing posttraumatic osteoarthritis in physically active populations: a consensus statement of the Athletic Trainers’ Osteoarthritis Consortium. J Athl Train. 2017;52(6):610–23. https://pubmed.ncbi.nlm.nih.gov/28653866/

4837

Blackwell B, Bloomfield SS, Buncher CR. Demonstration to medical students of placebo responses and non-drug factors. Lancet. 1972;1(7763):1279–82. https://pubmed.ncbi.nlm.nih.gov/4113531/

4838

Racunica TL, Teichtahl AJ, Wang Y, et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum. 2007;57(7):1261–8. https://pubmed.ncbi.nlm.nih.gov/17907212/

4839

Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674–81. https://pubmed.ncbi.nlm.nih.gov/30209413/

4840

Juhl C, Christensen R, Roos EM, Zhang W, Lund H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 2014;66(3):622–36. https://pubmed.ncbi.nlm.nih.gov/24574223/

4841

Verhagen AP, Ferreira M, Reijneveld-van de Vendel EAE, et al. Do we need another trial on exercise in patients with knee osteoarthritis?: No new trials on exercise in knee OA. Osteoarthritis Cartilage. 2019;27(9):1266–9. https://pubmed.ncbi.nlm.nih.gov/31220609/

4842

Juhl C, Christensen R, Roos EM, Zhang W, Lund H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 2014;66(3):622–36. https://pubmed.ncbi.nlm.nih.gov/24574223/

4843

Verhagen AP, Ferreira M, Reijneveld-van de Vendel EAE, et al. Do we need another trial on exercise in patients with knee osteoarthritis?: No new trials on exercise in knee OA. Osteoarthritis Cartilage. 2019;27(9):1266–9. https://pubmed.ncbi.nlm.nih.gov/31220609/

4844

Charlesworth J, Fitzpatrick J, Perera NKP, Orchard J. Osteoarthritis – a systematic review of long-term safety implications for osteoarthritis of the knee. BMC Musculoskelet Disord. 2019;20(1):151. https://pubmed.ncbi.nlm.nih.gov/30961569/

4845

Dean E, Gormsen Hansen R. Prescribing optimal nutrition and physical activity as “first-line” interventions for best practice management of chronic low-grade inflammation associated with osteoarthritis: evidence synthesis. Arthritis. 2012;2012:1–28. https://pubmed.ncbi.nlm.nih.gov/23346399/

4846

На русском языке вышла в 2020 году в издательстве «Манн, Иванов, Фербер».

4847

Campbell TC. History of the term ‘whole food, plant based.’ T. Colin Campbell Center for Nutrition Studies. https://nutritionstudies.org/history-of-the-term-whole-food-plant-based/. Published November 29, 2016. Updated January 4, 2019. Accessed June 5, 2022.; https://nutritionstudies.org/history-of-the-term-whole-food-plant-based

4848

Wang Y, Teichtahl AJ, Abram F, et al. Knee pain as a predictor of structural progression over 4 years: data from the Osteoarthritis Initiative, a prospective cohort study. Arthritis Res Ther. 2018;20(1):250. https://pubmed.ncbi.nlm.nih.gov/30400973/

4849

Lu B, Driban JB, Xu C, Lapane KL, McAlindon TE, Eaton CB. Dietary fat intake and radiographic progression of knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2017;69(3):368–75. https://pubmed.ncbi.nlm.nih.gov/27273934/

4850

Sekar S, Shafie SR, Prasadam I, et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci Rep. 2017;7:46457. https://pubmed.ncbi.nlm.nih.gov/28418007/

4851

Shen P, Zhu Y, Zhu L, Weng F, Li X, Xu Y. Oxidized low density lipoprotein facilitates tumor necrosis factor-a mediated chondrocyte death via autophagy pathway. Mol Med Rep. 2017;16(6):9449–56. https://pubmed.ncbi.nlm.nih.gov/29039543/

4852

Wu CL, Jain D, McNeill JN, et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann Rheum Dis. 2015;74(11):2076–83. https://pubmed.ncbi.nlm.nih.gov/25015373/

4853

Beier F. Cholesterol and cartilage do not mix well. Nat Rev Rheumatol. 2019;15(5):253–4. https://pubmed.ncbi.nlm.nih.gov/30914770/

4854

Sekar S, Shafie SR, Prasadam I, et al. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci Rep. 2017;7:46457. https://pubmed.ncbi.nlm.nih.gov/28418007/

4855

Ertürk C, Altay MA, Bilge A, Çelik H. Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin Rheumatol. 2017;36(12):2775–80. https://pubmed.ncbi.nlm.nih.gov/28631083/

4856

Shen P, Zhu Y, Zhu L, Weng F, Li X, Xu Y. Oxidized low density lipoprotein facilitates tumor necrosis factor-a mediated chondrocyte death via autophagy pathway. Mol Med Rep. 2017;16(6):9449–56. https://pubmed.ncbi.nlm.nih.gov/29039543/

4857

Cillero-Pastor B, Eijkel G, Kiss A, Blanco FJ, Heeren RMA. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal Chem. 2012;84(21):8909–16. https://pubmed.ncbi.nlm.nih.gov/22950553/

4858

Shen P, Zhu Y, Zhu L, Weng F, Li X, Xu Y. Oxidized low density lipoprotein facilitates tumor necrosis factor-a mediated chondrocyte death via autophagy pathway. Mol Med Rep. 2017;16(6):9449–56. https://pubmed.ncbi.nlm.nih.gov/29039543/

4859

Ertürk C, Altay MA, Bilge A, Çelik H. Is there a relationship between serum ox-LDL, oxidative stress, and PON1 in knee osteoarthritis? Clin Rheumatol. 2017;36(12):2775–80. https://pubmed.ncbi.nlm.nih.gov/28631083/

4860

Wang J, Dong J, Yang J, Wang Y, Liu J. Association between statin use and incidence or progression of osteoarthritis: meta-analysis of observational studies. Osteoarthritis Cartilage. 2020;28(9):1170–9. https://pubmed.ncbi.nlm.nih.gov/32360737/

4861

Haj-Mirzaian A, Mohajer B, Guermazi A, et al. Statin use and knee osteoarthritis outcome measures according to the presence of Heberden nodes: results from the Osteoarthritis Initiative. Radiology. 2019;293(2):396–404. https://pubmed.ncbi.nlm.nih.gov/31502936/

4862

Clockaerts S, Van Osch GJVM, Bastiaansen-Jenniskens YM, et al. Statin use is associated with reduced incidence and progression of knee osteoarthritis in the Rotterdam study. Ann Rheum Dis. 2012;71(5):642–7. https://pubmed.ncbi.nlm.nih.gov/21989540/

4863

Peeters G, Tett SE, Conaghan PG, Mishra GD, Dobson AJ. Is statin use associated with new joint-related symptoms, physical function, and quality of life? Results from two population-based cohorts of women. Arthritis Care Res (Hoboken). 2015;67(1):13–20. https://pubmed.ncbi.nlm.nih.gov/24964875/

4864

Veronese N, Koyanagi A, Stubbs B, et al. Statin use and knee osteoarthritis outcomes: a longitudinal cohort study. Arthritis Care Res (Hoboken). 2019;71(8):1052–8. https://pubmed.ncbi.nlm.nih.gov/30144308/

4865

Eymard F, Parsons C, Edwards MH, et al. Statin use and knee osteoarthritis progression: results from a post-hoc analysis of the SEKOIA trial. Joint Bone Spine. 2018;85(5):609–14. https://pubmed.ncbi.nlm.nih.gov/29037516/

4866

Beattie MS, Lane NE, Hung YY, Nevitt MC. Association of statin use and development and progression of hip osteoarthritis in elderly women. J Rheumatol. 2005;32(1):106–10. https://pubmed.ncbi.nlm.nih.gov/15630734/

4867

Wang J, Dong J, Yang J, Wang Y, Liu J. Association between statin use and incidence or progression of osteoarthritis: meta-analysis of observational studies. Osteoarthritis Cartilage. 2020;28(9):1170–9. https://pubmed.ncbi.nlm.nih.gov/32360737/

4868

Kendall CWC, Jenkins DJA. A dietary portfolio: maximal reduction of low-density lipoprotein cholesterol with diet. Curr Atheroscler Rep. 2004;6(6):492–8. https://pubmed.ncbi.nlm.nih.gov/15485596/

4869

Clinton CM, O’Brien S, Law J, Renier CM, Wendt MR. Whole-foods, plant-based diet alleviates the symptoms of osteoarthritis. Arthritis. 2015;2015:708152. https://pubmed.ncbi.nlm.nih.gov/25815212/

4870

Clinton CM, O’Brien S, Law J, Renier CM, Wendt MR. Whole-foods, plant-based diet alleviates the symptoms of osteoarthritis. Arthritis. 2015;2015:708152. https://pubmed.ncbi.nlm.nih.gov/25815212/

4871

Clinton CM, O’Brien S, Law J, Renier CM, Wendt MR. Whole-foods, plant-based diet alleviates the symptoms of osteoarthritis. Arthritis. 2015;2015:708152. https://pubmed.ncbi.nlm.nih.gov/25815212/

4872

National Cancer Institute. Identification of Top Food Sources of Various Dietary Components. Epidemiology and Genomics Research Program. https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf. Updated November 30, 2019. Accessed June 2, 2022.; https://epi.grants.cancer.gov/diet/foodsources/top-food-sources-report-02212020.pdf

4873

Vane JR. The mode of action of aspirin and similar compounds. J Allergy Clin Immunol. 1976;58(6):691–712. https://pubmed.ncbi.nlm.nih.gov/791988/

4874

Clinton CM, O’Brien S, Law J, Renier CM, Wendt MR. Whole-foods, plant-based diet alleviates the symptoms of osteoarthritis. Arthritis. 2015;2015:708152. https://pubmed.ncbi.nlm.nih.gov/25815212/

4875

Haug A, Olesen I, Christophersen OA. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle. Lipids Health Dis. 2010;9:37. https://pubmed.ncbi.nlm.nih.gov/20398309/

4876

Dean E, Gormsen Hansen R. Prescribing optimal nutrition and physical activity as “first-line” interventions for best practice management of chronic low-grade inflammation associated with osteoarthritis: evidence synthesis. Arthritis. 2012;2012:1–28. https://pubmed.ncbi.nlm.nih.gov/23346399/

4877

Toopchizadeh V, Dolatkhah N, Aghamohammadi D, Rasouli M, Hashemian M. Dietary inflammatory index is associated with pain intensity and some components of quality of life in patients with knee osteoarthritis. BMC Res Notes. 2020;13(1):448. https://pubmed.ncbi.nlm.nih.gov/32958008/

4878

Liu Q, Hebert JR, Shivappa N, et al. Inflammatory potential of diet and risk of incident knee osteoarthritis: a prospective cohort study. Arthritis Res Ther. 2020;22(1):209. https://pubmed.ncbi.nlm.nih.gov/32912291/

4879

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

4880

Nilsson AC, Östman EM, Knudsen KEB, Holst JJ, Björck IME. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr. 2010;140(11):1932–6. https://pubmed.ncbi.nlm.nih.gov/20810606/

4881

Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://pubmed.ncbi.nlm.nih.gov/20823773/

4882

Wang B, Zhou J, Wang K. Sodium butyrate abolishes the degradation of type II collagen in human chondrocytes. Biomed Pharmacother. 2018;102:1099–104. https://pubmed.ncbi.nlm.nih.gov/29710527/

4883

Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/

4884

Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/

4885

Schott EM, Farnsworth CW, Grier A, et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 2018;3(8):95997. https://pubmed.ncbi.nlm.nih.gov/29669931/

4886

Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674–81. https://pubmed.ncbi.nlm.nih.gov/30209413/

4887

Berenbaum F, Wallace IJ, Lieberman DE, Felson DT. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2018;14(11):674–81. https://pubmed.ncbi.nlm.nih.gov/30209413/

4888

Guan VX, Mobasheri A, Probst YC. A systematic review of osteoarthritis prevention and management with dietary phytochemicals from foods. Maturitas. 2019;122:35–43. https://pubmed.ncbi.nlm.nih.gov/30797528/

4889

Canter PH, Wider B, Ernst E. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford). 2007;46(8):1223–33. https://pubmed.ncbi.nlm.nih.gov/17522095/

4890

Kraus VB, Huebner JL, Stabler T, et al. Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum. 2004;50(6):1822–31. https://pubmed.ncbi.nlm.nih.gov/15188359/

4891

Haqqi TM, Anthony DD, Gupta S, et al. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A. 1999;96(8):4524–9. https://pubmed.ncbi.nlm.nih.gov/10200295/

4892

Leong DJ, Choudhury M, Hanstein R, et al. Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model. Arthritis Res Ther. 2014;16(6):508. https://pubmed.ncbi.nlm.nih.gov/25516005/

4893

Bae JY, Han DW, Wakitani S, Nawata M, Hyon SH. Biological and biomechanical evaluations of osteochondral allografts preserved in cold storage solution containing epigallocatechin gallate. Cell Transplant. 2010;19(6):681–9. https://pubmed.ncbi.nlm.nih.gov/20525433/

4894

Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol. 2018;95:412–33. https://pubmed.ncbi.nlm.nih.gov/29580974/

4895

Hashempur MH, Sadrneshin S, Mosavat SH, Ashraf A. Green tea (Camellia sinensis) for patients with knee osteoarthritis: a randomized open-label active-controlled clinical trial. Clin Nutr. 2018;37(1):85–90. https://pubmed.ncbi.nlm.nih.gov/28038881/

4896

Connelly AE, Tucker AJ, Tulk H, et al. High-rosmarinic acid spearmint tea in the management of knee osteoarthritis symptoms. J Med Food. 2014;17(12):1361–7. https://pubmed.ncbi.nlm.nih.gov/25058311/

4897

Lu B, Ahmad O, Zhang FF, et al. Soft drink intake and progression of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative. BMJ Open. 2013;3(7):e002993. https://pubmed.ncbi.nlm.nih.gov/23872291/

4898

Lu B, Driban JB, Duryea J, McAlindon T, Lapane KL, Eaton CB. Milk consumption and progression of medial tibiofemoral knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2014;66(6):802–9. https://pubmed.ncbi.nlm.nih.gov/24706620/

4899

Denissen KFM, Boonen A, Nielen JTH, et al. Consumption of dairy products in relation to the presence of clinical knee osteoarthritis: The Maastricht Study. Eur J Nutr. 2019;58(7):2693–704. https://pubmed.ncbi.nlm.nih.gov/30242468/

4900

Arjmandi BH, Khalil DA, Lucas EA, et al. Soy protein may alleviate osteoarthritis symptoms. Phytomedicine. 2004;11(7–8):567–75. https://pubmed.ncbi.nlm.nih.gov/15636169/

4901

Minaie M, Rostamian, A, Abbassian A, Ghayoumi A, Mashayekhi A. An investigation of the effect of dairy products on chronic knee osteoarthritis pain in patients referred to Tehran Rheumatology Clinic of Imam Khomeini Hospital. Int J Biol Pharm Allied Sci. 2017;6(2):218–26. https://www.researchgate.net/publication/316753084_AN_INVESTIGATION_OF_THE_EFFECT_OF_DAIRY_PRODUCTS_ON_CHRONIC_KNEE_OSTEOARTHRITIS_PAIN_IN_PATIENTS_REFERRED_TO_TEHRAN_RHEUMATOLOGY_CLINIC_OF_IMAM_KHOMEINI_HOSPITAL

4902

Basu A, Kurien BT, Tran H, et al. Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in knee osteoarthritis in obese adults. Food Funct. 2018;9(12):6218–26. https://pubmed.ncbi.nlm.nih.gov/30382270/

4903

Schumacher HR, Pullman-Mooar S, Gupta SR, Dinnella JE, Kim R, McHugh MP. Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (OA) of the knee. Osteoarthritis Cartilage. 2013;21(8):1035–41. https://pubmed.ncbi.nlm.nih.gov/23727631/

4904

Collins MW, Saag KG, Singh JA. Is there a role for cherries in the management of gout? Ther Adv Musculoskelet Dis. 2019;11:1759720X19847018. https://pubmed.ncbi.nlm.nih.gov/31205513/

4905

Ghavipour M, Sotoudeh G, Tavakoli E, Mowla K, Hasanzadeh J, Mazloom Z. Pomegranate extract alleviates disease activity and some blood biomarkers of inflammation and oxidative stress in Rheumatoid Arthritis patients. Eur J Clin Nutr. 2017;71(1):92–6. https://pubmed.ncbi.nlm.nih.gov/27577177/

4906

Rasheed Z. Intake of pomegranate prevents the onset of osteoarthritis: molecular evidences. Int J Health Sci (Qassim). 2016;10(2):V–VIII. https://pubmed.ncbi.nlm.nih.gov/27103912/

4907

Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1ß-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-¿B in human chondrocytes in vitro. J Nutr. 2005;135(9):2096–102. https://pubmed.ncbi.nlm.nih.gov/16140882/

4908

Lahart I, Darcy P, Gidlow C, Calogiuri G. The effects of green exercise on physical and mental wellbeing: a systematic review. Int J Environ Res Public Health. 2019;16(8):1352. https://pubmed.ncbi.nlm.nih.gov/30991724/

4909

Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/

4910

Chen T, Yan F, Qian J, et al. Randomized phase II trial of lyophilized strawberries in patients with dysplastic precancerous lesions of the esophagus. Cancer Prev Res (Phila). 2012;5(1):41–50. https://pubmed.ncbi.nlm.nih.gov/22135048/

4911

Edirisinghe I, Banaszewski K, Cappozzo J, et al. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br J Nutr. 2011;106(6):913–22. https://pubmed.ncbi.nlm.nih.gov/21736853/

4912

Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/

4913

Basu A, Kurien BT, Tran H, et al. Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in knee osteoarthritis in obese adults. Food Funct. 2018;9(12):6218–26. https://pubmed.ncbi.nlm.nih.gov/30382270/

4914

Rutledge GA, Fisher DR, Miller MG, Kelly ME, Bielinski DF, Shukitt-Hale B. The effects of blueberry and strawberry serum metabolites on age-related oxidative and inflammatory signaling in vitro. Food Funct. 2019;10(12):7707–13. https://pubmed.ncbi.nlm.nih.gov/31746877/

4915

Du C, Smith A, Avalos M, et al. Blueberries improve pain, gait performance, and inflammation in individuals with symptomatic knee osteoarthritis. Nutrients. 2019;11(2):E290. https://pubmed.ncbi.nlm.nih.gov/30699971/

4916

Christensen R, Bartels EM, Altman RD, Astrup A, Bliddal H. Does the hip powder of Rosa canina (rosehip) reduce pain in osteoarthritis patients? – a meta-analysis of randomized controlled trials. Osteoarthritis Cartilage. 2008;16(9):965–72. https://pubmed.ncbi.nlm.nih.gov/18407528/

4917

Bannuru RR, Schmid CH, Kent DM, Vaysbrot EE, Wong JB, McAlindon TE. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: a systematic review and network meta-analysis. Ann Intern Med. 2015;162(1):46–54. https://pubmed.ncbi.nlm.nih.gov/25560713/

4918

Christensen R, Bartels EM, Altman RD, Astrup A, Bliddal H. Does the hip powder of Rosa canina (rosehip) reduce pain in osteoarthritis patients? – a meta-analysis of randomized controlled trials. Osteoarthritis Cartilage. 2008;16(9):965–72. https://pubmed.ncbi.nlm.nih.gov/18407528/

4919

Davidson RK, Jupp O, de Ferrars R, et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum. 2013;65(12):3130–40. https://pubmed.ncbi.nlm.nih.gov/23983046/

4920

Davidson R, Gardner S, Jupp O, et al. Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint. Sci Rep. 2017;7(1):3398. https://pubmed.ncbi.nlm.nih.gov/28611391/

4921

Davidson RK, Jupp O, de Ferrars R, et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum. 2013;65(12):3130–40. https://pubmed.ncbi.nlm.nih.gov/23983046/

4922

Broccoli in Osteoarthritis (BRIO). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03878368. Published March 18, 2019. Updated May 17, 2022. Accessed June 5, 2022.; https://clinicaltrials.gov/ct2/show/NCT03878368

4923

Riso P, Vendrame S, Del Bo’ C, et al. Effect of 10-day broccoli consumption on inflammatory status of young healthy smokers. Int J Food Sci Nutr. 2014;65(1):106–11. https://pubmed.ncbi.nlm.nih.gov/23992556/

4924

Araya-Quintanilla F, Gutiérrez-Espinoza H, Muñoz-Yanez MJ, Sanchez-Montoya U, Lopez-Jeldes J. Effectiveness of ginger on pain and function in knee osteoarthritis: a PRISMA systematic review and meta-analysis. Pain Physician. 2020;23(2):E151–61. https://pubmed.ncbi.nlm.nih.gov/32214292/

4925

Haghighi M, Khalvat A, Toliat T, Jallaei S. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med. 2005; 8(4):267–71. https://www.researchgate.net/publication/235007127_Comparing_the_Effects_of_ginger_Zingiber_officinale_extract_and_ibuprofen_On_patients_with_osteoarthritis

4926

Drozdov VN, Kim VA, Tkachenko EV, Varvanina GG. Influence of a specific ginger combination on gastropathy conditions in patients with osteoarthritis of the knee or hip. J Altern Complement Med. 2012;18(6):583–8. https://pubmed.ncbi.nlm.nih.gov/22784345/

4927

Caunedo-Alvarez A, Gómez-Rodríguez BJ, Romero-Vázquez J, et al. Macroscopic small bowel mucosal injury caused by chronic nonsteroidal anti-inflammatory drugs (NSAID) use as assessed by capsule endoscopy. Rev Esp Enferm Dig. 2010;102(2):80–5. https://pubmed.ncbi.nlm.nih.gov/20361843/

4928

Therkleson T. Ginger compress therapy for adults with osteoarthritis. J Adv Nurs. 2010;66(10):2225–33. https://pubmed.ncbi.nlm.nih.gov/20626491/

4929

Ding M, Leach MJ, Bradley H. A systematic review of the evidence for topical use of ginger. Explore (NY). 2013;9(6):361–4. https://pubmed.ncbi.nlm.nih.gov/24199775/

4930

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

4931

Wang Z, Singh A, Jones G, et al. Efficacy and safety of turmeric extracts for the treatment of knee osteoarthritis: a systematic review and meta-analysis of randomised controlled trials. Curr Rheumatol Rep. 2021;23(2):11. https://pubmed.ncbi.nlm.nih.gov/33511486/

4932

Jamali N, Adib-Hajbaghery M, Soleimani A. The effect of curcumin ointment on knee pain in older adults with osteoarthritis: a randomized placebo trial. BMC Complement Med Ther. 2020;20(1):305. https://pubmed.ncbi.nlm.nih.gov/33032585/

4933

Miyawaki T, Aono H, Toyoda-Ono Y, Maeda H, Kiso Y, Moriyama K. Antihypertensive effects of sesamin in humans. J Nutr Sci Vitaminol (Tokyo). 2009;55(1):87–91. https://pubmed.ncbi.nlm.nih.gov/19352068/

4934

Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA. Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr. 2006;136(5):1270–5. https://pubmed.ncbi.nlm.nih.gov/16614415/

4935

Askari A, Ravansalar SA, Naghizadeh MM, et al. The efficacy of topical sesame oil in patients with knee osteoarthritis: a randomized double-blinded active-controlled non-inferiority clinical trial. Complement Ther Med. 2019;47:102183. https://pubmed.ncbi.nlm.nih.gov/31780006/

4936

Savas BB, Alparslan GB, Korkmaz C. Effect of flaxseed poultice compress application on pain and hand functions of patients with hand osteoarthritis. Clin Rheumatol. 2019;38(7):1961–9. https://pubmed.ncbi.nlm.nih.gov/30806856/

4937

Hashempur MH, Homayouni K, Ashraf A, Salehi A, Taghizadeh M, Heydari M. Effect of Linum usitatissimum L. (linseed) oil on mild and moderate carpal tunnel syndrome: a randomized, double-blind, placebo-controlled clinical trial. Daru. 2014;22:43. https://pubmed.ncbi.nlm.nih.gov/24887185/

4938

Mosavat SH, Masoudi N, Hajimehdipoor H, et al. Efficacy of topical Linum usitatissimum L. (flaxseed) oil in knee osteoarthritis: a double-blind, randomized, placebo-controlled clinical trial. Complement Ther Clin Pract. 2018;31:302–7. https://pubmed.ncbi.nlm.nih.gov/29705472/

4939

Nasser M, Tibi A, Savage-Smith E. Ibn Sina’s Canon of Medicine: 11th century rules for assessing the effects of drugs. J R Soc Med. 2009;102(2):78–80. https://pubmed.ncbi.nlm.nih.gov/19208873/

4940

Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Alternat Med. 2015;2015:541591. https://pubmed.ncbi.nlm.nih.gov/25802541/

4941

Fernandes J, Fialho M, Santos R, et al. Is olive oil good for you? A systematic review and meta-analysis on anti-inflammatory benefits from regular dietary intake. Nutrition. 2020;69:110559. https://pubmed.ncbi.nlm.nih.gov/31539817/

4942

Khaw KT, Sharp SJ, Finikarides L, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open. 2018;8(3):e020167. https://pubmed.ncbi.nlm.nih.gov/29511019/

4943

Bohlooli S, Jastan M, Nakhostin-Roohi B, Mohammadi S, Baghaei Z. A pilot double-blinded, randomized, clinical trial of topical virgin olive oil versus piroxicam gel in osteoarthritis of the knee. J Clin Rheumatol. 2012;18(2):99–101. https://pubmed.ncbi.nlm.nih.gov/22334264/

4944

Hekmatpou D, Mortaji S, Rezaei M, Shaikhi M. The effectiveness of olive oil in controlling morning inflammatory pain of phalanges and knees among women with rheumatoid arthritis: a randomized clinical trial. Rehabil Nurs. 2020;45(2):106–13. https://pubmed.ncbi.nlm.nih.gov/30192341/

4945

Balagué F, Mannion AF, Pellisé F, Cedraschi C. Non-specific low back pain. Lancet. 2012;379(9814):482–91. https://pubmed.ncbi.nlm.nih.gov/21982256/

4946

Zhang TT, Liu Z, Liu YL, Zhao JJ, Liu DW, Tian QB. Obesity as a risk factor for low back pain: a meta-analysis. Clin Spine Surg. 2018;31(1):22–7. https://pubmed.ncbi.nlm.nih.gov/27875413/

4947

Shiri R, Lallukka T, Karppinen J, Viikari-Juntura E. Obesity as a risk factor for sciatica: a meta-analysis. Am J Epidemiol. 2014;179(8):929–37. https://pubmed.ncbi.nlm.nih.gov/24569641/

4948

Xu X, Li X, Wu W. Association between overweight or obesity and lumbar disk diseases. J Spinal Disord Tech. 2015;28(10):370–6. https://pubmed.ncbi.nlm.nih.gov/25500506/

4949

Shiri R, Lallukka T, Karppinen J, Viikari-Juntura E. Obesity as a risk factor for sciatica: a meta-analysis. Am J Epidemiol. 2014;179(8):929–37. https://pubmed.ncbi.nlm.nih.gov/24569641/

4950

Xu X, Li X, Wu W. Association between overweight or obesity and lumbar disk diseases. J Spinal Disord Tech. 2015;28(10):370–6. https://pubmed.ncbi.nlm.nih.gov/25500506/

4951

Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg. 2009;37(6):661–70. https://pubmed.ncbi.nlm.nih.gov/19328027/

4952

Kauppila LI, Mikkonen R, Mankinen P, Pelto-Vasenius K, Mäenpää I. MR aortography and serum cholesterol levels in patients with long-term nonspecific lower back pain. Spine (Phila Pa 1976). 2004;29(19):2147–52. https://pubmed.ncbi.nlm.nih.gov/15454707/

4953

Ventegodt S, Merrick J. Dean Ornish should receive the Nobel prize in medicine. Int J Adolesc Med Health. 2012;24(2):97–8. https://pubmed.ncbi.nlm.nih.gov/22909930/

4954

Blankenhorn DH, Hodis HN. George Lyman Duff memorial lecture. Arterial imaging and atherosclerosis reversal. Arterioscler Thromb. 1994;14(2):177–92. https://pubmed.ncbi.nlm.nih.gov/8305407/

4955

Ostfeld RJ, Allen KE, Aspry K, et al. Vasculogenic erectile dysfunction: the impact of diet and lifestyle. Am J Med. 2021;134(3):310–6. https://pubmed.ncbi.nlm.nih.gov/33227246/

4956

Renegar KB, Floyd RA, Krueger JM. Effects of short-term sleep deprivation on murine immunity to influenza virus in young adult and senescent mice. Sleep. 1998;21(3):241–8. https://pubmed.ncbi.nlm.nih.gov/9595602/

4957

Vacaflor BE, Beauchet O, Jarvis GE, Schavietto A, Rej S. Mental health and cognition in older cannabis users: a review. Can Geriatr J. 2020;23(3):242–9. https://pubmed.ncbi.nlm.nih.gov/32904776/

4958

Campeny E, López-Pelayo H, Nutt D, et al. The blind men and the elephant: systematic review of systematic reviews of cannabis use related health harms. Eur Neuropsychopharmacol. 2020;33:1–35. https://pubmed.ncbi.nlm.nih.gov/32165103/

4959

Wang A, Lo A, Ubhi K, Cameron T. Small and transient effect of cannabis oil for osteoarthritis-related joint pain: a case report. Can J Hosp Pharm. 2021;74(2):156–8. https://pubmed.ncbi.nlm.nih.gov/33896956/

4960

Vela J, Dreyer L, Petersen KK, Arendt-Nielsen L, Duch KS, Kristensen S. Cannabidiol treatment in hand osteoarthritis and psoriatic arthritis: a randomized, double-blind, placebo-controlled trial. Pain. 2022;163(6):1206–14. https://pubmed.ncbi.nlm.nih.gov/34510141/

4961

Senftleber NK, Nielsen SM, Andersen JR, et al. Marine oil supplements for arthritis pain: a systematic review and meta-analysis of randomized trials. Nutrients. 2017;9(1):E42. https://pubmed.ncbi.nlm.nih.gov/28067815/

4962

Gregory PJ, Sperry M, Wilson AF. Dietary supplements for osteoarthritis. Am Fam Physician. 2008;77(2):177–84. https://pubmed.ncbi.nlm.nih.gov/18246887/

4963

McCarty MF, O’Keefe JH, DiNicolantonio JJ. Glucosamine for the treatment of osteoarthritis: the time has come for higher-dose trials. J Diet Suppl. 2019;16(2):179–92. https://pubmed.ncbi.nlm.nih.gov/29667462/

4964

Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2020;72(2):149–62. https://pubmed.ncbi.nlm.nih.gov/31908149/

4965

Kolasinski SL, Neogi T, Hochberg MC, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020;72(2):220–33. https://pubmed.ncbi.nlm.nih.gov/31908149/

4966

Reichenbach S, Sterchi R, Scherer M, et al. Meta-analysis: chondroitin for osteoarthritis of the knee or hip. Ann Intern Med. 2007;146(8):580–90. https://pubmed.ncbi.nlm.nih.gov/17438317/

4967

Roman-Blas JA, Castañeda S, Sánchez-Pernaute O, et al. Combined treatment with chondroitin sulfate and glucosamine sulfate shows no superiority over placebo for reduction of joint pain and functional impairment in patients with knee osteoarthritis: a six-month multicenter, randomized, double-blind, placebo-controlled clinical trial. Arthritis Rheumatol. 2017;69(1):77–85. https://pubmed.ncbi.nlm.nih.gov/27477804/

4968

Moskowitz RW. Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum. 2000;30(2):87–99. https://pubmed.ncbi.nlm.nih.gov/11071580/

4969

Moskowitz RW. Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum. 2000;30(2):87–99. https://pubmed.ncbi.nlm.nih.gov/11071580/

4970

Alahakoon AU, Oey I, Silcock P, Bremer P. Understanding the effect of pulsed electric fields on thermostability of connective tissue isolated from beef pectoralis muscle using a model system. Food Res Int. 2017;100(Pt 2):261–7. https://pubmed.ncbi.nlm.nih.gov/28888449/

4971

García-Coronado JM, Martínez-Olvera L, Elizondo-Omaña RE, et al. Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials. Int Orthop. 2019;43(3):531–8. https://pubmed.ncbi.nlm.nih.gov/30368550/

4972

von Hippel PT. Do collagen supplements reduce symptoms of osteoarthritis? Meta-analytic results do not support strong conclusions. Int Orthop. 2021;45(12):3283–4. https://pubmed.ncbi.nlm.nih.gov/34636929/

4973

Jabbari M, Barati M, Khodaei M, et al. Is collagen supplementation friend or foe in rheumatoid arthritis and osteoarthritis? A comprehensive systematic review. Int J Rheum Dis. 2022;25(9):973–81. https://pubmed.ncbi.nlm.nih.gov/35791039/

4974

Sambeth A, Riedel WJ, Tillie DE, Blokland A, Postma A, Schmitt JAJ. Memory impairments in humans after acute tryptophan depletion using a novel gelatin-based protein drink. J Psychopharmacol. 2009;23(1):56–64. https://pubmed.ncbi.nlm.nih.gov/18515454/

4975

Jabbari M, Barati M, Khodaei M, et al. Is collagen supplementation friend or foe in rheumatoid arthritis and osteoarthritis? A comprehensive systematic review. Int J Rheum Dis. 2022;25(9):973–81. https://pubmed.ncbi.nlm.nih.gov/35791039/

4976

Bongers CCWG, Ten Haaf DSM, Catoire M, et al. Effectiveness of collagen supplementation on pain scores in healthy individuals with self-reported knee pain: a randomized controlled trial. Appl Physiol Nutr Metab. 2020;45(7):793–800. https://pubmed.ncbi.nlm.nih.gov/31990581/

4977

Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci Total Environ. 2021;757:143734. https://pubmed.ncbi.nlm.nih.gov/33340865/

4978

Gu YH, Bai JB, Chen XL, Wu WW, Liu XX, Tan XD. Healthy aging: a bibliometric analysis of the literature. Exp Gerontol. 2019;116:93–105. https://pubmed.ncbi.nlm.nih.gov/30590123/

4979

Ritchie K, Kildea D. Is senile dementia “age-related” or “ageing-related”?—evidence from meta-analysis of dementia prevalence in the oldest old. Lancet. 1995;346(8980):931–4. https://pubmed.ncbi.nlm.nih.gov/7564727/

4980

Wickelgren I. Is hippocampal cell death a myth? Science. 1996;271(5253):1229–30. https://pubmed.ncbi.nlm.nih.gov/8638100/

4981

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

4982

2022 Alzheimer’s disease facts and figures. Special report. More than normal aging: understanding mild cognitive impairment. Alzheimer’s Association. https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf. 2022. Accessed January 8, 2023.; https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf

4983

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

4984

de la Torre JC. A turning point for Alzheimer’s disease? Biofactors. 2012;38(2):78–83. https://pubmed.ncbi.nlm.nih.gov/22422426/

4985

Lopez OL, Kuller LH. Epidemiology of aging and associated cognitive disorders: prevalence and incidence of Alzheimer’s disease and other dementias. Handb Clin Neurol. 2019;167:139–48. https://pubmed.ncbi.nlm.nih.gov/31753130/

4986

Sengoku R. Aging and Alzheimer’s disease pathology. Neuropathol. 2020;40(1):22–9. https://pubmed.ncbi.nlm.nih.gov/31863504/

4987

Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T, Corrada MM. Multiple pathologies are common and related to dementia in the oldest-old. Neurology. 2015;85(6):535–42. https://pubmed.ncbi.nlm.nih.gov/26180144/

4988

Viña J, Sanz-Ros J. Alzheimer’s disease: only prevention makes sense. Eur J Clin Invest. 2018;48(10):e13005. https://pubmed.ncbi.nlm.nih.gov/30028503/

4989

Román GC. Facts, myths, and controversies in vascular dementia. J Neurol Sci. 2004;226(1–2):49–52. https://pubmed.ncbi.nlm.nih.gov/15537519/

4990

Grau-olivares M, Arboix A. Mild cognitive impairment in stroke patients with ischemic cerebral small-vessel disease: a forerunner of vascular dementia? Expert Rev Neurother. 2009;9(8):1201–17. https://pubmed.ncbi.nlm.nih.gov/19673608/

4991

Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204. https://pubmed.ncbi.nlm.nih.gov/17568013/

4992

Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief. 2021;(427):1–8. https://pubmed.ncbi.nlm.nih.gov/34978528/

4993

Heron M. Deaths: leading causes for 2019. Natl Vital Stat Rep. 2021;70(9):1–114. https://pubmed.ncbi.nlm.nih.gov/34520342/

4994

Haaksma ML, Eriksdotter M, Rizzuto D, et al. Survival time tool to guide care planning in people with dementia. Neurology. 2020;94(5):e538–48. https://pubmed.ncbi.nlm.nih.gov/31843808/

4995

Lopez OL, Kuller LH. Epidemiology of aging and associated cognitive disorders: prevalence and incidence of Alzheimer’s disease and other dementias. Handb Clin Neurol. 2019;167:139–48. https://pubmed.ncbi.nlm.nih.gov/31753130/

4996

Cahill S, Pierce M, Werner P, Darley A, Bobersky A. A systematic review of the public’s knowledge and understanding of Alzheimer’s disease and dementia. Alzheimer Dis Assoc Disord. 2015;29(3):255–75. https://pubmed.ncbi.nlm.nih.gov/26207322/

4997

Goodwin JS. Geriatric ideology: the myth of the myth of senility. J Am Geriatr Soc. 1991;39(6):627–31. https://pubmed.ncbi.nlm.nih.gov/2037757/

4998

Takao M, Hirose N, Arai Y, Mihara B, Mimura M. Neuropathology of supercentenarians – four autopsy case studies. Acta Neuropathol Commun. 2016;4(1):97. https://pubmed.ncbi.nlm.nih.gov/27590044/

4999

den Dunnen WFA, Brouwer WH, Bijlard E, et al. No disease in the brain of a 115-year-old woman. Neurobiol Aging. 2008;29(8):1127–32. https://pubmed.ncbi.nlm.nih.gov/18534718/

5000

Williams RW, Herrup K. The control of neuron number. Annu Rev Neurosci. 1988;11:423–53. https://pubmed.ncbi.nlm.nih.gov/3284447/

5001

von Bartheld CS. Myths and truths about the cellular composition of the human brain: a review of influential concepts. J Chem Neuroanat. 2018;93:2–15. https://pubmed.ncbi.nlm.nih.gov/28873338/

5002

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

5003

Cahill S, Pierce M, Werner P, Darley A, Bobersky A. A systematic review of the public’s knowledge and understanding of Alzheimer’s disease and dementia. Alzheimer Dis Assoc Disord. 2015;29(3):255–75. https://pubmed.ncbi.nlm.nih.gov/26207322/

5004

Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;2018(6):CD001190. https://pubmed.ncbi.nlm.nih.gov/29923184/

5005

McShane R, Westby MJ, Roberts E, et al. Memantine for dementia. Cochrane Database Syst Rev. 2019;3:CD003154. https://pubmed.ncbi.nlm.nih.gov/30891742/

5006

Schmitt HP. On the paradox of ion channel blockade and its benefits in the treatment of Alzheimer disease. Med Hypotheses. 2005;65(2):259–65. https://pubmed.ncbi.nlm.nih.gov/15922097/

5007

Blanco-Silvente L, Castells X, Garre-Olmo J, et al. Study of the strength of the evidence and the redundancy of the research on pharmacological treatment for Alzheimer’s disease: a cumulative meta-analysis and trial sequential analysis. Eur J Clin Pharmacol. 2019;75(12):1659–67. https://pubmed.ncbi.nlm.nih.gov/31435707/

5008

Fink HA, Linskens EJ, MacDonald R, et al. Benefits and harms of prescription drugs and supplements for treatment of clinical Alzheimer-type dementia. Ann Intern Med. 2020;172(10):656–68. https://pubmed.ncbi.nlm.nih.gov/32340037/

5009

Blanco-Silvente L, Castells X, Garre-Olmo J, et al. Study of the strength of the evidence and the redundancy of the research on pharmacological treatment for Alzheimer’s disease: a cumulative meta-analysis and trial sequential analysis. Eur J Clin Pharmacol. 2019;75(12):1659–67. https://pubmed.ncbi.nlm.nih.gov/31435707/

5010

Rabinovici GD. Controversy and progress in Alzheimer’s disease – FDA approval of aducanumab. N Engl J Med. 2021;385(9):771–4. https://pubmed.ncbi.nlm.nih.gov/34320284/

5011

Robinson JC. Why is aducanumab priced at $56,000 per patient? Lessons for drug-pricing reform. N Engl J Med. 2021;385(22):2017–9. https://pubmed.ncbi.nlm.nih.gov/34797614/

5012

Moghavem N, Henderson VW, Greicius MD. Medicare should not cover aducanumab as a treatment for Alzheimer’s disease. Ann Neurol. 2021;90(3):331–3. https://pubmed.ncbi.nlm.nih.gov/34278596/

5013

Rubin R. Recently approved Alzheimer drug raises questions that might never be answered. JAMA. 2021;326(6):469–72. https://pubmed.ncbi.nlm.nih.gov/34287610/

5014

Crosson FJ, Covinsky K, Redberg RF. Medicare and the shocking US Food and Drug Administration approval of aducanumab: crisis or opportunity? JAMA Intern Med. 2021;181(10):1278–80. https://pubmed.ncbi.nlm.nih.gov/34254992/

5015

Crosson FJ, Covinsky K, Redberg RF. Medicare and the shocking US Food and Drug Administration approval of aducanumab: crisis or opportunity? JAMA Intern Med. 2021;181(10):1278–80. https://pubmed.ncbi.nlm.nih.gov/34254992/

5016

Rubin R. Recently approved Alzheimer drug raises questions that might never be answered. JAMA. 2021;326(6):469–72. https://pubmed.ncbi.nlm.nih.gov/34287610/

5017

Lundebjerg NE. My head just exploded, now what? Aducanumab. J Am Geriatr Soc. 2021;69(9):2689–91. https://pubmed.ncbi.nlm.nih.gov/34227094/

5018

Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature. 2023;613(7943):227–8. https://pubmed.ncbi.nlm.nih.gov/36627422/

5019

Walsh S, Merrick R, Richard E, Nurock S, Brayne C. Lecanemab for Alzheimer’s disease. BMJ. 2022;379. https://pubmed.ncbi.nlm.nih.gov/36535691/

5020

Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012;2012:369808. https://pubmed.ncbi.nlm.nih.gov/22506132/

5021

Price JL. What does it take to stay healthy past 100? Neurobiol Aging. 2008;29(8):1140–2. https://pubmed.ncbi.nlm.nih.gov/18524418/

5022

Barber RC. The genetics of Alzheimer’s disease. Scientifica (Cairo). 2012;2012:246210. https://pubmed.ncbi.nlm.nih.gov/24278680/

5023

Castello MA, Soriano S. On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014;13:10–2. https://pubmed.ncbi.nlm.nih.gov/24252390/

5024

Ayton S, Bush AI. ß-amyloid: the known unknowns. Ageing Res Rev. 2021;65:101212. https://pubmed.ncbi.nlm.nih.gov/33188924/

5025

SantaCruz KS, Sonnen JA, Pezhouh MK, Desrosiers MF, Nelson PT, Tyas SL. Alzheimer disease pathology in subjects without dementia in 2 studies of aging: the Nun Study and the Adult Changes in Thought Study. J Neuropathol Exp Neurol. 2011;70(10):832–40. https://pubmed.ncbi.nlm.nih.gov/21937909/

5026

Ayton S, Bush AI. ß-amyloid: the known unknowns. Ageing Res Rev. 2021;65:101212. https://pubmed.ncbi.nlm.nih.gov/33188924/

5027

Alzheimer A, Förstl H, Levy R. On certain peculiar diseases of old age. Hist Psychiatry. 1991;2(5):71–3. https://pubmed.ncbi.nlm.nih.gov/11622845/

5028

Piller C. Blots on a field? Science. 2022;377(6604):358–63. https://pubmed.ncbi.nlm.nih.gov/35862524/

5029

Ayton S, Bush AI. ß-amyloid: the known unknowns. Ageing Res Rev. 2021;65:101212. https://pubmed.ncbi.nlm.nih.gov/33188924/

5030

Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012;2012:369808. https://pubmed.ncbi.nlm.nih.gov/22506132/

5031

Amtul Z. Why therapies for Alzheimer’s disease do not work: do we have consensus over the path to follow? Ageing Res Rev. 2016;25:70–84. https://pubmed.ncbi.nlm.nih.gov/26375861/

5032

Ayton S, Bush AI. ß-amyloid: the known unknowns. Ageing Res Rev. 2021;65:101212. https://pubmed.ncbi.nlm.nih.gov/33188924/

5033

Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry G, Smith MA. Copernicus revisited: amyloid beta in Alzheimer’s disease. Neurobiol Aging. 2001;22(1):131–46. https://pubmed.ncbi.nlm.nih.gov/11164287/

5034

Ayton S, Bush AI. ß-amyloid: the known unknowns. Ageing Res Rev. 2021;65:101212. https://pubmed.ncbi.nlm.nih.gov/33188924/

5035

Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351–7. https://pubmed.ncbi.nlm.nih.gov/9330961/

5036

Grodstein F. How early can cognitive decline be detected? BMJ. 2011;344:d7652. https://pubmed.ncbi.nlm.nih.gov/22223829/

5037

Torres-Acosta N, O’Keefe JH, O’Keefe EL, Isaacson R, Small G. Therapeutic potential of TNF-a inhibition for Alzheimer’s disease prevention. J Alzheimers Dis. 2020;78(2):619–26. https://pubmed.ncbi.nlm.nih.gov/33016914/

5038

Viña J, Sanz-Ros J. Alzheimer’s disease: only prevention makes sense. Eur J Clin Invest. 2018;48(10):e13005. https://pubmed.ncbi.nlm.nih.gov/30028503/

5039

de la Torre JC. Alzheimer’s disease is incurable but preventable. J Alzheimers Dis. 2010;20(3):861–70. https://pubmed.ncbi.nlm.nih.gov/20182017/

5040

Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. https://pubmed.ncbi.nlm.nih.gov/21775213/

5041

Singh-Manoux A, Kivimaki M, Glymour MM, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622. https://pubmed.ncbi.nlm.nih.gov/22223828/

5042

Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44. https://pubmed.ncbi.nlm.nih.gov/21388893/

5043

Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde.” Clin Anat. 1995;8(6):429–31. https://pubmed.ncbi.nlm.nih.gov/8713166/

5044

Sharma M. Preventing Alzheimer’s disease: some light in the darkness. J Am Coll Cardiol. 2019;74(15):1924–5. https://pubmed.ncbi.nlm.nih.gov/31601372/

5045

Grande G, Qiu C, Fratiglioni L. Prevention of dementia in an ageing world: evidence and biological rationale. Ageing Res Rev. 2020;64:101045. https://pubmed.ncbi.nlm.nih.gov/32171784/

5046

Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44. https://pubmed.ncbi.nlm.nih.gov/21388893/

5047

Yarchoan M, Xie SX, Kling MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain. 2012;135(Pt 12):3749–56. https://pubmed.ncbi.nlm.nih.gov/23204143/

5048

Honig LS, Kukull W, Mayeux R. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology. 2005;64(3):494–500. https://pubmed.ncbi.nlm.nih.gov/15699381/

5049

Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44. https://pubmed.ncbi.nlm.nih.gov/21388893/

5050

de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci. 2002;977:196–215. https://pubmed.ncbi.nlm.nih.gov/12480752/

5051

Cahill S, Pierce M, Werner P, Darley A, Bobersky A. A systematic review of the public’s knowledge and understanding of Alzheimer’s disease and dementia. Alzheimer Dis Assoc Disord. 2015;29(3):255–75. https://pubmed.ncbi.nlm.nih.gov/26207322/

5052

Corsinovi L, Biasi F, Poli G, Leonarduzzi G, Isaia G. Dietary lipids and their oxidized products in Alzheimer’s disease. Mol Nutr Food Res. 2011;55 Suppl 2:S161–72. https://pubmed.ncbi.nlm.nih.gov/21954186/

5053

Mizuno T, Nakata M, Naiki H, et al. Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem. 1999;274(21):15110–4. https://pubmed.ncbi.nlm.nih.gov/10329717/

5054

Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem. 2010;51:47–75. https://pubmed.ncbi.nlm.nih.gov/20213540/

5055

US Food and Drug Administration. Important safety label changes to cholesterol-lowering statin drugs. http://www.fda.gov/Drugs/DrugSafety/ucm293101.htm. Published July 7, 2012. Accessed June 30, 2022.; https://www.fda.gov/Drugs/DrugSafety/ucm293101.htm

5056

Rojas-Fernandez CH, Cameron JC. Is statin-associated cognitive impairment clinically relevant? A narrative review and clinical recommendations. Ann Pharmacother. 2012;46(4):549–57. https://pubmed.ncbi.nlm.nih.gov/22474137/

5057

Sabbagh MN, Perez A, Holland TM, et al. Primary prevention recommendations to reduce the risk of cognitive decline. Alzheimers Dement. Published online January 13, 2022.; https://pubmed.ncbi.nlm.nih.gov/35026040/

5058

Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35 Suppl 2:S74–8. https://pubmed.ncbi.nlm.nih.gov/24913896/

5059

Wood WG, Li L, Müller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer disease: a debatable hypothesis. J Neurochem. 2014;129(4):559–72. https://pubmed.ncbi.nlm.nih.gov/24329875/

5060

Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33. https://pubmed.ncbi.nlm.nih.gov/27687218/

5061

Marwarha G, Ghribi O. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease – Parkinson’s disease overlap? Exp Gerontol. 2015;68:13–8. https://pubmed.ncbi.nlm.nih.gov/25261765/

5062

Wang HL, Wang YY, Liu XG, et al. Cholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol as surrogate biomarkers in cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis. 2016;51(1):45–55. https://pubmed.ncbi.nlm.nih.gov/26836015/

5063

Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7:119. https://pubmed.ncbi.nlm.nih.gov/26150787/

5064

Deschaintre Y, Richard F, Leys D, Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73(9):674–80. https://pubmed.ncbi.nlm.nih.gov/19720973/

5065

Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://pubmed.ncbi.nlm.nih.gov/26551272/

5066

Williamson JD, Pajewski NM, Auchus AP, et al. Effect of intensive vs standard blood pressure control on probable dementia. JAMA. 2019;321(6):553–61. https://pubmed.ncbi.nlm.nih.gov/30688979/

5067

Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://pubmed.ncbi.nlm.nih.gov/26551272/

5068

Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44. https://pubmed.ncbi.nlm.nih.gov/21388893/

5069

Pase MP, Herbert A, Grima NA, Pipingas A, O’Rourke MF. Arterial stiffness as a cause of cognitive decline and dementia: a systematic review and meta-analysis. Intern Med J. 2012;42(7):808–15. https://pubmed.ncbi.nlm.nih.gov/22151013/

5070

Henskens LHG, van Oostenbrugge RJ, Kroon AA, de Leeuw PW, Lodder J. Brain microbleeds are associated with ambulatory blood pressure levels in a hypertensive population. Hypertension. 2008;51(1):62–8. https://pubmed.ncbi.nlm.nih.gov/18071062/

5071

Kovacic JC, Fuster V. Atherosclerotic risk factors, vascular cognitive impairment, and Alzheimer disease. Mt Sinai J Med. 2012;79(6):664–73. https://pubmed.ncbi.nlm.nih.gov/23239205/

5072

Longstreth WT, Bernick C, Manolio TA, Bryan N, Jungreis CA, Price TR. Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the Cardiovascular Health Study. Arch Neurol. 1998;55(9):1217–25. https://pubmed.ncbi.nlm.nih.gov/9740116/

5073

Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review. Lancet Neurol. 2007;6(7):611–9. https://pubmed.ncbi.nlm.nih.gov/17582361/

5074

Beauchet O, Celle S, Roche F, et al. Blood pressure levels and brain volume reduction: a systematic review and meta-analysis [published correction appears in J Hypertens. 2013;31(10):2106]. J Hypertens. 2013;31(8):1502–16. https://pubmed.ncbi.nlm.nih.gov/23811995/

5075

Peila R, White LR, Petrovich H, et al. Joint effect of the APOE gene and midlife systolic blood pressure on late-life cognitive impairment: the Honolulu-Asia Aging Study. Stroke. 2001;32(12):2882–9. https://pubmed.ncbi.nlm.nih.gov/11739991/

5076

Singer J, Trollor JN, Baune BT, Sachdev PS, Smith E. Arterial stiffness, the brain and cognition: a systematic review. Ageing Res Rev. 2014;15:16–27. https://pubmed.ncbi.nlm.nih.gov/24548924/

5077

Salvi P, Giannattasio C, Parati G. High sodium intake and arterial stiffness. J Hypertens. 2018;36(4):754–8. https://pubmed.ncbi.nlm.nih.gov/29489612/

5078

D’Elia L, Galletti F, La Fata E, Sabino P, Strazzullo P. Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens. 2018;36(4):734–43. https://pubmed.ncbi.nlm.nih.gov/29084085/

5079

Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies. Circulation. 2021;143(16):1542–67. https://pubmed.ncbi.nlm.nih.gov/33586450/

5080

Siriopol D, Covic A, Iliescu R, et al. Arterial stiffness mediates the effect of salt intake on systolic blood pressure. J Clin Hypertens (Greenwich). 2018;20(11):1587–94. https://pubmed.ncbi.nlm.nih.gov/30295011/

5081

Santisteban MM, Iadecola C. Hypertension, dietary salt and cognitive impairment. J Cereb Blood Flow Metab. 2018;38(12):2112–28. https://pubmed.ncbi.nlm.nih.gov/30295560/

5082

Faraco G, Hochrainer K, Segarra SG, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;574(7780):686–90. https://pubmed.ncbi.nlm.nih.gov/31645758/

5083

Fyfe I. High-salt diet promotes Alzheimer disease – like changes. Nat Rev Neurol. 2020;16(1):2–3. https://pubmed.ncbi.nlm.nih.gov/31712717/

5084

Cahill S, Pierce M, Werner P, Darley A, Bobersky A. A systematic review of the public’s knowledge and understanding of Alzheimer’s disease and dementia. Alzheimer Dis Assoc Disord. 2015;29(3):255–75. https://pubmed.ncbi.nlm.nih.gov/26207322/

5085

Hudson JM, Pollux PMJ, Mistry B, Hobson S. Beliefs about Alzheimer’s disease in Britain. Aging Ment Health. 2012;16(7):828–35. https://pubmed.ncbi.nlm.nih.gov/22416945/

5086

Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5(9):735–41. https://pubmed.ncbi.nlm.nih.gov/16914401/

5087

Chandra V, Ganguli M, Pandav R, et al. Prevalence of Alzheimer’s disease and other dementias in rural India: the Indo-US study. Neurology. 1998;51(4):1000–8. https://pubmed.ncbi.nlm.nih.gov/9781520/

5088

Shetty PS. Nutrition transition in India. Public Health Nutr. 2002;5(1A):175–82. https://pubmed.ncbi.nlm.nih.gov/12027282/

5089

Tsai JH, Huang CF, Lin MN, Chang CE, Chang CC, Lin CL. Taiwanese vegetarians are associated with lower dementia risk: a prospective cohort study. Nutrients. 2022;14(3):588. https://pubmed.ncbi.nlm.nih.gov/35276947/

5090

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

5091

Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55. https://pubmed.ncbi.nlm.nih.gov/12160362/

5092

Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun. 2019;10(1):3669. https://pubmed.ncbi.nlm.nih.gov/31413261/

5093

Rea IM, Dellet M, Mills KI, The ACUME2 Project. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology. 2016;17(1):33–54. https://pubmed.ncbi.nlm.nih.gov/26133292/

5094

Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A. Genetic signatures of centenarians: implications for achieving successful aging. Curr Pharm Des. 2019;25(39):4133–8. https://pubmed.ncbi.nlm.nih.gov/31721694/

5095

Abdullah MMH, Vazquez-Vidal I, Baer DJ, House JD, Jones PJH, Desmarchelier C. Common genetic variations involved in the inter-individual variability of circulating cholesterol concentrations in response to diets: a narrative review of recent evidence. Nutrients. 2021;13(2):695. https://pubmed.ncbi.nlm.nih.gov/33671529/

5096

Sepehrnia B, Kamboh MI, Adams-Campbell LL, et al. Genetic studies of human apolipoproteins. X. The effect of the apolipoprotein E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am J Hum Genet. 1989;45(4):586–91. https://pubmed.ncbi.nlm.nih.gov/2491016/

5097

Laufs U, Dent R, Kostenuik PJ, Toth PP, Catapano AL, Chapman MJ. Why is hypercholesterolaemia so prevalent? A view from evolutionary medicine. Eur Heart J. 2019;40(33):2825–30. https://pubmed.ncbi.nlm.nih.gov/30169643/

5098

World Health Organization. The top 10 causes of death. December 9, 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed December 24, 2022.; https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

5099

Chiarini A, Armato U, Hu P, Dal Prà I. Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s disease. Int J Mol Sci. 2020;21(23):E9036. https://pubmed.ncbi.nlm.nih.gov/33261147/

5100

Schmidt R, Schmidt H, Curb JD, Masaki K, White LR, Launer LJ. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52(2):168–74. https://pubmed.ncbi.nlm.nih.gov/12210786/

5101

Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc. 1995;43(11):1248–55. https://pubmed.ncbi.nlm.nih.gov/7594159/

5102

Del Tredici K, Braak H. Neurofibrillary changes of the Alzheimer type in very elderly individuals: neither inevitable nor benign: Commentary on ‘No disease in the brain of a 115-year-old woman.’ Neurobiol Aging. 2008;29(8):1133–6. https://pubmed.ncbi.nlm.nih.gov/18584785/

5103

Galasko DR, Peskind E, Clark CM, et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69(7):836–41. https://pubmed.ncbi.nlm.nih.gov/22431837/

5104

Jensen MK, Cassidy A. Can dietary flavonoids play a role in Alzheimer’s disease risk prevention? Tantalizing population-based data out of Framingham. Am J Clin Nutr. 2020;112(2):241–2. https://pubmed.ncbi.nlm.nih.gov/32359140/

5105

Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF. Long-term dietary flavonoid intake and change in cognitive function in the Framingham Offspring cohort. Public Health Nutr. 2020;23(9):1576–88. https://pubmed.ncbi.nlm.nih.gov/32090722/

5106

Tarozzi A, Morroni F, Merlicco A, et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett. 2010;473(2):72–6. https://pubmed.ncbi.nlm.nih.gov/20152881/

5107

Hattori M, Sugino E, Minoura K, et al. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem Biophys Res Commun. 2008;374(1):158–63. https://pubmed.ncbi.nlm.nih.gov/18619417/

5108

Mandel SA, Weinreb O, Amit T, Youdim MB. Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed). 2012;4:581–98. https://pubmed.ncbi.nlm.nih.gov/22202078/

5109

Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–60. https://pubmed.ncbi.nlm.nih.gov/25231526/

5110

Crapper DR, Krishnan SS, Dalton AJ. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science. 1973;180(4085):511–3. https://pubmed.ncbi.nlm.nih.gov/4735595/

5111

Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome: possible aluminum intoxication. N Engl J Med. 1976;294(4):184–8. https://pubmed.ncbi.nlm.nih.gov/1244532/

5112

Tomljenovic L. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. 2011;23(4):567–98. https://pubmed.ncbi.nlm.nih.gov/21157018/

5113

Lidsky TI. Is the aluminum hypothesis dead? J Occup Environ Med. 2014;56(5 Suppl):S73–9. https://pubmed.ncbi.nlm.nih.gov/24806729/

5114

Perl DP, Moalem S. Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J Alzheimers Dis. 2006;9(3 Suppl):291–300. https://pubmed.ncbi.nlm.nih.gov/17004365/

5115

Lidsky TI. Is the aluminum hypothesis dead? J Occup Environ Med. 2014;56(5 Suppl):S73–9. https://pubmed.ncbi.nlm.nih.gov/24806729/

5116

Virk SA, Eslick GD. Brief report: meta-analysis of antacid use and Alzheimer’s disease: implications for the aluminum hypothesis. Epidemiology. 2015;26(5):769–73. https://pubmed.ncbi.nlm.nih.gov/26098935/

5117

Reinke CM, Breitkreutz J, Leuenberger H. Aluminium in over-the-counter drugs: risks outweigh benefits? Drug Saf. 2003;26(14):1011–25. https://pubmed.ncbi.nlm.nih.gov/14583063/

5118

Celik H, Celik N, Kocyigit A, Dikilitas M. The relationship between plasma aluminum content, lymphocyte DNA damage, and oxidative status in persons using aluminum containers and utensils daily. Clin Biochem. 2012;45(18):1629–33. https://pubmed.ncbi.nlm.nih.gov/22981396/

5119

CRF – code of federal regulations Title 21. U.S Food & Drug Administration. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=350&showFR=1. Updated March 29, 2022. Accessed July 4, 2022.; https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=350&showFR=1

5120

Council of the European Communities. Council Directive 76/768/EEC of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products. EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A31976L0768. Published July 27, 1976. Accessed February 24, 2023.; https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A31976L0768

5121

Darbre PD, Mannello F, Exley C. Aluminium and breast cancer: Sources of exposure, tissue measurements and mechanisms of toxicological actions on breast biology. J Inorg Biochem. 2013;128:257–61. https://pubmed.ncbi.nlm.nih.gov/23899626/

5122

Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006;26(3):191–7. https://pubmed.ncbi.nlm.nih.gov/16489580/

5123

McGrath KG. An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev. 2003;12(6):479–85. https://pubmed.ncbi.nlm.nih.gov/14639125/

5124

Yokel RA, Hicks CL, Florence RL. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol. 2008;46(6):2261–6. https://pubmed.ncbi.nlm.nih.gov/18436363/

5125

Al-Ashmawy MAM. Prevalence and public health significance of aluminum residues in milk and some dairy products. J Food Sci. 2011;76(3):T73–6. https://pubmed.ncbi.nlm.nih.gov/21535864/

5126

Gleason A, Bush AI. Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2021;18(1):252–64. https://pubmed.ncbi.nlm.nih.gov/33111259/

5127

Nikseresht S, Bush AI, Ayton S. Treating Alzheimer’s disease by targeting iron. Br J Pharmacol. 2019;176(18):3622–35. https://pubmed.ncbi.nlm.nih.gov/30632143/

5128

Gleason A, Bush AI. Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2021;18(1):252–64. https://pubmed.ncbi.nlm.nih.gov/33111259/

5129

Ayton S, James SA, Bush AI. Nanoscale imaging reveals big role for iron in Alzheimer’s disease. Cell Chem Biol. 2017;24(10):1192–4. https://pubmed.ncbi.nlm.nih.gov/29053948/

5130

Ayton S, Diouf I, Bush AI, Alzheimer’s disease Neuroimaging Initiative. Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry. 2018;89(5):456–60. https://pubmed.ncbi.nlm.nih.gov/28939683/

5131

Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol. 2006;155(1):30–7. https://pubmed.ncbi.nlm.nih.gov/16325427/

5132

Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol. 2006;63(8):1085–8. https://pubmed.ncbi.nlm.nih.gov/16908733/

5133

Loef M, Walach H. Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr. 2012;107(1):7–19. https://pubmed.ncbi.nlm.nih.gov/21767446/

5134

Liyanage SI, Vilekar P, Weaver DF. Nutrients in Alzheimer’s disease: the interaction of diet, drugs and disease. Can J Neurol Sci. 2019;46(1):23–34. https://pubmed.ncbi.nlm.nih.gov/30688198/

5135

Oleson S, Gonzales MM, Tarumi T, et al. Nutrient intake and cerebral metabolism in healthy middle-aged adults: implications for cognitive aging. Nutr Neurosci. 2017;20(8):489–96. https://pubmed.ncbi.nlm.nih.gov/27237189/

5136

Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4-year cognitive change in community-dwelling older women. Ann Neurol. 2012;72(1):124–34. https://pubmed.ncbi.nlm.nih.gov/22605573/

5137

Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/

5138

Barbaresko J, Lellmann AW, Schmidt A, et al. Dietary factors and neurodegenerative disorders: an umbrella review of meta-analyses of prospective studies. Adv Nutr. 2020;11(5):1161–73. https://pubmed.ncbi.nlm.nih.gov/32427314/

5139

Liyanage SI, Vilekar P, Weaver DF. Nutrients in Alzheimer’s disease: the interaction of diet, drugs and disease. Can J Neurol Sci. 2019;46(1):23–34. https://pubmed.ncbi.nlm.nih.gov/30688198/

5140

Kahle L, Krebs-Smith SM, Reedy J, Rodgers AB, Signes C. Identification of Top Food Sources of Various Dietary Components. National Cancer Institute. https://epi.grants.cancer.gov/diet/foodsources. Updated June 8, 2022. Accessed June 30, 2022.; https://epi.grants.cancer.gov/diet/foodsources

5141

Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/

5142

Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/

5143

Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52. https://pubmed.ncbi.nlm.nih.gov/17869382/

5144

Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6. https://pubmed.ncbi.nlm.nih.gov/30643288/

5145

Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/

5146

Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52. https://pubmed.ncbi.nlm.nih.gov/17869382/

5147

Verheggen ICM, de Jong JJA, van Boxtel MPJ, et al. Increase in blood-brain barrier leakage in healthy, older adults. Geroscience. 2020;42(4):1183–93. https://pubmed.ncbi.nlm.nih.gov/32601792/

5148

Gustafson DR, Karlsson C, Skoog I, Rosengren L, Lissner L, Blennow K. Mid-life adiposity factors relate to blood-brain barrier integrity in late life. J Intern Med. 2007;262(6):643–50. https://pubmed.ncbi.nlm.nih.gov/17986201/

5149

Freeman LR, Granholm ACE. Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab. 2012;32(4):643–53. https://pubmed.ncbi.nlm.nih.gov/22108721/

5150

Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Deposition of iron and ß-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem. 2006;99(2):438–49. https://pubmed.ncbi.nlm.nih.gov/17029598/

5151

Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood – brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40(1):45–52. https://pubmed.ncbi.nlm.nih.gov/23167559/

5152

Galloway S, Takechi R, Nesbit M, Pallebage-Gamarallage MM, Lam V, Mamo JCL. The differential effects of fatty acids on enterocytic abundance of amyloid-beta. Lipids Health Dis. 2019;18(1):209. https://pubmed.ncbi.nlm.nih.gov/31796080/

5153

Boyt AA, Taddei K, Hallmayer J, et al. Relationship between lipid metabolism and plasma concentration of amyloid precursor protein and apolipoprotein E. Alzheimer’s Rep. 1999;2(6):339–46. https://researchers.mq.edu.au/en/publications/relationship-between-lipid-metabolism-and-plasma-concentration-of

5154

Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49(2):159–70. https://pubmed.ncbi.nlm.nih.gov/19896503/

5155

Kauwe G, Tracy TE. Amyloid beta emerges from below the neck to disable the brain. PLoS Biol. 2021;19(9):e3001388. https://pubmed.ncbi.nlm.nih.gov/34525093/

5156

Edwards LM, Murray AJ, Holloway CJ, et al. Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB J. 2011;25(3):1088–96. https://pubmed.ncbi.nlm.nih.gov/21106937/

5157

Attuquayefio T, Stevenson RJ, Oaten MJ, Francis HM. A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS ONE. 2017;12(2):e0172645. https://pubmed.ncbi.nlm.nih.gov/28231304/

5158

Madison AA, Belury MA, Andridge R, et al. Afternoon distraction: a high-saturated-fat meal and endotoxemia impact postmeal attention in a randomized crossover trial. Am J Clin Nutr. 2020;111(6):1150–8. https://pubmed.ncbi.nlm.nih.gov/32393980/

5159

Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 2014;9(6):2124–38. https://pubmed.ncbi.nlm.nih.gov/25497089/

5160

Laposata M. Fatty acids: biochemistry to clinical significance. Am J Clin Pathol. 1995;104(2):172–9. https://pubmed.ncbi.nlm.nih.gov/7639192/

5161

Sergi D, Kahn DE, Morris AC, Williams LM. Palmitic acid induces inflammation in hypothalamic neurons via ceramide synthesis. Proc Nutr Soc. 2016;75(OCE2):E46. https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/palmitic-acid-induces-inflammation-in-hypothalamic-neurons-via-ceramide-synthesis/CA8587EB22475DA81A73C991C568DB3B

5162

Berkseth KE, Guyenet SJ, Melhorn SJ, et al. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology. 2014;155(8):2858–67. https://pubmed.ncbi.nlm.nih.gov/24914942/

5163

Ioannidis JP. Extrapolating from animals to humans. Sci Transl Med. 2012;4(151):151ps15. https://pubmed.ncbi.nlm.nih.gov/22972841/

5164

Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol (Lond). 2012;590(17):4377–89. https://pubmed.ncbi.nlm.nih.gov/22674717/

5165

Agricultural Research Service, United States Department of Agriculture. Pork, cured, bacon, cooked, baked. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/167914/nutrients. Published April 1, 2019. Accessed June 30, 2022.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/167914/nutrients

5166

Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/

5167

Dumas JA, Bunn JY, Nickerson J, et al. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metab Clin Exp. 2016;65(10):1582–8. https://pubmed.ncbi.nlm.nih.gov/27621193/

5168

Kien CL, Bunn JY, Tompkins CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. 2013;97(4):689–97. https://pubmed.ncbi.nlm.nih.gov/23446891/

5169

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

5170

West RK, Moshier E, Lubitz I, et al. Dietary advanced glycation end products are associated with decline in memory in young elderly. Mech Ageing Dev. 2014;140:10–2. https://pubmed.ncbi.nlm.nih.gov/25037023/

5171

Srikanth V, Westcott B, Forbes J, et al. Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci. 2013;68(1):68–73. https://pubmed.ncbi.nlm.nih.gov/22496536/

5172

Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J Alzheimers Dis. 2017;55(4):1481–7. https://pubmed.ncbi.nlm.nih.gov/27858716/

5173

Ko S, Ko H, Chu K, et al. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One. 2015;10(11):e0143345. https://pubmed.ncbi.nlm.nih.gov/26587989/

5174

Chou P, Wu M, Yang C, Shen C, Yang Y. Effect of advanced glycation end products on the progression of Alzheimer’s disease. J Alzheimers Dis. 2019;72(1):191–7. https://pubmed.ncbi.nlm.nih.gov/31561370/

5175

Kim K-S, Lee Y-M, Lee H-W, Jacobs DR, Lee D-H. Associations between organochlorine pesticides and cognition in U.S. elders: National Health and Nutrition Examination Survey 1999–2002. Environ Int. 2015;75:87–92. https://pubmed.ncbi.nlm.nih.gov/25461417/

5176

Bernard A. Elevated serum DDE and risk for Alzheimer disease. JAMA Neurol. 2014;71(8):1055–6. https://pubmed.ncbi.nlm.nih.gov/25111212/

5177

Schecter A, Cramer P, Boggess K, Stanley J, Olson JR. Levels of dioxins, dibenzofurans, PCB and DDE congeners in pooled food samples collected in 1995 at supermarkets across the United States. Chemosphere. 1997;34(5–7):1437–47. https://pubmed.ncbi.nlm.nih.gov/9134677/

5178

André P, Laugerette F, Féart C. Metabolic endotoxemia: a potential underlying mechanism of the relationship between dietary fat intake and risk for cognitive impairments in humans? Nutrients. 2019;11(8):1887. https://pubmed.ncbi.nlm.nih.gov/31412673/

5179

Ghanim H, Batra M, Abuaysheh S, et al. Antiinflammatory and ROS suppressive effects of the addition of fiber to a high-fat high-calorie meal. J Clin Endocrinol Metab. 2017;102(3):858–69. https://pubmed.ncbi.nlm.nih.gov/27906549/

5180

Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. World Health Organization; 2019. https://www.who.int/publications/i/item/9789241550543

5181

Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. https://pubmed.ncbi.nlm.nih.gov/32738937/

5182

Theadom A, Mahon S, Hume P, et al. Incidence of sports-related traumatic brain injury of all severities: a systematic review. Neuroepidemiology. 2020;54(2):192–9. https://pubmed.ncbi.nlm.nih.gov/31935738/

5183

Mackay DF, Russell ER, Stewart K, MacLean JA, Pell JP, Stewart W. Neurodegenerative disease mortality in former professional soccer players. N Engl J Med. 2019;381(19):1801–8. https://pubmed.ncbi.nlm.nih.gov/31633894/

5184

Asken BM, Rabinovici GD. Professional soccer and dementia risk – the ugly side of the beautiful game. JAMA Neurol. 2021;78(9):1049–51. https://pubmed.ncbi.nlm.nih.gov/34338741/

5185

Walton SR, Brett BL, Chandran A, et al. Mild cognitive impairment and dementia reported by former professional football players over 50 yr of age: an NFL–LONG study. Med Sci Sports Exerc. 2022;54(3):424–31. https://pubmed.ncbi.nlm.nih.gov/34593716/

5186

Castellani RJ, Perry G. Dementia pugilistica revisited. J Alzheimers Dis. 60(4):1209–21.; https://pubmed.ncbi.nlm.nih.gov/29036831/

5187

GBD 2019 Dementia Collaborators. The burden of dementia due to Down syndrome, Parkinson’s disease, stroke, and traumatic brain injury: a systematic analysis for the Global Burden of Disease Study 2019. Neuroepidemiology. 2021;55(4):286–96. https://pubmed.ncbi.nlm.nih.gov/34182555/

5188

Høye A. Bicycle helmets – to wear or not to wear? A meta-analyses of the effects of bicycle helmets on injuries. Accid Anal Prev. 2018;117:85–97. https://pubmed.ncbi.nlm.nih.gov/29677686/

5189

Enniss TM, Basiouny K, Brewer B, et al. Primary prevention of contact sports – related concussions in amateur athletes: a systematic review from the Eastern Association for the Surgery of Trauma. Trauma Surg Acute Care Open. 2018;3(1):e000153. https://pubmed.ncbi.nlm.nih.gov/30023433/

5190

Emery CA, Black AM, Kolstad A, et al. What strategies can be used to effectively reduce the risk of concussion in sport? A systematic review. Br J Sports Med. 2017;51(12):978–84. https://pubmed.ncbi.nlm.nih.gov/28254746/

5191

Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66. https://pubmed.ncbi.nlm.nih.gov/30291317/

5192

Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/

5193

Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y. Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One. 2015;10(3):e0118333. https://pubmed.ncbi.nlm.nih.gov/25763939/

5194

Almeida OP, Garrido GJ, Alfonso H, et al. 24-month effect of smoking cessation on cognitive function and brain structure in later life. Neuroimage. 2011;55(4):1480–9. https://pubmed.ncbi.nlm.nih.gov/21281718/

5195

Serrano-Pozo A, Growdon JH. Is Alzheimer’s disease risk modifiable? J Alzheimers Dis. 2019;67(3):795–819. https://pubmed.ncbi.nlm.nih.gov/30776012/

5196

Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci Total Environ. 2021;757:143734. https://pubmed.ncbi.nlm.nih.gov/33340865/

5197

Calderón-Garcidueñas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89. https://pubmed.ncbi.nlm.nih.gov/12051555/

5198

Maher BA, Ahmed IAM, Karloukovski V, et al. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci U S A. 2016;113(39):10797–801. https://pubmed.ncbi.nlm.nih.gov/27601646/

5199

Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci Total Environ. 2021;757:143734. https://pubmed.ncbi.nlm.nih.gov/33340865/

5200

Gupta S, Warner J. Alcohol-related dementia: a 21st-century silent epidemic? Br J Psychiatry. 2008;193(5):351–3. https://pubmed.ncbi.nlm.nih.gov/18978310/

5201

Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/

5202

Brennan SE, McDonald S, Page MJ, et al. Long-term effects of alcohol consumption on cognitive function: a systematic review and dose-response analysis of evidence published between 2007 and 2018. Syst Rev. 2020;9(1):33. https://pubmed.ncbi.nlm.nih.gov/32054517/

5203

Andrews SJ, Goate A, Anstey KJ. Association between alcohol consumption and Alzheimer’s disease: a Mendelian randomization study. Alzheimers Dement. 2020;16(2):345–53. https://pubmed.ncbi.nlm.nih.gov/31786126/

5204

van Eijk J, Demirakca T, Frischknecht U, Hermann D, Mann K, Ende G. Rapid partial regeneration of brain volume during the first 14 days of abstinence from alcohol. Alcohol Clin Exp Res. 2013;37(1):67–74. https://pubmed.ncbi.nlm.nih.gov/23072363/

5205

Luna S, Cameron DJ, Ethell DW. Amyloid-ß and APP deficiencies cause severe cerebrovascular defects: important work for an old villain. PLoS One. 2013;8(9):e75052. https://pubmed.ncbi.nlm.nih.gov/24040383/

5206

Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s disease – associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505. https://pubmed.ncbi.nlm.nih.gov/20209079/

5207

Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s disease – associated ß-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron. 2018;99(1):56–63.e3. https://pubmed.ncbi.nlm.nih.gov/30001512/

5208

Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis. 2016;51(4):979–84. https://pubmed.ncbi.nlm.nih.gov/26967229/

5209

Tzeng NS, Chung CH, Lin FH, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections – a nationwide, population-based cohort study in Taiwan. Neurotherapeutics. 2018;15(2):417–29. https://pubmed.ncbi.nlm.nih.gov/29488144/

5210

Ogilvie RP, Patel SR. The epidemiology of sleep and obesity. Sleep Health. 2017;3(5):383–8. https://pubmed.ncbi.nlm.nih.gov/28923198/

5211

Everson CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep. 1989;12(1):13–21. https://pubmed.ncbi.nlm.nih.gov/2928622/

5212

Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7. https://pubmed.ncbi.nlm.nih.gov/24136970/

5213

Absinta M, Ha SK, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6:e29738. https://pubmed.ncbi.nlm.nih.gov/28971799/

5214

Shokri-Kojori E, Wang G, Wiers C, et al. ß-Amyloid accumulation in the human brain after one night of sleep deprivation. PNAS. 2018;115(17):4483–8. https://pubmed.ncbi.nlm.nih.gov/29632177/

5215

Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–61. https://pubmed.ncbi.nlm.nih.gov/25204284/

5216

Simka M, Czaja J, Kowalczyk D. Collapsibility of the internal jugular veins in the lateral decubitus body position: a potential protective role of the cerebral venous outflow against neurodegeneration. Med Hypotheses. 2019;133:109397. https://pubmed.ncbi.nlm.nih.gov/31526984/

5217

Romanella SM, Roe D, Tatti E, et al. The sleep side of aging and Alzheimer’s disease. Sleep Med. 2021;77:209–25. https://pubmed.ncbi.nlm.nih.gov/32912799/

5218

Brusco LI, Márquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: case report. J Pineal Res. 1998;25(4):260–3. https://pubmed.ncbi.nlm.nih.gov/9885996/

5219

Vincent B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: a critical review. Pharmacol Res. 2018;134:223–37. https://pubmed.ncbi.nlm.nih.gov/29981776/

5220

Wang YY, Zheng W, Ng CH, Ungvari GS, Wei W, Xiang YT. Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int J Geriatr Psychiatry. 2017;32(1):50–7. https://pubmed.ncbi.nlm.nih.gov/27645169/

5221

Loef M, Walach H. Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring). 2013;21(1):E51–5. https://pubmed.ncbi.nlm.nih.gov/23401370/

5222

Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and overweight individuals: a meta-analysis and review. Neurosci Biobehav Rev. 2018;84:225–44. https://pubmed.ncbi.nlm.nih.gov/29203421/

5223

Walther K, Birdsill AC, Glisky EL, Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp. 2010;31(7):1052–64. https://pubmed.ncbi.nlm.nih.gov/19998366/

5224

Willette AA, Kapogiannis D. Does the brain shrink as the waist expands? Ageing Res Rev. 2015;20:86–97. https://pubmed.ncbi.nlm.nih.gov/24768742/

5225

Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94. https://pubmed.ncbi.nlm.nih.gov/27890688/

5226

Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87–94. https://pubmed.ncbi.nlm.nih.gov/27890688/

5227

Napoli N, Shah K, Waters DL, Sinacore DR, Qualls C, Villareal DT. Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr. 2014;100(1):189–98. https://pubmed.ncbi.nlm.nih.gov/24787497/

5228

Erickson KI, Hillman C, Stillman CM, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51(6):1242–51. https://pubmed.ncbi.nlm.nih.gov/31095081/

5229

Lee J. Effects of aerobic and resistance exercise interventions on cognitive and physiologic adaptations for older adults with mild cognitive impairment: a systematic review and meta-analysis of randomized control trials. Int J Environ Res Public Health. 2020;17(24):E9216. https://pubmed.ncbi.nlm.nih.gov/33317169/

5230

Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol Clin Pract. 2018;8(3):257–65. https://pubmed.ncbi.nlm.nih.gov/30105166/

5231

Sanders LMJ, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One. 2019;14(1):e0210036. https://pubmed.ncbi.nlm.nih.gov/30629631/

5232

Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurol Clin Pract. 2018;8(3):257–65. https://pubmed.ncbi.nlm.nih.gov/30105166/

5233

Lamb SE, Sheehan B, Atherton N, et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ. 2018;361:k1675. https://pubmed.ncbi.nlm.nih.gov/29769247/

5234

Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20(2):E257. https://pubmed.ncbi.nlm.nih.gov/30634650/

5235

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5236

Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci. 2014;6:88. https://pubmed.ncbi.nlm.nih.gov/24847262/

5237

Du Y, Wu HT, Qin XY, et al. Postmortem brain, cerebrospinal fluid, and blood neurotrophic factor levels in Alzheimer’s disease: a systematic review and meta-analysis. J Mol Neurosci. 2018;65(3):289–300. https://pubmed.ncbi.nlm.nih.gov/29956088/

5238

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5239

Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20(2):E257. https://pubmed.ncbi.nlm.nih.gov/30634650/

5240

Qin XY, Cao C, Cawley NX, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N=7277). Mol Psychiatry. 2017;22(2):312–20. https://pubmed.ncbi.nlm.nih.gov/27113997/

5241

Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312. https://pubmed.ncbi.nlm.nih.gov/30117106/

5242

Weinstein G, Beiser AS, Choi SH, et al. Serum brain-derived neurotrophic factor and the risk for dementia: the Framingham Heart Study. JAMA Neurol. 2014;71(1):55–61. https://pubmed.ncbi.nlm.nih.gov/24276217/

5243

Laske C, Stellos K, Hoffmann N, et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol. 2011;14(3):399–404. https://pubmed.ncbi.nlm.nih.gov/20860877/

5244

McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: a systematic review and meta-analysis. Neurobiol Learn Mem. 2020;175:107298. https://pubmed.ncbi.nlm.nih.gov/32822863/

5245

Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312. https://pubmed.ncbi.nlm.nih.gov/30117106/

5246

Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. https://pubmed.ncbi.nlm.nih.gov/25455510/

5247

Marquez CMS, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol (1985). 2015;119(12):1363–73. https://pubmed.ncbi.nlm.nih.gov/26472862/

5248

Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728–34. https://pubmed.ncbi.nlm.nih.gov/17414812/

5249

Coelho FM, Pereira DS, Lustosa LP, et al. Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr. 2012;54(3):415–20. https://pubmed.ncbi.nlm.nih.gov/21684022/

5250

Loprinzi PD. Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Phys Sportsmed. 2019;47(4):395–405. https://pubmed.ncbi.nlm.nih.gov/31002004/

5251

Guelpa G. Starvation and purgation in the relief of disease. Br Med J. 1910;2(2597):1050–1. https://www.jstor.org/stable/25292424

5252

Watkins E, Serpell L. The psychological effects of short-term fasting in healthy women. Front Nutr. 2016;3:27. https://pubmed.ncbi.nlm.nih.gov/27597946/

5253

Fond G, Macgregor A, Leboyer M, Michalsen A. Fasting in mood disorders: neurobiology and effectiveness. A review of the literature. Psychiatry Res. 2013;209(3):253–8. https://pubmed.ncbi.nlm.nih.gov/23332541/

5254

Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4. https://pubmed.ncbi.nlm.nih.gov/19012000/

5255

Witte AV, Fobker M, Gellner R, Knecht S, Flöel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60. https://pubmed.ncbi.nlm.nih.gov/19171901/

5256

Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4. https://pubmed.ncbi.nlm.nih.gov/19012000/

5257

Guimarães LR, Jacka FN, Gama CS, et al. Serum levels of brain-derived neurotrophic factor in schizophrenia on a hypocaloric diet. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1595–8. https://pubmed.ncbi.nlm.nih.gov/18582525/

5258

Karczewska-Kupczewska M, Kowalska I, Nikolajuk A, et al. Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care. 2012;35(2):358–62. https://pubmed.ncbi.nlm.nih.gov/22210566/

5259

Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482(3):235–9. https://pubmed.ncbi.nlm.nih.gov/20670674/

5260

Cott A. Controlled fasting treatment for schizophrenia. Orthomolecular Psychiatry. 1974;3(4):301–11. https://isom.ca/wp-content/uploads/2020/01/JOM_1974_03_4_12_Controlled_Fasting_Treatment_for_Schizophrenia.pdf

5261

Beezhold BL, Johnston CS. Restriction of meat, fish, and poultry in omnivores improves mood: a pilot randomized controlled trial. Nutr J. 2012;11:9. https://pubmed.ncbi.nlm.nih.gov/22333737/

5262

Neshatdoust S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 4(1):81–93.; https://pubmed.ncbi.nlm.nih.gov/28035345/

5263

Sánchez-Villegas A, Galbete C, Martinez-González MA, et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: the PREDIMED-NAVARRA randomized trial. Nutr Neurosci. 2011;14(5):195–201. https://pubmed.ncbi.nlm.nih.gov/22005283/

5264

Geethanjali A, Lalitha P, Firdhouse JM. Analysis of curcumin content of turmeric samples from various states of India. Int J Pharma Chem Res. 2016;2(1):55–62. https://www.ijpacr.com/files/19-01-16/114619012016.pdf

5265

Miller KB, Hurst WJ, Payne MJ, et al. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. J Agric Food Chem. 2008;56(18):8527–33. https://pubmed.ncbi.nlm.nih.gov/18710243/

5266

Agricultural Research Service, United States Department of Agriculture. Cocoa, dry powder, unsweetened. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=cocoa&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169593/nutrients. Published April 1, 2019. Accessed June 30, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=cocoa&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169593/nutrients

5267

Neshatdoust S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 4(1):81–93.; https://pubmed.ncbi.nlm.nih.gov/28035345/

5268

Sandberg JC, Björck IME, Nilsson AC. Increased plasma brain-derived neurotrophic factor 10.5 h after intake of whole grain rye-based products in healthy subjects. Nutrients. 2018;10(8):E1097. https://pubmed.ncbi.nlm.nih.gov/30115826/

5269

Intlekofer KA, Berchtold NC, Malvaez M, et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology. 2013;38(10):2027–34. https://pubmed.ncbi.nlm.nih.gov/23615664/

5270

Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutritional Neuroscience. Published online January 10, 2021:1–12.; https://pubmed.ncbi.nlm.nih.gov/33427118/

5271

Marizzoni M, Cattaneo A, Mirabelli P, et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J Alzheimers Dis. 2020;78(2):683–97. https://pubmed.ncbi.nlm.nih.gov/33074224/

5272

Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem. 2021;180:107414. https://pubmed.ncbi.nlm.nih.gov/33610771/

5273

Fernando WMADB, Martins IJ, Morici M, et al. Sodium butyrate reduces brain amyloid-ß levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J Alzheimers Dis. 2020;74(1):91–9. https://pubmed.ncbi.nlm.nih.gov/31958090/

5274

Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis. 2011;26(1):187–97. https://pubmed.ncbi.nlm.nih.gov/21593570/

5275

Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett. 2016;625:56–63. https://pubmed.ncbi.nlm.nih.gov/26868600/

5276

Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. https://pubmed.ncbi.nlm.nih.gov/25411471/

5277

Chen T, Kim CY, Kaur A, et al. Dietary fibre-based SCFA mixtures promote both protection and repair of intestinal epithelial barrier function in a Caco-2 cell model. Food Funct. 2017;8(3):1166–73. https://pubmed.ncbi.nlm.nih.gov/28174773/

5278

Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. https://pubmed.ncbi.nlm.nih.gov/25411471/

5279

Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9. https://pubmed.ncbi.nlm.nih.gov/21988661/

5280

Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. https://pubmed.ncbi.nlm.nih.gov/21876150/

5281

Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci. 1999;2(1):94–8. https://pubmed.ncbi.nlm.nih.gov/10195186/

5282

Liyanage SI, Vilekar P, Weaver DF. Nutrients in Alzheimer’s disease: the interaction of diet, drugs and disease. Can J Neurol Sci. 2019;46(1):23–34. https://pubmed.ncbi.nlm.nih.gov/30688198/

5283

McGrattan AM, McGuinness B, McKinley MC, et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep. 2019;8(2):53–65. https://pubmed.ncbi.nlm.nih.gov/30949921/

5284

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://pubmed.ncbi.nlm.nih.gov/24336217/

5285

van Soest APM, Hermes GDA, Berendsen AAM, et al. Associations between pro– and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in Dutch healthy older adults: the NU-AGE Study. Nutrients. 2020;12(11):E3471. https://pubmed.ncbi.nlm.nih.gov/33198235/

5286

Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77(7):607–15. https://pubmed.ncbi.nlm.nih.gov/25173628/

5287

Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc. 2004;52(3):381–7. https://pubmed.ncbi.nlm.nih.gov/14962152/

5288

Molloy DW, Standish TI, Zhou Q, Guyatt G, The DARAD Study Group. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer’s disease: the DARAD trial. Int J Geriatr Psychiatry. 2013;28(5):463–70. https://pubmed.ncbi.nlm.nih.gov/22718435/

5289

Marx W, Scholey A, Firth J, et al. Prebiotics, probiotics, fermented foods and cognitive outcomes: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2020;118:472–84. https://pubmed.ncbi.nlm.nih.gov/32860802/

5290

Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007;61(3):355–61. https://pubmed.ncbi.nlm.nih.gov/17151594/

5291

Den H, Dong X, Chen M, Zou Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment – a meta-analysis of randomized controlled trials. Aging (Albany NY). 2020;12(4):4010–39. https://pubmed.ncbi.nlm.nih.gov/32062613/

5292

Ito K, Romero K. Placebo effect in subjects with cognitive impairment. Int Rev Neurobiol. 2020;153:213–30. https://pubmed.ncbi.nlm.nih.gov/32563289/

5293

Block BR, Albanese SG, Hume AL. Online promotion of “brain health” supplements. Sr Care Pharm. 2021;36(10):489–92. https://pubmed.ncbi.nlm.nih.gov/34593090/

5294

Stoehr GP, Jacobsen E, Jia Y, Snitz BE, Ganguli M. Trends in the use of medications and supplements to treat or prevent dementia: a population-based study. Alzheimer Dis Assoc Disord. 2020;34(2):148–55. https://pubmed.ncbi.nlm.nih.gov/31633558/

5295

Block BR, Albanese SG, Hume AL. Online promotion of “brain health” supplements. Sr Care Pharm. 2021;36(10):489–92. https://pubmed.ncbi.nlm.nih.gov/34593090/

5296

Case 1:17-cv-00124-LLS Document 72. Federal Trade Commission and People of the State of New York v Quincy Bioscience Holding Company, Inc. https://www.ftc.gov/system/files/documents/cases/quincy_bioscience_opinion_and_order.pdf. Published July 14, 2019. Accessed July 10, 2022.; https://www.ftc.gov/system/files/documents/cases/quincy_bioscience_opinion_and_order.pdf

5297

Fair L. Prevagen complaint suggests mindfulness about memory claims. Federal Trade Commission. https://www.ftc.gov/business-guidance/blog/2017/01/prevagen-complaint-suggests-mindfulness-about-memory-claims. Published January 9, 2017. Accessed June 21, 2022.; https://www.ftc.gov/business-guidance/blog/2017/01/prevagen-complaint-suggests-mindfulness-about-memory-claims

5298

Gabriel BA. AARP asks court to declare Prevagen ads misleading. AARP. https://www.aarp.org/politics-society/advocacy/info-2018/overturn-prevagen-decision-fd.html. Published March 21, 2018. Accessed June 21, 2022.; https://www.aarp.org/politics-society/advocacy/info-2018/overturn-prevagen-decision-fd.html

5299

Scott GN. Does Prevagen® help memory loss? Medscape. https://www.medscape.com/viewarticle/860395. Published March 18, 2016. Accessed June 21, 2022.; https://www.medscape.com/viewarticle/860395

5300

Eisner C. Americans took Prevagen for years – as the FDA questioned its safety. Wired. https://www.wired.com/story/prevagen-made-millions-fda-questioned-safety/. Published October 21, 2020. Accessed June 21, 2022.; https://www.wired.com/story/prevagen-made-millions-fda-questioned-safety/

5301

Crawford C, Deuster PA. Be in the know: dietary supplements for cognitive performance. J Spec Oper Med. 2020;20(2):132–5. https://pubmed.ncbi.nlm.nih.gov/32573750/

5302

Crawford C, Boyd C, Avula B, Wang YH, Khan IA, Deuster PA. A public health issue: dietary supplements promoted for brain health and cognitive performance. J Altern Complement Med. 2020;26(4):265–72. https://pubmed.ncbi.nlm.nih.gov/32119795/

5303

Block BR, Albanese SG, Hume AL. Online promotion of “brain health” supplements. Sr Care Pharm. 2021;36(10):489–92. https://pubmed.ncbi.nlm.nih.gov/34593090/

5304

Franke AG, Heinrich I, Lieb K, Fellgiebel A. The use of Ginkgo biloba in healthy elderly. Age (Dordr). 2014;36(1):435–44. https://pubmed.ncbi.nlm.nih.gov/23736956/

5305

Yuan Q, Wang CW, Shi J, Lin ZX. Effects of Ginkgo biloba on dementia: an overview of systematic reviews. J Ethnopharmacol. 2017;195:1–9. https://pubmed.ncbi.nlm.nih.gov/27940086/

5306

Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;(1):CD003120. https://pubmed.ncbi.nlm.nih.gov/17443523/

5307

Wang Y, Yang G, Gong J, et al. Ginseng for Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem. 2015;16(5):529–36. https://pubmed.ncbi.nlm.nih.gov/26268331/

5308

Shakespeare W. The Tragedy of Hamlet, Prince of Denmark. Act IV, scene 5, line 3053. OpenSourceShakespeare. https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=4&Scene=5&Scope=scene. Published 1786. Accessed July 1, 2022.; https://www.opensourceshakespeare.org/views/plays/play_view.php?WorkID=hamlet&Act=4&Scene=5&Scope=scene

5309

Perry EK, Pickering AT, Wang WW, Houghton PJ, Perry NS. Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol. 1999;51(5):527–34. https://pubmed.ncbi.nlm.nih.gov/10411211/

5310

Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003;113(1):15–38. https://pubmed.ncbi.nlm.nih.gov/12690999/

5311

Moss M, Oliver L. Plasma 1,8-cineole correlates with cognitive performance following exposure to rosemary essential oil aroma. Ther Adv Psychopharmacol. 2012;2(3):103–13. https://pubmed.ncbi.nlm.nih.gov/23983963/

5312

Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR. Short-term study on the effects of rosemary on cognitive function in an elderly population. J Med Food. 2012;15(1):10–7. https://pubmed.ncbi.nlm.nih.gov/21877951/

5313

Shinjyo N, Green J. Are sage, rosemary and lemon balm effective interventions in dementia? A narrative review of the clinical evidence. Eur J Integr Med. 2017;15:83–96. https://www.sciencedirect.com/science/article/abs/pii/S187638201730149X

5314

Kennedy DO, Wake G, Savelev S, et al. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacology. 2003;28(10):1871–81. https://pubmed.ncbi.nlm.nih.gov/12062586/

5315

Perry NSL, Menzies R, Hodgson F, et al. A randomised double-blind placebo-controlled pilot trial of a combined extract of sage, rosemary and melissa, traditional herbal medicines, on the enhancement of memory in normal healthy subjects, including influence of age. Phytomedicine. 2018;39:42–8. https://pubmed.ncbi.nlm.nih.gov/29433682/

5316

Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003;113(1):15–38. https://pubmed.ncbi.nlm.nih.gov/12690999/

5317

Jimbo D, Kimura Y, Taniguchi M, Inoue M, Urakami K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics. 2009;9(4):173–9. https://pubmed.ncbi.nlm.nih.gov/20377818/

5318

Eriksson PS. Neurogenesis and its implications for regeneration in the adult brain. J Rehabil Med. 2003;(41 Suppl):17–9. https://pubmed.ncbi.nlm.nih.gov/12817652/

5319

Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7. https://pubmed.ncbi.nlm.nih.gov/9809557/

5320

Take comfort in human neurogenesis. Nat Med. 1998;4(11):1207. https://pubmed.ncbi.nlm.nih.gov/9809518/

5321

Jimbo D, Kimura Y, Taniguchi M, Inoue M, Urakami K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics. 2009;9(4):173–9. https://pubmed.ncbi.nlm.nih.gov/20377818/

5322

Aydin Yildirim T, Kitis Y. The effect of aromatherapy application on cognitive functions and daytime sleepiness in older adults living in a nursing home. Holist Nurs Pract. 2020;34(2):83–90. https://pubmed.ncbi.nlm.nih.gov/32049695/

5323

Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci. 2017;9:168. https://pubmed.ncbi.nlm.nih.gov/28611658/

5324

Zalomonson S, Freud T, Punchik B, Samson T, Lebedinsky S, Press Y. The results of a crossover placebo-controlled study of the effect of lavender oil on behavioral and psychological symptoms of dementia. Rejuvenation Res. 2019;22(3):246–53. https://pubmed.ncbi.nlm.nih.gov/30328781/

5325

Ball EL, Owen-Booth B, Gray A, Shenkin SD, Hewitt J, McCleery J. Aromatherapy for dementia. Cochrane Database Syst Rev. 2020;2020(8):CD003150. https://pubmed.ncbi.nlm.nih.gov/32813272/

5326

Burns A, Perry E, Holmes C, et al. A double-blind placebo-controlled randomized trial of Melissa officinalis oil and donepezil for the treatment of agitation in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;31(2):158–64. https://pubmed.ncbi.nlm.nih.gov/21335973/

5327

Watson K, Hatcher D, Good A. A randomised controlled trial of lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) essential oils for the treatment of agitated behaviour in older people with and without dementia. Complement Ther Med. 2019;42:366–73. https://pubmed.ncbi.nlm.nih.gov/30670268/

5328

Hishikawa N, Takahashi Y, Amakusa Y, et al. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012;33(4):499–504. https://pubmed.ncbi.nlm.nih.gov/23723666/

5329

Zhu LN, Mei X, Zhang ZG, Xie YP, Lang F. Curcumin intervention for cognitive function in different types of people: a systematic review and meta-analysis. Phytother Res. 2019;33(3):524–33. https://pubmed.ncbi.nlm.nih.gov/30575152/

5330

Baum L, Lam CWK, Cheung SKK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008;28(1):110–3. https://pubmed.ncbi.nlm.nih.gov/18204357/

5331

Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther. 2012;4(5):43. https://pubmed.ncbi.nlm.nih.gov/23107780/

5332

Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013;57(9):1510–28. https://pubmed.ncbi.nlm.nih.gov/22887802/

5333

Ahmed T, Gilani AH. Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res. 2014;28(4):517–25. https://pubmed.ncbi.nlm.nih.gov/23873854/

5334

Hishikawa N, Takahashi Y, Amakusa Y, et al. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012;33(4):499–504. https://pubmed.ncbi.nlm.nih.gov/23723666/

5335

Moazen-Zadeh E, Abbasi SH, Safi-Aghdam H, et al. Effects of saffron on cognition, anxiety, and depression in patients undergoing coronary artery bypass grafting: a randomized double-blind placebo-controlled trial. J Altern Complement Med. 2018;24(4):361–8. https://pubmed.ncbi.nlm.nih.gov/29185780/

5336

Farokhnia M, Shafiee Sabet M, Iranpour N, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol. 2014;29(4):351–9. https://pubmed.ncbi.nlm.nih.gov/25163440/

5337

Hausenblas HA, Heekin K, Mutchie HL, Anton S. A systematic review of randomized controlled trials examining the effectiveness of saffron (Crocus sativus L.) on psychological and behavioral outcomes. J Integr Med. 2015;13(4):231–40. https://pubmed.ncbi.nlm.nih.gov/26165367/

5338

Ayati Z, Yang G, Ayati MH, Emami SA, Chang D. Saffron for mild cognitive impairment and dementia: a systematic review and meta-analysis of randomised clinical trials. BMC Complement Med Ther. 2020;20(1):333. https://pubmed.ncbi.nlm.nih.gov/33167948/

5339

Tóth B, Hegyi P, Lantos T, et al. The efficacy of saffron in the treatment of mild to moderate depression: a meta-analysis. Planta Med. 2019;85(1):24–31. https://pubmed.ncbi.nlm.nih.gov/30036891/

5340

Tabeshpour J, Sobhani F, Sadjadi SA, et al. A double-blind, randomized, placebo-controlled trial of saffron stigma (Crocus sativus L.) in mothers suffering from mild-to-moderate postpartum depression. Phytomedicine. 2017;36:145–52. https://pubmed.ncbi.nlm.nih.gov/29157808/

5341

Finley JW, Gao S. A perspective on Crocus sativus L. (saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem. 2017;65(5):1005–20. https://pubmed.ncbi.nlm.nih.gov/28098452/

5342

World Health Organization. WHO Monographs on Selected Medicinal Plants. Vol 3. World Health Organization; 2001. https://apps.who.int/iris/handle/10665/42052

5343

Block BR, Albanese SG, Hume AL. Online promotion of “brain health” supplements. Sr Care Pharm. 2021;36(10):489–92. https://pubmed.ncbi.nlm.nih.gov/34593090/

5344

Goodwill AM, Szoeke C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc. 2017;65(10):2161–8. https://pubmed.ncbi.nlm.nih.gov/28758188/

5345

Kalra A, Teixeira AL, Diniz BS. Association of vitamin D levels with incident all-cause dementia in longitudinal observational studies: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2020;7(1):14–20. https://pubmed.ncbi.nlm.nih.gov/32010921/

5346

Orces C, Lorenzo C, Guarneros JE. The prevalence and determinants of vitamin D inadequacy among U.S. older adults: National Health and Nutrition Examination Survey 2007–2014. Cureus. 2019;11(8):e5300. https://pubmed.ncbi.nlm.nih.gov/31579639/

5347

Riaz S, Malcangio M, Miller M, Tomlinson DR. A vitamin D3 derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozotocin-diabetic rats. Diabetologia. 1999;42(11):1308–13. https://pubmed.ncbi.nlm.nih.gov/10550414/

5348

Durk MR, Han K, Chow ECY, et al. 1a,25-Dihydroxyvitamin D3 reduces cerebral amyloid-ß accumulation and improves cognition in mouse models of Alzheimer’s disease. J Neurosci. 2014;34(21):7091–101. https://pubmed.ncbi.nlm.nih.gov/24849345/

5349

Hu J, Jia J, Zhang Y, Miao R, Huo X, Ma F. Effects of vitamin D3 supplementation on cognition and blood lipids: a 12-month randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2018;89(12):1341–7. https://pubmed.ncbi.nlm.nih.gov/30279212/

5350

Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aß-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2019;90(12):1347–52. https://pubmed.ncbi.nlm.nih.gov/31296588/

5351

Castle M, Fiedler N, Pop LC, et al. Three doses of vitamin D and cognitive outcomes in older women: a double-blind randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2020;75(5):835–42. https://pubmed.ncbi.nlm.nih.gov/30951148/

5352

Schietzel S, Fischer K, Brugger P, et al. Effect of 2000 IU compared with 800 IU vitamin D on cognitive performance among adults age 60 years and older: a randomized controlled trial. Am J Clin Nutr. 2019;110(1):246–53. https://pubmed.ncbi.nlm.nih.gov/31152541/

5353

Pettersen JA. Does high dose vitamin D supplementation enhance cognition?: a randomized trial in healthy adults. Exp Gerontol. 2017;90:90–7. https://pubmed.ncbi.nlm.nih.gov/28167237/

5354

Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA Cooperative Randomized Trial. JAMA. 2014;311(1):33–44. https://pubmed.ncbi.nlm.nih.gov/24381967/

5355

Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med. 1997;336(17):1216–22. https://pubmed.ncbi.nlm.nih.gov/9110909/

5356

Lloret A, Badía MC, Mora NJ, Pallardó FV, Alonso MD, Viña J. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J Alzheimers Dis. 2009;17(1):143–9. https://pubmed.ncbi.nlm.nih.gov/19494439/

5357

Yaffe K, Clemons TE, McBee WL, Lindblad AS. Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology. 2004;63(9):1705–7. https://pubmed.ncbi.nlm.nih.gov/15534261/

5358

Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):23–33. https://pubmed.ncbi.nlm.nih.gov/12114036/

5359

Grodstein F, O’Brien J, Kang JH, et al. Long-term multivitamin supplementation and cognitive function in men: a randomized trial. Ann Intern Med. 2013;159(12):806–14. https://pubmed.ncbi.nlm.nih.gov/24490265/

5360

Maylor EA, Simpson EEA, Secker DL, et al. Effects of zinc supplementation on cognitive function in healthy middle-aged and older adults: the ZENITH study. Br J Nutr. 2006;96(4):752–60. https://pubmed.ncbi.nlm.nih.gov/17010236/

5361

Yaffe K, Clemons TE, McBee WL, Lindblad AS. Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology. 2004;63(9):1705–7. https://pubmed.ncbi.nlm.nih.gov/15534261/

5362

Kern J, Kern S, Blennow K, et al. Calcium supplementation and risk of dementia in women with cerebrovascular disease. Neurology. 2016;87(16):1674–80. https://pubmed.ncbi.nlm.nih.gov/27534711/

5363

Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006;580(13):2994–3005. https://pubmed.ncbi.nlm.nih.gov/16697371/

5364

Rutjes AWS, Denton DA, Di Nisio M, et al. Vitamin and mineral supplementation for maintaining cognitive function in cognitively healthy people in mid and late life. Cochrane Database Syst Rev. 2018;12:CD011906. https://pubmed.ncbi.nlm.nih.gov/30556597/

5365

Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol. 2017;30(1):50–9. https://pubmed.ncbi.nlm.nih.gov/28248558/

5366

Behrens A, Graessel E, Pendergrass A, Donath C. Vitamin B – Can it prevent cognitive decline? A systematic review and meta-analysis. Syst Rev. 2020;9(1):111. https://pubmed.ncbi.nlm.nih.gov/32414424/

5367

de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592–600. https://pubmed.ncbi.nlm.nih.gov/21780182/

5368

Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–6. https://pubmed.ncbi.nlm.nih.gov/27830812/

5369

Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://pubmed.ncbi.nlm.nih.gov/20838622/

5370

Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease – related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8. https://pubmed.ncbi.nlm.nih.gov/23690582/

5371

Smith AD, Smith SM, de Jager CA, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. https://pubmed.ncbi.nlm.nih.gov/20838622/

5372

McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015;73(10):723–35. https://pubmed.ncbi.nlm.nih.gov/26293664/

5373

Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and dementia: an international consensus statement. J Alzheimers Dis. 62(2):561–70.; https://pubmed.ncbi.nlm.nih.gov/29480200/

5374

Clarke R, Bennett D, Parish S, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100(2):657–66. https://pubmed.ncbi.nlm.nih.gov/20937919/

5375

McCaddon A, Miller JW. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015;73(10):723–35. https://pubmed.ncbi.nlm.nih.gov/26293664/

5376

Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774–83. https://pubmed.ncbi.nlm.nih.gov/18854539/

5377

Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease – related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci U S A. 2013;110(23):9523–8. https://pubmed.ncbi.nlm.nih.gov/23690582/

5378

Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I. Mushroom consumption and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Am Geriatr Soc. 2017;65(7). https://pubmed.ncbi.nlm.nih.gov/28295137/

5379

Durga J, van Boxtel MPJ, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. 2007;369(9557):208–16. https://pubmed.ncbi.nlm.nih.gov/17240287/

5380

DeRose DJ, Charles-Marcel ZL, Jamison JM, et al. Vegan diet-based lifestyle program rapidly lowers homocysteine levels. Prev Med. 2000;30(3):225–33. https://pubmed.ncbi.nlm.nih.gov/10684746/

5381

Chandrasekhar C, Kiranmayi VS, Pasupuleti SK, Sarma KV, Sarma PV. Assessment of reference range of serum homocysteine from the post-therapy values of cobalamin and folate deficiency patients. J Assoc Physicians India. 2020;68(9):36–42. https://pubmed.ncbi.nlm.nih.gov/32798344/

5382

Houghton LA, Green TJ, Donovan UM, Gibson RS, Stephen AM, O’Connor DL. Association between dietary fiber intake and the folate status of a group of female adolescents. Am J Clin Nutr. 1997;66(6):1414–21. https://pubmed.ncbi.nlm.nih.gov/9394694/

5383

Guttormsen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum HM. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr. 1994;124(10):1934–41. https://pubmed.ncbi.nlm.nih.gov/7931702/

5384

Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/

5385

. Öztürk S, Altieri M, Troisi P. Leonardo Da Vinci and stroke – vegetarian diet as a possible cause. Front Neurol Neurosci. 2010;27:1–10. https://pubmed.ncbi.nlm.nih.gov/20375518/

5386

Crane MG, Register UD, Lukens RH, Gregory R. Cobalamin (CBL) studies on two total vegetarian (vegan) families. Vegetarian Nutrition (United Kingdom). 1998;2(3):87–92. https://agris.fao.org/agris-search/search.do?recordID=GB1997058132

5387

Verghese J, Lipton RB, Katz MJ, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16. https://pubmed.ncbi.nlm.nih.gov/12815136/

5388

Cafferata RMT, Hicks B, von Bastian CC. Effectiveness of cognitive stimulation for dementia: a systematic review and meta-analysis. Psychol Bull. 2021;147(5):455–76. https://pubmed.ncbi.nlm.nih.gov/34292011/

5389

Bian X, Wang Y, Zhao X, Zhang Z, Ding C. Does music therapy affect the global cognitive function of patients with dementia? A meta-analysis. NeuroRehabilitation. 2021;48(4):553–62. https://pubmed.ncbi.nlm.nih.gov/33967069/

5390

Moreno-Morales C, Calero R, Moreno-Morales P, Pintado C. Music therapy in the treatment of dementia: a systematic review and meta-analysis. Front Med. 2020;7:160. https://pubmed.ncbi.nlm.nih.gov/32509790/

5391

Lam HL, Li WTV, Laher I, Wong RY. Effects of music therapy on patients with dementia – a systematic review. Geriatrics (Basel). 2020;5(4):E62. https://pubmed.ncbi.nlm.nih.gov/32992767/

5392

Wahl D, Solon-Biet SM, Cogger VC, et al. Aging, lifestyle and dementia. Neurobiol Dis. 2019;130:104481. https://pubmed.ncbi.nlm.nih.gov/31136814/

5393

Liu YH, Gao X, Na M, Kris-Etherton PM, Mitchell DC, Jensen GL. Dietary pattern, diet quality, and dementia: a systematic review and meta-analysis of prospective cohort studies. J Alzheimers Dis. 2020;78(1):151–68. https://pubmed.ncbi.nlm.nih.gov/32955461/

5394

Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am J Med. 2013;126(5):411–9.e3. https://pubmed.ncbi.nlm.nih.gov/23582933/

5395

Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines. World Health Organization; 2019. https://www.who.int/publications/i/item/9789241550543

5396

Hughes TF, Andel R, Small BJ, et al. Midlife fruit and vegetable consumption and risk of dementia in later life in Swedish twins. Am J Geriatr Psychiatry. 2010;18(5):413–20. https://pubmed.ncbi.nlm.nih.gov/19910881/

5397

Jiang X, Huang J, Song D, Deng R, Wei J, Zhang Z. Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: meta-analysis. Front Aging Neurosci. 2017;9:18. https://pubmed.ncbi.nlm.nih.gov/28223933/

5398

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

5399

Millin PM, Rickert GM. Effect of a strawberry and spinach dietary supplement on spatial learning in early and late middle-aged female rats. Antioxidants (Basel). 2018;8(1):E1. https://pubmed.ncbi.nlm.nih.gov/30577447/

5400

Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–8. https://pubmed.ncbi.nlm.nih.gov/20716914/

5401

Cherniack EP. A plant-tastic treatment for cognitive disorders. Maturitas. 2012;72(4):265–6. https://pubmed.ncbi.nlm.nih.gov/22658645/

5402

Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779. https://pubmed.ncbi.nlm.nih.gov/28970777/

5403

Shukitt-Hale B, Bielinski DF, Lau FC, Willis LM, Carey AN, Joseph JA. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. Br J Nutr. 2015;114(10):1542–9. https://pubmed.ncbi.nlm.nih.gov/26392037/

5404

Krikorian R, Shidler MD, Nash TA, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58(7):3996–4000. https://pubmed.ncbi.nlm.nih.gov/20047325/

5405

Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr. 2018;57(3):1169–80. https://pubmed.ncbi.nlm.nih.gov/28283823/

5406

Krikorian R, Kalt W, McDonald JE, Shidler MD, Summer SS, Stein AL. Cognitive performance in relation to urinary anthocyanins and their flavonoid-based products following blueberry supplementation in older adults at risk for dementia. J Funct Foods. 2020;64:103667. https://www.sciencedirect.com/science/article/pii/S1756464619305912

5407

Barfoot KL, May G, Lamport DJ, Ricketts J, Riddell PM, Williams CM. The effects of acute wild blueberry supplementation on the cognition of 7–10-year-old schoolchildren. Eur J Nutr. 2019;58(7):2911–20. https://pubmed.ncbi.nlm.nih.gov/30327868/

5408

Whyte AR, Schafer G, Williams CM. Cognitive effects following acute wild blueberry supplementation in 7– to 10-year-old children. Eur J Nutr. 2016;55(6):2151–62. https://pubmed.ncbi.nlm.nih.gov/26437830/

5409

Whyte AR, Schafer G, Williams CM. The effect of cognitive demand on performance of an executive function task following wild blueberry supplementation in 7 to 10 years old children. Food Funct. 2017;8(11):4129–38. https://pubmed.ncbi.nlm.nih.gov/29026903/

5410

Barfoot KL, Istas G, Feliciano RP, et al. Effects of daily consumption of wild blueberry on cognition and urinary metabolites in school-aged children: a pilot study. Eur J Nutr. 2021;60(8):4263–78. https://pubmed.ncbi.nlm.nih.gov/34023938/

5411

Whyte AR, Rahman S, Bell L, et al. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur J Nutr. 2021;60(3):1521–36. https://pubmed.ncbi.nlm.nih.gov/32747995/

5412

Whyte AR, Williams CM. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition. 2015;31(3):531–4. https://pubmed.ncbi.nlm.nih.gov/25701345/

5413

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

5414

Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods. 2015;19:688–99. https://www.sciencedirect.com/science/article/pii/S1756464615004910?via%3Dihub

5415

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

5416

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

5417

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

5418

Xiao D, Sandhu A, Huang Y, Park E, Edirisinghe I, Burton-Freeman BM. The effect of dietary factors on strawberry anthocyanins oral bioavailability. Food Funct. 2017;8(11):3970–9. https://pubmed.ncbi.nlm.nih.gov/28979957/

5419

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

5420

Zhu Y, Sun J, Lu W, et al. Effects of blueberry supplementation on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2017;31(3):165–71. https://pubmed.ncbi.nlm.nih.gov/27654329/

5421

Ahles S, Joris PJ, Plat J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci. 2021;22(12):6482. https://pubmed.ncbi.nlm.nih.gov/34204250/

5422

Barfoot KL, Istas G, Feliciano RP, et al. Effects of daily consumption of wild blueberry on cognition and urinary metabolites in school-aged children: a pilot study. Eur J Nutr. 2021;60(8):4263–78. https://pubmed.ncbi.nlm.nih.gov/34023938/

5423

Ahles S, Joris PJ, Plat J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci. 2021;22(12):6482. https://pubmed.ncbi.nlm.nih.gov/34204250/

5424

Curtis PJ, Berends L, van der Velpen V, et al. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin Nutr. 2022;41(1):165–76. https://pubmed.ncbi.nlm.nih.gov/34883305/

5425

Boespflug EL, Eliassen JC, Dudley JA, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21(4):297–305. https://pubmed.ncbi.nlm.nih.gov/28221821/

5426

McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018;64:147–56. https://pubmed.ncbi.nlm.nih.gov/29458842/

5427

Newman S, Stygall J, Hirani S, Shaefi S, Maze M. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology. 2007;106(3):572–90. https://pubmed.ncbi.nlm.nih.gov/17325517/

5428

Traupe I, Giacalone M, Agrimi J, et al. Postoperative cognitive dysfunction and short-term neuroprotection from blueberries: a pilot study. Minerva Anestesiol. 2018;84(12):1352–60. https://pubmed.ncbi.nlm.nih.gov/29856175/

5429

Brydges CR, Gaeta L. There is no meta-analytic evidence of blueberries improving cognitive performance or mood. Brain Behav Immun. 2020;85:192. https://pubmed.ncbi.nlm.nih.gov/31610217/

5430

Giacalone M, Di Sacco F, Traupe I, Topini R, Forfori F, Giunta F. Antioxidant and neuroprotective properties of blueberry polyphenols: a critical review. Nutr Neurosci. 2011;14(3):119–25. https://pubmed.ncbi.nlm.nih.gov/21756533/

5431

Carey AN, Pintea GI, Van Leuven S, et al. Red raspberry (Rubus ideaus) supplementation mitigates the effects of a high-fat diet on brain and behavior in mice. Nutr Neurosci. 2021;24(6):406–16. https://pubmed.ncbi.nlm.nih.gov/31328696/

5432

Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. Age (Dordr). 2016;38(5–6):393–404. https://pubmed.ncbi.nlm.nih.gov/27578256/

5433

Kent K, Charlton K, Roodenrys S, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr. 2017;56(1):333–41. https://pubmed.ncbi.nlm.nih.gov/26482148/

5434

Chai SC, Jerusik J, Davis K, Wright RS, Zhang Z. Effect of Montmorency tart cherry juice on cognitive performance in older adults: a randomized controlled trial. Food Funct. 2019;10(7):4423–31. https://pubmed.ncbi.nlm.nih.gov/31287117/

5435

Crews WD Jr, Harrison DW, Griffin ML, et al. A double-blinded, placebo-controlled, randomized trial of the neuropsychologic efficacy of cranberry juice in a sample of cognitively intact older adults: pilot study findings. J Altern Complement Med. 2005;11(2):305–9. https://pubmed.ncbi.nlm.nih.gov/18400709/

5436

Whyte AR, Cheng N, Butler LT, Lamport DJ, Williams CM. Flavonoid-rich mixed berries maintain and improve cognitive function over a 6 h period in young healthy adults. Nutrients. 2019;11(11):2685. https://pubmed.ncbi.nlm.nih.gov/31698695/

5437

Nilsson A, Salo I, Plaza M, Björck I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; a randomized cross-over study in healthy older adults. PLoS One. 2017;12(11):e0188173. https://pubmed.ncbi.nlm.nih.gov/29141041/

5438

Ahles S, Joris PJ, Plat J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci. 2021;22(12):6482. https://pubmed.ncbi.nlm.nih.gov/34204250/

5439

Jennings A, Steves CJ, Macgregor A, Spector T, Cassidy A. Increased habitual flavonoid intake predicts attenuation of cognitive ageing in twins. BMC Med. 2021;19(1):185. https://pubmed.ncbi.nlm.nih.gov/34420522/

5440

Lee S, Kim EY, Shin C. Changes in brain volume associated with vegetable intake in a general population. J Am Coll Nutr. 2019;38(6):506–12. https://pubmed.ncbi.nlm.nih.gov/30897041/

5441

Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol. 2005;57(5):713–20. https://pubmed.ncbi.nlm.nih.gov/15852398/

5442

Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Associations of vegetable and fruit consumption with age-related cognitive change. Neurology. 2006;67(8):1370–6. https://pubmed.ncbi.nlm.nih.gov/17060562/

5443

Li W, Sun L, Yue L, Li G, Xiao S. The association between eating green vegetables every day and mild cognitive impairment: a community-based cross-sectional study in Shanghai. Neuropsychiatr Dis Treat. 2019;15:3213–8. https://pubmed.ncbi.nlm.nih.gov/31819449/

5444

Morris MC, Wang Y, Barnes LL, Bennett DA, Dawson-Hughes B, Booth SL. Nutrients and bioactives in green leafy vegetables and cognitive decline: prospective study. Neurology. 2018;90(3):e214–22. https://pubmed.ncbi.nlm.nih.gov/29263222/

5445

Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol. 2005;57(5):713–20. https://pubmed.ncbi.nlm.nih.gov/15852398/

5446

Masci A, Mattioli R, Costantino P, et al. Neuroprotective effect of Brassica oleracea sprouts crude juice in a cellular model of Alzheimer’s disease. Oxid Med Cell Longev. 2015;2015:781938. https://pubmed.ncbi.nlm.nih.gov/26180595/

5447

Klomparens EA, Ding Y. The neuroprotective mechanisms and effects of sulforaphane. Brain Circ. 2019;5(2):74–83. https://pubmed.ncbi.nlm.nih.gov/31334360/

5448

Panjwani AA, Liu H, Fahey JW. Crucifers and related vegetables and supplements for neurologic disorders: what is the evidence? Curr Opin Clin Nutr Metab Care. 2018;21(6):451–7. https://pubmed.ncbi.nlm.nih.gov/30199394/

5449

Song L, Thornalley PJ. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol. 2007;45(2):216–24. https://pubmed.ncbi.nlm.nih.gov/17011103/

5450

Nouchi R, Hu Q, Saito T, Kawata NYdS, Nouchi H, Kawashima R. Brain training and sulforaphane intake interventions separately improve cognitive performance in healthy older adults, whereas a combination of these interventions does not have more beneficial effects: evidence from a randomized controlled trial. Nutrients. 2021;13(2):352. https://pubmed.ncbi.nlm.nih.gov/33503851/

5451

Jiraungkoorskul W. Review of neuro-nutrition used as anti-Alzheimer plant, spinach, Spinacia oleracea. Pharmacogn Rev. 2016;10(20):105–8. https://pubmed.ncbi.nlm.nih.gov/28082792/

5452

Stanaway L, Rutherfurd-Markwick K, Page R, Ali A. Performance and health benefits of dietary nitrate supplementation in older adults: a systematic review. Nutrients. 2017;9(11):E1171. https://pubmed.ncbi.nlm.nih.gov/29077028/

5453

Petrie M, Rejeski WJ, Basu S, et al. Beet root juice: an ergogenic aid for exercise and the aging brain. J Gerontol A Biol Sci Med Sci. 2017;72(9):1284–9. https://pubmed.ncbi.nlm.nih.gov/28329785/

5454

Hammond BR, Renzi LM. Carotenoids. Adv Nutr. 2013;4(4):474–6. https://pubmed.ncbi.nlm.nih.gov/23858095/

5455

Booth SL. Vitamin K: food composition and dietary intakes. Food Nutr Res. 2012;56:5505. https://pubmed.ncbi.nlm.nih.gov/22489217/

5456

Tanprasertsuk J, Ferland G, Johnson MA, et al. Concentrations of circulating phylloquinone, but not cerebral menaquinone-4, are positively correlated with a wide range of cognitive measures: exploratory findings in centenarians. J Nutr. 2020;150(1):82–90. https://pubmed.ncbi.nlm.nih.gov/31504672/

5457

Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev. 2014;72(9):605–12. https://pubmed.ncbi.nlm.nih.gov/25109868/

5458

Erdman JW, Smith JW, Kuchan MJ, et al. Lutein and brain function. Foods. 2015;4(4):547–64. https://pubmed.ncbi.nlm.nih.gov/26566524/

5459

Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev. 2014;72(9):605–12. https://pubmed.ncbi.nlm.nih.gov/25109868/

5460

Kelly D, Coen RF, Akuffo KO, et al. Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J Alzheimers Dis. 2015;48(1):261–77. https://pubmed.ncbi.nlm.nih.gov/26401946/

5461

Vishwanathan R, Schalch W, Johnson EJ. Macular pigment carotenoids in the retina and occipital cortex are related in humans. Nutr Neurosci. 2016;19(3):95–101. https://pubmed.ncbi.nlm.nih.gov/25752849/

5462

Mewborn CM, Terry DP, Renzi-Hammond LM, Hammond BR, Miller LS. Relation of retinal and serum lutein and zeaxanthin to white matter integrity in older adults: a diffusion tensor imaging study. Arch Clin Neuropsychol. 2018;33(7):861–74. https://pubmed.ncbi.nlm.nih.gov/29161349/

5463

Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev. 2014;72(9):605–12. https://pubmed.ncbi.nlm.nih.gov/25109868/

5464

Edwards CG, Walk AM, Thompson SV, et al. Effects of 12-week avocado consumption on cognitive function among adults with overweight and obesity. Int J Psychophysiol. 2020;148:13–24. https://pubmed.ncbi.nlm.nih.gov/31846631/

5465

Edwards CG, Walk AM, Thompson SV, et al. Effects of 12-week avocado consumption on cognitive function among adults with overweight and obesity. Int J Psychophysiol. 2020;148:13–24. https://pubmed.ncbi.nlm.nih.gov/31846631/

5466

Hammond BR, Johnson EJ, Russell RM, et al. Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci. 1997;38(9):1795–801. https://pubmed.ncbi.nlm.nih.gov/9286268/

5467

Bovier ER, Hammond BR. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch Biochem Biophys. 2015;572:54–7. https://pubmed.ncbi.nlm.nih.gov/25483230/

5468

Nouchi R, Suiko T, Kimura E, et al. Effects of lutein and astaxanthin intake on the improvement of cognitive functions among healthy adults: a systematic review of randomized controlled trials. Nutrients. 2020;12(3):E617. https://pubmed.ncbi.nlm.nih.gov/32120794/

5469

Renzi LM, Dengler MJ, Puente A, Miller LS, Hammond BR. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging. 2014;35(7):1695–9. https://pubmed.ncbi.nlm.nih.gov/24508218/

5470

Nolan JM, Loskutova E, Howard A, et al. The impact of supplemental macular carotenoids in Alzheimer’s disease: a randomized clinical trial. J Alzheimers Dis. 2015;44(4):1157–69. https://pubmed.ncbi.nlm.nih.gov/25408222/

5471

Saitsu Y, Nishide A, Kikushima K, Shimizu K, Ohnuki K. Improvement of cognitive functions by oral intake of Hericium erinaceus. Biomed Res. 2019;40(4):125–31. https://pubmed.ncbi.nlm.nih.gov/31413233/

5472

Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23(3):367–72. https://pubmed.ncbi.nlm.nih.gov/18844328/

5473

Rajaram S, Jones J, Lee GJ. Plant-based dietary patterns, plant foods, and age-related cognitive decline. Adv Nutr. 2019;10(Suppl_4):S422–36. https://pubmed.ncbi.nlm.nih.gov/31728502/

5474

Huang Q, Braffett BH, Simmens SJ, Young HA, Ogden CL. Dietary polyphenol intake in us adults and 10-year trends: 2007–2016. J Acad Nutr Diet. 2020;120(11):1821–33. https://pubmed.ncbi.nlm.nih.gov/32807722/

5475

Pham K, Mulugeta A, Zhou A, O’Brien JT, Llewellyn DJ, Hyppönen E. High coffee consumption, brain volume and risk of dementia and stroke. Nutr Neurosci. Published online June 24, 2021:1–12.; https://pubmed.ncbi.nlm.nih.gov/34165394/

5476

Ran LS, Liu WH, Fang YY, et al. Alcohol, coffee and tea intake and the risk of cognitive deficits: a dose-response meta-analysis. Epidemiol Psychiatr Sci. 2021;30:e13. https://pubmed.ncbi.nlm.nih.gov/33568254/

5477

Ran LS, Liu WH, Fang YY, et al. Alcohol, coffee and tea intake and the risk of cognitive deficits: a dose-response meta-analysis. Epidemiol Psychiatr Sci. 2021;30:e13. https://pubmed.ncbi.nlm.nih.gov/33568254/

5478

Einöther SJ, Martens VE. Acute effects of tea consumption on attention and mood. Am J Clin Nutr. 2013;98(6 Suppl):1700S-8S. https://pubmed.ncbi.nlm.nih.gov/24172303/

5479

Liu X, Du X, Han G, Gao W. Association between tea consumption and risk of cognitive disorders: a dose-response meta-analysis of observational studies. Oncotarget. 2017;8(26):43306–21. https://pubmed.ncbi.nlm.nih.gov/28496007/

5480

Li XH, Li CY, Lu JM, Tian RB, Wei J. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett. 2012;514(1):46–50. https://pubmed.ncbi.nlm.nih.gov/22390900/

5481

Luo JF, Dong Y, Chen JY, Lu JH. The effect and underlying mechanisms of garlic extract against cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis of experimental animal studies. J Ethnopharmacol. 2021;280:114423. https://pubmed.ncbi.nlm.nih.gov/34273446/

5482

Tasnim S, Haque PS, Bari MS, et al. Allium sativum L. improves visual memory and attention in healthy human volunteers. Evid Based Complement Alternat Med. 2015;2015:103416. https://pubmed.ncbi.nlm.nih.gov/26351508/

5483

Saenghong N, Wattanathorn J, Muchimapura S, et al. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid Based Complement Alternat Med. 2012;2012:383062. https://pubmed.ncbi.nlm.nih.gov/22235230/

5484

Bin Sayeed MS, Shams T, Fahim Hossain S, et al. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males. J Ethnopharmacol. 2014;152(1):156–62. https://pubmed.ncbi.nlm.nih.gov/24412554/

5485

Bin Sayeed MS, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF, Rahman MR. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. J Ethnopharmacol. 2013;148(3):780–6. https://pubmed.ncbi.nlm.nih.gov/23707331/

5486

Mazza E, Fava A, Ferro Y, et al. Impact of legumes and plant proteins consumption on cognitive performances in the elderly. J Transl Med. 2017;15(1):109. https://pubmed.ncbi.nlm.nih.gov/28532453/

5487

An R, Liu G, Khan N, Yan H, Wang Y. Dietary habits and cognitive impairment risk among oldest-old Chinese. J Gerontol B Psychol Sci Soc Sci. 2019;74(3):474–83. https://pubmed.ncbi.nlm.nih.gov/28184889/

5488

Cui C, Birru RL, Snitz BE, et al. Effects of soy isoflavones on cognitive function: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2020;78(2):134–44. https://pubmed.ncbi.nlm.nih.gov/31504836/

5489

File SE, Jarrett N, Fluck E, Duffy R, Casey K, Wiseman H. Eating soya improves human memory. Psychopharmacology (Berl). 2001;157(4):430–6. https://pubmed.ncbi.nlm.nih.gov/11605103/

5490

Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed June 28, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf

5491

Gleason CE, Fischer BL, Dowling NM, et al. Cognitive effects of soy isoflavones in patients with Alzheimer’s disease. J Alzheimers Dis. 2015;47(4):1009–19. https://pubmed.ncbi.nlm.nih.gov/26401779/

5492

Sekikawa A, Higashiyama A, Lopresti BJ, et al. Associations of equol-producing status with white matter lesion and amyloid-ß deposition in cognitively normal elderly Japanese. Alzheimers Dement (N Y). 2020;6(1):e12089. https://pubmed.ncbi.nlm.nih.gov/33117881/

5493

Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora – implications for health. Mol Nutr Food Res. 2007;51(7):765–81. https://pubmed.ncbi.nlm.nih.gov/17579894/

5494

Yuan JP, Wang JH, Liu X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora – implications for health. Mol Nutr Food Res. 2007;51(7):765–81. https://pubmed.ncbi.nlm.nih.gov/17579894/

5495

Sugiyama Y, Masumori N, Fukuta F, et al. Influence of isoflavone intake and equol-producing intestinal flora on prostate cancer risk. Asian Pac J Cancer Prev. 2013;14(1):1–4. https://pubmed.ncbi.nlm.nih.gov/23534704/

5496

Setchell KDR, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006;136(8):2188–93. https://pubmed.ncbi.nlm.nih.gov/16857839/

5497

Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer. 2000;36(1):27–32. https://pubmed.ncbi.nlm.nih.gov/10798213/

5498

Setchell KDR, Brown NM, Summer S, et al. Dietary factors influence production of the soy isoflavone metabolite s-(-)equol in healthy adults. J Nutr. 2013;143(12):1950–8. https://pubmed.ncbi.nlm.nih.gov/24089421/

5499

Setchell KDR, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006;136(8):2188–93. https://pubmed.ncbi.nlm.nih.gov/16857839/

5500

Foscolou A, D’Cunha NM, Naumovski N, et al. The association between whole grain products consumption and successful aging: a combined analysis of MEDIS and ATTICA epidemiological studies. Nutrients. 2019;11(6):E1221. https://pubmed.ncbi.nlm.nih.gov/31146435/

5501

Shimizu C, Wakita Y, Kihara M, Kobayashi N, Tsuchiya Y, Nabeshima T. Association of lifelong intake of barley diet with healthy aging: changes in physical and cognitive functions and intestinal microbiome in senescence-accelerated mouse-prone 8(SAMP8). Nutrients. 2019;11(8):E1770. https://pubmed.ncbi.nlm.nih.gov/31374892/

5502

Liu X, Guasch-Ferré M, Tobias DK, Li Y. Association of walnut consumption with total and cause-specific mortality and life expectancy in U.S. Adults. Nutrients. 2021;13(8):2699. https://pubmed.ncbi.nlm.nih.gov/34444859/

5503

O’Brien J, Okereke O, Devore E, Rosner B, Breteler M, Grodstein F. Long-term intake of nuts in relation to cognitive function in older women. J Nutr Health Aging. 2014;18(5):496–502. https://pubmed.ncbi.nlm.nih.gov/24886736/

5504

Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094. https://pubmed.ncbi.nlm.nih.gov/25961184/

5505

Greenwood CE, Parrott MD. Nutrition as a component of dementia risk reduction strategies. Healthc Manage Forum. 2017;30(1):40–5. https://pubmed.ncbi.nlm.nih.gov/28929899/

5506

Jayedi A, Shab-Bidar S. Fish consumption and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. Adv Nutr. 2020;11(5):1123–33. https://pubmed.ncbi.nlm.nih.gov/32207773/

5507

Patan MJ, Kennedy DO, Husberg C, et al. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. Am J Clin Nutr. 2021;114(3):914–24. https://pubmed.ncbi.nlm.nih.gov/34113957/

5508

Macaron T, Giudici KV, Bowman GL, et al. Associations of Omega-3 fatty acids with brain morphology and volume in cognitively healthy older adults: a narrative review. Ageing Res Rev. 2021;67:101300. https://pubmed.ncbi.nlm.nih.gov/33607289/

5509

Wennberg M, Tornevi A, Johansson I, Hörnell A, Norberg M, Bergdahl IA. Diet and lifestyle factors associated with fish consumption in men and women: a study of whether gender differences can result in gender-specific confounding. Nutr J. 2012;11:101. https://pubmed.ncbi.nlm.nih.gov/23210480/

5510

Maciel E da S, Sonati JG, Galvão JA, Oetterer M. Fish consumption and lifestyle: a cross-sectional study. Food Sci Technol. 2019;39(suppl 1):141–5. https://www.scielo.br/j/cta/a/5nHP5vk9j8FbcYPZDfMQXvM/?lang=en

5511

Li ZH, Zhong WF, Liu S, et al. Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: evidence from a large population based cohort study. BMJ. 2020;368:m456. https://pubmed.ncbi.nlm.nih.gov/32131999/

5512

Burckhardt M, Herke M, Wustmann T, Watzke S, Langer G, Fink A. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;2016(4):CD009002. https://pubmed.ncbi.nlm.nih.gov/27063583/

5513

Peters R, Breitner J, James S, et al. Dementia risk reduction: why haven’t the pharmacological risk reduction trials worked? An in-depth exploration of seven established risk factors. Alzheimers Dement (N Y). 2021;7(1):e12202. https://pubmed.ncbi.nlm.nih.gov/34934803/

5514

Brainard JS, Jimoh OF, Deane KHO, et al. Omega-3, omega-6, and polyunsaturated fat for cognition: systematic review and meta-analysis of randomized trials. J Am Med Dir Assoc. 2020;21(10):1439–50.e21. https://pubmed.ncbi.nlm.nih.gov/32305302/

5515

Piro A, Tagarelli G, Lagonia P, Tagarelli A, Quattrone A. Casimir Funk: his discovery of the vitamins and their deficiency disorders. Ann Nutr Metab. 2010;57(2):85–8. https://pubmed.ncbi.nlm.nih.gov/20805686/

5516

Casmir F. The Journal of State Medicine. Volume XX: 341–368, 1912. The etiology of the deficiency diseases, Beri-beri, polyneuritis in birds, epidemic dropsy, scurvy, experimental scurvy in animals, infantile scurvy, ship beri-beri, pellagra. Nutr Rev. 1975;33(6):176–7. https://pubmed.ncbi.nlm.nih.gov/1095967/

5517

Semba RD. The discovery of the vitamins. Int J Vitam Nutr Res. 2012;82(5):310–5. https://pubmed.ncbi.nlm.nih.gov/23798048/

5518

Holman RT. The slow discovery of the importance of omega 3 essential fatty acids in human health. J Nutr. 1998;128(2 Suppl):427S-33S. https://pubmed.ncbi.nlm.nih.gov/9478042/

5519

Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003;78(3 Suppl):640S-6S. https://pubmed.ncbi.nlm.nih.gov/12936959/

5520

Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. Lancet Neurol. 2017;16(5):377–89. https://pubmed.ncbi.nlm.nih.gov/28359749/

5521

Hooper C, Vellas B. Commentary: Fatty acids and Alzheimer’s disease: evidence on cognition and cortical ß-amyloid from secondary analyses of the Multidomain Alzheimer Preventive Trial. J Prev Alzheimers Dis. 2018;5(3):168–70. https://pubmed.ncbi.nlm.nih.gov/29972208/

5522

Witte AV, Kerti L, Hermannstädter HM, et al. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb Cortex. 2014;24(11):3059–68. https://pubmed.ncbi.nlm.nih.gov/23796946/

5523

Zhang YP, Miao R, Li Q, Wu T, Ma F. Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: a 12-month randomized, double-blind, placebo-controlled trial. J Alzheimers Dis. 2017;55(2):497–507. https://pubmed.ncbi.nlm.nih.gov/27716665/

5524

Sun GY, Simonyi A, Fritsche KL, et al. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids. 2018;136:3–13. https://pubmed.ncbi.nlm.nih.gov/28314621/

5525

Muskiet FAJ, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA. Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr. 2004;134(1):183–6. https://pubmed.ncbi.nlm.nih.gov/14704315/

5526

Balachandar R, Soundararajan S, Bagepally BS. Docosahexaenoic acid supplementation in age-related cognitive decline: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2020;76(5):639–48. https://pubmed.ncbi.nlm.nih.gov/32060571/

5527

Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids – a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr. Published online February 12, 2021:1–16.; https://pubmed.ncbi.nlm.nih.gov/33576691/

5528

Davis BC, Kris-Etherton PM. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr. 2003;78(3 Suppl):640S-6S. https://pubmed.ncbi.nlm.nih.gov/12936959/

5529

Brainard JS, Jimoh OF, Deane KHO, et al. Omega-3, omega-6, and polyunsaturated fat for cognition: systematic review and meta-analysis of randomized trials. J Am Med Dir Assoc. 2020;21(10):1439–50.e21. https://pubmed.ncbi.nlm.nih.gov/32305302/

5530

Danthiir V, Hosking D, Burns NR, et al. Cognitive performance in older adults is inversely associated with fish consumption but not erythrocyte membrane n-3 fatty acids. J Nutr. 2014;144(3):311–20. https://pubmed.ncbi.nlm.nih.gov/24927114/

5531

Laurin D, Verreault R, Lindsay J, Dewailly E, Holub BJ. Omega-3 fatty acids and risk of cognitive impairment and dementia. J Alzheimers Dis. 2003;5(4):315–22. https://pubmed.ncbi.nlm.nih.gov/14624027/

5532

Foley MM, Seidel I, Sevier J, Wendt J, Kogan M. One man’s swordfish story: the link between Alzheimer’s disease and mercury exposure. Complement Ther Med. 2020;52:102499. https://pubmed.ncbi.nlm.nih.gov/32951747/

5533

Xu L, Zhang W, Liu X, Zhang C, Wang P, Zhao X. Circulatory levels of toxic metals (aluminum, cadmium, mercury, lead) in patients with Alzheimer’s disease: a quantitative meta-analysis and systematic review. J Alzheimers Dis. 2018;62(1):361–72. https://pubmed.ncbi.nlm.nih.gov/32761898/

5534

Srikumar TS, Johansson GK, Ockerman PA, Gustafsson JA, Akesson B. Trace element status in healthy subjects switching from a mixed to a lactovegetarian diet for 12 mo. Am J Clin Nutr. 1992;55(4):885–90. https://pubmed.ncbi.nlm.nih.gov/1550072/

5535

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

5536

Morris MC, Brockman J, Schneider JA, et al. Association of seafood consumption, brain mercury level, and APOE e4 status with brain neuropathology in older adults. JAMA. 2016;315(5):489–97. https://pubmed.ncbi.nlm.nih.gov/26836731/

5537

Glynn A, Aune M, Darnerud PO, et al. Determinants of serum concentrations of organochlorine compounds in Swedish pregnant women: a cross-sectional study. Environ Health. 2007;6:2. https://pubmed.ncbi.nlm.nih.gov/17266775/

5538

Bourdon JA, Bazinet TM, Arnason TT, Kimpe LE, Blais JM, White PA. Polychlorinated biphenyls (PCBs) contamination and aryl hydrocarbon receptor (AhR) agonist activity of Omega-3 polyunsaturated fatty acid supplements: implications for daily intake of dioxins and PCBs. Food Chem Toxicol. 2010;48(11):3093–7. https://pubmed.ncbi.nlm.nih.gov/20692313/

5539

Arterburn LM, Oken HA, Bailey Hall E, Hamersley J, Kuratko CN, Hoffman JP. Algal-oil capsules and cooked salmon: nutritionally equivalent sources of docosahexaenoic acid. J Am Diet Assoc. 2008;108(7):1204–9. https://pubmed.ncbi.nlm.nih.gov/17713804/

5540

Greene J, Ashburn SM, Razzouk L, Smith DA. Fish oils, coronary heart disease, and the environment. Am J Public Health. 2013;103(9):1568–76. https://pubmed.ncbi.nlm.nih.gov/23409906/

5541

Cox PA, Sacks OW. Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology. 2002;58(6):956–9. https://pubmed.ncbi.nlm.nih.gov/11914415/

5542

Banack SA, Cox PA. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology. 2003;61(3):387–9. https://pubmed.ncbi.nlm.nih.gov/12913204/

5543

Pablo J, Banack SA, Cox PA, et al. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol Scand. 2009;120(4):216–25. https://pubmed.ncbi.nlm.nih.gov/19254284/

5544

Brand LE, Pablo J, Compton A, Hammerschlag N, Mash DC. Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida aquatic food webs. Harmful Algae. 2010;9(6):620–35. https://pubmed.ncbi.nlm.nih.gov/21057660/

5545

Bradley WG, Mash DC. Beyond Guam: the cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph Lateral Scler. 2009;10 Suppl 2:7–20. https://pubmed.ncbi.nlm.nih.gov/19929726/

5546

Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc R Soc B. 2016;283(1823):20152397. https://pubmed.ncbi.nlm.nih.gov/26791617/

5547

Meneely JP, Chevallier OP, Graham S, Greer B, Green BD, Elliott CT. ß-methylamino-L-alanine (BMAA) is not found in the brains of patients with confirmed Alzheimer’s disease. Sci Rep. 2016;6:36363. https://pubmed.ncbi.nlm.nih.gov/27821863/

5548

Banack SA, Murch SJ. Methods for the chemical analysis of ß-N-Methylamino-L-alanine: what is known and what remains to be determined. Neurotox Res. 2018;33(1):184–91. https://pubmed.ncbi.nlm.nih.gov/28474174/

5549

Mondo K, Hammerschlag N, Basile M, Pablo J, Banack SA, Mash DC. Cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) in shark fins. Mar Drugs. 2012;10(2):509–20. https://pubmed.ncbi.nlm.nih.gov/22412816/

5550

Torbick N, Ziniti B, Stommel E, et al. Assessing cyanobacterial harmful algal blooms as risk factors for amyotrophic lateral sclerosis. Neurotox Res. 2018;33(1):199–212. https://pubmed.ncbi.nlm.nih.gov/28470570/

5551

Holtcamp W. Shark fin consumption may expose people to neurotoxic BMAA. Environ Health Perspect. 2012;120(5):a191. https://pubmed.ncbi.nlm.nih.gov/22548869/

5552

Lance E, Arnich N, Maignien T, Biré R. Occurrence of ß-N-methylamino-L-alanine (BMAA) and isomers in aquatic environments and aquatic food sources for humans. Toxins (Basel). 2018;10(2):E83. https://pubmed.ncbi.nlm.nih.gov/29443939/

5553

Mondo K, Broc Glover W, Murch SJ, et al. Environmental neurotoxins ß-N-methylamino-L-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem Toxicol. 2014;70:26–32. https://pubmed.ncbi.nlm.nih.gov/24755394/

5554

Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. Detection of cyanotoxins in algae dietary supplements. Toxins (Basel). 2017;9(3):E76. https://pubmed.ncbi.nlm.nih.gov/28245621/

5555

Glover WB, Baker TC, Murch SJ, Brown P. Determination of ß-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in food products containing cyanobacteria by ultra-performance liquid chromatography and tandem mass spectrometry: single-laboratory validation. J AOAC Int. 2015;98(6):1559–65. https://pubmed.ncbi.nlm.nih.gov/26651568/

5556

Lehtisalo J, Levälahti E, Lindström J, et al. Dietary changes and cognition over 2 years within a multidomain intervention trial – The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement. 2019;15(3):410–7. https://pubmed.ncbi.nlm.nih.gov/30527596/

5557

Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. https://pubmed.ncbi.nlm.nih.gov/25771249/

5558

Montero-Odasso M, Ismail Z, Livingston G. One third of dementia cases can be prevented within the next 25¿years by tackling risk factors. The case “for” and “against.” Alzheimers Res Ther. 2020;12:81. https://pubmed.ncbi.nlm.nih.gov/32641088/

5559

Lehtisalo J, Levälahti E, Lindström J, et al. Dietary changes and cognition over 2 years within a multidomain intervention trial – The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement. 2019;15(3):410–7. https://pubmed.ncbi.nlm.nih.gov/30527596/

5560

Knight A, Bryan J, Murphy K. The Mediterranean diet and age-related cognitive functioning: a systematic review of study findings and neuropsychological assessment methodology. Nutr Neurosci. 2017;20(8):449–68. https://pubmed.ncbi.nlm.nih.gov/27192034/

5561

Coelho-Júnior HJ, Trichopoulou A, Panza F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: a systematic review and meta-analysis. Ageing Res Rev. 2021;70:101395. https://pubmed.ncbi.nlm.nih.gov/34153553/

5562

Radd-Vagenas S, Duffy SL, Naismith SL, Brew BJ, Flood VM, Fiatarone Singh MA. Effect of the Mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials. Am J Clin Nutr. 2018;107(3):389–404. https://pubmed.ncbi.nlm.nih.gov/29566197/

5563

Marseglia A, Xu W, Fratiglioni L, et al. Effect of the NU-AGE diet on cognitive functioning in older adults: a randomized controlled trial. Front Physiol. 2018;9:349. https://pubmed.ncbi.nlm.nih.gov/29670545/

5564

Roberts RO, Geda YE, Cerhan JR, et al. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dement Geriatr Cogn Disord. 2010;29(5):413–23. https://pubmed.ncbi.nlm.nih.gov/20502015/

5565

Titova OE, Ax E, Brooks SJ, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48(12):1443–8. https://pubmed.ncbi.nlm.nih.gov/24126083/

5566

Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007–14. https://pubmed.ncbi.nlm.nih.gov/25681666/

5567

Marcason W. What are the components to the MIND diet? J Acad Nutr Diet. 2015;115(10):1744. https://pubmed.ncbi.nlm.nih.gov/26407649/

5568

Kheirouri S, Alizadeh M. MIND diet and cognitive performance in older adults: a systematic review. Crit Rev Food Sci Nutr. 2022;62(29):8059–77. https://pubmed.ncbi.nlm.nih.gov/33989093/

5569

Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22. https://pubmed.ncbi.nlm.nih.gov/26086182/

5570

Corley J. Adherence to the MIND diet is associated with 12-year all-cause mortality in older adults. Public Health Nutr. Published online September 3, 2020:1–10.; https://pubmed.ncbi.nlm.nih.gov/32878656/

5571

Arjmand G, Abbas-Zadeh M, Eftekhari MH. Effect of MIND diet intervention on cognitive performance and brain structure in healthy obese women: a randomized controlled trial. Sci Rep. 2022;12(1):2871. https://pubmed.ncbi.nlm.nih.gov/35190536/

5572

Berendsen AM, Kang JH, Feskens EJM, de Groot CPGM, Grodstein F, van de Rest O. Association of long-term adherence to the mind diet with cognitive function and cognitive decline in American women. J Nutr Health Aging. 2018;22(2):222–9. https://pubmed.ncbi.nlm.nih.gov/29380849/

5573

Titova OE, Ax E, Brooks SJ, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48(12):1443–8. https://pubmed.ncbi.nlm.nih.gov/24126083/

5574

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

5575

Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35 Suppl 2:S59–64. https://pubmed.ncbi.nlm.nih.gov/24970568/

5576

Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood – brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40(1):45–52. https://pubmed.ncbi.nlm.nih.gov/23167559/

5577

Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9. https://pubmed.ncbi.nlm.nih.gov/33839765/

5578

Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer’s dementia – nutritional approach to modulate inflammation. Pharmacol Biochem Behav. 2019;184:172743. https://pubmed.ncbi.nlm.nih.gov/31356838/

5579

Wu J, Song X, Chen GC, et al. Dietary pattern in midlife and cognitive impairment in late life: a prospective study in Chinese adults. Am J Clin Nutr. 2019;110(4):912–20. https://pubmed.ncbi.nlm.nih.gov/31374567/

5580

Kheirouri S, Alizadeh M. MIND diet and cognitive performance in older adults: a systematic review. Crit Rev Food Sci Nutr. Published online May 14, 2021:1–19.; https://pubmed.ncbi.nlm.nih.gov/33989093/

5581

Pistollato F, Battino M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci Technol. 2014;40(1):62–81. https://www.sciencedirect.com/science/article/abs/pii/S0924224414001642

5582

Sherchan P, Miles F, Orlich M, et al. Effects of lifestyle factors on cognitive resilience: commentary on “What this sunny, religious town in California teaches us about living longer.” Transl Stroke Res. 2020;11:161–4. https://pubmed.ncbi.nlm.nih.gov/32062815/

5583

Sherzai D, Sherzai A. Preventing Alzheimer’s: our most urgent health care priority. Am J Lifestyle Med. 2019;13(5):451–61. https://pubmed.ncbi.nlm.nih.gov/31523210/

5584

Plassman BL, Williams JW, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med. 2010;153(3):182–93. https://pubmed.ncbi.nlm.nih.gov/20547887/

5585

Daviglus ML, Plassman BL, Pirzada A, et al. Risk factors and preventive interventions for Alzheimer disease: state of the science. Arch Neurol. 2011;68(9):1185–90. https://pubmed.ncbi.nlm.nih.gov/21555601/

5586

Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5. https://pubmed.ncbi.nlm.nih.gov/9555760/

5587

Friedland RP, Nandi S. A modest proposal for a longitudinal study of dementia prevention (with apologies to Jonathan Swift, 1729). J Alzheimers Dis. 2013;33(2):313–5. https://pubmed.ncbi.nlm.nih.gov/22986779/

5588

Friedland RP, Nandi S. A modest proposal for a longitudinal study of dementia prevention (with apologies to Jonathan Swift, 1729). J Alzheimers Dis. 2013;33(2):313–5. https://pubmed.ncbi.nlm.nih.gov/22986779/

5589

Preventive Medicine Research Institute. Lifestyle intervention for early Alzheimer’s disease. Identifier: NCT04606420. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04606420. Published October 28, 2020. Accessed June 24, 2022.; https://clinicaltrials.gov/ct2/show/NCT04606420

5590

Dean Ornish, Personal Communication.

5591

Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34(11):1091–6. https://pubmed.ncbi.nlm.nih.gov/17880359/

5592

Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18(1):57–89. https://pubmed.ncbi.nlm.nih.gov/25431878/

5593

Fougère B, van Kan GA, Vellas B, Cesari M. Redox systems, antioxidants and sarcopenia. Curr Protein Pept Sci. 2018;19(7):643–8. https://pubmed.ncbi.nlm.nih.gov/28317484/

5594

Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34(11):1091–6. https://pubmed.ncbi.nlm.nih.gov/17880359/

5595

Scott D, Blizzard L, Fell J, Jones G. The epidemiology of sarcopenia in community living older adults: what role does lifestyle play? J Cachexia Sarcopenia Muscle. 2011;2(3):125–34. https://pubmed.ncbi.nlm.nih.gov/21966639/

5596

Physical activity: PA-1 Reduce the proportion of adults who engage in no leisure-time physical activity. HealthyPeople.gov. https://www.healthypeople.gov/2020/data-search/Search-the-Data?nid=5052. Accessed August 12, 2022.; https://www.healthypeople.gov/2020/data-search/Search-the-Data?nid=5052

5597

Faulkner JA, Larkin LM, Claflin DR, Brooks SV. Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol. 2007;34(11):1091–6. https://pubmed.ncbi.nlm.nih.gov/17880359/

5598

Fougère B, van Kan GA, Vellas B, Cesari M. Redox systems, antioxidants and sarcopenia. Curr Protein Pept Sci. 2018;19(7):643–8. https://pubmed.ncbi.nlm.nih.gov/28317484/

5599

Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18(1):57–89. https://pubmed.ncbi.nlm.nih.gov/25431878/

5600

Xia L, Zhao R, Wan Q, et al. Sarcopenia and adverse health-related outcomes: an umbrella review of meta-analyses of observational studies. Cancer Med. 2020;9(21):7964–78. https://pubmed.ncbi.nlm.nih.gov/32924316/

5601

Li R, Xia J, Zhang X, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458–67. https://pubmed.ncbi.nlm.nih.gov/28991040/

5602

Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61(1):72–7. https://pubmed.ncbi.nlm.nih.gov/16456196/

5603

Talar K, Hernández-Belmonte A, Vetrovsky T, Steffl M, Kalamacka E, Courel-Ibáñez J. Benefits of resistance training in early and late stages of frailty and sarcopenia: a systematic review and meta-analysis of randomized controlled studies. J Clin Med. 2021;10(8):1630. https://pubmed.ncbi.nlm.nih.gov/33921356/

5604

Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of old age disability. JAMA. 1999;281(6):558–60. https://pubmed.ncbi.nlm.nih.gov/10022113/

5605

The Lancet. Bringing frailty into all realms of medicine. Lancet. 2019;394(10206):1298. https://pubmed.ncbi.nlm.nih.gov/31609212/

5606

Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci. 2001;56(3):M146–57. https://pubmed.ncbi.nlm.nih.gov/11253156/

5607

Pansarasa O, Pistono C, Davin A, et al. Altered immune system in frailty: genetics and diet may influence inflammation. Ageing Res Rev. 2019;54:100935. https://pubmed.ncbi.nlm.nih.gov/31326616/

5608

Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, et al. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 2015;18(1):57–89. https://pubmed.ncbi.nlm.nih.gov/25431878/

5609

Rodríguez-Mañas L. Determinants of frailty and longevity: are they the same ones? Nestle Nutr Inst Workshop Ser. 2015;83:29–39. https://pubmed.ncbi.nlm.nih.gov/26485702/

5610

Scott D, Blizzard L, Fell J, Jones G. The epidemiology of sarcopenia in community living older adults: what role does lifestyle play? J Cachexia Sarcopenia Muscle. 2011;2(3):125–34. https://pubmed.ncbi.nlm.nih.gov/21966639/

5611

Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (1985). 2000;88(4):1321–6. https://pubmed.ncbi.nlm.nih.gov/10749826/

5612

Shimokata H, Ando F, Yuki A, Otsuka R. Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int. 2014;14 Suppl 1:85–92. https://pubmed.ncbi.nlm.nih.gov/24450565/

5613

Moore SA, Hrisos N, Errington L, et al. Exercise as a treatment for sarcopenia: an umbrella review of systematic review evidence. Physiotherapy. 2020;107:189–201. https://pubmed.ncbi.nlm.nih.gov/32026819/

5614

Paproski JJ, Finello GC, Murillo A, Mandel E. The importance of protein intake and strength exercises for older adults. JAAPA. 2019;32(11):32–6. https://pubmed.ncbi.nlm.nih.gov/31663893/

5615

Moore SA, Hrisos N, Errington L, et al. Exercise as a treatment for sarcopenia: an umbrella review of systematic review evidence. Physiotherapy. 2020;107:189–201. https://pubmed.ncbi.nlm.nih.gov/32026819/

5616

Talar K, Hernández-Belmonte A, Vetrovsky T, Steffl M, Kalamacka E, Courel-Ibáñez J. Benefits of resistance training in early and late stages of frailty and sarcopenia: a systematic review and meta-analysis of randomized controlled studies. J Clin Med. 2021;10(8):1630. https://pubmed.ncbi.nlm.nih.gov/33921356/

5617

Leenders M, Verdijk LB, van der Hoeven L, van Kranenburg J, Nilwik R, van Loon LJC. Elderly men and women benefit equally from prolonged resistance-type exercise training. J Gerontol A Biol Sci Med Sci. 2013;68(7):769–79. https://pubmed.ncbi.nlm.nih.gov/23223011/

5618

Buatois S, Miljkovic D, Manckoundia P, et al. Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. J Am Geriatr Soc. 2008;56(8):1575–7. https://pubmed.ncbi.nlm.nih.gov/18808608/

5619

Kidd T, Mold F, Jones C, et al. What are the most effective interventions to improve physical performance in pre-frail and frail adults? A systematic review of randomised control trials. BMC Geriatr. 2019;19(1):184. https://pubmed.ncbi.nlm.nih.gov/31291884/

5620

Tarazona-Santabalbina FJ, Gómez-Cabrera MC, Pérez-Ros P, et al. A multicomponent exercise intervention that reverses frailty and improves cognition, emotion, and social networking in the community-dwelling frail elderly: a randomized clinical trial. J Am Med Dir Assoc. 2016;17(5):426–33. https://pubmed.ncbi.nlm.nih.gov/26947059/

5621

Paddon-Jones D, Leidy H. Dietary protein and muscle in older persons. Curr Opin Clin Nutr Metab Care. 2014;17(1):5–11. https://pubmed.ncbi.nlm.nih.gov/24310053/

5622

Paddon-Jones D, Sheffield-Moore M, Urban RJ, et al. Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab. 2004;89(9):4351–8. https://pubmed.ncbi.nlm.nih.gov/15356032/

5623

Hvid LG, Suetta C, Nielsen JH, et al. Aging impairs the recovery in mechanical muscle function following 4 days of disuse. Exp Gerontol. 2014;52:1–8. https://pubmed.ncbi.nlm.nih.gov/24447828/

5624

Lafont C, Gérard S, Voisin T, et al. Reducing “iatrogenic disability” in the hospitalized frail elderly. J Nutr Health Aging. 2011;15(8):645–60. https://pubmed.ncbi.nlm.nih.gov/21968859/

5625

Breen L, Stokes KA, Churchward-Venne TA, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98(6):2604–12. https://pubmed.ncbi.nlm.nih.gov/23589526/

5626

Breen L, Stokes KA, Churchward-Venne TA, et al. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab. 2013;98(6):2604–12. https://pubmed.ncbi.nlm.nih.gov/23589526/

5627

Berardi E, Madaro L, Lozanoska-Ochser B, et al. A pound of flesh: what cachexia is and what it is not. Diagnostics (Basel). 2021;11(1):116. https://pubmed.ncbi.nlm.nih.gov/33445790/

5628

Bano G, Trevisan C, Carraro S, et al. Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas. 2017;96:10–5. https://pubmed.ncbi.nlm.nih.gov/28041587/

5629

Marcos-Pérez D, Sánchez-Flores M, Proietti S, et al. Association of inflammatory mediators with frailty status in older adults: results from a systematic review and meta-analysis. Geroscience. 2020;42(6):1451–73. https://pubmed.ncbi.nlm.nih.gov/32803650/

5630

Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res Rev. 2020;64:101185. https://pubmed.ncbi.nlm.nih.gov/32992047/

5631

Pansarasa O, Pistono C, Davin A, et al. Altered immune system in frailty: genetics and diet may influence inflammation. Ageing Res Rev. 2019;54:100935. https://pubmed.ncbi.nlm.nih.gov/31326616/

5632

Bagheri A, Soltani S, Hashemi R, Heshmat R, Motlagh AD, Esmaillzadeh A. Inflammatory potential of the diet and risk of sarcopenia and its components. Nutr J. 2020;19(1):129. https://pubmed.ncbi.nlm.nih.gov/33248463/

5633

Geng J, Deng L, Qiu S, et al. Dietary inflammatory potential and risk of sarcopenia: data from National Health and Nutrition Examination Surveys. Aging (Albany NY). 2020;13(2):1913–28. https://pubmed.ncbi.nlm.nih.gov/33318308/

5634

Laclaustra M, Rodriguez-Artalejo F, Guallar-Castillon P, et al. The inflammatory potential of diet is related to incident frailty and slow walking in older adults. Clin Nutr. 2020;39(1):185–91. https://pubmed.ncbi.nlm.nih.gov/30737049/

5635

Kim D, Park Y. Association between the dietary inflammatory index and risk of frailty in older individuals with poor nutritional status. Nutrients. 2018;10(10):E1363. https://pubmed.ncbi.nlm.nih.gov/30249038/

5636

Laclaustra M, Rodriguez-Artalejo F, Guallar-Castillon P, et al. The inflammatory potential of diet is related to incident frailty and slow walking in older adults. Clin Nutr. 2020;39(1):185–91. https://pubmed.ncbi.nlm.nih.gov/30737049/

5637

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

5638

Montiel-Rojas D, Santoro A, Nilsson A, et al. Beneficial role of replacing dietary saturated fatty acids with polyunsaturated fatty acids in the prevention of sarcopenia: findings from the NU-AGE cohort. Nutrients. 2020;12(10):E3079. https://pubmed.ncbi.nlm.nih.gov/32295007/

5639

Stoody EE, Obbagy J, Pannucci TR, et al. Dietary Guidelines for Americans 2020–2025: make every bite count with the dietary guidelines. Dietary Guidelines for Americans. https://www.dietaryguidelines.gov/sites/default/files/2020–12/Dietary_Guidelines_for_Americans_2020–2025.pdf. Published December 2020. Accessed August 4, 2022.; https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf

5640

Saturated fat. American Heart Association. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/saturated-fats. Updated November 1, 2021. Accessed August 12, 2022.; https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/saturated-fats

5641

Welch AA, MacGregor AJ, Minihane AM, et al. Dietary fat and fatty acid profile are associated with indices of skeletal muscle mass in women aged 18–79 years. J Nutr. 2014;144(3):327–34. https://pubmed.ncbi.nlm.nih.gov/24401817/

5642

Kephart WC, Pledge CD, Roberson PA, et al. The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in CrossFit trainees: a pilot study. Sports (Basel). 2018;6(1):1. https://pubmed.ncbi.nlm.nih.gov/29910305/

5643

Hall KD, Chen KY, Guo J, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104(2):324–33. https://pubmed.ncbi.nlm.nih.gov/27385608/

5644

Carpenter KJ. The history of enthusiasm for protein. J Nutr. 1986;116(7):1364–70. https://pubmed.ncbi.nlm.nih.gov/3528432/

5645

McLaren DS. The great protein fiasco. Lancet. 1974;2(7872):93–6. https://pubmed.ncbi.nlm.nih.gov/4137270/

5646

Carpenter KJ. The history of enthusiasm for protein. J Nutr. 1986;116(7):1364–70. https://pubmed.ncbi.nlm.nih.gov/3528432/

5647

McLaren DS. The great protein fiasco revisited. Nutrition. 2000;16(6):464–5. https://pubmed.ncbi.nlm.nih.gov/10869908/

5648

Carpenter KJ. Protein requirements of adults from an evolutionary perspective. Am J Clin Nutr. 1992;55(5):913–7. https://pubmed.ncbi.nlm.nih.gov/1570797/

5649

Speth JD. The Paleoanthropology and Archaeology of Big-Game Hunting: Protein, Fat, or Politics? Springer; 2010. https://link.springer.com/chapter/10.1007/978-1-4419-6733-6_12

5650

Davis TA, Nguyen HV, Garcia-Bravo R, et al. Amino acid composition of human milk is not unique. J Nutr. 1994;124(7):1126–32. https://pubmed.ncbi.nlm.nih.gov/8027865/

5651

Ziegler EE. Adverse effects of cow’s milk in infants. Nestle Nutr Workshop Ser Pediatr Program. 2007;60:185–99. https://pubmed.ncbi.nlm.nih.gov/17664905/

5652

Pedersen AN, Cederholm T. Health effects of protein intake in healthy elderly populations: a systematic literature review. Food Nutr Res. 2014;58:10.3402/fnr.v58.23364. https://pubmed.ncbi.nlm.nih.gov/24624051/

5653

Berryman CE, Lieberman HR, Fulgoni VL, Pasiakos SM. Protein intake trends and conformity with the dietary reference intakes in the United States: analysis of the National Health and Nutrition Examination Survey, 2001–2014. Am J Clin Nutr. 2018;108(2):405–13. https://pubmed.ncbi.nlm.nih.gov/29931213/

5654

Institute of Medicine of the National Academies. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein and Amino Acids (Macronutrients). The National Academies Press; 2002/2005. https://nap.nationalacademies.org/catalog/10490/dietary-reference-intakes-for-energy-carbohydrate-fiber-fat-fatty-acids-cholesterol-protein-and-amino-acids

5655

Delimaris I. Adverse effects associated with protein intake above the recommended dietary allowance for adults. ISRN Nutr. 2013;2013:126929. https://pubmed.ncbi.nlm.nih.gov/24967251/

5656

Volpi E, Campbell WW, Dwyer JT, et al. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J Gerontol A Biol Sci Med Sci. 2013;68(6):677–81. https://pubmed.ncbi.nlm.nih.gov/23183903/

5657

Shad BJ, Thompson JL, Breen L. Does the muscle protein synthetic response to exercise and amino acid – based nutrition diminish with advancing age? A systematic review. Am J Physiol Endocrinol Metab. 2016;311(5):E803–17. https://pubmed.ncbi.nlm.nih.gov/27555299/

5658

Millward DJ. Protein requirements and aging. Am J Clin Nutr. 2014;100(4):1210–2. https://pubmed.ncbi.nlm.nih.gov/25240087/

5659

Millward DJ, Fereday A, Gibson N, Pacy PJ. Aging, protein requirements, and protein turnover. Am J Clin Nutr. 1997;66(4):774–86. https://pubmed.ncbi.nlm.nih.gov/9322550/

5660

Institute of Medicine of the National Academies. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein and Amino Acids (Macronutrients). The National Academies Press; 2002/2005. https://nap.nationalacademies.org/catalog/10490/dietary-reference-intakes-for-energy-carbohydrate-fiber-fat-fatty-acids-cholesterol-protein-and-amino-acids

5661

European Food Safety Authority Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for protein: dietary reference values for protein. EFSA J. 2012;10:2557–623. https://www.efsa.europa.eu/en/efsajournal/pub/2557

5662

Joint Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition, Weltgesundheitsorganisation, FAO, United Nations University, eds. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation [Geneva, 9–16 April 2002]. WHO; 2007. https://apps.who.int/iris/handle/10665/43411

5663

Tieland M, Franssen R, Dullemeijer C, et al. The impact of dietary protein or amino acid supplementation on muscle mass and strength in elderly people: individual participant data and meta-analysis of RCT’s. J Nutr Health Aging. 2017;21(9):994–1001. https://pubmed.ncbi.nlm.nih.gov/29083440/

5664

Reidy PT. Muscle or nothing! Where is the excess protein going in men with high protein intakes engaged in strength training? J Nutr. 2020;150(3):421–2. https://pubmed.ncbi.nlm.nih.gov/31897480/

5665

Fluharty FL, McClure KE. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. J Anim Sci. 1997;75(3):604–10. https://pubmed.ncbi.nlm.nih.gov/9078474/

5666

Reidy PT. Muscle or nothing! Where is the excess protein going in men with high protein intakes engaged in strength training? J Nutr. 2020;150(3):421–2. https://pubmed.ncbi.nlm.nih.gov/31897480/

5667

Reidy PT, Rasmussen BB. Role of ingested amino acids and protein in the promotion of resistance exercise – induced muscle protein anabolism. J Nutr. 2016;146(2):155–83. https://pubmed.ncbi.nlm.nih.gov/26764320/

5668

Gielen E, Beckwée D, Delaere A, et al. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr Rev. 2021;79(2):121–47. https://pubmed.ncbi.nlm.nih.gov/32483625/

5669

ten Haaf DSM, Nuijten MAH, Maessen MFH, Horstman AMH, Eijsvogels TMH, Hopman MTE. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;108(5):1043–59. https://pubmed.ncbi.nlm.nih.gov/30475963/

5670

Wouters OJ. Lobbying expenditures and campaign contributions by the pharmaceutical and health product industry in the United States, 1999–2018. JAMA Intern Med. 2020;180(5):688–97. https://pubmed.ncbi.nlm.nih.gov/32125357/

5671

de Moraes MB, Avgerinou C, Fukushima FB, Vidal EIO. Nutritional interventions for the management of frailty in older adults: systematic review and meta-analysis of randomized clinical trials. Nutr Rev. 2021;79(8):889–913. https://pubmed.ncbi.nlm.nih.gov/33330911/

5672

Tu DY, Kao FM, Tsai ST, Tung TH. Sarcopenia among the elderly population: a systematic review and meta-analysis of randomized controlled trials. Healthcare (Basel). 2021;9(6):650. https://pubmed.ncbi.nlm.nih.gov/34072617/

5673

Roschel H, Hayashi AP, Fernandes AL, et al. Supplement-based nutritional strategies to tackle frailty: a multifactorial, double-blind, randomized placebo-controlled trial. Clin Nutr. 2021;40(8):4849–58. https://pubmed.ncbi.nlm.nih.gov/34358827/

5674

Granic A, Hurst C, Dismore L, et al. Milk for skeletal muscle health and sarcopenia in older adults: a narrative review. Clin Interv Aging. 2020;15:695–714. https://pubmed.ncbi.nlm.nih.gov/32546988/

5675

Huang LP, Condello G, Kuo CH. Effects of milk protein in resistance training – induced lean mass gains for older adults aged = 60 y: a systematic review and meta-analysis. Nutrients. 2021;13(8):2815. https://pubmed.ncbi.nlm.nih.gov/34444975/

5676

Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):25–34. https://pubmed.ncbi.nlm.nih.gov/25234223/

5677

Witkamp RF, van Norren K. Let thy food be thy medicine… when possible. Eur J Pharmacol. 2018;836:102–14. https://pubmed.ncbi.nlm.nih.gov/29936236/

5678

Groen BBL, Horstman AM, Hamer HM, et al. Post-prandial protein handling: you are what you just ate. PLoS One. 2015;10(11):e0141582. https://pubmed.ncbi.nlm.nih.gov/26556791/

5679

Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol. 2019;317(5):R709–18. https://pubmed.ncbi.nlm.nih.gov/31508978/

5680

Mitchell CJ, Churchward-Venne TA, Parise G, et al. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training – induced muscle hypertrophy in young men. PLoS One. 2014;9(2):e89431. https://pubmed.ncbi.nlm.nih.gov/24586775/

5681

Figueiredo VC. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise. Am J Physiol Regul Integr Comp Physiol. 2019;317(5):R709–18. https://pubmed.ncbi.nlm.nih.gov/31508978/

5682

Murphy CH, Oikawa SY, Phillips SM. Dietary protein to maintain muscle mass in aging: a case for per-meal protein recommendations. J Frailty Aging. 2016;5(1):49–58. https://pubmed.ncbi.nlm.nih.gov/26980369/

5683

Bouillanne O, Neveux N, Nicolis I, Curis E, Cynober L, Aussel C. Long-lasting improved amino acid bioavailability associated with protein pulse feeding in hospitalized elderly patients: a randomized controlled trial. Nutrition. 2014;30(5):544–50. https://pubmed.ncbi.nlm.nih.gov/22992307/

5684

Arnal MA, Mosoni L, Boirie Y, et al. Protein feeding pattern does not affect protein retention in young women. J Nutr. 2000;130(7):1700–4. https://pubmed.ncbi.nlm.nih.gov/10867039/

5685

Arnal MA, Mosoni L, Boirie Y, et al. Protein pulse feeding improves protein retention in elderly women. Am J Clin Nutr. 1999;69(6):1202–8. https://pubmed.ncbi.nlm.nih.gov/10357740/

5686

Bouillanne O, Curis E, Hamon-Vilcot B, et al. Impact of protein pulse feeding on lean mass in malnourished and at-risk hospitalized elderly patients: a randomized controlled trial. Clin Nutr. 2013;32(2):186–92. https://pubmed.ncbi.nlm.nih.gov/22992307/

5687

Lim MT, Pan BJ, Toh DWK, Sutanto CN, Kim JE. Animal protein versus plant protein in supporting lean mass and muscle strength: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2021;13(2):661. https://pubmed.ncbi.nlm.nih.gov/33670701/

5688

Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987–92. https://pubmed.ncbi.nlm.nih.gov/19589961/

5689

Haub MD, Wells AM, Tarnopolsky MA, Campbell WW. Effect of protein source on resistive-training-induced changes in body composition and muscle size in older men. Am J Clin Nutr. 2002;76(3):511–7. https://pubmed.ncbi.nlm.nih.gov/12197993/

5690

Haub MD, Wells AM, Campbell WW. Beef and soy-based food supplements differentially affect serum lipoprotein – lipid profiles because of changes in carbohydrate intake and novel nutrient intake ratios in older men who resistive-train. Metabolism. 2005;54(6):769–74. https://pubmed.ncbi.nlm.nih.gov/15931612/

5691

Wright CS, Zhou J, Sayer RD, Kim JE, Campbell WW. Effects of a high-protein diet including whole eggs on muscle composition and indices of cardiometabolic health and systemic inflammation in older adults with overweight or obesity: a randomized controlled trial. Nutrients. 2018;10(7):946. https://pubmed.ncbi.nlm.nih.gov/30041437/

5692

Iglay HB, Apolzan JW, Gerrard DE, Eash JK, Anderson JC, Campbell WW. Moderately increased protein intake predominately from egg sources does not influence whole body, regional, or muscle composition responses to resistance training in older people. J Nutr Health Aging. 2009;13(2):108–14. https://pubmed.ncbi.nlm.nih.gov/19214338/

5693

Bartholomae E, Incollingo A, Vizcaino M, Wharton C, Johnston CS. Mung bean protein supplement improves muscular strength in healthy, underactive vegetarian adults. Nutrients. 2019;11(10):E2423. https://pubmed.ncbi.nlm.nih.gov/31614532/

5694

Vasconcelos QDJS, Bachur TPR, Aragão GF. Whey protein supplementation and its potentially adverse effects on health: a systematic review. Appl Physiol Nutr Metab. 2021;46(1):27–33. https://pubmed.ncbi.nlm.nih.gov/32702243/

5695

Silverberg NB. Whey protein precipitating moderate to severe acne flares in 5 teenaged athletes. Cutis. 2012;90(2):70–2. https://pubmed.ncbi.nlm.nih.gov/22988649/

5696

Simonart T. Acne and whey protein supplementation among bodybuilders. Dermatology. 2012;225(3):256–8. https://pubmed.ncbi.nlm.nih.gov/23257731/

5697

Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet – induced acne. Exp Dermatol. 2013;22(5):311–5. https://pubmed.ncbi.nlm.nih.gov/23614736/

5698

Liu KA, Lashinger LM, Rasmussen AJ, Hursting SD. Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer Metab. 2014;2(1):6. https://pubmed.ncbi.nlm.nih.gov/24685128/

5699

Cederroth CR, Vinciguerra M, Gjinovci A, et al. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes. 2008;57(5):1176–85. https://pubmed.ncbi.nlm.nih.gov/18420492/

5700

Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ. Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr. 2007;61(12):1442–4. https://pubmed.ncbi.nlm.nih.gov/17311051/

5701

Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods: release 2.0. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf. Published September 2008. Accessed April 15, 2022.; https://www.ars.usda.gov/arsuserfiles/80400525/data/isoflav/isoflav_r2.pdf

5702

Chan H, Ribeiro RV, Haden S, Hirani V. Plant-based dietary patterns, body composition, muscle strength and function in middle and older age: a systematic review. J Nutr Health Aging. 2021;25(8):1012–22. https://pubmed.ncbi.nlm.nih.gov/34545922/

5703

Montiel-Rojas D, Nilsson A, Santoro A, et al. Fighting sarcopenia in ageing European adults: the importance of the amount and source of dietary proteins. Nutrients. 2020;12(12):3601. https://pubmed.ncbi.nlm.nih.gov/33255223/

5704

Hengeveld LM, Wijnhoven HAH, Olthof MR, et al. Prospective associations of diet quality with incident frailty in older adults: the health, aging, and body composition study. J Am Geriatr Soc. 2019;67(9):1835–42. https://pubmed.ncbi.nlm.nih.gov/31267522/

5705

Gazzani D, Zamboni F, Spelta F, et al. Vegetable but not animal protein intake is associated to a better physical performance: a study on a general population sample of adults. Food Nutr Res. 2019;63:3422. https://pubmed.ncbi.nlm.nih.gov/31565042/

5706

Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9.e7. https://pubmed.ncbi.nlm.nih.gov/33839765/

5707

Foscolou A, Critselis E, Tyrovolas S, et al. The association of animal and plant protein with successful ageing: a combined analysis of MEDIS and ATTICA epidemiological studies. Public Health Nutr. 2021;24(8):2215–24. https://pubmed.ncbi.nlm.nih.gov/32434609/

5708

The nutrition source: protein. Harvard T.H. Chan School of Public Health. https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/protein/. Accessed August 3, 2022.; https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/protein/

5709

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

5710

Ramarao PB, Norton HW, Johnson BC. The amino acids composition and nutritive value of proteins. v. amino acid requirements as a pattern for protein evaluation. J Nutr. 1964;82:88–92. https://pubmed.ncbi.nlm.nih.gov/14110945/

5711

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

5712

Osborne TB, Mendel LB. Amino-acids in nutrition and growth. 1914. J Am Coll Nutr. 1993;12(5):484–5. https://pubmed.ncbi.nlm.nih.gov/8263262/

5713

Davis TA, Nguyen HV, Garcia-Bravo R, et al. Amino acid composition of human milk is not unique. J Nutr. 1994;124(7):1126–32. https://pubmed.ncbi.nlm.nih.gov/8027865/

5714

Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/

5715

Young VR, Pellett PL. Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr. 1994;59(5 Suppl):1203S-12S. https://pubmed.ncbi.nlm.nih.gov/8172124/

5716

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

5717

Hevia-Larraín V, Gualano B, Longobardi I, et al. High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: a comparison between habitual vegans and omnivores. Sports Med. 2021;51(6):1317–30. https://pubmed.ncbi.nlm.nih.gov/33599941/

5718

Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual role of reactive oxygen species in muscle function: can antioxidant dietary supplements counteract age-related sarcopenia? Int J Mol Sci. 2019;20(15):E3815. https://pubmed.ncbi.nlm.nih.gov/31387214/

5719

Muller FL, Song W, Liu Y, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med. 2006;40(11):1993–2004. https://pubmed.ncbi.nlm.nih.gov/16716900/

5720

Sahni S, Dufour AB, Fielding RA, et al. Total carotenoid intake is associated with reduced loss of grip strength and gait speed over time in adults: The Framingham Offspring Study. Am J Clin Nutr. 2021;113(2):437–45. https://pubmed.ncbi.nlm.nih.gov/33181830/

5721

Carr AC, Bozonet SM, Pullar JM, Simcock JW, Vissers MCM. Human skeletal muscle ascorbate is highly responsive to changes in vitamin C intake and plasma concentrations. Am J Clin Nutr. 2013;97(4):800–7. https://pubmed.ncbi.nlm.nih.gov/23446899/

5722

Carr AC, Bozonet SM, Pullar JM, Simcock JW, Vissers MCM. Human skeletal muscle ascorbate is highly responsive to changes in vitamin C intake and plasma concentrations. Am J Clin Nutr. 2013;97(4):800–7. https://pubmed.ncbi.nlm.nih.gov/23446899/

5723

Lewis LN, Hayhoe RPG, Mulligan AA, Luben RN, Khaw KT, Welch AA. Lower dietary and circulating vitamin C in middle– and older-aged men and women are associated with lower estimated skeletal muscle mass. J Nutr. 2020;150(10):2789–98. https://pubmed.ncbi.nlm.nih.gov/32851397/

5724

Welch AA, Jennings A, Kelaiditi E, Skinner J, Steves CJ. Cross-sectional associations between dietary antioxidant vitamins C, E and carotenoid intakes and sarcopenic indices in women aged 18–79 years. Calcif Tissue Int. 2020;106(4):331–42. https://pubmed.ncbi.nlm.nih.gov/27417218/

5725

Scott D, Blizzard L, Fell J, Giles G, Jones G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc. 2010;58(11):2129–34. https://pubmed.ncbi.nlm.nih.gov/21054294/

5726

Saito K, Yokoyama T, Yoshida H, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295–301. https://pubmed.ncbi.nlm.nih.gov/21934124/

5727

Takahashi F, Hashimoto Y, Kaji A, et al. Vitamin intake and loss of muscle mass in older people with type 2 diabetes: a prospective study of the KAMOGAWA-DM cohort. Nutrients. 2021;13(7):2335. https://pubmed.ncbi.nlm.nih.gov/34371843/

5728

Saito K, Yokoyama T, Yoshida H, et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J Gerontol A Biol Sci Med Sci. 2012;67(3):295–301. https://pubmed.ncbi.nlm.nih.gov/21934124/

5729

Tak YJ, Lee JG, Yi YH, et al. Association of handgrip strength with dietary intake in the Korean population: findings based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII-1), 2016. Nutrients. 2018;10(9):1180. https://pubmed.ncbi.nlm.nih.gov/30154371/

5730

Gedmantaite A, Celis-Morales CA, Ho F, Pell JP, Ratkevicius A, Gray SR. Associations between diet and handgrip strength: a cross-sectional study from UK Biobank. Mech Ageing Dev. 2020;189:111269. https://pubmed.ncbi.nlm.nih.gov/32479757/

5731

Fingeret M, Vollenweider P, Marques-Vidal P. No association between vitamin C and E supplementation and grip strength over 5 years: the Colaus study. Eur J Nutr. 2019;58(2):609–17. https://pubmed.ncbi.nlm.nih.gov/29484474/

5732

Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol (1985). 2011;110(6):1582–91. https://pubmed.ncbi.nlm.nih.gov/21454745/

5733

Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–40. https://pubmed.ncbi.nlm.nih.gov/19887114/

5734

What we eat in America, NHANES 2017–March 2020 prepandemic. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf. Published 2022. Accessed January 13, 2023.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf

5735

Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle. 2019;10(5):974–84. https://pubmed.ncbi.nlm.nih.gov/31144432/

5736

Chaput JP, Lord C, Cloutier M, et al. Relationship between antioxidant intakes and class I sarcopenia in elderly men and women. J Nutr Health Aging. 2007;11(4):363–9. https://pubmed.ncbi.nlm.nih.gov/17653501/

5737

Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36(1):267–74. https://pubmed.ncbi.nlm.nih.gov/26689868/

5738

ter Borg S, de Groot LCPGM, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults – results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc. 2016;17(5):393–401. https://pubmed.ncbi.nlm.nih.gov/26825685/

5739

Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and meta-analysis of randomised controlled trials. Crit Rev Food Sci Nutr. 2020;60(21):3669–79. https://pubmed.ncbi.nlm.nih.gov/31851538/

5740

Jackson MA, Jeffery IB, Beaumont M, et al. Signatures of early frailty in the gut microbiota. Genome Med. 2016;8(1):8. https://pubmed.ncbi.nlm.nih.gov/26822992/

5741

Ticinesi A, Nouvenne A, Cerundolo N, et al. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia. Nutrients. 2019;11(7):E1633. https://pubmed.ncbi.nlm.nih.gov/31319564/

5742

van Tongeren SP, Slaets JPJ, Harmsen HJM, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71(10):6438–42. https://pubmed.ncbi.nlm.nih.gov/16204576/

5743

Montiel-Rojas D, Nilsson A, Santoro A, et al. Dietary fibre may mitigate sarcopenia risk: findings from the NU-AGE cohort of older European adults. Nutrients. 2020;12(4):E1075. https://pubmed.ncbi.nlm.nih.gov/32295007/

5744

Berendsen AAM, van de Rest O, Feskens EJM, et al. Changes in dietary intake and adherence to the NU-AGE diet following a one-year dietary intervention among European older adults – results of the NU-AGE randomized trial. Nutrients. 2018;10(12):E1905. https://pubmed.ncbi.nlm.nih.gov/30518044/

5745

Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. 2016;17(6):E932. https://pubmed.ncbi.nlm.nih.gov/27314331/

5746

Lee MC, Tu YT, Lee CC, et al. Lactobacillus plantarum TWK10 improves muscle mass and functional performance in frail older adults: a randomized, double-blind clinical trial. Microorganisms. 2021;9(7):1466. https://pubmed.ncbi.nlm.nih.gov/34361902/

5747

Yang HL, Feng P, Xu Y, Hou YY, Ojo O, Wang XH. The role of dietary fiber supplementation in regulating uremic toxins in patients with chronic kidney disease: a meta-analysis of randomized controlled trials. J Ren Nutr. 2021;31(5):438–47. https://pubmed.ncbi.nlm.nih.gov/33741249/

5748

Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 2021;13(6):2045. https://pubmed.ncbi.nlm.nih.gov/34203776/

5749

Enoki Y, Watanabe H, Arake R, et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress – mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084. https://pubmed.ncbi.nlm.nih.gov/27549031/

5750

Dawson-Hughes B, Castaneda-Sceppa C, Harris SS, et al. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos Int. 2010;21(7):1171–9. https://pubmed.ncbi.nlm.nih.gov/19727904/

5751

Guder WG, Häussinger D, Gerok W. Renal and hepatic nitrogen metabolism in systemic acid base regulation. J Clin Chem Clin Biochem. 1987;25(8):457–66. https://pubmed.ncbi.nlm.nih.gov/3320262/

5752

Hamm LL, Ambühl PM, Alpern RJ. Role of glucocorticoids in acidosis. Am J Kidney Dis. 1999;34(5):960–5. https://pubmed.ncbi.nlm.nih.gov/10561158/

5753

Dawson-Hughes B, Harris SS, Ceglia L. Alkaline diets favor lean tissue mass in older adults. Am J Clin Nutr. 2008;87(3):662–5. https://pubmed.ncbi.nlm.nih.gov/18326605/

5754

Buehlmeier J, Remer T, Frings-Meuthen P, Maser-Gluth C, Heer M. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials. Endocrine. 2016;52(1):139–47. https://pubmed.ncbi.nlm.nih.gov/26349936/

5755

Dawson-Hughes B, Castaneda-Sceppa C, Harris SS, et al. Impact of supplementation with bicarbonate on lower-extremity muscle performance in older men and women. Osteoporos Int. 2010;21(7):1171–9. https://pubmed.ncbi.nlm.nih.gov/19727904/

5756

Caciano SL, Inman CL, Gockel-Blessing EE, Weiss EP. Effects of dietary acid load on exercise metabolism and anaerobic exercise performance. J Sports Sci Med. 2015;14(2):364–71. https://pubmed.ncbi.nlm.nih.gov/25983586/

5757

Trinchieri A. Development of a rapid food screener to assess the potential renal acid load of diet in renal stone formers (LAKE score). Arch Ital Urol Androl. 2012;84(1):36–8. https://pubmed.ncbi.nlm.nih.gov/22649959/

5758

Cosgrove K, Johnston CS. Examining the impact of adherence to a vegan diet on acid-base balance in healthy adults. Plant Foods Hum Nutr. 2017;72(3):308–13. https://pubmed.ncbi.nlm.nih.gov/28677099/

5759

Buehlmeier J, Remer T, Frings-Meuthen P, Maser-Gluth C, Heer M. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials. Endocrine. 2016;52(1):139–47. https://pubmed.ncbi.nlm.nih.gov/26349936/

5760

Yoshida Y, Kosaki K, Sugasawa T, et al. High salt diet impacts the risk of sarcopenia associated with reduction of skeletal muscle performance in the Japanese population. Nutrients. 2020;12(11):3474. https://pubmed.ncbi.nlm.nih.gov/33198295/

5761

Appel LJ, Anderson CAM. Compelling evidence for public health action to reduce salt intake. N Engl J Med. 2010;362(7):650–2. https://pubmed.ncbi.nlm.nih.gov/20089959/

5762

Qian Q. Dietary influence on body fluid acid-base and volume balance: the deleterious “norm” furthers and cloaks subclinical pathophysiology. Nutrients. 2018;10(6):E778. https://pubmed.ncbi.nlm.nih.gov/29914153/

5763

Milajerdi A, Hassanzadeh Keshteli A, Haghighatdoost F, Azadbakht L, Esmaillzadeh A, Adibi P. Dietary acid load in relation to depression and anxiety in adults. J Hum Nutr Diet. 2020;33(1):48–55. https://pubmed.ncbi.nlm.nih.gov/31173421/

5764

Xue X, Liu Z, Li X, et al. The efficacy and safety of citrate mixture vs sodium bicarbonate on urine alkalization in Chinese primary gout patients with benzbromarone: a prospective, randomized controlled study. Rheumatology (Oxford). 2021;60(6):2661–71. https://pubmed.ncbi.nlm.nih.gov/33211886/

5765

Sebastian A, Frassetto LA, Sellmeyer DE, Merriam RL, Morris RC. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr. 2002;76(6):1308–16. https://pubmed.ncbi.nlm.nih.gov/12450898/

5766

Logozzi M, Mizzoni D, Di Raimo R, et al. In vivo antiaging effects of alkaline water supplementation. J Enzyme Inhib Med Chem. 35(1):657–64.; https://pubmed.ncbi.nlm.nih.gov/32106720/

5767

Magro M, Corain L, Ferro S, et al. Alkaline water and longevity: a murine study. Evid Based Complement Alternat Med. 2016;2016:3084126. https://pubmed.ncbi.nlm.nih.gov/27340414/

5768

Wesson DE. Is NaHCO3 an antiaging elixir? Am J Physiol Renal Physiol. 2016;311(1):F182–3. https://pubmed.ncbi.nlm.nih.gov/27029429/

5769

Kim J, Lee Y, Kye S, Chung YS, Kim KM. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing. 2015;44(1):96–102. https://pubmed.ncbi.nlm.nih.gov/24646604/

5770

Koyanagi A, Veronese N, Solmi M, et al. Fruit and vegetable consumption and sarcopenia among older adults in low– and middle-income countries. Nutrients. 2020;12(3):E706. https://pubmed.ncbi.nlm.nih.gov/32155879/

5771

García-Esquinas E, Rahi B, Peres K, et al. Consumption of fruit and vegetables and risk of frailty: a dose-response analysis of 3 prospective cohorts of community-dwelling older adults. Am J Clin Nutr. 2016;104(1):132–42. https://pubmed.ncbi.nlm.nih.gov/27194305/

5772

Sim M, Blekkenhorst LC, Lewis JR, et al. Vegetable and fruit intake and injurious falls risk in older women: a prospective cohort study. Br J Nutr. 2018;120(8):925–34. https://pubmed.ncbi.nlm.nih.gov/30153877/

5773

Schrager MA, Hilton J, Gould R, Kelly VE. Effects of blueberry supplementation on measures of functional mobility in older adults. Appl Physiol Nutr Metab. 2015;40(6):543–9. https://pubmed.ncbi.nlm.nih.gov/25909473/

5774

Sangouni AA, Azar MRMH, Alizadeh M. Effects of garlic powder supplementation on insulin resistance, oxidative stress, and body composition in patients with non-alcoholic fatty liver disease: a randomized controlled clinical trial. Complement Ther Med. 2020;51:102428. https://pubmed.ncbi.nlm.nih.gov/32507439/

5775

Pérez-Piñero S, Ávila-Gandía V, Rubio Arias JA, Muñoz-Carrillo JC, Losada-Zafrilla P, López-Román FJ. A 12-week randomized double-blind placebo-controlled clinical trial, evaluating the effect of supplementation with a spinach extract on skeletal muscle fitness in adults older than 50 years of age. Nutrients. 2021;13(12):4373. https://pubmed.ncbi.nlm.nih.gov/34959924/

5776

Dirks-Naylor AJ. The benefits of coffee on skeletal muscle. Life Sci. 2015;143:182–6. https://pubmed.ncbi.nlm.nih.gov/26546720/

5777

Sanchez AMJ, Bernardi H, Py G, Candau RB. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):R956–69. https://pubmed.ncbi.nlm.nih.gov/25121614/

5778

Marzetti E, Calvani R, Cesari M, et al. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013;45(10):2288–301. https://pubmed.ncbi.nlm.nih.gov/23845738/

5779

Guo Y, Niu K, Okazaki T, et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol. 2014;50:1–8. https://pubmed.ncbi.nlm.nih.gov/24269808/

5780

Jyväkorpi SK, Urtamo A, Kivimäki M, Strandberg TE. Associations of coffee drinking with physical performance in the oldest-old community-dwelling men The Helsinki Businessmen Study (HBS). Aging Clin Exp Res. 2021;33(5):1371–5. https://pubmed.ncbi.nlm.nih.gov/32638343/

5781

Iwasaka C, Yamada Y, Nishida Y, et al. Association between habitual coffee consumption and skeletal muscle mass in middle-aged and older Japanese people. Geriatr Gerontol Int. 2021;21(10):950–8. https://pubmed.ncbi.nlm.nih.gov/34405954/

5782

Wang T, Wu Y, Wang W, Zhang D. Association between coffee consumption and functional disability in older US adults. Br J Nutr. 2021;125(6):695–702. https://pubmed.ncbi.nlm.nih.gov/32778181/

5783

Chung H, Moon JH, Kim JI, Kong MH, Huh JS, Kim HJ. Association of coffee consumption with sarcopenia in Korean elderly men: analysis using the Korea National Health and Nutrition Examination Survey, 2008–2011. Korean J Fam Med. 2017;38(3):141–7. https://pubmed.ncbi.nlm.nih.gov/28572890/

5784

Wang T, Wu Y, Wang W, Zhang D. Association between coffee consumption and functional disability in older US adults. Br J Nutr. 2021;125(6):695–702. https://pubmed.ncbi.nlm.nih.gov/32778181/

5785

Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance – an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–8. https://pubmed.ncbi.nlm.nih.gov/30926628/

5786

Rivers WHR, Webber HN. The action of caffeine on the capacity for muscular work. J Physiol. 1907;36(1):33–47. https://pubmed.ncbi.nlm.nih.gov/16992882/

5787

Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance – an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):681–8. https://pubmed.ncbi.nlm.nih.gov/30926628/

5788

Duncan MJ, Clarke ND, Tallis J, Guimarães-Ferreira L, Leddington-Wright S. The effect of caffeine ingestion on functional performance in older adults. J Nutr Health Aging. 2014;18(10):883–7. https://pubmed.ncbi.nlm.nih.gov/25470803/

5789

Norager CB, Jensen MB, Madsen MR, Laurberg S. Caffeine improves endurance in 75-yr-old citizens: a randomized, double-blind, placebo-controlled, crossover study. J Appl Physiol (1985). 2005;99(6):2302–6. https://pubmed.ncbi.nlm.nih.gov/16081625/

5790

Bakuradze T, Parra GAM, Riedel A, et al. Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res Int. 2014;63:420–7. https://www.sciencedirect.com/science/article/abs/pii/S0963996914003378

5791

Jang YJ, Son HJ, Kim JS, et al. Coffee consumption promotes skeletal muscle hypertrophy and myoblast differentiation. Food Funct. 2018;9(2):1102–11. https://pubmed.ncbi.nlm.nih.gov/29359224/

5792

McDermott MM, Criqui MH, Domanchuk K, et al. Cocoa to improve walking performance in older people with peripheral artery disease: the COCOA-PAD pilot randomized clinical trial. Circ Res. 2020;126(5):589–99. https://pubmed.ncbi.nlm.nih.gov/32078436/

5793

Munguia L, Rubio-Gayosso I, Ramirez-Sanchez I, et al. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levels while improving mobility and quality of life in older subjects: a double-blind randomized clinical trial. J Gerontol A Biol Sci Med Sci. 2019;74(10):1620–7. https://pubmed.ncbi.nlm.nih.gov/31056655/

5794

Navrátil T, Kohlíková E, Petr M, Pelclová D, Heyrovský M, Pristoupilová K. Supplemented creatine induces changes in human metabolism of thiocompounds and one– and two-carbon units. Physiol Res. 2010;59(3):431–42. https://pubmed.ncbi.nlm.nih.gov/19249916/

5795

Sumien N, Shetty RA, Gonzales EB. Creatine, creatine kinase, and aging. In: Harris JR, Korolchuk VI, eds. Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Vol 90. Springer; 2018:145–68. https://pubmed.ncbi.nlm.nih.gov/30779009/

5796

Balestrino M, Adriano E. Beyond sports: efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev. 2019;39(6):2427–59. https://pubmed.ncbi.nlm.nih.gov/31012130/

5797

Kraemer WJ, Beeler MK, Post EM, et al. Physiological basis for creatine supplementation in skeletal muscle and the central nervous system. In: Sen CK, Nair S, Bagchi D, eds. Nutrition and Enhanced Sports Performance: Muscle Building, Endurance, and Strength. 2nd ed. Academic Press; 2019:581–94. https://www.sciencedirect.com/science/article/abs/pii/B9780128139226000497?via%3Dihub

5798

Blancquaert L, Baguet A, Bex T, et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr. 2018;119(7):759–70. https://pubmed.ncbi.nlm.nih.gov/29569535/

5799

Solis MY, Painelli V de S, Artioli GG, Roschel H, Otaduy MC, Gualano B. Brain creatine depletion in vegetarians? A cross-sectional ¹H-magnetic resonance spectroscopy (¹H-MRS) study. Br J Nutr. 2014;111(7):1272–4. https://pubmed.ncbi.nlm.nih.gov/24290771/

5800

Blancquaert L, Baguet A, Bex T, et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr. 2018;119(7):759–70. https://pubmed.ncbi.nlm.nih.gov/29569535/

5801

Shomrat A, Weinstein Y, Katz A. Effect of creatine feeding on maximal exercise performance in vegetarians. Eur J Appl Physiol. 2000;82(4):321–5. https://pubmed.ncbi.nlm.nih.gov/10958375/

5802

Steenge GR, Verhoef P, Greenhaff PL. The effect of creatine and resistance training on plasma homocysteine concentration in healthy volunteers. Arch Intern Med. 2001;161(11):1455–6. https://pubmed.ncbi.nlm.nih.gov/11386896/

5803

Chilibeck PD, Kaviani M, Candow DG, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213–26. https://pubmed.ncbi.nlm.nih.gov/29138605/

5804

Buford TW, Kreider RB, Stout JR, et al. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007;4:6. https://pubmed.ncbi.nlm.nih.gov/17908288/

5805

Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: the untapped potential of creatine. Int Immunopharmacol. 2016;37:31–42. https://pubmed.ncbi.nlm.nih.gov/26778152/

5806

Antonio J, Candow DG, Forbes SC, et al. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr. 2021;18(1):13. https://pubmed.ncbi.nlm.nih.gov/33557850/

5807

Dolan E, Artioli GG, Pereira RMR, Gualano B. Muscular atrophy and sarcopenia in the elderly: is there a role for creatine supplementation? Biomolecules. 2019;9(11):E642. https://pubmed.ncbi.nlm.nih.gov/31652853/

5808

Syrotuik DG, Bell GJ, Burnham R, Sim LL, Calvert RA, Maclean IM. Absolute and relative strength performance following creatine monohydrate supplementation combined with periodized resistance training: J Strength Cond Res. 2000;14(2):182–90. https://journals.lww.com/nsca-jscr/Abstract/2000/05000/Absolute_and_Relative_Strength_Performance.11.aspx

5809

Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. 2017;28(6):1817–33. https://pubmed.ncbi.nlm.nih.gov/28251287/

5810

Antonio J, Candow DG, Forbes SC, et al. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr. 2021;18(1):13. https://pubmed.ncbi.nlm.nih.gov/33557850/

5811

Chilibeck PD, Kaviani M, Candow DG, Zello GA. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med. 2017;8:213–26. https://pubmed.ncbi.nlm.nih.gov/29138605/

5812

Gualano B, Rawson ES, Candow DG, Chilibeck PD. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids. 2016;48(8):1793–805. https://pubmed.ncbi.nlm.nih.gov/27108136/

5813

Beaudart C, Dawson A, Shaw SC, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int. 2017;28(6):1817–33. https://pubmed.ncbi.nlm.nih.gov/28251287/

5814

Candow DG, Chilibeck PD, Chad KE, Chrusch MJ, Davison KS, Burke DG. Effect of ceasing creatine supplementation while maintaining resistance training in older men. J Aging Phys Act. 2004;12(3):219–31. https://pubmed.ncbi.nlm.nih.gov/15263100/

5815

Beaudart C, Rabenda V, Simmons M, et al. Effects of protein, essential amino acids, ß-hydroxy ß-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over. A systematic review on the literature. J Nutr Health Aging. 2018;22(1):117–30. https://pubmed.ncbi.nlm.nih.gov/29300431/

5816

Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of creatine supplementation on aging muscle and bone: focus on falls prevention and inflammation. J Clin Med. 2019;8(4):E488. https://pubmed.ncbi.nlm.nih.gov/30978926/

5817

MacRae PG, Lacourse M, Moldavon R. Physical performance measures that predict faller status in community-dwelling older adults. J Orthop Sports Phys Ther. 1992;16(3):123–8. https://pubmed.ncbi.nlm.nih.gov/18796765/

5818

Dolan E, Artioli GG, Pereira RMR, Gualano B. Muscular atrophy and sarcopenia in the elderly: is there a role for creatine supplementation? Biomolecules. 2019;9(11):E642. https://pubmed.ncbi.nlm.nih.gov/31652853/

5819

Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc. 2010;11(6):391–6. https://pubmed.ncbi.nlm.nih.gov/20627179/

5820

Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids. 2020;52(3):329–60. https://pubmed.ncbi.nlm.nih.gov/32072297/

5821

Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol (1985). 1996;81(1):232–7. https://pubmed.ncbi.nlm.nih.gov/8828669/

5822

Stares A, Bains M. The additive effects of creatine supplementation and exercise training in an aging population: a systematic review of randomized controlled trials. J Geriatr Phys Ther. 2020;43(2):99–112. https://pubmed.ncbi.nlm.nih.gov/30762623/

5823

Ribeiro F, Longobardi I, Perim P, et al. Timing of creatine supplementation around exercise: a real concern? Nutrients. 2021;13(8):2844. https://pubmed.ncbi.nlm.nih.gov/34445003/

5824

Bender A, Beckers J, Schneider I, et al. Creatine improves health and survival of mice. Neurobiol Aging. 2008;29(9):1404–11. https://pubmed.ncbi.nlm.nih.gov/17416441/

5825

Korzun WJ. Oral creatine supplements lower plasma homocysteine concentrations in humans. Clin Lab Sci. 2004;17(2):102–6. https://pubmed.ncbi.nlm.nih.gov/15168891/

5826

Moret S, Prevarin A, Tubaro F. Levels of creatine, organic contaminants and heavy metals in creatine dietary supplements. Food Chem. 2011;126(3):1232–8. https://www.sciencedirect.com/science/article/abs/pii/S0308814610016377

5827

Cooperman T. Muscle & workout supplements review (creatine and branched-chain amino acids). ConsumerLab.com. https://www.consumerlab.com/reviews/review-creatine-bcaas/creatine/. Published January 23, 2017. Updated June 30, 2022. Accessed August 3, 2022.; https://www.consumerlab.com/reviews/review-creatine-bcaas/creatine/

5828

Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25(5):534–41. https://pubmed.ncbi.nlm.nih.gov/20175185/

5829

Louis ED. Essential tremor then and now: how views of the most common tremor diathesis have changed over time. Parkinsonism Relat Disord. 2018;46(Suppl 1):S70–4. https://pubmed.ncbi.nlm.nih.gov/28747278/

5830

Hopfner F, Helmich RC. The etiology of essential tremor: genes versus environment. Parkinsonism Relat Disord. 2018;46 Suppl 1:S92–6. https://pubmed.ncbi.nlm.nih.gov/28735798/

5831

Pfau W, Skog K. Exposure to ß-carbolines norharman and harman. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;802(1):115–26. https://pubmed.ncbi.nlm.nih.gov/15036003/

5832

Gibis M, Weiss J. Inhibitory effect of marinades with hibiscus extract on formation of heterocyclic aromatic amines and sensory quality of fried beef patties. Meat Sci. 2010;85(4):735–42. https://pubmed.ncbi.nlm.nih.gov/20418021/

5833

Busquets R, Puignou L, Galceran MT, Skog K. Effect of red wine marinades on the formation of heterocyclic amines in fried chicken breast. J Agric Food Chem. 2006;54(21):8376–84. https://pubmed.ncbi.nlm.nih.gov/17032054/

5834

Smith JS, Ameri F, Gadgil P. Effect of marinades on the formation of heterocyclic amines in grilled beef steaks. J Food Sci. 2008;73(6):T100–5. https://pubmed.ncbi.nlm.nih.gov/19241593/

5835

Khan MR, Busquets R, Azam M. Blueberry, raspberry, and strawberry extracts reduce the formation of carcinogenic heterocyclic amines in fried camel, beef and chicken meats. Food Control. 2021;123:107852. https://www.sciencedirect.com/science/article/abs/pii/S0956713520307684

5836

Abdulrahman AA, Faisal K, Meshref AAA, Arshaduddin M. Low-dose acute vanillin is beneficial against harmaline-induced tremors in rats. Neurol Res. 2017;39(3):264–70. https://pubmed.ncbi.nlm.nih.gov/28095756/

5837

Srinivasan S, Glover J, Tampi RR, Tampi DJ, Sewell DD. Sexuality and the older adult. Curr Psychiatry Rep. 2019;21(10):97. https://pubmed.ncbi.nlm.nih.gov/31522296/

5838

Doll GM. Sexuality in nursing homes: practice and policy. J Gerontol Nurs. 2013;39(7):30–7. https://pubmed.ncbi.nlm.nih.gov/23614386/

5839

Mishra BN. Secret of eternal youth; teaching from the centenarian hot spots (“blue zones”). Indian J Community Med. 2009;34(4):273–5. https://pubmed.ncbi.nlm.nih.gov/20165615/

5840

Morton L. Sexuality in the older adult. Prim Care. 2017;44(3):429–38. https://pubmed.ncbi.nlm.nih.gov/28797370/

5841

Gewirtz-Meydan A, Hafford-Letchfield T, Ayalon L, et al. How do older people discuss their own sexuality? A systematic review of qualitative research studies. Cult Health Sex. 2019;21(3):293–308. https://pubmed.ncbi.nlm.nih.gov/29863969/

5842

Lindau ST, Schumm LP, Laumann EO, Levinson W, O’Muircheartaigh CA, Waite LJ. A study of sexuality and health among older adults in the United States. N Engl J Med. 2007;357(8):762–74. https://pubmed.ncbi.nlm.nih.gov/17715410/

5843

Srinivasan S, Glover J, Tampi RR, Tampi DJ, Sewell DD. Sexuality and the older adult. Curr Psychiatry Rep. 2019;21(10):97. https://pubmed.ncbi.nlm.nih.gov/31522296/

5844

Cao C, Yang L, Xu T, et al. Trends in sexual activity and associations with all-cause and cause-specific mortality among US adults. J Sex Med. 2020;17(10):1903–13. https://pubmed.ncbi.nlm.nih.gov/32665214/

5845

Cao C, Yang L, Xu T, et al. Trends in sexual activity and associations with all-cause and cause-specific mortality among US adults. J Sex Med. 2020;17(10):1903–13. https://pubmed.ncbi.nlm.nih.gov/32665214/

5846

Kay N, Allen J, Morley JE. Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity. Life Sci. 1984;35(1):53–9. https://pubmed.ncbi.nlm.nih.gov/6204182/

5847

Cao C, Yang L, Xu T, et al. Trends in sexual activity and associations with all-cause and cause-specific mortality among US adults. J Sex Med. 2020;17(10):1903–13. https://pubmed.ncbi.nlm.nih.gov/32665214/

5848

Casazza K, Fontaine KR, Astrup A, et al. Myths, presumptions, and facts about obesity. N Engl J Med. 2013;368(5):446–54. https://pubmed.ncbi.nlm.nih.gov/23363498/

5849

Bohlen JG, Held JP, Sanderson MO, Patterson RP. Heart rate, rate-pressure product, and oxygen uptake during four sexual activities. Arch Intern Med. 1984;144(9):1745–8. https://pubmed.ncbi.nlm.nih.gov/6476990/

5850

Allen MS, Walter EE. Health-related lifestyle factors and sexual dysfunction: a meta-analysis of population-based research. J Sex Med. 2018;15(4):458–75. https://pubmed.ncbi.nlm.nih.gov/29523476/

5851

Maiorino MI, Bellastella G, Caputo M, et al. Effects of Mediterranean diet on sexual function in people with newly diagnosed type 2 diabetes: the MÈDITA trial. J Diabetes Complications. 2016;30(8):1519–24. https://pubmed.ncbi.nlm.nih.gov/27614727/

5852

Maiorino MI, Bellastella G, Chiodini P, et al. Primary prevention of sexual dysfunction with Mediterranean diet in type 2 diabetes: the MÈDITA randomized trial. Diabetes Care. 2016;39(9):e143–4. https://pubmed.ncbi.nlm.nih.gov/27352954/

5853

Pazzaglia M. Body and odors: not just molecules, after all. Curr Dir Psychol Sci. 2015;24(4):329–33. https://journals.sagepub.com/doi/abs/10.1177/0963721415575329

5854

Herz RS, Inzlicht M. Sex differences in response to physical and social factors involved in human mate selection: the importance of smell for women. Evol Hum Behav. 2002;23(5):359–64. https://www.sciencedirect.com/science/article/abs/pii/S1090513802000958

5855

Habel U, Regenbogen C, Kammann C, Stickel S, Chechko N. Male brain processing of the body odor of ovulating women compared to that of pregnant women. Neuroimage. 2021;229:117733. https://pubmed.ncbi.nlm.nih.gov/33484852/

5856

Nishihira J, Nishimura M, Tanaka A, Yamaguchi A, Taira T. Effects of 4-week continuous ingestion of champignon extract on halitosis and body and fecal odor. J Tradit Complement Med. 2015;7(1):110–6. https://pubmed.ncbi.nlm.nih.gov/28053896/

5857

Nazzaro-Porro M, Passi S, Boniforti L, Belsito F. Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol. 1979;73(1):112–7. https://pubmed.ncbi.nlm.nih.gov/448170/

5858

Nishihira J, Nishimura M, Tanaka A, Yamaguchi A, Taira T. Effects of 4-week continuous ingestion of champignon extract on halitosis and body and fecal odor. J Tradit Complement Med. 2015;7(1):110–6. https://pubmed.ncbi.nlm.nih.gov/28053896/

5859

Agricultural Research Service, United States Department of Agriculture. Mushrooms, white, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=mushrooms&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169251/nutrients. Published April 1, 2019. Accessed August 24, 2022.; https://fdc.nal.usda.gov/fdc-app.html?query=mushrooms&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/169251/nutrients

5860

Kephart JC. Chlorophyll derivatives – their chemistry, commercial preparation and uses. Econ Bot. 1955;9(1):3–38. https://link.springer.com/article/10.1007/BF02984956

5861

Bohn T, Walczyk T, Leisibach S, Hurrell RF. Chlorophyll-bound magnesium in commonly consumed vegetables and fruits: relevance to magnesium nutrition. J Food Sci. 2006;69(9):S347–50. https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365–2621.2004.tb09947.x

5862

Olsson MJ, Lundström JN, Kimball BA, et al. The scent of disease: human body odor contains an early chemosensory cue of sickness. Psychol Sci. 2014;25(3):817–23. https://pubmed.ncbi.nlm.nih.gov/24452606/

5863

Olsson MJ, Lundström JN, Kimball BA, et al. The scent of disease: human body odor contains an early chemosensory cue of sickness. Psychol Sci. 2014;25(3):817–23. https://pubmed.ncbi.nlm.nih.gov/24452606/

5864

Havlicek J, Lenochova P. The effect of meat consumption on body odor attractiveness. Chem Senses. 2006;31(8):747–52. https://pubmed.ncbi.nlm.nih.gov/16891352/

5865

Havlicek J, Lenochova P. The effect of meat consumption on body odor attractiveness. Chem Senses. 2006;31(8):747–52. https://pubmed.ncbi.nlm.nih.gov/16891352/

5866

Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/

5867

Havlicek J, Lenochova P. The effect of meat consumption on body odor attractiveness. Chem Senses. 2006;31(8):747–52. https://pubmed.ncbi.nlm.nih.gov/16891352/

5868

Scavello I, Maseroli E, Di Stasi V, Vignozzi L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559. https://pubmed.ncbi.nlm.nih.gov/31480774/

5869

Tiefer L. Female sexual dysfunction: a case study of disease mongering and activist resistance. PLoS Med. 2006;3(4):e178. https://pubmed.ncbi.nlm.nih.gov/16597176/

5870

Angel K. The history of “Female Sexual Dysfunction” as a mental disorder in the 20th century. Curr Opin Psychiatry. 2010;23(6):536–41. https://pubmed.ncbi.nlm.nih.gov/20802336/

5871

Meixel A, Yanchar E, Fugh-Berman A. Hypoactive sexual desire disorder: inventing a disease to sell low libido. J Med Ethics. 2015;41(10):859–62. https://pubmed.ncbi.nlm.nih.gov/26124287/

5872

Jaspers L, Feys F, Bramer WM, Franco OH, Leusink P, Laan ETM. Efficacy and safety of flibanserin for the treatment of hypoactive sexual desire disorder in women: a systematic review and meta-analysis. JAMA Intern Med. 2016;176(4):453–62. https://pubmed.ncbi.nlm.nih.gov/26927498/

5873

Woloshin S, Schwartz LM. US Food and Drug Administration approval of flibanserin: even the score does not add up. JAMA Intern Med. 2016;176(4):439–42. https://pubmed.ncbi.nlm.nih.gov/25423223/

5874

Fugh-Berman A. Advise against flibanserin. Am J Nurs. 2016;116(3):13. https://pubmed.ncbi.nlm.nih.gov/26914033/

5875

Moyad MA, Park K. What do most erectile dysfunction guidelines have in common? No evidence-based discussion or recommendation of heart-healthy lifestyle changes and/or Panax ginseng. Asian J Androl. 2012;14(6):830–41. https://pubmed.ncbi.nlm.nih.gov/23001440/

5876

Maravilla KR, Heiman JR, Garland PA, et al. Dynamic MR imaging of the sexual arousal response in women. J Sex Marital Ther. 2003;29 Suppl 1:71–6. https://pubmed.ncbi.nlm.nih.gov/12735090/

5877

Steinke EE. Sexual dysfunction in women with cardiovascular disease: what do we know? J Cardiovasc Nurs. 2010;25(2):151–8. https://pubmed.ncbi.nlm.nih.gov/20142751/

5878

Towe M, La J, El-Khatib F, Roberts N, Yafi FA, Rubin R. Diet and female sexual health. Sex Med Rev. 2020;8(2):256–64. https://pubmed.ncbi.nlm.nih.gov/31669123/

5879

Park K, Goldstein I, Andry C, Siroky MB, Krane RJ, Azadzoi KM. Vasculogenic female sexual dysfunction: the hemodynamic basis for vaginal engorgement insufficiency and clitoral erectile insufficiency. Int J Impot Res. 1997;9(1):27–37. https://pubmed.ncbi.nlm.nih.gov/9138056/

5880

Fishbeck DW, Sebastiani AM. Comparative Anatomy: Manual of Vertebrate Dissection. 3rd ed. Morton Publishing; 2015. https://www.worldcat.org/title/910942083

5881

Esposito K, Ciotola M, Maiorino MI, et al. Hyperlipidemia and sexual function in premenopausal women. J Sex Med. 2009;6(6):1696–703. https://pubmed.ncbi.nlm.nih.gov/19453904/

5882

Duncan LE, Lewis C, Jenkins P, Pearson TA. Does hypertension and its pharmacotherapy affect the quality of sexual function in women? Am J Hypertens. 2000;13(6 Pt 1):640–7. https://pubmed.ncbi.nlm.nih.gov/10912747/

5883

Baldassarre M, Alvisi S, Mancini I, et al. Impaired lipid profile is a risk factor for the development of sexual dysfunction in women. J Sex Med. 2016;13(1):46–54. https://pubmed.ncbi.nlm.nih.gov/26755086/

5884

Esposito K, Ciotola M, Giugliano F, et al. Mediterranean diet improves sexual function in women with the metabolic syndrome. Int J Impot Res. 2007;19(5):486–91. https://pubmed.ncbi.nlm.nih.gov/17673936/

5885

Levin RJ. The ins and outs of vaginal lubrication. Sex Relation Ther. 2003;18(4):509–13. https://www.tandfonline.com/doi/abs/10.1080/14681990310001609859

5886

Fisher NDL, Hughes M, Gerhard-Herman M, Hollenberg NK. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens. 2003;21(12):2281–6. https://pubmed.ncbi.nlm.nih.gov/14654748/

5887

Salonia A, Fabbri F, Zanni G, et al. Chocolate and women’s sexual health: an intriguing correlation. J Sex Med. 2006;3(3):476–82. https://pubmed.ncbi.nlm.nih.gov/16681473/

5888

Allouh MZ, Daradka HM, Al Barbarawi MM, Mustafa AG. Fresh onion juice enhanced copulatory behavior in male rats with and without paroxetine-induced sexual dysfunction. Exp Biol Med (Maywood). 2014;239(2):177–82. https://pubmed.ncbi.nlm.nih.gov/24302558/

5889

Cai T, Gacci M, Mattivi F, et al. Apple consumption is related to better sexual quality of life in young women. Arch Gynecol Obstet. 2014;290(1):93–8. https://pubmed.ncbi.nlm.nih.gov/24518938/

5890

Esposito K, Ciotola M, Giugliano F, et al. Mediterranean diet improves sexual function in women with the metabolic syndrome. Int J Impot Res. 2007;19(5):486–91. https://pubmed.ncbi.nlm.nih.gov/17673936/

5891

Esposito K, Ciotola M, Giugliano F, et al. Mediterranean diet improves erectile function in subjects with the metabolic syndrome. Int J Impot Res. 2006;18(4):405–10. https://pubmed.ncbi.nlm.nih.gov/16395320/

5892

Wang F, Dai S, Wang M, Morrison H. Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men. Urology. 2013;82(6):1330–5. https://pubmed.ncbi.nlm.nih.gov/24295250/

5893

Maiorino MI, Bellastella G, Giugliano D, Esposito K. From inflammation to sexual dysfunctions: a journey through diabetes, obesity, and metabolic syndrome. J Endocrinol Invest. 2018;41(11):1249–58. https://pubmed.ncbi.nlm.nih.gov/29549630/

5894

Wadden TA, West DS, Delahanty LM, et al. The Look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. Obesity (Silver Spring). 2006;14(5):737–52. https://pubmed.ncbi.nlm.nih.gov/16855180/

5895

Belalcazar LM, Haffner SM, Lang W, et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein in type 2 diabetes: from the Look AHEAD study. Obesity (Silver Spring). 2013;21(5):944–50. https://pubmed.ncbi.nlm.nih.gov/23512860/

5896

Wing RR, Bond DS, Gendrano IN, et al. Effect of intensive lifestyle intervention on sexual dysfunction in women with type 2 diabetes: results from an ancillary Look AHEAD study. Diabetes Care. 2013;36(10):2937–44. https://pubmed.ncbi.nlm.nih.gov/23757437/

5897

Esposito K, Nappo F, Giugliano F, et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2003;78(6):1135–40. https://pubmed.ncbi.nlm.nih.gov/14668275/

5898

Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. 2002;106(1):24–30. https://pubmed.ncbi.nlm.nih.gov/12093765/

5899

Levin RJ. The pharmacology of the human female orgasm – its biological and physiological backgrounds. Pharmacol Biochem Behav. 2014;121:62–70. https://pubmed.ncbi.nlm.nih.gov/24560912/

5900

Heath RG. Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. J Nerv Ment Dis. 1972;154(1):3–18. https://pubmed.ncbi.nlm.nih.gov/5007439/

5901

Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13(1):43. https://pubmed.ncbi.nlm.nih.gov/24894065/

5902

Main KM, Mortensen GK, Kaleva MM, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006;114(2):270–6. https://pubmed.ncbi.nlm.nih.gov/16451866/

5903

Swan SH, Liu F, Hines M, et al. Prenatal phthalate exposure and reduced masculine play in boys. Int J Androl. 2010;33(2):259–69. https://pubmed.ncbi.nlm.nih.gov/19919614/

5904

Watkins DJ, Téllez-Rojo MM, Ferguson KK, et al. In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation. Environ Res. 2014;134:233–41. https://pubmed.ncbi.nlm.nih.gov/28637469/

5905

Chen FP, Chien MH. Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric. 2014;17(4):377–84. https://pubmed.ncbi.nlm.nih.gov/24228746/

5906

Desdoits-Lethimonier C, Albert O, Le Bizec B, et al. Human testis steroidogenesis is inhibited by phthalates. Hum Reprod. 2012;27(5):1451–9. https://pubmed.ncbi.nlm.nih.gov/22402212/

5907

Barrett ES, Parlett LE, Wang C, Drobnis EZ, Redmon JB, Swan SH. Environmental exposure to di-2-ethylhexyl phthalate is associated with low interest in sexual activity in premenopausal women. Horm Behav. 2014;66(5):787–92. https://pubmed.ncbi.nlm.nih.gov/25448532/

5908

Koch HM, Lorber M, Christensen KLY, Pälmke C, Koslitz S, Brüning T. Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216(6):672–81. https://pubmed.ncbi.nlm.nih.gov/23333758/

5909

Ji K, Lim Kho Y, Park Y, Choi K. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: a pilot study with “Temple Stay” participants. Environ Res. 2010;110(4):375–82. https://pubmed.ncbi.nlm.nih.gov/20227070/

5910

Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13(1):43. https://pubmed.ncbi.nlm.nih.gov/24894065/

5911

Schecter A, Lorber M, Guo Y, et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ Health Perspect. 2013;121(4):473–9. https://pubmed.ncbi.nlm.nih.gov/23461894/

5912

Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health. 2014;13(1):43. https://pubmed.ncbi.nlm.nih.gov/24894065/

5913

Koch HM, Lorber M, Christensen KLY, Pälmke C, Koslitz S, Brüning T. Identifying sources of phthalate exposure with human biomonitoring: results of a 48h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216(6):672–81. https://pubmed.ncbi.nlm.nih.gov/23333758/

5914

Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25(2):247–54. https://pubmed.ncbi.nlm.nih.gov/23429708/

5915

CPSC prohibits certain phthalates in children’s toys and child care products. United States Consumer Product Safety Commission. https://www.cpsc.gov/content/cpsc-prohibits-certain-phthalates-in-children%E2%80%99s-toys-and-child-care-products. Published October 20, 2017. Accessed August 24, 2022.; https://www.cpsc.gov/content/cpsc-prohibits-certain-phthalates-in-children%E2%80%99s-toys-and-child-care-products

5916

Nilsson NH, Malmgren-Hansen B, Bernth N, Pedersen E, Pommer K. Survey and health assesment of chemicals substances in sex toys. Survey of Chemical Substances in Consumer Products. https://www2.mst.dk/udgiv/publications/2006/87–7052–227–8/pdf/87–7052–228–6.pdf. Published September 8, 2006. Accessed August 24, 2022.; https://www2.mst.dk/udgiv/publications/2006/87-7052-227-8/pdf/87-7052-228-6.pdf

5917

Rao A, Steels E, Beccaria G, Inder WJ, Vitetta L. Influence of a specialized Trigonella foenum-graecum seed extract (libifem), on testosterone, estradiol and sexual function in healthy menstruating women, a randomised placebo controlled study. Phytother Res. 2015;29(8):1123–30. https://pubmed.ncbi.nlm.nih.gov/25914334/

5918

Laughlin GA, Barrett-Connor E, Kritz-Silverstein D, von Mühlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2000;85(2):645–51. https://pubmed.ncbi.nlm.nih.gov/10690870/

5919

Simon JA, Kapner MD. The saga of testosterone for menopausal women at the Food and Drug Administration (FDA). J Sex Med. 2020;17(4):826–9. https://pubmed.ncbi.nlm.nih.gov/32253005/

5920

Randolph JF, Zheng H, Avis NE, Greendale GA, Harlow SD. Masturbation frequency and sexual function domains are associated with serum reproductive hormone levels across the menopausal transition. J Clin Endocrinol Metab. 2015;100(1):258–66. https://pubmed.ncbi.nlm.nih.gov/25412335/

5921

Smith T, Batur P. Prescribing testosterone and DHEA: the role of androgens in women. Cleve Clin J Med. 2021;88(1):35–43. https://pubmed.ncbi.nlm.nih.gov/33384313/

5922

Davis SR, Baber R, Panay N, et al. Global consensus position statement on the use of testosterone therapy for women. Climacteric. 2019;22(5):429–34. https://pubmed.ncbi.nlm.nih.gov/31498871/

5923

Pinkerton JV, Blackman I, Conner EA, Kaunitz AM. Risks of testosterone for postmenopausal women. Endocrinol Metab Clin North Am. 2021;50(1):139–50. https://pubmed.ncbi.nlm.nih.gov/33518182/

5924

Davis SR, Baber R, Panay N, et al. Global consensus position statement on the use of testosterone therapy for women. Climacteric. 2019;22(5):429–34. https://pubmed.ncbi.nlm.nih.gov/31498871/

5925

Fukui H, Yamashita M. The effects of music and visual stress on testosterone and cortisol in men and women. Neuro Endocrinol Lett. 2003;24(3–4):173–80. https://pubmed.ncbi.nlm.nih.gov/14523353/

5926

Akdogan M, Tamer MN, Cüre E, Cüre MC, Köroglu BK, Delibas N. Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism. Phytother Res. 2007;21(5):444-7. https://pubmed.ncbi.nlm.nih.gov/17310494/

5927

Nikjou R, Kazemzadeh R, Asadzadeh F, Fathi R, Mostafazadeh F. The effect of lavender aromatherapy on the symptoms of menopause. J Natl Med Assoc. 2018;110(3):265–9. https://pubmed.ncbi.nlm.nih.gov/29778129/

5928

Choi SY, Kang P, Lee HS, Seol GH. Effects of inhalation of essential oil of Citrus aurantium L. var. amara on menopausal symptoms, stress, and estrogen in postmenopausal women: a randomized controlled trial. Evid Based Complement Alternat Med. 2014;2014:796518. https://pubmed.ncbi.nlm.nih.gov/25024731/

5929

Ghorbani Z, Mirghafourvand M. A meta-analysis of the efficacy of panax ginseng on menopausal women’s sexual function. Int J Womens Health Reprod Sci. 2018;7(1):124–33.https//ijwhr.net/text.php?id=399

5930

Brooks NA, Wilcox G, Walker KZ, Ashton JF, Cox MB, Stojanovska L. Beneficial effects of Lepidium meyenii (Maca) on psychological symptoms and measures of sexual dysfunction in postmenopausal women are not related to estrogen or androgen content. Menopause. 2008;15(6):1157–62. https://pubmed.ncbi.nlm.nih.gov/18784609/

5931

Paul S, Chakraborty S, Anand U, et al. Withania somnifera (L.) Dunal (Ashwagandha): a comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother. 2021;143:112175. https://pubmed.ncbi.nlm.nih.gov/34649336/

5932

Mandlik (Ingawale) DS, Namdeo AG. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J Diet Suppl. 2021;18(2):183–226. https://pubmed.ncbi.nlm.nih.gov/32242751/

5933

Dongre S, Langade D, Bhattacharyya S. Efficacy and safety of ashwagandha (Withania somnifera) root extract in improving sexual function in women: a pilot study. Biomed Res Int. 2015;2015:284154. https://pubmed.ncbi.nlm.nih.gov/26504795/

5934

Ashwagandha. In: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases; 2012. https://pubmed.ncbi.nlm.nih.gov/31643176/

5935

Simon JA, Lukas VA. Distressing sexual function at midlife: unmet needs, practical diagnoses, and available treatments. Obstet Gynecol. 2017;130(4):889–905. https://pubmed.ncbi.nlm.nih.gov/28885410/

5936

Portman DJ, Gass MLS, Kingsburg S, et al. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women’s Sexual Health and the North American Menopause Society. Menopause. 2014;21(10):1063–8. https://pubmed.ncbi.nlm.nih.gov/25160739/

5937

Scavello I, Maseroli E, Di Stasi V, Vignozzi L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559. https://pubmed.ncbi.nlm.nih.gov/31480774/

5938

Minkin MJ. Menopause: hormones, lifestyle, and optimizing aging. Obstet Gynecol Clin North Am. 2019;46(3):501–14. https://pubmed.ncbi.nlm.nih.gov/31378291/

5939

Faubion SS, Sood R, Kapoor E. Genitourinary syndrome of menopause: management strategies for the clinician. Mayo Clin Proc. 2017;92(12):1842–9. https://pubmed.ncbi.nlm.nih.gov/29202940/

5940

Scavello I, Maseroli E, Di Stasi V, Vignozzi L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559. https://pubmed.ncbi.nlm.nih.gov/31480774/

5941

Faubion SS, Sood R, Kapoor E. Genitourinary syndrome of menopause: management strategies for the clinician. Mayo Clin Proc. 2017;92(12):1842–9. https://pubmed.ncbi.nlm.nih.gov/29202940/

5942

Herbenick D, Reece M, Hensel D, Sanders S, Jozkowski K, Fortenberry JD. Association of lubricant use with women’s sexual pleasure, sexual satisfaction, and genital symptoms: a prospective daily diary study. J Sex Med. 2011;8(1):202–12. https://pubmed.ncbi.nlm.nih.gov/21143591/

5943

Mitchell CM, Reed SD, Diem S, et al. Efficacy of vaginal estradiol or vaginal moisturizer vs placebo for treating postmenopausal vulvovaginal symptoms: a randomized clinical trial. JAMA Intern Med. 2018;178(5):681–90. https://pubmed.ncbi.nlm.nih.gov/29554173/

5944

Huang AJ, Grady D. Rethinking the approach to managing postmenopausal vulvovaginal symptoms. JAMA Intern Med. 2018;178(5):690–1. https://pubmed.ncbi.nlm.nih.gov/29554180/

5945

Edwards D, Panay N. Treating vulvovaginal atrophy/genitourinary syndrome of menopause: how important is vaginal lubricant and moisturizer composition? Climacteric. 2016;19(2):151–61. https://pubmed.ncbi.nlm.nih.gov/26707589/

5946

Adriaens E, Remon JP. Mucosal irritation potential of personal lubricants relates to product osmolality as detected by the slug mucosal irritation assay. Sex Transm Dis. 2008;35(5):512–6. https://pubmed.ncbi.nlm.nih.gov/18356773/

5947

Edwards D, Panay N. Treating vulvovaginal atrophy/genitourinary syndrome of menopause: how important is vaginal lubricant and moisturizer composition? Climacteric. 2016;19(2):151–61. https://pubmed.ncbi.nlm.nih.gov/26707589/

5948

Edwards D, Panay N. Treating vulvovaginal atrophy/genitourinary syndrome of menopause: how important is vaginal lubricant and moisturizer composition? Climacteric. 2016;19(2):151–61. https://pubmed.ncbi.nlm.nih.gov/26707589/

5949

Scavello I, Maseroli E, Di Stasi V, Vignozzi L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559. https://pubmed.ncbi.nlm.nih.gov/31480774/

5950

Faubion SS, Sood R, Kapoor E. Genitourinary syndrome of menopause: management strategies for the clinician. Mayo Clin Proc. 2017;92(12):1842–9. https://pubmed.ncbi.nlm.nih.gov/29202940/

5951

Cardozo L, Bachmann G, McClish D, Fonda D, Birgerson L. Meta-analysis of estrogen therapy in the management of urogenital atrophy in postmenopausal women: second report of the Hormones and Urogenital Therapy Committee. Obstet Gynecol. 1998;92(4 Pt 2):722–7. https://pubmed.ncbi.nlm.nih.gov/9764689/

5952

Faubion SS, Sood R, Kapoor E. Genitourinary syndrome of menopause: management strategies for the clinician. Mayo Clin Proc. 2017;92(12):1842–9. https://pubmed.ncbi.nlm.nih.gov/29202940/

5953

Lethaby A, Ayeleke RO, Roberts H. Local oestrogen for vaginal atrophy in postmenopausal women. Cochrane Database Syst Rev. 2016;(8):CD001500. https://pubmed.ncbi.nlm.nih.gov/27577677/

5954

. Šimunic V, Banovic I, Ciglar S, Jeren L, Pavicic Baldani D, Šprem M. Local estrogen treatment in patients with urogenital symptoms. Int J Gynaecol Obstet. 2003;82(2):187–97. https://pubmed.ncbi.nlm.nih.gov/12873780/

5955

Mitchell CM, Reed SD, Diem S, et al. Efficacy of vaginal estradiol or vaginal moisturizer vs placebo for treating postmenopausal vulvovaginal symptoms: a randomized clinical trial. JAMA Intern Med. 2018;178(5):681–90. https://pubmed.ncbi.nlm.nih.gov/29554173/

5956

Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Med. 2020;382(5):446–5. https://pubmed.ncbi.nlm.nih.gov/31995690/

5957

Premarin® Vaginal Cream Boxed Warning (conjugated estrogens). Pfizer. https://www.pfizermedicalinformation.com/en-us/premarin-vaginal-cream/boxed-warning. Updated September 2018. Accessed August 24, 2022.; https://www.pfizermedicalinformation.com/en-us/premarin-vaginal-cream/boxed-warning

5958

Pinkerton JV, Kaunitz AM, Manson JE. Vaginal estrogen in the treatment of genitourinary syndrome of menopause and risk of endometrial cancer: an assessment of recent studies provides reassurance. Menopause. 2017;24(12):1329–32. https://pubmed.ncbi.nlm.nih.gov/29040220/

5959

Bhupathiraju SN, Grodstein F, Stampfer MJ, et al. Vaginal estrogen use and chronic disease risk in the Nurses’ Health Study. Menopause. 2018;26(6):603–10. https://pubmed.ncbi.nlm.nih.gov/30562320/

5960

Crandall CJ, Diamant A, Santoro N. Safety of vaginal estrogens: a systematic review. Menopause. 2020;27(3):339–60. https://pubmed.ncbi.nlm.nih.gov/31913230/

5961

Kelsey JL, LiVolsi VA, Holford TR, et al. A case-control study of cancer of the endometrium. Am J Epidemiol. 1982;116(2):333–42. https://pubmed.ncbi.nlm.nih.gov/7114042/

5962

Mørch LS, Kjaer SK, Keiding N, Løkkegaard E, Lidegaard Ø. The influence of hormone therapies on type I and II endometrial cancer: a nationwide cohort study. Int J Cancer. 2016;138(6):1506–15. https://pubmed.ncbi.nlm.nih.gov/26421912/

5963

Pinkerton JV, Kaunitz AM, Manson JE. Vaginal estrogen in the treatment of genitourinary syndrome of menopause and risk of endometrial cancer: an assessment of recent studies provides reassurance. Menopause. 2017;24(12):1329–32. https://pubmed.ncbi.nlm.nih.gov/29040220/

5964

Scavello I, Maseroli E, Di Stasi V, Vignozzi L. Sexual health in menopause. Medicina (Kaunas). 2019;55(9):559. https://pubmed.ncbi.nlm.nih.gov/31480774/

5965

Eden JA. DHEA replacement for postmenopausal women: placebo or panacea? Climacteric. 2015;18(4):439–40. https://pubmed.ncbi.nlm.nih.gov/25731680/

5966

Elraiyah T, Sonbol MB, Wang Z, et al. Clinical review: the benefits and harms of systemic dehydroepiandrosterone (DHEA) in postmenopausal women with normal adrenal function: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(10):3536–42. https://pubmed.ncbi.nlm.nih.gov/25279571/

5967

U.S. Food and Drug Administration. FDA approves Intrarosa for postmenopausal women experiencing pain during sex. FDA.gov. https://www.fda.gov/news-events/press-announcements/fda-approves-intrarosa-postmenopausal-women-experiencing-pain-during-sex. Published November 17, 2016. Accessed Sept 26, 2022.; https://www.fda.gov/news-events/press-announcements/fda-approves-intrarosa-postmenopausal-women-experiencing-pain-during-sex

5968

Labrie F, Martel C, Bérubé R, et al. Intravaginal prasterone (DHEA) provides local action without clinically significant changes in serum concentrations of estrogens or androgens. J Steroid Biochem Mol Biol. 2013;138:359–67. https://pubmed.ncbi.nlm.nih.gov/23954500/

5969

Faubion SS, Sood R, Kapoor E. Genitourinary syndrome of menopause: management strategies for the clinician. Mayo Clin Proc. 2017;92(12):1842–9. https://pubmed.ncbi.nlm.nih.gov/29202940/

5970

Di Donato V, Schiavi MC, Iacobelli V, et al. Ospemifene for the treatment of vulvar and vaginal atrophy: a meta-analysis of randomized trials. Part II: evaluation of tolerability and safety. Maturitas. 2019;121:93–100. https://pubmed.ncbi.nlm.nih.gov/30509754/

5971

Gold EB. Relation of demographic and lifestyle factors to symptoms in a multi-racial/ethnic population of women 40–55 years of age. Am Journal Epidemiol. 2000;152(5):463–73. https://pubmed.ncbi.nlm.nih.gov/10981461/

5972

Ghazanfarpour M, Roudsari RL, Treglia G, Sadeghi R. Topical administration of isoflavones for treatment of vaginal symptoms in postmenopausal women: a systematic review of randomised controlled trials. J Obstet Gynaecol. 2015;35(8):783–7. https://pubmed.ncbi.nlm.nih.gov/25710207/

5973

Lima SMRR, Bernardo BFA, Yamada SS, Reis BF, da Silva GMD, Galvão MAL. Effects of Glycine max (L.) Merr. soy isoflavone vaginal gel on epithelium morphology and estrogen receptor expression in postmenopausal women: a 12-week, randomized, double-blind, placebo-controlled trial. Maturitas. 2014;78(3):205–11. https://pubmed.ncbi.nlm.nih.gov/24856055/

5974

Lima SMRR, Yamada SS, Reis BF, Postigo S, Galvão da Silva MAL, Aoki T. Effective treatment of vaginal atrophy with isoflavone vaginal gel. Maturitas. 2013;74(3):252–8. https://pubmed.ncbi.nlm.nih.gov/23312487/

5975

Zhang J, Zhu Y, Pan L, Xia H, Ma J, Zhang A. Soy isoflavone improved female sexual dysfunction of mice via endothelial nitric oxide synthase pathway. Sex Med. 2019;7(3):345–51. https://pubmed.ncbi.nlm.nih.gov/31303464/

5976

Nikander E, Rutanen EM, Nieminen P, Wahlström T, Ylikorkala O, Tiitinen A. Lack of effect of isoflavonoids on the vagina and endometrium in postmenopausal women. Fertil Steril. 2005;83(1):137–42. https://pubmed.ncbi.nlm.nih.gov/15652899/

5977

Nourozi M, Haghollahi F, Ramezanzadeh F, Hanachi P. Effect of soy milk consumption on quality of life in Iranian postmenopausal women. J Family Reprod Health. 2015;9(2):93–100. https://pubmed.ncbi.nlm.nih.gov/26175764/

5978

Hanachi P, Golkho S. The effect of soymilk on menopausal symptoms and total antioxidant levels in menopausal women. Malaysian J Med Health Sci. 2008;4(1):33–40. https://www.researchgate.net/publication/267037285_The_effect_of_soymilk_on_menopausal_symptoms_and_total_antioxidant_levels_in_menopausal_women

5979

Padmaqriya S, Kumar SS. Quality of life of postmenopausal women receiving plant-based phytoestrogens. Int J Pharm Sci Res. 2020;11(10):4998–5003. https://ijpsr.com/bft-article/quality-of-life-of-postmenopausal-women-receiving-plant-based-phytoestrogens/

5980

Amsterdam A, Abu-Rustum N, Carter J, Krychman M. Persistent sexual arousal syndrome associated with increased soy intake. J Sex Med. 2005;2(3):338–40. https://pubmed.ncbi.nlm.nih.gov/16422864/

5981

Omidvar S, Esmailzadeh S, Baradaran M, Basirat Z. Effect of fennel on pain intensity in dysmenorrhoea: a placebo-controlled trial. Ayu. 2012;33(2):311–3. https://pubmed.ncbi.nlm.nih.gov/23559811/

5982

Modaress Nejad V, Asadipour M. Comparison of the effectiveness of fennel and mefenamic acid on pain intensity in dysmenorrhoea. East Mediterr Health J. 2006;12(3–4):423–7. https://pubmed.ncbi.nlm.nih.gov/17037712/

5983

Ghazanfarpour M, Shokrollahi P, Khadivzadeh T, et al. Effect of Foeniculum vulgare (fennel) on vaginal atrophy in postmenopausal women: a double-blind, randomized, placebo-controlled trial. Post Reprod Health. 2017;23(4):171–6. https://pubmed.ncbi.nlm.nih.gov/28990439/

5984

Ghaffari P, Hosseininik M, Afrasiabifar A, et al. The effect of Fennel seed powder on estradiol levels, menopausal symptoms, and sexual desire in postmenopausal women. Menopause. 2020;27(11):1281–6. https://pubmed.ncbi.nlm.nih.gov/33110044/

5985

Yaralizadeh M, Abedi P, Najar S, Namjoyan F, Saki A. Effect of Foeniculum vulgare (fennel) vaginal cream on vaginal atrophy in postmenopausal women: a double-blind randomized placebo-controlled trial. Maturitas. 2016;84:75–80. https://pubmed.ncbi.nlm.nih.gov/26617271/

5986

Mazalzadeh F, Hekmat K, Namjouyan F, Saki A. Effect of Trigonella foenum (fenugreek) vaginal cream on vaginal atrophy in postmenopausal women. J Family Med Prim Care. 2020;9(6):2714–9. https://pubmed.ncbi.nlm.nih.gov/32984113/

5987

Abedi P, Najafian M, Yaralizadeh M, Namjoyan F. Effect of fennel vaginal cream on sexual function in postmenopausal women: a double blind randomized controlled trial. J Med Life. 2018;11(1):24–8. https://pubmed.ncbi.nlm.nih.gov/29696061/

5988

Poole C, Bushey B, Foster C, et al. The effects of a commercially available botanical supplement on strength, body composition, power output, and hormonal profiles in resistance-trained males. J Int Soc Sports Nutr. 2010;7:34. https://pubmed.ncbi.nlm.nih.gov/20979623/

5989

Mansoori A, Hosseini S, Zilaee M, Hormoznejad R, Fathi M. Effect of fenugreek extract supplement on testosterone levels in male: a meta-analysis of clinical trials. Phytother Res. 2020;34(7):1550–5. https://pubmed.ncbi.nlm.nih.gov/32048383/

5990

Rao A, Steels E, Inder WJ, Abraham S, Vitetta L. Testofen, a specialised Trigonella foenum-graecum seed extract reduces age-related symptoms of androgen decrease, increases testosterone levels and improves sexual function in healthy aging males in a double-blind randomised clinical study. Aging Male. 2016;19(2):134–42. https://pubmed.ncbi.nlm.nih.gov/26791805/

5991

Bahmani M, Shirzad H, Mirhosseini M, Mesripour A, Rafieian-Kopaei M. A review on ethnobotanical and therapeutic uses of fenugreek (Trigonella foenum-graceum L). J Evid Based Complementary Altern Med. 2016;21(1):53–62. https://pubmed.ncbi.nlm.nih.gov/25922446/

5992

Rao A, Steels E, Beccaria G, Inder WJ, Vitetta L. Influence of a specialized Trigonella foenum-graecum seed extract (libifem), on testosterone, estradiol and sexual function in healthy menstruating women, a randomised placebo controlled study. Phytother Res. 2015;29(8):1123–30. https://pubmed.ncbi.nlm.nih.gov/25914334/

5993

Steels E, Steele ML, Harold M, Coulson S. Efficacy of a proprietary Trigonella foenum-graecum L. de-husked seed extract in reducing menopausal symptoms in otherwise healthy women: a double-blind, randomized, placebo-controlled study. Phytother Res. 2017;31(9):1316–22. https://pubmed.ncbi.nlm.nih.gov/28707431/

5994

Safary M, Hakimi S, Mobaraki-Asl N, Amiri P, Tvassoli H, Delazar A. Comparison of the effects of fenugreek vaginal cream and ultra low-dose estrogen on atrophic vaginitis. Curr Drug Deliv. 2020;17(9):815–22. https://pubmed.ncbi.nlm.nih.gov/32640956/

5995

Pill-free ways to improve your sex life. Exercise, smoking cessation, and alcohol moderation can help bring sexual activity back into the bedroom. Harv Health Lett. 2014;39(10):4. https://pubmed.ncbi.nlm.nih.gov/25230408/

5996

Hall SA, Shackelton R, Rosen RC, Araujo AB. Sexual activity, erectile dysfunction, and incident cardiovascular events. Am J Cardiol. 2010;105(2):192–7. https://pubmed.ncbi.nlm.nih.gov/20102917/

5997

Davey Smith G, Frankel S, Yarnell J. Sex and death: are they related? Findings from the Caerphilly Cohort Study. BMJ. 1997;315(7123):1641–4. https://pubmed.ncbi.nlm.nih.gov/9448525/

5998

Fisher AD, Bandini E, Rastrelli G, et al. Sexual and cardiovascular correlates of male unfaithfulness. J Sex Med. 2012;9(6):1508–18. https://pubmed.ncbi.nlm.nih.gov/22510301/

5999

Maggi M, Corona G. Love protects lover’s life. J Sex Med. 2011;8(4):931–5. https://pubmed.ncbi.nlm.nih.gov/21457464/

6000

Davey Smith G, Frankel S, Yarnell J. Sex and death: are they related? Findings from the Caerphilly Cohort Study. BMJ. 1997;315(7123):1641–4. https://pubmed.ncbi.nlm.nih.gov/9448525/

6001

Meldrum DR, Gambone JC, Morris MA, Meldrum DA, Esposito K, Ignarro LJ. The link between erectile and cardiovascular health: the canary in the coal mine. Am J Cardiol. 2011;108(4):599–606. https://pubmed.ncbi.nlm.nih.gov/21624550/

6002

Esposito K, Giugliano D. Lifestyle/dietary recommendations for erectile dysfunction and female sexual dysfunction. Urol Clin North Am. 2011;38(3):293–301. https://pubmed.ncbi.nlm.nih.gov/21798391/

6003

Dong JY, Zhang YH, Qin LQ. Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies. J Am Coll Cardiol. 2011;58(13):1378–85. https://pubmed.ncbi.nlm.nih.gov/21920268/

6004

Ostfeld RJ, Allen KE, Aspry K, et al. Vasculogenic erectile dysfunction: the impact of diet and lifestyle. Am J Med. 2021;134(3):310–6. https://pubmed.ncbi.nlm.nih.gov/33227246/

6005

Kent KC, Zwolak RM, Egorova NN, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg. 2010;52(3):539–48. https://pubmed.ncbi.nlm.nih.gov/20630687/

6006

Two-way street between erection problems and heart disease. Paying attention to heart health can be good for a man’s sex life. Harv Heart Lett. 2011;21(9):4. https://pubmed.ncbi.nlm.nih.gov/21649979/

6007

Inman BA, Sauver JL, Jacobson DJ, et al. A population-based, longitudinal study of erectile dysfunction and future coronary artery disease. Mayo Clin Proc. 2009;84(2):108–13. https://pubmed.ncbi.nlm.nih.gov/19181643/

6008

Geerkens MJM, Al-Itejawi HHM, Nieuwenhuijzen JA, et al. Sexual dysfunction and bother due to erectile dysfunction in the healthy elderly male population: prevalence from a systematic review. Eur Urol Focus. 2020;6(4):776–90. https://pubmed.ncbi.nlm.nih.gov/30878347/

6009

Jackson G. Erectile dysfunction and coronary disease: evaluating the link. Maturitas. 2012;72(3):263–4. https://pubmed.ncbi.nlm.nih.gov/22503513/

6010

Carto C, Pagalavan M, Nackeeran S, et al. Consumption of a healthy plant-based diet is associated with a decreased risk of erectile dysfunction: a cross-sectional study of the National Health and Nutrition Examination Survey. Urology. 2022;161:76–82. https://pubmed.ncbi.nlm.nih.gov/34979217/

6011

Bauer SR, Breyer BN, Stampfer MJ, Rimm EB, Giovannucci EL, Kenfield SA. Association of diet with erectile dysfunction among men in the Health Professionals Follow-Up Study. JAMA Netw Open. 2020;3(11):e2021701. https://pubmed.ncbi.nlm.nih.gov/33185675/

6012

Wang F, Dai S, Wang M, Morrison H. Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men. Urology. 2013;82(6):1330–5. https://pubmed.ncbi.nlm.nih.gov/24295250/

6013

Mykoniatis I, Grammatikopoulou MG, Bouras E, et al. Sexual dysfunction among young men: overview of dietary components associated with erectile dysfunction. J Sex Med. 2018;15(2):176–82. https://pubmed.ncbi.nlm.nih.gov/29325831/

6014

Gilbert SF, Zevit Z. Congenital human baculum deficiency: the generative bone of Genesis 2:21–23. Am J Med Genet. 2001;101(3):284–5. https://pubmed.ncbi.nlm.nih.gov/11424148/

6015

Dawkins R. The Selfish Gene. 30th Anniversary ed. Oxford University Press; 2006. https://worldcat.org/title/62532503

6016

Huynh LM, Liang K, Osman MM, et al. Organic diet and intermittent fasting are associated with improved erectile function. Urology. 2020;144:147–51. https://pubmed.ncbi.nlm.nih.gov/32717247/

6017

Burnett AL. Environmental erectile dysfunction: can the environment really be hazardous to your erectile health? J Androl. 2008;29(3):229–36. https://pubmed.ncbi.nlm.nih.gov/18187396/

6018

Espir ML, Hall JW, Shirreffs JG, Stevens DL. Impotence in farm workers using toxic chemicals. Br Med J. 1970;1(5693):423–5. https://pubmed.ncbi.nlm.nih.gov/5434665/

6019

Oliva A, Giami A, Multigner L. Environmental agents and erectile dysfunction: a study in a consulting population. J Androl. 2002;23(4):546–50. https://pubmed.ncbi.nlm.nih.gov/12065462/

6020

van de Vijver LPL, van Vliet MET. Health effects of an organic diet – consumer experiences in the Netherlands. J Sci Food Agric. 2012;92(14):2923–7. https://pubmed.ncbi.nlm.nih.gov/22331850/

6021

Li DK, Zhou Z, Miao M, et al. Relationship between urine bisphenol-A level and declining male sexual function. J Androl. 2010;31(5):500–6. https://pubmed.ncbi.nlm.nih.gov/20467048/

6022

Geens T, Aerts D, Berthot C, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–40. https://pubmed.ncbi.nlm.nih.gov/22889897/

6023

Roberts R. BPA exposure and health effects: educating physicians and patients. Am Fam Physician. 2012;85(11):1040–4. https://pubmed.ncbi.nlm.nih.gov/22962873/

6024

Mirmira P, Evans-Molina C. Bisphenol A, obesity, and type 2 diabetes mellitus: genuine concern or unnecessary preoccupation? Transl Res. 2014;164(1):13–21. https://pubmed.ncbi.nlm.nih.gov/24686036/

6025

Feldman HA, Johannes CB, Derby CA, et al. Erectile dysfunction and coronary risk factors: prospective results from the Massachusetts Male Aging Study. Prev Med. 2000;30(4):328–38. https://pubmed.ncbi.nlm.nih.gov/10731462/

6026

Juenemann KP, Lue TF, Luo JA, Benowitz NL, Abozeid M, Tanagho EA. The effect of cigarette smoking on penile erection. J Urol. 1987;138(2):438–41. https://pubmed.ncbi.nlm.nih.gov/3599273/

6027

Chan SSC, Leung DYP, Abdullah ASM, et al. Smoking-cessation and adherence intervention among Chinese patients with erectile dysfunction. Am J Prev Med. 2010;39(3):251–8. https://pubmed.ncbi.nlm.nih.gov/20709257/

6028

Pizzol D, Demurtas J, Stubbs B, et al. Relationship between cannabis use and erectile dysfunction: a systematic review and meta-analysis. Am J Mens Health. 2019;13(6):1557988319892464. https://pubmed.ncbi.nlm.nih.gov/31795801/

6029

Dallal RM, Chernoff A, O’Leary MP, Smith JA, Braverman JD, Quebbemann BB. Sexual dysfunction is common in the morbidly obese male and improves after gastric bypass surgery. J Am Coll Surg. 2008;207(6):859–64. https://pubmed.ncbi.nlm.nih.gov/19183532/

6030

Khoo J, Piantadosi C, Duncan R, et al. Comparing effects of a low-energy diet and a high-protein low-fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men. J Sex Med. 2011;8(10):2868–75. https://pubmed.ncbi.nlm.nih.gov/21819545/

6031

Glina FPA, de Freitas Barboza JW, Nunes VM, Glina S, Bernardo WM. What is the impact of bariatric surgery on erectile function? A systematic review and meta-analysis. Sex Med Rev. 2017;5(3):393–402. https://pubmed.ncbi.nlm.nih.gov/28526630/

6032

Allen MS, Walter EE. Health-related lifestyle factors and sexual dysfunction: a meta-analysis of population-based research. J Sex Med. 2018;15(4):458–75. https://pubmed.ncbi.nlm.nih.gov/29523476/

6033

Silva AB, Sousa N, Azevedo LF, Martins C. Physical activity and exercise for erectile dysfunction: systematic review and meta-analysis. Br J Sports Med. 2017;51(19):1419–24. https://pubmed.ncbi.nlm.nih.gov/27707739/

6034

Li J, Peng L, Cao D, He L, Li Y, Wei Q. Avanafil for the treatment of men with erectile dysfunction: a systematic review and meta-analysis of randomized controlled trials. Am J Mens Health. 2019;13(5):1557988319880764. https://pubmed.ncbi.nlm.nih.gov/31672076/

6035

Gerbild H, Larsen CM, Graugaard C, Josefsson KA. Physical activity to improve erectile function: a systematic review of intervention studies. Sex Med. 2018;6(2):75–89. https://pubmed.ncbi.nlm.nih.gov/29661646/

6036

Michiels M, Van der Aa F. Bicycle riding and the bedroom: can riding a bicycle cause erectile dysfunction? Urology. 2015;85(4):725–30. https://pubmed.ncbi.nlm.nih.gov/25681833/

6037

Number of participants in bicycling in the United States from 2006 to 2020 (in millions). Statista. https://www.statista.com/statistics/191204/participants-in-bicycling-in-the-us-since-2006/. Published June 28, 2021. Accessed August 24, 2022.; https://www.statista.com/statistics/191204/participants-in-bicycling-in-the-us-since-2006/

6038

Gan ZS, Ehlers ME, Lin FC, Wright ST, Figler BD, Coward RM. Systematic review and meta-analysis of cycling and erectile dysfunction. Sex Med Rev. 2021;9(2):304–11. https://pubmed.ncbi.nlm.nih.gov/32147498/

6039

Michiels M, Van der Aa F. Bicycle riding and the bedroom: can riding a bicycle cause erectile dysfunction? Urology. 2015;85(4):725–30. https://pubmed.ncbi.nlm.nih.gov/25681833/

6040

Dettori JR, Koepsell TD, Cummings P, Corman JM. Erectile dysfunction after a long-distance cycling event: associations with bicycle characteristics. J Urol. 2004;172(2):637–41. https://pubmed.ncbi.nlm.nih.gov/15247750/

6041

Sommer F, Goldstein I, Korda JB. Bicycle riding and erectile dysfunction: a review. J Sex Med. 2010;7(7):2346–58. https://pubmed.ncbi.nlm.nih.gov/20102446/

6042

Michiels M, Van der Aa F. Bicycle riding and the bedroom: can riding a bicycle cause erectile dysfunction? Urology. 2015;85(4):725–30. https://pubmed.ncbi.nlm.nih.gov/25681833/

6043

Cai X, Tian Y, Wu T, Cao CX, Bu SY, Wang KJ. The role of statins in erectile dysfunction: a systematic review and meta-analysis. Asian J Androl. 2014;16(3):461–6. https://pubmed.ncbi.nlm.nih.gov/24556747/

6044

Williams P, McBain H, Amirova A, Newman S, Mulligan K. Men’s beliefs about treatment for erectile dysfunction – what influences treatment use? A systematic review. Int J Impot Res. 2021;33(1):16–42. https://pubmed.ncbi.nlm.nih.gov/32231275/

6045

Goldstein I. The hour lecture that changed sexual medicine – the Giles Brindley injection story. J Sex Med. 2012;9(2):337–42. https://pubmed.ncbi.nlm.nih.gov/22296605/

6046

Barbas R, Llinas A, Prohens R. The solid state landscape of the sildenafil drug. J Pharm Sci. 2022;111(4):1104–9. https://pubmed.ncbi.nlm.nih.gov/34419482/

6047

Klotz L. How (not) to communicate new scientific information: a memoir of the famous Brindley lecture. BJU Int. 2005;96(7):956–7. https://pubmed.ncbi.nlm.nih.gov/16225508/

6048

Goldstein I. The hour lecture that changed sexual medicine – the Giles Brindley injection story. J Sex Med. 2012;9(2):337–42. https://pubmed.ncbi.nlm.nih.gov/22296605/

6049

Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov. 2006;5(8):689–702. https://pubmed.ncbi.nlm.nih.gov/16883306/

6050

Williams P, McBain H, Amirova A, Newman S, Mulligan K. Men’s beliefs about treatment for erectile dysfunction – what influences treatment use? A systematic review. Int J Impot Res. 2021;33(1):16–42. https://pubmed.ncbi.nlm.nih.gov/32231275/

6051

Souverein PC, Egberts ACG, Meuleman EJH, Urquhart J, Leufkens HGM. Incidence and determinants of sildenafil (dis)continuation: the Dutch cohort of sildenafil users. Int J Impot Res. 2002;14(4):259–65. https://pubmed.ncbi.nlm.nih.gov/12152115/

6052

Salonia A, Rigatti P, Montorsi F. Sildenafil in erectile dysfunction: a critical review. Curr Med Res Opin. 2003;19(4):241–62. https://pubmed.ncbi.nlm.nih.gov/12841917/

6053

Souverein PC, Egberts ACG, Meuleman EJH, Urquhart J, Leufkens HGM. Incidence and determinants of sildenafil (dis)continuation: the Dutch cohort of sildenafil users. Int J Impot Res. 2002;14(4):259–65. https://pubmed.ncbi.nlm.nih.gov/12152115/

6054

Le B, Burnett AL. Evolution of penile prosthetic devices. Korean J Urol. 2015;56(3):179–86. https://pubmed.ncbi.nlm.nih.gov/25763121/

6055

Schultheiss D, Gabouev AI, Jonas U. Nikolaj A. Bogoraz (1874–1952): pioneer of phalloplasty and penile implant surgery. J Sex Med. 2005;2(1):139–46. https://pubmed.ncbi.nlm.nih.gov/16422917/

6056

Jain S, Bhojwani A, Terry TR. The role of penile prosthetic surgery in the modern management of erectile dysfunction. Postgrad Med J. 2000;76(891):22–5. https://pubmed.ncbi.nlm.nih.gov/10622775/

6057

Ciftci H, Verit A, Savas M. Late complications of spontaneous urethral erosion of a malleable penile prosthesis in a young patient. Singapore Med J. 2012;53(6):e120–1. https://pubmed.ncbi.nlm.nih.gov/22711048/

6058

Le B, Burnett AL. Evolution of penile prosthetic devices. Korean J Urol. 2015;56(3):179–86. https://pubmed.ncbi.nlm.nih.gov/25763121/

6059

Chen L, Staubli SEL, Schneider MP, et al. Phosphodiesterase 5 inhibitors for the treatment of erectile dysfunction: a trade-off network meta-analysis. Eur Urol. 2015;68(4):674–80. https://pubmed.ncbi.nlm.nih.gov/25817916/

6060

Matheeussen V, Maudens KE, Anseeuw K, Neels H. A non-fatal self-poisoning attempt with sildenafil. J Anal Toxicol. 2015;39(7):572–6. https://pubmed.ncbi.nlm.nih.gov/26139313/

6061

Chen SP, Singh K, Lin SC. Use of phosphodiesterase inhibitors and prevalence of self-reported glaucoma in the United States. PLoS One. 2017;12(8):e0183388. https://pubmed.ncbi.nlm.nih.gov/28817686/

6062

Kim SJ, Kim JH, Chang HK, Kim KH. Let’s rethinking about the safety of phosphodiesterase type 5 inhibitor in the patients with erectile dysfunction after radical prostatectomy. J Exerc Rehabil. 2016;12(3):143–7. https://pubmed.ncbi.nlm.nih.gov/27419107/

6063

Mitra D, Robinson KC, Fisher DE. Melanoma and Viagra: an unexpected connection. Pigment Cell Melanoma Res. 2011;24(1):16–8. https://pubmed.ncbi.nlm.nih.gov/21290790/

6064

Arozarena I, Sanchez-Laorden B, Packer L, et al. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell. 2011;19(1):45–57. https://pubmed.ncbi.nlm.nih.gov/21215707/

6065

Dhayade S, Kaesler S, Sinnberg T, et al. Sildenafil potentiates a cGMP-dependent pathway to promote melanoma growth. Cell Rep. 2016;14(11):2599–610. https://pubmed.ncbi.nlm.nih.gov/26971999/

6066

Yafi FA, Sharlip ID, Becher EF. Update on the safety of phosphodiesterase type 5 inhibitors for the treatment of erectile dysfunction. Sex Med Rev. 2018;6(2):242–52. https://pubmed.ncbi.nlm.nih.gov/28923561/

6067

Cohen PA, Venhuis BJ. Adulterated sexual enhancement supplements: more than mojo. JAMA Intern Med. 2013;173(13):1169–70. https://pubmed.ncbi.nlm.nih.gov/23699734/

6068

Poon WT, Lam YH, Lee HHC, et al. Outbreak of hypoglycaemia: sexual enhancement products containing oral hypoglycaemic agent. Hong Kong Med J. 2009;15(3):196–200. https://pubmed.ncbi.nlm.nih.gov/19494375/

6069

Jaksch F. Editorial: Are you concerned about the practice called “dry labbing” in the dietary supplement industry? Altern Med Rev. 2012;17(1):5. https://pubmed.ncbi.nlm.nih.gov/22502618/

6070

Robbins R. A supplement maker tried to silence this Harvard doctor – and put academic freedom on trial. STAT. https://www.statnews.com/2017/01/10/supplement-harvard-pieter-cohen/. Published January 10, 2017. Accessed August 24, 2022.; https://www.statnews.com/2017/01/10/supplement-harvard-pieter-cohen/

6071

Bagley N, Carroll AE, Cohen PA. Scientific trials – in the laboratories, not the courts. JAMA Intern Med. 2018;178(1):7–8. https://pubmed.ncbi.nlm.nih.gov/29114742/

6072

Cohen PA, Bloszies C, Yee C, Gerona R. An amphetamine isomer whose efficacy and safety in humans has never been studied, ß-methylphenylethylamine (BMPEA), is found in multiple dietary supplements. Drug Test Anal. 2016;8(3–4):328–33. https://pubmed.ncbi.nlm.nih.gov/25847603/

6073

Hi-Tech Pharms v Cohen, 16–10660-WGY (D Mass 2016).; https://www.govinfo.gov/app/details/USCOURTS-mad-1_16-cv-10660/

6074

Bagley N, Carroll AE, Cohen PA. Scientific trials – in the laboratories, not the courts. JAMA Intern Med. 2018;178(1):7–8. https://pubmed.ncbi.nlm.nih.gov/29114742/

6075

Bagley N, Carroll AE, Cohen PA. Scientific trials – in the laboratories, not the courts. JAMA Intern Med. 2018;178(1):7–8. https://pubmed.ncbi.nlm.nih.gov/29114742/

6076

Hall-Lipsy E, Malanga S. Defamation lawsuits: academic sword or shield? EMBO Mol Med. 2017;9(12):1623–5. https://pubmed.ncbi.nlm.nih.gov/29038313/

6077

Worner TM, Gordon GG, Leo MA, Lieber CS. Vitamin A treatment of sexual dysfunction in male alcoholics. Am J Clin Nutr. 1988;48(6):1431–5. https://pubmed.ncbi.nlm.nih.gov/3202091/

6078

Ng CF, Lee CP, Ho AL, Lee VWY. Effect of niacin on erectile function in men suffering erectile dysfunction and dyslipidemia. J Sex Med. 2011;8(10):2883–93. https://pubmed.ncbi.nlm.nih.gov/21810191/

6079

Biniaz V, Tayebi A, Ebadi A, Sadeghi S, Einollahi B. Effect of vitamin C supplementation on marital satisfaction in patients undergoing hemodialysis: a randomized, double-blind and placebo-controlled trial. Saudi J Kidney Dis Transpl. 2015;26(3):468–76. https://pubmed.ncbi.nlm.nih.gov/26022016/

6080

Ghanbari-Homaie S, Ataei-Almanghadim K, Mirghafourvand M. Effect of vitamins on sexual function: a systematic review. Int J Vitam Nutr Res. Published online March 29, 2021:1–10.; https://pubmed.ncbi.nlm.nih.gov/33779240/

6081

Elshahid ARM, Shahein IM, Mohammed YF, Ismail NF, Zakarria HBAER, GamalEl Din SF. Folic acid supplementation improves erectile function in patients with idiopathic vasculogenic erectile dysfunction by lowering peripheral and penile homocysteine plasma levels: a case-control study. Andrology. 2020;8(1):148–53. https://pubmed.ncbi.nlm.nih.gov/31237081/

6082

Canguven O, Talib RA, El Ansari W, Yassin DJ, Al Naimi A. Vitamin D treatment improves levels of sexual hormones, metabolic parameters and erectile function in middle-aged vitamin D deficient men. Aging Male. 2017;20(1):9–16. https://pubmed.ncbi.nlm.nih.gov/28074679/

6083

Balasubramanian A, Thirumavalavan N, Srivatsav A, et al. An analysis of popular online erectile dysfunction supplements. J Sex Med. 2019;16(6):843–52. https://pubmed.ncbi.nlm.nih.gov/31036522/

6084

Srivatsav A, Balasubramanian A, Pathak UI, et al. Efficacy and safety of common ingredients in aphrodisiacs used for erectile dysfunction: a review. Sex Med Rev. 2020;8(3):431–42. https://pubmed.ncbi.nlm.nih.gov/32139335/

6085

Jang DJ, Lee MS, Shin BC, Lee YC, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol. 2008;66(4):444–50. https://pubmed.ncbi.nlm.nih.gov/18754850/

6086

Ichim MC, de Boer HJ. A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front Pharmacol. 2021;11:612071. https://pubmed.ncbi.nlm.nih.gov/33505315/

6087

West E, Krychman M. Natural aphrodisiacs – a review of selected sexual enhancers. Sex Med Rev. 2015;3(4):279–88. https://pubmed.ncbi.nlm.nih.gov/27784600/

6088

Zhu L, Han X, Zhu J, Du L, Liu L, Gong W. Severe acute intoxication with yohimbine: four simultaneous poisoning cases. Forensic Sci Int. 2021;320:110705. https://pubmed.ncbi.nlm.nih.gov/33529997/

6089

Muncey W, Sellke N, Kim T, Mishra K, Thirumavalavan N, Loeb A. Alternative treatment for erectile dysfunction: a growing arsenal in men’s health. Curr Urol Rep. 2021;22(2):11. https://pubmed.ncbi.nlm.nih.gov/33420972/

6090

Burnett AL, Nehra A, Breau RH, et al. Erectile dysfunction: AUA guideline. J Urol. 2018;200(3):633–41. https://pubmed.ncbi.nlm.nih.gov/29746858/

6091

Hatzimouratidis K, Amar E, Eardley I, et al. Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur Urol. 2010;57(5):804–14. https://pubmed.ncbi.nlm.nih.gov/20189712/

6092

Maio G, Saraeb S, Marchiori A. Physical activity and PDE5 inhibitors in the treatment of erectile dysfunction: results of a randomized controlled study. J Sex Med. 2010;7(6):2201–8. https://pubmed.ncbi.nlm.nih.gov/20367777/

6093

Esposito K, Ciotola M, Giugliano F, et al. Mediterranean diet improves erectile function in subjects with the metabolic syndrome. Int J Impot Res. 2006;18(4):405–10. https://pubmed.ncbi.nlm.nih.gov/16395320/

6094

Meldrum DR, Gambone JC, Morris MA, Meldrum DAN, Esposito K, Ignarro LJ. The link between erectile and cardiovascular health: the canary in the coal mine. Am J Cardiol. 2011;108(4):599–606. https://pubmed.ncbi.nlm.nih.gov/21624550/

6095

Gupta BP, Murad MH, Clifton MM, Prokop L, Nehra A, Kopecky SL. The effect of lifestyle modification and cardiovascular risk factor reduction on erectile dysfunction: a systematic review and meta-analysis. Arch Intern Med. 2011;171(20):1797–803. https://pubmed.ncbi.nlm.nih.gov/21911624/

6096

Esselstyn CB. Resolving the coronary artery disease epidemic through plant-based nutrition. Prev Cardiol. 2001;4(4):171–7. https://pubmed.ncbi.nlm.nih.gov/11832674/

6097

Barnett TD, Barnard ND, Radak TL. Development of symptomatic cardiovascular disease after self-reported adherence to the Atkins diet. J Am Diet Assoc. 2009;109(7):1263–5. https://pubmed.ncbi.nlm.nih.gov/19559147/

6098

Ramírez R, Pedro-Botet J, García M, et al. Erectile dysfunction and cardiovascular risk factors in a Mediterranean diet cohort. Intern Med J. 2016;46(1):52–6. https://pubmed.ncbi.nlm.nih.gov/26482327/

6099

Aldemir M, Okulu E, Neselioglu S, Erel O, Kayigil O. Pistachio diet improves erectile function parameters and serum lipid profiles in patients with erectile dysfunction. Int J Impot Res. 2011;23(1):32–8. https://pubmed.ncbi.nlm.nih.gov/21228801/

6100

Salas-Huetos A, Moraleda R, Giardina S, et al. Effect of nut consumption on semen quality and functionality in healthy men consuming a Western-style diet: a randomized controlled trial. Am J Clin Nutr. 2018;108(5):953–62. https://pubmed.ncbi.nlm.nih.gov/30475967/

6101

Salas-Huetos A, Muralidharan J, Galiè S, Salas-Salvadó J, Bulló M. Effect of nut consumption on erectile and sexual function in healthy males: a secondary outcome analysis of the FERTINUTS randomized controlled trial. Nutrients. 2019;11(6):E1372. https://pubmed.ncbi.nlm.nih.gov/31248067/

6102

Aldemir M, Okulu E, Neselioglu S, Erel O, Kayigil O. Pistachio diet improves erectile function parameters and serum lipid profiles in patients with erectile dysfunction. Int J Impot Res. 2011;23(1):32–8. https://pubmed.ncbi.nlm.nih.gov/21228801/

6103

Salas-Huetos A, Muralidharan J, Galiè S, Salas-Salvadó J, Bulló M. Effect of nut consumption on erectile and sexual function in healthy males: a secondary outcome analysis of the FERTINUTS randomized controlled trial. Nutrients. 2019;11(6):E1372. https://pubmed.ncbi.nlm.nih.gov/31248067/

6104

Ohebshalom M, Mulhall JP. Transdermal and topical pharmacotherapy for male sexual dysfunction. Expert Opin Drug Deliv. 2005;2(1):115–20. https://pubmed.ncbi.nlm.nih.gov/16296739/

6105

Bhupathiraju SN, Wedick NM, Pan A, et al. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr. 2013;98(6):1514–23. https://pubmed.ncbi.nlm.nih.gov/24088718/

6106

Tamakoshi A, Tamakoshi K, Lin Y, Yagyu K, Kikuchi S. Healthy lifestyle and preventable death: findings from the Japan Collaborative Cohort (JACC) Study. Prev Med. 2009;48(5):486–92. https://pubmed.ncbi.nlm.nih.gov/19254743/

6107

Wang F, Dai S, Wang M, Morrison H. Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men. Urology. 2013;82(6):1330–5. https://pubmed.ncbi.nlm.nih.gov/24295250/

6108

Presley TD, Morgan AR, Bechtold E, et al. Acute effect of a high nitrate diet on brain perfusion in older adults. Nitric Oxide. 2011;24(1):34–42. https://pubmed.ncbi.nlm.nih.gov/20951824/

6109

Rhim HC, Kim MS, Park YJ, et al. The potential role of arginine supplements on erectile dysfunction: a systemic review and meta-analysis. J Sex Med. 2019;16(2):223–34. https://pubmed.ncbi.nlm.nih.gov/30770070/

6110

Grimble GK. Adverse gastrointestinal effects of arginine and related amino acids. J Nutr. 2007;137(6 Suppl 2):1693S-701S. https://pubmed.ncbi.nlm.nih.gov/17513449/

6111

Rimando AM, Perkins-veazie PM. Determination of citrulline in watermelon rind. J Chromatogr A. 2005;1078(1–2):196–200. https://pubmed.ncbi.nlm.nih.gov/16007998/

6112

Cormio L, De siati M, Lorusso F, et al. Oral L-citrulline supplementation improves erection hardness in men with mild erectile dysfunction. Urology. 2011;77(1):119–22. https://pubmed.ncbi.nlm.nih.gov/21195829/

6113

Pfizer Annual Meeting of Shareholders 2014 Financial Report. http//www.pfizer.com/system/files/presentation/2014_Pfizer_Financial_Report.pdf. Accessed May 16, 2015.; https://www.pfizer.com/system/files/presentation/2014_Pfizer_Financial_Report.pdf

6114

Johnson G. Watermelon board approves officers, budget, marketing plan. The Packer. http://www.thepacker.com/news/watermelon-board-approves-officers-budget-marketing-plan. February 24, 2015. Accessed May 16, 2015.; https://www.thepacker.com/news/watermelon-board-approves-officers-budget-marketing-plan

6115

Lopresti AL, Drummond PD. Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Hum Psychopharmacol. 2014;29(6):517–27. https://pubmed.ncbi.nlm.nih.gov/25384672/

6116

Talaei A, Hassanpour Moghadam M, Sajadi Tabassi SA, Mohajeri SA. Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: a randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord. 2015;174:51–6. https://pubmed.ncbi.nlm.nih.gov/25484177/

6117

Lopresti AL, Drummond PD. Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Hum Psychopharmacol. 2014;29(6):517–27. https://pubmed.ncbi.nlm.nih.gov/25384672/

6118

Higgins A, Nash M, Lynch AM. Antidepressant-associated sexual dysfunction: impact, effects, and treatment. Drug Healthc Patient Saf. 2010;2:141–50. https://pubmed.ncbi.nlm.nih.gov/21701626/

6119

Hu XH, Bull SA, Hunkeler EM, et al. Incidence and duration of side effects and those rated as bothersome with selective serotonin reuptake inhibitor treatment for depression: patient report versus physician estimate. J Clin Psychiatry. 2004;65(7):959–65. https://pubmed.ncbi.nlm.nih.gov/15291685/

6120

Csoka AB, Shipko S. Persistent sexual side effects after SSRI discontinuation. Psychother Psychosom. 2006;75(3):187–8. https://pubmed.ncbi.nlm.nih.gov/16636635/

6121

Modabbernia A, Sohrabi H, Nasehi AA, et al. Effect of saffron on fluoxetine-induced sexual impairment in men: randomized double-blind placebo-controlled trial. Psychopharmacology (Berl). 2012;223(4):381–8. https://pubmed.ncbi.nlm.nih.gov/22552758/

6122

Kashani L, Raisi F, Saroukhani S, et al. Saffron for treatment of fluoxetine-induced sexual dysfunction in women: randomized double-blind placebo-controlled study. Hum Psychopharmacol. 2013;28(1):54–60. https://pubmed.ncbi.nlm.nih.gov/23280545/

6123

Giesbers AAGM, Bruins JL, Kramer AEJL, Jonas U. New methods in the diagnosis of impotence: RigiScan® penile tumescence and rigidity monitoring and diagnostic papaverine hydrochloride injection. World J Urol. 1987;5(3):173–6. https://link.springer.com/article/10.1007/BF00326827

6124

Mohammadzadeh-Moghadam H, Nazari SM, Shamsa A, et al. Effects of a topical saffron (Crocus sativus L) gel on erectile dysfunction in diabetics: a randomized, parallel-group, double-blind, placebo-controlled trial. J Evid Based Complementary Altern Med. 2015;20(4):283–6. https://pubmed.ncbi.nlm.nih.gov/25948674/

6125

La J, Roberts NH, Yafi FA. Diet and men’s sexual health. Sex Med Rev. 2018;6(1):54–68. https://pubmed.ncbi.nlm.nih.gov/28778698/

6126

Springmann M, Clark MA, Rayner M, Scarborough P, Webb P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet Health. 2021;5(11):e797–807. https://pubmed.ncbi.nlm.nih.gov/34715058/

6127

Flynn MM, Schiff AR. Economical healthy diets (2012): including lean animal protein costs more than using extra virgin olive oil. J Hunger Environ Nutr. 2015;10(4):467–82. https://www.tandfonline.com/doi/abs/10.1080/19320248.2015.1045675

6128

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6129

1,86 м2. – Примеч. ред.

6130

Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. https://pubmed.ncbi.nlm.nih.gov/32105850/

6131

Lowry WE. Its written all over your face: the molecular and physiological consequences of aging skin. Mech Ageing Dev. 2020;190:111315. https://pubmed.ncbi.nlm.nih.gov/32681843/

6132

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6133

Makrantonaki E, Zouboulis CC. The skin as a mirror of the aging process in the human organism – state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol. 2007;42(9):879–86. https://pubmed.ncbi.nlm.nih.gov/17689905/

6134

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6135

Makrantonaki E, Zouboulis CC. The skin as a mirror of the aging process in the human organism – state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol. 2007;42(9):879–86. https://pubmed.ncbi.nlm.nih.gov/17689905/

6136

Chaudhary M, Khan A, Gupta M. Skin ageing: pathophysiology and current market treatment approaches. Curr Aging Sci. 2020;13(1):22–30. https://pubmed.ncbi.nlm.nih.gov/31530270/

6137

Malik A, Hoenig LJ. Can aging be slowed down? Clin Dermatol. 2019;37(4):306–11. https://pubmed.ncbi.nlm.nih.gov/31345317/

6138

Nikolakis G, Makrantonaki E, Zouboulis CC. Skin mirrors human aging. Horm Mol Biol Clin Investig. 2013;16(1):13–28. https://pubmed.ncbi.nlm.nih.gov/25436743/

6139

Huang S, Haiminen N, Carrieri AP, et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems. 2020;5(1):e00630–19. https://pubmed.ncbi.nlm.nih.gov/32047061/

6140

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/

6141

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6142

Nikolakis G, Makrantonaki E, Zouboulis CC. Skin mirrors human aging. Horm Mol Biol Clin Investig. 2013;16(1):13–28. https://pubmed.ncbi.nlm.nih.gov/25436743/

6143

Singh G. Can we prevent skin aging? Indian J Dermatol Venereol Leprol. 2009;75(5):447–51. https://pubmed.ncbi.nlm.nih.gov/19736422/

6144

Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. https://pubmed.ncbi.nlm.nih.gov/32105850/

6145

Silveira JEPS, Pedroso DMM. UV light and skin aging. Rev Environ Health. 2014;29(3):243–54. https://pubmed.ncbi.nlm.nih.gov/25241726/

6146

Singh G. Can we prevent skin aging? Indian J Dermatol Venereol Leprol. 2009;75(5):447–51. https://pubmed.ncbi.nlm.nih.gov/19736422/

6147

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6148

Gordon JRS, Brieva JC. Images in clinical medicine. Unilateral dermatoheliosis. N Engl J Med. 2012;366(16):e25. https://pubmed.ncbi.nlm.nih.gov/22512500/

6149

Gunn DA, Dick JL, van Heemst D, et al. Lifestyle and youthful looks. Br J Dermatol. 2015;172(5):1338–45. https://pubmed.ncbi.nlm.nih.gov/25627783/

6150

Malik A, Hoenig LJ. Can aging be slowed down? Clin Dermatol. 2019;37(4):306–11. https://pubmed.ncbi.nlm.nih.gov/31345317/

6151

Singh G. Can we prevent skin aging? Indian J Dermatol Venereol Leprol. 2009;75(5):447–51. https://pubmed.ncbi.nlm.nih.gov/19736422/

6152

Elsner P, Fluhr JW, Gehring W, et al. Anti-aging data and support claims – consensus statement. J Dtsch Dermatol Ges. 2011;9 Suppl 3:S1–32. https://pubmed.ncbi.nlm.nih.gov/22023288/

6153

Gunn DA, Dick JL, van Heemst D, et al. Lifestyle and youthful looks. Br J Dermatol. 2015;172(5):1338–45. https://pubmed.ncbi.nlm.nih.gov/25627783/

6154

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. Natural anti-aging skincare: role and potential. Biogerontology. 2020;21(3):293–310. https://pubmed.ncbi.nlm.nih.gov/32162126/

6155

Nikolakis G, Makrantonaki E, Zouboulis CC. Skin mirrors human aging. Horm Mol Biol Clin Investig. 2013;16(1):13–28. https://pubmed.ncbi.nlm.nih.gov/25436743/

6156

Burford O, Jiwa M, Carter O, Parsons R, Hendrie D. Internet-based photoaging within Australian pharmacies to promote smoking cessation: randomized controlled trial. J Med Internet Res. 2013;15(3):e64. https://pubmed.ncbi.nlm.nih.gov/23531984/

6157

Mahler HIM, Kulik JA, Gerrard M, Gibbons FX. Long-term effects of appearance-based interventions on sun protection behaviors. Health Psychol. 2007;26(3):350–60. https://pubmed.ncbi.nlm.nih.gov/17500622/

6158

Misra BB. The chemical exposome of human aging. Front Genet. 2020;11:574936. https://pubmed.ncbi.nlm.nih.gov/33329714/

6159

Wong QYA, Chew FT. Defining skin aging and its risk factors: a systematic review and meta-analysis. Sci Rep. 2021;11(1):22075. https://pubmed.ncbi.nlm.nih.gov/34764376/

6160

Qiao Y, Li Q, Du HY, Wang QW, Huang Y, Liu W. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor. Biochem Biophys Res Commun. 2017;488(3):445–52. https://pubmed.ncbi.nlm.nih.gov/28526404/

6161

Krutmann J, Liu W, Li L, et al. Pollution and skin: from epidemiological and mechanistic studies to clinical implications. J Dermatol Sci. 2014;76(3):163–8. https://pubmed.ncbi.nlm.nih.gov/25278222/

6162

Van Rooij JG, Veeger MM, Bodelier-Bade MM, Scheepers PT, Jongeneelen FJ. Smoking and dietary intake of polycyclic aromatic hydrocarbons as sources of interindividual variability in the baseline excretion of 1-hydroxypyrene in urine. Int Arch Occup Environ Health. 1994;66(1):55–65. https://pubmed.ncbi.nlm.nih.gov/7927844/

6163

Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol. 2004;23(5):301–33. https://pubmed.ncbi.nlm.nih.gov/15513831/

6164

Harris KL, Banks LD, Mantey JA, Huderson AC, Ramesh A. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis. Expert Opin Drug Metab Toxicol. 2013;9(11):1465–80. https://pubmed.ncbi.nlm.nih.gov/23898780/

6165

Crinnion WJ. The role of persistent organic pollutants in the worldwide epidemic of type 2 diabetes mellitus and the possible connection to farmed Atlantic salmon (Salmo salar). Altern Med Rev. 2011;16(4):301–13. https://pubmed.ncbi.nlm.nih.gov/22214250/

6166

Li Z, Romanoff L, Bartell S, et al. Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol. 2012;25(7):1452–61. https://pubmed.ncbi.nlm.nih.gov/22663094/

6167

Solway J, McBride M, Haq F, Abdul W, Miller R. Diet and dermatology: the role of a whole-food, plant-based diet in preventing and reversing skin aging – a review. J Clin Aesthet Dermatol. 2020 May;13(5):38–43. https://pubmed.ncbi.nlm.nih.gov/32802255/

6168

Pontius AT, Smith PW. How to successfully incorporate antiaging and wellness into your practice: things you should know. Facial Plast Surg. 2010;26(1):12–5. https://pubmed.ncbi.nlm.nih.gov/20094964/

6169

Smirnova MH. A will to youth: the woman’s anti-aging elixir. Soc Sci Med. 2012;75(7):1236–43. https://pubmed.ncbi.nlm.nih.gov/22742924/

6170

Plastic Surgery Statistics Report: ASPS National Clearinghouse of Plastic Surgery Procedural Statistics 2020. American Society of Plastic Surgeons. https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Published 2020. Accessed August 31, 2022.; https://www.plasticsurgery.org/news/plastic-surgery-statistics

6171

Barrett DM, Gerecci D, Wang TD. Facelift controversies. Facial Plast Surg Clin North Am. 2016;24(3):357–66. https://pubmed.ncbi.nlm.nih.gov/27400849/

6172

Chopan M, Samant S, Mast BA. Contemporary analysis of rhytidectomy using the Tracking Operations and Outcomes for Plastic Surgeons database with 13,346 patients. Plast Reconstr Surg. 2020;145(6):1402–8. https://pubmed.ncbi.nlm.nih.gov/32459769/

6173

Chopan M, Samant S, Mast BA. Contemporary analysis of rhytidectomy using the Tracking Operations and Outcomes for Plastic Surgeons database with 13,346 patients. Plast Reconstr Surg. 2020;145(6):1402–8. https://pubmed.ncbi.nlm.nih.gov/32459769/

6174

Truswell WH. Approaches to reducing risk in rhytidectomy surgery. Facial Plast Surg Clin North Am. 2020;28(3):419–27. https://pubmed.ncbi.nlm.nih.gov/32503723/

6175

Plastic Surgery Statistics Report: ASPS National Clearinghouse of Plastic Surgery Procedural Statistics 2020. American Society of Plastic Surgeons. https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Published 2020. Accessed August 31, 2022.; https://www.plasticsurgery.org/news/plastic-surgery-statistics

6176

Lee KC, Pascal AB, Halepas S, Koch A. What are the most commonly reported complications with cosmetic botulinum toxin type A treatments? J Oral Maxillofac Surg. 2020;78(7):1190.e1–9. https://pubmed.ncbi.nlm.nih.gov/32192924/

6177

Giordano CN, Matarasso SL, Ozog DM. Injectable and topical neurotoxins in dermatology: indications, adverse events, and controversies. J Am Acad Dermatol. 2017;76(6):1027–42. https://pubmed.ncbi.nlm.nih.gov/28522039/

6178

Lee KC, Pascal AB, Halepas S, Koch A. What are the most commonly reported complications with cosmetic botulinum toxin type A treatments? J Oral Maxillofac Surg. 2020;78(7):1190.e1–9. https://pubmed.ncbi.nlm.nih.gov/32192924/

6179

Plastic Surgery Statistics Report: ASPS National Clearinghouse of Plastic Surgery Procedural Statistics 2020. American Society of Plastic Surgeons. https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Published 2020. Accessed August 31, 2022.; https://www.plasticsurgery.org/news/plastic-surgery-statistics

6180

DeVictor S, Ong AA, Sherris DA. Complications secondary to nonsurgical rhinoplasty: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2021;165(5):611–6. https://pubmed.ncbi.nlm.nih.gov/33588622/

6181

Vanaman M, Fabi SG, Carruthers J. Complications in the cosmetic dermatology patient: a review and our experience (Part 1). Dermatol Surg. 2016;42(1):1–11. https://pubmed.ncbi.nlm.nih.gov/26716709/

6182

Tran AQ, Staropoli P, Rong AJ, Lee WW. Filler-associated vision loss. Facial Plast Surg Clin North Am. 2019;27(4):557–64. https://pubmed.ncbi.nlm.nih.gov/31587773/

6183

Rayess HM, Svider PF, Hanba C, et al. A cross-sectional analysis of adverse events and litigation for injectable fillers. JAMA Facial Plast Surg. 2018;20(3):207–14. https://pubmed.ncbi.nlm.nih.gov/29270603/

6184

Woodward J, Khan T, Martin J. Facial filler complications. Facial Plast Surg Clin North Am. 2015;23(4):447–58. https://pubmed.ncbi.nlm.nih.gov/26505541/

6185

Plastic Surgery Statistics Report: ASPS National Clearinghouse of Plastic Surgery Procedural Statistics 2020. American Society of Plastic Surgeons. https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf. Published 2020. Accessed August 31, 2022.; https://www.plasticsurgery.org/news/plastic-surgery-statistics

6186

Shah AR, Kennedy PM. The aging face. Med Clin North Am. 2018;102(6):1041–54. https://pubmed.ncbi.nlm.nih.gov/30342607/

6187

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012;4(3):308–19. https://pubmed.ncbi.nlm.nih.gov/23467476/

6188

Manríquez JJ, Cataldo K, Vera-Kellet C, Harz-Fresno I. Wrinkles. BMJ Clin Evid. 2014;2014:1711. https://pubmed.ncbi.nlm.nih.gov/25569867/

6189

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6190

Vanaman M, Fabi SG, Carruthers J. Complications in the cosmetic dermatology patient: a review and our experience (Part 2). Dermatol Surg. 2016;42(1):12–20. https://pubmed.ncbi.nlm.nih.gov/26716709/

6191

Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol. 2012;4(3):308–19. https://pubmed.ncbi.nlm.nih.gov/23467476/

6192

Sillanpää S, Salminen J-P, Eeva T. Breeding success and lutein availability in great tit (Parus major). Acta Oecologica. 2009;35(6):805–10. https://www.researchgate.net/publication/229107650_Breeding_success_and_lutein_availability_in_great_tit_Parus_major

6193

Whitehead RD, Coetzee V, Ozakinci G, Perrett DI. Cross-cultural effects of fruit and vegetable consumption on skin color. Am J Public Health. 2012;102(2):212–3. https://pubmed.ncbi.nlm.nih.gov/22390434/

6194

Stephen ID, Law Smith MJ, Stirrat MR, Perrett DI. Facial skin coloration affects perceived health of human faces. Int J Primatol. 2009;30(6):845–57. https://pubmed.ncbi.nlm.nih.gov/19946602/

6195

Whitehead RD, Re D, Xiao D, Ozakinci G, Perrett DI. You are what you eat: within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes. PLoS One. 2012;7(3):e32988. https://pubmed.ncbi.nlm.nih.gov/22412966/

6196

Stahl W, Heinrich U, Jungmann H, et al. Increased dermal carotenoid levels assessed by noninvasive reflection spectrophotometry correlate with serum levels in women ingesting Betatene. J Nutr. 1998;128(5):903–7. https://pubmed.ncbi.nlm.nih.gov/9567001/

6197

Stephen ID, Law Smith MJ, Stirrat MR, Perrett DI. Facial skin coloration affects perceived health of human faces. Int J Primatol. 2009;30(6):845–57. https://pubmed.ncbi.nlm.nih.gov/19946602/

6198

Lefevre CE, Perrett DI. Fruit over sunbed: carotenoid skin colouration is found more attractive than melanin colouration. Q J Exp Psychol (Hove). 2015;68(2):284–93. https://pubmed.ncbi.nlm.nih.gov/25014019/

6199

Pezdirc K, Hutchesson M, Whitehead R, Ozakinci G, Perrett D, Collins CE. Can dietary intake influence perception of and measured appearance? A systematic review. Nutr Res. 2015;35(3):175–97. https://pubmed.ncbi.nlm.nih.gov/25600848/

6200

Greens to be gorgeous: why eating your five fruit and veg a day makes you sexy. Daily Mail. http://www.dailymail.co.uk/health/article-1228348/Eating-fruit-veg-makes-attractive-opposite-sex.html. November 17, 2009. Accessed September 7, 2022.; https://www.dailymail.co.uk/health/article-1228348/Eating-fruit-veg-makes-attractive-opposite-sex.html

6201

Mitic V, Jovanovic VS, Dimitrijevic M, Cvetkovic J, Stojanovic G. Effect of food preparation technique on antioxidant activity and plant pigment content in some vegetables species. J Food Nutr Res. 2013;1(6):121–7. https://www.researchgate.net/publication/284422190_Effect_of_food_preparation_technique_on_antioxidant_activity_and_plant_pigment_content_in_some_vegetable_species

6202

Meinke MC, Nowbary CK, Schanzer S, Vollert H, Lademann J, Darvin ME. Influences of orally taken carotenoid-rich curly kale extract on collagen I/elastin index of the skin. Nutrients. 2017;9(7):775. https://pubmed.ncbi.nlm.nih.gov/28753935/

6203

Shoji T, Masumoto S, Moriichi N, Ohtake Y, Kanda T. Administration of apple polyphenol supplements for skin conditions in healthy women: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2020;12(4):1071. https://pubmed.ncbi.nlm.nih.gov/32294883/

6204

Nobile V, Michelotti A, Cestone E, et al. Skin photoprotective and antiageing effects of a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) polyphenols. Food Nutr Res. 2016;60:31871. https://pubmed.ncbi.nlm.nih.gov/27374032/

6205

Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H. Dietary tomato paste protects against ultraviolet light-induced erythema in humans. J Nutr. 2001;131(5):1449–51. https://pubmed.ncbi.nlm.nih.gov/11340098/

6206

Palombo P, Fabrizi G, Ruocco V, et al. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: a double-blind, placebo-controlled study. Skin Pharmacol Physiol. 2007;20(4):199–210. https://pubmed.ncbi.nlm.nih.gov/17446716/

6207

Köpcke W, Krutmann J. Protection from sunburn with ß-carotene – a meta-analysis. Photochem Photobiol. 2008;84(2):284–8. https://pubmed.ncbi.nlm.nih.gov/18086246/

6208

Darvin M, Patzelt A, Gehse S, et al. Cutaneous concentration of lycopene correlates significantly with the roughness of the skin. Eur J Pharm Biopharm. 2008;69(3):943–7. https://pubmed.ncbi.nlm.nih.gov/18411044/

6209

Hughes MCB, Williams GM, Pageon H, Fourtanier A, Green AC. Dietary antioxidant capacity and skin photoaging: a 15-year longitudinal study. J Invest Dermatol. 2021;141(4S):1111–8.e2. https://pubmed.ncbi.nlm.nih.gov/32682911/

6210

Sundelin T, Lekander M, Kecklund G, Van Someren EJW, Olsson A, Axelsson J. Cues of fatigue: effects of sleep deprivation on facial appearance. Sleep. 2013;36(9):1355–60. https://pubmed.ncbi.nlm.nih.gov/23997369/

6211

Axelsson J, Sundelin T, Ingre M, Van Someren EJW, Olsson A, Lekander M. Beauty sleep: experimental study on the perceived health and attractiveness of sleep deprived people. BMJ. 2010;341:c6614. https://pubmed.ncbi.nlm.nih.gov/21156746/

6212

Atrooz F, Salim S. Sleep deprivation, oxidative stress and inflammation. Adv Protein Chem Struct Biol. 2020;119:309–36. https://pubmed.ncbi.nlm.nih.gov/31997771/

6213

Lee CM, Watson REB, Kleyn CE. The impact of perceived stress on skin ageing. J Eur Acad Dermatol Venereol. 2020;34(1):54–8. https://pubmed.ncbi.nlm.nih.gov/31407395/

6214

Noordam R, Gunn DA, Tomlin CC, et al. Cortisol serum levels in familial longevity and perceived age: the Leiden Longevity Study. Psychoneuroendocrinology. 2012;37(10):1669–75. https://pubmed.ncbi.nlm.nih.gov/22429748/

6215

Smith S. The graying of the presidents. Boston.com. http://archive.boston.com/news/politics/2008/articles/2009/01/04/the_graying_of_the_presidents/. Published January 4, 2009. Accessed August 31, 2022.; https://archive.boston.com/news/politics/2008/articles/2009/01/04/the_graying_of_the_presidents/

6216

Agrigoroaei S, Attardo AL, Lachman ME. Stress and subjective age: those with greater financial stress look older. Res Aging. 2017;39(10):1075–99. https://pubmed.ncbi.nlm.nih.gov/27422884/

6217

Mukamal KJ. Alcohol consumption and self-reported sunburn: a cross-sectional, population-based survey. J Am Acad Dermatol. 2006;55(4):584–9. https://pubmed.ncbi.nlm.nih.gov/17010736/

6218

Darvin ME, Sterry W, Lademann J, Patzelt A. Alcohol consumption decreases the protection efficiency of the antioxidant network and increases the risk of sunburn in human skin. Skin Pharmacol Physiol. 2013;26(1):45–51. https://pubmed.ncbi.nlm.nih.gov/23147451/

6219

Darvin ME, Sterry W, Lademann J, Patzelt A. Alcohol consumption decreases the protection efficiency of the antioxidant network and increases the risk of sunburn in human skin. Skin Pharmacol Physiol. 2013;26(1):45–51. https://pubmed.ncbi.nlm.nih.gov/23147451/

6220

Castelo-Branco C, Figueras F, Martínez de Osaba MJ, Vanrell JA. Facial wrinkling in postmenopausal women. Effects of smoking status and hormone replacement therapy. Maturitas. 1998;29(1):75–86. https://pubmed.ncbi.nlm.nih.gov/9643520/

6221

Wong QYA, Chew FT. Defining skin aging and its risk factors: a systematic review and meta-analysis. Sci Rep. 2021;11(1):22075. https://pubmed.ncbi.nlm.nih.gov/34764376/

6222

Walsh NP, Fortes MB, Raymond-Barker P, et al. Is whole-body hydration an important consideration in dry eye? Invest Ophthalmol Vis Sci. 2012;53(10):6622–7. https://pubmed.ncbi.nlm.nih.gov/22952120/

6223

Sharma A, Hindman HB. Aging: a predisposition to dry eyes. J Ophthalmol. 2014;2014:781683. https://pubmed.ncbi.nlm.nih.gov/25197560/

6224

Akdeniz M, Tomova-Simitchieva T, Dobos G, Blume-Peytavi U, Kottner J. Does dietary fluid intake affect skin hydration in healthy humans? A systematic literature review. Skin Res Technol. 2018;24(3):459–65. https://pubmed.ncbi.nlm.nih.gov/29392767/

6225

Clarke KA, Dew TP, Watson REB, et al. Green tea catechins and their metabolites in human skin before and after exposure to ultraviolet radiation. J Nutr Biochem. 2016;27:203–10. https://pubmed.ncbi.nlm.nih.gov/26454512/

6226

Fukushima Y, Takahashi Y, Hori Y, et al. Skin photoprotection and consumption of coffee and polyphenols in healthy middle-aged Japanese females. Int J Dermatol. 2015;54(4):410–8. https://pubmed.ncbi.nlm.nih.gov/25041334/

6227

Fukushima Y, Takahashi Y, Kishimoto Y, et al. Consumption of polyphenols in coffee and green tea alleviates skin photoaging in healthy Japanese women. Clin Cosmet Investig Dermatol. 2020;13:165–72. https://pubmed.ncbi.nlm.nih.gov/32104042/

6228

Chiu AE, Chan JL, Kern DG, Kohler S, Rehmus WE, Kimball AB. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol Surg. 2005;31(7 Pt 2):855–60. https://pubmed.ncbi.nlm.nih.gov/16029678/

6229

Jeon HY, Kim JK, Kim WG, Lee SJ. Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage. Skin Pharmacol Physiol. 2009;22(3):137–41. https://pubmed.ncbi.nlm.nih.gov/19212149/

6230

Heinrich U, Moore CE, De Spirt S, Tronnier H, Stahl W. Green tea polyphenols provide photoprotection, increase microcirculation, and modulate skin properties of women. J Nutr. 2011;141(6):1202–8. https://pubmed.ncbi.nlm.nih.gov/21525260/

6231

Farrar MD, Nicolaou A, Clarke KA, et al. A randomized controlled trial of green tea catechins in protection against ultraviolet radiation – induced cutaneous inflammation. Am J Clin Nutr. 2015;102(3):608–15. https://pubmed.ncbi.nlm.nih.gov/26178731/

6232

Janjua R, Munoz C, Gorell E, et al. A two-year, double-blind, randomized placebo-controlled trial of oral green tea polyphenols on the long-term clinical and histologic appearance of photoaging skin. Dermatol Surg. 2009;35(7):1057–65. https://pubmed.ncbi.nlm.nih.gov/19469799/

6233

Tjeerdsma F, Jonkman MF, Spoo JR. Temporary arrest of basal cell carcinoma formation in a patient with basal cell naevus syndrome (BCNS) since treatment with a gel containing various plant extracts. J Eur Acad Dermatol Venereol. 2011;25(2):244–5. https://pubmed.ncbi.nlm.nih.gov/20500542/

6234

Camouse MM, Domingo DS, Swain FR, et al. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp Dermatol. 2009;18(6):522–6. https://pubmed.ncbi.nlm.nih.gov/19492999/

6235

Chiu AE, Chan JL, Kern DG, Kohler S, Rehmus WE, Kimball AB. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol Surg. 2005;31(7 Pt 2):855–60. https://pubmed.ncbi.nlm.nih.gov/16029678/

6236

Kessels J, Voeten L, Nelemans P, et al. Topical sinecatechins, 10 %, ointment for superficial basal cell carcinoma: a randomized clinical trial. JAMA Dermatol. 2017;153(10):1061–3. https://pubmed.ncbi.nlm.nih.gov/28793140/

6237

Petrova A, Davids LM, Rautenbach F, Marnewick JL. Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J Photochem Photobiol B. 2011;103(2):126–39. https://pubmed.ncbi.nlm.nih.gov/21435898/

6238

Choi SY, Hong JY, Ko EJ, et al. Protective effects of fermented honeybush (Cyclopia intermedia) extract (HU-018) against skin aging: a randomized, double-blinded, placebo-controlled study. J Cosmet Laser Ther. 2018;20(5):313–8. https://pubmed.ncbi.nlm.nih.gov/29388846/

6239

Neukam K, Stahl W, Tronnier H, Sies H, Heinrich U. Consumption of flavanol-rich cocoa acutely increases microcirculation in human skin. Eur J Nutr. 2007;46(1):53–6. https://pubmed.ncbi.nlm.nih.gov/17164979/

6240

Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr. 2006;136(6):1565–9. https://pubmed.ncbi.nlm.nih.gov/16702322/

6241

Yoon HS, Kim JR, Park GY, et al. Cocoa flavanol supplementation influences skin conditions of photo-aged women: a 24-week double-blind, randomized, controlled trial. J Nutr. 2016;146(1):46–50. https://pubmed.ncbi.nlm.nih.gov/26581682/

6242

Anson G, Kane MAC, Lambros V. Sleep wrinkles: facial aging and facial distortion during sleep. Aesthet Surg J. 2016;36(8):931–40. https://pubmed.ncbi.nlm.nih.gov/27329660/

6243

Kligman AM, Zheng P, Lavker RM. The anatomy and pathogenesis of wrinkles. Br J Dermatol. 1985;113(1):37–42. https://pubmed.ncbi.nlm.nih.gov/4015970/

6244

Hillebrand GG, Liang Z, Yan X, Yoshii T. New wrinkles on wrinkling: an 8-year longitudinal study on the progression of expression lines into persistent wrinkles. Br J Dermatol. 2010;162(6):1233–41. https://pubmed.ncbi.nlm.nih.gov/20184587/

6245

Vogeley C, Esser C, Tüting T, Krutmann J, Haarmann-Stemmann T. Role of the aryl hydrocarbon receptor in environmentally induced skin aging and skin carcinogenesis. Int J Mol Sci. 2019;20(23):6005. https://pubmed.ncbi.nlm.nih.gov/31795255/

6246

Mekic S, Jacobs LC, Hamer MA, et al. A healthy diet in women is associated with less facial wrinkles in a large Dutch population-based cohort. J Am Acad Dermatol. 2019;80(5):1358–63.e2. https://pubmed.ncbi.nlm.nih.gov/29601935/

6247

Cosgrove MC, Franco OH, Granger SP, Murray PG, Mayes AE. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr. 2007;86(4):1225–31. https://pubmed.ncbi.nlm.nih.gov/17921406/

6248

Foolad N, Vaughn AR, Rybak I, et al. Prospective randomized controlled pilot study on the effects of almond consumption on skin lipids and wrinkles. Phytother Res. 2019;33(12):3212–7. https://pubmed.ncbi.nlm.nih.gov/31576607/

6249

De Spirt S, Stahl W, Tronnier H, et al. Intervention with flaxseed and borage oil supplements modulates skin condition in women. Br J Nutr. 2009;101(3):440–5. https://pubmed.ncbi.nlm.nih.gov/18761778/

6250

Izumi T, Saito M, Obata A, Arii M, Yamaguchi H, Matsuyama A. Oral intake of soy isoflavone aglycone improves the aged skin of adult women. J Nutr Sci Vitaminol (Tokyo). 2007;53(1):57–62. https://pubmed.ncbi.nlm.nih.gov/17484381/

6251

Oyama A, Ueno T, Uchiyama S, et al. The effects of natural S-equol supplementation on skin aging in postmenopausal women: a pilot randomized placebo-controlled trial. Menopause. 2012;19(2):202–10. https://pubmed.ncbi.nlm.nih.gov/21934634/

6252

Fam VW, Holt RR, Keen CL, Sivamani RK, Hackman RM. Prospective evaluation of mango fruit intake on facial wrinkles and erythema in postmenopausal women: a randomized clinical pilot study. Nutrients. 2020;12(11):3381. https://pubmed.ncbi.nlm.nih.gov/33158079/

6253

Katta R, Sanchez A, Tantry E. An anti-wrinkle diet: nutritional strategies to combat oxidation, inflammation and glycation. Skin Therapy Lett. 2020;25(2):3–7. https://pubmed.ncbi.nlm.nih.gov/32196147/

6254

Solway J, McBride M, Haq F, Abdul W, Miller R. Diet and dermatology: the role of a whole-food, plant-based diet in preventing and reversing skin aging – a review. J Clin Aesthet Dermatol. 2020;13(5):38–43. https://pubmed.ncbi.nlm.nih.gov/32802255/

6255

Pacifico A, Conic RRZ, Cristaudo A, et al. Diet-related phototoxic reactions in psoriatic patients undergoing phototherapy: results from a multicenter prospective study. Nutrients. 2021;13(9):2934. https://pubmed.ncbi.nlm.nih.gov/34578812/

6256

Fusano M, Zane C, Calzavara-Pinton P, Bencini PL. Photodynamic therapy for actinic keratosis in vegan and omnivore patients: the role of diet on skin healing. J Dermatolog Treat. 2021;32(1):78–83. https://pubmed.ncbi.nlm.nih.gov/31076007/

6257

Fusano M, Galimberti MG, Bencini PL. Laser removal of tattoos in vegan and omnivore patients. J Cosmet Dermatol. 2022;21(2):674–8. https://pubmed.ncbi.nlm.nih.gov/33813803/

6258

Fusano M, Bencini PL, Fusano I, et al. Ultrapulsed CO2 resurfacing of photodamaged facial skin in vegan and omnivore patients: a multicentric study. Lasers Surg Med. 2021;53(10):1370–5. https://pubmed.ncbi.nlm.nih.gov/34015157/

6259

Fusano M, Fusano I, Galimberti MG, Bencini M, Bencini PL. Comparison of postsurgical scars between vegan and omnivore patients. Dermatol Surg. 2020;46(12):1572–6. https://pubmed.ncbi.nlm.nih.gov/32769530/

6260

Galimberti MG, Guida S, Pellacani G, Bencini PL. Hyaluronic acid filler for skin rejuvenation: the role of diet on outcomes. A pilot study. Dermatol Ther. 2018;31(4):e12646. https://pubmed.ncbi.nlm.nih.gov/30019474/

6261

Fusano M, Galimberti MG, Bencini M, Fusano I, Bencini PL. Comparison of microfocused ultrasound with visualization for skin laxity among vegan and omnivore patients. J Cosmet Dermatol. 2021;20(9):2769–74. https://pubmed.ncbi.nlm.nih.gov/33533546/

6262

Karlic H, Schuster D, Varga F, et al. Vegetarian diet affects genes of oxidative metabolism and collagen synthesis. Ann Nutr Metab. 2008;53(1):29–32. https://pubmed.ncbi.nlm.nih.gov/18772587/

6263

Fusano M, Zane C, Calzavara-Pinton P, Bencini PL. Photodynamic therapy for actinic keratosis in vegan and omnivore patients: the role of diet on skin healing. J Dermatolog Treat. 2021;32(1):78–83. https://pubmed.ncbi.nlm.nih.gov/31076007/

6264

Fusano M, Galimberti MG, Bencini PL. Laser removal of tattoos in vegan and omnivore patients. J Cosmet Dermatol. 2022;21(2):674–8. https://pubmed.ncbi.nlm.nih.gov/33813803/

6265

Fusano M, Bencini PL, Fusano I, et al. Ultrapulsed CO2 resurfacing of photodamaged facial skin in vegan and omnivore patients: a multicentric study. Lasers Surg Med. 2021;53(10):1370–5. https://pubmed.ncbi.nlm.nih.gov/34015157/

6266

Fusano M, Fusano I, Galimberti MG, Bencini M, Bencini PL. Comparison of postsurgical scars between vegan and omnivore patients. Dermatol Surg. 2020;46(12):1572–6. https://pubmed.ncbi.nlm.nih.gov/32769530/

6267

Fusano M, Galimberti MG, Bencini M, Fusano I, Bencini PL. Comparison of microfocused ultrasound with visualization for skin laxity among vegan and omnivore patients. J Cosmet Dermatol. 2021;20(9):2769–74. https://pubmed.ncbi.nlm.nih.gov/33533546/

6268

Kang AH, Trelstad RL. A collagen defect in homocystinuria. J Clin Invest. 1973;52(10):2571–8. https://pubmed.ncbi.nlm.nih.gov/4729050/

6269

Rao VH, Bose SM. Effect of vitamin B12 on the formation of collagen and nucleic acids in the albino rat skins and granulomas. J Vitaminol (Kyoto). 1970;16(4):253–8. https://pubmed.ncbi.nlm.nih.gov/5497907/

6270

Findlay CW. Effect of vitamin B12 on wound healing. Proc Soc Exp Biol Med. 1953;82(3):492–5. https://pubmed.ncbi.nlm.nih.gov/13047441/

6271

Tuz MA, Mitchell A. The influence of anaemia on pressure ulcer healing in elderly patients. Br J Nurs. 2021;30(15):S32–8. https://pubmed.ncbi.nlm.nih.gov/34379458/

6272

Kang AH, Trelstad RL. A collagen defect in homocystinuria. J Clin Invest. 1973;52(10):2571–8. https://pubmed.ncbi.nlm.nih.gov/4729050/

6273

Makris EA, Responte DJ, Paschos NK, Hu JC, Athanasiou KA. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc Natl Acad Sci U S A. 2014;111(45):E4832–41. https://pubmed.ncbi.nlm.nih.gov/25349395/

6274

National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance, Haesler E, ed. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Cambridge Medi; 2014. https://www.epuap.org/wp-content/uploads/2016/10/quick-reference-guide-digital-npuap-epuap-pppia-jan2016.pdf

6275

Smith MEB, Totten A, Hickam DH, et al. Pressure ulcer treatment strategies: a systematic comparative effectiveness review. Ann Intern Med. 2013;159(1):39–50. https://pubmed.ncbi.nlm.nih.gov/23817703/

6276

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

6277

Berryman CE, Lieberman HR, Fulgoni VL, Pasiakos SM. Protein intake trends and conformity with the Dietary Reference Intakes in the United States: analysis of the National Health and Nutrition Examination Survey, 2001–2014. Am J Clin Nutr. 2018;108(2):405–13. https://pubmed.ncbi.nlm.nih.gov/29931213/

6278

Jhawar N, Wang JV, Saedi N. Oral collagen supplementation for skin aging: a fad or the future? J Cosmet Dermatol. 2020;19(4):910–2. https://pubmed.ncbi.nlm.nih.gov/31411379/

6279

de Lange C. Can a drink really make skin look younger? The Guardian. https://www.theguardian.com/science/2015/sep/27/nutricosmetics-drink-make-skin-look-younger-science. Published September 27, 2015. Accessed August 31, 2022.; https://www.theguardian.com/science/2015/sep/27/nutricosmetics-drink-make-skin-look-younger-science

6280

Albornoz CA, Shah S, Murgia RD, Wang JV, Saedi N. Understanding aesthetic interest in oral collagen peptides: a 5-year national assessment. J Cosmet Dermatol. 2021;20(2):566–8. https://pubmed.ncbi.nlm.nih.gov/32559349/

6281

de Miranda RB, Weimer P, Rossi RC. Effects of hydrolyzed collagen supplementation on skin aging: a systematic review and meta-analysis. Int J Dermatol. 2021;60(12):1449–61. https://pubmed.ncbi.nlm.nih.gov/33742704/

6282

Albornoz CA, Shah S, Murgia RD, Wang JV, Saedi N. Understanding aesthetic interest in oral collagen peptides: a 5-year national assessment. J Cosmet Dermatol. 2021;20(2):566–8. https://pubmed.ncbi.nlm.nih.gov/32559349/

6283

Jhawar N, Wang JV, Saedi N. Oral collagen supplementation for skin aging: a fad or the future? J Cosmet Dermatol. 2020;19(4):910–2. https://pubmed.ncbi.nlm.nih.gov/31411379/

6284

Rustad AM, Nickles MA, McKenney JE, Bilimoria SN, Lio PA. Myths and media in oral collagen supplementation for the skin, nails, and hair: a review. J Cosmet Dermatol. 2022 Feb;21(2):438–43. https://pubmed.ncbi.nlm.nih.gov/34694676/

6285

Spiro A, Lockyer S. Nutraceuticals and skin appearance: is there any evidence to support this growing trend? Nutr Bull. 2018;43(1):10–45. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12304

6286

Hujoel PP, Hujoel MLA. Vitamin C and scar strength: analysis of a historical trial and implications for collagen-related pathologies. Am J Clin Nutr. 2022;115(1):8–17. https://pubmed.ncbi.nlm.nih.gov/34396385/

6287

Vitamin C: factsheet for health professionals. National Institutes of Health. https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/. Updated March 26, 2021. Accessed September 7, 2022.; https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/

6288

Albornoz CA, Shah S, Murgia RD, Wang JV, Saedi N. Understanding aesthetic interest in oral collagen peptides: a 5-year national assessment. J Cosmet Dermatol. 2021;20(2):566–8. https://pubmed.ncbi.nlm.nih.gov/32559349/

6289

Perez-Sanchez AC, Burns EK, Perez VM, Tantry EK, Prabhu S, Katta R. Safety concerns of skin, hair and nail supplements in retail stores. Cureus. 12(7):e9477.; https://pubmed.ncbi.nlm.nih.gov/32874806/

6290

Avila-Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: a review on its sources and potential cosmetic applications. J Cosmet Dermatol. 2018;17(1):20–6. https://pubmed.ncbi.nlm.nih.gov/29144022/

6291

Sionkowska A, Adamiak K, Musial K, Gadomska M. Collagen based materials in cosmetic applications: a review. Materials. 2020;13(19):4217. https://pubmed.ncbi.nlm.nih.gov/32977407/

6292

Perez-Sanchez AC, Burns EK, Perez VM, Tantry EK, Prabhu S, Katta R. Safety concerns of skin, hair and nail supplements in retail stores. Cureus. 12(7):e9477.; https://pubmed.ncbi.nlm.nih.gov/32874806/

6293

Rustad AM, Nickles MA, McKenney JE, Bilimoria SN, Lio PA. Myths and media in oral collagen supplementation for the skin, nails, and hair: a review. J Cosmet Dermatol. 2022;21(2):438–43. https://pubmed.ncbi.nlm.nih.gov/34694676/

6294

Cao C, Xiao Z, Wu Y, Ge C. Diet and skin aging – from the perspective of food nutrition. Nutrients. 2020;12(3):870. https://pubmed.ncbi.nlm.nih.gov/32213934/

6295

Cooperman T. Collagen supplements. ConsumerLab.com. https://www.consumerlab.com/reviews/collagen-supplements-review-peptides-hydrolysate/collagen/. Published September 28, 2019. Updated June 6, 2022. Accessed August 31, 2022.; https://www.consumerlab.com/reviews/collagen-supplements-review-peptides-hydrolysate/collagen/

6296

Seror J, Stern M, Zarka R, Orr N. The potential use of novel plant-derived recombinant human collagen in aesthetic medicine. Plast Reconstr Surg. 2021;148(6S):32S-8S. https://pubmed.ncbi.nlm.nih.gov/34847096/

6297

Huang CK, Miller TA. The truth about over-the-counter topical anti-aging products: a comprehensive review. Aesthet Surg J. 2007;27(4):402–12. https://pubmed.ncbi.nlm.nih.gov/19341668/

6298

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6299

Elsner P, Fluhr JW, Gehring W, et al. Anti-aging data and support claims – consensus statement. J Dtsch Dermatol Ges. 2011;9 Suppl 3:S1–32. https://pubmed.ncbi.nlm.nih.gov/22023288/

6300

Huang CK, Miller TA. The truth about over-the-counter topical anti-aging products: a comprehensive review. Aesthet Surg J. 2007;27(4):402–12. https://pubmed.ncbi.nlm.nih.gov/19341668/

6301

Elsner P, Fluhr JW, Gehring W, et al. Anti-aging data and support claims – consensus statement. J Dtsch Dermatol Ges. 2011;9 Suppl 3:S1–32. https://pubmed.ncbi.nlm.nih.gov/22023288/

6302

Mayes AE, Murray PG, Gunn DA, et al. Environmental and lifestyle factors associated with perceived facial age in Chinese women. PLoS One. 2010;5(12):e15270. https://pubmed.ncbi.nlm.nih.gov/21179450/

6303

Gunn DA, Dick JL, van Heemst D, et al. Lifestyle and youthful looks. Br J Dermatol. 2015;172(5):1338–45. https://pubmed.ncbi.nlm.nih.gov/25627783/

6304

Huang CK, Miller TA. The truth about over-the-counter topical anti-aging products: a comprehensive review. Aesthet Surg J. 2007;27(4):402–12. https://pubmed.ncbi.nlm.nih.gov/19341668/

6305

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6306

Draelos ZD. Active agents in common skin care products. Plast Reconstr Surg. 2010;125(2):719–24. https://pubmed.ncbi.nlm.nih.gov/20124857/

6307

Ramos-e-Silva M, Celem LR, Ramos-e-Silva S, Fucci-da-Costa AP. Anti-aging cosmetics: facts and controversies. Clin Dermatol. 2013;31(6):750–8. https://pubmed.ncbi.nlm.nih.gov/24160281/

6308

Draelos ZD. Active agents in common skin care products. Plast Reconstr Surg. 2010;125(2):719–24. https://pubmed.ncbi.nlm.nih.gov/20124857/

6309

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6310

Draelos ZD. Active agents in common skin care products. Plast Reconstr Surg. 2010;125(2):719–24. https://pubmed.ncbi.nlm.nih.gov/20124857/

6311

Sunder S. Relevant topical skin care products for prevention and treatment of aging skin. Facial Plast Surg Clin North Am. 2019;27(3):413–8. https://pubmed.ncbi.nlm.nih.gov/31280856/

6312

Bergstrom KG. Carrots before sticks: appealing to vanity promotes sun protection. J Drugs Dermatol. 2013;12(8):952–3. https://pubmed.ncbi.nlm.nih.gov/23986171/

6313

Hughes MCB, Williams GM, Baker P, Green AC. Sunscreen and prevention of skin aging: a randomized trial. Ann Intern Med. 2013;158(11):781–90. https://pubmed.ncbi.nlm.nih.gov/23732711/

6314

Draelos ZD. Active agents in common skin care products. Plast Reconstr Surg. 2010;125(2):719–24. https://pubmed.ncbi.nlm.nih.gov/20124857/

6315

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6316

Lupo MP, Cole AL. Cosmeceutical peptides. Dermatol Ther. 2007;20(5):343–9. https://pubmed.ncbi.nlm.nih.gov/18045359/

6317

Sunder S. Relevant topical skin care products for prevention and treatment of aging skin. Facial Plast Surg Clin North Am. 2019;27(3):413–8. https://pubmed.ncbi.nlm.nih.gov/31280856/

6318

Ramos-e-Silva M, Celem LR, Ramos-e-Silva S, Fucci-da-Costa AP. Anti-aging cosmetics: facts and controversies. Clin Dermatol. 2013;31(6):750–8. https://pubmed.ncbi.nlm.nih.gov/24160281/

6319

Zussman J, Ahdout J, Kim J. Vitamins and photoaging: do scientific data support their use? J Am Acad Dermatol. 2010;63(3):507–25. https://pubmed.ncbi.nlm.nih.gov/20189681/

6320

Darlenski R, Surber C, Fluhr JW. Topical retinoids in the management of photodamaged skin: from theory to evidence-based practical approach. Br J Dermatol. 2010;163(6):1157–65. https://pubmed.ncbi.nlm.nih.gov/20633013/

6321

Elmets CA. Long term topical tretinoin and excess mortality in older patients. NEJM Journal Watch. https://www.jwatch.org/jd200901300000001/2009/01/30/long-term-topical-tretinoin-and-excess-mortality. Published January 20, 2009. Accessed August 31, 2022.; https://www.jwatch.org/jd200901300000001/2009/01/30/long-term-topical-tretinoin-and-excess-mortality

6322

Imhof L, Leuthard D. Topical over-the-counter antiaging agents: an update and systematic review. Dermatology. 2021;237(2):217–29. https://pubmed.ncbi.nlm.nih.gov/32882685/

6323

Tran D, Townley JP, Barnes TM, Greive KA. An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin. Clin Cosmet Investig Dermatol. 2015;8:9–17. https://pubmed.ncbi.nlm.nih.gov/25552908/

6324

Bilal M, Iqbal HMN. An insight into toxicity and human-health-related adverse consequences of cosmeceuticals – a review. Sci Total Environ. 2019;670:555–68. https://pubmed.ncbi.nlm.nih.gov/30909033/

6325

Neill US. Skin care in the aging female: myths and truths. J Clin Invest. 2012;122(2):473–7. https://pubmed.ncbi.nlm.nih.gov/22293186/

6326

Bissett DL, Miyamoto K, Sun P, Li J, Berge CA. Topical niacinamide reduces yellowing, wrinkling, red blotchiness, and hyperpigmented spots in aging facial skin. Int J Cosmet Sci. 2004;26(5):231–8. https://pubmed.ncbi.nlm.nih.gov/18492135/

6327

Levin J, Del Rosso JQ, Momin SB. How much do we really know about our favorite cosmeceutical ingredients? J Clin Aesthet Dermatol. 2010;3(2):22–41. https://pubmed.ncbi.nlm.nih.gov/20725560/

6328

Imhof L, Leuthard D. Topical over-the-counter antiaging agents: an update and systematic review. Dermatology. 2021;237(2):217–29. https://pubmed.ncbi.nlm.nih.gov/32882685/

6329

Sivamani RK, Jagdeo JR, Elsner P, Maibach HI, eds. Cosmeceuticals and Active Cosmetics. 3rd ed. CRC Press; 2016. https://worldcat.org/title/919719500

6330

Bissett DL, Miyamoto K, Sun P, Li J, Berge CA. Topical niacinamide reduces yellowing, wrinkling, red blotchiness, and hyperpigmented spots in aging facial skin. Int J Cosmet Sci. 2004;26(5):231–8. https://pubmed.ncbi.nlm.nih.gov/18492135/

6331

Hunt KJ, Hung SK, Ernst E. Botanical extracts as anti-aging preparations for the skin: a systematic review. Drugs Aging. 2010;27(12):973–85. https://pubmed.ncbi.nlm.nih.gov/21087067/

6332

Bissett DL, Miyamoto K, Sun P, Li J, Berge CA. Topical niacinamide reduces yellowing, wrinkling, red blotchiness, and hyperpigmented spots in aging facial skin. Int J Cosmet Sci. 2004;26(5):231–8. https://pubmed.ncbi.nlm.nih.gov/18492135/

6333

Bissett DL, Oblong JE, Berge CA. Niacinamide: A B vitamin that improves aging facial skin appearance. Dermatol Surg. 2005;31(7 Pt 2):860–5; discussion 865. https://pubmed.ncbi.nlm.nih.gov/16029679/

6334

Bissett DL, Oblong JE, Berge CA. Niacinamide: A B vitamin that improves aging facial skin appearance. Dermatol Surg. 2005;31(7 Pt 2):860–5. https://pubmed.ncbi.nlm.nih.gov/16029679/

6335

Zussman J, Ahdout J, Kim J. Vitamins and photoaging: do scientific data support their use? J Am Acad Dermatol. 2010;63(3):507–25. https://pubmed.ncbi.nlm.nih.gov/20189681/

6336

Chiu P-C, Chan C–C, Lin H-M, Chiu H-C. The clinical anti-aging effects of topical kinetin and niacinamide in Asians: a randomized, double-blind, placebo-controlled, split-face comparative trial. J Cosmet Dermatol. 2007;6(4):243–9. https://pubmed.ncbi.nlm.nih.gov/18047609/

6337

Kawada A, Konishi N, Oiso N, Kawara S, Date A. Evaluation of anti-wrinkle effects of a novel cosmetic containing niacinamide. J Dermatol. 2008;35(10):637–42. https://pubmed.ncbi.nlm.nih.gov/19017042/

6338

Burke KE, Clive J, Combs GF, Commisso J, Keen CL, Nakamura RM. Effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh:2 hairless mice. Nutr Cancer. 2000;38(1):87–97. https://pubmed.ncbi.nlm.nih.gov/11341050/

6339

Sunder S. Relevant topical skin care products for prevention and treatment of aging skin. Facial Plast Surg Clin North Am. 2019;27(3):413–8. https://pubmed.ncbi.nlm.nih.gov/31280856/

6340

Imhof L, Leuthard D. Topical over-the-counter antiaging agents: an update and systematic review. Dermatology. 2021;237(2):217–29. https://pubmed.ncbi.nlm.nih.gov/32882685/

6341

Inui M, Ooe M, Fujii K, Matsunaka H, Yoshida M, Ichihashi M. Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo. Biofactors. 2008;32(1–4):237–43. https://pubmed.ncbi.nlm.nih.gov/19096121/

6342

Elsner P, Fluhr JW, Gehring W, et al. Anti-aging data and support claims – consensus statement. J Dtsch Dermatol Ges. 2011;9 Suppl 3:S1–32. https://pubmed.ncbi.nlm.nih.gov/22023288/

6343

Nusgens BV, Humbert P, Rougier A, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol. 2001;116(6):853–9. https://pubmed.ncbi.nlm.nih.gov/11407971/

6344

Traikovich SS. Use of topical ascorbic acid and its effects on photodamaged skin topography. Arch Otolaryngol Head Neck Surg. 1999;125(10):1091–8. https://pubmed.ncbi.nlm.nih.gov/10522500/

6345

Sivamani RK, Jagdeo JR, Elsner P, Maibach HI, eds. Cosmeceuticals and Active Cosmetics. 3rd ed. CRC Press; 2016. https://worldcat.org/title/919719500

6346

Traikovich SS. Use of topical ascorbic acid and its effects on photodamaged skin topography. Arch Otolaryngol Head Neck Surg. 1999;125(10):1091–8. https://pubmed.ncbi.nlm.nih.gov/10522500/

6347

Raschke T, Koop U, Düsing HJ, et al. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy. Skin Pharmacol Physiol. 2004;17(4):200–6. https://pubmed.ncbi.nlm.nih.gov/15258452/

6348

Humbert PG, Haftek M, Creidi P, et al. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: double-blind study vs. placebo. Exp Dermatol. 2003;12(3):237–44. https://pubmed.ncbi.nlm.nih.gov/12823436/

6349

High potency serum. Cellex-C. https://www.cellexcusa.com/products/high-potency-serum. Accessed September 7, 2022.; https://www.cellexcusa.com/products/high-potency-serum

6350

Sunder S. Relevant topical skin care products for prevention and treatment of aging skin. Facial Plast Surg Clin North Am. 2019;27(3):413–8. https://pubmed.ncbi.nlm.nih.gov/31280856/

6351

Huang CK, Miller TA. The truth about over-the-counter topical anti-aging products: a comprehensive review. Aesthet Surg J. 2007;27(4):402–12. https://pubmed.ncbi.nlm.nih.gov/19341668/

6352

Alpha hydroxy acids. U.S. Food & Drug Administration. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids#q6. Updated February 25, 2022. Accessed September 7, 2022.; https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids#q6

6353

Gordon R. Skin cancer: an overview of epidemiology and risk factors. Semin Oncol Nurs. 2013;29(3):160–9. https://pubmed.ncbi.nlm.nih.gov/23958214/

6354

Garcovich S, Colloca G, Sollena P, et al. Skin cancer epidemics in the elderly as an emerging issue in geriatric oncology. Aging Dis. 2017;8(5):643–61. https://pubmed.ncbi.nlm.nih.gov/28966807/

6355

Strauss DG, Michele TM. Skin cancer prevention and sunscreen safety: commentary on American Society of Clinical Oncology policy statement on skin cancer prevention. JCO Oncol Pract. 2020;16(8):436–8. https://pubmed.ncbi.nlm.nih.gov/32603257/

6356

Johnson MM, Leachman SA, Aspinwall LG, et al. Skin cancer screening: recommendations for data-driven screening guidelines and a review of the US Preventive Services Task Force controversy. Melanoma Manag. 2017;4(1):13–37. https://pubmed.ncbi.nlm.nih.gov/28758010/

6357

Wernli KJ, Henrikson NB, Morrison CC, Nguyen M, Pocobelli G, Blasi PR. Screening for skin cancer in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2016;316(4):436–47. https://pubmed.ncbi.nlm.nih.gov/27583318/

6358

Katalinic A, Waldmann A, Weinstock MA, et al. Does skin cancer screening save lives?: an observational study comparing trends in melanoma mortality in regions with and without screening. Cancer. 2012;118(21):5395–402. https://pubmed.ncbi.nlm.nih.gov/22517033/

6359

Boniol M, Autier P, Gandini S. Melanoma mortality following skin cancer screening in Germany. BMJ Open. 2015;5(9):e008158. https://pubmed.ncbi.nlm.nih.gov/26373399/

6360

Brenner H. Mortality from malignant melanoma in an era of nationwide skin cancer screening. Dtsch Arztebl Int. 2015;112(38):627–8. https://pubmed.ncbi.nlm.nih.gov/26429633/

6361

Boniol M, Autier P, Gandini S. Melanoma mortality following skin cancer screening in Germany. BMJ Open. 2015;5(9):e008158. https://pubmed.ncbi.nlm.nih.gov/26373399/

6362

Wernli KJ, Henrikson NB, Morrison CC, Nguyen M, Pocobelli G, Blasi PR. Screening for skin cancer in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2016;316(4):436–47. https://pubmed.ncbi.nlm.nih.gov/27583318/

6363

Halpern AC, Marghoob AA, Reiter O. Melanoma warning signs: what you need to know about early signs of skin cancer. Skin Cancer Foundation. https://www.skincancer.org/skin-cancer-information/melanoma/melanoma-warning-signs-and-images/. Updated January 2021. Accessed September 7, 2022.; https://www.skincancer.org/skin-cancer-information/melanoma/melanoma-warning-signs-and-images/

6364

Linos E, Katz KA, Colditz GA. Skin cancer – the importance of prevention. JAMA Intern Med. 2016;176(10):1435–6. https://pubmed.ncbi.nlm.nih.gov/27459394/

6365

Burke KE, Clive J, Combs GF, Commisso J, Keen CL, Nakamura RM. Effects of topical and oral vitamin E on pigmentation and skin cancer induced by ultraviolet irradiation in Skh:2 hairless mice. Nutr Cancer. 2000;38(1):87–97. https://pubmed.ncbi.nlm.nih.gov/11341050/

6366

Stern RS, Weinstein MC, Baker SG. Risk reduction for nonmelanoma skin cancer with childhood sunscreen use. Arch Dermatol. 1986;122(5):537–45. https://pubmed.ncbi.nlm.nih.gov/3707169/

6367

Strauss DG, Michele TM. Skin cancer prevention and sunscreen safety: commentary on American Society of Clinical Oncology policy statement on skin cancer prevention. JCO Oncol Pract. 2020;16(8):436–8. https://pubmed.ncbi.nlm.nih.gov/32603257/

6368

Li H, Colantonio S, Dawson A, Lin X, Beecker J. Sunscreen application, safety, and sun protection: the evidence. J Cutan Med Surg. 2019;23(4):357–69. https://pubmed.ncbi.nlm.nih.gov/31219707/

6369

Strauss DG, Michele TM. Skin cancer prevention and sunscreen safety: commentary on American Society of Clinical Oncology policy statement on skin cancer prevention. JCO Oncol Pract. 2020;16(8):436–8. https://pubmed.ncbi.nlm.nih.gov/32603257/

6370

Li H, Colantonio S, Dawson A, Lin X, Beecker J. Sunscreen application, safety, and sun protection: the evidence. J Cutan Med Surg. 2019;23(4):357–69. https://pubmed.ncbi.nlm.nih.gov/31219707/

6371

Boo YC. Mechanistic basis and clinical evidence for the applications of nicotinamide (niacinamide) to control skin aging and pigmentation. Antioxidants (Basel). 2021;10(8):1315. https://pubmed.ncbi.nlm.nih.gov/34439563/

6372

Surjana D, Halliday GM, Martin AJ, Moloney FJ, Damian DL. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol. 2012;132(5):1497–500. https://pubmed.ncbi.nlm.nih.gov/22297641/

6373

Chen AC, Martin AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med. 2015;373(17):1618–26. https://pubmed.ncbi.nlm.nih.gov/26488693/

6374

Byrne SN. How much sunlight is enough? Photochem Photobiol Sci. 2014;13(6):840–52. https://pubmed.ncbi.nlm.nih.gov/24770340/

6375

Tsai J, Chien AL. Photoprotection for skin of color. Am J Clin Dermatol. 2022;23(2):195–205. https://pubmed.ncbi.nlm.nih.gov/35044638/

6376

Strauss DG, Michele TM. Skin cancer prevention and sunscreen safety: commentary on American Society of Clinical Oncology policy statement on skin cancer prevention. JCO Oncol Pract. 2020;16(8):436–8. https://pubmed.ncbi.nlm.nih.gov/32603257/

6377

Purdue MP, Beane Freeman LE, Anderson WF, Tucker MA. Recent trends in incidence of cutaneous melanoma among US Caucasian young adults. J Invest Dermatol. 2008;128(12):2905–8. https://pubmed.ncbi.nlm.nih.gov/18615112/

6378

Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757. https://pubmed.ncbi.nlm.nih.gov/22833605/

6379

Weinstock MA, Moses AM. Skin cancer meets vitamin D: the way forward for dermatology and public health. J Am Acad Dermatol. 2009;61(4):720–4. https://pubmed.ncbi.nlm.nih.gov/19751885/

6380

Dahl MV. Sun exposure, vitamin D metabolism, and skin cancer. Mayo Clin Proc. 2004;79(5):699–700. https://pubmed.ncbi.nlm.nih.gov/15132420/

6381

Grant WB, Garland CF, Holick MF. Comparisons of estimated economic burdens due to insufficient solar ultraviolet irradiance and vitamin D and excess solar UV irradiance for the United States. Photochem Photobiol. 2005;81(6):1276–86. https://pubmed.ncbi.nlm.nih.gov/16159309/

6382

Grant WB. In defense of the sun: an estimate of changes in mortality rates in the United States if mean serum 25-hydroxyvitamin D levels were raised to 45 ng/mL by solar ultraviolet-B irradiance. Dermatoendocrinol. 2009;1(4):207–14. https://pubmed.ncbi.nlm.nih.gov/20592792/

6383

Dahl MV. Sun exposure, vitamin D metabolism, and skin cancer. Mayo Clin Proc. 2004;79(5):699–700. https://pubmed.ncbi.nlm.nih.gov/15132420/

6384

Gilchrest BA. Sun protection and vitamin D: three dimensions of obfuscation. J Steroid Biochem Mol Biol. 2007;103(3–5):655–63. https://pubmed.ncbi.nlm.nih.gov/17222550/

6385

Citrin DL, Bloom DL, Grutsch JF, Mortensen SJ, Lis CG. Beliefs and perceptions of women with newly diagnosed breast cancer who refused conventional treatment in favor of alternative therapies. Oncologist. 2012;17(5):607–12. https://pubmed.ncbi.nlm.nih.gov/22531358/

6386

Li H, Colantonio S, Dawson A, Lin X, Beecker J. Sunscreen application, safety, and sun protection: the evidence. J Cutan Med Surg. 2019;23(4):357–69. https://pubmed.ncbi.nlm.nih.gov/31219707/

6387

Phillips TJ, Bhawan J, Yaar M, Bello Y, Lopiccolo D, Nash JF. Effect of daily versus intermittent sunscreen application on solar simulated UV radiation-induced skin response in humans. J Am Acad Dermatol. 2000;43(4):610–8. https://pubmed.ncbi.nlm.nih.gov/11004615/

6388

Krutmann J, Berking C, Berneburg M, Diepgen TL, Dirschka T, Szeimies M. New strategies in the prevention of actinic keratosis: a critical review. Skin Pharmacol Physiol. 2015;28(6):281–9. https://pubmed.ncbi.nlm.nih.gov/11004615/

6389

Krutmann J, Berking C, Berneburg M, Diepgen TL, Dirschka T, Szeimies M. New strategies in the prevention of actinic keratosis: a critical review. Skin Pharmacol Physiol. 2015;28(6):281–9. https://pubmed.ncbi.nlm.nih.gov/11004615/

6390

Ramos-e-Silva M, Celem LR, Ramos-e-Silva S, Fucci-da-Costa AP. Anti-aging cosmetics: facts and controversies. Clin Dermatol. 2013;31(6):750–8. https://pubmed.ncbi.nlm.nih.gov/24160281/

6391

Buller DB, Andersen PA, Walkosz BJ, et al. Compliance with sunscreen advice in a survey of adults engaged in outdoor winter recreation at high-elevation ski areas. J Am Acad Dermatol. 2012;66(1):63–70. https://pubmed.ncbi.nlm.nih.gov/21742410/

6392

Isedeh P, Osterwalder U, Lim HW. Teaspoon rule revisited: proper amount of sunscreen application: Letter to the Editor. Photodermatol Photoimmunol Photomed. 2013;29(1):55–6. https://pubmed.ncbi.nlm.nih.gov/23281699/

6393

Li H, Colantonio S, Dawson A, Lin X, Beecker J. Sunscreen application, safety, and sun protection: the evidence. J Cutan Med Surg. 2019;23(4):357–69. https://pubmed.ncbi.nlm.nih.gov/31219707/

6394

Kligman LH, Akin FJ, Kligman AM. Sunscreens prevent ultraviolet photocarcinogenesis. J Am Acad Dermatol. 1980;3(1):30–5. https://pubmed.ncbi.nlm.nih.gov/6967495/

6395

Calbó J, Pagès D, González JA. Empirical studies of cloud effects on UV radiation: a review. Rev Geophys. 2005;43(2). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004RG000155

6396

de Gálvez MV, Aguilera J, Buendía EA, Sánchez-Roldán C, Herrera-Ceballos E. Time required for a standard sunscreen to become effective following application: a UV photography study. J Eur Acad Dermatol Venereol. 2018;32(4):e123–4. https://pubmed.ncbi.nlm.nih.gov/29024154/

6397

Stokes RP, Diffey BL. The water resistance of sunscreen and day-care products. Br J Dermatol. 1999;140(2):259–63. https://pubmed.ncbi.nlm.nih.gov/10233219/

6398

Stokes RP, Diffey BL. A novel ex vivo technique to assess the sand/rub resistance of sunscreen products. Int J Cosmet Sci. 2000;22(5):329–34. https://pubmed.ncbi.nlm.nih.gov/18503420/

6399

Tsai J, Chien AL. Photoprotection for skin of color. Am J Clin Dermatol. 2022;23(2):195–205. https://pubmed.ncbi.nlm.nih.gov/35044638/

6400

Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin – a comparison of black and Caucasian skin. J Am Acad Dermatol. 1979;1(3):249–60. https://pubmed.ncbi.nlm.nih.gov/512075/

6401

Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ. 2020;192(50):E1802–8. https://pubmed.ncbi.nlm.nih.gov/33318091/

6402

National Cancer Institute. Sun-protective behavior. Cancer Trends Progress Report. https://progressreport.cancer.gov/prevention/sun_protection. Updated April 2022. Accessed Nov 19, 2022.; https://progressreport.cancer.gov/prevention/sun_protection

6403

Tsai J, Chien AL. Photoprotection for skin of color. Am J Clin Dermatol. 2022;23(2):195–205. https://pubmed.ncbi.nlm.nih.gov/35044638/

6404

Taylor SC, Alexis AF, Armstrong AW, Chiesa Fuxench ZC, Lim HW. Misconceptions of photoprotection in skin of color. J Am Acad Dermatol. 2022;86(3S):S9–17. https://pubmed.ncbi.nlm.nih.gov/34942293/

6405

Tsai J, Chien AL. Photoprotection for skin of color. Am J Clin Dermatol. 2022;23(2):195–205. https://pubmed.ncbi.nlm.nih.gov/35044638/

6406

Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ. 2020;192(50):E1802–8. https://pubmed.ncbi.nlm.nih.gov/33318091/

6407

Barr J. Spray-on sunscreens need a good rub. J Am Acad Dermatol. 2005;52(1):180–1. https://pubmed.ncbi.nlm.nih.gov/15627116/

6408

Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ. 2020;192(50):E1802–8. https://pubmed.ncbi.nlm.nih.gov/33318091/

6409

Pearce K, Goldsmith WT, Greenwald R, Yang C, Mainelis G, Wright C. Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products. Inhal Toxicol. 2019;31(9–10):357–67. https://pubmed.ncbi.nlm.nih.gov/31779509/

6410

Food and Drug Administration, Department of Health and Human Services. 21 CFR parts 201, 310, 347, and 352. Sunscreen drug products for over-the-counter human use. Federal Register. 2019;84(38):6205–75. https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drug-products-for-over-the-counter-human-use

6411

Black HS, Lenger WA, Gerguis J, Thornby JI. Relation of antioxidants and level of dietary lipid to epidermal lipid peroxidation and ultraviolet carcinogenesis. Cancer Res. 1985;45(12 Pt 1):6254–9. https://pubmed.ncbi.nlm.nih.gov/4063976/

6412

Ibiebele TI, van der Pols JC, Hughes MC, Marks GC, Williams GM, Green AC. Dietary pattern in association with squamous cell carcinoma of the skin: a prospective study. Am J Clin Nutr. 2007;85(5):1401–8. https://pubmed.ncbi.nlm.nih.gov/17490979/

6413

Black HS, Thornby JI, Wolf JE Jr, et al. Evidence that a low-fat diet reduces the occurrence of non-melanoma skin cancer. Int J Cancer. 1995;62(2):165–9. https://pubmed.ncbi.nlm.nih.gov/7622291/

6414

Lumley E, Phillips P, Aber A, Buckley-Woods H, Jones GL, Michaels JA. Experiences of living with varicose veins: a systematic review of qualitative research. J Clin Nurs. 2019;28(7–8):1085–99. https://pubmed.ncbi.nlm.nih.gov/30461103/

6415

Meissner MH. What is the medical rationale for the treatment of varicose veins? Phlebology. 2012;27(Suppl 1):27–33. https://pubmed.ncbi.nlm.nih.gov/22312064/

6416

Raetz J, Wilson M, Collins K. Varicose veins: diagnosis and treatment. Am Fam Physician. 2019;99(11):682–8. https://pubmed.ncbi.nlm.nih.gov/31150188/

6417

Atik D, Atik C, Karatepe C. The effect of external apple vinegar application on varicosity symptoms, pain, and social appearance anxiety: a randomized controlled trial. Evid Based Complement Alternat Med. 2016;2016:6473678. https://pubmed.ncbi.nlm.nih.gov/26881006/

6418

Montgomery L, Seys J, Mees J. To pee, or not to pee: a review on envenomation and treatment in European jellyfish species. Mar Drugs. 2016;14(7):127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962017/

6419

Wilcox CL, Headlam JL, Doyle TK, Yanagihara AA. Assessing the efficacy of first-aid measures in Physalia sp. Envenomation, using solution– and blood agarose-based models. Toxins (Basel). 2017;9(5):149. https://pubmed.ncbi.nlm.nih.gov/28445412/

6420

Luu LA, Flowers RH, Kellams AL, et al. Apple cider vinegar soaks [0.5 %] as a treatment for atopic dermatitis do not improve skin barrier integrity. Pediatr Dermatol. 2019;36(5):634–9. https://pubmed.ncbi.nlm.nih.gov/31328306/

6421

Feldstein S, Afshar M, Krakowski AC. Chemical burn from vinegar following an internet-based protocol for self-removal of nevi. J Clin Aesthet Dermatol. 2015;8(6):50. https://pubmed.ncbi.nlm.nih.gov/26155328/

6422

Kroeger CM, Brown AW, Allison DB. Differences in Nominal Significance (DINS) Error leads to invalid conclusions: letter regarding, “Diet enriched with fresh coconut decreases blood glucose levels and body weight in normal adults.” J Complement Integr Med. 2019;16(2):/j/jcim.2019.16.issue-2/jcim-2018–0037/jcim-2018–0037.xml. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6957306/

6423

Richardson JB, Dixon M. Varicose veins in tropical Africa. Lancet. 1977;1(8015):791–2. https://pubmed.ncbi.nlm.nih.gov/66583/

6424

O’Keefe SJD, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Africans? J Nutr. 2007;137(1 Suppl):175S-82S. https://pubmed.ncbi.nlm.nih.gov/17182822/

6425

Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, Ramnani P. Studying the human gut microbiota in the trans-omics era – focus on metagenomics and metabonomics. Curr Pharm Des. 2009;15(13):1415–27. https://pubmed.ncbi.nlm.nih.gov/19442166/

6426

Burkitt DP. Two blind spots in medical knowledge. Nurs Times. 1976;72(1):24–7. https://pubmed.ncbi.nlm.nih.gov/54904/

6427

Crowe FL, Appleby PN, Allen NE, Key TJ. Diet and risk of diverticular disease in Oxford cohort of European Prospective Investigation into Cancer and Nutrition (EPIC): prospective study of British vegetarians and non-vegetarians. BMJ. 2011;343:d4131. https://pubmed.ncbi.nlm.nih.gov/21771850/

6428

Knutsen SF. Lifestyle and the use of health services. Am J Clin Nutr. 1994;59(5 Suppl):1171S-5S. https://pubmed.ncbi.nlm.nih.gov/8172119/

6429

Eddy TP, Taylor GF. Sublingual varicosities and vitamin C in elderly vegetarians. Age Ageing. 1977;6(1):6–13. https://pubmed.ncbi.nlm.nih.gov/842407/

6430

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6431

Halteh P, Scher RK, Lipner SR. Over-the-counter and natural remedies for onychomycosis: do they really work? Cutis. 2016;98(5):E16–25. https://pubmed.ncbi.nlm.nih.gov/28040821/

6432

Halteh P, Scher RK, Lipner SR. Over-the-counter and natural remedies for onychomycosis: do they really work? Cutis. 2016;98(5):E16–25. https://pubmed.ncbi.nlm.nih.gov/28040821/

6433

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6434

Iorizzo M. Tips to treat the 5 most common nail disorders: brittle nails, onycholysis, paronychia, psoriasis, onychomycosis. Dermatol Clin. 2015;33(2):175–83. https://pubmed.ncbi.nlm.nih.gov/25828710/

6435

Maddy AJ, Tosti A. Hair and nail diseases in the mature patient. Clin Dermatol. 2018;36(2):159–66. https://pubmed.ncbi.nlm.nih.gov/29566920/

6436

Iorizzo M. Tips to treat the 5 most common nail disorders: brittle nails, onycholysis, paronychia, psoriasis, onychomycosis. Dermatol Clin. 2015;33(2):175–83. https://pubmed.ncbi.nlm.nih.gov/25828710/

6437

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6438

Gupta AK, Konnikov N, Lynde CW. Single-blind, randomized, prospective study on terbinafine and itraconazole for treatment of dermatophyte toenail onychomycosis in the elderly. J Am Acad Dermatol. 2001;44(3):479–84. https://pubmed.ncbi.nlm.nih.gov/11209118/

6439

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6440

Gupta AK, Daigle D, Foley KA. Network meta-analysis of onychomycosis treatments. Skin Appendage Disord. 2015;1(2):74–81. https://pubmed.ncbi.nlm.nih.gov/27170937/

6441

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6442

Iorizzo M. Tips to treat the 5 most common nail disorders: brittle nails, onycholysis, paronychia, psoriasis, onychomycosis. Dermatol Clin. 2015;33(2):175–83. https://pubmed.ncbi.nlm.nih.gov/25828710/

6443

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6444

Sleven R, Lanckacker E, Delputte P, Maes L, Cos P. Evaluation of topical antifungal products in an in vitro onychomycosis model. Mycoses. 2016;59(5):327–30. https://pubmed.ncbi.nlm.nih.gov/26857689/

6445

Kelly S, Liu D, Wang T, Rajpara A, Franano C, Aires D. Vinegar sock soak for tinea pedis or onychomycosis. J Am Acad Dermatol. Published online September 22, 2017:S0190–9622(17)32448–9.; https://pubmed.ncbi.nlm.nih.gov/28947288/

6446

Satchell AC, Saurajen A, Bell C, Barnetson RSC. Treatment of dandruff with 5 % tea tree oil shampoo. J Am Acad Dermatol. 2002;47(6):852–5. https://pubmed.ncbi.nlm.nih.gov/12451368/

6447

Satchell AC, Saurajen A, Bell C, Barnetson RSC. Treatment of interdigital tinea pedis with 25 % and 50 % tea tree oil solution: a randomized, placebo-controlled, blinded study. Australas J Dermatol. 2002;43(3):175–8. https://pubmed.ncbi.nlm.nih.gov/12121393/

6448

Buck DS, Nidorf DM, Addino JG. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca alternifolia (tea tree) oil and clotrimazole. J Fam Pract. 1994;38(6):601–5. https://pubmed.ncbi.nlm.nih.gov/8195735/

6449

Murdan S. Nail disorders in older people, and aspects of their pharmaceutical treatment. Int J Pharm. 2016;512(2):405–11. https://pubmed.ncbi.nlm.nih.gov/27180233/

6450

Maddy AJ, Tosti A. Hair and nail diseases in the mature patient. Clin Dermatol. 2018;36(2):159–66. https://pubmed.ncbi.nlm.nih.gov/29566920/

6451

Ingrown toenails. American Academy of Family Physicians. https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf. Updated August 2019. Accessed September 1, 2022.; https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf

6452

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6453

Ilfeld FW. Ingrown toenail treated with cotton collodion insert. Foot Ankle. 1991;11(5):312–3. https://pubmed.ncbi.nlm.nih.gov/2037270/

6454

Ingrown toenails. American Academy of Family Physicians. https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf. Updated August 2019. Accessed September 1, 2022.; https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf

6455

Ingrown toenails. American Academy of Family Physicians. https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf. Updated August 2019. Accessed September 1, 2022.; https://www.aafp.org/dam/brand/aafp/pubs/afp/issues/2019/0801/p158-s1.pdf

6456

Ilfeld FW. Ingrown toenail treated with cotton collodion insert. Foot Ankle. 1991;11(5):312–3. https://pubmed.ncbi.nlm.nih.gov/2037270/

6457

Gutiérrez-Mendoza D, De Anda-Juárez M, Ávalos VF, Martínez GR, Domínguez-Cherit J. “Cotton nail cast”: a simple solution for mild and painful lateral and distal nail embedding. Dermatol Surg. 2015;41(3):411–4. https://pubmed.ncbi.nlm.nih.gov/25738445/

6458

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6459

Maddy AJ, Tosti A. Hair and nail diseases in the mature patient. Clin Dermatol. 2018;36(2):159–66. https://pubmed.ncbi.nlm.nih.gov/29566920/

6460

Klafke GB, da Silva RA, de Pellegrin KT, Xavier MO. Analysis of the role of nail polish in the transmission of onychomycosis. An Bras Dermatol. 2018;93:930–1. https://pubmed.ncbi.nlm.nih.gov/30484548/

6461

Shemer A, Trau H, Davidovici B, Grunwald MH, Amichai B. Onycomycosis due to artificial nails. J Eur Acad Dermatol Venereol. 2008;22(8):998–1000. https://pubmed.ncbi.nlm.nih.gov/18355194/

6462

Kechijian P. Dangers of acrylic fingernails. JAMA.1990;263(3):458 https://jamanetwork.com/journals/jama/article-abstract/381522

6463

Dimitris R, Ralph D. Management of simple brittle nails. Dermatol Ther. 2012;25(6):569–73. https://pubmed.ncbi.nlm.nih.gov/23210755/

6464

Buck DS, Nidorf DM, Addino JG. Comparison of two topical preparations for the treatment of onychomycosis: Melaleuca alternifolia (tea tree) oil and clotrimazole. J Fam Pract. 1994;38(6):601–5. https://pubmed.ncbi.nlm.nih.gov/8195735/

6465

Kuo PT, Whereat AF, Horwitz O. The effect of lipemia upon coronary and peripheral arterial circulation in patients with essential hyperlipemia. Am J Med. 1959;26(1):68–75. https://pubmed.ncbi.nlm.nih.gov/13606154/

6466

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6467

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6468

Nail care products. U.S. Food & Drug Administration. https://www.fda.gov/cosmetics/cosmetic-products/nail-care-products#forma. Published February 25, 2022. Accessed September 7, 2022.; https://www.fda.gov/cosmetics/cosmetic-products/nail-care-products#forma

6469

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6470

van de Kerkhof PCM, Pasch MC, Scher RK, et al. Brittle nail syndrome: a pathogenesis-based approach with a proposed grading system. J Am Acad Dermatol. 2005;53(4):644–51. https://pubmed.ncbi.nlm.nih.gov/16198786/

6471

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6472

Cashman MW, Sloan SB. Nutrition and nail disease. Clin Dermatol. 2010;28(4):420–5. https://pubmed.ncbi.nlm.nih.gov/20620759/

6473

Maddy AJ, Tosti A. Hair and nail diseases in the mature patient. Clin Dermatol. 2018;36(2):159–66. https://pubmed.ncbi.nlm.nih.gov/29566920/

6474

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6475

Stern DK, Diamantis S, Smith E, et al. Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol. 2007;57(1):31–6. https://pubmed.ncbi.nlm.nih.gov/17412454/

6476

Stern DK, Diamantis S, Smith E, et al. Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol. 2007;57(1):31–6. https://pubmed.ncbi.nlm.nih.gov/17412454/

6477

Dimitris R, Ralph D. Management of simple brittle nails. Dermatol Ther. 2012;25(6):569–73. https://pubmed.ncbi.nlm.nih.gov/23210755/

6478

Stern DK, Diamantis S, Smith E, et al. Water content and other aspects of brittle versus normal fingernails. J Am Acad Dermatol. 2007;57(1):31–6. https://pubmed.ncbi.nlm.nih.gov/17412454/

6479

Dimitris R, Ralph D. Management of simple brittle nails. Dermatol Ther. 2012;25(6):569–73. https://pubmed.ncbi.nlm.nih.gov/23210755/

6480

Yousif J, Farshchian M, Potts GA. Oral nail growth supplements: a comprehensive review. Int J Dermatol. 2022;61(8):916–22. https://pubmed.ncbi.nlm.nih.gov/34351622/

6481

Lipner SR, Scher RK. Biotin for the treatment of nail disease: what is the evidence? J Dermatolog Treat. 2018;29(4):411–4. https://pubmed.ncbi.nlm.nih.gov/29057689/

6482

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6483

Patel DP, Swink SM, Castelo-Soccio L. A review of the use of biotin for hair loss. Skin Appendage Disord. 2017;3(3):166–9. https://pubmed.ncbi.nlm.nih.gov/28879195/

6484

Reilly JD, Cottrell DF, Martin RJ, Cuddeford DJ. Effect of supplementary dietary biotin on hoof growth and hoof growth rate in ponies: a controlled trial. Equine Vet J Suppl. 1998;(26):51–7. https://pubmed.ncbi.nlm.nih.gov/9932094/

6485

Floersheim GL. [Treatment of brittle fingernails with biotin]. Z Hautkr. 1989;64(1):41–8. https://pubmed.ncbi.nlm.nih.gov/2648686/

6486

Colombo VE, Gerber F, Bronhofer M, Floersheim GL. Treatment of brittle fingernails and onychoschizia with biotin: scanning electron microscopy. J Am Acad Dermatol. 1990;23(6 Pt 1):1127–32. https://pubmed.ncbi.nlm.nih.gov/2273113/

6487

Chiavetta A, Mazzurco S, Secolo MP, Tomarchio G, Milani M. Treatment of brittle nail with a hydroxypropyl chitosan-based lacquer, alone or in combination with oral biotin: a randomized, assessor-blinded trial. Dermatol Ther. 2019;32(5):e13028. https://pubmed.ncbi.nlm.nih.gov/31344296/

6488

Bowen R, Benavides R, Colón-Franco JM, et al. Best practices in mitigating the risk of biotin interference with laboratory testing. Clin Biochem. 2019;74:1–11. https://pubmed.ncbi.nlm.nih.gov/31473202/

6489

Lipner SR. Update on biotin therapy in dermatology: time for a change. J Drugs Dermatol. 2020;19(12):1264–5. https://pubmed.ncbi.nlm.nih.gov/33346513/

6490

John JJ, Cooley V, Lipner SR. Assessment of biotin supplementation among patients in an outpatient dermatology clinic. J Am Acad Dermatol. 2019;81(2):620–1. https://pubmed.ncbi.nlm.nih.gov/30630025/

6491

Waqas B, Wu A, Yim E, Lipner SR. A survey-based study of physician practices regarding biotin supplementation. J Dermatolog Treat. 2022;33(1):573–4. https://pubmed.ncbi.nlm.nih.gov/32419559/

6492

Reinecke JK, Hinshaw MA. Nail health in women. Int J Womens Dermatol. 2020;6(2):73–9. https://pubmed.ncbi.nlm.nih.gov/32258335/

6493

Yousif J, Farshchian M, Potts GA. Oral nail growth supplements: a comprehensive review. Int J Dermatol. 2022;61(8):916–22. https://pubmed.ncbi.nlm.nih.gov/34351622/

6494

Eke PI, Dye BA, Wei L, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611–22. https://pubmed.ncbi.nlm.nih.gov/25688694/

6495

Nascimento GG, Leite FRM, Conceição DA, Ferrúa CP, Singh A, Demarco FF. Is there a relationship between obesity and tooth loss and edentulism? A systematic review and meta-analysis. Obes Rev. 2016;17(7):587–98. https://pubmed.ncbi.nlm.nih.gov/27125768/

6496

Kotronia E, Brown H, Papacosta AO, et al. Poor oral health and the association with diet quality and intake in older people in two studies in the UK and USA. Br J Nutr. 2021;126(1):118–30. https://pubmed.ncbi.nlm.nih.gov/33468264/

6497

. ¿ntoniadou M, Varzakas T. Breaking the vicious circle of diet, malnutrition and oral health for the independent elderly. Crit Rev Food Sci Nutr. 2021;61(19):3233–55. https://pubmed.ncbi.nlm.nih.gov/32686465/

6498

Gaewkhiew P, Sabbah W, Bernabé E. Does tooth loss affect dietary intake and nutritional status? A systematic review of longitudinal studies. J Dent. 2017;67:1–8. https://pubmed.ncbi.nlm.nih.gov/29097121/

6499

Romandini M, Baima G, Antonoglou G, Bueno J, Figuero E, Sanz M. Periodontitis, edentulism, and risk of mortality: a systematic review with meta-analyses. J Dent Res. 2021;100(1):37–49. https://pubmed.ncbi.nlm.nih.gov/32866427/

6500

Liljestrand JM, Havulinna AS, Paju S, Männistö S, Salomaa V, Pussinen PJ. Missing teeth predict incident cardiovascular events, diabetes, and death. J Dent Res. 2015;94(8):1055–62. https://pubmed.ncbi.nlm.nih.gov/25991651/

6501

Friedman PK, Lamster IB. Tooth loss as a predictor of shortened longevity: exploring the hypothesis. Periodontol 2000. 2016;72(1):142–52. https://pubmed.ncbi.nlm.nih.gov/27501497/

6502

Kaufman LB, Setiono TK, Doros G, et al. An oral health study of centenarians and children of centenarians. J Am Geriatr Soc. 2014;62(6):1168–73. https://pubmed.ncbi.nlm.nih.gov/24889721/

6503

Liljestrand JM, Havulinna AS, Paju S, Männistö S, Salomaa V, Pussinen PJ. Missing teeth predict incident cardiovascular events, diabetes, and death. J Dent Res. 2015;94(8):1055–62. https://pubmed.ncbi.nlm.nih.gov/25991651/

6504

Romandini M, Baima G, Antonoglou G, Bueno J, Figuero E, Sanz M. Periodontitis, edentulism, and risk of mortality: a systematic review with meta-analyses. J Dent Res. 2021;100(1):37–49. https://pubmed.ncbi.nlm.nih.gov/32866427/

6505

Liljestrand JM, Havulinna AS, Paju S, Männistö S, Salomaa V, Pussinen PJ. Missing teeth predict incident cardiovascular events, diabetes, and death. J Dent Res. 2015;94(8):1055–62. https://pubmed.ncbi.nlm.nih.gov/25991651/

6506

Kellesarian SV, Kellesarian TV, Ros Malignaggi V, et al. Association between periodontal disease and erectile dysfunction: a systematic review. Am J Mens Health. 2018;12(2):338–46. https://pubmed.ncbi.nlm.nih.gov/27030114/

6507

Nascimento PC, Castro MML, Magno MB, et al. Association between periodontitis and cognitive impairment in adults: a systematic review. Front Neurol. 2019;10:323. https://pubmed.ncbi.nlm.nih.gov/31105630/

6508

Fang WL, Jiang MJ, Gu BB, et al. Tooth loss as a risk factor for dementia: systematic review and meta-analysis of 21 observational studies. BMC Psychiatry. 2018;18(1):345. https://pubmed.ncbi.nlm.nih.gov/30342524/

6509

Weijenberg RAF, Delwel S, Ho BV, van der Maarel-Wierink CD, Lobbezoo F. Mind your teeth – the relationship between mastication and cognition. Gerodontology. 2019;36(1):2–7. https://pubmed.ncbi.nlm.nih.gov/30480331/

6510

Chen J, Ren CJ, Wu L, et al. Tooth loss is associated with increased risk of dementia and with a dose-response relationship. Front Aging Neurosci. 2018;10:415. https://pubmed.ncbi.nlm.nih.gov/30618721/

6511

De Cicco V, Barresi M, Tramonti Fantozzi MP, Cataldo E, Parisi V, Manzoni D. Oral implant-prostheses: new teeth for a brighter brain. PLoS One. 2016;11(2):e0148715. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771091/

6512

Banu R F, Veeravalli PT, Kumar V A. Comparative evaluation of changes in brain activity and cognitive function of edentulous patients, with dentures and two-implant supported mandibular overdenture-pilot study. Clin Implant Dent Relat Res. 2016;18(3):580–7. https://pubmed.ncbi.nlm.nih.gov/25825258/

6513

Awadalla HI, Ragab MH, Bassuoni MW, Fayed MT, Abbas MO. A pilot study of the role of green tea use on oral health. Int J Dent Hyg. 2011;9(2):110–6. https://pubmed.ncbi.nlm.nih.gov/21356006/

6514

Balappanavar AY, Sardana V, Singh M. Comparison of the effectiveness of 0.5 % tea, 2 % neem and 0.2 % chlorhexidine mouthwashes on oral health: a randomized control trial. Indian J Dent Res. 2013;24(1):26–34. https://pubmed.ncbi.nlm.nih.gov/23852229/

6515

Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU. Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS One. 2012;7(7):e40319. https://pubmed.ncbi.nlm.nih.gov/22792279/

6516

Stoy PJ. Dental disease and civilization. Ulster Med J. 1951;20(2):144–58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2479700/

6517

Marcenes W, Kassebaum NJ, Bernabé E, et al. Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res. 2013;92(7):592–7. https://pubmed.ncbi.nlm.nih.gov/23720570/

6518

Sheiham A, James WPT. Diet and dental caries: the pivotal role of free sugars reemphasized. J Dent Res. 2015;94(10):1341–7. https://pubmed.ncbi.nlm.nih.gov/26261186/

6519

Kearns CE, Apollonio D, Glantz SA. Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: an historical analysis of internal documents. PLoS Biol. 2017;15(11):e2003460. https://pubmed.ncbi.nlm.nih.gov/29161267/

6520

Harris JL, Schwartz MB, Brownell KD, et al. Cereal FACTS 2012: limited progress in the nutrition quality and marketing of children’s cereals. Yale Rudd Center for Food Policy & Obesity; 2012. https://www.cerealfacts.org/

6521

Policy statement on beverage vending machines in schools. American Academy of Pediatric Dentists. https://www.aapd.org/assets/news/upload/2002/118.pdf. Published May 2022. Accessed September 10, 2022.; https://www.aapd.org/assets/news/upload/2002/118.pdf

6522

Jacobson MF. Lifting the veil of secrecy: corporate support for health and environmental professional associations, charities, and industry front groups. Center for Science in the Public Interest. https://www.cspinet.org/sites/default/files/attachment/lift_the_veil_intro.pdf. Published June 2003. Accessed September 10, 2022.; https://www.cspinet.org/sites/default/files/attachment/lift_the_veil_intro.pdf

6523

AAPD leadership perspective on the AAPD Foundation’s collaboration with the Coca-Cola Foundation. American Academy of Pediatric Dentists. https://www.aapd.org/globalassets/assets/news/upload/2003/197.pdf. Accessed September 10, 2022.; https://www.aapd.org/globalassets/assets/news/upload/2003/197.pdf

6524

Jacobson MF. Lifting the veil of secrecy: corporate support for health and environmental professional associations, charities, and industry front groups. Center for Science in the Public Interest. https://www.cspinet.org/sites/default/files/attachment/lift_the_veil_intro.pdf. Published June 2003. Accessed September 10, 2022.; https://www.cspinet.org/sites/default/files/attachment/lift_the_veil_intro.pdf

6525

Sheiham A, James WPT. A reappraisal of the quantitative relationship between sugar intake and dental caries: the need for new criteria for developing goals for sugar intake. BMC Public Health. 2014;14(1):863. https://pubmed.ncbi.nlm.nih.gov/25228012/

6526

Gibson SA. Breakfast cereal consumption in young children: associations with non-milk extrinsic sugars and caries experience: further analysis of data from the UK National Diet and Nutrition Survey of children aged 1.5–4.5 years. Public Health Nutr. 2000;3(2):227–32. https://pubmed.ncbi.nlm.nih.gov/10948390/

6527

Curzon MEJ. Dietary carbohydrate and dental caries. In: Dobbing J, ed. A Balanced Diet?. Springer London, 1988: 57–75.; https://link.springer.com/chapter/10.1007/978-1-4471-1652-3_4

6528

Cottrell RC. Letter to the editor, “Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines.” J Dent Res. 2014;93(5):530. https://pubmed.ncbi.nlm.nih.gov/24595636/

6529

Redberg RF. Cancer risks and radiation exposure from computed tomographic scans: how can we be sure that the benefits outweigh the risks? Arch Intern Med. 2009;169(22):2049–50. https://pubmed.ncbi.nlm.nih.gov/20008685/

6530

Memon A, Rogers I, Paudyal P, Sundin J. Dental x-rays and the risk of thyroid cancer and meningioma: a systematic review and meta-analysis of current epidemiological evidence. Thyroid. 2019;29(11):1572–93. https://pubmed.ncbi.nlm.nih.gov/31502516/

6531

Food and Drug Administration. Dental radiography: doses and film speed. https://www.fda.gov/radiation-emitting-products/nationwide-evaluation-x-ray-trendsnext/dental-radiography-doses-and-film-speed. Updated December 2, 2017. Accessed January 12, 2023.; https://www.fda.gov/radiation-emitting-products/nationwide-evaluation-x-ray-trendsnext/dental-radiography-doses-and-film-speed.

6532

Memon A, Rogers I, Paudyal P, Sundin J. Dental x-rays and the risk of thyroid cancer and meningioma: a systematic review and meta-analysis of current epidemiological evidence. Thyroid. 2019;29(11):1572–93. https://pubmed.ncbi.nlm.nih.gov/31502516/

6533

American Dental Association Council on Scientific Affairs. The use of dental radiographs: update and recommendations. J Am Dent Assoc. 2006;137(9):1304–12. https://pubmed.ncbi.nlm.nih.gov/16946440/

6534

White SC, Mallya SM. Update on the biological effects of ionizing radiation, relative dose factors and radiation hygiene. Aust Dent J. 2012;57 Suppl 1:2–8. https://pubmed.ncbi.nlm.nih.gov/22376091/

6535

Staufenbiel I, Weinspach K, Förster G, Geurtsen W, Günay H. Periodontal conditions in vegetarians: a clinical study. Eur J Clin Nutr. 2013;67(8):836–40. https://pubmed.ncbi.nlm.nih.gov/23714722/

6536

Macri E, Lifshitz F, Ramos C, et al. Atherogenic cholesterol-rich diet and periodontal disease. Arch Oral Biol. 2014;59(7):679–86. https://pubmed.ncbi.nlm.nih.gov/24769219/

6537

Kondo K, Ishikado A, Morino K, et al. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res. 2014;34(6):491–8. https://pubmed.ncbi.nlm.nih.gov/25026916/

6538

Laine MA, Tolvanen M, Pienihäkkinen K, et al. The effect of dietary intervention on paraffin-stimulated saliva and dental health of children participating in a randomized controlled trial. Arch Oral Biol. 2014;59(2):217–25. https://pubmed.ncbi.nlm.nih.gov/24370194/

6539

Wälti A, Lussi A, Seemann R. The effect of a chewing-intensive, high-fiber diet on oral halitosis: a clinical controlled study. Swiss Dent J. 2016;126(9):782–95. https://pubmed.ncbi.nlm.nih.gov/27655031/

6540

Sambunjak D, Nickerson JW, Poklepovic T, et al. Flossing for the management of periodontal diseases and dental caries in adults. Cochrane Database Syst Rev. 2011;(12):CD008829. https://pubmed.ncbi.nlm.nih.gov/22161438/

6541

Vernon LT, Da Silva APB, Seacat JD. In defense of flossing: part II – can we agree it’s premature to claim flossing is ineffective to help prevent periodontal diseases? J Evid Based Dent Pract. 2017;17(3):149–58. https://pubmed.ncbi.nlm.nih.gov/28865811/

6542

Terézhalmy GT, Bartizek RD, Biesbrock AR. Plaque-removal efficacy of four types of dental floss. J Periodontol. 2008;79(2):245–51. https://pubmed.ncbi.nlm.nih.gov/18251638/

6543

Mazhari F, Boskabady M, Moeintaghavi A, Habibi A. The effect of toothbrushing and flossing sequence on interdental plaque reduction and fluoride retention: a randomized controlled clinical trial. J Periodontol. 2018;89(7):824–32. https://pubmed.ncbi.nlm.nih.gov/29741239/

6544

Baumgartner S, Imfeld T, Schicht O, Rath C, Persson RE, Persson GR. The impact of the Stone Age diet on gingival conditions in the absence of oral hygiene. J Periodontol. 2009;80(5):759–68. https://pubmed.ncbi.nlm.nih.gov/19405829/

6545

Shi J, Maguer ML. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr. 2000;40(1):1–42. https://pubmed.ncbi.nlm.nih.gov/10674200/

6546

Chandra RV, Prabhuji MLV, Roopa DA, Ravirajan S, Kishore HC. Efficacy of lycopene in the treatment of gingivitis: a randomised, placebo-controlled clinical trial. Oral Health Prev Dent. 2007;5(4):327–36. https://pubmed.ncbi.nlm.nih.gov/18173095/

6547

Arora N, Avula H, Avula JK. The adjunctive use of systemic antioxidant therapy (lycopene) in nonsurgical treatment of chronic periodontitis: a short-term evaluation. Quintessence Int. 2013;44(6):395–405. https://pubmed.ncbi.nlm.nih.gov/23479592/

6548

Belludi SA, Verma S, Banthia R, et al. Effect of lycopene in the treatment of periodontal disease: a clinical study. J Contemp Dent Pract. 2013;14(6):1054–9. https://pubmed.ncbi.nlm.nih.gov/24858750/

6549

Benjamin N, Pattullo S, Weller R, Smith L, Ormerod A. Wound licking and nitric oxide. Lancet. 1997;349(9067):1776. https://pubmed.ncbi.nlm.nih.gov/9193412/

6550

Jockel-Schneider Y, Goßner SK, Petersen N, et al. Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J Clin Periodontol. 2016;43(7):603–8. https://pubmed.ncbi.nlm.nih.gov/26969836/

6551

Burnett CL, Bergfeld WF, Belsito DV, et al. Final report on the safety assessment of Cocos nucifera (coconut) oil and related ingredients. Int J Toxicol. 2011;30(3 Suppl):5S-16S. https://pubmed.ncbi.nlm.nih.gov/21772024/

6552

Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017;136(3):e1–23. https://pubmed.ncbi.nlm.nih.gov/28620111/

6553

Freeman AM, Morris PB, Barnard N, et al. Trending cardiovascular nutrition controversies. J Am Coll Cardiol. 2017;69(9):1172–87. https://pubmed.ncbi.nlm.nih.gov/28254181/

6554

Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010;120(1):59–65. https://www.sciencedirect.com/science/article/abs/pii/S0308814609011303?via%3Dihub

6555

Bekeleski GM, McCombs G, Melvin W. Oil pulling: an ancient practice for a modern time. J Int Oral Health. 2012;4(3):1–10. https://api.semanticscholar.org/CorpusID:5170081?utm_source=wikipedia

6556

Shanbhag VKL. Oil pulling for maintaining oral hygiene – a review. J Tradit Complement Med. 2017;7(1):106–9. https://pubmed.ncbi.nlm.nih.gov/28053895/

6557

Cheema R, Sharma R, Choudhary E, Sharma S. A clinical investigation to test the efficacy of oil pulling, in reducing dentin hypersensitivity, as compared to a desensitizing tooth paste. Int J Sci Study. 2014;1(6):22–6. https://www.researchgate.net/publication/294726108_A_Clinical_Investigation_to_Test_the_Efficacy_of_Oil_Pulling_in_Reducing_Dentin_Hypersensitivity_as_Compared_to_a_Desensitizing_Tooth_Paste_Published_in_International_Journal_of_Scientific_Study_March

6558

Hannig C, Wagenschwanz C, Pötschke S, et al. Effect of safflower oil on the protective properties of the in situ formed salivary pellicle. Caries Res. 2012;46(5):496–506. https://pubmed.ncbi.nlm.nih.gov/22813924/

6559

Wheater M, Friedl Z. Effect of oil pulling on tooth whitening in vitro. J Adv Oral Res. 2016;7(1):20–3. https://journals.sagepub.com/doi/pdf/10.1177/2229411220160104

6560

The practice of oil pulling. American Dental Association (ADA). https://web.archive.org/web/20140819060804/http:/www.ada.org/en/science-research/science-in-the-news/the-practice-of-oil-pulling. Published May 14, 2014. Accessed September 10, 2022.; https://web.archive.org/web/20140819060804/http:/www.ada.org/en/science-research/science-in-the-news/the-practice-of-oil-pulling

6561

Wheater M, Friedl Z. Effect of oil pulling on tooth whitening in vitro. J Adv Oral Res. 2016;7(1):20–3. https://journals.sagepub.com/doi/pdf/10.1177/2229411220160104

6562

Smits KPJ, Listl S, Jevdjevic M. Vegetarian diet and its possible influence on dental health: a systematic literature review. Community Dent Oral Epidemiol. 2020;48(1):7–13. https://pubmed.ncbi.nlm.nih.gov/31571246/

6563

Ginter E. Vegetarian diets, chronic diseases and longevity. Bratisl Lek Listy. 2008;109(10):463–6. https://pubmed.ncbi.nlm.nih.gov/19166134/

6564

Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10(1):21736. https://pubmed.ncbi.nlm.nih.gov/33303765/

6565

Hirayama T. An epidemiological study of oral and pharyngeal cancer in Central and South-East Asia. Bull World Health Organ. 1966;34(1):41–69. https://pubmed.ncbi.nlm.nih.gov/5295564/

6566

Rao DN, Ganesh B, Rao RS, Desai PB. Risk assessment of tobacco, alcohol and diet in oral cancer – a case-control study. Int J Cancer. 1994;58(4):469–73. https://pubmed.ncbi.nlm.nih.gov/8056441/

6567

Gangane N, Chawla S, Anshu, Subodh A, Gupta SS, Sharma SM. Reassessment of risk factors for oral cancer. Asian Pac J Cancer Prev. 2007;8(2):243–8. https://pubmed.ncbi.nlm.nih.gov/17696739/

6568

Mishra A. Head and neck cancer in India – review of practices for prevention policy. Oral Dis. 2009;15(7):454–65. https://pubmed.ncbi.nlm.nih.gov/19413676/

6569

Chainani-Wu N, Epstein J, Touger-Decker R. Diet and prevention of oral cancer: strategies for clinical practice. J Am Dent Assoc. 2011;142(2):166–9. https://pubmed.ncbi.nlm.nih.gov/21282682/

6570

Smits KPJ, Listl S, Jevdjevic M. Vegetarian diet and its possible influence on dental health: a systematic literature review. Community Dent Oral Epidemiol. 2020;48(1):7–13. https://pubmed.ncbi.nlm.nih.gov/31571246/

6571

Herman K, Czajczynska-Waszkiewicz A, Kowalczyk-Zajac M, Dobrzynski M. Assessment of the influence of vegetarian diet on the occurrence of erosive and abrasive cavities in hard tooth tissues. Postepy Hig Med Dosw. 2011;65:764–9. https://pubmed.ncbi.nlm.nih.gov/22173441/

6572

Chu CH, Pang KKL, Lo ECM. Dietary behavior and knowledge of dental erosion among Chinese adults. BMC Oral Health. 2010;10:13. https://pubmed.ncbi.nlm.nih.gov/20525244/

6573

Attin T, Siegel S, Buchalla W, Lennon AM, Hannig C, Becker K. Brushing abrasion of softened and remineralised dentin: an in situ study. Caries Res. 2004;38(1):62–6. https://pubmed.ncbi.nlm.nih.gov/14684979/

6574

Staufenbiel I, Adam K, Deac A, Geurtsen W, Günay H. Influence of fruit consumption and fluoride application on the prevalence of caries and erosion in vegetarians – a controlled clinical trial. Eur J Clin Nutr. 2015;69(10):1156–60. https://pubmed.ncbi.nlm.nih.gov/25782429/

6575

Walsh T, Worthington HV, Glenny AM, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev. 2019;3:CD007868. https://pubmed.ncbi.nlm.nih.gov/30829399/

6576

Centers for Disease Control and Prevention (CDC). Ten great public health achievements – United States, 1900–1999. MMWR Morb Mortal Wkly Rep. 1999;48(12):241–3. https://pubmed.ncbi.nlm.nih.gov/10220250/

6577

Bellinger DC. Is fluoride potentially neurotoxic? JAMA Pediatr. 2019;173(10):915–7. https://pubmed.ncbi.nlm.nih.gov/31424483/

6578

Valdez Jiménez L, López Guzmán OD, Cervantes Flores M, et al. In utero exposure to fluoride and cognitive development delay in infants. Neurotoxicology. 2017;59:65–70. https://pubmed.ncbi.nlm.nih.gov/28077305/

6579

Needleman HL, Gatsonis CA. Low-level lead exposure and the IQ of children. A meta-analysis of modern studies. JAMA. 1990;263(5):673–8. https://pubmed.ncbi.nlm.nih.gov/2136923/

6580

Unde MP, Patil RU, Dastoor PP. The untold story of fluoridation: revisiting the changing perspectives. Indian J Occup Environ Med. 2018;22(3):121–7. https://pubmed.ncbi.nlm.nih.gov/30647513/

6581

Walchuk C, Suh M. Nutrition and the aging retina: a comprehensive review of the relationship between nutrients and their role in age-related macular degeneration and retina disease prevention. Adv Food Nutr Res. 2020;93:293–332. https://pubmed.ncbi.nlm.nih.gov/32711865/

6582

Ruan Y, Jiang S, Gericke A. Age-related macular degeneration: role of oxidative stress and blood vessels. Int J Mol Sci. 2021;22(3):1296. https://pubmed.ncbi.nlm.nih.gov/33525498/

6583

Glickman RD. Ultraviolet phototoxicity to the retina. Eye Contact Lens. 2011;37(4):196–205. https://pubmed.ncbi.nlm.nih.gov/21646980/

6584

Abokyi S, To CH, Lam TT, Tse DY. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models. Oxid Med Cell Longev. 2020;2020:7901270. https://pubmed.ncbi.nlm.nih.gov/32104539/

6585

Abokyi S, To CH, Lam TT, Tse DY. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models. Oxid Med Cell Longev. 2020;2020:7901270. https://pubmed.ncbi.nlm.nih.gov/32104539/

6586

Blasiak J, Glowacki S, Kauppinen A, Kaarniranta K. Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration. Int J Mol Sci. 2013;14(2):2996–3010. https://pubmed.ncbi.nlm.nih.gov/23434654/

6587

Totan Y, Yagci R, Bardak Y, et al. Oxidative macromolecular damage in age-related macular degeneration. Curr Eye Res. 2009;34(12):1089–93. https://pubmed.ncbi.nlm.nih.gov/19958129/

6588

Abokyi S, To CH, Lam TT, Tse DY. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models. Oxid Med Cell Longev. 2020;2020:7901270. https://pubmed.ncbi.nlm.nih.gov/32104539/

6589

Heesterbeek TJ, Lorés-Motta L, Hoyng CB, Lechanteur YTE, den Hollander AI. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol Opt. 2020;40(2):140–70. https://pubmed.ncbi.nlm.nih.gov/32100327/

6590

Sin HPY, Liu DTL, Lam DSC. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmol. 2013;91(1):6–11. https://pubmed.ncbi.nlm.nih.gov/22268800/

6591

Jia YP, Sun L, Yu HS, et al. The pharmacological effects of lutein and zeaxanthin on visual disorders and cognition diseases. Molecules. 2017;22(4):E610. https://pubmed.ncbi.nlm.nih.gov/28425969/

6592

Wegner A, Khoramnia R. Cataract is a self-defence reaction to protect the retina from oxidative damage. Med Hypotheses. 2011;76(5):741–4. https://pubmed.ncbi.nlm.nih.gov/21354712/

6593

Kanter M. Lutein, zeaxanthin and eye health. Egg Nutrition Center. https://www.ee-staging.eggnutritioncenter.org/articles/lutein-zeaxanthin-and-eye-health/. Published May 16, 2022. Accessed September 15, 2022.; https://www.ee-staging.eggnutritioncenter.org/articles/lutein-zeaxanthin-and-eye-health/

6594

Agricultural Research Service, United States Department of Agriculture. Kale, 113 g serving. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/1602525/nutrients. Published March 19, 2021. Accessed February 24, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/1602525/nutrients

6595

Agricultural Research Service, United States Department of Agriculture. Spinach, frozen, chopped or leaf, cooked, boiled, drained, without salt. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169288/nutrients. Published April 1, 2019. Accessed February 24, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169288/nutrients

6596

Agricultural Research Service, United States Department of Agriculture. Component search: lutein + zeaxanthin (µg). FoodData Central https://fdc.nal.usda.gov/fdc-app.html#/?component=1123. Accessed January 25, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1123

6597

Wenzel AJ, Gerweck C, Barbato D, Nicolosi RJ, Handelman GJ, Curran-Celentano J. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr. 2006;136(10):2568–73. https://pubmed.ncbi.nlm.nih.gov/16988128/

6598

Hammond BR, Johnson EJ, Russell RM, et al. Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci. 1997;38(9):1795–801. https://pubmed.ncbi.nlm.nih.gov/9286268/

6599

Abdel-Aal ESM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013;5(4):1169–85. https://pubmed.ncbi.nlm.nih.gov/23571649/

6600

Eisenhauer B, Natoli S, Liew G, Flood VM. Lutein and zeaxanthin – food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients. 2017;9(2):E120. https://www.mdpi.com/2072-6643/9/2/120

6601

Cheng CY, Chung WY, Szeto YT, Benzie IFF. Fasting plasma zeaxanthin response to Fructus barbarum L. (wolfberry; kei tze) in a food-based human supplementation trial. Br J Nutr. 2005;93(1):123–30. https://pubmed.ncbi.nlm.nih.gov/15705234/

6602

Neelam K, Dey S, Sim R, Lee J, Au Eong KG. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients. 2021;13(1):246. https://pubmed.ncbi.nlm.nih.gov/33467087/

6603

Unlu NZ, Bohn T, Clinton SK, Schwartz SJ. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr. 2005;135(3):431–6. https://pubmed.ncbi.nlm.nih.gov/15735074/

6604

Eriksen JN, Luu AY, Dragsted LO, Arrigoni E. In vitro liberation of carotenoids from spinach and Asia salads after different domestic kitchen procedures. Food Chem. 2016;203:23–7. https://pubmed.ncbi.nlm.nih.gov/26948584/

6605

Eriksen JN, Luu AY, Dragsted LO, Arrigoni E. In vitro liberation of carotenoids from spinach and Asia salads after different domestic kitchen procedures. Food Chem. 2016;203:23–7. https://pubmed.ncbi.nlm.nih.gov/26948584/

6606

Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 Study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8(1):40–53. https://pubmed.ncbi.nlm.nih.gov/28096126/

6607

Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 Study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8(1):40–53. https://pubmed.ncbi.nlm.nih.gov/28096126/

6608

Gorusupudi A, Nelson K, Bernstein PS. The Age-Related Eye Disease 2 Study: micronutrients in the treatment of macular degeneration. Adv Nutr. 2017;8(1):40–53. https://pubmed.ncbi.nlm.nih.gov/28096126/

6609

Chew EY, Clemons TE, SanGiovanni JP, et al. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report No. 3. JAMA Ophthalmol. 2014;132(2):142–9. https://pubmed.ncbi.nlm.nih.gov/24310343/

6610

Lawrenson JG, Evans JR, Downie LE. A critical appraisal of national and international clinical practice guidelines reporting nutritional recommendations for age-related macular degeneration: are recommendations evidence-based? Nutrients. 2019;11(4):E823. https://pubmed.ncbi.nlm.nih.gov/30979051/

6611

Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev. 2017;7:CD000253. https://pubmed.ncbi.nlm.nih.gov/28756617/

6612

Broadhead GK, Grigg JR, Chang AA, McCluskey P. Dietary modification and supplementation for the treatment of age-related macular degeneration. Nutr Rev. 2015;73(7):448–62. https://pubmed.ncbi.nlm.nih.gov/26081455/

6613

Rhone M, Basu A. Phytochemicals and age-related eye diseases. Nutr Rev. 2008;66(8):465–72. https://pubmed.ncbi.nlm.nih.gov/18667008/

6614

Hammond BR, Fuld K, Snodderly DM. Iris color and macular pigment optical density. Exp Eye Res. 1996;62(3):293–7. https://pubmed.ncbi.nlm.nih.gov/8690039/

6615

Stringham JM, Bovier ER, Wong JC, Hammond BR. The influence of dietary lutein and zeaxanthin on visual performance. J Food Sci. 2010;75(1):R24–9. https://pubmed.ncbi.nlm.nih.gov/20492192/

6616

Hammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Invest Ophthalmol Vis Sci. 2014;55(12):8583–9. https://pubmed.ncbi.nlm.nih.gov/25468896/

6617

Rinninella E, Mele MC, Merendino N, et al. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gut – retina axis. Nutrients. 2018;10(11):E1677. https://pubmed.ncbi.nlm.nih.gov/30400586/

6618

Hammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast. Invest Ophthalmol Vis Sci. 2014;55(12):8583–9. https://pubmed.ncbi.nlm.nih.gov/25468896/

6619

Sorond FA, Lipsitz LA, Hollenberg NK, Fisher NDL. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr Dis Treat. 2008;4(2):433–40. https://pubmed.ncbi.nlm.nih.gov/18728792/

6620

Rabin JC, Karunathilake N, Patrizi K. Effects of milk vs dark chocolate consumption on visual acuity and contrast sensitivity within 2 hours: a randomized clinical trial. JAMA Ophthalmol. 2018;136(6):678–81. https://pubmed.ncbi.nlm.nih.gov/29710322/

6621

Westenskow PD. Nicotinamide: a novel treatment for age-related macular degeneration? Stem Cell Investig. 2017;4:86. https://pubmed.ncbi.nlm.nih.gov/29167807/

6622

Dinu M, Pagliai G, Casini A, Sofi F. Food groups and risk of age-related macular degeneration: a systematic review with meta-analysis. Eur J Nutr. 2019;58(5):2123–43. https://pubmed.ncbi.nlm.nih.gov/29978377/

6623

Mares-Perlman JA, Brady WE, Klein R, VandenLangenberg GM, Klein BE, Palta M. Dietary fat and age-related maculopathy. Arch Ophthalmol. 1995;113(6):743–8. https://pubmed.ncbi.nlm.nih.gov/7786215/

6624

Ban N, Lee TJ, Sene A, et al. Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight. 2018;3(17):120824. https://pubmed.ncbi.nlm.nih.gov/30185655/

6625

Rodriguez IR, Clark ME, Lee JW, Curcio CA. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Exp Eye Res. 2014;128:151–5. https://pubmed.ncbi.nlm.nih.gov/25261634/

6626

Yin L, Shi Y, Liu X, et al. A rat model for studying the biological effects of circulating LDL in the choriocapillaris-BrM-RPE complex. Am J Pathol. 2012;180(2):541–9. https://pubmed.ncbi.nlm.nih.gov/22107828/

6627

Gehlbach P, Li T, Hatef E. Statins for age-related macular degeneration. Cochrane Database Syst Rev. 2016;(8):CD006927. https://pubmed.ncbi.nlm.nih.gov/27490232/

6628

Rhone M, Basu A. Phytochemicals and age-related eye diseases. Nutr Rev. 2008;66(8):465–72. https://pubmed.ncbi.nlm.nih.gov/18667008/

6629

Park CY, Gu N, Lim CY, et al. The effect of Vaccinium uliginosum extract on tablet computer-induced asthenopia: randomized placebo-controlled study. BMC Complement Altern Med. 2016;16:296. https://pubmed.ncbi.nlm.nih.gov/27538497/

6630

Kalt W, McDonald JE, Fillmore SAE, Tremblay F. Blueberry effects on dark vision and recovery after photobleaching: placebo-controlled crossover studies. J Agric Food Chem. 2014;62(46):11180–9. https://pubmed.ncbi.nlm.nih.gov/25335781/

6631

Broadhead GK, Grigg JR, McCluskey P, Hong T, Schlub TE, Chang AA. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):31–40. https://pubmed.ncbi.nlm.nih.gov/30343354/

6632

Tribble JR, Hui F, Jöe M, et al. Targeting diet and exercise for neuroprotection and neurorecovery in glaucoma. Cells. 2021;10(2):295. https://pubmed.ncbi.nlm.nih.gov/33535578/

6633

Han B, Song M, Li L, Sun X, Lei Y. The application of nitric oxide for ocular hypertension treatment. Molecules. 2021;26(23):7306. https://pubmed.ncbi.nlm.nih.gov/34885889/

6634

Han B, Song M, Li L, Sun X, Lei Y. The application of nitric oxide for ocular hypertension treatment. Molecules. 2021;26(23):7306. https://pubmed.ncbi.nlm.nih.gov/34885889/

6635

Bastia E, Toris C, Bukowski JM, et al. NCX 1741, a novel nitric oxide-donating phosphodiesterase-5 inhibitor, exerts rapid and long-lasting intraocular pressure-lowering in cynomolgus monkeys. J Ocul Pharmacol Ther. 2021;37(4):215–22. https://pubmed.ncbi.nlm.nih.gov/33595367/

6636

Coleman AL, Stone KL, Kodjebacheva G, et al. Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol. 2008;145(6):1081–9. https://pubmed.ncbi.nlm.nih.gov/18355790/

6637

Giaconi JA, Yu F, Stone KL, et al. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am J Ophthalmol. 2012;154(4):635–44. https://pubmed.ncbi.nlm.nih.gov/22818906/

6638

Bao Y, Bertoia ML, Lenart EB, et al. Origin, methods, and evolution of the three Nurses’ Health Studies. Am J Public Health. 2016;106(9):1573–81. https://pubmed.ncbi.nlm.nih.gov/27459450/

6639

Health Professionals Follow-up Study. Harvard T.H. Chan School of Public Health. https://sites.sph.harvard.edu/hpfs/questions-and-answers/. Accessed September 15, 2022.; https://www.hsph.harvard.edu/hpfs/questions-and-answers/

6640

Kang JH, Willett WC, Rosner BA, Buys E, Wiggs JL, Pasquale LR. Association of dietary nitrate intake with primary open-angle glaucoma: a prospective analysis from the Nurses’ Health Study and Health Professionals Follow-up Study. JAMA Ophthalmol. 2016;134(3):294–303. https://pubmed.ncbi.nlm.nih.gov/26767881/

6641

Zhu MM, Lai JSM, Choy BNK, et al. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol. 2018;96(6):e676–91. https://pubmed.ncbi.nlm.nih.gov/29338126/

6642

Passo MS, Elliot DL, Goldberg L. Long-term effects of exercise conditioning on intraocular pressure in glaucoma suspects. J Glaucoma. 1992;1(1):39–41. https://pubmed.ncbi.nlm.nih.gov/19996871/

6643

Chorich LJ III, Davidorf FH, Chambers RB, Weber PA. Bungee cord-associated ocular injuries. Am J Ophthalmol. 1998;125(2):270–2. https://pubmed.ncbi.nlm.nih.gov/9467466/

6644

Kalthoff H, John S. [Intraocular pressure in snorkling and diving (author’s transl)]. Klin Monbl Augenheilkd. 1976;168(02):253–7. https://pubmed.ncbi.nlm.nih.gov/957553/

6645

Jasien JV, Jonas JB, de Moraes CG, Ritch R. Intraocular pressure rise in subjects with and without glaucoma during four common yoga positions. PLoS One. 2015;10(12):e0144505. https://pubmed.ncbi.nlm.nih.gov/26698309/

6646

Williams PT. Relationship of incident glaucoma versus physical activity and fitness in male runners. Med Sci Sports Exerc. 2009;41(8):1566–72. https://pubmed.ncbi.nlm.nih.gov/19568204/

6647

Ramulu PY, Maul E, Hochberg C, Chan ES, Ferrucci L, Friedman DS. Real-world assessment of physical activity in glaucoma using an accelerometer. Ophthalmology. 2012;119(6):1159–66. https://pubmed.ncbi.nlm.nih.gov/22386950/

6648

Ohguro H, Ohguro I, Katai M, Tanaka S. Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica. 2012;228(1):26–35. https://pubmed.ncbi.nlm.nih.gov/22377796/

6649

McGlynnP. Welcome back black currants: forbidden fruit making a comeback in New York. Cornell Chronicle. https://news.cornell.edu/stories/2006/07/welcome-back-black-currants-forbidden-fruit-making-ny-comeback. Published July 26, 2006. Accessed February 25, 2006.; https://news.cornell.edu/stories/2006/07/welcome-back-black-currants-forbidden-fruit-making-ny-comeback

6650

Sari MD. Ginkgo biloba extract effect on oxidative stress marker malonildialdehyde, redox enzyme gluthation peroxidase, visual field damage, and retinal nerve fiber layer thickness in primary open angle glaucoma. InnoPharm2 Second International Conference on Innovations in Pharmaceutical Medical and Bio Science. Innovare Academic Sciences. http://repository.usu.ac.id/handle/123456789/65446. Published February 11–12, 2017. Accessed September 15, 2022.; https://repository.usu.ac.id/handle/123456789/65446

6651

Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359–62. https://pubmed.ncbi.nlm.nih.gov/12578781/

6652

Guo X, Kong X, Huang R, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55(1):110–6. https://pubmed.ncbi.nlm.nih.gov/24282229/

6653

Bent S, Goldberg H, Padula A, Avins AL. Spontaneous bleeding associated with Ginkgo biloba: a case report and systematic review of the literature. J Gen Intern Med. 2005;20(7):657–61. https://pubmed.ncbi.nlm.nih.gov/16050865/

6654

Hui F, Tang J, Williams PA, et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: a crossover randomized clinical trial. Clin Exp Ophthalmol. 2020;48(7):903–14. https://pubmed.ncbi.nlm.nih.gov/32721104/

6655

De Moraes CG, John SWM, Williams PA, Blumberg DM, Cioffi GA, Liebmann JM. Nicotinamide and pyruvate for neuroenhancement in open-angle glaucoma: a phase 2 randomized clinical trial. JAMA Ophthalmol. 2022;140(1):11–8. https://pubmed.ncbi.nlm.nih.gov/34792559/

6656

Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12. https://pubmed.ncbi.nlm.nih.gov/28242111/

6657

Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12. https://pubmed.ncbi.nlm.nih.gov/28242111/

6658

Stephenson M. Dysphotopsia: not just black and white. Review of Ophthalmology. https://www.reviewofophthalmology.com/article/dysphotopsia-not-just-black-and-white. Published November 7, 2022. Accessed September 15, 2022.; https://www.reviewofophthalmology.com/article/dysphotopsia-not-just-black-and-white

6659

Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12. https://pubmed.ncbi.nlm.nih.gov/28242111/

6660

Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12. https://pubmed.ncbi.nlm.nih.gov/28242111/

6661

Thorn DC, Grosas AB, Mabbitt PD, Ray NJ, Jackson CJ, Carver JA. The structure and stability of the disulfide-linked ¿s-crystallin dimer provide insight into oxidation products associated with lens cataract formation. J Mol Biol. 2019;431(3):483–97. https://pubmed.ncbi.nlm.nih.gov/30552875/

6662

Weikel KA, Garber C, Baburins A, Taylor A. Nutritional modulation of cataract. Nutr Rev. 2014;72(1):30–47. https://pubmed.ncbi.nlm.nih.gov/24279748/

6663

Westenskow PD. Nicotinamide: a novel treatment for age-related macular degeneration? Stem Cell Investig. 2017;4:86. https://pubmed.ncbi.nlm.nih.gov/29167807/

6664

Weikel KA, Garber C, Baburins A, Taylor A. Nutritional modulation of cataract. Nutr Rev. 2014;72(1):30–47. https://pubmed.ncbi.nlm.nih.gov/24279748/

6665

Hah YS, Chung HJ, Sontakke SB, et al. Ascorbic acid concentrations in aqueous humor after systemic vitamin C supplementation in patients with cataract: pilot study. BMC Ophthalmol. 2017;17(1):121. https://pubmed.ncbi.nlm.nih.gov/28693452/

6666

Mares J. Food antioxidants to prevent cataract. JAMA. 2015;313(10):1048–9. https://pubmed.ncbi.nlm.nih.gov/25756441/

6667

Sideri O, Tsaousis KT, Li HJ, Viskadouraki M, Tsinopoulos IT. The potential role of nutrition on lens pathology: a systematic review and meta-analysis. Surv Ophthalmol. 2019;64(5):668–78. https://pubmed.ncbi.nlm.nih.gov/30878580/

6668

Wei L, Liang G, Cai C, Lv J. Association of vitamin C with the risk of age-related cataract: a meta-analysis. Acta Ophthalmol. 2016;94(3):e170–6. https://pubmed.ncbi.nlm.nih.gov/25735187/

6669

Weikel KA, Garber C, Baburins A, Taylor A. Nutritional modulation of cataract. Nutr Rev. 2014;72(1):30–47. https://pubmed.ncbi.nlm.nih.gov/24279748/

6670

Ma L, Hao Zx, Liu Rr, Yu RB, Shi Q, Pan JP. A dose-response meta-analysis of dietary lutein and zeaxanthin intake in relation to risk of age-related cataract. Graefes Arch Clin Exp Ophthalmol. 2014;252(1):63–70. https://pubmed.ncbi.nlm.nih.gov/24150707/

6671

Christen WG, Glynn RJ, Sesso HD, et al. Age-related cataract in a randomized trial of vitamins E and C in men. Arch Ophthalmol. 2010;128(11):1397–405. https://pubmed.ncbi.nlm.nih.gov/21060040/

6672

Kassoff A, Kassoff J, Buehler JA, et al. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439–52. https://pubmed.ncbi.nlm.nih.gov/11594943/

6673

Gritz DC, Srinivasan M, Smith SD, et al. The antioxidants in prevention of cataracts study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol. 2006;90(7):847–51. https://pubmed.ncbi.nlm.nih.gov/16556618/

6674

Jiang H, Yin Y, Wu CR, et al. Dietary vitamin and carotenoid intake and risk of age-related cataract. Am J Clin Nutr. 2019;109(1):43–54. https://pubmed.ncbi.nlm.nih.gov/30624584/

6675

Barker FM. Dietary supplementation: effects on visual performance and occurrence of AMD and cataracts. Curr Med Res Opin. 2010;26(8):2011–23. https://pubmed.ncbi.nlm.nih.gov/20590393/

6676

Christen W, Glynn R, Sperduto R, Chew E, Buring J. Age-related cataract in a randomized trial of beta-carotene in women. Ophthalmic Epidemiol. 2004;11(5):401–12. https://pubmed.ncbi.nlm.nih.gov/15590586/

6677

Chew EY, SanGiovanni JP, Ferris FL et al. Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report no. 4. JAMA Ophthalmol. 2013;131(7):843–50. https://pubmed.ncbi.nlm.nih.gov/23645227/

6678

Maraini G, Williams SL, Camparini M, et al. A randomized, double-masked, placebo-controlled clinical trial of multivitamin supplementation for age-related lens opacities: Clinical Trial of Nutritional Supplements and Age-Related Cataract report no. 3. Ophthalmology. 2008;115(4):599–607.e1. https://pubmed.ncbi.nlm.nih.gov/18387406/

6679

Mares J. Food antioxidants to prevent cataract. JAMA. 2015;313(10):1048–9. https://pubmed.ncbi.nlm.nih.gov/25756441/

6680

Shivappa N, Hébert JR, Rashidkhani B, Ghanavati M. Inflammatory potential of diet is associated with increased odds of cataract in a case-control study from Iran. Int J Vitam Nutr Res. 2017;87(1–2):17–24. https://pubmed.ncbi.nlm.nih.gov/29327971/

6681

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/

6682

Wu C, Han X, Yan X, et al. Impact of diet on the incidence of cataract surgery among diabetic patients: findings from the 45 and Up Study. Curr Eye Res. 2019;44(4):385–92. https://pubmed.ncbi.nlm.nih.gov/30433817/

6683

Tan AG, Flood VM, Kifley A, et al. Wholegrain and legume consumption and the 5-year incidence of age-related cataract in the Blue Mountains Eye Study. Br J Nutr. 2020;124(3):306–15. https://pubmed.ncbi.nlm.nih.gov/32189601/

6684

Люди, не употребляющие в пищу мяса теплокровных, но допускающие употребление рыбы, крабов и моллюсков. – Примеч. ред.

6685

Appleby PN, Allen NE, Key TJ. Diet, vegetarianism, and cataract risk. Am J Clin Nutr. 2011;93(5):1128–35. https://pubmed.ncbi.nlm.nih.gov/21430115/

6686

Appleby PN, Allen NE, Key TJ. Diet, vegetarianism, and cataract risk. Am J Clin Nutr. 2011;93(5):1128–35. https://pubmed.ncbi.nlm.nih.gov/21430115/

6687

Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr. 2009;89(5):1607S-12S. https://pubmed.ncbi.nlm.nih.gov/19321569/

6688

Chiu THT, Chang CC, Lin CL, Lin MN. A vegetarian diet is associated with a lower risk of cataract, particularly among individuals with overweight: a prospective study. J Acad Nutr Diet. 2021;121(4):669–77.e1. https://pubmed.ncbi.nlm.nih.gov/33309591/

6689

Mitchell HS, Dodge WM. Cataract in rats fed on high lactose rations. J Nutr. 1935;9(1):37–49. https://pubmed.ncbi.nlm.nih.gov/394038/

6690

Richter CP, Duke JR. Cataracts produced in rats by yogurt. Science. 1970;168(3937):1372–4. https://pubmed.ncbi.nlm.nih.gov/5444270/

6691

Kinoshita JH. Cataracts in galactosemia. The Tonas S. Friedenwald Memorial Lecture. Invest Ophthalmol. 1965;4(5):786–99. https://pubmed.ncbi.nlm.nih.gov/5831988/

6692

Couet C, Jan P, Debry G. Lactose and cataract in humans: a review. J Am Coll Nutr. 1991;10(1):79–86. https://pubmed.ncbi.nlm.nih.gov/1901325/

6693

Wilson WA, Donnell GN. Cataracts in galactosemia. AMA Arch Ophthalmol. 1958;60(2):215–22. https://pubmed.ncbi.nlm.nih.gov/13558788/

6694

Mustafa OM, Daoud YJ. Is dietary milk intake associated with cataract extraction history in older adults? An analysis from the US population. J Ophthalmol. 2020;2020:2562875. https://pubmed.ncbi.nlm.nih.gov/32148937/

6695

Mustafa OM, Daoud YJ. Is dietary milk intake associated with cataract extraction history in older adults? An analysis from the US population. J Ophthalmol. 2020;2020:2562875. https://pubmed.ncbi.nlm.nih.gov/32148937/

6696

Jacques PF, Phillips J, Hartz SC, Chylack LT. Lactose intake, galactose metabolism and senile cataract. Nutr Res. 1990;10(3):255–65. https://www.sciencedirect.com/science/article/abs/pii/S0271531705802672

6697

Couet C, Jan P, Debry G. Lactose and cataract in humans: a review. J Am Coll Nutr. 1991;10(1):79–86. https://pubmed.ncbi.nlm.nih.gov/1901325/

6698

Smith R. A good death. An important aim for health services and for us all. BMJ. 2000;320(7228):129–30. https://pubmed.ncbi.nlm.nih.gov/10634711/

6699

Broad JB, Gott M, Kim H, Boyd M, Chen H, Connolly MJ. Where do people die? An international comparison of the percentage of deaths occurring in hospital and residential aged care settings in 45 populations, using published and available statistics. Int J Public Health. 2013;58(2):257–67. https://pubmed.ncbi.nlm.nih.gov/22892713/

6700

Hetzler PT III, Dugdale LS. How do medicalization and rescue fantasy prevent healthy dying? AMA J Ethics. 2018;20(8):E766–73. https://pubmed.ncbi.nlm.nih.gov/30118427/

6701

Quickstats: percentage distribution of deaths, by place of death – United States, 2000–2014. MMWR Morb Mortal Wkly Rep. 2016;65(13):357. https://www.cdc.gov/mmwr/volumes/65/wr/mm6513a6.htm

6702

Wright AA, Keating NL, Balboni TA, Matulonis UA, Block SD, Prigerson HG. Place of death: correlations with quality of life of patients with cancer and predictors of bereaved caregivers’ mental health. J Clin Oncol. 2010;28(29):4457–64. https://pubmed.ncbi.nlm.nih.gov/20837950/

6703

Mills M, Davies HT, Macrae WA. Care of dying patients in hospital. BMJ. 1994;309(6954):583–6. https://pubmed.ncbi.nlm.nih.gov/8086948/

6704

Smith R. A good death. An important aim for health services and for us all. BMJ. 2000;320(7228):129–30. https://pubmed.ncbi.nlm.nih.gov/10634711/

6705

Quill TE, Ganzini L, Truog RD, Pope TM. Voluntarily stopping eating and drinking among patients with serious advanced illness – clinical, ethical, and legal aspects. JAMA Intern Med. 2018;178(1):123–7. https://pubmed.ncbi.nlm.nih.gov/29114745/

6706

2020 Edition: Hospice Facts and Figures. National Hospice and Palliative Care Organization. www.nhpco.org/factsfigures. Published August 20, 2020. Accessed September 20, 2022.; https://www.nhpco.org/hospice-facts-figures/

6707

Connor SR, Pyenson B, Fitch K, Spence C, Iwasaki K. Comparing hospice and nonhospice patient survival among patients who die within a three-year window. J Pain Symptom Manage. 2007;33(3):238–46. https://pubmed.ncbi.nlm.nih.gov/17349493/

6708

Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med. 2010;363(8):733–42. https://pubmed.ncbi.nlm.nih.gov/20818875/

6709

Kelley AS, Meier DE. Palliative care – a shifting paradigm. N Engl J Med. 2010;363(8):781–2. https://pubmed.ncbi.nlm.nih.gov/20818881/

6710

Irwin KE, Greer JA, Khatib J, Temel JS, Pirl WF. Early palliative care and metastatic non-small cell lung cancer: potential mechanisms of prolonged survival. Chron Respir Dis. 2013;10(1):35–47. https://pubmed.ncbi.nlm.nih.gov/23355404/

6711

Winyard G, Macdonald L. The limits of palliative care. BMJ. 2014;349:g4285. https://pubmed.ncbi.nlm.nih.gov/24986853/

6712

Ivanovic N, Büche D, Fringer A. Voluntary stopping of eating and drinking at the end of life – a ‘systematic search and review’ giving insight into an option of hastening death in capacitated adults at the end of life. BMC Palliat Care. 2014;13(1):1. https://pubmed.ncbi.nlm.nih.gov/24400678/

6713

Symington BE. Ethics and the legalization of physician-assisted suicide. Ann Intern Med. 2018;168(11):833–4. https://pubmed.ncbi.nlm.nih.gov/29868808/

6714

Blanke C, Ellis L, Meyskens F. Oregon’s death with dignity act – reply. JAMA Oncol. 2018;4(5):748. https://pubmed.ncbi.nlm.nih.gov/29450455/

6715

Pope TM. Voluntarily stopping eating and drinking. Narrat Inq Bioeth. 2016;6(2):75–7. https://pubmed.ncbi.nlm.nih.gov/27763385/

6716

Corbett M. VSED: death with dignity or without? Narrat Inq Bioeth. 2016;6(2):109–13. https://pubmed.ncbi.nlm.nih.gov/27763399/

6717

Schwarz JK. Hospice care for patients who choose to hasten death by voluntarily stopping eating and drinking. J Hosp Palliat Nurs. 2014;16(3):126–31. https://journals.lww.com/jhpn/Fulltext/2014/05000/Hospice_Care_for_Patients_Who_Choose_to_Hasten.3.aspx

6718

Stängle S, Schnepp W, Büche D, Häuptle C, Fringer A. Family physicians’ perspective on voluntary stopping of eating and drinking: a cross-sectional study. J Int Med Res. 2020;48(8):300060520936069. https://pubmed.ncbi.nlm.nih.gov/32787706/

6719

Ivanovic N, Büche D, Fringer A. Voluntary stopping of eating and drinking at the end of life – a ‘systematic search and review’ giving insight into an option of hastening death in capacitated adults at the end of life. BMC Palliat Care. 2014;13(1):1. https://pubmed.ncbi.nlm.nih.gov/24400678/

6720

Schwarz JK. Hospice care for patients who choose to hasten death by voluntarily stopping eating and drinking. J Hosp Palliat Nurs. 2014;16(3):126–31. https://journals.lww.com/jhpn/Fulltext/2014/05000/Hospice_Care_for_Patients_Who_Choose_to_Hasten.3.aspx

6721

Lachman VD. Voluntary stopping of eating and drinking: an ethical alternative to physician-assisted suicide. Medsurg Nurs. 2015;24(1):56–9. https://pubmed.ncbi.nlm.nih.gov/26306358/

6722

Ferrand E, Dreyfus JF, Chastrusse M, Ellien F, Lemaire F, Fischler M. Evolution of requests to hasten death among patients managed by palliative care teams in France: a multicentre cross-sectional survey (DemandE). Eur J Cancer. 2012;48(3):368–76. https://pubmed.ncbi.nlm.nih.gov/22036873/

6723

Pope TM, Anderson LE. Voluntarily stopping eating and drinking: a legal treatment option at the end of life. Weidner Law Review. 2011;17:363–427. https://open.mitchellhamline.edu/facsch/278/

6724

Bolt EE, Hagens M, Willems D, Onwuteaka-Philipsen BD. Primary care patients hastening death by voluntarily stopping eating and drinking. Ann Fam Med. 2015;13(5):421–8. https://pubmed.ncbi.nlm.nih.gov/26371262/

6725

Gruenewald DA, Vandekieft G. Options of last resort: palliative sedation, physician aid in dying, and voluntary cessation of eating and drinking. Med Clin North Am. 2020;104(3):539–60. https://pubmed.ncbi.nlm.nih.gov/32312414/

6726

Printz LA. Terminal dehydration, a compassionate treatment. Arch Intern Med. 1992;152(4):697–700. https://pubmed.ncbi.nlm.nih.gov/1373053/

6727

Volicer L, Stets K. Acceptability of an advance directive that limits food and liquids in advanced dementia. Am J Hosp Palliat Care. 2016;33(1):55–63. https://pubmed.ncbi.nlm.nih.gov/25313239/

6728

Ivanovic N, Büche D, Fringer A. Voluntary stopping of eating and drinking at the end of life – a ‘systematic search and review’ giving insight into an option of hastening death in capacitated adults at the end of life. BMC Palliat Care. 2014;13(1):1. https://pubmed.ncbi.nlm.nih.gov/24400678/

6729

Eddy DM. A piece of my mind. A conversation with my mother. JAMA. 1994;272(3):179–81. https://pubmed.ncbi.nlm.nih.gov/8022025/

6730

Jackonen S. Dehydration and hydration in the terminally ill: care considerations. Nurs Forum. 1997;32(3):5–13. https://pubmed.ncbi.nlm.nih.gov/9362876/

6731

Rakatansky H. Complexities to consider when patients choose VSED (voluntarily stopping eating and drinking). R I Med (2013). 2017;100(2):12–3. https://pubmed.ncbi.nlm.nih.gov/28146593/

6732

Menzel PT. Justifying a surrogate’s request to forego oral feeding. Am J Bioeth. 2019;19(1):92–4. https://pubmed.ncbi.nlm.nih.gov/30676907/

6733

Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/

6734

Pillitteri JL, Shiffman S, Rohay JM, Harkins AM, Burton SL, Wadden TA. Use of dietary supplements for weight loss in the United States: results of a national survey. Obesity (Silver Spring). 2008;16(4):790–6. https://pubmed.ncbi.nlm.nih.gov/18239570/

6735

Sissung TM, Cordes LM, Figg WD. The Dietary Supplement Health and Education Act: are we healthier and better informed after 27 years? Lancet Oncol. 2021;22(7):915–6. https://pubmed.ncbi.nlm.nih.gov/34197743/

6736

MacFarlane D, Hurlstone MJ, Ecker UKH. Protecting consumers from fraudulent health claims: a taxonomy of psychological drivers, interventions, barriers, and treatments. Soc Sci Med. 2020;259:112790. https://pubmed.ncbi.nlm.nih.gov/32067757/

6737

Sissung TM, Cordes LM, Figg WD. The Dietary Supplement Health and Education Act: are we healthier and better informed after 27 years? Lancet Oncol. 2021;22(7):915–6. https://pubmed.ncbi.nlm.nih.gov/34197743/

6738

Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222. https://pubmed.ncbi.nlm.nih.gov/24120035/

6739

Long J. FDA GMP inspectors cite 70 % of dietary supplement firms. Natural Products INSIDER. https://www.naturalproductsinsider.com/fda-gmp-inspectors-cite-70-dietary-supplement-firms. Published May 20, 2013. Accessed September 29, 2022.; https://www.naturalproductsinsider.com/regulatory/fda-gmp-inspectors-cite-70-dietary-supplement-firms

6740

O’Connor A. New York attorney general targets supplements at major retailers. The New York Times. https://well.blogs.nytimes.com/2015/02/03/new-york-attorney-general-targets-supplements-at-major-retailers. Published February 3, 2015. Accessed September 29, 2022.; https://well.blogs.nytimes.com/2015/02/03/new-york-attorney-general-targets-supplements-at-major-retailers

6741

Cohen PA, Maller G, Desouza R, Neal-Kababick J. Presence of banned drugs in dietary supplements following FDA recalls. JAMA. 2014;312(16):1691–3. https://pubmed.ncbi.nlm.nih.gov/25335153/

6742

Marcus DM. Dietary supplements: what’s in a name? What’s in the bottle? Drug Test Anal. 2016;8(3–4):410–2. https://pubmed.ncbi.nlm.nih.gov/27072845/

6743

Gahche JJ, Bailey RL, Potischman N, Dwyer JT. Dietary supplement use was very high among older adults in the United States in 2011–2014. J Nutr. 2017;147(10):1968–76. https://pubmed.ncbi.nlm.nih.gov/28855421/

6744

Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academy Press;1998. https://pubmed.ncbi.nlm.nih.gov/23193625/

6745

O’Connor EA, Evans CV, Ivlev I, et al. Vitamin and mineral supplements for the primary prevention of cardiovascular disease and cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2022;327(23):2334–47. https://pubmed.ncbi.nlm.nih.gov/35727272/

6746

Guallar E, Stranges S, Mulrow C, Appel LJ, Miller ER. Enough is enough: stop wasting money on vitamin and mineral supplements. Ann Intern Med. 2013;159(12):850–1. https://pubmed.ncbi.nlm.nih.gov/24490268/

6747

Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. J Am Coll Cardiol. 2021;77(4):423–36. https://pubmed.ncbi.nlm.nih.gov/33509399/

6748

Biesalski HK, Tinz J. Multivitamin/mineral supplements: rationale and safety – a systematic review. Nutrition. 2017;33:76–82. https://pubmed.ncbi.nlm.nih.gov/27553772/

6749

Mursu J, Robien K, Harnack LJ, Park K, Jacobs DR. Dietary supplements and mortality rate in older women: the Iowa Women’s Health Study. Arch Intern Med. 2011;171(18):1625–33. https://pubmed.ncbi.nlm.nih.gov/21987192/

6750

Schwingshackl L, Boeing H, Stelmach-Mardas M, et al. Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. Adv Nutr. 2017;8(1):27–39. https://pubmed.ncbi.nlm.nih.gov/28096125/

6751

Biesalski HK, Tinz J. Multivitamin/mineral supplements: rationale and safety – a systematic review. Nutrition. 2017;33:76–82. https://pubmed.ncbi.nlm.nih.gov/27553772/

6752

Chang YY, Chiou WB. The liberating effect of weight loss supplements on dietary control: a field experiment. Nutrition. 2014;30(9):1007–10. https://pubmed.ncbi.nlm.nih.gov/24976417/

6753

Chiou WB, Wan CS, Wu WH, Lee KT. A randomized experiment to examine unintended consequences of dietary supplement use among daily smokers: taking supplements reduces self-regulation of smoking. Addiction. 2011;106(12):2221–8. https://pubmed.ncbi.nlm.nih.gov/21806694/

6754

Chang YY, Chiou WB. Taking weight-loss supplements may elicit liberation from dietary control. A laboratory experiment. Appetite. 2014;72:8–12. https://pubmed.ncbi.nlm.nih.gov/24096084/

6755

Spindler SR, Mote PL, Flegal JM. Lifespan effects of simple and complex nutraceutical combinations fed isocalorically to mice. Age (Dordr). 2014;36(2):705–18. https://pubmed.ncbi.nlm.nih.gov/24370781/

6756

Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014;(1):CD007470. https://pubmed.ncbi.nlm.nih.gov/24414552/

6757

Pludowski P, Holick MF, Pilz S, et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality – a review of recent evidence. Autoimmun Rev. 2013;12(10):976–89. https://pubmed.ncbi.nlm.nih.gov/23542507/

6758

Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986–1004. https://pubmed.ncbi.nlm.nih.gov/29102433/

6759

Barbarawi M, Kheiri B, Zayed Y, et al. Vitamin D supplementation and cardiovascular disease risks in more than 83¿000 individuals in 21 randomized clinical trials: a meta-analysis. JAMA Cardiol. 2019;4(8):765–76. https://pubmed.ncbi.nlm.nih.gov/31215980/

6760

Seida JC, Mitri J, Colmers IN, et al. Clinical review: effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis [published correction appears in J Clin Endocrinol Metab. 2015;100(8):3219]. J Clin Endocrinol Metab. 2014;99(10):3551–60. https://pubmed.ncbi.nlm.nih.gov/25062463/

6761

Jagannath VA, Filippini G, Di Pietrantonj C, et al. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev. 2018;9:CD008422. https://pubmed.ncbi.nlm.nih.gov/30246874/

6762

Duan L, Han L, Liu Q, Zhao Y, Wang L, Wang Y. Effects of vitamin D supplementation on general and central obesity: results from 20 randomized controlled trials involving apparently healthy populations. Ann Nutr Metab. 2020;76(3):153–64. https://pubmed.ncbi.nlm.nih.gov/32645694/

6763

Shahvazi S, Soltani S, Ahmadi SM, de Souza RJ, Salehi-Abargouei A. The effect of vitamin D supplementation on prostate cancer: a systematic review and meta-analysis of clinical trials. Horm Metab Res. 2019;51(1):11–21. https://pubmed.ncbi.nlm.nih.gov/30522147/

6764

Beveridge LA, Struthers AD, Khan F, et al. Effect of vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med. 2015;175(5):745–54. https://pubmed.ncbi.nlm.nih.gov/25775274/

6765

Giustina A, Adler RA, Binkley N, et al. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020;21(1):89–116. https://pubmed.ncbi.nlm.nih.gov/32180081/

6766

Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017;5(11):881–90. https://pubmed.ncbi.nlm.nih.gov/28986128/

6767

Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D to prevent exacerbations of COPD: systematic review and meta-analysis of individual participant data from randomised controlled trials. Thorax. 2019;74(4):337–45. https://pubmed.ncbi.nlm.nih.gov/30630893/

6768

Okereke OI, Reynolds CF, Mischoulon D, et al. Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: a randomized clinical trial. JAMA. 2020;324(5):471–80. https://pubmed.ncbi.nlm.nih.gov/32749491/

6769

Cheng YC, Huang YC, Huang WL. The effect of vitamin D supplement on negative emotions: a systematic review and meta-analysis. Depress Anxiety. 2020;37(6):549–64. https://pubmed.ncbi.nlm.nih.gov/32365423/

6770

Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1–44. https://pubmed.ncbi.nlm.nih.gov/30675873/

6771

Maretzke F, Bechthold A, Egert S, et al. Role of vitamin D in preventing and treating selected extraskeletal diseases – an umbrella review. Nutrients. 2020;12(4):E969. https://pubmed.ncbi.nlm.nih.gov/32244496/

6772

Heath AK, Kim IY, Hodge AM, English DR, Muller DC. Vitamin D status and mortality: a systematic review of observational studies. Int J Environ Res Public Health. 2019;16(3):E383. https://pubmed.ncbi.nlm.nih.gov/30700025/

6773

Ferri E, Casati M, Cesari M, Vitale G, Arosio B. Vitamin D in physiological and pathological aging: lesson from centenarians. Rev Endocr Metab Disord. 2019;20(3):273–82. https://pubmed.ncbi.nlm.nih.gov/31654261/

6774

Passeri G, Pini G, Troiano L, et al. Low vitamin D status, high bone turnover, and bone fractures in centenarians. J Clin Endocrinol Metab. 2003;88(11):5109–15. https://pubmed.ncbi.nlm.nih.gov/14602735/

6775

Heath AK, Kim IY, Hodge AM, English DR, Muller DC. Vitamin D status and mortality: a systematic review of observational studies. Int J Environ Res Public Health. 2019;16(3):E383. https://pubmed.ncbi.nlm.nih.gov/30700025/

6776

Rodríguez AJ, Scott D, Srikanth V, Ebeling P. Effect of vitamin D supplementation on measures of arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. Clin Endocrinol (Oxf). 2016;84(5):645–57. https://pubmed.ncbi.nlm.nih.gov/26824510/

6777

Hussin AM, Ashor AW, Schoenmakers I, Hill T, Mathers JC, Siervo M. Effects of vitamin D supplementation on endothelial function: a systematic review and meta-analysis of randomised clinical trials. Eur J Nutr. 2017;56(3):1095–104. https://pubmed.ncbi.nlm.nih.gov/26848580/

6778

Biesalski HK, Tinz J. Multivitamin/mineral supplements: rationale and safety – a systematic review. Nutrition. 2017;33:76–82. https://pubmed.ncbi.nlm.nih.gov/27553772/

6779

Zhang Y, Fang F, Tang J, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366:l4673. https://pubmed.ncbi.nlm.nih.gov/31405892/

6780

Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. https://pubmed.ncbi.nlm.nih.gov/30415629/

6781

Manson JE, Cook NR, Lee IM, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380(1):23–32. https://pubmed.ncbi.nlm.nih.gov/30415637/

6782

Giustina A, Bouillon R, Binkley N, et al. Controversies in vitamin D: a statement from the Third International Conference. JBMR Plus. 2020;4(12):e10417. https://pubmed.ncbi.nlm.nih.gov/33354643/

6783

Frame LA, Fischer JP, Geller G, Cheskin LJ. Use of placebo in supplementation studies – vitamin D research illustrates an ethical quandary. Nutrients. 2018;10(3):347. https://pubmed.ncbi.nlm.nih.gov/29533982/

6784

Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. https://pubmed.ncbi.nlm.nih.gov/30415629/

6785

Zhang Y, Fang F, Tang J, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366:l4673. https://pubmed.ncbi.nlm.nih.gov/31405892/

6786

LeClair BM, Si C, Solomon J. Vitamin D supplementation and all-cause mortality. Am Fam Physician. 2020;102(1):online. https://pubmed.ncbi.nlm.nih.gov/32603077/

6787

Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986–1004. https://pubmed.ncbi.nlm.nih.gov/29102433/

6788

Biesalski HK, Tinz J. Multivitamin/mineral supplements: rationale and safety – a systematic review. Nutrition. 2017;33:76–82. https://pubmed.ncbi.nlm.nih.gov/27553772/

6789

Healthy diet. World Health Organization. https://cdn.who.int/media/docs/default-source/healthy-diet/healthy-diet-fact-sheet-394.pdf?sfvrsn=69f1f9a1_2&download=true. Updated August 2018. Accessed October 7, 2022.; https://www.who.int/publications/m/item/healthy-diet-factsheet394

6790

Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73. https://pubmed.ncbi.nlm.nih.gov/28446499/

6791

Pribis P, Shukitt-Hale B. Cognition: the new frontier for nuts and berries. Am J Clin Nutr. 2014;100 Suppl 1:347S-52S. https://pubmed.ncbi.nlm.nih.gov/24871475/

6792

Aune D, Keum N, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207. https://pubmed.ncbi.nlm.nih.gov/27916000/

6793

Fadelu T, Zhang S, Niedzwiecki D, et al. Nut consumption and survival in patients with stage III colon cancer: results from CALGB 89803 (Alliance). J Clin Oncol. 2018;36(11):1112–20. https://pubmed.ncbi.nlm.nih.gov/29489429/

6794

Fraser GE, Shavlik DJ. Risk factors for all-cause and coronary heart disease mortality in the oldest-old. The Adventist Health Study. Arch Intern Med. 1997;157(19):2249–58. https://pubmed.ncbi.nlm.nih.gov/9343002/

6795

Ros E. Eat nuts, live longer. J Am Coll Cardiol. 2017;70(20):2533–5. https://pubmed.ncbi.nlm.nih.gov/29145953/

6796

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

6797

Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/

6798

Aune D, Keum NN, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207. https://pubmed.ncbi.nlm.nih.gov/27916000/

6799

Fernández-Montero A, Bes-Rastrollo M, Barrio-López MT, et al. Nut consumption and 5-y all-cause mortality in a Mediterranean cohort: the SUN project. Nutrition. 2014;30(9):1022–7. https://pubmed.ncbi.nlm.nih.gov/24976427/

6800

Baer HJ, Glynn RJ, Hu FB, et al. Risk factors for mortality in the Nurses’ Health Study: a competing risks analysis. Am J Epidemiol. 2011;173(3):319–29. https://pubmed.ncbi.nlm.nih.gov/21135028/

6801

Fernández-Montero A, Martínez-González MA, Moreno-Galarraga L. Re. “Nut consumption and 5-y all-cause mortality in a Mediterranean cohort: the SUN project”: Authors’ response. Nutrition. 2015;31(10):1299–300. https://pubmed.ncbi.nlm.nih.gov/26333895/

6802

Aune D, Keum N, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207. https://pubmed.ncbi.nlm.nih.gov/27916000/

6803

Kim Y, Keogh JB, Clifton PM. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses. Int J Environ Res Public Health. 2019;16(24):4957. https://pubmed.ncbi.nlm.nih.gov/31817639/

6804

Mohammadi-Sartang M, Bellissimo N, Totosy de Zepetnek JO, Bazyar H, Mahmoodi M, Mazloom Z. Effects of walnuts consumption on vascular endothelial function in humans: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN. 2018;28:52–8. https://pubmed.ncbi.nlm.nih.gov/30390893/

6805

Schwingshackl L, Hoffmann G, Iqbal K, Schwedhelm C, Boeing H. Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials. Am J Clin Nutr. 2018;108(3):576–86. https://pubmed.ncbi.nlm.nih.gov/30535089/

6806

Bitok E, Jaceldo-Siegl K, Rajaram S, et al. Favourable nutrient intake and displacement with long-term walnut supplementation among elderly: results of a randomised trial. Br J Nutr. 2017;118(3):201–9. https://pubmed.ncbi.nlm.nih.gov/28831957/

6807

Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/

6808

Sabaté J. Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr. 1999;70(3 Suppl):500S-3S. https://pubmed.ncbi.nlm.nih.gov/10479222/

6809

Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/

6810

Aune D, Keum NN, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14(1):207. https://pubmed.ncbi.nlm.nih.gov/27916000/

6811

Dreher ML, Maher CV, Kearney P. The traditional and emerging role of nuts in healthful diets. Nutr Rev. 2009;54(8):241–5. https://pubmed.ncbi.nlm.nih.gov/8961751/

6812

Guarneiri LL, Cooper JA. Intake of nuts or nut products does not lead to weight gain, independent of dietary substitution instructions: a systematic review and meta-analysis of randomized trials. Adv Nutr. 2021;12(2):384–401. https://pubmed.ncbi.nlm.nih.gov/32945861/

6813

Barman AK, Goel R, Sharma M, Mahanta PJ. Acute kidney injury associated with ingestion of star fruit: acute oxalate nephropathy. Indian J Nephrol. 2016;26(6):446–8. https://pubmed.ncbi.nlm.nih.gov/27942177/

6814

Albersmeyer M, Hilge R, Schröttle A, Weiss M, Sitter T, Vielhauer V. Acute kidney injury after ingestion of rhubarb: secondary oxalate nephropathy in a patient with type 1 diabetes. BMC Nephrol. 2012;13:141. https://pubmed.ncbi.nlm.nih.gov/23110375/

6815

Kikuchi Y, Seta K, Ogawa Y, et al. Chaga mushroom-induced oxalate nephropathy. Clin Nephrol. 2014;81(6):440–4. https://pubmed.ncbi.nlm.nih.gov/23149251/

6816

Gandhi A, Nasser S, Kassis Akl N, Kotadia S. Quiz page June 2016: rapidly progressive kidney failure. Am J Kidney Dis. 2016;67(6):A15–7. https://pubmed.ncbi.nlm.nih.gov/27211373/

6817

Syed F, Mena-Gutierrez A, Ghaffar U. A case of iced-tea nephropathy. N Engl J Med. 2015;372(14):1377–8. https://pubmed.ncbi.nlm.nih.gov/25830441/

6818

Bernardino M, Parmar MS. Oxalate nephropathy from cashew nut intake. CMAJ. 2017;189(10):E405–8. https://pubmed.ncbi.nlm.nih.gov/27956392/

6819

Haaskjold YL, Drotningsvik A, Leh S, Marti HP, Svarstad E. Renal failure due to excessive intake of almonds in the absence of Oxalobacter formigenes. Am J Med. 2015;128(12):e29–30. https://pubmed.ncbi.nlm.nih.gov/26235248/

6820

Garland V, Herlitz L, Regunathan-Shenk R. Diet-induced oxalate nephropathy from excessive nut and seed consumption. BMJ Case Rep. 2020;13(11):e237212. https://pubmed.ncbi.nlm.nih.gov/33257378/

6821

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9(1):3. https://pubmed.ncbi.nlm.nih.gov/20096093/

6822

Ros E, Mataix J. Fatty acid composition of nuts – implications for cardiovascular health. Br J Nutr. 2006;96 Suppl 2:S29–35. https://pubmed.ncbi.nlm.nih.gov/17125530/

6823

Xiao Y, Huang W, Peng C, et al. Effect of nut consumption on vascular endothelial function: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2018;37(3):831–9. https://pubmed.ncbi.nlm.nih.gov/28457654/

6824

Yang J, Liu RH, Halim L. Antioxidant and antiproliferative activities of common edible nut seeds. Food Sci Tech. 2009;42(1):1–8. https://www.sciencedirect.com/science/article/abs/pii/S0023643808001771

6825

Arias-Fernández L, Machado-Fragua MD, Graciani A, et al. Prospective association between nut consumption and physical function in older men and women. J Gerontol A Biol Sci Med Sci. 2019;74(7):1091–7. https://pubmed.ncbi.nlm.nih.gov/30052782/

6826

Freitas-Simoes TM, Wagner M, Samieri C, Sala-Vila A, Grodstein F. Consumption of nuts at midlife and healthy aging in women. J Aging Res. 2020;2020:5651737. https://pubmed.ncbi.nlm.nih.gov/32399296/

6827

Guasch-Ferré M, Bulló M, Martínez-González MÁ, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164. https://pubmed.ncbi.nlm.nih.gov/23866098/

6828

Toner CD. Communicating clinical research to reduce cancer risk through diet: walnuts as a case example. Nutr Res Pract. 2014;8(4):347–51. https://pubmed.ncbi.nlm.nih.gov/25110552/

6829

Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29. https://pubmed.ncbi.nlm.nih.gov/30971126/

6830

Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021;360:130145. https://pubmed.ncbi.nlm.nih.gov/34034049/

6831

Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–9. https://pubmed.ncbi.nlm.nih.gov/24694282/

6832

Sheridan BS, Lefranan BSL. Intraepithelial lymphocytes: to serve and protect. Curr Gastroenterol Rep. 2010;12(6):513–21. https://pubmed.ncbi.nlm.nih.gov/20890736/

6833

Hooper LV. You AhR what you eat: linking diet and immunity. Cell 2011;147(3):489–91. https://pubmed.ncbi.nlm.nih.gov/22036556/

6834

Serna E, Cespedes C, Vina J. Anti-aging physiological roles of aryl hydrocarbon receptor and its dietary regulators. Int J Mol Sci. 2020;22(1):E374. https://pubmed.ncbi.nlm.nih.gov/33396477/

6835

Esser C. Biology and function of the aryl hydrocarbon receptor: report of an international and interdisciplinary conference. Arch Toxicol. 2012;86(8):1323–9. https://pubmed.ncbi.nlm.nih.gov/22371237/

6836

Ashida H, Fukuda I, Yamashita T, Kanazawa K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett. 2000;476(3):213–7. https://pubmed.ncbi.nlm.nih.gov/10913616/

6837

Healthy eating saves lives. Institute for Health Metrics and Evaluation. https://www.healthdata.org/infographic/healthy-eating-saves-lives. Published April 3, 2019. Accessed October 10, 2022.; https://www.healthdata.org/infographic/healthy-eating-saves-lives

6838

Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18. https://pubmed.ncbi.nlm.nih.gov/28408086/

6839

Lee BJ, Kim B, Lee K. Air pollution exposure and cardiovascular disease. Toxicol Res. 2014;30(2):71–5. https://pubmed.ncbi.nlm.nih.gov/25071915/

6840

He G, Pan Y, Tanaka T. COVID-19, city lockdowns, and air pollution: evidence from China. https://www.medrxiv.org/content/10.1101/2020.03.29.20046649v2. Published April 21, 2020. Accessed October 9, 2022.; https://www.medrxiv.org/content/10.1101/2020.03.29.20046649v2

6841

Air pollution data portal. World Health Organization. https://www.who.int/data/gho/data/themes/air-pollution. Accessed October 7. 2022.; https://www.who.int/data/gho/data/themes/air-pollution

6842

Lee K, Greenstone M. Air Quality Life Index: annual update. https://aqli.epic.uchicago.edu/wp-content/uploads/2021/08/AQLI_2021-Report.EnglishGlobal.pdf. Published September 2021. Accessed October 8, 2022.; https://aqli.epic.uchicago.edu/wp-content/uploads/2021/08/AQLI_2021-Report.EnglishGlobal.pdf

6843

Schikowski T, Hüls A. Air pollution and skin aging. Curr Environ Health Rep. 2020;7(1):58–64. https://pubmed.ncbi.nlm.nih.gov/31927691/

6844

Peters R, Ee N, Peters J, Booth A, Mudway I, Anstey KJ. Air pollution and dementia: a systematic review. J Alzheimers Dis. 2019;70(s1):S145–63. https://pubmed.ncbi.nlm.nih.gov/30775976/

6845

Lee K, Greenstone M. Air Quality Life Index: annual update. https://aqli.epic.uchicago.edu/wp-content/uploads/2021/08/AQLI_2021-Report.EnglishGlobal.pdf. Published September 2021. Accessed October 8, 2022.; https://aqli.epic.uchicago.edu/wp-content/uploads/2021/08/AQLI_2021-Report.EnglishGlobal.pdf

6846

Olmo NRS, do Nascimento Saldiva PH, Braga ALF, Lin CA, de Paula Santos U, Pereira LAA. A review of low-level air pollution and adverse effects on human health: implications for epidemiological studies and public policy. Clinics (Sao Paulo). 2011;66(4):681–90. https://pubmed.ncbi.nlm.nih.gov/21655765/

6847

Carlsten C, Salvi S, Wong GWK, Chung KF. Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur Respir J. 2020;55(6):1902056. https://pubmed.ncbi.nlm.nih.gov/32241830/

6848

Sinharay R, Gong J, Barratt B, et al. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet. 2018;391(10118):339–49. https://pubmed.ncbi.nlm.nih.gov/29221643/

6849

Carlsten C, Salvi S, Wong GWK, Chung KF. Personal strategies to minimise effects of air pollution on respiratory health: advice for providers, patients and the public. Eur Respir J. 2020;55(6):1902056. https://pubmed.ncbi.nlm.nih.gov/32241830/

6850

Allen RW, Barn P. Individual– and household-level interventions to reduce air pollution exposures and health risks: a review of the recent literature. Curr Environ Health Rep. 2020;7(4):424–40. https://pubmed.ncbi.nlm.nih.gov/33241434/

6851

Barn PK, Elliott CT, Allen RW, Kosatsky T, Rideout K, Henderson SB. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke. Environ Health. 2016;15(1):116. https://pubmed.ncbi.nlm.nih.gov/27887618/

6852

Allen RW, Barn P. Individual– and household-level interventions to reduce air pollution exposures and health risks: a review of the recent literature. Curr Environ Health Rep. 2020;7(4):424–40. https://pubmed.ncbi.nlm.nih.gov/33241434/

6853

Dong W, Liu S, Chu M, et al. Different cardiorespiratory effects of indoor air pollution intervention with ionization air purifier: findings from a randomized, double-blind crossover study among school children in Beijing. Environ Pollut. 2019;254(Pt B):113054. https://pubmed.ncbi.nlm.nih.gov/31473392/

6854

Liu W, Huang J, Lin Y, et al. Negative ions offset cardiorespiratory benefits of PM2.5 reduction from residential use of negative ion air purifiers. Indoor Air. 2021;31(1):220–8. https://pubmed.ncbi.nlm.nih.gov/32757287/

6855

Healthy eating saves lives. Institute for Health Metrics and Evaluation. https://www.healthdata.org/infographic/healthy-eating-saves-lives. Published April 3, 2019. Accessed October 10, 2022.; https://www.healthdata.org/infographic/healthy-eating-saves-lives

6856

Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetable-enriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108(2):212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/

6857

Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 2004;363(9403):119–25. https://pubmed.ncbi.nlm.nih.gov/14726165/

6858

Ritz SA, Wan J, Diaz-Sanchez D. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract. Am J Physiol Lung Cell Mol Physiol. 2007;292(1):L33–9. https://pubmed.ncbi.nlm.nih.gov/16905640/

6859

Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/

6860

Müller L, Meyer M, Bauer RN, et al. Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: a randomized, double-blind study. PLoS One. 2016;11(1):e0147742. https://pubmed.ncbi.nlm.nih.gov/26820305/

6861

Riso P, Vendrame S, Del Bo’ C, et al. Effect of 10-day broccoli consumption on inflammatory status of young healthy smokers. Int J Food Sci Nutr. 2014;65(1):106–11. https://pubmed.ncbi.nlm.nih.gov/23992556/

6862

Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila). 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/

6863

Clarke JD, Hsu A, Riedl K, et al. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res. 2011;64(5):456–63. https://pubmed.ncbi.nlm.nih.gov/21816223/

6864

Atwell LL, Hsu A, Wong CP, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res. 2015;59(3):424–33. https://pubmed.ncbi.nlm.nih.gov/25522265/

6865

Larsen FJ, Schiffer TA, Ekblom B, et al. Dietary nitrate reduces resting metabolic rate: a randomized, crossover study in humans. Am J Clin Nutr. 2014;99(4):843–50. https://pubmed.ncbi.nlm.nih.gov/24500154/

6866

Larsen FJ, Schiffer TA, Borniquel S, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabolism. 2011;13(2):149–59. https://pubmed.ncbi.nlm.nih.gov/21284982/

6867

Engan HK, Jones AM, Ehrenberg F, Schagatay E. Acute dietary nitrate supplementation improves dry static apnea performance. Respir Physiol Neurobiol. 2012;182(2–3):53–9. https://pubmed.ncbi.nlm.nih.gov/22588047/

6868

Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107(4):1144–55. https://pubmed.ncbi.nlm.nih.gov/19661447/

6869

European Food Safety Authority. Nitrate in vegetables: Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J. 2008;689:1–79. https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.689

6870

Rocha BS, Laranjinha J. Nitrate from diet might fuel gut microbiota metabolism: minding the gap between redox signaling and inter-kingdom communication. Free Radic Biol Med. 2020;149:37–43. https://pubmed.ncbi.nlm.nih.gov/32045656/

6871

Larsen FJ, Schiffer TA, Ekblom B, et al. Dietary nitrate reduces resting metabolic rate: a randomized, crossover study in humans. Am J Clin Nutr. 2014;99(4):843–50. https://pubmed.ncbi.nlm.nih.gov/24500154/

6872

What we eat in America, NHANES 2017–March 2020 prepandemic. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf. Published 2022. Accessed January 13, 2023.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1720/Table_1_NIN_GEN_1720.pdf

6873

Larsen FJ, Schiffer TA, Ekblom B, et al. Dietary nitrate reduces resting metabolic rate: a randomized, crossover study in humans. Am J Clin Nutr. 2014;99(4):843–50. https://pubmed.ncbi.nlm.nih.gov/24500154/

6874

Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29. https://pubmed.ncbi.nlm.nih.gov/30971126/

6875

Van De Walle GP, Vukovich MD. The effect of nitrate supplementation on exercise tolerance and performance: a systematic review and meta-analysis. J Strength Cond Res. 2018;32(6):1796–808. https://pubmed.ncbi.nlm.nih.gov/29786633/

6876

Campos HO, Drummond LR, Rodrigues QT, et al. Nitrate supplementation improves physical performance specifically in non-athletes during prolonged open-ended tests: a systematic review and meta-analysis. Br J Nutr. 2018;119(6):636–57. https://pubmed.ncbi.nlm.nih.gov/29553034/

6877

Bailey SJ, Winyard P, Vanhatalo A, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985). 2009;107(4):1144–55. https://pubmed.ncbi.nlm.nih.gov/19661447/

6878

Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr. 2016;55(2):451–9. https://pubmed.ncbi.nlm.nih.gov/25764393/

6879

Carter SJ, Gruber AH, Raglin JS, Baranauskas MN, Coggan AR. Potential health effects of dietary nitrate supplementation in aging and chronic degenerative disease. Med Hypotheses. 2020;141:109732. https://pubmed.ncbi.nlm.nih.gov/32294579/

6880

Sim M, Lewis JR, Blekkenhorst LC, et al. Dietary nitrate intake is associated with muscle function in older women. J Cachexia Sarcopenia Muscle. 2019;10(3):601–10. https://pubmed.ncbi.nlm.nih.gov/30907070/

6881

Coggan AR, Hoffman RL, Gray DA, et al. A single dose of dietary nitrate increases maximal knee extensor angular velocity and power in healthy older men and women. J Gerontol A Biol Sci Med Sci. 2020;75(6):1154–60. https://pubmed.ncbi.nlm.nih.gov/31231758/

6882

de Oliveira GV, Morgado M, Conte-Junior CA, Alvares TS. Acute effect of dietary nitrate on forearm muscle oxygenation, blood volume and strength in older adults: a randomized clinical trial. PLoS One. 2017;12(11):e0188893. https://pubmed.ncbi.nlm.nih.gov/29190751/

6883

Borlaug BA. Cardiac aging and the fountain of youth. Eur J Heart Fail. 2016;18(6):611–2. https://pubmed.ncbi.nlm.nih.gov/27072490/

6884

Rammos C, Hendgen-Cotta UB, Totzeck M, et al. Impact of dietary nitrate on age-related diastolic dysfunction. Eur J Heart Fail. 2016;18(6):599–610. https://pubmed.ncbi.nlm.nih.gov/27118445/

6885

Lara J, Ashor AW, Oggioni C, Ahluwalia A, Mathers JC, Siervo M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur J Nutr. 2016;55(2):451–9. https://pubmed.ncbi.nlm.nih.gov/25764393/

6886

Walker MA, Bailey TG, McIlvenna L, Allen JD, Green DJ, Askew CD. Acute dietary nitrate supplementation improves flow mediated dilatation of the superficial femoral artery in healthy older males. Nutrients. 2019;11(5):E954. https://pubmed.ncbi.nlm.nih.gov/31035478/

6887

Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol (1985). 2011;110(6):1582–91. https://pubmed.ncbi.nlm.nih.gov/21454745/

6888

McDonagh ST, Wylie LJ, Morgan PT, Vanhatalo A, Jones AM. A randomised controlled trial exploring the effects of different beverages consumed alongside a nitrate-rich meal on systemic blood pressure. Nutr Health. 2018;24(3):183–92. https://pubmed.ncbi.nlm.nih.gov/30099933/

6889

Murphy M, Eliot K, Heuertz RM, Weiss E. Whole beetroot consumption acutely improves running performance. J Acad Nutr Diet. 2012;112(4):548–52. https://pubmed.ncbi.nlm.nih.gov/22709704/

6890

Clements WT, Lee SR, Bloomer RJ. Nitrate ingestion: a review of the health and physical performance effects. Nutrients. 2014;6(11):5224–64. https://pubmed.ncbi.nlm.nih.gov/25412154/

6891

Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr. 2009;90(1):1–10. https://pubmed.ncbi.nlm.nih.gov/19439460/

6892

Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143(6):818–26. https://pubmed.ncbi.nlm.nih.gov/23596162/

6893

Blekkenhorst LC, Lewis JR, Prince RL, et al. Nitrate-rich vegetables do not lower blood pressure in individuals with mildly elevated blood pressure: a 4-wk randomized controlled crossover trial. Am J Clin Nutr. 2018;107(6):894–908. https://pubmed.ncbi.nlm.nih.gov/29868911/

6894

Rosier BT, Buetas E, Moya-Gonzalvez EM, Artacho A, Mira A. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep. 2020;10(1):12895. https://pubmed.ncbi.nlm.nih.gov/32732931/

6895

Bondonno CP, Liu AH, Croft KD, et al. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am J Hypertens. 2015;28(5):572–5. https://pubmed.ncbi.nlm.nih.gov/25359409/

6896

Tribble GD, Angelov N, Weltman R, et al. Frequency of tongue cleaning impacts the human tongue microbiome composition and enterosalivary circulation of nitrate. Front Cell Infect Microbiol. 2019;9:39. https://pubmed.ncbi.nlm.nih.gov/30881924/

6897

Redmond AM, Meiklejohn C, Kidd TJ, Horvath R, Coulter C. Endocarditis after use of tongue scraper. Emerg Infect Dis. 2007;13(9):1440–1. https://pubmed.ncbi.nlm.nih.gov/18252139/

6898

Capurso A, Capurso C. The Mediterranean way. Should elderly people eat leafy vegetables and beetroot to lower high blood pressure? Aging Clin Exp Res. 2021;33(9):2613–21. https://pubmed.ncbi.nlm.nih.gov/33389684/

6899

Strazzullo P, Ferro-Luzzi A, Siani A, et al. Changing the Mediterranean diet: effects on blood pressure. J Hypertens. 1986;4(4):407–12. https://pubmed.ncbi.nlm.nih.gov/3534087/

6900

Dellavalle CT, Daniel CR, Aschebrook-Kilfoy B, et al. Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP Diet and Health Study. Br J Cancer. 2013;108(1):205–12. https://pubmed.ncbi.nlm.nih.gov/23169285/

6901

Sebranek JG, Jackson-Davis AL, Myers KL, Lavieri NA. Beyond celery and starter culture: advances in natural/organic curing processes in the United States. Meat Sci. 2012 Nov;92(3):267–73. https://pubmed.ncbi.nlm.nih.gov/22445489/

6902

Rohrmann S, Overvad K, Bueno-de-Mesquita HB, et al. Meat consumption and mortality – results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013;11:63. https://pubmed.ncbi.nlm.nih.gov/23497300/

6903

Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med. 2009;169(6):562–71. https://pubmed.ncbi.nlm.nih.gov/19307518/

6904

American Institute for Cancer Research. Recommendations for Cancer Prevention. http://www.aicr.org/reduce-your-cancer-risk/recommendations-for-cancer-prevention/recommendations_05_red_meat.html. April 17, 2011. Accessed October 7, 2022.; https://www.aicr.org/reduce-your-cancer-risk/recommendations-for-cancer-prevention/recommendations_05_red_meat.html

6905

Vermeer ITM, Pachen DMFA, Dallinga JW, Kleinjans JCS, van Maanen JMS. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ Health Perspect. 1998;106(8):459–63. https://pubmed.ncbi.nlm.nih.gov/9681972/

6906

van Breda SG, Mathijs K, Sági-Kiss V, et al. Impact of high drinking water nitrate levels on the endogenous formation of apparent N-nitroso compounds in combination with meat intake in healthy volunteers. Environ Health. 2019;18(1):87. https://pubmed.ncbi.nlm.nih.gov/31623611/

6907

Berends JE, van den Berg LMM, Guggeis MA, et al. Consumption of nitrate-rich beetroot juice with or without vitamin C supplementation increases the excretion of urinary nitrate, nitrite, and N-nitroso compounds in humans. Int J Mol Sci. 2019;20(9):E2277. https://pubmed.ncbi.nlm.nih.gov/31072023/

6908

Bartsch H, Ohshima H, Pignatelli B. Inhibitors of endogenous nitrosation. Mechanisms and implications in human cancer prevention. Mutat Res. 1988;202(2):307–24. https://pubmed.ncbi.nlm.nih.gov/3057363/

6909

Dellavalle CT, Daniel CR, Aschebrook-kilfoy B, et al. Dietary intake of nitrate and nitrite and risk of renal cell carcinoma in the NIH-AARP Diet and Health Study. Br J Cancer. 2013;108(1):205–12. https://pubmed.ncbi.nlm.nih.gov/23169285/

6910

Vermeer ITM, Pachen DMFA, Dallinga JW, Kleinjans JCS, van Maanen JMS. Volatile N-nitrosamine formation after intake of nitrate at the ADI level in combination with an amine-rich diet. Environ Health Perspect. 1998;106(8):459–63. https://pubmed.ncbi.nlm.nih.gov/9681972/

6911

Grivetti LE, Corlett JL, Gordon BM, Lockett GT. Food in American history: Part 10. Greens: Part 1. Vegetable greens in a historical context. Nutr Today. 2008;42(2):88–94. https://journals.lww.com/nutritiontodayonline/Abstract/2007/03000/Food_in_American_History__Part_10__Greens__Part_1_.10.aspx

6912

Krebs-Smith SM, Guenther PM, Subar AF, Kirkpatrick SI, Dodd KW. Americans do not meet federal dietary recommendations. J Nutr. 2010;140(10):1832–8. https://pubmed.ncbi.nlm.nih.gov/20702750/

6913

Sobko T, Marcus C, Govoni M, Kamiya S. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide. 2010;22(2):136–40. https://pubmed.ncbi.nlm.nih.gov/19887114/

6914

Tamakoshi A, Tamakoshi K, Lin Y, Yagyu K, et al. Healthy lifestyle and preventable death: findings from the Japan Collaborative Cohort (JACC) Study. Prev Med. 2009;48(5):486–92. https://pubmed.ncbi.nlm.nih.gov/19254743/

6915

Hung HC, Joshipura KJ, Jiang R, et al. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst. 2004;96(21):1577–84. https://pubmed.ncbi.nlm.nih.gov/15523086/

6916

Joshipura KJ, Hu FB, Manson JE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134(12):1106–14. https://pubmed.ncbi.nlm.nih.gov/11412050/

6917

Joshipura KJ, Ascherio A, Manson JE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9. https://pubmed.ncbi.nlm.nih.gov/10517425/

6918

Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: a review of evidence from meta-analyses. Eur J Prev Cardiol. 2019;26(13):1415–29. https://pubmed.ncbi.nlm.nih.gov/30971126/

6919

Walker FB. Myocardial infarction after diet-induced warfarin resistance. Arch Intern Med. 1984;144(10):2089–90. https://pubmed.ncbi.nlm.nih.gov/6486994/

6920

Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr. 2019;10(4):590–605. https://pubmed.ncbi.nlm.nih.gov/31041447/

6921

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

6922

Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/

6923

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

6924

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

6925

Hernandez-Marin E, Galano A, Martínez A. Cis carotenoids: colorful molecules and free radical quenchers. J Phys Chem B. 2013;117(15):4050–61. https://pubmed.ncbi.nlm.nih.gov/23560647/

6926

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

6927

Souza-Monteiro JR, Arrifano GPF, Queiroz AIDG, et al. Antidepressant and antiaging effects of açaí (Euterpe oleracea Mart.) in mice. Oxid Med Cell Longev. 2019;2019:3614960. https://pubmed.ncbi.nlm.nih.gov/31428223/

6928

Peixoto HS, Roxo M, Krstin S, Röhrig T, Richling E, Wink M. An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem. 2016;64(6):1283–90. https://pubmed.ncbi.nlm.nih.gov/26809379/

6929

Sun X, Seeberger J, Alberico T, et al. Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol. 2010;45(3):243–51. https://pubmed.ncbi.nlm.nih.gov/20080168/

6930

Mertens-Talcott SU, Rios J, Jilma-Stohlawetz P, et al. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. J Agric Food Chem. 2008;56(17):7796–802. https://pubmed.ncbi.nlm.nih.gov/18693743/

6931

Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001;31(11):1388–95. https://pubmed.ncbi.nlm.nih.gov/11728810/

6932

Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/

6933

Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub

6934

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. https://pubmed.ncbi.nlm.nih.gov/24999379/

6935

Haddad E, Jambazian P, Karunia M, Tanzman J, Sabaté J. A pecan-enriched diet increases ¿-tocopherol/cholesterol and decreases thiobarbituric acid reactive substances in plasma of adults. Nutr Res. 2006;26(8):397–402. https://www.researchgate.net/publication/237724081_A_pecan-enriched_diet_increases_g-tocopherolcholesterol_and_decreases_thiobarbituric_acid_reactive_substances_in_plasma_of_adults

6936

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

6937

Li Z, Henning SM, Zhang Y, et al. Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am J Clin Nutr. 2010;91(5):1180–4. https://pubmed.ncbi.nlm.nih.gov/20335545/

6938

Gobert M, Rémond D, Loonis M, Buffière C, Santé-Lhoutellier V, Dufour C. Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion. Food Funct. 2014;5(9):2166–74. https://pubmed.ncbi.nlm.nih.gov/25029433/

6939

Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev. 2014;2014:681318. https://pubmed.ncbi.nlm.nih.gov/24876915/

6940

Natella F, Macone A, Ramberti A, et al. Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. Br J Nutr. 2011;105(12):1718–23. https://pubmed.ncbi.nlm.nih.gov/21294933/

6941

Mellor DD, Hamer H, Smyth S, Atkin SL, Courts FL. Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am J Clin Nutr. 2010;92(4):996–7; author reply 997. https://pubmed.ncbi.nlm.nih.gov/20720254/

6942

Li Z, Henning SM, Zhang Y, et al. Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am J Clin Nutr. 2010;91(5):1180–4. https://pubmed.ncbi.nlm.nih.gov/20335545/

6943

Zhang Y, Henning SM, Lee RP, et al. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking. Int J Food Sci Nutr. 2015;66(3):260–5. https://pubmed.ncbi.nlm.nih.gov/25582173/

6944

Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub

6945

Kanner J, Gorelik S, Roman S, Kohen R. Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor. J Agric Food Chem. 2012;60(36):8790–6. https://pubmed.ncbi.nlm.nih.gov/22530973/

6946

Urquiaga I, Ávila F, Echeverria G, Perez D, Trejo S, Leighton F. A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans. Oxid Med Cell Longev. 2017;2017:8361493. https://pubmed.ncbi.nlm.nih.gov/28243359/

6947

Martini S, Conte A, Bottazzi S, Tagliazucchi D. Mediterranean diet vegetable foods protect meat lipids from oxidation during in vitro gastro-intestinal digestion. Int J Food Sci Nutr. 2020;71(4):424–39. https://pubmed.ncbi.nlm.nih.gov/31610682/

6948

Tirosh O, Shpaizer A, Kanner J. Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: the Mediterranean versus Western diet. J Agric Food Chem. 2015;63(31):7016–23. https://pubmed.ncbi.nlm.nih.gov/26165509/

6949

Martini S, Cavalchi M, Conte A, Tagliazucchi D. The paradoxical effect of extra-virgin olive oil on oxidative phenomena during in vitro co-digestion with meat. Food Res Int. 2018;109:82–90. https://pubmed.ncbi.nlm.nih.gov/29803495/

6950

Sebastian RS, Enns CW, Goldman JD, Hoy MK, Moshfegh AJ. Salad consumption in the U.S.: what we eat in America, NHANES 2011–2014. Food Surveys Research Group, Dietary Data Brief No. 19. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/19_Salad_consumption_2011_2014.pdf. Published February 2018. Accessed October 12, 2022.; https://www.ars.usda.gov/research/publications/publication/?seq№ 115=350651

6951

Eastman P. New research on antioxidants shows surprising role for coffee. Oncology Times. 2005;27(20):39–40. https://journals.lww.com/oncology-times/fulltext/2005/10250/new_research_on_antioxidants_shows_surprising_role.32.aspx

6952

Kanner J, Selhub J, Shpaizer A, Rabkin B, Shacham I, Tirosh O. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol. 2017;12:929–36. https://pubmed.ncbi.nlm.nih.gov/28478382/

6953

Kanner J, Selhub J, Shpaizer A, Rabkin B, Shacham I, Tirosh O. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol. 2017;12:929–36. https://pubmed.ncbi.nlm.nih.gov/28478382/

6954

Kanner J, Selhub J, Shpaizer A, Rabkin B, Shacham I, Tirosh O. Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol. 2017;12:929–36. https://pubmed.ncbi.nlm.nih.gov/28478382/

6955

Timoshnikov VA, Kobzeva TV, Polyakov NE, Kontoghiorghes GJ. Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone. Int J Mol Sci. 2020;21(11):3967. https://pubmed.ncbi.nlm.nih.gov/32486511/

6956

Van Hecke T, Wouters A, Rombouts C, et al. Reducing compounds equivocally influence oxidation during digestion of a high-fat beef product, which promotes cytotoxicity in colorectal carcinoma cell lines. J Agric Food Chem. 2016;64(7):1600–9. https://pubmed.ncbi.nlm.nih.gov/26836477/

6957

Baliga MS, Dsouza JJ. Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. Eur J Cancer Prev. 2011;20(3):225–39. https://pubmed.ncbi.nlm.nih.gov/21317655/

6958

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

6959

Pathak P, Prasad BRG, Murthy NA, Hegde SN. The effect of Emblica officinalis diet on lifespan, sexual behavior, and fitness characters in Drosophila melanogaster. Ayu. 2011;32(2):279–84. https://pubmed.ncbi.nlm.nih.gov/22408317/

6960

Variya BC, Bakrania AK, Patel SS. Emblica officinalis (amla): a review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res. 2016;111:180–200. https://pubmed.ncbi.nlm.nih.gov/27320046/

6961

Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr. 2011;62(6):609–16. https://pubmed.ncbi.nlm.nih.gov/21495900/

6962

Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr. 2011;62(6):609–16. https://pubmed.ncbi.nlm.nih.gov/21495900/

6963

Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica officinalis Gatertn (amla) in healthy human subjects: health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020;17:100499. https://pubmed.ncbi.nlm.nih.gov/31890983/

6964

Usharani P, Merugu PL, Nutalapati C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: a randomised, double blind, placebo controlled clinical study. BMC Complement Altern Med. 2019;19:97. https://pubmed.ncbi.nlm.nih.gov/31060549/

6965

Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn.) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr. 2011;62(6):609–16. https://pubmed.ncbi.nlm.nih.gov/21495900/

6966

Fatima N, Pingali U, Pilli R. Evaluation of Phyllanthus emblica extract on cold pressor induced cardiovascular changes in healthy human subjects. Pharmacognosy Res. 2014;6(1):29–35. https://pubmed.ncbi.nlm.nih.gov/24497739/

6967

Karkon Varnosfaderani S, Hashem-Dabaghian F, Amin G, et al. Efficacy and safety of amla (Phyllanthus emblica L.) in non-erosive reflux disease: a double-blind, randomized, placebo-controlled clinical trial. J Integr Med. 2018;16(2):126–31. https://pubmed.ncbi.nlm.nih.gov/29526236/

6968

Minich DM. A review of the science of colorful, plant-based food and practical strategies for “eating the rainbow.” J Nutr Metab. 2019;2019:2125070. https://pubmed.ncbi.nlm.nih.gov/33414957/

6969

America’s phytonutrient report: quantifying the gap. Nutrilite Health Institute. https://www.pwrnewmedia.com/2009/nutrilite90921nmr/downloads/AmerciasPhytonutrientReport.pdf. Published September 11, 2009. Updated January 13, 2010. Accessed October 12, 2022.; https://www.pwrnewmedia.com/2009/nutrilite90921nmr/downloads/AmerciasPhytonutrientReport.pdf

6970

Wood E, Hein S, Heiss C, Williams C, Rodriguez-Mateos A. Blueberries and cardiovascular disease prevention. Food Funct. 2019;10(12):7621–33. https://pubmed.ncbi.nlm.nih.gov/31776541/

6971

Tena N, Asuero AG. Antioxidant capacity of anthocyanins and other vegetal pigments. Antioxidants (Basel). 2020;9(8):665. https://pubmed.ncbi.nlm.nih.gov/32722520/

6972

Hair R, Sakaki JR, Chun OK. Anthocyanins, microbiome and health benefits in aging. Molecules. 2021;26(3):537. https://pubmed.ncbi.nlm.nih.gov/33494165/

6973

Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep. 2022;12(1):3239. https://pubmed.ncbi.nlm.nih.gov/35217779/

6974

Lee J, Lee HK, Kim CY, et al. Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. Br J Nutr. 2005;93(6):895–9. https://pubmed.ncbi.nlm.nih.gov/16022759/

6975

Camire ME. Bilberries and blueberries as functional foods and nutraceuticals. In: Mazza G, Oomah BD, eds. Herbs, Botanicals & Teas. Technomic Publishing Co Inc; 2000:289–319. https://worldcat.org/title/44440827

6976

Nakaishi H, Matsumoto H, Tominaga S, Hirayama M. Effects of black current anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern Med Rev. 2000;5(6):553–62. Erratum in: Altern Med Rev. 2001;6(1):60. https://pubmed.ncbi.nlm.nih.gov/11134978/

6977

Camire ME. Bilberries and blueberries as functional foods and nutraceuticals. In: Mazza G, Oomah BD, eds. Herbs, Botanicals & Teas. Technomic Publishing Co Inc; 2000:289–319. https://worldcat.org/title/44440827

6978

Xu L, Tian Z, Chen H, Zhao Y, Yang Y. Anthocyanins, anthocyanin-rich berries, and cardiovascular risks: systematic review and meta-analysis of 44 randomized controlled trials and 15 prospective cohort studies. Front Nutr. 2021;8:747884. https://pubmed.ncbi.nlm.nih.gov/34977111/

6979

Biedermann L, Mwinyi J, Scharl M, et al. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis – an open pilot study. J Crohns Colitis. 2013;7(4):271–9. https://pubmed.ncbi.nlm.nih.gov/22883440/

6980

Hair R, Sakaki JR, Chun OK. Anthocyanins, microbiome and health benefits in aging. Molecules. 2021;26(3):537. https://pubmed.ncbi.nlm.nih.gov/33494165/

6981

Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem. 2011;59(24):12815–20. https://pubmed.ncbi.nlm.nih.gov/22060186/

6982

Molan AL, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother Res. 2014;28(3):416–22. https://pubmed.ncbi.nlm.nih.gov/23674271/

6983

Mayta-Apaza AC, Pottgen E, De Bodt J, et al. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J Nutr Biochem. 2018;59:160–72. https://pubmed.ncbi.nlm.nih.gov/30055451/

6984

Fallah AA, Sarmast E, Jafari T. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: a systematic review and meta-analysis of randomized clinical trials. Food Res Int. 2020;137:109379. https://pubmed.ncbi.nlm.nih.gov/33233081/

6985

Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764–8. https://pubmed.ncbi.nlm.nih.gov/20724487/

6986

Kimble R, Keane KM, Lodge JK, Howatson G. Dietary intake of anthocyanins and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2019;59(18):3032–43. https://pubmed.ncbi.nlm.nih.gov/30277799/

6987

Wedick NM, Pan A, Cassidy A, et al. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr. 2012;95(4):925–33. https://pubmed.ncbi.nlm.nih.gov/22357723/

6988

Ahles S, Joris PJ, Plat J. Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci. 2021;22(12):6482. https://pubmed.ncbi.nlm.nih.gov/34204250/

6989

Xu L, Tian Z, Chen H, Zhao Y, Yang Y. Anthocyanins, anthocyanin-rich berries, and cardiovascular risks: systematic review and meta-analysis of 44 randomized controlled trials and 15 prospective cohort studies. Front Nutr. 2021;8:747884. https://pubmed.ncbi.nlm.nih.gov/34977111/

6990

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

6991

Del Bo’ C, Porrini M, Fracassetti D, Campolo J, Klimis-Zacas D, Riso P. A single serving of blueberry (V. corymbosum) modulates peripheral arterial dysfunction induced by acute cigarette smoking in young volunteers: a randomized-controlled trial. Food Funct. 2014;5(12):3107–16. https://pubmed.ncbi.nlm.nih.gov/25263326/

6992

Zhu Y, Xia M, Yang Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57(11):1524–33. https://pubmed.ncbi.nlm.nih.gov/21926181/

6993

Rodriguez-Mateos A, Istas G, Boschek L, et al. Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. J Gerontol A Biol Sci Med Sci. 2019;74(7):967–76. https://pubmed.ncbi.nlm.nih.gov/30772905/

6994

Daneshzad E, Shab-Bidar S, Mohammadpour Z, Djafarian K. Effect of anthocyanin supplementation on cardio-metabolic biomarkers: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2019;38(3):1153–65. https://pubmed.ncbi.nlm.nih.gov/30007479/

6995

Horbowicz M, Kosson R, Grzesiuk A, Debski H. Anthocyanins of fruits and vegetables – their occurrence, analysis and role in human nutrition. J Fruit Ornam Plant Res. 2008;68(1):5–22. https://www.researchgate.net/publication/284789289_Anthocyanins_of_fruits_and_vegetables-their_occurrence_analysis_and_role_in_human_nutrition

6996

Ucar SK, Sözmen E, Yildirim HK, Coker M. Effect of blueberry tea on lipid and antioxidant status in children with heterozygous familial hypercholesterolemia: pilot study. Clin Lipidol. 2014;9(3):295–304. https://www.tandfonline.com/doi/pdf/10.2217/clp.14.26?needAccess=true

6997

Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013;12(5):483–508. https://pubmed.ncbi.nlm.nih.gov/33412667/

6998

Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):E3809. https://pubmed.ncbi.nlm.nih.gov/32825684/

6999

Lu X, Zhou Y, Wu T, Hao L. Ameliorative effect of black rice anthocyanin on senescent mice induced by D-galactose. Food Funct. 2014;5(11):2892–7. https://pubmed.ncbi.nlm.nih.gov/25190075/

7000

Chen W, Müller D, Richling E, Wink M. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans probably by activating the DAF-16/FOXO transcription factor. J Agric Food Chem. 2013;61(12):3047–53. https://pubmed.ncbi.nlm.nih.gov/23470220/

7001

Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/

7002

Kelley DS, Rasooly R, Jacob RA, Kader AA, Mackey BE. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr. 2006;136(4):981–6. https://pubmed.ncbi.nlm.nih.gov/16549461/

7003

Kelley DS, Adkins Y, Laugero KD. A review of the health benefits of cherries. Nutrients. 2018;10(3):368. https://pubmed.ncbi.nlm.nih.gov/29562604/

7004

Sun Y, Yolitz J, Alberico T, Sun X, Zou S. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent. Exp Gerontol. 2014;50:57–63. https://pubmed.ncbi.nlm.nih.gov/24316039/

7005

Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr). 2013;35(5):1559–74. https://pubmed.ncbi.nlm.nih.gov/22864793/

7006

Zhu M, Hu J, Perez E, et al. Effects of long-term cranberry supplementation on endocrine pancreas in aging rats. J Gerontol A Biol Sci Med Sci. 2011;66(11):1139–51. https://pubmed.ncbi.nlm.nih.gov/21768504/

7007

Gao Y, Wei Y, Wang Y, Gao F, Chen Z. Lycium barbarum: a traditional Chinese herb and a promising anti-aging agent. Aging and Disease. 2017;8(6):778. https://pubmed.ncbi.nlm.nih.gov/29344416/

7008

Neelam K, Dey S, Sim R, Lee J, Au Eong KG. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients. 2021;13(1):246. https://pubmed.ncbi.nlm.nih.gov/33467087/

7009

Jeszka-Skowron M, Zgola-Grzeskowiak A, Stanisz E, Waskiewicz A. Potential health benefits and quality of dried fruits: goji fruits, cranberries and raisins. Food Chem. 2017;221:228–36. https://pubmed.ncbi.nlm.nih.gov/27979197/

7010

Wu WB, Hung DK, Chang FW, Ong ET, Chen BH. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells. Food Funct. 2012;3(10):1068–81. https://pubmed.ncbi.nlm.nih.gov/22751795/

7011

Lee YJ, Ahn Y, Kwon O, et al. Dietary wolfberry extract modifies oxidative stress by controlling the expression of inflammatory mRNAs in overweight and hypercholesterolemic subjects: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem. 2017;65(2):309–16. https://pubmed.ncbi.nlm.nih.gov/28027641/

7012

Grassi F, Arroyo-Garcia R. Editorial: origins and domestication of the grape. Front Plant Sci. 2020;11:1176. https://pubmed.ncbi.nlm.nih.gov/32903797/

7013

Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr. 2013;53(11):1202–25. https://pubmed.ncbi.nlm.nih.gov/24007424/

7014

Ghaedi E, Moradi S, Aslani Z, Kord-Varkaneh H, Miraghajani M, Mohammadi H. Effects of grape products on blood lipids: a systematic review and dose-response meta-analysis of randomized controlled trials. Food Funct. 2019;10(10):6399–416. https://pubmed.ncbi.nlm.nih.gov/31517353/

7015

Rahbar AR, Mahmoudabadi MMS, Islam MS. Comparative effects of red and white grapes on oxidative markers and lipidemic parameters in adult hypercholesterolemic humans. Food Funct. 2015;6(6):1992–8. https://pubmed.ncbi.nlm.nih.gov/26007320/

7016

Kanellos PT, Kaliora AC, Protogerou AD, Tentolouris N, Perrea DN, Karathanos VT. The effect of raisins on biomarkers of endothelial function and oxidant damage; an open-label and randomized controlled intervention. Food Res Int. 2017;102:674–80. https://pubmed.ncbi.nlm.nih.gov/29195999/

7017

Chaves AA, Joshi MS, Coyle CM, et al. Vasoprotective endothelial effects of a standardized grape product in humans. Vascul Pharmacol. 2009;50(1–2):20-6. https://pubmed.ncbi.nlm.nih.gov/18805507/

7018

Vaisman N, Niv E. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: a double blind, placebo-controlled, randomized study. Int J Food Sci Nutr. 2015;66(3):342–9. https://pubmed.ncbi.nlm.nih.gov/25666417/

7019

Yang J, Xiao YY. Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr. 2013;53(11):1202–25. https://pubmed.ncbi.nlm.nih.gov/24007424/

7020

Li X, Yang T, Sun Z. Hormesis in health and chronic diseases. Trends Endocrinol Metab. 2019;30(12):944–58. https://pubmed.ncbi.nlm.nih.gov/31521464/

7021

Epel ES. The geroscience agenda: toxic stress, hormetic stress, and the rate of aging. Ageing ResRev. 2020;63:101167. https://pubmed.ncbi.nlm.nih.gov/32979553/

7022

Collier R. Intermittent fasting: the science of going without. CMAJ. 2013;185(9):E363–4. https://pubmed.ncbi.nlm.nih.gov/23569168/

7023

Bárcena C, Mayoral P, Quirós PM. Mitohormesis, an antiaging paradigm. Int Rev Cell Mol Biol. 2018;340:35–77. https://pubmed.ncbi.nlm.nih.gov/30072093/

7024

Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693–707. https://pubmed.ncbi.nlm.nih.gov/26349923/

7025

Li X, Yang T, Sun Z. Hormesis in health and chronic diseases. Trends Endocrinol Metab. 2019;30(12):944–58. https://pubmed.ncbi.nlm.nih.gov/31521464/

7026

Mao L, Franke J. Hormesis in aging and neurodegeneration – a prodigy awaiting dissection. Int J Mol Sci. 2013;14(7):13109–28. https://pubmed.ncbi.nlm.nih.gov/23799363/

7027

Kaiser J. Hormesis. Sipping from a poisoned chalice. Science. 2003;302(5644):376–9. https://pubmed.ncbi.nlm.nih.gov/14563981

7028

Calabrese EJ. Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem. 2011;30(12):2658–73. https://pubmed.ncbi.nlm.nih.gov/21932295/

7029

Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693–707. https://pubmed.ncbi.nlm.nih.gov/26349923/

7030

Web of Science search results for ‘hormesis’ or ‘hormetic’. https://www.webofscience.com. Accessed December 20, 2022.; https://www.webofscience.com

7031

Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693–707. https://pubmed.ncbi.nlm.nih.gov/26349923/

7032

Davey WP. Prolongation of life of Tribolium confusum apparently due to small doses of x-rays. J Exp Zool. 1919;28(3):447–58. https://pubmed.ncbi.nlm.nih.gov/21932295/

7033

Calabrese EJ. Low doses of radiation can enhance insect lifespans. Biogerontology. 2013;14(4):365–81. https://pubmed.ncbi.nlm.nih.gov/23793937/

7034

Sutou S. Low-dose radiation from A-bombs elongated lifespan and reduced cancer mortality relative to un-irradiated individuals. Genes Environ. 2018;40:26. https://pubmed.ncbi.nlm.nih.gov/30598710/

7035

Thome C, Tharmalingam S, Pirkkanen J, Zarnke A, Laframboise T, Boreham DR. The REPAIR Project: examining the biological impacts of sub-background radiation exposure within SNOLAB, a deep underground laboratory. Radiat Res. 2017;188(4.2):470–4. https://pubmed.ncbi.nlm.nih.gov/28723273/

7036

MacLeod RD, Van den Block L, eds. Textbook of Palliative Care. Springer International Publishing; 2019. https://www.scribd.com/document/544078970/Textbook-of-Palliative-Care

7037

Marie Curie. NobelPrize.org. https://www.nobelprize.org/womenwhochangedscience/stories/marie-curie. Accessed December 26, 2022.; https://www.nobelprize.org/womenwhochangedscience/stories/marie-curie

7038

Butler D. X-rays, not radium, may have killed Curie. Nature. 1995;377(6545):96. https://pubmed.ncbi.nlm.nih.gov/7675094/

7039

Gradari S, Pallé A, McGreevy KR, Fontán-Lozano Á, Trejo JL. Can exercise make you smarter, happier, and have more neurons? A hormetic perspective. Front Neurosci. 2016;10:93. https://pubmed.ncbi.nlm.nih.gov/27013955/

7040

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

7041

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

7042

Sharma A, Kaur T, Singh H, Kaur G. Intermittent fasting – dietary restriction as a biological hormetin for health benefits. In: The Science of Hormesis in Health and Longevity. Elsevier; 2019:99–104. https://www.sciencedirect.com/science/article/abs/pii/B9780128142530000085

7043

Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol. 2007;35:1–17. https://pubmed.ncbi.nlm.nih.gov/17063030/

7044

Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol. 2007;35:1–17. https://pubmed.ncbi.nlm.nih.gov/17063030/

7045

Franco R, Navarro G, Martínez-Pinilla E. Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants (Basel). 2019;8(9):373. https://pubmed.ncbi.nlm.nih.gov/31487950/

7046

Masoro EJ. The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol. 2007;35:1–17. https://pubmed.ncbi.nlm.nih.gov/17063030/

7047

Schultz JC. Shared signals and the potential for phylogenetic espionage between plants and animals. Integr Comp Biol. 2002;42(3):454–62. https://pubmed.ncbi.nlm.nih.gov/21708739/

7048

Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr. 2014;5(5):515–33. https://pubmed.ncbi.nlm.nih.gov/25469384/

7049

Franco, Navarro, Martínez-Pinilla. Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants. 2019;8(9):373. https://pubmed.ncbi.nlm.nih.gov/31487950/

7050

Glover N. The banana conjecture. Dessimoz Lab. https://lab.dessimoz.org/blog/2020/12/08/human-banana-orthologs. Published December 8, 2020. Accessed October 17, 2022.; https://lab.dessimoz.org/blog/2020/12/08/human-banana-orthologs

7051

Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266(1415):163–71. https://pubmed.ncbi.nlm.nih.gov/10097391/

7052

Kushiro T, Nambara E, McCourt P. Hormone evolution: the key to signalling. Nature. 2003;422(6928):122. https://pubmed.ncbi.nlm.nih.gov/12634761/

7053

Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr. 2014;5(5):515–33. https://pubmed.ncbi.nlm.nih.gov/25469384/

7054

Schultz JC. Shared signals and the potential for phylogenetic espionage between plants and animals. Integr Comp Biol. 2002;42(3):454–62. https://pubmed.ncbi.nlm.nih.gov/21708739/

7055

Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7(1):1–7. https://pubmed.ncbi.nlm.nih.gov/18162444/

7056

Langhans W. Food components in health promotion and disease prevention. J Agric Food Chem. 2018;66(10):2287–94. https://pubmed.ncbi.nlm.nih.gov/28603983/

7057

Eid HM, Wright ML, Anil Kumar NV, et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front Pharmacol. 2017;8:387. https://pubmed.ncbi.nlm.nih.gov/28713266/

7058

Hooper PL, Hooper PL, Tytell M, Vígh L. Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones. 2010;15(6):761–70. https://pubmed.ncbi.nlm.nih.gov/20524162/

7059

Schultz JC. Shared signals and the potential for phylogenetic espionage between plants and animals. Integr Comp Biol. 2002;42(3):454–62. https://pubmed.ncbi.nlm.nih.gov/21708739/

7060

Franco R, Navarro G, Martínez-Pinilla E. Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants (Basel). 2019;8(9):373. https://pubmed.ncbi.nlm.nih.gov/31487950/

7061

Martel J, Ojcius DM, Ko YF, et al. Hormetic effects of phytochemicals on health and longevity. Trends Endocrinol Metab. 2019;30(6):335–46. https://pubmed.ncbi.nlm.nih.gov/31060881/

7062

Dani C, Oliboni LS, Vanderlinde R, et al. Phenolic content and antioxidant activities of white and purple juices manufactured with organically– or conventionally-produced grapes. Food Chem Toxicol. 2007;45(12):2574-80. https://pubmed.ncbi.nlm.nih.gov/17683842/

7063

Baxter GJ, Graham AB, Lawrence JR, et al. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289-92. https://pubmed.ncbi.nlm.nih.gov/11876493/

7064

Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–37. https://pubmed.ncbi.nlm.nih.gov/25527735/

7065

Niu Y, Na L, Feng R, et al. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell. 2013;12(6):1041–9. https://pubmed.ncbi.nlm.nih.gov/23834676/

7066

Yi M, Wu X, Zhuang W, et al. Tea consumption and health outcomes: umbrella review of meta-analyses of observational studies in humans. Mol Nutr Food Res. 2019;63(16):e1900389. https://pubmed.ncbi.nlm.nih.gov/31216091/

7067

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012 Dec 14;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

7068

Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/

7069

Botonis PG, Miliotis PG, Kounalakis SN, Koskolou MD, Geladas ND. Effects of capsaicin application on the skin during resting exposure to temperate and warm conditions. Scand J Med Sci Sports. 2019;29(2):171–9. https://pubmed.ncbi.nlm.nih.gov/30294815/

7070

Scharfenberg K, Wagner R, Wagner KG. The cytotoxic effect of ajoene, a natural product from garlic, investigated with different cell lines. Cancer Lett. 1990;53(2–3):103–8. https://pubmed.ncbi.nlm.nih.gov/2208068/

7071

Friedman T, Shalom A, Westreich M. Self-inflicted garlic burns: our experience and literature review. Int J Dermatol. 2006;45(10):1161–3. https://pubmed.ncbi.nlm.nih.gov/17040429/

7072

Mattson MP. Dietary factors, hormesis and health. Ageing Res Rev. 2008;7(1):43–8. https://pubmed.ncbi.nlm.nih.gov/17913594/

7073

Murakami A. Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr. 2013;52(3):215–27. https://pubmed.ncbi.nlm.nih.gov/23704811/

7074

Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr. 2003;78(3 Suppl):517S-20S. https://pubmed.ncbi.nlm.nih.gov/12936943/

7075

Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19(2):73–82. https://pubmed.ncbi.nlm.nih.gov/18406129/

7076

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

7077

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

7078

Long T, Zhang K, Chen Y, Wu C. Trends in diet quality among older US adults from 2001 to 2018. JAMA Netw Open. 2022;5(3):e221880. https://pubmed.ncbi.nlm.nih.gov/35275167/

7079

Huang Q, Braffett BH, Simmens SJ, Young HA, Ogden CL. Dietary polyphenol intake in US adults and 10-year trends: 2007–2016. J Acad Nutr Diet. 2020;120(11):1821–33. https://pubmed.ncbi.nlm.nih.gov/32807722/

7080

Long T, Zhang K, Chen Y, Wu C. Trends in diet quality among older US adults from 2001 to 2018. JAMA Netw Open. 2022;5(3):e221880. https://pubmed.ncbi.nlm.nih.gov/35275167/

7081

Rathaur P, S R JK. Metabolism and pharmacokinetics of phytochemicals in the human body. Curr Drug Metab. 2019;20(14):1085–102. https://pubmed.ncbi.nlm.nih.gov/31902349/

7082

Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755. https://pubmed.ncbi.nlm.nih.gov/23160295/

7083

Kong LY, Tan RX. Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep. 2015;32(12):1617–21. https://pubmed.ncbi.nlm.nih.gov/26561737/

7084

Sharma R, Padwad Y. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol. 2020;98:41–52. https://www.sciencedirect.com/science/article/abs/pii/S0924224419310969

7085

Del Bo’ C, Bernardi S, Marino M, et al. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019;11(6):E1355. https://pubmed.ncbi.nlm.nih.gov/31208133/

7086

Williamson G, Holst B. Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99 Suppl 3:S55–8. https://pubmed.ncbi.nlm.nih.gov/18598589/

7087

Ivey KL, Jensen MK, Hodgson JM, Eliassen AH, Cassidy A, Rimm EB. Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. Br J Nutr. 2017;117(10):1470–7. https://pubmed.ncbi.nlm.nih.gov/28606222/

7088

Aliper A, Belikov AV, Garazha A, et al. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY). 2016;8(9):2127–52. https://pubmed.ncbi.nlm.nih.gov/27677171/

7089

Lutchman V, Medkour Y, Samson E, et al. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget. 2016;7(13):16542–66. https://pubmed.ncbi.nlm.nih.gov/26918729/

7090

Navrotskaya VV, Oxenkrug G, Vorobyova LI, Summergrad P. Berberine prolongs life span and stimulates locomotor activity of Drosophila melanogaster. Am J Plant Sci. 2012;3(7A):1037–40. https://pubmed.ncbi.nlm.nih.gov/26167392/

7091

Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/

7092

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

7093

Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/

7094

Dakik P, Rodriguez MEL, Junio JAB, et al. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget. 2020;11(23):2182–203. https://pubmed.ncbi.nlm.nih.gov/32577164/

7095

Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/

7096

Shimizu C, Wakita Y, Inoue T, et al. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep. 2019;9(1):3671. https://pubmed.ncbi.nlm.nih.gov/30842523/

7097

Spindler SR, Mote PL, Flegal JM, Teter B. Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, F1 hybrid mice. Rejuvenation Res. 2013;16(2):143–51. https://pubmed.ncbi.nlm.nih.gov/23432089/

7098

Kitani K, Osawa T, Yokozawa T. The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology. 2007;8(5):567–73. https://pubmed.ncbi.nlm.nih.gov/17516143/

7099

Spindler SR, Mote PL, Flegal JM, Teter B. Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, F1 hybrid mice. Rejuvenation Res. 2013;16(2):143–51. https://pubmed.ncbi.nlm.nih.gov/23432089/

7100

Harris SB, Weindruch R, Smith GS, Mickey MR, and Walford RL. Dietary restriction alone and in combination with oral ethoxyquine/2-mercaptoethylamine in mice. J Gerontol. 1990;45(5):B141–7. https://pubmed.ncbi.nlm.nih.gov/2394907/

7101

Aires DJ, Rockwell G, Wang T, et al. Potentiation of dietary restriction-induced lifespan extension by polyphenols. Biochim Biophys Acta. 2012;1822(4):522–6. https://pubmed.ncbi.nlm.nih.gov/22265987/

7102

Brykman MC, Streusand Goldman V, Sarma N, Oketch-Rabah HA, Biswas D, Giancaspro GI. What should clinicians know about dietary supplement quality? AMA J Ethics. 2022;24(5):E382–9. https://pubmed.ncbi.nlm.nih.gov/35575569/

7103

Margina D, Ilie M, Gradinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM. Natural products – friends or foes? Toxicol Lett. 2015;236(3):154–67. https://pubmed.ncbi.nlm.nih.gov/25980574/

7104

Ames BN. Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci U S A. 2018;115(43):10836–44. https://pubmed.ncbi.nlm.nih.gov/30322941/

7105

Uysal U, Seremet S, Lamping JW, et al. Consumption of polyphenol plants may slow aging and associated diseases. Curr Pharm Des. 2013;19(34):6094–111. https://pubmed.ncbi.nlm.nih.gov/23448445/

7106

Nakatani Y, Yaguchi Y, Komura T, et al. Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans. Eur J Nutr. 2018;57(3):1137–46. https://pubmed.ncbi.nlm.nih.gov/28239780/

7107

Zuo Y, Peng C, Liang Y, et al. Sesamin extends the mean lifespan of fruit flies. Biogerontology. 2013;14(2):107–19. https://pubmed.ncbi.nlm.nih.gov/23291977/

7108

Wichitsranoi J, Weerapreeyakul N, Boonsiri P, et al. Antihypertensive and antioxidant effects of dietary black sesame meal in pre-hypertensive humans. Nutr J. 2011;10:82. https://pubmed.ncbi.nlm.nih.gov/21827664/

7109

Zhou L, Lin X, Abbasi AM, Zheng B. Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. Biomed Res Int. 2016;2016:8495630. https://pubmed.ncbi.nlm.nih.gov/27597975/

7110

Kim KS, Park SH. Anthrasesamone F from the seeds of black Sesamum indicum. Biosci Biotechnol Biochem. 2008;72(6):1626–7. https://pubmed.ncbi.nlm.nih.gov/18540089/

7111

Lansky EP, Jiang W, Mo H, et al. Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions. Invest New Drugs. 2005;23(1):11–20. https://pubmed.ncbi.nlm.nih.gov/15528976/

7112

Seeram NP, Adams LS, Hardy ML, Heber D. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem. 2004;52(9):2512–7. https://pubmed.ncbi.nlm.nih.gov/15113149/

7113

Brahmbhatt M, Gundala SR, Asif G, Shamsi SA, Aneja R. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutr Cancer. 2013;65(2):263–72. https://pubmed.ncbi.nlm.nih.gov/23441614/

7114

Radhakrishnan S, Reddivari L, Sclafani R, Das UN, Vanamala J. Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Front Biosci (Elite Ed). 2011;3(4):1509–23. https://pubmed.ncbi.nlm.nih.gov/21622155/

7115

Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, et al. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep. 2019;9(1):808. https://pubmed.ncbi.nlm.nih.gov/30692565/

7116

Sporn MB, Liby KT. Is lycopene an effective agent for preventing prostate cancer? Cancer Prev Res (Phila). 2013;6(5):384–6. https://pubmed.ncbi.nlm.nih.gov/23483003/

7117

Kumar NB, Besterman-Dahan K, Kang L, et al. Results of a randomized clinical trial of the action of several doses of lycopene in localized prostate cancer: administration prior to radical prostatectomy. Clin Med Urol. 2008;1:1–14. https://pubmed.ncbi.nlm.nih.gov/20354574/

7118

Bowen P, Chen L, Stacewicz-Sapuntzakis M, et al. Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Exp Biol Med (Maywood). 2002;227(10):886–93. https://pubmed.ncbi.nlm.nih.gov/12424330/

7119

Linnewiel-Hermoni K, Khanin M, Danilenko M, et al. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch Biochem Biophys. 2015;572:28–35. https://pubmed.ncbi.nlm.nih.gov/25711533/

7120

Talvas J, Caris-Veyrat C, Guy L, et al. Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostatic cells. Am J Clin Nutr. 2010;91(6):1716–24. https://pubmed.ncbi.nlm.nih.gov/20392890/

7121

Warner M. Pandora’s Lunchbox: How Processed Food Took Over the American Meal. Simon & Schuster; 2014. https://worldcat.org/title/812258027

7122

Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134(12 Suppl):3479S-85S. https://pubmed.ncbi.nlm.nih.gov/15570057/

7123

Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem. 2011;59(3):960–8. https://pubmed.ncbi.nlm.nih.gov/21222468/

7124

Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem. 2011;59(3):960–8. https://pubmed.ncbi.nlm.nih.gov/21222468/

7125

Zhou JR, Yu L, Zhong Y, Blackburn GL. Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J Nutr. 2003;133(2):516–21. https://pubmed.ncbi.nlm.nih.gov/12566493/

7126

Morré DJ, Morré DM. Synergistic Capsicum-tea mixtures with anticancer activity. J Pharm Pharmacol. 2003;55(7):987–94. https://pubmed.ncbi.nlm.nih.gov/12906756/

7127

Ouhtit A, Gaur RL, Abdraboh M, et al. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. J Cancer. 2013;4(9):703–15. https://pubmed.ncbi.nlm.nih.gov/24312140/

7128

Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW. Combinations of tomato and broccoli enhance antitumor activity in Dunning R3327-H prostate adenocarcinomas. Cancer Res. 2007;67(2):836–43. https://pubmed.ncbi.nlm.nih.gov/17213256/

7129

.;

7130

Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112(2):374–80. https://www.sciencedirect.com/science/article/abs/pii/S0308814608006419

7131

Yong LC, Petersen MR, Sigurdson AJ, Sampson LA, Ward EM. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. Am J Clin Nutr. 2009;90(5):1402–10. https://pubmed.ncbi.nlm.nih.gov/19793852/

7132

Thompson HJ, Heimendinger J, Gillette C, et al. In vivo investigation of changes in biomarkers of oxidative stress induced by plant food rich diets. J Agric Food Chem. 2005;53(15):6126–32. https://pubmed.ncbi.nlm.nih.gov/16029006/

7133

Thompson HJ, Heimendinger J, Diker A, et al. Dietary botanical diversity affects the reduction of oxidative biomarkers in women due to high vegetable and fruit intake. J Nutr. 2006;136(8):2207–12. https://pubmed.ncbi.nlm.nih.gov/16857842/

7134

Bhupathiraju SN, Tucker KL. Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am J Clin Nutr. 2011;93(1):37–46. https://pubmed.ncbi.nlm.nih.gov/21068354/

7135

Ye X, Bhupathiraju SN, Tucker KL. Variety in fruit and vegetable intake and cognitive function in middle-aged and older Puerto Rican adults. Br J Nutr. 2013;109(3):503–10. https://pubmed.ncbi.nlm.nih.gov/22717056/

7136

Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer – the U.K. NCRN Pomi-T study. Prostate Cancer Prostatic Dis. 2014;17(2):180–6. https://pubmed.ncbi.nlm.nih.gov/24614693/

7137

World Cancer Research Fund International. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective: A Summary of the Third Expert Report. World Cancer Research Fund International; 2018. https://www.drugsandalcohol.ie/29052/

7138

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–70. https://pubmed.ncbi.nlm.nih.gov/16094059/

7139

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7140

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7141

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7142

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7143

Ruvkun G. Glimpses of a tiny RNA world. Science. 2001;294(5543):797–9. https://pubmed.ncbi.nlm.nih.gov/11679654/

7144

Roberts BM, Blewitt G, Dailey C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat Commun. 2017;8(1):1195. https://pubmed.ncbi.nlm.nih.gov/29084959/

7145

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://pubmed.ncbi.nlm.nih.gov/11679670/

7146

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7147

Robinson VL. Rethinking the central dogma: noncoding RNAs are biologically relevant. Urol Oncol. 2009;27(3):304–6. https://pubmed.ncbi.nlm.nih.gov/19414118/

7148

Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics. Database (Oxford). 2016;2016:baw153. https://pubmed.ncbi.nlm.nih.gov/28025344/

7149

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/

7150

Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. https://pubmed.ncbi.nlm.nih.gov/33768107/

7151

Tarallo S, Pardini B, Mancuso G, et al. MicroRNA expression in relation to different dietary habits: a comparison in stool and plasma samples. Mutagenesis. 2014;29(5):385–91. https://pubmed.ncbi.nlm.nih.gov/25150024/

7152

Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688. https://pubmed.ncbi.nlm.nih.gov/31682793/

7153

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7154

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7155

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7156

Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. https://pubmed.ncbi.nlm.nih.gov/20847327/

7157

Alshehri B. Plant-derived xenomiRs and cancer: cross-kingdom gene regulation. Saudi J Biol Sci. 2021;28(4):2408–22. https://pubmed.ncbi.nlm.nih.gov/33911956/

7158

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://pubmed.ncbi.nlm.nih.gov/17486113/

7159

Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7160

Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/

7161

Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215–7. https://pubmed.ncbi.nlm.nih.gov/14528307/

7162

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7163

Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7164

Majidinia M, Mir SM, Mirza-Aghazadeh-Attari M, et al. MicroRNAs, DNA damage response and ageing. Biogerontology. 2020;21(3):275–91. https://pubmed.ncbi.nlm.nih.gov/32067137/

7165

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://pubmed.ncbi.nlm.nih.gov/8252621/

7166

Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7. https://pubmed.ncbi.nlm.nih.gov/16373574/

7167

Morris BJ, Willcox DC, Donlon TA, Willcox BJ. BFOXO3: a major gene for human longevity – a mini-review. Gerontology. 2015;61(6):515–25. https://pubmed.ncbi.nlm.nih.gov/25832544/

7168

Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov. 2021;20(1):21–38. https://pubmed.ncbi.nlm.nih.gov/33173189/

7169

Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011;7(9):e1002306. https://pubmed.ncbi.nlm.nih.gov/21980307/

7170

Green CD, Huang Y, Dou X, Yang L, Liu Y, Han JDJ. Impact of dietary interventions on noncoding RNA networks and mRNAs encoding chromatin-related factors. Cell Rep. 2017;18(12):2957–68. https://pubmed.ncbi.nlm.nih.gov/28329687/

7171

Du WW, Yang W, Fang L, et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis. 2014;5(7):e1355. https://pubmed.ncbi.nlm.nih.gov/25077541/

7172

Cammarata G, Duro G, Chiara TD, Curto AL, Taverna S, Candore G. Circulating miRNAs in successful and unsuccessful aging. A mini-review. Curr Pharm Des. 2019;25(39):4150–3. https://pubmed.ncbi.nlm.nih.gov/31742494/

7173

Smith-Vikos T, Liu Z, Parsons C, et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY). 2016;8(11):2971–87. https://pubmed.ncbi.nlm.nih.gov/27824314/

7174

Kumar P, Dezso Z, MacKenzie C, et al. Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One. 2013;8(7):e69807. https://pubmed.ncbi.nlm.nih.gov/23922807/

7175

Wu S, Kim TK, Wu X, et al. Circulating microRNAs and life expectancy among identical twins. Ann Hum Genet. 2016;80(5):247–56. https://pubmed.ncbi.nlm.nih.gov/27402348/

7176

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7177

Dávalos A, Pinilla L, López de Las Hazas MC, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021;73:19–29. https://pubmed.ncbi.nlm.nih.gov/33086083/

7178

Gkotzamanis V, Magriplis E, Panagiotakos D. The effect of physical activity interventions on cognitive function of older adults: a systematic review of clinical trials. Psychiatriki. Published online February 21, 2022.; https://pubmed.ncbi.nlm.nih.gov/35255465/

7179

Pisani S, Mueller C, Huntley J, Aarsland D, Kempton MJ. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int J Geriatr Psychiatry. 2021;36(10):1471–87. https://pubmed.ncbi.nlm.nih.gov/34490652/

7180

Wang Y, Veremeyko T, Wong AHK, et al. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer’s disease. Neurobiol Aging. 2017;51:156–66. https://pubmed.ncbi.nlm.nih.gov/28089352/

7181

Lugli G, Cohen AM, Bennett DA, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PloS One. 2015;10(10):e0139233. https://pubmed.ncbi.nlm.nih.gov/26426747/

7182

Radom-Aizik S, Zaldivar F, Leu S, Adams GR, Oliver S, Cooper DM. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5(1):32–8. https://pubmed.ncbi.nlm.nih.gov/22376254/

7183

Nielsen S, Åkerström T, Rinnov A, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308. https://pubmed.ncbi.nlm.nih.gov/24586268/

7184

Fernández-de Frutos M, Galán-Chilet I, Goedeke L, et al. MicroRNA 7 impairs insulin signaling and regulates aß levels through posttranscriptional regulation of the insulin receptor substrate 2, insulin receptor, insulin-degrading enzyme, and liver X receptor pathway. Mol Cell Biol. 2019;39(22):e00170–19. https://pubmed.ncbi.nlm.nih.gov/31501273/

7185

Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PloS One. 2015;10(5):e0126423. https://pubmed.ncbi.nlm.nih.gov/25992776/

7186

Nielsen S, Åkerström T, Rinnov A, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS One. 2014;9(2):e87308. https://pubmed.ncbi.nlm.nih.gov/24586268/

7187

Barber JL, Zellars KN, Barringhaus KG, Bouchard C, Spinale FG, Sarzynski MA. The effects of regular exercise on circulating cardiovascular-related microRNAs. Sci Rep. 2019;9(1):7527. https://pubmed.ncbi.nlm.nih.gov/31101833/

7188

Wu Y, Xu J, Xu J, et al. Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Tohoku J Exp Med. 2017;242(2):129–36. https://pubmed.ncbi.nlm.nih.gov/28626163/

7189

Arena A, Iyer AM, Milenkovic I, et al. Developmental expression and dysregulation of miR-146a and miR-155 in Down’s syndrome and mouse models of Down’s syndrome and Alzheimer’s disease. Curr Alzheimer Res. 2017;14(12):1305–17. https://pubmed.ncbi.nlm.nih.gov/28720071/

7190

Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. MicroRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3(4):365–73. https://pubmed.ncbi.nlm.nih.gov/23301201/

7191

Sawada S, Kon M, Wada S, Ushida T, Suzuki K, Akimoto T. Profiling of circulating microRNAs after a bout of acute resistance exercise in humans. PLoS One. 2013;8(7):e70823. https://pubmed.ncbi.nlm.nih.gov/23923026/

7192

Li Y, Yao M, Zhou Q, et al. Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Front Physiol. 2018;9:282. https://pubmed.ncbi.nlm.nih.gov/29662456/

7193

Baggish AL, Hale A, Weiner RB, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589(Pt 16):3983–94. https://pubmed.ncbi.nlm.nih.gov/21690193/

7194

Baggish AL, Park J, Min PK, et al. Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. J Appl Physiol (1985). 2014;116(5):522–31. https://pubmed.ncbi.nlm.nih.gov/24436293/

7195

Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BS de F. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int J Mol Sci. 2020;21(14):E4977. https://pubmed.ncbi.nlm.nih.gov/32674523/

7196

Majidinia M, Karimian A, Alemi F, Yousefi B, Safa A. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688. https://pubmed.ncbi.nlm.nih.gov/31682793/

7197

García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of microRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31. https://pubmed.ncbi.nlm.nih.gov/23445777/

7198

Daimiel L, Micó V, Valls RM, et al. Impact of phenol-enriched virgin olive oils on the postprandial levels of circulating microRNAs related to cardiovascular disease. Mol Nutr Food Res. 2020;64(15):2000049. https://pubmed.ncbi.nlm.nih.gov/32562310/

7199

López de Las Hazas MC, Gil-Zamorano J, Cofán M, et al. One-year dietary supplementation with walnuts modifies exosomal miRNA in elderly subjects. Eur J Nutr. 2021;60(4):1999–2011. https://pubmed.ncbi.nlm.nih.gov/32979076/

7200

Ortega FJ, Cardona-Alvarado MI, Mercader JM, et al. Circulating profiling reveals the effect of a polyunsaturated fatty acid – enriched diet on common microRNAs. J Nutr Biochem. 2015;26(10):1095–101. https://pubmed.ncbi.nlm.nih.gov/26092372/

7201

Shao D, Lian Z, Di Y, et al. Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food. 2018;2:13. https://pubmed.ncbi.nlm.nih.gov/31304263/

7202

Koolivand M, Ansari M, Piroozian F, Moein S, MalekZadeh K. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491–9. https://pubmed.ncbi.nlm.nih.gov/30350234/

7203

Singh S, Raza W, Parveen S, Meena A, Luqman S. Flavonoid display ability to target microRNAs in cancer pathogenesis. Biochem Pharmacol. 2021;189:114409. https://pubmed.ncbi.nlm.nih.gov/33428895/

7204

Guo X, Cai Q, Bao P, et al. Long-term soy consumption and tumor tissue microRNA and gene expression in triple negative breast cancer. Cancer. 2016;122(16):2544–51. https://pubmed.ncbi.nlm.nih.gov/27183356/

7205

Boutas I, Kontogeorgi A, Dimitrakakis C, Kalantaridou SN. Soy isoflavones and breast cancer risk: a meta-analysis. In Vivo. 2022;36(2):556–62. https://pubmed.ncbi.nlm.nih.gov/35241506/

7206

Qiu S, Jiang C. Soy and isoflavones consumption and breast cancer survival and recurrence: a systematic review and meta-analysis. Eur J Nutr. 2019;58(8):3079–90. https://pubmed.ncbi.nlm.nih.gov/30382332/

7207

Tarallo S, Ferrero G, De Filippis F, et al. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut. 2022;71(7):1302–14. https://pubmed.ncbi.nlm.nih.gov/34315772/

7208

Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/

7209

Humphreys KJ, Conlon MA, Young GP, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7(8):786–95. https://pubmed.ncbi.nlm.nih.gov/25092886/

7210

Papaioannou MD, Koufaris C, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) elicits estrogenic-like microRNA responses in breast cancer cells. Toxicol Lett. 2014;229(1):9–16. https://pubmed.ncbi.nlm.nih.gov/24877718/

7211

Yang WM, Jeong HJ, Park SY, Lee W. Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes. FEBS Lett. 2014;588(13):2170–6. https://pubmed.ncbi.nlm.nih.gov/24844433/

7212

Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57(17):3640–9. https://pubmed.ncbi.nlm.nih.gov/26853923/

7213

Sinha R, Rothman N, Brown ED, et al. High concentrations of the carcinogen 2-amino-1-methyl-6-phynylimidazo-[4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method. Cancer Res. 1995;55(20):4516–9. https://pubmed.ncbi.nlm.nih.gov/7553619/

7214

Liu T, Gatto NM, Chen Z, et al. Vegetarian diets, circulating miRNA expression and healthspan in subjects living in the Blue Zone. Precis Clin Med. 2020;3(4):245–59. https://pubmed.ncbi.nlm.nih.gov/33391847/

7215

Von Linné, C. Salvius L. Caroli Linnæi… systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus differentiis, synonymis, locis. Impensis Direct. Laurentii Salvii; 1758. https://www.biodiversitylibrary.org/bibliography/542

7216

Haeckel E. Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie. G. Reimer; 1866. https://www.biodiversitylibrary.org/bibliography/3953

7217

Ruggiero MA, Gordon DP, Orrell TM, et al. A higher level classification of all living organisms. PLoS One. 2015;10(4):e0119248. https://pubmed.ncbi.nlm.nih.gov/25923521/

7218

Dalmasso G, Nguyen HTT, Yan Y, et al. Microbiota modulate host gene expression via microRNAs. PLoS One. 2011;6(4):e19293. https://pubmed.ncbi.nlm.nih.gov/21559394/

7219

Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J Dent Res. 2017;96(4):458–66. https://pubmed.ncbi.nlm.nih.gov/28068479/

7220

Liu S, da Cunha AP, Rezende RM, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe. 2016;19(1):32–43. https://pubmed.ncbi.nlm.nih.gov/26764595/

7221

Munroe R. Family reunion. xkcd. https://xkcd.com/2608/. Accessed October 17, 2022.; https://xkcd.com/2608/

7222

Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266(1415):163–71. https://pubmed.ncbi.nlm.nih.gov/10097391/

7223

Zhao Y, Cong L, Lukiw WJ. Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication. Cell Mol Neurobiol. 2018;38(1):133–40. https://pubmed.ncbi.nlm.nih.gov/28879580/

7224

Zhang T, Jin Y, Zhao JH, et al. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen Verticillium dahliae. Mol Plant. 2016;9(6):939–42. https://pubmed.ncbi.nlm.nih.gov/26925819/

7225

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7226

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7227

Jia M, He J, Bai W, et al. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct. 2021;12(20):9549–62. https://pubmed.ncbi.nlm.nih.gov/34664582/

7228

Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond). 2018;15:68. https://pubmed.ncbi.nlm.nih.gov/30302122/

7229

Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and viroids in lethal diseases of plants and animals. Potential contribution to human neurodegenerative disorders. Biochemistry Moscow. 2018;83(9):1018–29. https://pubmed.ncbi.nlm.nih.gov/30472940/

7230

Díez-Sainz E, Lorente-Cebrián S, Aranaz P, Riezu-Boj JI, Martínez JA, Milagro FI. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Front Nutr. 2021;8:586564. https://pubmed.ncbi.nlm.nih.gov/33768107/

7231

Zhao JH, Zhang T, Liu QY, Guo HS. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives. Plant Commun. 2021;2(2):100167. https://pubmed.ncbi.nlm.nih.gov/33898979/

7232

García-Segura L, Pérez-Andrade M, Miranda-Ríos J. The emerging role of microRNAs in the regulation of gene expression by nutrients. J Nutrigenet Nutrigenomics. 2013;6(1):16–31. https://pubmed.ncbi.nlm.nih.gov/23445777/

7233

Campbell K. The doubts about dietary RNA. Nature. 2020;582:s10–1. https://www.nature.com/articles/d41586-020-01767-x

7234

Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/

7235

Li M, Chen T, He JJ, et al. Plant MIR167e-5p inhibits enterocyte proliferation by targeting ß-catenin. Cells. 2019;8(11):1385. https://pubmed.ncbi.nlm.nih.gov/31689969/

7236

del Pozo-Acebo L, López de las Hazas M, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. British J Pharmacology. 2021;178(11):2218–45. https://pubmed.ncbi.nlm.nih.gov/33644849/

7237

Dávalos A, Pinilla L, López de Las Hazas MC, et al. Dietary microRNAs and cancer: a new therapeutic approach? Semin Cancer Biol. 2021;73:19–29. https://pubmed.ncbi.nlm.nih.gov/33086083/

7238

Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26(2):217–28. https://pubmed.ncbi.nlm.nih.gov/26794868/

7239

Cavallini A, Minervini F, Garbetta A, et al. High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model. Nutr Res. 2018;60:68–76. https://pubmed.ncbi.nlm.nih.gov/30527261/

7240

Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res. 2015;59(10):1962–72. https://pubmed.ncbi.nlm.nih.gov/26147655/

7241

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7242

Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol. 2013;10(7):1107–16. https://pubmed.ncbi.nlm.nih.gov/23669076/

7243

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7244

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7245

Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/

7246

Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/

7247

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7248

Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867. https://pubmed.ncbi.nlm.nih.gov/23695661/

7249

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7250

Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem. 2021;69(48):14372–86. https://pubmed.ncbi.nlm.nih.gov/34813309/

7251

Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307(5711):932–5. https://pubmed.ncbi.nlm.nih.gov/15705854/

7252

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7253

Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/

7254

Luo Y, Wang P, Wang X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci Rep. 2017;7(1):645. https://pubmed.ncbi.nlm.nih.gov/28381865/

7255

Chen Q, Zhang F, Dong L, et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021;31(3):247–58. https://pubmed.ncbi.nlm.nih.gov/32801357/

7256

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://pubmed.ncbi.nlm.nih.gov/21423189/

7257

Liang G, Zhu Y, Sun B, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2(4):380–8. https://pubmed.ncbi.nlm.nih.gov/25473495/

7258

Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107–26. https://pubmed.ncbi.nlm.nih.gov/21931358/

7259

Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/

7260

Li J, Zhang Y, Li D, et al. Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein Cell. 2015;6(6):391–6. https://pubmed.ncbi.nlm.nih.gov/25963995/

7261

Xiao J, Feng S, Wang X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6:e5186. https://pubmed.ncbi.nlm.nih.gov/30083436/

7262

Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57. https://pubmed.ncbi.nlm.nih.gov/23752315/

7263

Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73. https://pubmed.ncbi.nlm.nih.gov/24842810/

7264

Cavalieri D, Rizzetto L, Tocci N, et al. Plant microRNAs as novel immunomodulatory agents. Sci Rep. 2016;6:25761. https://pubmed.ncbi.nlm.nih.gov/27167363/

7265

Hou D, He F, Ma L, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205. https://pubmed.ncbi.nlm.nih.gov/29751293/

7266

Ojagbemi A, Okekunle AP, Owolabi M, et al. Dietary intakes of green leafy vegetables and incidence of cardiovascular diseases. Cardiovasc J Afr. 2021;32(4):215–23. https://pubmed.ncbi.nlm.nih.gov/34128951/

7267

Kalarikkal SP, Sundaram GM. Inter-kingdom regulation of human transcriptome by dietary microRNAs: emerging bioactives from edible plants to treat human diseases? Trends Food Sci Technol. 2021;118:723–34. https://www.sciencedirect.com/science/article/abs/pii/S0924224421005999

7268

Ngo SNT, Williams DB. Protective effect of isothiocyanates from cruciferous vegetables on breast cancer: epidemiological and preclinical perspectives. Anticancer Agents Med Chem. 2021;21(11):1413–30. https://pubmed.ncbi.nlm.nih.gov/32972351/

7269

Li D, Yang J, Yang Y, et al. A timely review of cross-kingdom regulation of plant-derived microRNAs. Front Genet. 2021;12:613197. https://pubmed.ncbi.nlm.nih.gov/34012461/

7270

Xiang J, Huang JC, Xu C, et al. [Effect of miRNA from Glycyrrhiza uralensis decoction on gene expression of human immune cells]. Zhongguo Zhong Yao Za Zhi. 2017;42(9):1752–6. https://pubmed.ncbi.nlm.nih.gov/29082701/

7271

Qin Y, Zheng B, Yang G shan, et al. Salvia miltiorrhiza-derived Sal-miR-58 induces autophagy and attenuates inflammation in vascular smooth muscle cells. Mol Ther Nucleic Acids. 2020;21:492–511. https://pubmed.ncbi.nlm.nih.gov/32679544/

7272

Yang GS, Zheng B, Qin Y, et al. Salvia miltiorrhiza-derived miRNAs suppress vascular remodeling through regulating OTUD7B/KLF4/NMHC IIA axis. Theranostics. 2020;10(17):7787–811. https://pubmed.ncbi.nlm.nih.gov/32685020/

7273

Zhou LK, Zhou Z, Jiang XM, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020;6(1):1–4. https://pubmed.ncbi.nlm.nih.gov/32802404/

7274

Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3’-untranslated region (3’-UTR) of the mRNA encoding the neurologically relevant https://pubmed.ncbi.nlm.nih.gov/31456135/

7275

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7276

Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/

7277

Chen X, Liu L, Chu Q, et al. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS One. 2021;16(9):e0257878. https://pubmed.ncbi.nlm.nih.gov/34587184/

7278

Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/

7279

Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? Genes Nutr. 2017;12:15. https://pubmed.ncbi.nlm.nih.gov/28694875/

7280

Sundaram GM. Dietary non-coding RNAs from plants: fairy tale or treasure? Noncoding RNA Res. 2019;4(2):63–8. https://pubmed.ncbi.nlm.nih.gov/31193509/

7281

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7282

Link J, Thon C, Schanze D, et al. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract – proof-of-principle study. Mol Nutr Food Res. 2019;63(2):e1800076. https://pubmed.ncbi.nlm.nih.gov/30378765/

7283

Quintanilha B, Reis B, Duarte G, Cozzolino S, Rogero M. Nutrimiromics: role of microRNAs and nutrition in modulating inflammation and chronic diseases. Nutrients. 2017;9(11):1168. https://pubmed.ncbi.nlm.nih.gov/29077020/

7284

Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567 https://pubmed.ncbi.nlm.nih.gov/32995073/

7285

Wang W, Hang C, Zhang Y, et al. Dietary miR-451 protects erythroid cells from oxidative stress via increasing the activity of Foxo3 pathway. Oncotarget. 2017;8(63):107109–24. https://pubmed.ncbi.nlm.nih.gov/29291015/

7286

Teodori L, Petrignani I, Giuliani A, et al. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev. 2019;182:111127. https://pubmed.ncbi.nlm.nih.gov/31401225/

7287

Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ. 2020;8:e9567. https://pubmed.ncbi.nlm.nih.gov/32995073/

7288

Humphreys KJ, Conlon MA, Young GP, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7(8):786–95. https://pubmed.ncbi.nlm.nih.gov/25092886/

7289

Baier S, Howard K, Cui J, Shu J, Zempleni J. MicroRNAs in chicken eggs are bioavailable in healthy adults and can modulate mRNA expression in peripheral blood mononuclear cells. FASEB J. 2015;29(S1):LB322. https://pubmed.ncbi.nlm.nih.gov/25122645/

7290

Igaz I, Igaz P. Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids. Exp Suppl. 2015;106:281–8. https://pubmed.ncbi.nlm.nih.gov/26608210/

7291

Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/

7292

Benmoussa A, Provost P. Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf. 2019;18(3):703–22. https://pubmed.ncbi.nlm.nih.gov/33336926/

7293

Tooley KL, El-Merhibi A, Cummins AG, et al. Maternal milk, but not formula, regulates the immune response to ß-lactoglobulin in allergy-prone rat pups. J Nutr. 2009;139(11):2145–51. https://pubmed.ncbi.nlm.nih.gov/19759244/

7294

Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules. 2021;11(6):851. https://pubmed.ncbi.nlm.nih.gov/34200323/

7295

Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules. 2021;11(6):851. https://pubmed.ncbi.nlm.nih.gov/34200323/

7296

Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/

7297

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

7298

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7299

Victora CG, Bahl R, Barros AJD, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://pubmed.ncbi.nlm.nih.gov/26869575/

7300

Chen Z, Xie Y, Luo J, et al. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process. BMC Vet Res. 2020;16(1):123. https://pubmed.ncbi.nlm.nih.gov/32349776/

7301

Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144(10):1495–500. https://pubmed.ncbi.nlm.nih.gov/25122645/

7302

McNeill EM, Hirschi KD. Roles of regulatory RNAs in nutritional control. Annu Rev Nutr. 2020;40:77–104. https://pubmed.ncbi.nlm.nih.gov/32966184/

7303

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7304

Benmoussa A, Lee CHC, Laffont B, et al. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 2016;146(11):2206–15. https://pubmed.ncbi.nlm.nih.gov/27708120/

7305

López de Las Hazas MC, Del Pozo-Acebo L, Hansen MS, et al. Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression. Eur J Nutr. 2022;61(2):1043–56. https://pubmed.ncbi.nlm.nih.gov/34716465/

7306

Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144(10):1495–500. https://pubmed.ncbi.nlm.nih.gov/25122645/

7307

Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148(1):153–9. https://pubmed.ncbi.nlm.nih.gov/29378054/

7308

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7309

Melnik BC. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in ß-cell de-differentiation of type 2 diabetes mellitus. Nutr Metab (Lond). 2019;16:85. https://pubmed.ncbi.nlm.nih.gov/31827573/

7310

Melnik BC. Synergistic effects of milk-derived exosomes and galactose on a-synuclein pathology in Parkinson’s disease and type 2 diabetes mellitus. Int J Mol Sci. 2021;22(3):1059. https://pubmed.ncbi.nlm.nih.gov/33494388/

7311

Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31(4):427–42. https://pubmed.ncbi.nlm.nih.gov/29221571/

7312

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7313

Murata T, Takayama K, Katayama S, et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis. 2010;13(4):356–61. https://pubmed.ncbi.nlm.nih.gov/20820187/

7314

Tate PL, Bibb R, Larcom LL. Milk stimulates growth of prostate cancer cells in culture. Nutr Cancer. 2011;63(8):1361–6. https://pubmed.ncbi.nlm.nih.gov/22043817/

7315

Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/

7316

Melnik BC, Schmitz G. Milk’s role as an epigenetic regulator in health and disease. Diseases. 2017;5(1):12. https://pubmed.ncbi.nlm.nih.gov/28933365/

7317

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7318

Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015. https://pubmed.ncbi.nlm.nih.gov/25352269/

7319

Yu S, Zhao Z, Sun LM, Li P. Fermentation results in quantitative changes in milk-derived exosomes and different effects on cell growth and survival. J Agric Food Chem. 2017;65(6):1220–8. https://pubmed.ncbi.nlm.nih.gov/28085261/

7320

Savaiano DA, Hutkins RW. Yogurt, cultured fermented milk, and health: a systematic review. Nutr Rev. 2021;79(5):599–614. https://pubmed.ncbi.nlm.nih.gov/32447398/

7321

Wehbe Z, Kreydiyyeh S. Cow’s milk may be delivering potentially harmful undetected cargoes to humans. Is it time to reconsider dairy recommendations? Nutr Rev. 2022;80(4):874–88. https://pubmed.ncbi.nlm.nih.gov/34338770/

7322

Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. https://pubmed.ncbi.nlm.nih.gov/30602375/

7323

Teodori L, Petrignani I, Giuliani A, et al. Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mech Ageing Dev. 2019;182:111127. https://pubmed.ncbi.nlm.nih.gov/31401225/

7324

Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307–13. https://pubmed.ncbi.nlm.nih.gov/19615307/

7325

Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/

7326

Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/

7327

Kim A. Dysbiosis: a review highlighting obesity and inflammatory bowel disease. J Clin Gastroenterol. 2015;49 Suppl 1:S20–4. https://pubmed.ncbi.nlm.nih.gov/26447959/

7328

Patterson E, Ryan PM, Cryan JF, et al. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016;92(1087):286–300. https://pubmed.ncbi.nlm.nih.gov/26912499/

7329

Tsai F, Coyle WJ. The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep. 2009;11(4):307–13. https://pubmed.ncbi.nlm.nih.gov/19615307/

7330

Wikoff W, Anfora A, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. https://pubmed.ncbi.nlm.nih.gov/19234110/

7331

Sanmiguel C, Gupta A, Mayer EA. Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep. 2015;4(2):250–61. https://pubmed.ncbi.nlm.nih.gov/26029487/

7332

Aydin S. Can peptides and gut microbiota be involved in the etiopathology of obesity? Obes Surg. 2017;27(1):202–4. https://pubmed.ncbi.nlm.nih.gov/27787759/

7333

Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://pubmed.ncbi.nlm.nih.gov/27541692/

7334

Goodacre R. Metabolomics of a superorganism. J Nutr. 2007;137(1 Suppl):259S-66S. https://pubmed.ncbi.nlm.nih.gov/17182837/

7335

Simões CD, Maukonen J, Kaprio J, Rissanen A, Pietiläinen KH, Saarela M. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr. 2013;143(4):417–23. https://pubmed.ncbi.nlm.nih.gov/23343669/

7336

Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. https://pubmed.ncbi.nlm.nih.gov/20498852/

7337

Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53:239–61. https://pubmed.ncbi.nlm.nih.gov/31487470/

7338

Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19(1):26–30. https://pubmed.ncbi.nlm.nih.gov/26560527/

7339

Venkatakrishnan A, Holzknecht ZE, Holzknecht R, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–8. https://pubmed.ncbi.nlm.nih.gov/33552447/

7340

Vermorken AJM, Cui Y, Kleerebezem R, Andrès E. Bowel movement frequency and cardiovascular mortality, a matter of fibers and oxidative stress? Atherosclerosis. 2016;253:278–80. https://pubmed.ncbi.nlm.nih.gov/27594542/

7341

Lichtenstein GR. Letter from the editor. Gastroenterol Hepatol (N Y). 2013;9(9):552. https://pubmed.ncbi.nlm.nih.gov/24729764/

7342

Allison DB, Roberts MS. On constructing the disorder of hysteria. J Med Philos. 1994;19(3):239–59. https://pubmed.ncbi.nlm.nih.gov/7964210/

7343

Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–32. https://pubmed.ncbi.nlm.nih.gov/31978342/

7344

Copeland CE, Stahlfeld K. Two tall poppies and the discovery of Helicobacter pylori. J Am Coll Surg. 2012;214(2):237–41. https://pubmed.ncbi.nlm.nih.gov/22056357/

7345

Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell. 2020;180(2):221–32. https://pubmed.ncbi.nlm.nih.gov/31978342/

7346

Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing. 2021;18(1):2. https://pubmed.ncbi.nlm.nih.gov/33397404/

7347

Metchnikoff É. The Prolongation of Life: Optimistic Studies. G.P. Putnam’s Sons; 1908. https://www.gutenberg.org/files/51521/51521-h/51521-h.htm

7348

Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health. 2013;1. https://pubmed.ncbi.nlm.nih.gov/24350221/

7349

Vikhanski L. Elie Metchnikoff rediscovered: comeback of a founding father of gerontology. Gerontologist. 2016;56(Suppl_3):181. https://doi.org/10.1093/geront/gnw162.708

7350

Gasbarrini G, Bonvicini F, Gramenzi A. Probiotics history. J Clin Gastroenterol. 2016;50(Supplement 2):S116–9. https://pubmed.ncbi.nlm.nih.gov/27741152/

7351

Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health. 2013;1. https://pubmed.ncbi.nlm.nih.gov/24350221/

7352

Mowat AM. Historical perspective: Metchnikoff and the intestinal microbiome. J Leukoc Biol. 2021;109(3):513–7. https://pubmed.ncbi.nlm.nih.gov/33630385/

7353

Salazar N, Valdés-Varela L, González S, Gueimonde M, de Los Reyes-Gavilán CG. Nutrition and the gut microbiome in the elderly. Gut Microbes. 2017;8(2):82–97. https://pubmed.ncbi.nlm.nih.gov/27808595/

7354

Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at gut – turning back the clock with the gut microbiome. Microorganisms. 2021;9(3):555. https://pubmed.ncbi.nlm.nih.gov/33800340/

7355

Madison AA, Kiecolt-Glaser JK. The gut microbiota and nervous system: age-defined and age-defying. Semin Cell Dev Biol. 2021;116:98–107. https://pubmed.ncbi.nlm.nih.gov/33422403/

7356

Xu C, Zhu H, Qiu P. Aging progression of human gut microbiota. BMC Microbiol. 2019;19(1):236. https://pubmed.ncbi.nlm.nih.gov/31660868/

7357

Galkin F, Mamoshina P, Aliper A, et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience. 2020;23(6):101199. https://pubmed.ncbi.nlm.nih.gov/32534441/

7358

Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509–34. https://pubmed.ncbi.nlm.nih.gov/33377391/

7359

Vaiserman AM, Koliada AK, Marotta F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35:36–45. https://pubmed.ncbi.nlm.nih.gov/28109835/

7360

An R, Wilms E, Masclee AAM, Smidt H, Zoetendal EG, Jonkers D. Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut. 2018;67(12):2213–22. https://pubmed.ncbi.nlm.nih.gov/30194220/

7361

Vemuri R, Gundamaraju R, Shastri MD, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Res Int. 2018;2018:4178607. https://pubmed.ncbi.nlm.nih.gov/29682542/

7362

Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing. 2021;18(1):2. https://pubmed.ncbi.nlm.nih.gov/33397404/

7363

Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. https://pubmed.ncbi.nlm.nih.gov/20498852/

7364

Badal VD, Vaccariello ED, Murray ER, et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12(12):E3759. https://pubmed.ncbi.nlm.nih.gov/33297486/

7365

Cai D, Zhao S, Li D, et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients. 2016;8(9):E564. https://pubmed.ncbi.nlm.nih.gov/27657115/

7366

Zhang S, Zeng B, Chen Y, et al. Gut microbiota in healthy and unhealthy long-living people. Gene. 2021;779:145510. https://pubmed.ncbi.nlm.nih.gov/33600956/

7367

DeJong EN, Surette MG, Bowdish DME. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe. 2020;28(2):180–9. https://pubmed.ncbi.nlm.nih.gov/32791111/

7368

Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. https://pubmed.ncbi.nlm.nih.gov/20498852/

7369

Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26(11):1480–5. https://pubmed.ncbi.nlm.nih.gov/27185560/

7370

Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509–34. https://pubmed.ncbi.nlm.nih.gov/33377391/

7371

Yang HY, Liu SL, Ibrahim SA, et al. Oral administration of live Bifidobacterium substrains isolated from healthy centenarians enhanced immune function in BALB/c mice. Nutr Res. 2009;29(4):281–9. https://pubmed.ncbi.nlm.nih.gov/19410981/

7372

Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocoll. 2019;94:475–99. https://www.sciencedirect.com/science/article/abs/pii/S0268005X18313298?via%3Dihub

7373

Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–73. https://pubmed.ncbi.nlm.nih.gov/24045647/

7374

Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe. 2011;17(5):226–31. https://pubmed.ncbi.nlm.nih.gov/21132298/

7375

O’Toole PW, Jeffery IB. Microbiome-health interactions in older people. Cell Mol Life Sci. 2018;75(1):119–28. https://pubmed.ncbi.nlm.nih.gov/28986601/

7376

Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71. https://pubmed.ncbi.nlm.nih.gov/23671105/

7377

Shintouo CM, Mets T, Beckwee D, et al. Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Exp Gerontol. 2020;141:111079. https://pubmed.ncbi.nlm.nih.gov/32882334/

7378

Greathouse KL, Faucher MA, Hastings-Tolsma M. The gut microbiome, obesity, and weight control in women’s reproductive health. West J Nurs Res. 2017;39(8):1094–119. https://pubmed.ncbi.nlm.nih.gov/28303750/

7379

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35–56. https://pubmed.ncbi.nlm.nih.gov/30262901/

7380

Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–53.e21. https://pubmed.ncbi.nlm.nih.gov/27863247/

7381

Roberts CL, Keita AV, Duncan SH, et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut. 2010;59(10):1331–9. https://pubmed.ncbi.nlm.nih.gov/20813719/

7382

Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304. https://pubmed.ncbi.nlm.nih.gov/29893261/

7383

Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26(11):1480–5. https://pubmed.ncbi.nlm.nih.gov/27185560/

7384

Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun Ageing. 2021;18(1):2. https://pubmed.ncbi.nlm.nih.gov/33397404/

7385

Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304. https://pubmed.ncbi.nlm.nih.gov/29893261/

7386

Luan Z, Sun G, Huang Y, et al. Metagenomics study reveals changes in gut microbiota in centenarians: a cohort study of Hainan centenarians. Front Microbiol. 2020;11:1474. https://pubmed.ncbi.nlm.nih.gov/32714309/

7387

Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42. https://pubmed.ncbi.nlm.nih.gov/31332389/

7388

Vemuri R, Gundamaraju R, Shastri MD, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Res Int. 2018;2018:4178607. https://pubmed.ncbi.nlm.nih.gov/29682542/

7389

Wang F, Yu T, Huang G, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204. https://pubmed.ncbi.nlm.nih.gov/25839332/

7390

C¿toi AF, Corina A, Katsiki N, et al. Gut microbiota and aging – a focus on centenarians. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165765. https://pubmed.ncbi.nlm.nih.gov/32169505/

7391

DeJong EN, Surette MG, Bowdish DME. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe. 2020;28(2):180–9. https://pubmed.ncbi.nlm.nih.gov/32791111/

7392

Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging. 2018;4(4):267–85. https://pubmed.ncbi.nlm.nih.gov/29951588/

7393

O’Toole PW, Jeffery IB. Microbiome-health interactions in older people. Cell Mol Life Sci. 2018;75(1):119–28. https://pubmed.ncbi.nlm.nih.gov/28986601/

7394

Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev. 2017;165(Pt B):180–4. https://pubmed.ncbi.nlm.nih.gov/28049008/

7395

O’Toole PW, Jeffery IB. Microbiome-health interactions in older people. Cell Mol Life Sci. 2018;75(1):119–28. https://pubmed.ncbi.nlm.nih.gov/28986601/

7396

Buford TW. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome. 2017;5(1):80. https://pubmed.ncbi.nlm.nih.gov/28709450/

7397

Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8. https://pubmed.ncbi.nlm.nih.gov/29555994/

7398

Tiihonen K, Ouwehand AC, Rautonen N. Human intestinal microbiota and healthy ageing. Ageing Res Rev. 2010;9(2):107–16. https://pubmed.ncbi.nlm.nih.gov/19874918/

7399

DeJong EN, Surette MG, Bowdish DME. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe. 2020;28(2):180–9. https://pubmed.ncbi.nlm.nih.gov/32791111/

7400

Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84. https://pubmed.ncbi.nlm.nih.gov/22797518/

7401

Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev. 2017;165(Pt B):180–4. https://pubmed.ncbi.nlm.nih.gov/28049008/

7402

Rampelli S, Schnorr SL, Consolandi C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25(13):1682–93. https://pubmed.ncbi.nlm.nih.gov/25981789/

7403

Rampelli S, Soverini M, D’Amico F, et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems. 2020;5(2):e00124–20. https://pubmed.ncbi.nlm.nih.gov/32209716/

7404

Rampelli S, Soverini M, D’Amico F, et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems. 2020;5(2):e00124–20. https://pubmed.ncbi.nlm.nih.gov/32209716/

7405

Cai D, Zhao S, Li D, et al. Nutrient intake is associated with longevity characterization by metabolites and element profiles of healthy centenarians. Nutrients. 2016;8(9):E564. https://pubmed.ncbi.nlm.nih.gov/27657115/

7406

Smith P, Willemsen D, Popkes M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife. 2017;6:e27014. https://pubmed.ncbi.nlm.nih.gov/28826469/

7407

Chen Y, Zhang S, Zeng B, et al. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY). 2020;12(6):4778–93. https://pubmed.ncbi.nlm.nih.gov/32176868/

7408

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://pubmed.ncbi.nlm.nih.gov/24336217/

7409

Chen Y, Zhang S, Zeng B, et al. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY). 2020;12(6):4778–93. https://pubmed.ncbi.nlm.nih.gov/32176868/

7410

Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. Transl Med Aging. 2020;4:103–16. https://pubmed.ncbi.nlm.nih.gov/32832742/

7411

Riccio P, Rossano R. Undigested food and gut microbiota may cooperate in the pathogenesis of neuroinflammatory diseases: a matter of barriers and a proposal on the origin of organ specificity. Nutrients. 2019;11(11):E2714. https://pubmed.ncbi.nlm.nih.gov/31717475/

7412

Riccio P, Rossano R. Undigested food and gut microbiota may cooperate in the pathogenesis of neuroinflammatory diseases: a matter of barriers and a proposal on the origin of organ specificity. Nutrients. 2019;11(11):E2714. https://pubmed.ncbi.nlm.nih.gov/31717475/

7413

Patel KP, Luo FJ, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol. 2012;7(6):982–8. https://pubmed.ncbi.nlm.nih.gov/22490877/

7414

Riccio P, Rossano R. Undigested food and gut microbiota may cooperate in the pathogenesis of neuroinflammatory diseases: a matter of barriers and a proposal on the origin of organ specificity. Nutrients. 2019;11(11):E2714. https://pubmed.ncbi.nlm.nih.gov/31717475/

7415

Russo F, Linsalata M, Clemente C, et al. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res. 2012;32(12):940–6. https://pubmed.ncbi.nlm.nih.gov/23244539/

7416

Donnadieu-Rigole H, Pansu N, Mura T, et al. Beneficial effect of alcohol withdrawal on gut permeability and microbial translocation in patients with alcohol use disorder. Alcohol Clin Exp Res. 2018;42(1):32–40. https://pubmed.ncbi.nlm.nih.gov/29030980/

7417

Lambert GP, Schmidt A, Schwarzkopf K, Lanspa S. Effect of aspirin dose on gastrointestinal permeability. Int J Sports Med. 2012;33(6):421–5. https://pubmed.ncbi.nlm.nih.gov/22377941/

7418

Ivey KJ, Baskin WN, Krause WJ, Terry B. Effect of aspirin and acid on human jejunal mucosa. An ultrastructural study. Gastroenterology. 1979;76(1):50–6. https://pubmed.ncbi.nlm.nih.gov/758147/

7419

Tran CD, Hawkes J, Graham RD, et al. Zinc-fortified oral rehydration solution improved intestinal permeability and small intestinal mucosal recovery. Clin Pediatr (Phila). 2015;54(7):676–82. https://pubmed.ncbi.nlm.nih.gov/25520366/

7420

Ling Z, Liu X, Cheng Y, Yan X, Wu S. Gut microbiota and aging. Crit Rev Food Sci Nutr. 2022;62(13):3509–34. https://pubmed.ncbi.nlm.nih.gov/33377391/

7421

Giovannini S, Onder G, Liperoti R, et al. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc. 2011;59(9):1679–85. https://pubmed.ncbi.nlm.nih.gov/21883115/

7422

de Gonzalo-Calvo D, de Luxán-Delgado B, Martínez-Camblor P, et al. Chronic inflammation as predictor of 1-year hospitalization and mortality in elderly population. Eur J Clin Invest. 2012;42(10):1037–46. https://pubmed.ncbi.nlm.nih.gov/22624958/

7423

Soysal P, Stubbs B, Lucato P, et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8. https://pubmed.ncbi.nlm.nih.gov/27592340/

7424

de Gonzalo-Calvo D, de Luxán-Delgado B, Rodríguez-González S, et al. Interleukin 6, soluble tumor necrosis factor receptor I and red blood cell distribution width as biological markers of functional dependence in an elderly population: a translational approach. Cytokine. 2012;58(2):193–8. https://pubmed.ncbi.nlm.nih.gov/22624958/

7425

Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–66.e4. https://pubmed.ncbi.nlm.nih.gov/28407483/

7426

Lustgarten MS. Classifying aging as a disease: the role of microbes. Front Genet. 2016;7:212. https://pubmed.ncbi.nlm.nih.gov/27990156/

7427

Evans CJ, Ho Y, Daveson BA, et al. Place and cause of death in centenarians: a population-based observational study in England, 2001 to 2010. PLoS Med. 2014;11(6):e1001653. https://pubmed.ncbi.nlm.nih.gov/24892645/

7428

Yende S, Tuomanen EI, Wunderink R, et al. Preinfection systemic inflammatory markers and risk of hospitalization due to pneumonia. Am J Respir Crit Care Med. 2005;172(11):1440–6. https://pubmed.ncbi.nlm.nih.gov/16166617/

7429

Antunes G, Evans SA, Lordan JL, Frew AJ. Systemic cytokine levels in community-acquired pneumonia and their association with disease severity. Eur Respir J. 2002;20(4):990–5. https://pubmed.ncbi.nlm.nih.gov/16166617/

7430

Reade MC, Yende S, D’Angelo G, et al. Differences in immune response may explain lower survival among older men with pneumonia. Crit Care Med. 2009;37(5):1655–62. https://pubmed.ncbi.nlm.nih.gov/19325487/

7431

Hearps AC, Martin GE, Angelovich TA, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://pubmed.ncbi.nlm.nih.gov/22708967/

7432

Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455–66. https://pubmed.ncbi.nlm.nih.gov/28407483/

7433

Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304. https://pubmed.ncbi.nlm.nih.gov/29893261/

7434

Venkatakrishnan A, Holzknecht ZE, Holzknecht R, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–8. https://pubmed.ncbi.nlm.nih.gov/33552447/

7435

Kilkkinen A, Rissanen H, Klaukka T, et al. Antibiotic use predicts an increased risk of cancer. Int J Cancer. 2008;123(9):2152–5. https://pubmed.ncbi.nlm.nih.gov/18704945/

7436

Wise R, Hart T, Cars O, et al. Antimicrobial resistance. BMJ. 1998;317(7159):609–10. https://pubmed.ncbi.nlm.nih.gov/9727981/

7437

Vemuri R, Gundamaraju R, Shastri MD, et al. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Res Int. 2018;2018:4178607. https://pubmed.ncbi.nlm.nih.gov/29682542/

7438

Collignon PJ, Conly JM, Andremont A, et al. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63(8):1087–93. https://pubmed.ncbi.nlm.nih.gov/27439526/

7439

Office of Technology Assessment. Drugs in Livestock Feed. Congress of the United States, Office of Technology Assessment; 1979. https://worldcat.org/title/1295046620

7440

Galloway-Peña JR, Jenq RR. The only thing that stops a bad microbiome, is a good microbiome. Haematologica. 2019;104(8):1511–3. https://pubmed.ncbi.nlm.nih.gov/31366464/

7441

Subirats J, Domingues A, Topp E. Does dietary consumption of antibiotics by humans promote antibiotic resistance in the gut microbiome? J Food Prot. 2019;82(10):1636–42. https://pubmed.ncbi.nlm.nih.gov/31512932/

7442

Angulo FJ, Baker NL, Olsen SJ, Anderson A, Barrett TJ. Antimicrobial use in agriculture: controlling the transfer of antimicrobial resistance to humans. Semin Pediatr Infect Dis. 2004;15(2):78–85. https://pubmed.ncbi.nlm.nih.gov/15185190/

7443

Milanovic V, Osimani A, Aquilanti L, et al. Occurrence of antibiotic resistance genes in the fecal DNA of healthy omnivores, ovo-lacto vegetarians and vegans. Mol Nutr Food Res. 2017;61(9). https://pubmed.ncbi.nlm.nih.gov/28464483/

7444

Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. Consumption of a Western-style diet modulates the response of the murine gut microbiome to ciprofloxacin. mSystems. 2020;5(4):e00317–20. https://pubmed.ncbi.nlm.nih.gov/32723789/

7445

Schnizlein MK, Vendrov KC, Edwards SJ, Martens EC, Young VB. Dietary xanthan gum alters antibiotic efficacy against the murine gut microbiota and attenuates Clostridioides difficile colonization. mSphere. 2020;5(1):e00708–19. https://pubmed.ncbi.nlm.nih.gov/31915217/

7446

Bassis CM. Live and diet by your gut microbiota. mBio. 2019;10(5):e02335–19. https://pubmed.ncbi.nlm.nih.gov/31594820/

7447

Martínez Steele E, Baraldi LG, Louzada ML da C, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6(3):e009892. https://pubmed.ncbi.nlm.nih.gov/26962035/

7448

Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://pubmed.ncbi.nlm.nih.gov/29143823/

7449

Bisoendial R, Lubberts E. A mechanistic insight into the pathogenic role of interleukin 17A in systemic autoimmune diseases. Mediators Inflamm. 2022;2022:6600264. https://pubmed.ncbi.nlm.nih.gov/35620115/

7450

Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://pubmed.ncbi.nlm.nih.gov/29143823/

7451

Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes. 2015;6(2):149–55. https://pubmed.ncbi.nlm.nih.gov/25831243/

7452

Laster J, Bonnes SL, Rocha J. Increased use of emulsifiers in processed foods and the links to obesity. Curr Gastroenterol Rep. 2019;21(11):61. https://pubmed.ncbi.nlm.nih.gov/31792622/

7453

Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9(1):66. https://pubmed.ncbi.nlm.nih.gov/33752754/

7454

Birkett A, Muir J, Phillips J, Jones G, O’Dea K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am J Clin Nutr. 1996;63(5):766–72. https://pubmed.ncbi.nlm.nih.gov/8615362/

7455

Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56(1):184–96. https://pubmed.ncbi.nlm.nih.gov/22121108/

7456

Magee E. A nutritional component to inflammatory bowel disease: the contribution of meat to fecal sulfide excretion. Nutrition. 1999;15(3):244–6. https://pubmed.ncbi.nlm.nih.gov/10198924/

7457

Ge J, Han TJ, Liu J, et al. Meat intake and risk of inflammatory bowel disease: a meta-analysis. Turk J Gastroenterol. 2015;26(6):492–7. https://pubmed.ncbi.nlm.nih.gov/26575042/

7458

Parra-Soto S, Ahumada D, Petermann-Rocha F, et al. Association of meat, vegetarian, pescatarian and fish-poultry diets with risk of 19 cancer sites and all cancer: findings from the UK Biobank prospective cohort study and meta-analysis. BMC Med. 2022;20(1):79. https://pubmed.ncbi.nlm.nih.gov/35655214/

7459

Florin THJ, Neale G, Goretski S, Cummings JH. The sulfate content of foods and beverages. J Food Comp Anal. 1993;6(2):140–51. https://pubmed.ncbi.nlm.nih.gov/1855683/

7460

Ananthakrishnan AN, Khalili H, Konijeti GG, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145(5):970–7. https://pubmed.ncbi.nlm.nih.gov/23912083/

7461

Yao CK, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther. 2016;43(2):181–96. https://pubmed.ncbi.nlm.nih.gov/26527169/

7462

Bosch S, Lemmen JPM, Menezes R, et al. The influence of lifestyle factors on fecal volatile organic compound composition as measured by an electronic nose. J Breath Res. 2019;13(4):046001. https://pubmed.ncbi.nlm.nih.gov/31170704/

7463

How you can limit your gas production. 12 tips for dealing with flatulence. Harv Health Lett. 2007;32(12):3. https://pubmed.ncbi.nlm.nih.gov/18246621/

7464

do Rosario VA, Fernandes R, Trindade EBS de M. Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease. Nutr Rev. 2016;74(7):444–54. https://pubmed.ncbi.nlm.nih.gov/27261272/

7465

Magee EA, Richardson CJ, Hughes R, Cummings JH. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000;72(6):1488–94. https://pubmed.ncbi.nlm.nih.gov/11101476/

7466

Falony G, Vieira-Silva S, Raes J. Microbiology meets big data: the case of gut microbiota-derived trimethylamine. Annu Rev Microbiol. 2015;69:305–21. https://pubmed.ncbi.nlm.nih.gov/26274026/

7467

Rak K, Rader DJ. Cardiovascular disease: the diet-microbe morbid union. Nature. 2011;472(7341):40–1. https://pubmed.ncbi.nlm.nih.gov/21475185/

7468

Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://pubmed.ncbi.nlm.nih.gov/23614584/

7469

Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://pubmed.ncbi.nlm.nih.gov/23563705/

7470

Farhangi MA, Vajdi M, Asghari-Jafarabadi M. Gut microbiota-associated metabolite trimethylamine N-oxide and the risk of stroke: a systematic review and dose-response meta-analysis. Nutr J. 2020;19(1):76. https://pubmed.ncbi.nlm.nih.gov/32731904/

7471

Zhai Q, Wang X, Chen C, et al. Prognostic value of plasma trimethylamine n-oxide levels in patients with acute ischemic stroke. Cell Mol Neurobiol. 2019;39(8):1201–6. https://pubmed.ncbi.nlm.nih.gov/31332666/

7472

Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation. 2017;135(17):1671–3. https://pubmed.ncbi.nlm.nih.gov/28438808/

7473

Brunt VE, Gioscia-Ryan RA, Casso AG, et al. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension. 2020;76(1):101–12. https://pubmed.ncbi.nlm.nih.gov/32520619/

7474

He Z, Chen ZY. What are missing parts in the research story of trimethylamine-n-oxide (TMAO)? J Agric Food Chem. 2017;65(26):5227–8. https://pubmed.ncbi.nlm.nih.gov/28650144/

7475

Coras R, Kavanaugh A, Boyd T, et al. Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis. Clin Exp Rheumatol. 2019;37(3):481–4. https://pubmed.ncbi.nlm.nih.gov/30620278/

7476

Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, et al. Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2019;91(6):810–5. https://pubmed.ncbi.nlm.nih.gov/31556132/

7477

Zeng ST, Guo L, Liu SK, et al. Egg consumption is associated with increased risk of ovarian cancer: evidence from a meta-analysis of observational studies. Clin Nutr. 2015;34(4):635–41. https://pubmed.ncbi.nlm.nih.gov/25108572/

7478

Tse G, Eslick GD. Egg consumption and risk of GI neoplasms: dose-response meta-analysis and systematic review. Eur J Nutr. 2014;53(7):1581–90. https://pubmed.ncbi.nlm.nih.gov/24500371/

7479

Chan CWH, Law BMH, Waye MMY, Chan JYW, So WKW, Chow KM. Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer – where we are and where shall we go? J Cancer. 2019;10(23):5874–82. https://pubmed.ncbi.nlm.nih.gov/31737123/

7480

Heron M. Deaths: leading causes for 2017. Natl Vital Stat Rep. 2019;68(6):1–77. https://pubmed.ncbi.nlm.nih.gov/32501203/

7481

Vogt NM, Romano KA, Darst BF, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):124. https://pubmed.ncbi.nlm.nih.gov/30579367/

7482

Heron M. Deaths: leading causes for 2017. Natl Vital Stat Rep. 2019;68(6):1–77. https://pubmed.ncbi.nlm.nih.gov/32501203/

7483

Ottiger M, Nickler M, Steuer C, et al. Trimethylamine-N-oxide (TMAO) predicts fatal outcomes in community-acquired pneumonia patients without evident coronary artery disease. Eur J Intern Med. 2016;36:67–73. https://pubmed.ncbi.nlm.nih.gov/27567042/

7484

Rhee EP, Clish CB, Ghorbani A, et al. A combined epidemiologic and metabolomic approach improves CKD prediction. J Am Soc Nephrol. 2013;24(8):1330–8. https://pubmed.ncbi.nlm.nih.gov/23687356/

7485

Farhangi MA. Gut microbiota – dependent trimethylamine N-oxide and all-cause mortality: findings from an updated systematic review and meta-analysis. Nutrition. 2020;78:110856. https://pubmed.ncbi.nlm.nih.gov/32592979/

7486

Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://pubmed.ncbi.nlm.nih.gov/23614584/

7487

Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://pubmed.ncbi.nlm.nih.gov/23563705/

7488

Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://pubmed.ncbi.nlm.nih.gov/23563705/

7489

Demarquoy J, Georges, B, Rigault C, et al. Radioisotopic determination of L-carnitine content in foods commonly eaten in Western countries. Food Chem. 2004;86(1):137–42. https://doi.org/10.1016/j.foodchem.2003.09.023

7490

Stefan M, Sharp M, Gheith R, et al. L-carnitine tartrate supplementation for 5 weeks improves exercise recovery in men and women: a randomized, double-blind, placebo-controlled trial. Nutrients. 2021;13(10):3432. https://pubmed.ncbi.nlm.nih.gov/34684429/

7491

Koeth RA, Lam-Galvez BR, Kirsop J, et al. L–Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129(1):373–87. https://pubmed.ncbi.nlm.nih.gov/30530985/

7492

Hernández-Alonso P, Cañueto D, Giardina S, et al. Effect of pistachio consumption on the modulation of urinary gut microbiota-related metabolites in prediabetic subjects. J Nutr Biochem. 2017;45:48–53. https://pubmed.ncbi.nlm.nih.gov/28432876/

7493

Cashman JR, Xiong Y, Lin J, et al. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem Pharmacol. 1999;58(6):1047–55. https://pubmed.ncbi.nlm.nih.gov/10509757/

7494

Winther SA, Rossing P. TMAO: trimethylamine-N-oxide or time to minimize intake of animal products? J Clin Endocrinol Metab. 2020;105(12):e4958–60. https://pubmed.ncbi.nlm.nih.gov/32701146/

7495

Galloway-Peña JR, Jenq RR. The only thing that stops a bad microbiome, is a good microbiome. Haematologica. 2019;104(8):1511–3. https://pubmed.ncbi.nlm.nih.gov/31366464/

7496

Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29. https://pubmed.ncbi.nlm.nih.gov/31061539/

7497

Neunez M, Goldman M, Ghezzi P. Online information on probiotics: does it match scientific evidence? Front Med. 2020;6:296. https://pubmed.ncbi.nlm.nih.gov/32010699/

7498

Hutchinson AN, Bergh C, Kruger K, et al. The effect of probiotics on health outcomes in the elderly: a systematic review of randomized, placebo-controlled studies. Microorganisms. 2021;9(6):1344. https://pubmed.ncbi.nlm.nih.gov/34205818/

7499

Bafeta A, Koh M, Riveros C, Ravaud P. Harms reporting in randomized controlled trials of interventions aimed at modifying microbiota: a systematic review. Ann Intern Med. 2018;169(4):240–7. https://pubmed.ncbi.nlm.nih.gov/30014150/

7500

Turjeman S, Koren O. ARGuing the case for (or against) probiotics. Trends Microbiol. 2021;29(11):959–60. https://pubmed.ncbi.nlm.nih.gov/34563432/

7501

Montassier E, Valdés-Mas R, Batard E, et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol. 2021;6(8):1043–54. https://pubmed.ncbi.nlm.nih.gov/34226711/

7502

Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406–23.e16. https://pubmed.ncbi.nlm.nih.gov/30193113/

7503

Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29. https://pubmed.ncbi.nlm.nih.gov/31061539/

7504

Swain Ewald HA, Ewald PW. Natural selection, the microbiome, and public health. Yale J Biol Med. 2018;91(4):445–55. https://pubmed.ncbi.nlm.nih.gov/30588210/

7505

Peng Z, Mao X, Zhang J, Du G, Chen J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb Cell Fact. 2019;18(1):84. https://pubmed.ncbi.nlm.nih.gov/31103032/

7506

Lewis ZT, Shani G, Masarweh CF, et al. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr Res. 2016;79(3):445–52. https://pubmed.ncbi.nlm.nih.gov/26571226/

7507

Drago L, Rodighiero V, Celeste T, Rovetto L, De Vecchi E. Microbiological evaluation of commercial probiotic products available in the USA in 2009. J Chemother. 2010;22(6):373–7. https://pubmed.ncbi.nlm.nih.gov/21303743/

7508

Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the compositional quality of probiotic formulations marketed worldwide. Front Microbiol. 2021;12:693973. https://pubmed.ncbi.nlm.nih.gov/34354690/

7509

Temmerman R, Pot B, Huys G, Swings J. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol. 2003;81(1):1–10. https://pubmed.ncbi.nlm.nih.gov/12423913/

7510

Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the compositional quality of probiotic formulations marketed worldwide. Front Microbiol. 2021;12:693973. https://pubmed.ncbi.nlm.nih.gov/34354690/

7511

de Simone C. The unregulated probiotic market. Clin Gastroenterol Hepatol. 2019;17(5):809–17. https://pubmed.ncbi.nlm.nih.gov/29378309/

7512

Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–29. https://pubmed.ncbi.nlm.nih.gov/31061539/

7513

Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52. https://pubmed.ncbi.nlm.nih.gov/27159972/

7514

Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D, Irwin C. A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr. 2019;73(1):24–37. https://pubmed.ncbi.nlm.nih.gov/29581563/

7515

Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60(36):8776–82. https://pubmed.ncbi.nlm.nih.gov/22607578/

7516

Scrimshaw NS, Murray EB. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am J Clin Nutr. 1988;48(4 Suppl):1079–159. https://pubmed.ncbi.nlm.nih.gov/3140651/

7517

Hertzler SR, Clancy SM. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J Am Diet Assoc. 2003;103(5):582–7. https://pubmed.ncbi.nlm.nih.gov/12728216/

7518

Merenstein DJ, Foster J, D’Amico F. A randomized clinical trial measuring the influence of kefir on antibiotic-associated diarrhea: the Measuring the Influence of Kefir (MILK) Study. Arch Pediatr Adolesc Med. 2009;163(8):750–4. https://pubmed.ncbi.nlm.nih.gov/19652108/

7519

Nielsen ES, Garnås E, Jensen KJ, et al. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation – a pilot study. Food Funct. 2018;9(10):5323–35. https://pubmed.ncbi.nlm.nih.gov/30256365/

7520

Kim HJ, Lim SY, Lee JS, et al. Fresh and pickled vegetable consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci. 2010;101(2):508–16. https://pubmed.ncbi.nlm.nih.gov/19860848/

7521

Morais S, Costa A, Albuquerque G, et al. Salt intake and gastric cancer: a pooled analysis within the Stomach cancer Pooling (StoP) Project. Cancer Causes Control. 2022;33(5):779–91. https://pubmed.ncbi.nlm.nih.gov/35304655/

7522

Matsuyama S, Sawada N, Tomata Y, et al. Association between adherence to the Japanese diet and all-cause and cause-specific mortality: the Japan Public Health Center-based Prospective Study. Eur J Nutr. 2021;60(3):1327–36. https://pubmed.ncbi.nlm.nih.gov/32676701/

7523

Ayala FR, Bauman C, Cogliati S, Lenini C, Bartolini M, Grau R. Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microb Cell. 2017;4(4):133–6. https://pubmed.ncbi.nlm.nih.gov/28435840/

7524

Katagiri R, Sawada N, Goto A, et al. Association of soy and fermented soy product intake with total and cause specific mortality: prospective cohort study. BMJ. 2020;368:m34. https://pubmed.ncbi.nlm.nih.gov/31996350/

7525

Lo KKH, Wong AHC, Tam WWS, Ho SC. Citation classics in the nutrition and dietetics literature: 50 frequently cited articles: citation classics in nutrition and dietetics. Nutr Diet. 2016;73(4):356–68. https://doi.org/10.1111/1747-0080.12173

7526

Shurney D, Pauly K. The gut microbiome and food as medicine: healthy microbiomes = healthy humans. Am J Health Promot. 2019;33(5):821–4. https://pubmed.ncbi.nlm.nih.gov/31120342/

7527

Fechner A, Fenske K, Jahreis G. Effects of legume kernel fibres and citrus fibre on putative risk factors for colorectal cancer: a randomised, double-blind, crossover human intervention trial. Nutr J. 2013;12:101. https://pubmed.ncbi.nlm.nih.gov/24060277/

7528

Wedlake L, Shaw C, McNair H, et al. Randomized controlled trial of dietary fiber for the prevention of radiation-induced gastrointestinal toxicity during pelvic radiotherapy. Am J Clin Nutr. 2017;106(3):849–57. https://pubmed.ncbi.nlm.nih.gov/28679552/

7529

So D, Whelan K, Rossi M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am J Clin Nutr. 2018;107(6):965–83. https://pubmed.ncbi.nlm.nih.gov/29757343/

7530

Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 2017;18(1):18–31. https://pubmed.ncbi.nlm.nih.gov/27862824/

7531

Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG, Wood LG. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients. 2017;9(1):57. https://pubmed.ncbi.nlm.nih.gov/28075383/

7532

Kim YK, Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Curr Neuropharmacol. 2018;16(5):559–73. https://pubmed.ncbi.nlm.nih.gov/28925886/

7533

Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/

7534

Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/

7535

Wedlake L, Shaw C, McNair H, et al. Randomized controlled trial of dietary fiber for the prevention of radiation-induced gastrointestinal toxicity during pelvic radiotherapy. Am J Clin Nutr. 2017;106(3):849–57. https://pubmed.ncbi.nlm.nih.gov/28679552/

7536

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Morenga LT. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–45. https://pubmed.ncbi.nlm.nih.gov/30638909/

7537

Gopinath B, Flood VM, Kifley A, Louie JCY, Mitchell P. Association between carbohydrate nutrition and successful aging over 10 years. J Gerontol A Biol Sci Med Sci. 2016;71(10):1335–40. https://pubmed.ncbi.nlm.nih.gov/27252308/

7538

Si Y, Liu X, Ye K, et al. Glucomannan hydrolysate promotes gut proliferative homeostasis and extends life span in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. 2019;74(10):1549–56. https://pubmed.ncbi.nlm.nih.gov/30252027/

7539

McDonald P, Maizi BM, Arking R. Chemical regulation of mid– and late-life longevities in Drosophila. Exp Gerontol. 2013;48(2):240–9. https://pubmed.ncbi.nlm.nih.gov/23044027/

7540

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Morenga LT. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–45. https://pubmed.ncbi.nlm.nih.gov/30638909/

7541

Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. 2016;17(6):E932. https://pubmed.ncbi.nlm.nih.gov/27314331/

7542

Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG. Quantification of butyryl CoA: acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett. 2011;316(2):130–5. https://pubmed.ncbi.nlm.nih.gov/21204931/

7543

Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73(4):1073–8. https://pubmed.ncbi.nlm.nih.gov/17189447/

7544

Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://pubmed.ncbi.nlm.nih.gov/21885731/

7545

Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://pubmed.ncbi.nlm.nih.gov/21508958/

7546

Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella– versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594. https://pubmed.ncbi.nlm.nih.gov/28572676/

7547

O’Keefe SJ, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Africans? J Nutr. 2007;137(1 Suppl):175S-82S. https://pubmed.ncbi.nlm.nih.gov/17182822/

7548

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://pubmed.ncbi.nlm.nih.gov/24336217/

7549

Zhao F, Feng J, Li J, et al. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid. 2018;28(2):175–86. https://pubmed.ncbi.nlm.nih.gov/29320965/

7550

Tonstad S, Nathan E, Oda K, Fraser GE. Prevalence of hyperthyroidism according to type of vegetarian diet. Public Health Nutr. 2015;18(8):1482–7. https://pubmed.ncbi.nlm.nih.gov/25263477/

7551

Precup G, Vodnar DC. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr. 2019;122(2):131–40. https://pubmed.ncbi.nlm.nih.gov/30924428/

7552

David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://pubmed.ncbi.nlm.nih.gov/24336217/

7553

Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging. 4(1):3–16.; https://pubmed.ncbi.nlm.nih.gov/28035338/

7554

Wu YT, Shen SJ, Liao KF, Huang CY. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores. Microbiol Spectr. 2022;10(2):e0204721. https://pubmed.ncbi.nlm.nih.gov/35285706/

7555

Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/

7556

Franco-de-Moraes AC, de Almeida-Pititto B, da Rocha Fernandes G, Gomes EP, da Costa Pereira A, Ferreira SRG. Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetol Metab Syndr. 2017;9:62. https://pubmed.ncbi.nlm.nih.gov/28814977/

7557

Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–75. https://pubmed.ncbi.nlm.nih.gov/24115628/

7558

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16(1):35–56. https://pubmed.ncbi.nlm.nih.gov/30262901/

7559

Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321–32. https://pubmed.ncbi.nlm.nih.gov/33432175/

7560

De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21. https://pubmed.ncbi.nlm.nih.gov/26416813/

7561

Freeland KR, Wilson C, Wolever TM. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr. 2010;103(1):82–90. https://pubmed.ncbi.nlm.nih.gov/19664300/

7562

Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72. https://pubmed.ncbi.nlm.nih.gov/25431456/

7563

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. National Academy Press; 2005. https://worldcat.org/title/57373786

7564

Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34. https://pubmed.ncbi.nlm.nih.gov/19857053/

7565

Leach JD, Sobolik KD. High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert. Br J Nutr. 2010;103(11):1558–61. https://pubmed.ncbi.nlm.nih.gov/20416127/

7566

Institute of Medicine (U.S.). Dietary Reference Intakes: Proposed Definition of Dietary Fiber. National Academies Press; 2001. https://pubmed.ncbi.nlm.nih.gov/25057569/

7567

Burkitt DP, Meisner P. How to manage constipation with high-fiber diet. Geriatrics. 1979;34(2):33–5 https://pubmed.ncbi.nlm.nih.gov/104901/

7568

Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct. 2018;9(2):688–704. https://pubmed.ncbi.nlm.nih.gov/29410981/

7569

Han M, Wang C, Liu P, Li D, Li Y, Ma X. Dietary fiber gap and host gut microbiota. Protein Pept Lett. 2017;24(5):388–96. https://pubmed.ncbi.nlm.nih.gov/28219317/

7570

Venkatakrishnan A, Holzknecht ZE, Holzknecht R, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–8. https://pubmed.ncbi.nlm.nih.gov/33552447/

7571

Hamaker BR, Cantu-Jungles TM. Discrete fiber structures dictate human gut bacteria outcomes. Trends Endocrinol Metab. 2020;31(11):803–5. https://pubmed.ncbi.nlm.nih.gov/32448722/

7572

Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64. https://pubmed.ncbi.nlm.nih.gov/26235304/

7573

Walter J, Martínez I, Rose DJ. Holobiont nutrition: considering the role of the gastrointestinal microbiota in the health benefits of whole grains. Gut Microbes. 2013;4(4):340–6. https://pubmed.ncbi.nlm.nih.gov/23645316/

7574

Toribio-Mateas M. Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions. Microorganisms. 2018;6(2):35. https://pubmed.ncbi.nlm.nih.gov/29693607/

7575

McRorie J. Clinical data support that psyllium is not fermented in the gut. Am J Gastroenterol. 2013;108(9):1541. https://pubmed.ncbi.nlm.nih.gov/24005363/

7576

Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504. https://pubmed.ncbi.nlm.nih.gov/30745586/

7577

Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19(4):1366–78. https://pubmed.ncbi.nlm.nih.gov/28035742/

7578

O’Keefe SJD. The need to reassess dietary fiber requirements in healthy and critically ill patients. Gastroenterol Clin North Am. 2018;47(1):219–29. https://pubmed.ncbi.nlm.nih.gov/29413014/

7579

Swain Ewald HA, Ewald PW. Natural selection, the microbiome, and public health. Yale J Biol Med. 2018;91(4):445–55. https://pubmed.ncbi.nlm.nih.gov/30588210/

7580

Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62(8):1112–21. https://pubmed.ncbi.nlm.nih.gov/23135760/

7581

Hill P, Muir JG, Gibson PR. Controversies and recent developments of the low-FODMAP diet. Gastroenterol Hepatol (N Y). 2017;13(1):36–45. https://pubmed.ncbi.nlm.nih.gov/28420945/

7582

Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/

7583

Fernando WMU, Hill JE, Zello GA, Tyler RT, Dahl WJ, Van Kessel AG. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Benef Microbes. 2010;1(2):197–207. https://pubmed.ncbi.nlm.nih.gov/21831757/

7584

Jin S, Je Y. Nuts and legumes consumption and risk of colorectal cancer: a systematic review and meta-analysis. Eur J Epidemiol. 2022;37(6):569–85. https://pubmed.ncbi.nlm.nih.gov/35622305/

7585

Hangen L, Bennink MR. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer. 2002;44(1):60–5. https://pubmed.ncbi.nlm.nih.gov/12672642/

7586

Holscher HD. Diet affects the gastrointestinal microbiota and health. J Acad Nutr Diet. 2020;120(4):495–9. https://pubmed.ncbi.nlm.nih.gov/32199522/

7587

Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4(1):33. https://pubmed.ncbi.nlm.nih.gov/27357127/

7588

Liu S, Ren F, Zhao L, et al. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut. BMC Microbiol. 2015;15:54. https://pubmed.ncbi.nlm.nih.gov/25887661/

7589

Hellström PM, Grybäck P, Jacobsson H. The physiology of gastric emptying. Best Pract Res Clin Anaesthesiol. 2006;20(3):397–407. https://pubmed.ncbi.nlm.nih.gov/17080692/

7590

Grundy MM, Edwards CH, Mackie AR, Gidley MJ, Butterworth PJ, Ellis PR. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. Br J Nutr. 2016;116(5):816–33. https://pubmed.ncbi.nlm.nih.gov/27385119/

7591

Edwards CH, Grundy MM, Grassby T, et al. Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. Am J Clin Nutr. 2015;102(4):791–800. https://pubmed.ncbi.nlm.nih.gov/26333512/

7592

Hareland G. Evaluation of flour particle size distribution by laser diffraction, sieve analysis and near-infrared reflectance spectroscopy. J Cereal Sci. 1994;20(2):183–90. https://doi.org/10.1006/jcrs.1994.1058

7593

Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ. Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: a randomized controlled trial. Nutrients. 2018;10(2):126. https://pubmed.ncbi.nlm.nih.gov/29373513/

7594

McCarty MF, DiNicolantonio JJ. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1. Open Heart. 2015;2(1):e000205. https://pubmed.ncbi.nlm.nih.gov/25685364/

7595

Helander HF, Fändriks L. The enteroendocrine “letter cells”—time for a new nomenclature? Scand J Gastroenterol. 2012;47(1):3–12. https://pubmed.ncbi.nlm.nih.gov/22126593/

7596

FDA approves new drug treatment for chronic weight management, first since 2014. U.S. Food and Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-chronic-weight-management-first-2014. Published June 4, 2021. Accessed February 25, 2023.; https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-chronic-weight-management-first-2014

7597

Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 2017;18(1):18–31. https://pubmed.ncbi.nlm.nih.gov/27862824/

7598

Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2010;103(3):460–6. https://pubmed.ncbi.nlm.nih.gov/19818198/

7599

Greenway F, O’Neil CE, Stewart L, Rood J, Keenan M, Martin R. Fourteen weeks of treatment with Viscofiber increased fasting levels of glucagon-like peptide-1 and peptide-YY. J Med Food. 2007;10(4):720–4. https://pubmed.ncbi.nlm.nih.gov/18158848/

7600

Sandberg JC, Björck IM, Nilsson AC. Rye-based evening meals favorably affected glucose regulation and appetite variables at the following breakfast; a randomized controlled study in healthy subjects. PLoS ONE. 2016;11(3):e0151985. https://pubmed.ncbi.nlm.nih.gov/26990559/

7601

Han Y, Xiao H. Whole food – based approaches to modulating gut microbiota and associated diseases. Annu Rev Food Sci Technol. 2020;11:119–43. https://pubmed.ncbi.nlm.nih.gov/31951487/

7602

Kahle K, Kraus M, Scheppach W, Ackermann M, Ridder F, Richling E. Studies on apple and blueberry fruit constituents: do the polyphenols reach the colon after ingestion? Mol Nutr Food Res. 2006;50(4–5):418–23. https://pubmed.ncbi.nlm.nih.gov/16548015/

7603

Martel J, Ojcius DM, Ko YF, Young JD. Phytochemicals as prebiotics and biological stress inducers. Trends Biochem Sci. 2020;45(6):462–71. https://pubmed.ncbi.nlm.nih.gov/32413323/

7604

Routray W, Orsat V. Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Comp Rev Food Sci and Food Saf. 2011;10(6):303–20. https://doi.org/10.1111/j.1541–4337.2011.00164.x

7605

Hidalgo M, Oruna-Concha MJ, Kolida S, et al. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem. 2012;60:3882–90. https://pubmed.ncbi.nlm.nih.gov/22439618/

7606

Stevenson D, Scalzo J. Anthocyanin composition and content of blueberries. J Berry Res. 2012;2(4):179–89. https://dx.doi.org/10.3233/JBR-2012-038

7607

Vendrame S, Guglielmetti S, Riso P, Arioli S, Klimis-Zacas D, Porrini M. Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem. 2011;59(24):12815–20. https://pubmed.ncbi.nlm.nih.gov/22060186/

7608

Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe. 2010;16(5):510–5. https://pubmed.ncbi.nlm.nih.gov/20304079/

7609

Drasar B, Jenkins D. Bacteria, diet, and large bowel cancer. Am J Clin Nutr. 1976;29:1410–6. https://pubmed.ncbi.nlm.nih.gov/998551/

7610

Mitsou EK, Kougia E, Nomikos T, Yannakoulia M, Mountzouris KC, Kyriacou A. Effect of banana consumption on faecal microbiota: a randomised, controlled trial. Anaerobe. 2011;17(6):384–7. https://pubmed.ncbi.nlm.nih.gov/21524710/

7611

Del Bo’ C, Bernardi S, Cherubini A, et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: the MaPLE randomised controlled trial. Clin Nutr. 2021;40(5):3006–18. https://pubmed.ncbi.nlm.nih.gov/33388204/

7612

Jin JS, Touyama M, Hisada T, Benno Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol Immunol. 2012;56(11):729–39. https://pubmed.ncbi.nlm.nih.gov/22924537/

7613

Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R. Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol. 2009;130(2):117–21. https://pubmed.ncbi.nlm.nih.gov/19217682/

7614

Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R. Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol. 2009;130(2):117–21. https://pubmed.ncbi.nlm.nih.gov/19217682/

7615

Sarin S, Marya C, Nagpal R, Oberoi SS, Rekhi A. Preliminary clinical evidence of the antiplaque, antigingivitis efficacy of a mouthwash containing 2 % green tea – a randomised clinical trial. Oral Health Prev Dent. 2015;13(3):197–203. https://pubmed.ncbi.nlm.nih.gov/25610918/

7616

Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/

7617

Ikeda S, Kanoya Y, Nagata S. Effects of a foot bath containing green tea polyphenols on interdigital tinea pedis. Foot (Edinb). 2013;23(2–3):58–62. https://pubmed.ncbi.nlm.nih.gov/23499394/

7618

Jin JS, Touyama M, Hisada T, Benno Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol Immunol. 2012;56(11):729–39. https://pubmed.ncbi.nlm.nih.gov/22924537/

7619

Sun H, Chen Y, Cheng M, Zhang X, Zheng X, Zhang Z. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J Food Sci Technol. 2018;55(1):399–407. https://pubmed.ncbi.nlm.nih.gov/29358833/

7620

Ma ZJ, Wang HJ, Ma XJ, et al. Modulation of gut microbiota and intestinal barrier function during alleviation of antibiotic-associated diarrhea with Rhizoma Zingiber officinale (Ginger) extract. Food Funct. 2020;11(12):10839–51. https://pubmed.ncbi.nlm.nih.gov/33241234/

7621

Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res. 2020;48(6):300060520925930. https://pubmed.ncbi.nlm.nih.gov/32600151/

7622

Marx W, Scholey A, Firth J, et al. Prebiotics, probiotics, fermented foods and cognitive outcomes: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2020;118:472–84. https://pubmed.ncbi.nlm.nih.gov/32860802/

7623

Frontiers Editorial Office. Expression of concern: effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. 2020;12:602204. https://pubmed.ncbi.nlm.nih.gov/33192496/

7624

. [Information on the investigation and handling of suspected fraudulent thesis]. Ministry of Science and Technology of the People’s Republic of China. https://www.most.gov.cn/tztg/202101/t20210121_172330.html. Published January 21, 2021. Accessed November 7, 2021.; https://www.most.gov.cn/tztg/202101/t20210121_172330.html.

7625

Syed YY. Sodium oligomannate: first approval. Drugs. 2020;80(4):441–4. https://pubmed.ncbi.nlm.nih.gov/32020555/

7626

Czank C, Cassidy A, Zhang Q, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr. 2013;97(5):995–1003. https://pubmed.ncbi.nlm.nih.gov/23604435/

7627

Djedjibegovic J, Marjanovic A, Panieri E, Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev. 2020;2020:1–15. https://pubmed.ncbi.nlm.nih.gov/32774676/

7628

Bakkalbasi E, Mentes O, Artik N. Food ellagitannins – occurrence, effects of processing and storage. Crit Rev Food Sci Nutr. 2009;49(3):283–98. https://pubmed.ncbi.nlm.nih.gov/19093271/

7629

Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–88. https://pubmed.ncbi.nlm.nih.gov/27400265/

7630

Djedjibegovic J, Marjanovic A, Panieri E, Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev. 2020;2020:1–15. https://pubmed.ncbi.nlm.nih.gov/32774676/

7631

Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–88. https://pubmed.ncbi.nlm.nih.gov/27400265/

7632

Drummond MJ, Addison O, Brunker L, et al. Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci. 2014;69(8):1040–8. https://pubmed.ncbi.nlm.nih.gov/24526667/

7633

Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med. 2016;22(8):879–88. https://pubmed.ncbi.nlm.nih.gov/27400265/

7634

Andreux PA, Blanco-Bose W, Ryu D, et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab. 2019;1(6):595–603. https://pubmed.ncbi.nlm.nih.gov/32694802/

7635

Liu S, D’Amico D, Shankland E, et al. Effect of urolithin A supplementation on muscle endurance and mitochondrial health in older adults. JAMA Netw Open. 2022;5(1):e2144279. https://pubmed.ncbi.nlm.nih.gov/35050355/

7636

Singh A, D’Amico D, Andreux PA, et al. Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. Eur J Clin Nutr. 2022;76(2):297–308. https://pubmed.ncbi.nlm.nih.gov/34117375/

7637

González-Sarrías A, García-Villalba R, Romo-Vaquero M, et al. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Mol Nutr Food Res. 2017;61(5):1600830. https://pubmed.ncbi.nlm.nih.gov/27879044/

7638

Wu YT, Shen SJ, Liao KF, Huang CY. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores. Microbiol Spectr. 2022;10(2):e0204721. https://pubmed.ncbi.nlm.nih.gov/35285706/

7639

Alfei S, Marengo B, Zuccari G. Oxidative stress, antioxidant capabilities, and bioavailability: ellagic acid or urolithins? Antioxidants (Basel). 2020;9(8):E707. https://pubmed.ncbi.nlm.nih.gov/32759749/

7640

Prentice AM. Starvation in humans: evolutionary background and contemporary implications. Mech Ageing Dev. 2005;126(9):976–81. https://pubmed.ncbi.nlm.nih.gov/15907972/

7641

Wilhelmi de Toledo F, Buchinger A, Burggrabe H, et al. Fasting therapy – an expert panel update of the 2002 consensus guidelines. Forsch Komplementmed. 2013;20(6):434–43. https://pubmed.ncbi.nlm.nih.gov/24434758/

7642

Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92. https://pubmed.ncbi.nlm.nih.gov/24440038/

7643

Michalsen A, Li C. Fasting therapy for treating and preventing disease – current state of evidence. Forsch Komplementmed. 2013;20(6):444–53. https://pubmed.ncbi.nlm.nih.gov/24434759/

7644

Kozubík A, Pospísil M. Protective effect of intermittent fasting on the mortality of gamma-irradiated mice. Strahlentherapie. 1982;158(12):734–8. https://pubmed.ncbi.nlm.nih.gov/6761903/

7645

Dossey L. Longevity. Altern Ther Health Med. 2002;8(3):12–6 https://pubmed.ncbi.nlm.nih.gov/12017488/

7646

Ziegler CC, Sidani MA. Diets for successful aging. Clin Geriatr Med. 2011;27(4):577–89. https://pubmed.ncbi.nlm.nih.gov/22062442/

7647

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7648

Hindhede M. The effect of food restriction during war on mortality in Copenhagen. JAMA. 1920;74(6):381–2. https://jamanetwork.com/journals/jama/article-abstract/223580

7649

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7650

Austad SN, Hoffman JM. Beyond calorie restriction: aging as a biological target for nutrient therapies. Curr Opin Biotechnol. 2021;70:56–60. https://pubmed.ncbi.nlm.nih.gov/33360494/

7651

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7652

Austad SN. Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol. 1989;24(1):83–92. https://pubmed.ncbi.nlm.nih.gov/2707314/

7653

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

7654

Speakman JR. Why does caloric restriction increase life and healthspan? The “clean cupboards” hypothesis. Natl Sci Rev. 2020;7(7):1153–6. https://pubmed.ncbi.nlm.nih.gov/34692140/

7655

Mani K, Javaheri A, Diwan A. Lysosomes mediate benefits of intermittent fasting in cardiometabolic disease: the janitor is the undercover boss. Compr Physiol. 2018;8(4):1639–67. https://pubmed.ncbi.nlm.nih.gov/30215867/

7656

Dulloo AG. Explaining the failures of obesity therapy: willpower attenuation, target miscalculation or metabolic compensation? Int J Obes (Lond). 2012;36(11):1418–20. https://pubmed.ncbi.nlm.nih.gov/23147189/

7657

Redman LM, Heilbronn LK, Martin CK, et al. Metabolic and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS ONE. 2009;4(2):e4377. https://pubmed.ncbi.nlm.nih.gov/19198647/

7658

Hall KD. Metabolic adaptations to weight loss. Obesity (Silver Spring). 2018;26(5):790–1. https://pubmed.ncbi.nlm.nih.gov/29637734/

7659

Schwartz A, Doucet E. Relative changes in resting energy expenditure during weight loss: a systematic review. Obes Rev. 2010;11(7):531–47. https://pubmed.ncbi.nlm.nih.gov/19761507/

7660

Osborne TB, Mendel LB, Ferry EL. The effect of retardation of growth upon the breeding period and duration of life of rats. Science. 1917;45(1160):294–5. https://pubmed.ncbi.nlm.nih.gov/17760202/

7661

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.e4. https://pubmed.ncbi.nlm.nih.gov/29576535/

7662

European hare (Lepus europaeus) longevity, ageing, and life history. Human Ageing Genomic Resources. https://genomics.senescence.info/species/entry.php?species=Lepus_europaeus. Published October 14, 2017. December 9, 2022.; https://genomics.senescence.info/species/entry.php?species=Lepus_europaeus

7663

Galapagos tortoise (Chelonoidis nigra) longevity, ageing, and life history. Human Ageing Genomic Resources. https://genomics.senescence.info/species/entry.php?species=Chelonoidis_nigra. Published 2018. Accessed December 9, 2022.; https://genomics.senescence.info/species/entry.php?species=Chelonoidis_nigra

7664

Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS MED. 2007;4(3):e76. https://pubmed.ncbi.nlm.nih.gov/17341128/

7665

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.e4. https://pubmed.ncbi.nlm.nih.gov/29576535/

7666

Tamakoshi A, Tamakoshi K, Lin Y, Yagyu K, Kikuchi S, JACC Study Group. Healthy lifestyle and preventable death: findings from the Japan Collaborative Cohort (JACC) Study. Prev Med. 2009;48(5):486–92. https://pubmed.ncbi.nlm.nih.gov/19254743/

7667

Bourzac K. Interventions: live long and prosper. Nature. 2012;492(7427):S18–20. https://pubmed.ncbi.nlm.nih.gov/23222670/

7668

Rebrin I, Forster MJ, Sohal RS. Association between life-span extension by caloric restriction and thiol redox state in two different strains of mice. Free Radic Biol Med. 2011;51(1):225–33. https://pubmed.ncbi.nlm.nih.gov/21530646/

7669

Life expectancy. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/fastats/life-expectancy.htm. Updated September 6, 2022. Accessed December 9, 2022.; https://www.cdc.gov/nchs/fastats/life-expectancy.htm

7670

Speakman JR, Hambly C. Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr. 2007;137(4):1078–86. https://pubmed.ncbi.nlm.nih.gov/17374682/

7671

Speakman JR, Hambly C. Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr. 2007;137(4):1078–86. https://pubmed.ncbi.nlm.nih.gov/17374682/

7672

Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell. 2010;9(1):92–5. https://pubmed.ncbi.nlm.nih.gov/21388497/

7673

Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev. 2021;200:111584. https://pubmed.ncbi.nlm.nih.gov/34673082/

7674

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/

7675

Ingram DK, de Cabo R. Calorie restriction in rodents: caveats to consider. Ageing Res Rev. 2017;39:15–28. https://pubmed.ncbi.nlm.nih.gov/28610949/

7676

Lawler DF, Larson BT, Ballam JM, et al. Diet restriction and ageing in the dog: major observations over two decades. Br J Nutr. 2008;99(4):793–805. https://pubmed.ncbi.nlm.nih.gov/18062831/

7677

Fryar CD, Carroll MD, Afful J. Prevalence of overweight, obesity, and extreme obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/data/hestat/obesity-adult-17–18/overweight-obesity-adults-H.pdf. Published December 2020. Accessed November 22, 2022.; https://www.cdc.gov/nchs/data/hestat/obesity-adult-17-18/obesity-adult.htm

7678

Grover SA, Kaouache M, Rempel P, et al. Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: a modelling study. Lancet Diabetes Endocrinol. 2015;3(2):114–22. https://pubmed.ncbi.nlm.nih.gov/25483220/

7679

Bodkin NL, Alexander TM, Ortmeyer HK, Johnson E, Hansen BC. Mortality and morbidity in laboratory-maintained rhesus monkeys and effects of long-term dietary restriction. J Gerontol A Biol Sci Med Sci. 2003;58(3):212–9. https://pubmed.ncbi.nlm.nih.gov/12634286/

7680

Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun. 2014;5(1):3557. https://pubmed.ncbi.nlm.nih.gov/24691430/

7681

Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21. https://pubmed.ncbi.nlm.nih.gov/22932268/

7682

Pifferi F, Terrien J, Marchal J, et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol. 2018;1:30. https://pubmed.ncbi.nlm.nih.gov/30271916/

7683

Le Bourg E. Dietary restriction studies in humans: focusing on obesity, forgetting longevity. Gerontology. 2012;58(2):126–8. https://pubmed.ncbi.nlm.nih.gov/21701153/

7684

Harbottle EJ, Birmingham CL, Sayani F. Anorexia nervosa: a survival analysis. Eat Weight Disord. 2008;13(2):e32–4. https://pubmed.ncbi.nlm.nih.gov/18612251/

7685

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7686

Harbottle EJ, Birmingham CL, Sayani F. Anorexia nervosa: a survival analysis. Eat Weight Disord. 2008;13(2):e32–4. https://pubmed.ncbi.nlm.nih.gov/18612251/

7687

Machado PPP, Grilo CM, Crosby RD. Evaluation of the DSM-5 severity indicator for anorexia nervosa. Eur Eat Disord Rev. 2017;25(3):221–3. https://pubmed.ncbi.nlm.nih.gov/28402070/

7688

Fryar CD, Kruszon-Moran D, Gu Q, Ogden CL. Mean body weight, height, waist circumference, and body mass index among adults: United States, 1999–2000 through 2015–2016. Natl Health Stat Report. 2018;(122):1–16. https://pubmed.ncbi.nlm.nih.gov/30707668/

7689

Mehler PS, Koutsavlis A. Anorexia nervosa, albumin, and inflammation. Am J Med. 2021;134(6):e401. https://pubmed.ncbi.nlm.nih.gov/34049636/

7690

Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31. https://pubmed.ncbi.nlm.nih.gov/21727255/

7691

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7692

Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/

7693

Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinol Metab. 2018;314(4):E396–405. https://pubmed.ncbi.nlm.nih.gov/29351490/

7694

Anderson RM, Le Couteur DG, de Cabo R. Caloric restriction research: new perspectives on the biology of aging. J Gerontol A Biol Sci Med Sci. 2017;73(1):1–3. https://pubmed.ncbi.nlm.nih.gov/29240911/

7695

Richardson A, Austad SN, Ikeno Y, Unnikrishnan A, McCarter RJ. Significant life extension by ten percent dietary restriction. Ann N Y Acad Sci. 2016;1363(1):11–7. https://pubmed.ncbi.nlm.nih.gov/26695614/

7696

Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7. https://pubmed.ncbi.nlm.nih.gov/16226298/

7697

Martin CK, Bhapkar M, Pittas AG, et al. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: the CALERIE 2 randomized clinical trial. JAMA Intern Med. 2016;176(6):743–52. https://pubmed.ncbi.nlm.nih.gov/27136347/

7698

Most J, Gilmore LA, Smith SR, Han H, Ravussin E, Redman LM. Significant improvement in cardiometabolic health in healthy nonobese individuals during caloric restriction-induced weight loss and weight loss maintenance. Am J Physiol Endocrinol Metab. 2018;314(4):E396–405. https://pubmed.ncbi.nlm.nih.gov/29351490/

7699

Ravussin E, Redman LM, Rochon J, et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci. 2015;70(9):1097–104. https://pubmed.ncbi.nlm.nih.gov/26187233/

7700

Das SK, Roberts SB, Bhapkar MV, et al. Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: a 2-y randomized controlled trial of calorie restriction in nonobese humans. Am J Clin Nutr. 2017;105(4):913–27. https://pubmed.ncbi.nlm.nih.gov/28228420/

7701

Franklin JC, Scheile BC. Observations on human behavior in experimental semi-starvation and rehabilitation. J Clin Psychol. 1948;4(1):28–45. https://pubmed.ncbi.nlm.nih.gov/18903450/

7702

Dulloo AG, Jacquet J, Montani JP. How dieting makes some fatter: from a perspective of human body composition autoregulation. Proc Nutr Soc. 2012;71(3):379–89. https://pubmed.ncbi.nlm.nih.gov/22475574/

7703

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.e4. https://pubmed.ncbi.nlm.nih.gov/29576535/

7704

Marlatt KL, Redman LM, Burton JH, Martin CK, Ravussin E. Persistence of weight loss and acquired behaviors 2 y after stopping a 2-y calorie restriction intervention. Am J Clin Nutr. 2017;105(4):928–35. https://pubmed.ncbi.nlm.nih.gov/28275127/

7705

Dorling JL, van Vliet S, Huffman KM, et al. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev. 2020;79(1):98–113. https://pubmed.ncbi.nlm.nih.gov/32940695/

7706

Kahathuduwa CN, Binks M, Martin CK, Dawson JA. Extended calorie restriction suppresses overall and specific food cravings: a systematic review and a meta-analysis. Obes Rev. 2017;18(10):1122–35. https://pubmed.ncbi.nlm.nih.gov/28557246/

7707

Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.e4. https://pubmed.ncbi.nlm.nih.gov/29576535/

7708

Il’yasova D, Fontana L, Bhapkar M, et al. Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: the CALERIE 2 randomized clinical trial. Aging Cell. 2018;17(2):e12719. https://pubmed.ncbi.nlm.nih.gov/29424490/

7709

Omodei D, Licastro D, Salvatore F, Crosby SD, Fontana L. Serum from humans on long-term calorie restriction enhances stress resistance in cell culture. Aging (Albany NY). 2013;5(8):599–606. https://pubmed.ncbi.nlm.nih.gov/23912304/

7710

Dorling JL, van Vliet S, Huffman KM, et al. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev. 2020;79(1):98–113. https://pubmed.ncbi.nlm.nih.gov/32940695/

7711

Dorling JL, van Vliet S, Huffman KM, et al. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev. 2020;79(1):98–113. https://pubmed.ncbi.nlm.nih.gov/32940695/

7712

Block G, Dresser CM, Hartman AM, Carroll MD. Nutrient sources in the American diet: quantitative data from the NHANES II survey. II. Macronutrients and fats. Am J Epidemiol. 1985;122(1):13–26. https://pubmed.ncbi.nlm.nih.gov/4014199/

7713

Dorling JL, van Vliet S, Huffman KM, et al. Effects of caloric restriction on human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev. 2020;79(1):98–113. https://pubmed.ncbi.nlm.nih.gov/32940695/

7714

Tang X, Zhao W, Lu M, et al. Relationship between central obesity and the incidence of cognitive impairment and dementia from cohort studies involving 5,060,687 participants. Neurosci Biobehav Rev. 2021;130:301–13. https://pubmed.ncbi.nlm.nih.gov/34464646/

7715

Yu Q, Zou L, Kong Z, Yang L. Cognitive impact of calorie restriction: a narrative review. J Am Med Dir Assoc. 2020;21(10):1394–401. https://pubmed.ncbi.nlm.nih.gov/32693996/

7716

Phillips MCL. Fasting as a therapy in neurological disease. Nutrients. 2019;11(10):2501. https://pubmed.ncbi.nlm.nih.gov/31627405/

7717

Lü W, Yu T, Kuang W. Effects of dietary restriction on cognitive function: a systematic review and meta-analysis. Nutr Neurosci. Published online April 25, 2022:1–11.; https://pubmed.ncbi.nlm.nih.gov/35469542/

7718

Lü W, Yu T, Kuang W. Effects of dietary restriction on cognitive function: a systematic review and meta-analysis. Nutr Neurosci. Published online April 25, 2022:1–11.; https://pubmed.ncbi.nlm.nih.gov/35469542/

7719

Witte AV, Fobker M, Gellner R, Knecht S, Flöel A. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60. https://pubmed.ncbi.nlm.nih.gov/19171901/

7720

Leclerc E, Trevizol AP, Grigolon RB, et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. 2020;25(1):2–8. https://pubmed.ncbi.nlm.nih.gov/30968820/

7721

Lindseth GN, Lindseth PD, Jensen WC, Petros TV, Helland BD, Fossum DL. Dietary effects on cognition and pilots’ flight performance. Int J Aviat Psychol. 2011;21(3):269–82. https://pubmed.ncbi.nlm.nih.gov/29353985/

7722

Benau EM, Orloff NC, Janke EA, Serpell L, Timko CA. A systematic review of the effects of experimental fasting on cognition. Appetite. 2014;77:52–61. https://pubmed.ncbi.nlm.nih.gov/24583414/

7723

Zajac I, Herreen D, Hunkin H, et al. Modified fasting compared to true fasting improves blood glucose levels and subjective experiences of hunger, food cravings and mental fatigue, but not cognitive function: results of an acute randomised cross-over trial. Nutrients. 2020;13(1):E65. https://pubmed.ncbi.nlm.nih.gov/33379191/

7724

Lieberman HR, Caruso CM, Niro PJ, et al. A double-blind, placebo-controlled test of 2 d of calorie deprivation: effects on cognition, activity, sleep, and interstitial glucose concentrations. Am J Clin Nutr. 2008;88(3):667–76. https://pubmed.ncbi.nlm.nih.gov/18779282/

7725

Dar BA, Dar MA, Bashir S. Calorie restriction the fountain of youth. Food Nutr Sci. 2012;3(11):1522–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=24485

7726

Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7. https://pubmed.ncbi.nlm.nih.gov/16226298/

7727

Hunt ND, Li GD, Zhu M, et al. Effect of calorie restriction and refeeding on skin wound healing in the rat. Age (Dordr). 2012;34(6):1453–8. https://pubmed.ncbi.nlm.nih.gov/22037865/

7728

Reed MJ, Penn PE, Li Y, et al. Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mech Ageing Dev. 1996;89(1):21–43. https://pubmed.ncbi.nlm.nih.gov/8819104/

7729

Bergendahl M, Vance ML, Iranmanesh A, Thorner MO, Veldhuis JD. Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men. J Clin Endocrinol Metab. 1996;81(2):692–9. https://pubmed.ncbi.nlm.nih.gov/8636290/

7730

Nakamura Y, Walker BR, Ikuta T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress. 2016;19(2):151–7. https://pubmed.ncbi.nlm.nih.gov/26586092/

7731

Speakman JR, Hambly C. Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr. 2007;137(4):1078–86. https://pubmed.ncbi.nlm.nih.gov/17374682/

7732

Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318–21. https://pubmed.ncbi.nlm.nih.gov/22932268/

7733

Sun D, Muthukumar AR, Lawrence RA, Fernandes G. Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Immunol. 2001;8(5):1003–11. https://pubmed.ncbi.nlm.nih.gov/11527818/

7734

Gardner EM, Beli E, Clinthorne JF, Duriancik DM. Energy intake and response to infection with influenza. Annu Rev Nutr. 2011;31:353–67. https://pubmed.ncbi.nlm.nih.gov/21548773/

7735

Barbosa ASAA, Diório SM, Pedrini SCB, et al. Nutritional status and immune response in murine experimental Jorge Lobo’s disease. Mycoses. 2015;58(9):522–30. https://pubmed.ncbi.nlm.nih.gov/26156007/

7736

Kristan DM. Chronic calorie restriction increases susceptibility of laboratory mice (Mus musculus) to a primary intestinal parasite infection. Aging Cell. 2007;6(6):817–25. https://pubmed.ncbi.nlm.nih.gov/17973970/

7737

Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr. 2010;140(8):1495–501. https://pubmed.ncbi.nlm.nih.gov/20534876/

7738

Clinthorne JF, Adams DJ, Fenton JI, Ritz BW, Gardner EM. Short-term re-feeding of previously energy-restricted C57BL/6 male mice restores body weight and body fat and attenuates the decline in natural killer cell function after primary influenza infection. J Nutr. 2010;140(8):1495–501. https://pubmed.ncbi.nlm.nih.gov/20534876/

7739

Nicoll R, Henein MY. Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. Int J Mol Sci. 2018;19(3):751. https://pubmed.ncbi.nlm.nih.gov/29518898/

7740

Florian JP, Baisch FJ, Heer M, Pawelczyk JA. Caloric restriction decreases orthostatic tolerance independently from 6° head-down bedrest. PLoS ONE. 2015;10(4):e0118812. https://pubmed.ncbi.nlm.nih.gov/25915488/

7741

Lu CC, Diedrich A, Tung CS, et al. Water ingestion as prophylaxis against syncope. Circulation. 2003;108(21):2660–5. https://pubmed.ncbi.nlm.nih.gov/14623807/

7742

Racette SB, Rochon J, Uhrich ML, et al. Effects of two years of calorie restriction on aerobic capacity and muscle strength. Med Sci Sports Exerc. 2017;49(11):2240–9. https://pubmed.ncbi.nlm.nih.gov/29045325/

7743

Cava E, Yeat NC, Mittendorfer B. Preserving healthy muscle during weight loss. Adv Nutr. 2017;8(3):511–9. https://pubmed.ncbi.nlm.nih.gov/28507015/

7744

Smith GI, Yoshino J, Kelly SC, et al. High-protein intake during weight loss therapy eliminates the weight-loss-induced improvement in insulin action in obese postmenopausal women. Cell Rep. 2016;17(3):849–61. https://pubmed.ncbi.nlm.nih.gov/27732859/

7745

Sardeli AV, Komatsu TR, Mori MA, Gáspari AF, Chacon-Mikahil MPT. Resistance training prevents muscle loss induced by caloric restriction in obese elderly individuals: a systematic review and meta-analysis. Nutrients. 2018;10(4):423. https://pubmed.ncbi.nlm.nih.gov/29596307/

7746

Villareal DT, Fontana L, Weiss EP, et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med. 2006;166(22):2502–10. https://pubmed.ncbi.nlm.nih.gov/17159017/

7747

Romashkan SV, Das SK, Villareal DT, et al. Safety of two-year caloric restriction in non-obese healthy individuals. Oncotarget. 2016;7(15):19124–33. https://pubmed.ncbi.nlm.nih.gov/26992237/

7748

Villareal DT, Kotyk JJ, Armamento-Villareal RC, et al. Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term calorie restriction with adequate nutrition. Aging Cell. 2011;10(1):96–102. https://pubmed.ncbi.nlm.nih.gov/20969721/

7749

Lee YM, Kim KS, Jacobs DR, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev. 2017;18(2):129–39. https://pubmed.ncbi.nlm.nih.gov/27911986/

7750

Vaz R, Slorach SA, Hofvander Y. Organochlorine contaminants in Swedish human milk: studies conducted at the National Food Administration 1981–1990. Food Addit Contam. 1993;10(4):407–18. https://pubmed.ncbi.nlm.nih.gov/8405580/

7751

Jandacek RJ, Heubi JE, Buckley DD, et al. Reduction of the body burden of PCBs and DDE by dietary intervention in a randomized trial. J Nutr Biochem. 2014;25(4):483–8. https://pubmed.ncbi.nlm.nih.gov/24629911/

7752

Sera N, Morita K, Nagasoe M, Tokieda H, Kitaura T, Tokiwa H. Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber. J Nutr Biochem. 2005;16(1):50–8. https://pubmed.ncbi.nlm.nih.gov/15629241/

7753

Tufan F, Soyluk O, Karan MA. Healthy behaviors potentially due to calorie restriction. JAMA Intern Med. 2016;176(11):1724. https://pubmed.ncbi.nlm.nih.gov/27820642/

7754

Villareal DT, Fontana L, Das SK, et al. Effect of two-year caloric restriction on bone metabolism and bone mineral density in non-obese younger adults: a randomized clinical trial. J Bone Miner Res. 2016;31(1):40–51. https://pubmed.ncbi.nlm.nih.gov/26332798/

7755

Khong TK, Kimpton J. Moderate calorie restriction improves cardiometabolic risk factors in healthy individuals. Drug Ther Bull. 2020;58(9):135–6. https://pubmed.ncbi.nlm.nih.gov/32843424/

7756

Key T, Davey G. Prevalence of obesity is low in people who do not eat meat. BMJ. 1996;313(7060):816–7. https://pubmed.ncbi.nlm.nih.gov/8842088/

7757

Kennedy ET, Bowman SA, Spence JT, Freedman M, King J. Popular diets: correlation to health, nutrition, and obesity. J Am Diet Assoc. 2001;101(4):411–20. https://pubmed.ncbi.nlm.nih.gov/11320946/

7758

Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet. 2013;113(12):1610–9. https://pubmed.ncbi.nlm.nih.gov/23988511/

7759

Sinclair DA, LaPlante MD. Lifespan: The Revolutionary Science of Why We Age – and Why We Don’t Have To. Atria Books; 2019. https://worldcat.org/title/1121458577

7760

Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M. Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology. 2006;7(3):173–7. https://pubmed.ncbi.nlm.nih.gov/16810568/

7761

Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol. 2010;29(4):127–32. https://pubmed.ncbi.nlm.nih.gov/20686325/

7762

Twain M. My Debut As A Literary Person: With Other Essays and Stories. American Pub Co; 1903. https://worldcat.org/title/54203287

7763

Twain M. A Connecticut Yankee in King Arthur’s Court. Charles L. Webster and Co; 1889. https://worldcat.org/title/1110204204

7764

Harris L, McGarty A, Hutchison L, Ells L, Hankey C. Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis. Obes Rev. 2018;19(1):1–13. https://pubmed.ncbi.nlm.nih.gov/28975722/

7765

Trepanowski JF, Kroeger CM, Barnosky A, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med. 2017;177(7):930–8. https://pubmed.ncbi.nlm.nih.gov/28459931/

7766

Arguin H, Dionne IJ, Sénéchal M, et al. Short– and long-term effects of continuous versus intermittent restrictive diet approaches on body composition and the metabolic profile in overweight and obese postmenopausal women: a pilot study. Menopause. 2012;19(8):870–6. https://pubmed.ncbi.nlm.nih.gov/22735163/

7767

Corley BT, Carroll RW, Hall RM, Weatherall M, Parry-Strong A, Krebs JD. Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med. 2018;35(5):588–94. https://pubmed.ncbi.nlm.nih.gov/29405359/

7768

Lammers LA, Achterbergh R, de Vries EM, et al. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans. Drug Metab Dispos. 2015;43(6):819–28. https://pubmed.ncbi.nlm.nih.gov/25795462/

7769

de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019;381(26):2541–51. https://pubmed.ncbi.nlm.nih.gov/31881139/

7770

da Luz FQ, Hay P, Gibson AA, et al. Does severe dietary energy restriction increase binge eating in overweight or obese individuals? A systematic review. Obes Rev. 2015;16(8):652–65. https://pubmed.ncbi.nlm.nih.gov/26094791/

7771

Horne BD, May HT, Anderson JL, et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease among patients undergoing coronary angiography. Am J Cardiol. 2008;102(7):814–9. https://pubmed.ncbi.nlm.nih.gov/18805103/

7772

Enstrom JE. Cancer and total mortality among active Mormons. Cancer. 1978;42(4):1943–51. https://pubmed.ncbi.nlm.nih.gov/709540/

7773

Horne BD, Muhlestein JB, May HT, et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. Am J Cardiol. 2012;109(11):1558–62. https://pubmed.ncbi.nlm.nih.gov/22425331/

7774

Bartholomew CL, Muhlestein JB, Anderson JL, et al. Association of periodic fasting lifestyles with survival and incident major adverse cardiovascular events in patients undergoing cardiac catheterization. Eur J Prev Cardiol. 2022;28(16):1774–81. https://pubmed.ncbi.nlm.nih.gov/33624026/

7775

Tsaban G. Routine periodic fasting reduces all-cause mortality and heart failure incidence: new insights on old habits. Eur J Prev Cardiol. 2022;28(16):1782–3. https://pubmed.ncbi.nlm.nih.gov/33624012/

7776

Enstrom JE. Cancer and total mortality among active Mormons. Cancer. 1978;42(4):1943–51. https://pubmed.ncbi.nlm.nih.gov/709540/

7777

The Doctrine and Covenants of The Church of Jesus Christ of Latter-day Saints. Section 89:12. The Church of Jesus Christ of Latter-day Saints; 2013. https://www.churchofjesuschrist.org/study/scriptures/dc-testament/dc/89?lang=eng. Accessed December 9 https://www.churchofjesuschrist.org/study/scriptures/dc-testament/dc/89?lang=eng

7778

Vallejo EA. La dieta de hambre a dias alternos en la alimentacion de los viejos. Rev Clin Esp. 1956;63:25–7. https://pubmed.ncbi.nlm.nih.gov/13420784/

7779

Stunkard AJ. Nutrition, aging and obesity: a critical review of a complex relationship. Int J Obes. 1983;7(3):201–20. https://pubmed.ncbi.nlm.nih.gov/6885229/

7780

Brandhorst S, Choi IY, Wei M, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22(1):86–99. https://pubmed.ncbi.nlm.nih.gov/26094889/

7781

Abbasi J. Can a diet that mimics fasting turn back the clock? JAMA. 2017;318(3):227–9. https://pubmed.ncbi.nlm.nih.gov/28658487/

7782

Wei M, Brandhorst S, Shelehchi M, et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Transl Med. 2017;9(377):8700. https://pubmed.ncbi.nlm.nih.gov/28202779/

7783

Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;22(5):789–98. https://pubmed.ncbi.nlm.nih.gov/26411343/

7784

Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity (Silver Spring). 2018;26(2):254–68. https://pubmed.ncbi.nlm.nih.gov/29086496/

7785

Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018;27(6):1212–21.e3. https://pubmed.ncbi.nlm.nih.gov/29754952/

7786

Schloss J, Steel A. Medical synopsis: nightly fasting may assist breast cancer patients and other people with cancer. Adv Integr Med. 2016;3(2):66–7. https://www.sciencedirect.com/science/article/pii/S2212958816300738?via%3Dihub

7787

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

7788

Currenti W, Godos J, Castellano S, et al. Association between time restricted feeding and cognitive status in older Italian adults. Nutrients. 2021;13(1):E191. https://pubmed.ncbi.nlm.nih.gov/33435416/

7789

Mayer J. Should you starve yourself thin? Family Health/Today’s Health. February, 1977.; https://agris.fao.org/agris-search/search.do?recordID=US201302986920

7790

Keys A. Caloric undernutrition and starvation, with notes on protein deficiency. J Am Med Assoc. 1948;138(7):500–11. https://pubmed.ncbi.nlm.nih.gov/18884888/

7791

Michalsen A, Li C. Fasting therapy for treating and preventing disease – current state of evidence. Forsch Komplementmed. 2013;20(6):444–53. https://pubmed.ncbi.nlm.nih.gov/24434759/

7792

Schnitker MA, Mattman PE, Bliss TL. A clinical study of malnutrition in Japanese prisoners of war. Ann Intern Med. 1951;35(1):69–96. https://pubmed.ncbi.nlm.nih.gov/14847450/

7793

Boateng AA, Sriram K, Meguid MM, Crook M. Refeeding syndrome: treatment considerations based on collective analysis of literature case reports. Nutrition. 2010;26(2):156–67. https://pubmed.ncbi.nlm.nih.gov/20122539/

7794

Finnell JS, Saul BC, Goldhamer AC, Myers TR. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complement Altern Med. 2018;18:67. https://pubmed.ncbi.nlm.nih.gov/29458369/

7795

Michalsen A, Li C. Fasting therapy for treating and preventing disease – current state of evidence. Forsch Komplementmed. 2013;20(6):444–53. https://pubmed.ncbi.nlm.nih.gov/24434759/

7796

Runcie J, Thomson TJ. Prolonged starvation – a dangerous procedure? Br Med J. 1970;3(5720):432–5. https://pubmed.ncbi.nlm.nih.gov/5454322/

7797

Sailaja BS, He XC, Li L. Stem cells matter in response to fasting. Cell Rep. 2015;13(11):2325–6. https://pubmed.ncbi.nlm.nih.gov/26705824/

7798

Raffaghello L, Lee C, Safdie FM, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105(24):8215–20. https://pubmed.ncbi.nlm.nih.gov/18378900/

7799

Dorff TB, Groshen S, Garcia A, et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer. 2016;16:360. https://pubmed.ncbi.nlm.nih.gov/27282289/

7800

Nencioni A, Caffa I, Cortellino S, Longo VD. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer. 2018;18(11):707–19. https://pubmed.ncbi.nlm.nih.gov/30327499/

7801

Lugtenberg RT, de Groot S, Kaptein AA, et al. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013–14) trial. Breast Cancer Res Treat. 2021;185(3):741–58. https://pubmed.ncbi.nlm.nih.gov/33179154/

7802

Caffa I, Spagnolo V, Vernieri C, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature. 2020;583(7817):620–4. https://pubmed.ncbi.nlm.nih.gov/32669709/

7803

de Groot S, Lugtenberg RT, Cohen D, et al. Fasting mimicking diet as an adjunct to¿neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083. https://pubmed.ncbi.nlm.nih.gov/32576828/

7804

Vernieri C, Ligorio F, Zattarin E, Rivoltini L, de Braud F. Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun. 2020;11(1):4274. https://pubmed.ncbi.nlm.nih.gov/32848145/

7805

de Groot S, Lugtenberg RT, Cohen D, et al. Fasting mimicking diet as an adjunct to¿neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat Commun. 2020;11(1):3083. https://pubmed.ncbi.nlm.nih.gov/32576828/

7806

Vernieri C, Ligorio F, Zattarin E, Rivoltini L, de Braud F. Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat Commun. 2020;11(1):4274. https://pubmed.ncbi.nlm.nih.gov/32848145/

7807

Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene. 2011;30(30):3305–16. https://pubmed.ncbi.nlm.nih.gov/21516129/

7808

Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://pubmed.ncbi.nlm.nih.gov/20145127/

7809

Lee C, Raffaghello L, Brandhorst S, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4(124):124ra27. https://pubmed.ncbi.nlm.nih.gov/22323820/

7810

Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10. https://pubmed.ncbi.nlm.nih.gov/18946478/

7811

Clemmons DR, Klibanski A, Underwood LE, et al. Reduction of plasma immunoreactive somatomedin C during fasting in humans. J Clin Endocrinol Metab. 1981;53(6):1247–50. https://pubmed.ncbi.nlm.nih.gov/7197688/

7812

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

7813

Kazemi A, Speakman JR, Soltani S, Djafarian K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: a systematic review and meta-analysis. Clin Nutr. 2020;39(6):1705–16. https://pubmed.ncbi.nlm.nih.gov/31431306/

7814

Fontana L, Villareal DT, Das SK, et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial. Aging Cell. 2016;15(1):22–7. https://pubmed.ncbi.nlm.nih.gov/26443692/

7815

Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36–45. https://pubmed.ncbi.nlm.nih.gov/27544442/

7816

Kazemi A, Speakman JR, Soltani S, Djafarian K. Effect of calorie restriction or protein intake on circulating levels of insulin like growth factor I in humans: a systematic review and meta-analysis. Clin Nutr. 2020;39(6):1705–16. https://pubmed.ncbi.nlm.nih.gov/31431306/

7817

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

7818

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7819

Piper MDW, Partridge L, Raubenheimer D, Simpson SJ. Dietary restriction and ageing: a unifying perspective. Cell Metab. 2011;14(2):154–60. https://pubmed.ncbi.nlm.nih.gov/21803286/

7820

Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5–6):496–508. https://pubmed.ncbi.nlm.nih.gov/16574059/

7821

Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://pubmed.ncbi.nlm.nih.gov/27006163/

7822

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30 https://pubmed.ncbi.nlm.nih.gov/24606899/

7823

Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492(1):203–6. https://pubmed.ncbi.nlm.nih.gov/10858549/

7824

McCarty MF. Practical prospects for boosting hepatic production of the “pro-longevity” hormone FGF21. Horm Mol Biol Clin Investig. 2017;30(2). https://pubmed.ncbi.nlm.nih.gov/26741352/

7825

Andersen B, Straarup EM, Heppner KM, et al. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys. Int J Obes (Lond). 2018;42(6):1151–60. https://pubmed.ncbi.nlm.nih.gov/29892039/

7826

Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife. 2012;1:e00065. https://pubmed.ncbi.nlm.nih.gov/23066506/

7827

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7828

Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: Separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/

7829

Riera CE, Dillin A. Can aging be ‘drugged’?. Nat Med. 2015;21(12):1400–5. https://pubmed.ncbi.nlm.nih.gov/26646496/

7830

Huang Z, Xu A, Cheung BMY. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension. Curr Hypertens Rep. 2017;19(4):28. https://pubmed.ncbi.nlm.nih.gov/28337713/

7831

Pérez-Martí A, Sandoval V, Marrero PF, Haro D, Relat J. Nutritional regulation of fibroblast growth factor 21: from macronutrients to bioactive dietary compounds. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/27583468/

7832

Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig. 2017;30(2). https://pubmed.ncbi.nlm.nih.gov/28525362/

7833

Talukdar S, Zhou Y, Li D, et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23(3):427–40. https://pubmed.ncbi.nlm.nih.gov/26959184/

7834

Harrison SA, Ruane PJ, Freilich BL, et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat Med. 2021;27(7):1262–71. https://pubmed.ncbi.nlm.nih.gov/34239138/

7835

Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10(8):e8791. https://pubmed.ncbi.nlm.nih.gov/29987000/

7836

Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022. https://pubmed.ncbi.nlm.nih.gov/22701542/

7837

Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7(5):e38022. https://pubmed.ncbi.nlm.nih.gov/22701542/

7838

Khalafi M, Alamdari KA, Symonds ME, Nobari H, Carlos-Vivas J. Impact of acute exercise on immediate and following early post-exercise FGF-21 concentration in adults: systematic review and meta-analysis. Hormones (Athens). 2021;20(1):23–33. https://pubmed.ncbi.nlm.nih.gov/33151509/

7839

Keihanian A, Arazi H, Kargarfard M. Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiol Int. 2019;106(1):70–80. https://pubmed.ncbi.nlm.nih.gov/30888221/

7840

Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/27285327/

7841

Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife. 2012;1:e00065. https://pubmed.ncbi.nlm.nih.gov/23066506/

7842

Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med (Berl). 2017;95(2):123–31. https://pubmed.ncbi.nlm.nih.gov/27678528/

7843

Holmes D. Fasting induces FGF21 in humans. Nat Rev Endocrinol. 2016;12(1):3. https://pubmed.ncbi.nlm.nih.gov/26585659/

7844

Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans. J Clin Invest. 2015;125(12):4601–11. https://pubmed.ncbi.nlm.nih.gov/26529252/

7845

Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARa activation in man. Cell Metab. 2008;8(2):169–74. https://pubmed.ncbi.nlm.nih.gov/18680716/

7846

Murata Y, Nishio K, Mochiyama T, et al. Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. PLoS One. 2013;8(7):e69330. https://pubmed.ncbi.nlm.nih.gov/23874946/

7847

Gälman C, Lundåsen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARa activation in man. Cell Metab. 2008;8(2):169–74. https://pubmed.ncbi.nlm.nih.gov/18680716/

7848

Crujeiras AB, Gomez-Arbelaez D, Zulet MA, et al. Plasma FGF21 levels in obese patients undergoing energy-restricted diets or bariatric surgery: a marker of metabolic stress? Int J Obes. 2017;41(10):1570–8. https://pubmed.ncbi.nlm.nih.gov/28588304/

7849

Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab. 2009;94(9):3594–601. https://pubmed.ncbi.nlm.nih.gov/19531592/

7850

Asle Mohammadi Zadeh M, Kargarfard M, Marandi SM, Habibi A. Diets along with interval training regimes improves inflammatory & anti-inflammatory condition in obesity with type 2 diabetes subjects. J Diabetes Metab Disord. 2018;17(2):253–67. https://pubmed.ncbi.nlm.nih.gov/30918861/

7851

Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell Signal. 2017;40:10–21. https://pubmed.ncbi.nlm.nih.gov/28844867/

7852

Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans. J Clin Invest. 2015;125(12):4601–11. https://pubmed.ncbi.nlm.nih.gov/26529252/

7853

Lundsgaard AM, Fritzen AM, Sjøberg KA, et al. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol Metab. 2017;6(1):22–9. https://pubmed.ncbi.nlm.nih.gov/28123934/

7854

Li H, Gao Z, Zhang J, et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 2012;61(4):797–806. https://pubmed.ncbi.nlm.nih.gov/22338096/

7855

Erickson A, Moreau R. The regulation of FGF21 gene expression by metabolic factors and nutrients. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/27285327/

7856

Harrison DE, Strong R, Allison DB, et al. Acarbose, 17-a-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82. https://pubmed.ncbi.nlm.nih.gov/24245565/

7857

McCarty MF. Practical prospects for boosting hepatic production of the “pro-longevity” hormone FGF21. Horm Mol Biol Clin Invest. 2015;30(2). https://pubmed.ncbi.nlm.nih.gov/26741352/

7858

Laeger T, Henagan TM, Albarado DC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124(9):3913–22. https://pubmed.ncbi.nlm.nih.gov/25133427/

7859

Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30. https://pubmed.ncbi.nlm.nih.gov/12449285/

7860

Nutrient intakes from food: mean amounts and percentages of calories from protein, carbohydrate, fat, and alcohol, one day, 2005–2006. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/table_2_nif_05.pdf. Published 2008. Accessed January 19, 2023.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/table_2_nif_05.pdf

7861

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

7862

Fontana L, Cummings NE, Arriola SI, et al. Supplemental information: decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. https://www.cell.com/cms/10.1016/j.celrep.2016.05.092/attachment/1cc73bb8-d48a-497a-8cb6–16828f45777b/mmc1.pdf. Published July 12, 2016. Accessed January 1, 2023.; https://www.cell.com/cms/10.1016/j.celrep.2016.05.092/attachment/1cc73bb8-d48a-497a-8cb6-16828f45777b/mmc1.pdf

7863

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

7864

Müller TD, Tschöp MH. Play down protein to play up metabolism? J Clin Invest. 2014;124(9):3691–3. https://pubmed.ncbi.nlm.nih.gov/25133420/

7865

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

7866

Maida A, Zota A, Sjøberg KA, et al. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Invest. 2016;126(9):3263–78. https://pubmed.ncbi.nlm.nih.gov/27548521/

7867

Gosby AK, Conigrave AD, Lau NS, et al. Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS One. 2011;6(10):e25929. https://pubmed.ncbi.nlm.nih.gov/22022472/

7868

Gosby AK, Lau NS, Tam CS, et al. Raised FGF-21 and triglycerides accompany increased energy intake driven by protein leverage in lean, healthy individuals: a randomised trial. PLoS One. 2016;11(8):e0161003. https://pubmed.ncbi.nlm.nih.gov/27536869/

7869

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

7870

Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632–40. https://pubmed.ncbi.nlm.nih.gov/30975545/

7871

Mladenovic D, Radosavljevic T, Hrncic D, Rasic-Markovic A, Stanojlovic O. The effects of dietary methionine restriction on the function and metabolic reprogramming in the liver and brain – implications for longevity. Rev Neurosci. 2019;30(6):581–93. https://pubmed.ncbi.nlm.nih.gov/30817309/

7872

Cole JT. Metabolism of BCAAs. In: Rajendram R, et al, eds. Branched Chain Amino Acids in Clinical Nutrition. Vol 1. Springer Science+Business Media; 2015:13–24. https://link.springer.com/chapter/10.1007/978-1-4939-1923-9_2

7873

Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632–40. https://pubmed.ncbi.nlm.nih.gov/30975545/

7874

Ables GP, Johnson JE. Pleiotropic responses to methionine restriction. Exp Gerontol. 2017;94:83–8. https://pubmed.ncbi.nlm.nih.gov/28108330/

7875

McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014;83(3):365–71. https://pubmed.ncbi.nlm.nih.gov/25015767/

7876

McCarty MF. The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion. Horm Mol Biol Clin Investig. 2016;30(1). https://pubmed.ncbi.nlm.nih.gov/26872317/

7877

Lonnie M, Johnstone AM. The public health rationale for promoting plant protein as an important part of a sustainable and healthy diet. Nutr Bull. 2020;45(3):281–93. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12453

7878

McCarty MF. Practical prospects for boosting hepatic production of the “pro-longevity” hormone FGF21. Horm Mol Biol Clin Investig. 2015;30(2). https://pubmed.ncbi.nlm.nih.gov/26741352/

7879

Castaño-Martinez T, Schumacher F, Schumacher S, et al. Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB J. 2019;33(6):7092–102. https://pubmed.ncbi.nlm.nih.gov/30841758/

7880

Castaño-Martinez T, Schumacher F, Schumacher S, et al. Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB J. 2019;33(6):7092–102. https://pubmed.ncbi.nlm.nih.gov/30841758/

7881

Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92. https://pubmed.ncbi.nlm.nih.gov/24440038/

7882

Hill CM, Albarado DC, Coco LG, et al. FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun. 2022;13(1):1897. https://pubmed.ncbi.nlm.nih.gov/35393401/

7883

Estévez M, Xiong Y. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: recent scientific evidences and hypotheses. J Food Sci. 2019;84(3):387–96. https://pubmed.ncbi.nlm.nih.gov/30714623/

7884

Seyedsadjadi N, Berg J, Bilgin AA, Braidy N, Salonikas C, Grant R. High protein intake is associated with low plasma NAD+ levels in a healthy human cohort. PLoS One. 2018;13(8):e0201968. https://pubmed.ncbi.nlm.nih.gov/30114226/

7885

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7886

Brandhorst S, Longo VD. Protein quantity and source, fasting-mimicking diets, and longevity. Adv Nutr. 2019;10(Suppl_4):S340–50. https://pubmed.ncbi.nlm.nih.gov/31728501/

7887

Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene. 2011;30(30):3305–16. https://pubmed.ncbi.nlm.nih.gov/21516129/

7888

Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://pubmed.ncbi.nlm.nih.gov/20145127/

7889

Lee C, Raffaghello L, Brandhorst S, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4(124):124ra27. https://pubmed.ncbi.nlm.nih.gov/22323820/

7890

Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15(1):80–101. https://pubmed.ncbi.nlm.nih.gov/8156941/

7891

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

7892

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

7893

Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/

7894

Fontana L, Klein S, Holloszy JO. Long-term low-protein, low-calorie diet and endurance exercise modulate metabolic factors associated with cancer risk. Am J Clin Nutr. 2006;84(6):1456–62. https://pubmed.ncbi.nlm.nih.gov/17158430/

7895

Dunn SE, Kari FW, French J, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 1997;57(21):4667–72. https://pubmed.ncbi.nlm.nih.gov/9354418/

7896

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

7897

McCarty MF. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Med Hypotheses. 2003;60(6):784–92. https://pubmed.ncbi.nlm.nih.gov/12699704/

7898

Murphy N, Carreras-Torres R, Song M, et al. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomization analyses. Gastroenterology. 2020;158(5):1300–12.e20. https://pubmed.ncbi.nlm.nih.gov/31884074/

7899

Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/

7900

Hartley A, Sanderson E, Paternoster L, et al. Mendelian randomization provides evidence for a causal effect of higher serum IGF-1 concentration on risk of hip and knee osteoarthritis. Rheumatology (Oxford). 2021;60(4):1676–86. https://pubmed.ncbi.nlm.nih.gov/33027520/

7901

Nashiro K, Guevara-Aguirre J, Braskie MN, et al. Brain structure and function associated with younger adults in growth hormone receptor-deficient humans. J Neurosci. 2017;37(7):1696–707. https://pubmed.ncbi.nlm.nih.gov/28073935/

7902

Schut AFC, Janssen JAMJL, Deinum J, et al. Polymorphism in the promoter region of the insulin-like growth factor I gene is related to carotid intima-media thickness and aortic pulse wave velocity in subjects with hypertension. Stroke. 2003;34(7):1623–7. https://pubmed.ncbi.nlm.nih.gov/12791939/

7903

Potassium-rich foods linked to lower stroke risk. Harvard Health Publishing. https://www.health.harvard.edu/heart-health/potassium-rich-foods-linked-to-lower-stroke-risk-. Published November 14, 2014. Accessed January 2, 2023.; https://www.health.harvard.edu/heart-health/potassium-rich-foods-linked-to-lower-stroke-risk-

7904

McCay CM, Dilley WE, Crowell MF. Growth rates of brook trout reared upon purified rations, upon dry skim milk diets, and upon feed combinations of cereal grains. J Nutr. 1929;1(3):233–46. https://doi.org/10.1093/jn/1.3.233

7905

McDonald RB, Ramsey JJ. Honoring Clive McCay and 75 years of calorie restriction research. J Nutr. 2010;140(7):1205–10. https://pubmed.ncbi.nlm.nih.gov/20484554/

7906

Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://pubmed.ncbi.nlm.nih.gov/27006163/

7907

Nakagawa S, Lagisz M, Hector KL, Spencer HG. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell. 2012;11(3):401–9. https://pubmed.ncbi.nlm.nih.gov/22268691/

7908

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7909

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7910

Simpson SJ, Le Couteur DG, Raubenheimer D. Putting the balance back in diet. Cell. 2015;161(1):18–23. https://pubmed.ncbi.nlm.nih.gov/25815981/

7911

Le Couteur DG, Tay SS, Solon-Biet S, et al. The influence of macronutrients on splanchnic and hepatic lymphocytes in aging mice. J Gerontol A Biol Sci Med Sci. 2015;70(12):1499–507. https://pubmed.ncbi.nlm.nih.gov/25335766/

7912

Solon-Biet SM, Mitchell SJ, Coogan SCP, et al. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep. 2015;11(10):1529–34. https://pubmed.ncbi.nlm.nih.gov/26027933/

7913

Le Couteur DG, Tay SS, Solon-Biet S, et al. The influence of macronutrients on splanchnic and hepatic lymphocytes in aging mice. J Gerontol A Biol Sci Med Sci. 2015;70(12):1499–507. https://pubmed.ncbi.nlm.nih.gov/25335766/

7914

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7915

Ingram DK, de Cabo R. Calorie restriction in rodents: caveats to consider. Ageing Res Rev. 2017;39:15–28. https://pubmed.ncbi.nlm.nih.gov/28610949/

7916

Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://pubmed.ncbi.nlm.nih.gov/27006163/

7917

Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012;11(2):254–70. https://pubmed.ncbi.nlm.nih.gov/22210149/

7918

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7919

Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://pubmed.ncbi.nlm.nih.gov/27006163/

7920

Simpson SJ, Le Couteur DG, Raubenheimer D. Putting the balance back in diet. Cell. 2015;161(1):18–23. https://pubmed.ncbi.nlm.nih.gov/25815981/

7921

Speakman JR, Mitchell SE, Mazidi M. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Gerontol. 2016;86:28–38. https://pubmed.ncbi.nlm.nih.gov/27006163/

7922

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7923

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7924

Wali JA, Raubenheimer D, Senior AM, Le Couteur DG, Simpson SJ. Cardio-metabolic consequences of dietary carbohydrates: reconciling contradictions using nutritional geometry. Cardiovasc Res. 2021;117(2):386–401. https://pubmed.ncbi.nlm.nih.gov/32386289/

7925

Wali JA, Milner AJ, Luk AWS, et al. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat Metab. 2021;3(6):810–28. https://pubmed.ncbi.nlm.nih.gov/34099926/

7926

Vogtschmidt YD, Raben A, Faber I, et al. Is protein the forgotten ingredient: effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis. 2021;328:124–35. https://pubmed.ncbi.nlm.nih.gov/34120735/

7927

Wali JA, Raubenheimer D, Senior AM, Le Couteur DG, Simpson SJ. Cardio-metabolic consequences of dietary carbohydrates: reconciling contradictions using nutritional geometry. Cardiovasc Res. 2021;117(2):386–401. https://pubmed.ncbi.nlm.nih.gov/32386289/

7928

Simpson SJ, Le Couteur DG, Raubenheimer D, et al. Dietary protein, aging and nutritional geometry. Ageing Res Rev. 2017;39:78–86. https://pubmed.ncbi.nlm.nih.gov/28274839/

7929

Le Couteur DG, Solon-Biet S, Wahl D, et al. New horizons: dietary protein, ageing and the Okinawan ratio. Age Ageing. 2016;45(4):443–7. https://pubmed.ncbi.nlm.nih.gov/27130207/

7930

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

7931

Rizza W, Veronese N, Fontana L. What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res Rev. 2014;13:38–45. https://pubmed.ncbi.nlm.nih.gov/24291541/

7932

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

7933

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

7934

Abraham S, Lowenstein FW, Johnson CL. Preliminary Findings of the First Health and Nutrition Examination Survey, United States, 1971–1972. U.S. Department of Health, Education, and Welfare, Public Health Service, Health Resources Administration, National Center for Health Statistics; 1974. https://stacks.cdc.gov/view/cdc/82306

7935

Le Couteur DG, Solon-Biet S, Wahl D, et al. New horizons: dietary protein, ageing and the Okinawan ratio. Age Ageing. 2016;45(4):443–7. https://pubmed.ncbi.nlm.nih.gov/27130207/

7936

Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/

7937

Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23(1):56–73. https://pubmed.ncbi.nlm.nih.gov/34518687/

7938

Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/

7939

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

7940

Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25(11):558–66. https://pubmed.ncbi.nlm.nih.gov/25153840/

7941

Hoy MK, Clemens JC, Moshfegh A. Protein intake of adults: what we eat in America, NHANES 2015–2016. Food Surveys Research Group, Dietary Data Brief No. 29. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/29_Protein_Intake_of_Adults_1516.pdf. Published January 2021. Accessed December 26, 2022.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/DBrief/29_Protein_Intake_of_Adults_1516.pdf

7942

Mirzaei H, Suarez JA, Longo VD. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab. 2014;25(11):558–66. https://pubmed.ncbi.nlm.nih.gov/25153840/

7943

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

7944

Meroño T, Zamora-Ros R, Hidalgo-Liberona N, et al. Animal protein intake is inversely associated with mortality in older adults: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2022;77(9):1866–72. https://pubmed.ncbi.nlm.nih.gov/34849845/

7945

Naghshi S, Sadeghi O, Willett WC, Esmaillzadeh A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2020;370:m2412. https://pubmed.ncbi.nlm.nih.gov/32699048/

7946

Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E. Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med. 2020;133(2):231–9.e7. https://pubmed.ncbi.nlm.nih.gov/33839765/

7947

Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/

7948

Zhong VW, Allen NB, Greenland P, et al. Protein foods from animal sources, incident cardiovascular disease and all-cause mortality: a substitution analysis. Int J Epidemiol. 2021;50(1):223–33. https://pubmed.ncbi.nlm.nih.gov/33411911/

7949

Zheng J, Zhu T, Yang G, et al. The isocaloric substitution of plant-based and animal-based protein in relation to aging-related health outcomes: a systematic review. Nutrients. 2022;14(2):272. https://pubmed.ncbi.nlm.nih.gov/35057453/

7950

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

7951

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

7952

Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet. 2013;113(12):1610–9. https://pubmed.ncbi.nlm.nih.gov/23988511/

7953

Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632–40. https://pubmed.ncbi.nlm.nih.gov/30975545/

7954

Schüler R, Markova M, Osterhoff MA, et al. Similar dietary regulation of IGF-1-and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr. 2021;60(6):3499–504. https://pubmed.ncbi.nlm.nih.gov/33686453/

7955

Kahleova H, Fleeman R, Hlozkova A, Holubkov R, Barnard ND. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: metabolic benefits of plant protein. Nutr Diabetes. 2018;8(1):58. https://pubmed.ncbi.nlm.nih.gov/30405108/

7956

Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: the role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev. 2020;64:101038. https://pubmed.ncbi.nlm.nih.gov/32109603/

7957

Appleton BS, Campbell TC. Inhibition of aflatoxin-initiated preneoplastic liver lesions by low dietary protein. Nutr Cancer. 1982;3(4):200–6. https://pubmed.ncbi.nlm.nih.gov/6128727/

7958

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7959

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7960

Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/

7961

Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/

7962

Rubio-Patiño C, Bossowski JP, De Donatis GM, et al. Low-protein diet induces IRE1a-dependent anticancer immunosurveillance. Cell Metab. 2018;27(4):828–42.e7. https://pubmed.ncbi.nlm.nih.gov/29551590/

7963

Orillion A, Damayanti NP, Shen L, et al. Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin Cancer Res. 2018;24(24):6383–95. https://pubmed.ncbi.nlm.nih.gov/30190370/

7964

Pili R, Fontana L. Low-protein diet in cancer: ready for prime time? Nat Rev Endocrinol. 2018;14(7):384–6. https://pubmed.ncbi.nlm.nih.gov/29765134/

7965

Gao X, Sanderson SM, Dai Z, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572(7769):397–401. https://pubmed.ncbi.nlm.nih.gov/31367041/

7966

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7967

Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107. https://pubmed.ncbi.nlm.nih.gov/21981968/

7968

Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5–6):496–508. https://pubmed.ncbi.nlm.nih.gov/16574059/

7969

McIsaac RS, Lewis KN, Gibney PA, Buffenstein R. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span. Ann N Y Acad Sci. 2016;1363:155–70. https://pubmed.ncbi.nlm.nih.gov/26995762/

7970

Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age (Dordr). 2008;30(2–3):111–9. https://pubmed.ncbi.nlm.nih.gov/19424861/

7971

Zimmerman JA, Malloy V, Krajcik R, Orentreich N. Nutritional control of aging. Exp Gerontol. 2003;38(1–2):47–52. https://pubmed.ncbi.nlm.nih.gov/12543260/

7972

Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012;11(2):254–70. https://pubmed.ncbi.nlm.nih.gov/22210149/

7973

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7974

Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/

7975

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7976

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7977

Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/

7978

Ruckenstuhl C, Netzberger C, Entfellner I, et al. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet. 2014;10(5):e1004347. https://pubmed.ncbi.nlm.nih.gov/24785424/

7979

Sharma S, Dixon T, Jung S, et al. Dietary methionine restriction reduces inflammation independent of FGF21 action. Obesity (Silver Spring). 2019;27(8):1305–13. https://pubmed.ncbi.nlm.nih.gov/31207147/

7980

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7981

Brown-Borg HM, Rakoczy SG, Wonderlich JA, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13(6):1019–27. https://pubmed.ncbi.nlm.nih.gov/25234161/

7982

Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558. https://pubmed.ncbi.nlm.nih.gov/4912906/

7983

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

7984

Mori N, Hirayama K. Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. J Nutr. 2000;130(9):2349–55. https://pubmed.ncbi.nlm.nih.gov/10958834/

7985

Hidiroglou N, Gilani GS, Long L, et al. The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil. J Nutr Biochem. 2004;15(12):730–40. https://pubmed.ncbi.nlm.nih.gov/15607646/

7986

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

7987

Caro P, Gomez J, Sanchez I, et al. Effect of 40 % restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver. Biogerontology. 2009;10(5):579–92. https://pubmed.ncbi.nlm.nih.gov/19039676/

7988

Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A. 2001;98(23):12920–5. https://pubmed.ncbi.nlm.nih.gov/11606777/

7989

Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5–6):496–508. https://pubmed.ncbi.nlm.nih.gov/16574059/

7990

Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol. 2019;115:69–78. https://pubmed.ncbi.nlm.nih.gov/30502540/

7991

Ruan H, Tang XD, Chen ML, et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A. 2002;99(5):2748–53. https://pubmed.ncbi.nlm.nih.gov/11867705/

7992

Takauji Y, Wada T, Takeda A, et al. Restriction of protein synthesis abolishes senescence features at cellular and organismal levels. Sci Rep. 2016;6:18722. https://pubmed.ncbi.nlm.nih.gov/26729469/

7993

Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23(1):56–73. https://pubmed.ncbi.nlm.nih.gov/34518687/

7994

Koziel R, Ruckenstuhl C, Albertini E, et al. Methionine restriction slows down senescence in human diploid fibroblasts. Aging Cell. 2014;13(6):1038–48. https://pubmed.ncbi.nlm.nih.gov/25273919/

7995

Brown-Borg HM, Buffenstein R. Cutting back on the essentials: can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev. 2017;39:87–95. https://pubmed.ncbi.nlm.nih.gov/27570078/

7996

Johnson JE, Johnson FB. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells. PLoS One. 2014;9(5):e97729. https://pubmed.ncbi.nlm.nih.gov/24830393/

7997

Agrawal V, Alpini SEJ, Stone EM, Frenkel EP, Frankel AE. Targeting methionine auxotrophy in cancer: discovery & exploration. Expert Opin Biol Ther. 2012;12(1):53–61. https://pubmed.ncbi.nlm.nih.gov/22171665/

7998

Han Q, Tan Y, Hoffman RM. Oral dosing of recombinant methioninase is associated with a 70 % drop in PSA in a patient with bone-metastatic prostate cancer and 50 % reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res. 2020;40(5):2813–9. https://pubmed.ncbi.nlm.nih.gov/32366428/

7999

Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/

8000

Heilbronn LK, Panda S. Alternate-day fasting gets a safe bill of health. Cell Metab. 2019;30(3):411–3. https://pubmed.ncbi.nlm.nih.gov/31484053/

8001

Stekovic S, Hofer SJ, Tripolt N, et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 2019;30(3):462–76. https://pubmed.ncbi.nlm.nih.gov/31471173/

8002

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

8003

Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632–40. https://pubmed.ncbi.nlm.nih.gov/30975545/

8004

Yamamoto J, Han Q, Simon M, Thomas D, Hoffman RM. Methionine restriction: ready for prime time in the cancer clinic? Anticancer Res. 2022;42(2):641–4. https://pubmed.ncbi.nlm.nih.gov/35093861/

8005

Product information: Hominex®-2. Abbott Laboratories Inc. Updated May 3, 2022.; https://www.abbottnutrition.com/our-products/hominex-2

8006

Yamamoto J, Han Q, Simon M, Thomas D, Hoffman RM. Methionine restriction: ready for prime time in the cancer clinic? Anticancer Res. 2022;42(2):641–4. https://pubmed.ncbi.nlm.nih.gov/35093861/

8007

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

8008

Agricultural Research Service, United States Department of Agriculture. Component search: methionine. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-search?component=1215. Accessed January 25, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-search?component=1215

8009

Gaudichon C, Calvez J. Determinants of amino acid bioavailability from ingested protein in relation to gut health. Curr Opin Clin Nutr Metab Care. 2021;24(1):55–61. https://pubmed.ncbi.nlm.nih.gov/33093304/

8010

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

8011

Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/

8012

Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/

8013

Krajcovicova-Kudlackova M, Babinska K, Valachovicova M. Health benefits and risks of plant proteins. Bratisl Lek Listy. 2005;106(6–7):231–4. https://pubmed.ncbi.nlm.nih.gov/16201743/

8014

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

8015

Wu G, Han L, Shi Y, et al. Effect of different levels of dietary methionine restriction on relieving oxidative stress and behavioral deficits in middle-aged mice fed low-, medium-, or high-fat diet. J Funct Foods. 2020;65:103782. https://doi.org/10.1016/j.jff.2020.103782

8016

Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107. https://pubmed.ncbi.nlm.nih.gov/21981968/

8017

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

8018

Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23(1):56–73. https://pubmed.ncbi.nlm.nih.gov/34518687/

8019

Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/

8020

Elshorbagy AK, Valdivia-Garcia M, Mattocks DAL, et al. Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res. 2011;52(1):104–12. https://pubmed.ncbi.nlm.nih.gov/20871132/

8021

Le LT, Sabaté J. Beyond meatless, the health effects of vegan diets: findings from the Adventist cohorts. Nutrients. 2014;6(6):2131–47. https://pubmed.ncbi.nlm.nih.gov/24871675/

8022

Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013;23(4):292–9. https://pubmed.ncbi.nlm.nih.gov/21983060/

8023

Dong Z, Gao X, Chinchilli VM, et al. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur J Nutr. 2022;61(1):289–98. https://pubmed.ncbi.nlm.nih.gov/34327571/

8024

Dong Z, Gao X, Chinchilli VM, et al. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur J Nutr. 2022;61(1):289–98. https://pubmed.ncbi.nlm.nih.gov/34327571/

8025

Dong Z, Gao X, Chinchilli VM, et al. Association of sulfur amino acid consumption with cardiometabolic risk factors: cross-sectional findings from NHANES III. EClinicalMedicine. 2020;19:100248. https://pubmed.ncbi.nlm.nih.gov/32140669/

8026

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

8027

Di Buono M, Wykes LJ, Ball RO, Pencharz PB. Dietary cysteine reduces the methionine requirement in men. Am J Clin Nutr. 2001;74(6):761–6. https://pubmed.ncbi.nlm.nih.gov/11722957/

8028

Elshorbagy AK, Valdivia-Garcia M, Mattocks DAL, et al. Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res. 2011;52(1):104–12. https://pubmed.ncbi.nlm.nih.gov/20871132/

8029

Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary. 2021;24(3):438–56. https://pubmed.ncbi.nlm.nih.gov/33459974/

8030

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

8031

Lederer AK, Maul-Pavicic A, Hannibal L, et al. Vegan diet reduces neutrophils, monocytes and platelets related to branched-chain amino acids – a randomized, controlled trial. Clin Nutr. 2020;39(11):3241–50. https://pubmed.ncbi.nlm.nih.gov/32147197/

8032

Tanrikulu-Kucuk S, Ademoglu E. Dietary restriction of amino acids other than methionine prevents oxidative damage during aging: involvement of telomerase activity and telomere length. Life Sci. 2012;90(23–24):924–8. https://pubmed.ncbi.nlm.nih.gov/22564407/

8033

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

8034

Solon-Biet SM, Cogger VC, Pulpitel T, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab. 2019;1(5):532–45. https://pubmed.ncbi.nlm.nih.gov/31656947/

8035

Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat Aging. 2021;1(1):60–72. https://pubmed.ncbi.nlm.nih.gov/37117991/

8036

Richardson NE, Konon EN, Schuster HS, et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat Aging. 2021;1(1):73–86. https://pubmed.ncbi.nlm.nih.gov/33796866/

8037

Richardson NE, Konon EN, Schuster HS, et al. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat Aging. 2021;1(1):73–86. https://pubmed.ncbi.nlm.nih.gov/33796866/

8038

Green CL, Lamming DW, Fontana L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol. 2022;23(1):56–73. https://pubmed.ncbi.nlm.nih.gov/34518687/

8039

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

8040

Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: Separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/

8041

Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138(12):1584–90. https://pubmed.ncbi.nlm.nih.gov/12472346/

8042

Melnik BC, John SM, Plewig G. Acne: risk indicator for increased body mass index and insulin resistance. Acta Derm Venereol. 2013;93(6):644–9. https://pubmed.ncbi.nlm.nih.gov/23975508/

8043

Blair MC, Neinast MD, Arany Z. Whole-body metabolic fate of branched-chain amino acids. Biochem J. 2021;478(4):765–76. https://pubmed.ncbi.nlm.nih.gov/33626142/

8044

Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139–64. https://pubmed.ncbi.nlm.nih.gov/30485760/

8045

Tournissac M, Vandal M, Tremblay C, et al. Dietary intake of branched-chain amino acids in a mouse model of Alzheimer’s disease: effects on survival, behavior, and neuropathology. Alzheimers Dement (N Y). 2018;4:677–87. https://pubmed.ncbi.nlm.nih.gov/30560200/

8046

Larsson SC, Markus HS. Branched-chain amino acids and Alzheimer’s disease: a Mendelian randomization analysis. Sci Rep. 2017;7(1):13604. https://pubmed.ncbi.nlm.nih.gov/29051501/

8047

Tynkkynen J, Chouraki V, van der Lee SJ, et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: a prospective study in eight cohorts. Alzheimers Dement. 2018;14(6):723–33. https://pubmed.ncbi.nlm.nih.gov/29519576/

8048

Le Couteur DG, Solon-Biet SM, Cogger VC, et al. Branched chain amino acids, aging and age-related health. Ageing Res Rev. 2020;64:101198. https://pubmed.ncbi.nlm.nih.gov/33132154/

8049

Xu B, Wang M, Pu L, Shu C, Li L, Han L. Association of dietary intake of branched-chain amino acids with long-term risks of CVD, cancer and all-cause mortality. Public Health Nutr. 2022;25(12):3390–400. https://pubmed.ncbi.nlm.nih.gov/34930509/

8050

Le Couteur DG, Solon-Biet SM, Cogger VC, et al. Branched chain amino acids, aging and age-related health. Ageing Res Rev. 2020;64:101198. https://pubmed.ncbi.nlm.nih.gov/33132154/

8051

Insulin resistance. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/22206-insulin-resistance. Updated December 16, 2021. Accessed December 26, 2022.; https://my.clevelandclinic.org/health/diseases/22206-insulin-resistance

8052

Zhang X, Li J, Zheng S, Luo Q, Zhou C, Wang C. Fasting insulin, insulin resistance, and risk of cardiovascular or all-cause mortality in non-diabetic adults: a meta-analysis. Biosci Rep. 2017;37(5):BSR20170947. https://pubmed.ncbi.nlm.nih.gov/28811358/

8053

Ju SY, Lee JY, Kim DH. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly: a meta-analysis of prospective cohort studies. Medicine (Baltimore). 2017;96(45):e8491. https://pubmed.ncbi.nlm.nih.gov/29137039/

8054

Bishop CA, Machate T, Henning T, et al. Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle. Nutr Diabetes. 2022;12(1):1–9. https://pubmed.ncbi.nlm.nih.gov/35418570/

8055

Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22(4):421–6. https://pubmed.ncbi.nlm.nih.gov/26950361/

8056

Williams KJ, Wu X. Imbalanced insulin action in chronic over nutrition: clinical harm, molecular mechanisms, and a way forward. Atherosclerosis. 2016;247:225–82. https://pubmed.ncbi.nlm.nih.gov/26967715/

8057

Cummings NE, Williams EM, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018;596(4):623–45. https://pubmed.ncbi.nlm.nih.gov/29266268/

8058

Solon-Biet SM, Cogger VC, Pulpitel T, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab. 2019;1(5):532–45. https://pubmed.ncbi.nlm.nih.gov/31656947/

8059

Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19(4):954. https://pubmed.ncbi.nlm.nih.gov/29570613/

8060

Bishop CA, Machate T, Henning T, et al. Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle. Nutr Diabetes. 2022;12(1):1–9. https://pubmed.ncbi.nlm.nih.gov/35418570/

8061

Rhee EP, Ho JE, Chen MH, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013;18(1):130–43. https://pubmed.ncbi.nlm.nih.gov/23823483/

8062

Lotta LA, Scott RA, Sharp SJ, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 2016;13(11):e1002179. https://pubmed.ncbi.nlm.nih.gov/27898682/

8063

Mahendran Y, Jonsson A, Have CT, et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia. 2017;60(5):873–8. https://pubmed.ncbi.nlm.nih.gov/28184960/

8064

White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019;363(6427):582–3. https://pubmed.ncbi.nlm.nih.gov/30733403/

8065

Okekunle AP, Zhang M, Wang Z, et al. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol. 2019;56(2):187–95. https://pubmed.ncbi.nlm.nih.gov/30413881/

8066

Ridaura VK, Faith JJ, Rey FE, et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2013;341(6150):1241214. https://pubmed.ncbi.nlm.nih.gov/24009397/

8067

Bachmann OP, Dahl DB, Brechtel K, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001;50(11):2579–84. https://pubmed.ncbi.nlm.nih.gov/11679437/

8068

Arany Z, Neinast M. Branched chain amino acids in metabolic disease. Curr Diab Rep. 2018;18(10):76. https://pubmed.ncbi.nlm.nih.gov/30112615/

8069

Smith GI, Yoshino J, Stromsdorfer KL, et al. Protein ingestion induces muscle insulin resistance independent of leucine-mediated mTOR activation. Diabetes. 2015;64(5):1555–63. https://pubmed.ncbi.nlm.nih.gov/25475435/

8070

Manco M, Bertuzzi A, Salinari S, et al. The ingestion of saturated fatty acid triacylglycerols acutely affects insulin secretion and insulin sensitivity in human subjects. Br J Nutr. 2004;92(6):895–903. https://pubmed.ncbi.nlm.nih.gov/15613251/

8071

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

8072

Cummings NE, Williams EM, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018;596(4):623–45. https://pubmed.ncbi.nlm.nih.gov/29266268/

8073

Wolfe RR. Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr. 2017;14(1):30. https://pubmed.ncbi.nlm.nih.gov/28852372/

8074

Buse MG. In vivo effects of branched chain amino acids on muscle protein synthesis in fasted rats. Horm Metab Res. 1981;13(9):502–5. https://pubmed.ncbi.nlm.nih.gov/7298019/

8075

Louard RJ, Barrett EJ, Gelfand RA. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci (Lond). 1990;79(5):457–66. https://pubmed.ncbi.nlm.nih.gov/2174312/

8076

Louard RJ, Barrett EJ, Gelfand RA. Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism. 1995;44(4):424–9. https://pubmed.ncbi.nlm.nih.gov/7723664/

8077

Plotkin DL, Delcastillo K, Van Every DW, Tipton KD, Aragon AA, Schoenfeld BJ. Isolated leucine and branched-chain amino acid supplementation for enhancing muscular strength and hypertrophy: a narrative review. Int J Sport Nutr Exerc Metab. 2021;31(3):292–301. https://pubmed.ncbi.nlm.nih.gov/33741748/

8078

Isanejad M, LaCroix AZ, Thomson CA, et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br J Nutr. 2017;117(11):1523–30. https://pubmed.ncbi.nlm.nih.gov/28721839/

8079

Adeva-Andany MM, González-Lucán M, Fernández-Fernández C, Carneiro-Freire N, Seco-Filgueira M, Pedre-Piñeiro AM. Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN. 2019;33:29–38. https://pubmed.ncbi.nlm.nih.gov/31451269/

8080

Isanejad M, Lacroix AZ, Thomson CA, et al. Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women’s Health Initiative. Br J Nutr. 2017;117(11):1523–30. https://pubmed.ncbi.nlm.nih.gov/28721839/

8081

Malik VS, Li Y, Tobias DK, Pan A, Hu FB. Dietary protein intake and risk of type 2 diabetes in US men and women. Am J Epidemiol. 2016;183(8):715–28. https://pubmed.ncbi.nlm.nih.gov/27022032/

8082

Le Couteur DG, Solon-Biet SM, Cogger VC, et al. Branched chain amino acids, aging and age-related health. Ageing Res Rev. 2020;64:101198. https://pubmed.ncbi.nlm.nih.gov/33132154/

8083

Hagve M, Simbo SY, Ruebush LE, et al. Postprandial concentration of circulating branched chain amino acids are able to predict the carbohydrate content of the ingested mixed meal. Clin Nutr. 2021;40(8):5020–9. https://pubmed.ncbi.nlm.nih.gov/34365036/

8084

Hosseinpour-Niazi S, Mirmiran P, Hedayati M, Azizi F. Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: a cross-over randomized clinical trial. Eur J Clin Nutr. 2015;69(5):592–7. https://pubmed.ncbi.nlm.nih.gov/25351652/

8085

Viguiliouk E, Stewart SE, Jayalath VH, et al. Effect of replacing animal protein with plant protein on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2015;7(12):9804–24. https://pubmed.ncbi.nlm.nih.gov/26633472/

8086

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

8087

Lederer AK, Maul-Pavicic A, Hannibal L, et al. Vegan diet reduces neutrophils, monocytes and platelets related to branched-chain amino acids – a randomized, controlled trial. Clin Nutr. 2020;39(11):3241–50. https://pubmed.ncbi.nlm.nih.gov/32147197/

8088

Kahleova H, Klementova M, Herynek V, et al. The effect of a vegetarian vs conventional hypocaloric diabetic diet on thigh adipose tissue distribution in subjects with type 2 diabetes: a randomized study. J Am Coll Nutr. 2017;36(5):364–9. https://pubmed.ncbi.nlm.nih.gov/28604251/

8089

Lee Y, Park K. Adherence to a vegetarian diet and diabetes risk: a systematic review and meta-analysis of observational studies. Nutrients. 2017;9(6):603. https://pubmed.ncbi.nlm.nih.gov/28613258/

8090

Kahleova H, Klementova M, Herynek V, et al. The effect of a vegetarian vs conventional hypocaloric diabetic diet on thigh adipose tissue distribution in subjects with type 2 diabetes: a randomized study. J Am Coll Nutr. 2017;36(5):364–9. https://pubmed.ncbi.nlm.nih.gov/28604251/

8091

Goff LM, Bell JD, So PW, Dornhorst A, Frost GS. Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr. 2005;59(2):291–8. https://pubmed.ncbi.nlm.nih.gov/15523486/

8092

Valachovicová M, Krajcovicová-Kudlácková M, Blazícek P, Babinská K. No evidence of insulin resistance in normal weight vegetarians. A case control study. Eur J Nutr. 2006;45(1):52–4. https://pubmed.ncbi.nlm.nih.gov/15940383/

8093

Kuo CS, Lai NS, Ho LT, Lin CL. Insulin sensitivity in Chinese ovo-lactovegetarians compared with omnivores. Eur J Clin Nutr. 2004;58(2):312–6. https://pubmed.ncbi.nlm.nih.gov/14749752/

8094

Toth MJ, Poehlman ET. Sympathetic nervous system activity and resting metabolic rate in vegetarians. Metab Clin Exp. 1994;43(5):621–5. https://pubmed.ncbi.nlm.nih.gov/8177051/

8095

Hung CJ, Huang PC, Li YH, Lu SC, Ho LT, Chou HF. Taiwanese vegetarians have higher insulin sensitivity than omnivores. Br J Nutr. 2006;95(1):129–35. https://pubmed.ncbi.nlm.nih.gov/16441925/

8096

Kahleova H, Petersen KF, Shulman GI, et al. Effect of a low-fat vegan diet on body weight, insulin sensitivity, postprandial metabolism, and intramyocellular and hepatocellular lipid levels in overweight adults: a randomized clinical trial. JAMA Netw Open. 2020;3(11):e2025454. https://pubmed.ncbi.nlm.nih.gov/33252690/

8097

McCarty MF. The origins of western obesity: a role for animal protein? Med Hypotheses. 2000;54(3):488–94. https://pubmed.ncbi.nlm.nih.gov/10783494/

8098

Remer T, Pietrzik K, Manz F. A moderate increase in daily protein intake causing an enhanced endogenous insulin secretion does not alter circulating levels or urinary excretion of dehydroepiandrosterone sulfate. Metab Clin Exp. 1996;45(12):1483–6. https://pubmed.ncbi.nlm.nih.gov/8969280/

8099

Gulliford MC, Bicknell EJ, Scarpello JH. Differential effect of protein and fat ingestion on blood glucose responses to high– and low-glycemic-index carbohydrates in noninsulin-dependent diabetic subjects. Am J Clin Nutr. 1989;50(4):773–7. https://pubmed.ncbi.nlm.nih.gov/2679037/

8100

Ballance S, Knutsen SH, Fosvold ØW, Wickham M, Trenado CD, Monro J. Glyceamic and insulinaemic response to mashed potato alone, or with broccoli, broccoli fibre or cellulose in healthy adults. Eur J Nutr. 2018;57(1):199–207. https://pubmed.ncbi.nlm.nih.gov/27655525/

8101

Gannon MC, Nuttall FQ, Neil BJ, Westphal SA. The insulin and glucose responses to meals of glucose plus various proteins in type II diabetic subjects. Metab Clin Exp. 1988;37(11):1081–8. https://pubmed.ncbi.nlm.nih.gov/3054432/

8102

Gojda J, Rossmeislová L, Straková R, et al. Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores. Eur J Clin Nutr. 2017;71(5):594–601. https://pubmed.ncbi.nlm.nih.gov/28145418/

8103

Draper CF, Vassallo I, Di Cara A, et al. A 48-hour vegan diet challenge in healthy women and men induces a branch-chain amino acid related, health associated, metabolic signature. Mol Nutr Food Res. 2018;62(3):1700703. https://pubmed.ncbi.nlm.nih.gov/29087622/

8104

Le Couteur DG, Solon-Biet S, Cogger VC, et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci. 2016;73(6):1237–52. https://pubmed.ncbi.nlm.nih.gov/26718486/

8105

Draper CF, Vassallo I, Di Cara A, et al. A 48-hour vegan diet challenge in healthy women and men induces a BRANCH-chain amino acid related, health associated, metabolic signature. Mol Nutr Food Res. 2018;62(3):1700703. https://pubmed.ncbi.nlm.nih.gov/29087622/

8106

Kalantar-Zadeh K, Kramer HM, Fouque D. High-protein diet is bad for kidney health: unleashing the taboo. Nephrol Dial Transplant. 2020;35(1):1–4. https://pubmed.ncbi.nlm.nih.gov/31697325/

8107

Mittendorfer B, Klein S, Fontana L. A word of caution against excessive protein intake. Nat Rev Endocrinol. 2020;16(1):59–66. https://pubmed.ncbi.nlm.nih.gov/31728051/

8108

Larsen TM, Dalskov SM, van Baak M, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363(22):2102–13. https://pubmed.ncbi.nlm.nih.gov/21105792/

8109

Brandhorst S, Longo VD. Protein quantity and source, fasting-mimicking diets, and longevity. Adv Nutr. 2019;10(Suppl_4):S340–50. https://pubmed.ncbi.nlm.nih.gov/31728501/

8110

Sifferlin A. What diet helps people live the longest? Time. 2015;185(6–7):93. https://pubmed.ncbi.nlm.nih.gov/25928954/

8111

Fontana L. The Path to Longevity: How to Reach 100 with the Health and Stamina of a 40-Year-Old. Hardie Grant Books; 2020. https://worldcat.org/title/1129687546

8112

Harden A, Young WJ. The alcoholic ferment of yeast-juice. Part II. – The coferment of yeast-juice. Proc R Soc Lond B. 1906;78(526):369–75. https://archive.org/details/philtrans05349481

8113

Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mech Ageing Dev. 2021;199:111567. https://pubmed.ncbi.nlm.nih.gov/34517020/

8114

Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mech Ageing Dev. 2021;199:111569. https://pubmed.ncbi.nlm.nih.gov/34509469/

8115

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8116

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8117

Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/

8118

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

8119

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8120

Liu L, Su X, Quinn WJ, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–80.e5. https://pubmed.ncbi.nlm.nih.gov/29685734/

8121

Ziegler M, Nikiforov AA. NAD on the rise again. Nat Metab. 2020;2(4):291–2. https://pubmed.ncbi.nlm.nih.gov/32694607/

8122

Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/

8123

Jacobson MK, Jacobson EL. Vitamin B3 in health and disease: toward the second century of discovery. Methods Mol Biol. 2018;1813:3–8. https://pubmed.ncbi.nlm.nih.gov/30097857/

8124

Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: role in life, death and everything in between. Mol Cell Endocrinol. 2017;455:62–74. https://pubmed.ncbi.nlm.nih.gov/27825999/

8125

Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30. https://pubmed.ncbi.nlm.nih.gov/18429699/

8126

Kirkland JB, Meyer-Ficca ML. Niacin. In: Advances in Food and Nutrition Research. Elsevier;2018;83:83–149. https://pubmed.ncbi.nlm.nih.gov/29477227/

8127

Yang Y, Sauve AA. NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864(12):1787–800. https://pubmed.ncbi.nlm.nih.gov/27374990/

8128

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8129

Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/

8130

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8131

She J, Sheng R, Qin ZH. Pharmacology and potential implications of nicotinamide adenine dinucleotide precursors. Aging Dis. 2021;12(8):1879–97. https://pubmed.ncbi.nlm.nih.gov/34881075/

8132

Pflanzer LR. A startup that’s developed an anti-aging supplement just raised $20 million. Business Insider. https://www.businessinsider.com/elysium-health-raises-20-million-and-presents-clinical-data-2016–12. Published December 7, 2016. Accessed January 10, 2023.; https://www.businessinsider.com/elysium-health-raises-20-million-and-presents-clinical-data-2016-12

8133

Goldstein J. Harvard researcher tied to Shaklee “anti-aging tonic” Vivix. Wall Street Journal. https://www.wsj.com/articles/BL-HEB-3860. Published December 26, 2008. Accessed January 10, 2023.; https://www.wsj.com/articles/BL-HEB-3860

8134

Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-dependent decline of NAD+—universal truth or confounded consensus? Nutrients. 2021;14(1):101. https://pubmed.ncbi.nlm.nih.gov/35010977/

8135

McReynolds MR, Chellappa K, Chiles E, et al. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst. 2021;12(12):1160–72.e4. https://pubmed.ncbi.nlm.nih.gov/34559996/

8136

Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-dependent decline of NAD+—universal truth or confounded consensus? Nutrients. 2021;14(1):101. https://pubmed.ncbi.nlm.nih.gov/35010977/

8137

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8138

Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://pubmed.ncbi.nlm.nih.gov/28068222/

8139

Cerutti R, Pirinen E, Lamperti C, et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–9. https://pubmed.ncbi.nlm.nih.gov/24814483/

8140

Fang EF, Lautrup S, Hou Y, et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916. https://pubmed.ncbi.nlm.nih.gov/28899755/

8141

Okur MN, Mao B, Kimura R, et al. Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. NPJ Aging Mech Dis. 2020;6:1. https://pubmed.ncbi.nlm.nih.gov/31934345/

8142

Yang Q, Cong L, Wang Y, et al. Increasing ovarian NAD+ levels improve mitochondrial functions and reverse ovarian aging. Free Radic Biol Med. 2020;156:1–10. https://pubmed.ncbi.nlm.nih.gov/32492457/

8143

Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-¿ coactivator 1a regulated ß-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging. 2013;34(6):1581–8. https://pubmed.ncbi.nlm.nih.gov/23312803/

8144

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8145

de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522–30. https://pubmed.ncbi.nlm.nih.gov/26970090/

8146

Yao Z, Yang W, Gao Z, Jia P. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neurosci Lett. 2017;647:133–40. https://pubmed.ncbi.nlm.nih.gov/28330719/

8147

Ryu D, Zhang H, Ropelle ER, et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med. 2016;8(361):361ra139. https://pubmed.ncbi.nlm.nih.gov/27798264/

8148

Takeda K, Okumura K. Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice. Biomed Res. 2021;42(5):173–9. https://pubmed.ncbi.nlm.nih.gov/34544993/

8149

Tran MT, Zsengeller ZK, Berg AH, et al. PGC1a drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature. 2016;531(7595):528–32. https://pubmed.ncbi.nlm.nih.gov/26982719/

8150

Mukherjee S, Chellappa K, Moffitt A, et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology. 2017;65(2):616–30. https://pubmed.ncbi.nlm.nih.gov/27809334/

8151

Gomes AP, Price NL, Ling AJY, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–38. https://pubmed.ncbi.nlm.nih.gov/24360282/

8152

Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8. https://pubmed.ncbi.nlm.nih.gov/26596563/

8153

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

8154

Anderson RM, Bitterman KJ, Wood JG, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem. 2002;277(21):18881–90. https://pubmed.ncbi.nlm.nih.gov/11884393/

8155

Mouchiroud L, Houtkooper RH, Moullan N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154(2):430–41. https://pubmed.ncbi.nlm.nih.gov/23870130/

8156

Zhang H, Ryu D, Wu Y, et al. NAD¿ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://pubmed.ncbi.nlm.nih.gov/27127236/

8157

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8158

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8159

Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30. https://pubmed.ncbi.nlm.nih.gov/18429699/

8160

Liu L, Su X, Quinn WJ, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–80.e5. https://pubmed.ncbi.nlm.nih.gov/29685734/

8161

Shats I, Williams JG, Liu J, et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020;31(3):564–79.e7. https://pubmed.ncbi.nlm.nih.gov/32130883/

8162

Romani M, Hofer DC, Katsyuba E, Auwerx J. Niacin: an old lipid drug in a new NAD+ dress. J Lipid Res. 2019;60(4):741–6. https://pubmed.ncbi.nlm.nih.gov/30782960/

8163

Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. https://pubmed.ncbi.nlm.nih.gov/30813414/

8164

Altschul R, Hoffer A. Effects of salts of nicotinic acid on serum cholesterol. Br Med J. 1958;2(5098):713–4. https://pubmed.ncbi.nlm.nih.gov/13572876/

8165

Schandelmaier S, Briel M, Saccilotto R, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;6(6):CD009744. https://pubmed.ncbi.nlm.nih.gov/28616955/

8166

Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55. https://pubmed.ncbi.nlm.nih.gov/3782631/

8167

Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67. https://pubmed.ncbi.nlm.nih.gov/22085343/

8168

Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12. https://pubmed.ncbi.nlm.nih.gov/25014686/

8169

Schandelmaier S, Briel M, Saccilotto R, et al. Niacin for primary and secondary prevention of cardiovascular events. Cochrane Database Syst Rev. 2017;6(6):CD009744. https://pubmed.ncbi.nlm.nih.gov/28616955/

8170

Superko HR, Zhao XQ, Hodis HN, Guyton JR. Niacin and heart disease prevention: engraving its tombstone is a mistake. J Clin Lipidol. 2017;11(6):1309–17. https://pubmed.ncbi.nlm.nih.gov/28927896/

8171

Krumholz HM. Niacin: time to believe outcomes over surrogate outcomes: if not now, when? Circ Cardiovasc Qual Outcomes. 2016;9(4):343–4. https://pubmed.ncbi.nlm.nih.gov/27407051/

8172

Knopp RH, Ginsberg J, Albers JJ, et al. Contrasting effects of unmodified and time-release forms of niacin on lipoproteins in hyperlipidemic subjects: clues to mechanism of action of niacin. Metabolism. 1985;34(7):642–50. https://pubmed.ncbi.nlm.nih.gov/3925290/

8173

Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203. https://pubmed.ncbi.nlm.nih.gov/26370223/

8174

Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016;68(1):92–125. https://pubmed.ncbi.nlm.nih.gov/27046161/

8175

Kent S, Haynes R, Hopewell JC, et al. Effects of vascular and nonvascular adverse events and of extended-release niacin with laropiprant on health and healthcare costs. Circ Cardiovasc Qual Outcomes. 2016;9(4):348–54. https://pubmed.ncbi.nlm.nih.gov/27407053/

8176

Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/

8177

Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/

8178

Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/

8179

Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–90.e5. https://pubmed.ncbi.nlm.nih.gov/32386566/

8180

Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/

8181

Zhong O, Wang J, Tan Y, Lei X, Tang Z. Effects of NAD+ precursor supplementation on glucose and lipid metabolism in humans: a meta-analysis. Nutr Metab (Lond). 2022;19(1):20. https://pubmed.ncbi.nlm.nih.gov/35303905/

8182

Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203. https://pubmed.ncbi.nlm.nih.gov/26370223/

8183

Meyer-Ficca M, Kirkland JB. Niacin. Adv Nutr. 2016;7(3):556–8. https://pubmed.ncbi.nlm.nih.gov/27184282/

8184

Williamson G, Holst B. Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr. 2008;99 Suppl 3:S55–8. https://pubmed.ncbi.nlm.nih.gov/18598589/

8185

Pitkin RM, Allen LH, Bailey LB, et al. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline: a report of the Standing Committee of the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins and Choline and Subcommittee on Upper Reference Levels of Nutrients. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/

8186

Benyó Z, Gille A, Kero J, et al. GPR109A (PUMA-g/HM74A) mediates nicotinic acid-induced flushing. J Clin Invest. 2005;115(12):3634–40. https://pubmed.ncbi.nlm.nih.gov/16322797/

8187

DiPalma JR, Thayer WS. Use of niacin as a drug. Annu Rev Nutr. 1991;11:169–87. https://pubmed.ncbi.nlm.nih.gov/1832551/

8188

Fukushima T. Niacin metabolism and Parkinson’s disease. Environ Health Prev Med. 2005;10(1):3–8. https://pubmed.ncbi.nlm.nih.gov/21432157/

8189

Abdellatif M, Sedej S, Kroemer G. NAD+ metabolism in cardiac health, aging, and disease. Circulation. 2021;144(22):1795–817. https://pubmed.ncbi.nlm.nih.gov/34843394/

8190

Elvehjem CA, Madden RJ, Strong FM, Woolley DW. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J Am Chem Soc. 1937;59(9):1767–8. https://pubs.acs.org/doi/abs/10.1021/ja01288a509

8191

Yoshino J, Baur JA, Imai SI. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28. https://pubmed.ncbi.nlm.nih.gov/29249689/

8192

Giacalone S, Spigariolo CB, Bortoluzzi P, Nazzaro G. Oral nicotinamide: the role in skin cancer chemoprevention. Dermatol Ther. 2021;34(3):e14892. https://pubmed.ncbi.nlm.nih.gov/33595161/

8193

Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev. 2010;15(3):245–63. https://pubmed.ncbi.nlm.nih.gov/21155626/

8194

Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/

8195

Schmeisser K, Mansfeld J, Kuhlow D, et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol. 2013;9(11):693–700. https://pubmed.ncbi.nlm.nih.gov/24077178/

8196

Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 2018;27(3):667–76.e4. https://pubmed.ncbi.nlm.nih.gov/29514072/

8197

Elliott RB, Pilcher CC, Stewart A, Fergusson D, McGregor MA. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci. 1993;696:333–41. https://pubmed.ncbi.nlm.nih.gov/8109840/

8198

Pozzilli P, Browne PD, Kolb H, et al. Meta-analysis of nicotinamide treatment in patients with recent-onset IDDM. Diabetes Care. 1996;19(12):1357–63. https://pubmed.ncbi.nlm.nih.gov/8941464/

8199

Connell NJ, Grevendonk L, Fealy CE, et al. NAD+-precursor supplementation with L-tryptophan, nicotinic acid, and nicotinamide does not affect mitochondrial function or skeletal muscle function in physically compromised older adults. J Nutr. 2021;151(10):2917–31. https://pubmed.ncbi.nlm.nih.gov/34191033/

8200

Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):974. https://pubmed.ncbi.nlm.nih.gov/30813414/

8201

Winter SL, Boyer JL. Hepatic toxicity from large doses of vitamin B3 (nicotinamide). N Engl J Med. 1973;289(22):1180–2. https://pubmed.ncbi.nlm.nih.gov/4271091/

8202

Reddi KK, Kodicek E. Metabolism of nicotinic acid and related compounds in man and rat. Biochem J. 1953;53(2):286–94. https://pubmed.ncbi.nlm.nih.gov/13032067/

8203

Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp Gerontol. 2020;132:110831. https://pubmed.ncbi.nlm.nih.gov/31917996/

8204

Willets JM, Lunec J, Williams AC, Griffiths HR. Neurotoxicity of nicotinamide derivatives: their role in the aetiology of Parkinson’s disease. Biochem Soc Trans. 1993;21 (Pt 3)(3):299S. https://pubmed.ncbi.nlm.nih.gov/8224447/

8205

Harrison IF, Powell NM, Dexter DT. The histone deacetylase inhibitor nicotinamide exacerbates neurodegeneration in the lactacystin rat model of Parkinson’s disease. J Neurochem. 2019;148(1):136–56. https://pubmed.ncbi.nlm.nih.gov/30269333/

8206

Parsons RB, Smith ML, Williams AC, Waring RH, Ramsden DB. Expression of nicotinamide N-methyltransferase (E.C. 2.1.1.1) in the Parkinsonian brain. J Neuropathol Exp Neurol. 2002;61(2):111–24. https://pubmed.ncbi.nlm.nih.gov/11853016/

8207

Li D, Tian YJ, Guo J, et al. Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr. 2013;110(12):2156–64. https://pubmed.ncbi.nlm.nih.gov/23768418/

8208

Kang-Lee YA, McKee RW, Wright SM, Swendseid ME, Jenden DJ, Jope RS. Metabolic effects of nicotinamide administration in rats. J Nutr. 1983;113(2):215–21. https://pubmed.ncbi.nlm.nih.gov/6218261/

8209

Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules. 2020;10(5):687. https://pubmed.ncbi.nlm.nih.gov/32365524/

8210

Tian YJ, Li D, Ma Q, et al. Excess nicotinamide increases plasma serotonin and histamine levels. Sheng Li Xue Bao. 2013;65(1):33–8. https://pubmed.ncbi.nlm.nih.gov/23426511/

8211

Sun WP, Li D, Lun YZ, et al. Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives. Hypertens Res. 2012;35(2):180–5. https://pubmed.ncbi.nlm.nih.gov/21918528/

8212

Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr. 2019;6:49. https://pubmed.ncbi.nlm.nih.gov/31069230/

8213

Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–68. https://pubmed.ncbi.nlm.nih.gov/15780941/

8214

Mitchell SJ, Bernier M, Aon MA, et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 2018;27(3):667–76.e4. https://pubmed.ncbi.nlm.nih.gov/29514072/

8215

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J Biol Chem. 2002;277(47):45099–107. https://pubmed.ncbi.nlm.nih.gov/12297502/

8216

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8217

Cantó C, Houtkooper RH, Pirinen E, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47. https://pubmed.ncbi.nlm.nih.gov/22682224/

8218

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8219

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8220

Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (Nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772. https://pubmed.ncbi.nlm.nih.gov/31278280/

8221

Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/

8222

Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/

8223

Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/

8224

Stocks B, Ashcroft SP, Joanisse S, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31. https://pubmed.ncbi.nlm.nih.gov/33492681/

8225

Mehmel M, Jovanovic N, Spitz U. Nicotinamide riboside – the current state of research and therapeutic uses. Nutrients. 2020;12(6):1616. https://pubmed.ncbi.nlm.nih.gov/32486488/

8226

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8227

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8228

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8229

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8230

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8231

Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/

8232

Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/

8233

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8234

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8235

Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/

8236

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8237

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8238

Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/

8239

Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/

8240

Dollerup OL, Christensen B, Svart M, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53. https://pubmed.ncbi.nlm.nih.gov/29992272/

8241

Stocks B, Ashcroft SP, Joanisse S, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31. https://pubmed.ncbi.nlm.nih.gov/33492681/

8242

Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/

8243

Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/

8244

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8245

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8246

Dollerup OL, Trammell SAJ, Hartmann B, et al. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J Clin Endocrinol Metab. 2019;104(11):5703–14. https://pubmed.ncbi.nlm.nih.gov/31390002/

8247

Brakedal B, Dölle C, Riemer F, et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022;34(3):396–407.e6. https://pubmed.ncbi.nlm.nih.gov/35235774/

8248

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8249

Dolopikou CF, Kourtzidis IA, Margaritelis NV, et al. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study. Eur J Nutr. 2020;59(2):505–15. https://pubmed.ncbi.nlm.nih.gov/30725213/

8250

Brenner C. Anti-inflammatory plus this observation among the men. Twitter. https://twitter.com/charlesmbrenner/status/1161314766176083968. Published August 14, 2019. Accessed January 13, 2023.; https://twitter.com/charlesmbrenner/status/1161314766176083968

8251

Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–28.e6. https://pubmed.ncbi.nlm.nih.gov/31412242/

8252

Remie CME, Roumans KHM, Moonen MPB, et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112(2):413–26. https://pubmed.ncbi.nlm.nih.gov/32320006/

8253

Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a Vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care. 2013;16(6):657–61. https://pubmed.ncbi.nlm.nih.gov/24071780/

8254

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8255

Stocks B, Ashcroft SP, Joanisse S, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31. https://pubmed.ncbi.nlm.nih.gov/33492681/

8256

Campbell MTD, Jones DS, Andrews GP, Li S. Understanding the physicochemical properties and degradation kinetics of nicotinamide riboside, a promising vitamin B3 nutritional supplement. Food Nutr Res. 2019;63. https://pubmed.ncbi.nlm.nih.gov/31807125/

8257

Shats I, Williams JG, Liu J, et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020;31(3):564–79.e7. https://pubmed.ncbi.nlm.nih.gov/32130883/

8258

Stocks B, Ashcroft SP, Joanisse S, et al. Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise. J Physiol. 2021;599(5):1513–31. https://pubmed.ncbi.nlm.nih.gov/33492681/

8259

Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/

8260

Sauve AA. Metabolic disease, NAD metabolism, nicotinamide riboside, and the gut microbiome: connecting the dots from the gut to physiology. mSystems. 2022;7(1):e01223–21. https://pubmed.ncbi.nlm.nih.gov/35076274/

8261

Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (Nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772. https://pubmed.ncbi.nlm.nih.gov/31278280/

8262

Dellinger RW, Santos SR, Morris M, et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech Dis. 2017;3:17. https://pubmed.ncbi.nlm.nih.gov/29184669/

8263

Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev. 2021;200:111584. https://pubmed.ncbi.nlm.nih.gov/34673082/

8264

Brenner C, Boileau AC. Pterostilbene raises low density lipoprotein cholesterol in people. Clin Nutr. 2019;38(1):480–1. https://pubmed.ncbi.nlm.nih.gov/30482564/

8265

Martens CR, Denman BA, Mazzo MR, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286. https://pubmed.ncbi.nlm.nih.gov/29599478/

8266

Dollerup OL, Christensen B, Svart M, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53. https://pubmed.ncbi.nlm.nih.gov/29992272/

8267

Riche DM, Riche KD, Blackshear CT, et al. Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evid Based Complement Alternat Med. 2014;2014:459165. https://pubmed.ncbi.nlm.nih.gov/25057276/

8268

Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. https://pubmed.ncbi.nlm.nih.gov/29211728/

8269

Palmer RD, Elnashar MM, Vaccarezza M. Precursor comparisons for the upregulation of nicotinamide adenine dinucleotide. Novel approaches for better aging. Aging Med (Milton). 2021;4(3):214–20. https://pubmed.ncbi.nlm.nih.gov/34553119/

8270

Kourtzidis IA, Stoupas AT, Gioris IS, et al. The NAD+ precursor nicotinamide riboside decreases exercise performance in rats. J Int Soc Sports Nutr. 2016;13:32. https://pubmed.ncbi.nlm.nih.gov/27489522/

8271

Kourtzidis IA, Dolopikou CF, Tsiftsis AN, et al. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: implications for exercise performance. Exp Physiol. 2018;103(10):1357–66. https://pubmed.ncbi.nlm.nih.gov/30007015/

8272

Shi W, Hegeman MA, Doncheva A, Bekkenkamp-Grovenstein M, de Boer VCJ, Keijer J. High dose of dietary nicotinamide riboside induces glucose intolerance and white adipose tissue dysfunction in mice fed a mildly obesogenic diet. Nutrients. 2019;11(10):2439. https://pubmed.ncbi.nlm.nih.gov/31614949/

8273

Sun P, Qie S, Pan B. Nicotinamide riboside will play an important role in anti-aging therapy in humans, especially in the face skin anti-aging treatment. Aesthetic Plast Surg. 2022;46(Suppl 1):192–4. https://pubmed.ncbi.nlm.nih.gov/33977340/

8274

Turck D, Castenmiller J, de Henauw S, et al. Safety of nicotinamide riboside chloride as a novel food pursuant to Regulation (EU) 2015/2283 and bioavailability of nicotinamide from this source, in the context of Directive 2002/46/EC. EFSA J. 2019;17(8):5775. https://pubmed.ncbi.nlm.nih.gov/32626405/

8275

Leduc-Gaudet JP, Dulac M, Reynaud O, Ayoub MB, Gouspillou G. Nicotinamide riboside supplementation to improve skeletal muscle mitochondrial health and whole-body glucose homeostasis: does it actually work in humans? J Physiol. 2020;598(4):619–20. https://pubmed.ncbi.nlm.nih.gov/31879956/

8276

Yoshino J, Baur JA, Imai SI. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 2018;27(3):513–28. https://pubmed.ncbi.nlm.nih.gov/29249689/

8277

Okabe K, Yaku K, Uchida Y, et al. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front Nutr. 2022;9:868640. https://pubmed.ncbi.nlm.nih.gov/35479740/

8278

Airhart SE, Shireman LM, Risler LJ, et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One. 2017;12(12):e0186459. https://pubmed.ncbi.nlm.nih.gov/29211728/

8279

Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/

8280

Poddar SK, Sifat AE, Haque S, Nahid NA, Chowdhury S, Mehedi I. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. https://pubmed.ncbi.nlm.nih.gov/30669679/

8281

Schmidt MS, Brenner C. Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(7):660–1. https://pubmed.ncbi.nlm.nih.gov/32694648/

8282

Grozio A, Mills KF, Yoshino J, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1(1):47–57. https://pubmed.ncbi.nlm.nih.gov/31131364/

8283

Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://pubmed.ncbi.nlm.nih.gov/28068222/

8284

Zhang H, Ryu D, Wu Y, et al. NAD¿ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43. https://pubmed.ncbi.nlm.nih.gov/27127236/

8285

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8286

Irie J, Inagaki E, Fujita M, et al. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J. 2020;67(2):153–60. https://pubmed.ncbi.nlm.nih.gov/31685720/

8287

Okabe K, Yaku K, Uchida Y, et al. Oral administration of nicotinamide mononucleotide is safe and efficiently increases blood nicotinamide adenine dinucleotide levels in healthy subjects. Front Nutr. 2022;9:868640. https://pubmed.ncbi.nlm.nih.gov/35479740/

8288

Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/

8289

Liao B, Zhao Y, Wang D, Zhang X, Hao X, Hu M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021;18(1):54. https://pubmed.ncbi.nlm.nih.gov/34238308/

8290

Kim M, Seol J, Sato T, Fukamizu Y, Sakurai T, Okura T. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older Japanese adults: a randomized, double-blind placebo-controlled study. Nutrients. 2022;14(4):755. https://pubmed.ncbi.nlm.nih.gov/35215405/

8291

Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/

8292

Abdellatif M, Baur JA. NAD+ metabolism and cardiometabolic health: the human evidence. Cardiovasc Res. 2021;117(9):e106–9. https://pubmed.ncbi.nlm.nih.gov/34320167/

8293

Yoshino M, Yoshino J, Kayser BD, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021;372(6547):1224–9. https://pubmed.ncbi.nlm.nih.gov/33888596/

8294

Benson D. Christopher W. Shade, PhD: nicotinamide mononucleotide. Integr Med (Encinitas). 2019;18(6):42–4. https://pubmed.ncbi.nlm.nih.gov/32549856/

8295

Shade C. The science behind NMN – a stable, reliable NAD+ activator and anti-aging molecule. Integr Med (Encinitas). 2020;19(1):12–4. https://pubmed.ncbi.nlm.nih.gov/32549859/

8296

Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://pubmed.ncbi.nlm.nih.gov/28068222/

8297

Ummarino S, Mozzon M, Zamporlini F, et al. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay. Food Chem. 2017;221:161–8. https://pubmed.ncbi.nlm.nih.gov/27979136/

8298

Turner J, Licollari A, Mihalcea E, Tan A. Safety evaluation for Restorin® NMN, a NAD+ precursor. Front Pharmacol. 2021;12:749727. https://pubmed.ncbi.nlm.nih.gov/34867355/

8299

You Y, Gao Y, Wang H, et al. Subacute toxicity study of nicotinamide mononucleotide via oral administration. Front Pharmacol. 2020;11:604404. https://pubmed.ncbi.nlm.nih.gov/33384603/

8300

Poddar SK, Sifat AE, Haque S, Nahid NA, Chowdhury S, Mehedi I. Nicotinamide mononucleotide: exploration of diverse therapeutic applications of a potential molecule. Biomolecules. 2019;9(1):34. https://pubmed.ncbi.nlm.nih.gov/30669679/

8301

NDI 1259-B-Nicotinamide Mononucleotide (NMN) from Inner Mongolia Kingdomway Pharmaceutical Limited. U.S. Food and Drug Administration. https://www.regulations.gov/document/FDA-2022-S-0023–0051. Published November 8, 2022. Accessed February 25, 2023.; https://www.regulations.gov/document/FDA-2022-S-0023-0051

8302

Ramsey KM, Mills KF, Satoh A, Imai SI. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell. 2008;7(1):78–88. https://pubmed.ncbi.nlm.nih.gov/18005249/

8303

Li C, Wu LE. Risks and rewards of targeting NAD+ homeostasis in the brain. Mech Ageing Dev. 2021;198:111545. https://pubmed.ncbi.nlm.nih.gov/34302821/

8304

Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp Gerontol. 2020;132:110831. https://pubmed.ncbi.nlm.nih.gov/31917996/

8305

Cohen MS. Axon degeneration: too much NMN is actually bad? Curr Biol. 2017;27(8):R310–2. https://pubmed.ncbi.nlm.nih.gov/28441566/

8306

Williams PA, Harder JM, John SWM. Glaucoma as a metabolic optic neuropathy: making the case for nicotinamide treatment in glaucoma. J Glaucoma. 2017;26(12):1161–8. https://pubmed.ncbi.nlm.nih.gov/28858158/

8307

Di Stefano M, Nascimento-Ferreira I, Orsomando G, et al. A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration. Cell Death Differ. 2015;22(5):731–42. https://pubmed.ncbi.nlm.nih.gov/25323584/

8308

Di Stefano M, Loreto A, Orsomando G, et al. NMN deamidase delays Wallerian degeneration and rescues axonal defects caused by NMNAT2 deficiency in vivo. Curr Biol. 2017;27(6):784–94. https://pubmed.ncbi.nlm.nih.gov/28262487/

8309

Cohen MS. Axon degeneration: too much NMN is actually bad? Curr Biol. 2017;27(8):R310–2. https://pubmed.ncbi.nlm.nih.gov/28441566/

8310

Quantitative analysis of twenty-two NMN consumer products. ChromaDex. https://s23.q4cdn.com/937095816/files/doc_downloads/2021/Quantitative-Analysis-of-22-NMN-Consumer-Products-Oct-2021.pdf. Published October 20, 2021. Accessed January 10, 2023.; https://investors.chromadex.com/investor-resources/Market-Surveillance/default.aspx

8311

Cooperman T. NAD booster supplements review (NAD+/NADH, nicotinamide riboside, and NMN). ConsumerLab.com. https://www.consumerlab.com/reviews/nmn-nadh-nicotinamide-riboside/nmn-nadh-nicotinamide-riboside/#related-clinical-updates. Published November 2, 2021. Updated November 14, 2022. Accessed January 11, 2023.; https://www.consumerlab.com/reviews/nmn-nadh-nicotinamide-riboside/nmn-nadh-nicotinamide-riboside/#related-clinical-updates

8312

Correll WA, Viswanathan S. Warning letter: ChromaDex MARCS-CMS 607692–11/17/2020. U.S. Food and Drug Administration. https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/chromadex-607692–11172020. Updated December 1, 2020. Accessed January 10, 2023.; https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/chromadex-607692-11172020

8313

BBB National Programs. ChromaDex, Inc. Discontinues advertising claims for Tru Niagen dietary supplement following national advertising division challenge. Cision PR Newswire. https://www.prnewswire.com/news-releases/chromadex-inc-discontinues-advertising-claims-for-tru-niagen-dietary-supplement-following-national-advertising-division-challenge-301392733.html. Published October 5, 2021. Accessed January 10, 2023.; https://www.prnewswire.com/news-releases/chromadex-inc-discontinues-advertising-claims-for-tru-niagen-dietary-supplement-following-national-advertising-division-challenge-301392733.html

8314

Segall PE, Timiras PS. Patho-physiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging. Mech Ageing Dev. 1976;5(2):109–24. https://pubmed.ncbi.nlm.nih.gov/933560/

8315

De Marte ML, Enesco HE. Influence of low tryptophan diet on survival and organ growth in mice. Mech Ageing Dev. 1986;36(2):161–71. https://pubmed.ncbi.nlm.nih.gov/3784629/

8316

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8317

Kimura N, Fukuwatari T, Sasaki R, Shibata K. Comparison of metabolic fates of nicotinamide, NAD+ and NADH administered orally and intraperitoneally; characterization of oral NADH. J Nutr Sci Vitaminol. 2006;52(2):142–8. https://pubmed.ncbi.nlm.nih.gov/16802695/

8318

Zapata-Pérez R, Tammaro A, Schomakers BV, et al. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J. 2021;35(4):e21456. https://pubmed.ncbi.nlm.nih.gov/33724555/

8319

Giroud-Gerbetant J, Joffraud M, Giner MP, et al. A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Mol Metab. 2019;30:192–202. https://pubmed.ncbi.nlm.nih.gov/31767171/

8320

Chini CCS, Peclat TR, Gomez LS, et al. Dihydronicotinamide riboside is a potent NAD+ precursor promoting a pro-inflammatory phenotype in macrophages. Front Immunol. 2022;13:840246. https://pubmed.ncbi.nlm.nih.gov/35281060/

8321

Sonavane M, Hayat F, Makarov M, Migaud ME, Gassman NR. Dihydronicotinamide riboside promotes cell-specific cytotoxicity by tipping the balance between metabolic regulation and oxidative stress. PLoS One. 2020;15(11):e0242174. https://pubmed.ncbi.nlm.nih.gov/33166357/

8322

Chini CCS, Peclat TR, Gomez LS, et al. Dihydronicotinamide riboside is a potent NAD+ precursor promoting a pro-inflammatory phenotype in macrophages. Front Immunol. 2022;13:840246. https://pubmed.ncbi.nlm.nih.gov/35281060/

8323

Poljsak B, Kovac V, Milisav I. Healthy lifestyle recommendations: do the beneficial effects originate from NAD+ amount at the cellular level? Oxid Med Cell Longev. 2020;2020:8819627. https://pubmed.ncbi.nlm.nih.gov/33414897/

8324

Oakey LA, Fletcher RS, Elhassan YS, et al. Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD+ depletion. Wellcome Open Res. 2018;3:147. https://pubmed.ncbi.nlm.nih.gov/30607371/

8325

Braidy N, Liu Y. NAD+ therapy in age-related degenerative disorders: a benefit/risk analysis. Exp Gerontol. 2020;132:110831. https://pubmed.ncbi.nlm.nih.gov/31917996/

8326

Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: pro-cancer functions. Aging Med (Milton). 2021;4(4):337–44. https://pubmed.ncbi.nlm.nih.gov/34964015/

8327

Poljsak B, Kovac V, Milisav I. Healthy lifestyle recommendations: do the beneficial effects originate from NAD+ amount at the cellular level? Oxid Med Cell Longev. 2020;2020:8819627. https://pubmed.ncbi.nlm.nih.gov/33414897/

8328

Liu Y, Clement J, Grant R, Sachdev P, Braidy N. Quantitation of NAD+: why do we need to measure it? Biochim Biophys Acta Gen Subj. 2018;1862(12):2527–32. https://pubmed.ncbi.nlm.nih.gov/30048742/

8329

Chini EN. Of mice and men: NAD+ boosting with niacin provides hope for mitochondrial myopathy patients. Cell Metab. 2020;31(6):1041–3. https://pubmed.ncbi.nlm.nih.gov/32492387/

8330

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8331

McReynolds MR, Chellappa K, Baur JA. Age-related NAD+ decline. Exp Gerontol. 2020;134:110888. https://pubmed.ncbi.nlm.nih.gov/32097708/

8332

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8333

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8334

Elysium Health. U. S. District Court invalidates Dartmouth patents asserted by ChromaDex. Cision PR Newswire. https://www.prnewswire.com/news-releases/us-district-court-invalidates-dartmouth-patents-asserted-by-chromadex-301381257.html. Published September 21, 2021. Accessed January 28, 2023.; https://www.prnewswire.com/news-releases/us-district-court-invalidates-dartmouth-patents-asserted-by-chromadex-301381257.html

8335

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8336

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8337

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8338

de Guia RM, Agerholm M, Nielsen TS, et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep. 2019;7(12):e14139. https://pubmed.ncbi.nlm.nih.gov/31207144/

8339

Zhou CC, Yang X, Hua X, et al. Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol. 2016;173(15):2352–68. https://pubmed.ncbi.nlm.nih.gov/27174364/

8340

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8341

Koltai E, Szabo Z, Atalay M, et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev. 2010;131(1):21–8. https://pubmed.ncbi.nlm.nih.gov/19913571/

8342

Liu LY, Wang F, Zhang XY, et al. Nicotinamide phosphoribosyltransferase may be involved in age-related brain diseases. PLoS One. 2012;7(10):e44933. https://pubmed.ncbi.nlm.nih.gov/23071504/

8343

Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5. https://pubmed.ncbi.nlm.nih.gov/12736687/

8344

Balan V, Miller GS, Kaplun L, et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem. 2008;283(41):27810–9. https://pubmed.ncbi.nlm.nih.gov/18678867/

8345

Yoshida M, Satoh A, Lin JB, et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 2019;30(2):329–42.e5. https://pubmed.ncbi.nlm.nih.gov/31204283/

8346

Brouwers B, Stephens NA, Costford SR, et al. Elevated nicotinamide phosphoribosyl transferase in skeletal muscle augments exercise performance and mitochondrial respiratory capacity following exercise training. Front Physiol. 2018;9:704. https://pubmed.ncbi.nlm.nih.gov/29942262/

8347

Costford SR, Brouwers B, Hopf ME, et al. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Mol Metab. 2018;7:1–11. https://pubmed.ncbi.nlm.nih.gov/29146412/

8348

Frederick DW, Davis JG, Dávila A Jr, et al. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290(3):1546–58. https://pubmed.ncbi.nlm.nih.gov/25411251/

8349

Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/

8350

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8351

Costford SR, Bajpeyi S, Pasarica M, et al. Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab. 2010;298(1):E117–26. https://pubmed.ncbi.nlm.nih.gov/19887595/

8352

Lamb DA, Moore JH, Mesquita PHC, et al. Resistance training increases muscle NAD+ and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY). 2020;12(10):9447–60. https://pubmed.ncbi.nlm.nih.gov/32369778/

8353

Ruan Q, Ruan J, Zhang W, Qian F, Yu Z. Targeting NAD+ degradation: the therapeutic potential of flavonoids for Alzheimer’s disease and cognitive frailty. Pharmacol Res. 2018;128:345–58. https://pubmed.ncbi.nlm.nih.gov/28847709/

8354

Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/

8355

Skidmore CJ, Davies MI, Goodwin PM, et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by ¿-radiation and N-methyl-N-nitrosourea. Eur J Biochem. 1979;101(1):135–42. https://pubmed.ncbi.nlm.nih.gov/228934/

8356

Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25(3):235–60. https://pubmed.ncbi.nlm.nih.gov/17919258/

8357

Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: pro-cancer functions. Aging Med (Milton). 2021;4(4):337–44. https://pubmed.ncbi.nlm.nih.gov/34964015/

8358

Amici SA, Young NA, Narvaez-Miranda J, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol. 2018;9:1593. https://pubmed.ncbi.nlm.nih.gov/30042766/

8359

Polzonetti V, Carpi FM, Micozzi D, Pucciarelli S, Vincenzetti S, Napolioni V. Population variability in CD38 activity: correlation with age and significant effect of TNF-a-308GA and CD38 184CG SNPs. Mol Genet Metab. 2012;105(3):502–7. https://pubmed.ncbi.nlm.nih.gov/22236458/

8360

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8361

Wu S, Zhang R. CD38-expressing macrophages drive age-related NAD+ decline. Nat Metab. 2020;2(11):1186–7. https://pubmed.ncbi.nlm.nih.gov/33199923/

8362

Chini CCS, Peclat TR, Warner GM, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat Metab. 2020;2(11):1284–304. https://pubmed.ncbi.nlm.nih.gov/33199925/

8363

Larrick JW, Mendelsohn AR. Finally, a regimen to extend human life expectancy. Rejuvenation Res. 2018;21(3):278–82. https://pubmed.ncbi.nlm.nih.gov/29781380/

8364

Li Y, Pan A, Wang DD, et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation. 2018;138(4):345–55. https://pubmed.ncbi.nlm.nih.gov/29712712/

8365

Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/

8366

Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome. 2016;27(7–8):279–88. https://pubmed.ncbi.nlm.nih.gov/27143112/

8367

Scott CT, DeFrancesco L. Selling long life. Nat Biotechnol. 2015;33(1):31–40. https://pubmed.ncbi.nlm.nih.gov/25574633/

8368

Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/

8369

King DE, Mainous AG III, Geesey ME. Turning back the clock: adopting a healthy lifestyle in middle age. Am J Med. 2007;120(7):598–603. https://pubmed.ncbi.nlm.nih.gov/17602933/

8370

Ma H, Xue Q, Wang X, et al. Adding salt to foods and hazard of premature mortality. Eur Heart J. 2022;43(30):2878–88. https://pubmed.ncbi.nlm.nih.gov/35808995/

8371

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/

8372

Ioannidis JPA. The challenge of reforming nutritional epidemiologic research. JAMA. 2018;320(10):969–70. https://pubmed.ncbi.nlm.nih.gov/30422271/

8373

The US Burden of Disease Collaborators, Mokdad AH, Ballestros K, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444. https://pubmed.ncbi.nlm.nih.gov/29634829/

8374

King ML Jr. Stride Toward Freedom: The Montgomery Story. Harper; 1958. https://worldcat.org/title/610192372

8375

Mathers JC. Obesity and mortality: is childhood obesity shortening life expectancy? Maturitas. 2015;81(1):1–2. https://pubmed.ncbi.nlm.nih.gov/25708225/

8376

Ludwig DS. Lifespan weighed down by diet. JAMA. 2016;315(21):2269–70. https://pubmed.ncbi.nlm.nih.gov/27043490/

8377

Mathers JC. Obesity and mortality: is childhood obesity shortening life expectancy? Maturitas. 2015;81(1):1–2. https://pubmed.ncbi.nlm.nih.gov/25708225/

8378

Xu J, Murphy SL, Kochanek KD, Arias E. Mortality in the United States, 2015. NCHS Data Brief. 2016;(267):1–8. https://pubmed.ncbi.nlm.nih.gov/27930283/

8379

Olshansky SJ, Passaro DJ, Hershow RC, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45. https://pubmed.ncbi.nlm.nih.gov/15784668/

8380

Masters RK, Aron LY, Woolf SH. Changes in Life Expectancy between 2019 and 2021 in the United States and 21 Peer Countries. Public and Global Health; 2022. https://pubmed.ncbi.nlm.nih.gov/35416991/

8381

Walker BR, Colledge NR. Davidson’s Principles and Practices of Medicine E-Book. Elsevier Health Sciences; 2013:169 https://worldcat.org/title/1334359473

8382

Shay CM, Ning H, Allen NB, et al. Status of cardiovascular health in US adults: prevalence estimates from the National Health and Nutrition Examination Surveys (NHANES) 2003–2008. Circulation. 2012;125(1):45–56. https://pubmed.ncbi.nlm.nih.gov/22095826/

8383

Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220. https://pubmed.ncbi.nlm.nih.gov/22179539/

8384

Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. https://pubmed.ncbi.nlm.nih.gov/23842577/

8385

Villines TC. Risks of the American lifestyle: insights from a trans-Pacific comparison of coronary artery calcium progression. Circ: Cardiovasc Imaging. 2019;12(2):e008810. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.119.008810

8386

Mokdad AH, Ballestros K, Echko J, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

8387

Mayo Clinic News Network. Nearly 7 in 10 Americans take prescription drugs, Mayo Clinic, Olmsted Medical Center find. MayoClinic.org. http://newsnetwork.mayoclinic.org/discussion/nearly-7-in-10-americans-take-prescription-drugs-mayo-clinic-olmsted-medical-center-find/. Published June 19, 2013. Accessed January 29, 2023.; https://newsnetwork.mayoclinic.org/discussion/nearly-7-in-10-americans-take-prescription-drugs-mayo-clinic-olmsted-medical-center-find/

8388

Mokdad AH, Ballestros K, Echko J, et al. The state of US health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72. https://pubmed.ncbi.nlm.nih.gov/29634829/

8389

Wansink B, Kniffin KM, Shimizu M. Death row nutrition. Curious conclusions of last meals. Appetite. 2012;59(3):837–43. https://pubmed.ncbi.nlm.nih.gov/22925848/

8390

Ezzati M, Riboli E. Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science. 2012;337(6101):1482–7. https://pubmed.ncbi.nlm.nih.gov/22997325/

8391

Katz DL, Frates EP, Bonnet JP, Gupta SK, Vartiainen E, Carmona RH. Lifestyle as medicine: the case for a True Health Initiative. Am J Health Promot. 2018;32(6):1452–8. https://pubmed.ncbi.nlm.nih.gov/28523941/

8392

Goldberg JP, Hellwig JP. Nutrition research in the media: the challenge facing scientists. J Am Coll Nutr. 1997;16(6):544–50. https://pubmed.ncbi.nlm.nih.gov/9430082/

8393

Keys A. Nutrition and capacity for work. Occup Med. 1946;2(6):536–45. https://pubmed.ncbi.nlm.nih.gov/20288136/

8394

Bodai BI, Nakata TE, Wong WT, et al. Lifestyle medicine: a brief review of its dramatic impact on health and survival. Perm J. 2018;22:17–025. https://pubmed.ncbi.nlm.nih.gov/29035175/

8395

Katz DL, Frates EP, Bonnet JP, Gupta SK, Vartiainen E, Carmona RH. Lifestyle as medicine: the case for a True Health Initiative. Am J Health Promot. 2018;32(6):1452–8. https://pubmed.ncbi.nlm.nih.gov/28523941/

8396

THI_About Us. True Health Initiative. https://www.truehealthinitiative.org/about_us/. Accessed January 29, 2023.; https://www.truehealthinitiative.org/about_us/

8397

Pledge of support for core principles. True Health Initiative. https://www.truehealthinitiative.org/wp-content/uploads/2021/02/THI_Pledge_2021–02–23.pdf. Published February 23, 2021. Accessed January 29, 2023.; https://www.truehealthinitiative.org/

8398

Milton K. Hunter-gatherer diets – a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/

8399

Tutin CEG, Fernandez M. Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lopé Reserve, Gabon. Am J Primatol. 1993;30(3):195–211. https://pubmed.ncbi.nlm.nih.gov/31937009/

8400

Beitz DC, Bauer JE, Behnke KC, et al. Nutrient Requirements of Dogs and Cats. National Academies Press; 2006. https://worldcat.org/title/62741464

8401

Roberts WC. We think we are one, we act as if we are one, but we are not one. Am J Cardiol. 1990;66(10):896. https://pubmed.ncbi.nlm.nih.gov/2220599/

8402

Nestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25(1):43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view

8403

Walker AR. Are health and ill-health lessons from hunter-gatherers currently relevant? Am J Clin Nutr. 2001;73(2):353–6. https://pubmed.ncbi.nlm.nih.gov/11157335/

8404

Kahleova H, Levin S, Barnard ND. Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(1):54–61. https://pubmed.ncbi.nlm.nih.gov/29800598/

Загрузка...