В возрасте десяти лет я брал уроки игры на скрипке, но все закончилось полной катастрофой, и спустя где-то год я это дело бросил. В двадцать лет я захотел научиться игре на фортепиано, и у меня опять ничего не получилось. Мне до сих пор непонятно, как люди читают ноты и превращают их в музыку, используя десять пальцев на обеих руках. И все же я обожаю музыку, и в дополнение к испытываемой мной с ней тесной эмоциональной связи решил постичь ее через физику. По сути, я обожаю физику музыки, которая, конечно же, начинается с физики звука.
Вы, наверное, знаете, что звук появляется в результате одного или нескольких очень быстрых колебаний объекта, скажем поверхности барабана, камертона или скрипичной строки. Эти вибрации довольно очевидны, не так ли? Но что же на самом деле происходит, когда объекты вибрируют не столь очевидно, ибо, как правило, это происходит невидимо.
Возвратно-поступательное движение камертона сначала сжимает воздух, находящийся к нему ближе всего, затем, перемещаясь в другую сторону, разрежает его. Такое поочередное отталкивание и притягивание создает в воздухе волну давления, которую мы называем звуковой. Она очень быстро достигает наших ушей, со скоростью, известной нам как скорость звука: около 340 метров в секунду (около километра за три секунды). Такова скорость звука в воздухе при комнатной температуре. Она может очень сильно варьироваться в зависимости от среды, в которой распространяется звук. Например, скорость звука в четыре раза быстрее в воде и в пятнадцать – в железе, чем в воздухе.
Скорость света (как и любое электромагнитное излучение) в вакууме является известной константой с и составляет около 300 тысяч километров в секунду, но в воде скорость видимого света примерно на треть ниже.
Но вернемся к камертону. Когда волна, которую он производит, ударяется в наши уши, она бьется в барабанные перепонки с точно такой же скоростью колебаний, с какой камертон давит на воздух. Далее, посредством почти абсурдно сложного процесса барабанная перепонка вибрирует косточками среднего уха, носящими, как это ни удивительно, названия молоточек, наковальня и стремя, а они, в свою очередь, производят волны в жидкости во внутреннем ухе. Затем эти волны преобразуются в электрические нервные импульсы, посылаемые в мозг, и наш мозг интерпретирует полученные сигналы как звук. Довольно непростой процесс.
Звуковые волны – а на самом деле любые волны – имеют три основные характеристики: частота, длина и амплитуда. Частота – это количество волн, проходящих через определенную точку за определенный период времени. Наблюдая за волнами в океане с лодки или круизного судна, вы можете заметить, что в минуту о дно ударяется, скажем, десять волн, следовательно, мы можем сказать, что их частота составляет десять волн в минуту. Но вообще-то мы чаще всего измеряем частоту в колебаниях в секунду, также известных как герц[18], сокращенно Гц; 200 колебаний в секунду – это 200 герц.
Длина волны – это расстояние между двумя гребнями или между двумя межгребневыми пространствами волн. Одной из основных особенностей волн является то, что чем больше частота волны, тем короче ее длина и чем больше длина волны, тем меньше ее частота. И тут мы подходим к чрезвычайно важному набору взаимоотношений в области физики – между скоростью, частотой и длиной волны. Длина волны – это ее скорость, поделенная на ее частоту. Это относится и к электромагнитной волне (рентгеновские лучи, видимый свет, инфракрасные и радиоволны), и к звуковым волнам, и к волнам в океане. Приведу пример: длина волны в воздухе звука в 440 герц (нота ля первой октавы) равна 340, поделенному на 440, то есть 0,77 метра.
Если задуматься хотя бы на минуту, понимаешь, что это абсолютно логично. Поскольку скорость звука постоянна в любой данной среде (за исключением газов, где она зависит от температуры), то чем больше звуковых волн за какой-то конкретный период времени, тем короче они должны быть, чтобы вписаться в это время. Очевидно, верно и обратное: чем меньше волн в определенный период времени, тем длиннее должна быть каждая из них. Что касается длины волны, мы используем разные единицы измерения для разных видов волн. Например, если длина звуковых волн измеряется в метрах, то длины волн света – в нанометрах (один нанометр равен одной миллиардной метра).
А что насчет амплитуды? Представьте опять, что смотрите с лодки на волны в океане. Заметили, что некоторые из них выше других, даже если их длина одинакова? Эта характеристика волны и называется амплитудой. Амплитуда звуковой волны определяет громкость звука: чем больше амплитуда, тем громче звук, и наоборот. Это происходит потому, что чем больше амплитуда, тем больше энергии несет волна. Как скажет вам любой серфер, чем выше океанская волна, тем больше в ней энергии. Энергичнее ударяя по гитарным струнам, вы придаете им больше энергии и производите более громкий звук. Амплитуда водяных волн измеряется в метрах и сантиметрах. Амплитуда звуковых волн в воздухе представляет собой расстояние, на которое молекулы воздуха перемещаются вперед и назад в волне давления, но мы никогда не выражаем ее таким образом. Вместо этого мы измеряем интенсивность звука, которая выражается в децибелах. Шкала децибелов довольно сложная; к счастью, вам не нужно разбираться в этом досконально.
С другой стороны, высота звука, определяющая, как высоко или низко он находится на музыкальной шкале, зависит от частоты. Чем больше частота звука, тем он выше; чем меньше частота, тем он ниже. Создавая музыку, мы постоянно изменяем частоту (и, следовательно, высоту).
Человеческое ухо способно воспринимать огромный диапазон частот, от около 20 герц (самая низкая нота на фортепиано – 27,5 герц) до примерно 20 тысяч герц. У меня, кстати, есть забавная демонстрация для студентов, в которой я использую специальный аппарат для измерения остроты слуха – аудиометр, умеющий транслировать различные частоты с различной интенсивностью. Я прошу студентов держать руку поднятой до тех пор, пока они слышат звук, и постепенно увеличиваю частоту. Старея, большинство людей теряют способность слышать высокие частоты. Например, мой лимит восприятия высокой частоты находится где-то на уровне 4 тысяч герц, на четыре октавы выше среднего до, в самом конце фортепианной клавиатуры. Но молодые студенты могут слышать гораздо более высокие ноты еще довольно долго после того, как я перестаю что-либо слышать. Я поворачиваю ручку аудиометра выше и выше, до 10 тысяч и 15 тысяч герц, и руки в аудитории постепенно начинают опускаться. На высоте 20 тысяч герц поднято уже не более половины рук. Тогда я несколько замедляю процесс: 21 тысяча, 22 тысячи, 23 тысячи. К тому времени, как я добираюсь до 24 тысяч герц, несколько рук, как правило, еще подняты. В этот момент я обычно прибегаю к небольшой шутке: выключаю аппарат, а сам делаю вид, будто еще повышаю частоту, до 27 тысяч герц. И знаете, всегда находится пара отчаянных душ, которые утверждают, что слышат эти сверхвысокие ноты – до тех пор, пока я не раскрываю свой обман. Получается довольно весело.
Теперь подумайте о том, как работает камертон. Если ударить по нему сильнее, число колебаний его зубцов в секунду не меняется, следовательно, частота производимых им звуковых волн остается неизменной. Именно поэтому он всегда играет ту же ноту. А вот амплитуда колебаний его зубцов при более сильном ударе возрастает. Это можно увидеть, если записать на пленку, как вы ударяете по камертону, а потом воспроизвести запись в замедленном движении. Вы увидите, как зубцы камертона колеблются, причем тем сильнее, чем сильнее вы по ним ударили. Поскольку амплитуда увеличивается, нота становится громче, но так как зубцы продолжают колебаться с той же частотой, она не меняется. Разве это не странно? Однако, если немного подумать, понимаешь, что тут все точно так же, как в маятнике (глава 3), период колебаний которого (то есть время одного полного колебания) не зависит от амплитуды.
А сохраняются ли упомянутые выше взаимоотношения между характеристиками звука за пределами Земли? Вам когда-нибудь приходилось слышать, что в космосе нет звуков? То есть как бы энергично вы не стучали по клавишам пианино на поверхности Луны, оно не выдавало бы никаких звуков. Правда ли это? Да, на Луне нет атмосферы, там вместо нее вакуум. Так что вы вполне можете сделать вывод, что, к сожалению, даже самые зрелищные взрывы звезд или мощные столкновения галактик происходят в полной тишине. Можно также предположить, что даже Большой взрыв, первичный взрыв, приведший почти 14 миллиардов лет назад к созданию нашей Вселенной, случился в полной тишине. Но погодите минутку. Космос, как и львиная доля жизни как таковой, значительно запутаннее и сложнее, чем мы думали всего лишь несколько десятилетий назад.
Несмотря то что любой из нас, попытавшись дышать в космосе, быстро погибнет от недостатка кислорода, в действительности космическое пространство, даже глубокий космос, не является идеальным вакуумом. Термины вроде этого всегда относительны. Например, межзвездное и межгалактическое пространство в миллионы раз ближе к вакууму, чем самый идеальный вакуум, который мы можем создать на Земле. И тем не менее факт остается фактом: материя, парящая в космическом пространстве, имеет важные и идентифицируемые характеристики.
Большая ее часть называется плазмой: это ионизированные газы – газы, частично либо полностью состоящие из заряженных частиц, таких как ядра водорода (протоны) и электроны, различной плотности. Плазма присутствует в нашей Солнечной системе, и мы обычно называем ее солнечным ветром (явление, в изучении которого огромную роль сыграл Бруно Росси). Плазма также встречается в звездах, и между звездами в галактиках (где мы называем ее межзвездной средой), и даже между галактиками (в этом случае ее именуют межгалактической средой). Большинство астрофизиков считают, что более 99,9 процента всей наблюдаемой материи во Вселенной – это плазма.
Теперь подумайте вот о чем. Везде, где есть материя, можно получить волны давления (и, следовательно, звук), и они будут распространяться в пространстве. А поскольку плазма присутствует в космосе повсюду (в том числе в Солнечной системе), следовательно, там множество звуков, даже если мы и не способны их услышать. Наши уши слышат довольно широкий диапазон частот – фактически более чем в трех порядках величины, – но, к сожалению, природа не оснастила нас механизмами, позволяющими слышать музыку небесных сфер.
Позвольте привести один пример. Еще в 2003 году физики обнаружили рябь в сверхгорячем газе (плазме), окружающем сверхмассивную черную дыру в центре галактики в скоплении Персея, большом кластере из тысяч галактик, расположенном на расстоянии почти 250 миллионов световых лет от Земли. Эта рябь четко указывает на наличие звуковых волн, вызванных выделением большого количества энергии в момент поглощения материи черной дырой. (Черные дыры более подробно обсуждаются в главе 12.) Физики вычислили частоту волн и пришли к выводу, что это си-бемоль, но си-бемоль настолько низкая, что находится на 57 октав (примерно в 1017) ниже до первой октавы, частота которой составляет около 262 герц! Вы можете увидеть эти космические ряби на сайте по адресу: http://science.nasa.gov/science-news/science-at-nasa/2003/09sep_blackholesounds/.
А теперь вернемся к Большому взрыву. Если этот первичный взрыв, приведший к рождению нашей Вселенной, создал волны давления в самой первой материи – которая затем расширилась и впоследствии охладилась, создавая галактики, звезды и со временем планеты, – то мы должны видеть остатки этих звуковых волн. Физики рассчитали, насколько далеко друг от друга должны были находиться ряби ранней плазмы (около 500 тысяч световых лет) и какое расстояние должно разделять их сейчас, после того как наша Вселенная расширяется вот уже более 13 миллиардов лет. Получилось расстояние примерно в 500 миллионов световых лет.
В данное время проводятся два широкомасштабных исследования изображений и спектров звезд и галактик: Слоуновский цифровой обзор неба (SDSS – Sloan Digital Sky Survey) в Нью-Мексико и Исследование красного смещения в двухградусном поле (Twodegree Field (2dF) Galaxy Redshift Survey) в Австралии. Оба проекта искали ряби в распределении галактик и независимо друг от друга обнаружили… угадайте, что? Что «в настоящее время галактики с чуть большей вероятностью находятся на расстоянии 500 миллионов световых лет друг от друга, нежели на каком-либо другом расстоянии». Так что Большой взрыв произвел такой звук, длина волны которого на сегодня составляет около 500 миллионов световых лет, а частота почти на пятьдесят октав (1015) ниже звука, воспринимаемого человеческим ухом. Астроном Марк Уиттл немного поиграл с тем, что он называет акустикой Большого взрыва; и вы тоже можете получить немалое удовольствие, пройдя по ссылке: https://www.youtube.com/watch?v=KP9XihMvu0s. Там вы увидите и услышите, как Уиттл одновременно сжимает время (превращая 100 миллионов лет в 10 секунд) и искусственно поднимает высоту звука ранней Вселенной на пятьдесят октав выше, благодаря чему вы можете слушать «музыку» Большого взрыва.
Явление под названием «резонанс» делает возможным огромное количество вещей, которые в противном случае либо не могли бы существовать вовсе, либо были бы намного менее интересным. Это касается не только музыки, но и радио, часов, батутов, детских качелей, компьютеров, гудков поезда, церковных колоколов и МРТ, которую вам вполне могли делать, исследуя больное колено или плечо (знаете ли вы, что буква «Р» в этой аббревиатуре обозначает слово «резонансная» – «магнитно-резонансная томография»?).
Что же такое резонанс? Это довольно легко понять, вспомнив о качании ребенка на качелях. Раскачивая малыша, вы на интуитивном уровне знаете, что можете достичь довольно больших амплитуд в результате очень небольших усилий. Поскольку качели, по сути, не что иное, как маятник, и, следовательно, имеют четко определенную частоту (глава 3), то, если вы точно рассчитаете время своих толчков, синхронизируя их с частотой качели, совсем несильные дополнительные толчки будут оказывать значительный кумулятивный эффект на амплитуду качания качелей. Иными словами, ваш ребенок будет взлетать все выше и выше, а вы – всего лишь легонько толкать качели кончиками пальцев.
В этом случае вы пользуетесь преимуществами резонанса. Резонанс в физике представляет собой тенденцию чего-либо – будь то маятник, камертон, струна, винный бокал, барабанная кожа, стальная балка, атом, электрон, ядро или даже столб воздуха – сильнее вибрировать при определенных частотах. Мы называем их резонансными частотами (или частотами собственных колебаний).
Камертон, например, сконструирован так, чтобы всегда вибрировать на своей резонансной частоте колебаний. Если она равна 440 герц, камертон издает ноту, известную как ля основной октавы. Практически независимо от того, каким способом вы заставляете камертон вибрировать, его зубцы будут колебаться, то есть двигаться взад-вперед, с частотой 440 раз в секунду.
Все материалы имеют свои резонансные частоты, и если у вас есть возможность добавить энергию в систему или объект, он может начать вибрировать на этих частотах и вам потребуется затратить относительно немного энергии, чтобы получить весьма существенный результат. Например, если легонько постучать по пустому бокалу ложечкой или потереть обод мокрым пальцем, он отреагирует определенным звуком, то есть резонансной частотой колебаний. Конечно, резонанс – это вам не какая-то дармовщина, хотя иногда все выглядит именно так. Но на резонансных частотах объекты действительно с наибольшей эффективностью используют прилагаемую к ним энергию.
По этому же принципу работает скакалка. Если вы когда-нибудь держали ее за один конец, то знаете, что чтобы раскрутить скакалку ровной красивой дугой, потребуется некоторое время – и хотя, чтобы получить такую дугу, вы, возможно, крутили рукой с зажатой в ней ручкой, главное в этом движении то, что вы раскачиваете скакалку вверх-вниз или взад-вперед, производя колебания. В определенный момент скакалка начинает легко вертеться красивой дугой, и чтобы поддерживать этот процесс, вам достаточно едва двигать кистью, а друзья могут начать прыгать в середине этой дуги, интуитивно синхронизируя свои прыжки с резонансной частотой колебаний скакалки.
Возможно, вы этого не знали, играя в свое время на детской площадке, но вертеть рукой достаточно только одному человеку – второй может просто держаться за другой конец и скакалка все равно будет отлично крутиться. Разгадка в том, что в определенный момент крутящие достигают самой низкой резонансной частоты колебания, также называемой резонансом на основной частоте. Без него игра, известная как прыжки через двойную скакалку – когда два человека крутят скакалку в противоположных направлениях, а третий прыгает, – была бы практически невозможной. Две скакалки движутся в противоположных направлениях в руках одних и тех же людей благодаря тому, что для продолжения процесса каждому из них достаточно затратить совсем немного энергии. Поскольку тяговым усилием в данном случае являются кисти рук, скакалка становится тем, что мы называем совершающим вынужденные колебания осциллятором. Достигнув этого резонанса скакалки, вы на интуитивном уровне знаете, что вам нужно оставаться на этой частоте, и больше не ускоряете движение кисти.
Если же вы это сделаете, то красивая вращающаяся дуга скакалки разобьется на отдельные загогулины, и прыгающий вряд ли этому обрадуется. Но если ваша скакалка достаточно длинная и вы сможете крутить свой конец быстрее, то увидите, что вскоре появятся две дуги в противофазе – когда одна идет вниз, а вторая вверх, а посередине веревка будет оставаться неподвижной. Мы называем эту среднюю точку узлом. При таком раскладе прыгать через скакалку могут двое ваших друзей – каждый через свою дугу. Возможно, вы видели такое в цирке. Что же в данном случае происходит? Вы достигли второй резонансной частоты. Практически все, что может вибрировать, имеет несколько резонансных частот, которые мы вскоре обсудим подробнее. Кроме того, у скакалки есть и более высокие резонансные частоты, что я могу продемонстрировать без особого труда.
Чтобы показать множественные резонансные частоты студентам, я натягиваю прямо в аудитории веревку длиной около трех метров между двумя вертикальными стержнями. Когда я передвигаю один конец веревки вверх и вниз (всего на пару сантиметров), производя ее колебания на стержне с помощью небольшого двигателя, частоту которого я могу изменять, она вскоре достигает своей самой низкой резонансной частоты колебаний, называемой первой гармоникой (ее еще называют основной), и выгибается дугой, как скакалка. Я раскачиваю конец веревки быстрее, и через какое-то время видим уже две дуги, представляющие собой зеркальные изображения друг друга. Это явление называется второй гармоникой, и она возникает, когда веревка начинает колебаться со скоростью, в два раза превышающей первую гармонику. Таким образом, если первая гармоника составляет 2 герца, два колебания в секунду, то вторая – 4 герца. Если мы продолжим раскачивать конец веревки еще быстрее, то достигнем третьей гармоники, которая, соответственно, будет в три раза больше первой, в нашем случае 6 герц. В этот момент мы увидим, что веревка разделилась поровну на три части с двумя неподвижными точками (узлами) на ней и с дугами, поочередно идущими вверх и вниз по мере движения вверх-вниз конца веревки с частотой шесть раз в секунду.
Помните, я говорил, что самый низкий звук, который способно уловить человеческое ухо, составляет около 20 герц? Вот почему вы не слышите музыку скакалки – ее частота слишком низкая. Но если воздействовать на струны иного рода – скажем, скрипичные или гитарные, – происходит нечто совершенно другое. Например, возьмите, скрипку. (Вы же не хотите, чтобы это сделал я? Поверьте, за последние шестьдесят лет я так и не добился никаких успехов на ниве музицирования…)
Чтобы мы могли услышать один-единственный долгий, красивый, пронзительный звук скрипки, должно произойти немало физических процессов. Звук струны скрипки, виолончели, арфы или гитары – любой струны или даже просто веревки – зависит от трех факторов: длины, силы натяжения и веса. Чем длиннее струна, чем слабее ее натяжение и чем она тяжелее – тем ниже тон. И, конечно же, наоборот: чем короче струна, чем сильнее ее натяжение и чем она легче, тем тон выше. Вот почему музыкантам, играющим на струнных инструментах, время от времени приходится настраивать их, регулируя натяжение струн, чтобы они издавали звуки нужной частоты, или ноты.
Вот тут и начинается магия. Когда скрипач проводит смычком по струне, он передает ей энергию и струна каким-то образом выбирает свои собственные резонансные частоты (из всех возможных колебаний) и – что еще более удивительно, хоть мы и не можем этого видеть – вибрирует одновременно на нескольких разных резонансных частотах (с несколькими гармониками). Совсем не похоже на камертон, который способен вибрировать только на одной частоте.
Эти дополнительные гармоники (с частотами выше основной) обычно называют обертонами. Взаимодействие резонансных частот (одни звучат сильнее, другие слабее) – этакий коктейль из гармоник – и дает скрипке или виолончели то, что специалисты называют техническим термином «тембр» и что воспринимается как уникальный характер звучания инструмента. Именно этим объясняется и очевидная разница между звуком одной-единственной частоты камертона, аудиометра или аварийной сирены и гораздо более сложным звучанием музыкальных инструментов, издающих звук одновременно на нескольких частотах гармоник. Характерные звуки трубы, гобоя, банджо, фортепиано или скрипки обусловлены разными «коктейлями» гармонических частот, которые производит каждый из этих инструментов. Мне лично ужасно нравится образ такого невидимого космического бармена, истинного эксперта в смешивании сотен разных коктейлей из гармоник, который подает звучание банджо одному клиенту, звук литавр – другому, а арфы или тромбона – третьему.
Создатели первых музыкальных инструментов были несомненными гениями в деле разработки их еще одной чрезвычайно важной характеристики, позволяющей нам сегодня наслаждаться прекрасными звуками музыки. Чтобы мы могли слышать музыку, звуковые волны должны не только находиться в пределах диапазона частот, воспринимаемых человеческим ухом, но и быть достаточно громкими. Например, если просто тихонько дернуть струну, звук будет недостаточно громким для того, чтобы его можно было услышать на расстоянии. Конечно, вы можете передать струне (а следовательно, и звуковым волнам, которые она производит) намного больше энергии, дернув за нее гораздо сильнее, но это отнюдь не значит, что у вас получится четкий, качественный и приятный для уха звук. На наше счастье, люди очень давно, как минимум тысячи лет назад, нашли способ сделать так, чтобы струнные инструменты звучали достаточно громко и были слышны на довольно большом расстоянии.
Сегодня вы можете точно воспроизвести проблему, с которой столкнулись тогда наши гениальные предки, и без особого труда решить ее. Возьмите кусок струны длиной сантиметров в тридцать, привяжите один конец к дверной ручке или ящику стола, сильно натяните, держа за другой конец, а потом дерните за нее. Не слишком впечатляющий результат, верно? Вы, конечно, услышите какой-то звук, который может быть вполне различим в зависимости от длины струны, ее толщины и силы натяжения. Но, скорее всего, он будет не слишком сильным. Даже из соседней комнаты его никто не услышит. Теперь возьмите пластиковый стакан, нанижите его на струну, удерживая ее под углом к ручке, к которой она привязана (но так, чтобы стакан не соскользнул к вашей руке), и опять дерните за струну. Вы услышите куда более явный звук. Почему? Потому что струна передает часть своей энергии стакану, который теперь вибрирует с той же частотой, но имеет гораздо большую площадь поверхности, через которую вибрация передается в воздух. В результате вы слышите более громкий звук.
Вот так, с помощью банального пластикового стакана, вы продемонстрировали принцип деки, жизненно важный для всех струнных инструментов, от гитары и контрабаса до скрипки и фортепиано. Эти инструменты, как правило, сделаны из дерева и принимают колебания струн и передают эти частоты в воздух, многократно усиливая их звук.
Деки лучше всего видны в гитарах и скрипках. В рояле дека плоская, горизонтальная и находится под струнами, которые монтируются на ней; она стоит за струнами вертикально. В арфе дека представляет собой основание, к которому крепятся струны.
В аудитории я показываю студентам разные способы функционирования дек. Для одной из таких демонстраций я использую музыкальный инструмент, который смастерила в детском саду моя дочь Эмма. Он состоит из одной самой обычной струны, прикрепленной к картонной коробке из ресторана Kentucky Fried Chicken. Вы можете изменить натяжение струны с помощью деревянного брусочка. Это действительно ужасно забавно: я увеличиваю натяжение, и звук заметно меняется. Коробка KFC – просто идеальная дека, и студенты слышат звук легонько пощипываемой мной струны с довольно большого расстояния. Другая моя любимая демонстрация предполагает использование музыкальной шкатулки, купленной мною много лет назад в Австрии; она размером не больше спичечного коробка, и никакой деки к ней не прикреплено. Вы крутите рукоятку, и шкатулка благодаря вибрирующим зубчикам издает очень тихие мелодичные звуки. Я начинаю крутить рукоятку в аудитории, держа шкатулку в руках, и никто ничего не слышит, даже я сам! Тогда я ставлю шкатулку на лабораторный стол и кручу снова. Теперь звуки слышат все, даже студенты, сидящие в задней части нашего довольно большого лекционного зала. Меня не перестает поражать, насколько эффективной может быть даже самая простая дека.
Но некоторые деки – истинные произведения искусства. Всем известно, что изготовление высококачественных музыкальных инструментов окружено строжайшей секретностью, и в Steinway & Sons вам вряд ли расскажут, как они создают деки для своих всемирно известных роялей! Вы, вероятно, слышали о знаменитой семье Страдивари, изготавливавшей в XVII и XVIII веках самые лучшие в мире скрипки, мечту любого скрипача. Сегодня специалистам известно о существовании всего 540 скрипок Страдивари; один такой инструмент был продан в 2006 году за 3,5 миллиона долларов. В надежде разгадать «секреты Страдивари», чтобы в результате изготавливать дешевые скрипки с таким же волшебным звучанием, физики всесторонне исследовали старинные инструменты. Если интересно, можете прочитать о некоторых таких исследованиях на сайте www.sciencedaily.com/releases/2009/01/090122141228.htm.
То, насколько приятны те или иные комбинации звуков для человеческого уха, во многом зависит от их частот и гармоник. Наиболее известная разновидность комбинации звуков, во всяком случае, в западной музыке, предполагает объединение двух звуков, у которых частота одного ровно в два раза больше частоты другого. Мы говорим, что они разделены одной октавой. Но есть и много других мелодичных комбинаций: терции, кварты, квинты и так далее.
Математики и естествоиспытатели очарованы красотой числовых взаимоотношений между разными частотами еще со времен древнегреческого философа и математика Пифагора. Историки расходятся во мнениях, что именно Пифагор открыл сам, а что позаимствовал у вавилонян и какова в этом роль его последователей, но, судя по всему, именно этому ученому принадлежит идея, что струны разной длины и натяжения производят различные звуки в предсказуемых и приятных уху соотношениях. В связи с этим современным физикам очень нравится называть Пифагора первым автором теории струн.
Производители музыкальных инструментов используют эти ценные знания с огромной эффективностью. Например, разные струны на скрипке имеют разный вес и по-разному натянуты, что позволяет им производить более высокие и более низкие частоты и гармоники, даже если все они примерно одинаковой длины. Скрипач изменяет длину струн, перемещая пальцы вверх и вниз по грифу скрипки. Когда пальцы двигаются по направлению к подбородку, длина струны уменьшается, увеличивая частоту первой гармоники, так же как и всех других, более высоких гармоник. Это может быть довольно сложно. Некоторые струнные инструменты, например индийский ситар, имеют так называемые симпатические струны – дополнительные струны, расположенные рядом или под основными и вибрирующие на собственных резонансных частотах.
Увидеть разные частоты гармоник на струнах музыкального инструмента трудно, а то и невозможно, но я могу наглядно продемонстрировать их, подключив микрофон к осциллографу, который вы, вероятно, видели хотя бы по телевизору. Осциллограф отображает вибрации – или колебания – на экране в виде линии, идущей вверх и вниз, выше и ниже центральной горизонтальной линии. В отделениях интенсивной терапии и реанимациях эти приборы используют для измерения сердцебиения пациентов.
Я всегда предлагаю студентам принести в аудиторию свои музыкальные инструменты, чтобы мы могли оценить различные коктейли гармоник, которые производит каждый из них.
Когда я подношу к микрофону камертон для получения концертного ля, на экране появляется обычная синусоида частотой 440 герц. Линия четкая и чрезвычайно правильная, потому что, как мы уже знаем, камертон генерирует только одну частоту. Но когда я прошу студента, принесшего на лекцию скрипку, сыграть ту же ля, картинка на экране становится куда интереснее. По сути, мы видим то же самое: на экране явно доминирует синусоида, но теперь кривая гораздо сложнее из-за более высоких гармоник. А если сыграть ля на виолончели, картинка опять поменяется. А представляете, что происходит, если скрипач играет две ноты одновременно!
Когда физику резонанса демонстрируют певцы, пропуская воздух через голосовые связки (кстати, куда более точным и описательным был бы термин «голосовые складки»), мембраны вибрируют и создают звуковые волны. На лекции я прошу кого-либо из студентов спеть, и осциллограф рассказывает такую же историю – на экране громоздятся не менее сложные кривые линии.
Во время игры на пианино клавиша, на которую вы нажимаете, заставляет молоточек ударять по струне – проволоке, – длина, вес и натяжение которой настроены так, чтобы она вибрировала при заданной первой частоте гармоники. Но каким-то образом, как и в случае со скрипичными струнами и голосовыми связками, струны пианино вибрируют одновременно и на более высоких гармонических частотах.
А теперь сделайте огромный мысленный прыжок, чтобы перескочить из мира музыки в субатомный мир, и представьте себе сверхкрошечные струны, похожие на скрипичные, но намного меньше атомного ядра, которые колеблются на разных частотах и с разными гармониками. Иными словами, подумайте о том, что фундаментальными строительными блоками материи являются эти крошечные вибрирующие струны, которые генерируют так называемые элементарные частицы – кварки, глюоны, нейтрино и электроны, – вибрируя на разных гармонических частотах и в разных направлениях. Если вам удалось совершить этот непростой шаг, считайте, что вы только что постигли основное положение «теории струн» – обобщающий термин, используемый для описания усилий, предпринимаемых физиками-теоретиками на протяжении последних сорока лет с тем, чтобы предложить единую теорию, которая бы позволила объяснить все элементарные частицы и силы, действующие во Вселенной. То есть в некотором смысле они хотят предложить теорию «всего».
Сегодня никто не имеет ни малейшего представления, удастся ли подтвердить эту теорию, а нобелевский лауреат Шелдон Глэшоу вообще задался вопросом, является ли она «физической или философской». Но если она верна, и базовыми элементами Вселенной действительно являются различные резонансные уровни невообразимо крошечных струн, значит, наша Вселенная, равно как и ее силы и элементарные частицы, представляет собой своего рода космическую версию замечательных, постепенно усложняющихся вариаций Моцарта на тему старинной английской детской песенки «Сияй, малютка звездочка».
Все объекты имеют свои резонансные частоты, от бутылки кетчупа в вашем холодильнике до высочайших небоскребов; многие из них таинственны и крайне трудно предсказуемы. Если вы водите автомобиль, вам наверняка приходилось слышать и его резонансы, хотя вряд они приносили усладу вашим ушам. Почти все водители во время вождения слышали шум, который исчезает, когда авто набирает скорость.
В моей последней машине, стоило мне остановиться на светофоре на холостом ходу, приборная панель, казалось, сразу же переходила на свою основную частоту. А если я жал на газ, разгоняя двигатель, то, даже не двигаясь с места, изменял частоту вибрации автомобиля и шум исчезал. Иногда какое-то время я слышал новый шум, который обычно прекращался, когда я начинал ехать быстрее либо медленнее. На разных скоростях, приводящих к разным частотам вибраций, мой автомобиль – и тысячи его частей, порой, увы, довольно разболтанных, – достигал резонансной частоты, скажем, немного отвинтившегося глушителя или разболтавшихся монтажных опор двигателя, и те начинали со мной разговаривать. Все они упорно твердили одно и то же: «Покажи меня механику, покажи меня механику». Но я упорно игнорировал эти просьбы до тех пор, пока не довел дело до серьезного ущерба, нанесенного этими резонансами. А когда мне в конце концов пришлось тащить машину в ремонт на буксире, я не смог воспроизвести эти ужасные звуки механику и чувствовал себя довольно глупо.
Помнится, в мою бытность студентом, когда во время официального обеда в моем братстве начинал выступать нежелательный оратор, мы брали свои бокалы и водили мокрыми пальцами вокруг обода, генерируя довольно громкий звук (можете попробовать сделать это дома). Это была основная частота наших винных бокалов. Понятно, что когда это одновременно делали сотни студентов (в конце концов, на то оно и братство), звук получался весьма сильным и противным, зато способ работал безотказно, и говорящий быстро понимал «тонкий» намек.
Вы наверняка слышали, что оперный певец, громко взяв ноту, может голосом разбить стеклянный бокал. Теперь, зная кое-что о резонансе, подумайте, как такое возможно? Довольно просто, по крайней мере теоретически, верно? Что произойдет, если взять бокал, измерить его основную частоту, а затем генерировать на ней звук? По моему опыту, в большинстве случаев ровным счетом ничего. Я лично никогда не видел оперного певца, разбивающего голосом бокал, поэтому и не привлекаю их к своим экспериментам. Я беру бокал, легонько стучу по нему ложкой и измеряю его основную частоту с помощью осциллографа – понятно, что она варьируется от бокала к бокалу, но для тех, которые я использую, всегда колеблется где-то в диапазоне от 440 до 480 герц. Затем я электронным способом генерирую звук точно такой же частоты (ну, совсем точно, конечно, это сделать невозможно, но я стараюсь получить максимально близкое значение). Я прикладываю бокал к усилителю и медленно увеличиваю громкость. Зачем я это делаю? Потому что чем громче звук, тем больше энергии в виде звуковой волны будет ударяться в стекло. И чем больше амплитуда колебаний в бокале, тем больше стекло будет прогибаться внутрь и выгибаться обратно – до тех пор, пока не разобьется (на что я и рассчитываю, проводя демонстрацию).
Чтобы показать, что стекло вибрирует, я крупно навожу на него камеру и подсвечиваю лучом стробоскопа, отрегулированным на несколько иную частоту, нежели звук. Это просто невероятно! Вы видите, как бокал начинает вибрировать; его две противоположные стороны сначала сходятся, а затем расходятся, и расстояние, на которое они смещаются, растет и растет по мере увеличения громкости динамика. Иногда мне приходится немного настроить частоту, а потом – бац! – и стеклянные осколки. Эта часть эксперимента особенно нравится студентам; они просто дождаться не могут, пока стекло лопнет.
А еще я обожаю показывать студентам штуки под названием «пластины Хладни», позволяющие демонстрировать резонанс невероятно причудливым и красивым способом. Это металлические пластины сантиметров тридцать в диаметре, которые бывают квадратными, прямоугольными или даже круглыми, но лучше всего квадратные. Они насаживаются в месте центра на стержень, или основание. Далее мы насыпаем на них мелкий порошок, а затем проводим скрипичным смычком вдоль одной из сторон, всей длиной смычка. Пластина начинает колебаться с одной или несколькими ее резонансными частотами. На пиках и падениях колеблющихся волн на пластине порошок будет стряхиваться, оставляя на металле прогалины, а в узлах, где пластина не вибрирует вообще, порошок будет, наоборот, накапливаться. (Струны имеют узловые точки, а двумерные объекты, такие как пластины Хладни, – узловые линии.)
В зависимости от того, как и где вы «играете» на пластине, проводя по ней смычком, вы будете возбуждать различные резонансные частоты и получите на ее поверхности удивительные, совершенно непредсказуемые узоры. В аудитории я использую более эффективную, но гораздо менее романтичную методику – вместо смычка прикрепляю пластину к вибратору и, изменяя его частоту, генерирую на пластине разные потрясающие узоры. Вы можете увидеть то, о чем я говорю, на YouTube по адресу: www.youtube.com/watch?v=6wmFAwqQB0g. Просто представьте себе математические принципы, лежащие в основе всех этих красот!
На публичных лекциях, которые я читаю маленьким детям, я обычно приглашаю малышей самих водить смычком по краю пластины – они просто обожают создавать красивые и загадочные узоры. Именно такие чувства к физике я стремлюсь пробудить во всех своих учениках.
Однако мы с вами забыли о доброй половине оркестра! Как насчет флейты, гобоя или тромбона? Конечно, у этих инструментов нет ни вибрирующих струн, ни дек, на которые проецируется звук. Но духовые инструменты невероятно древние – недавно я видел в газете фотографию вырезанной из кости грифа флейты, возраст которой 35 тысяч лет, – и немного более загадочные, чем струнные, отчасти потому, что их механизм невидим.
Существуют различные виды духовых инструментов. Одни, такие как свирель и блок-флейта (старинный вариант флейты), открыты с обоих концов, другие, как кларнет, гобой и тромбон, закрыты с одного конца (хотя в них и есть отверстие, в которое дует музыкант). Но все они создают музыку, когда вдуваемый ртом воздух порождает вибрацию воздушного столба внутри инструмента.
Когда вы дуете или нагнетаете воздух внутрь духового инструмента, это, по сути, то же самое, как когда вы пощипываете гитарные струны или проводите смычком по струнам скрипки. Придавая энергию столбу воздуха, вы сбрасываете в эту воздушную полость весь спектр частот, а столб воздуха сам выбирает частоту, с которой он хочет резонировать, главным образом в зависимости от длины. Хотя это довольно трудно себе представить (но относительно несложно рассчитать), столб воздуха внутри прибора выбирает свою основную частоту и некоторые из более высоких гармоник и начинает вибрировать на них, после чего выталкивает и втягивает воздух, практически так же, как вибрируют зубцы камертона, посылая звуковые волны в сторону ушей слушателей.
В случае с гобоем, кларнетом и саксофоном вы дуете в так называемую трость, которая передает энергию столба воздуха и заставляет его резонировать. Играя на флейте и блок-флейте, музыкант дует в отверстие или через дульце, создающее резонанс. А при игре на медных духовых инструментах вы должны плотно сжать губы и издать в инструмент вибрирующий звук, и если вы этому не учились, то у вас, скорее всего, ничего не получится. Я, например, однажды попробовав сделать это, в итоге только наплевал в трубу!
Если инструмент открыт с обоих концов, как, например, флейта, столб воздуха может вибрировать на своих гармониках, каждая из которых кратна основной частоте, – точно также, как в случае со струнами. Что касается деревянных духовых инструментов, закрытых с одного конца и открытых с другого, то тут все зависит от формы отверстия. Если оно имеет форму конуса, как у гобоя или саксофона, инструмент будет генерировать все гармоники, подобно флейте. Но если оно цилиндрическое, как, скажем, у кларнета, столб воздуха будет резонировать только на нечетных, кратных основной частоте: три, пять, семь и так далее. По довольно трудно объяснимым причинам все медные духовые инструменты резонируют на всех гармониках, как флейта.
Гораздо понятнее, хотя и на чисто интуитивном уровне, что чем длиннее столб воздуха, тем ниже частота (и высота) производимого инструментом звука. При уменьшении длины трубы в два раза частота первой гармоники удваивается. Вот почему маленькая флейта-пикколо выдает высокие ноты, а фагот – низкие. Этим общим принципом также объясняется, почему орган состоит из огромного диапазона трубок разной длины – некоторые органы могут издавать звуки в целых девяти октавах. Чтобы произвести основную частоту около 8,7 герца, которая вообще-то даже ниже того, что воспринимает человеческое ухо, хотя мы и можем чувствовать вибрацию, требуется огромная труба длиной 19,5 метра, открытая с обеих сторон. В мире всего две такие огромные органные трубы, уж очень они непрактичны. Труба в десять раз короче вырабатывает основную частоту в десять раз выше, то есть 87 герц; а труба в сто раз короче – около 870 герц.
Музыканты, играющие на духовых инструментах, не просто дуют в них. Они также открывают или закрывают отверстия, которые служат для эффективного сокращения или удлинения столба воздуха, тем самым повышая либо понижая частоту генерируемого инструментом звука. Вот почему, когда дуешь в игрушечную дудочку, самые низкие тона получаются, если заткнуть все отверстия, удлинив в результате столб воздуха. Тот же принцип используется и в медных духовых инструментах. Чем длиннее столб воздуха, даже если он должен идти по кругу, тем ниже звук. Самый низкий звук издает труба длиной около 5,5 метра, известная как труба си-бемоль, с основной частотой около 30 герц; дополнительные, так называемые поворотные, клапаны позволяют понижать тон до 20 герц. Клапаны на трубе открывают или закрывают дополнительные трубки, изменяя высоту резонансных частот. Наиболее прост для визуального понимания тромбон. Сдвигая подвижную часть этого инструмента, называемую кулисой, музыкант увеличивает длину столба воздуха, понижая его резонансные частоты.
Я играю на лекции простенькую мелодию на деревянном слайд-тромбоне, и студентам моя игра очень нравится – я же не говорю им, что это единственная мелодия, которую я умею играть. На самом деле я настолько безнадежен как музыкант, что хоть и читал эту лекцию много-много раз, перед ней непременно репетирую музыкальный номер. Я даже сделал специальные пометки на кулисе тромбона – по сути, ноты, – обозначенные номерами 1, 2, 3 и так далее, ведь я даже не научился читать с нотного листа. Но, как я уже говорил, полное отсутствие музыкальных талантов вовсе не мешает мне высоко ценить красоту музыки и получать огромное удовольствие от экспериментов со звуками.
На момент написания этих строк я развлекаюсь, экспериментируя со столбом воздуха внутри литровой пластиковой бутылки с газировкой. Это отнюдь не идеальный столб, ибо узкое горлышко бутылки постепенно расширяется до ее полного диаметра. Поэтому физика горлышка, как вы можете себе представить, очень сложна. Однако основной принцип духовой музыки – чем длиннее столб воздуха, тем ниже резонансные частоты – по-прежнему сохраняется. Вы можете тоже попробовать провести этот эксперимент.
Заполните бутылку из-под содовой или вина водой почти до верха и подуйте в горлышко. Это потребует некоторой практики, но довольно скоро вы наверняка «нащупаете» столб воздуха, вибрирующий на своих резонансных частотах. Сначала звук будет высокий, но чем больше вы отпиваете из бутылки (теперь понимаете, почему я настаивал на воде?), тем больше становится столб воздуха, а высота тона снижается. Я также обнаружил, что чем длиннее столб воздуха, тем звук приятнее. Чем ниже частота первой гармоники, тем выше вероятность того, что я буду генерировать дополнительные гармоники на более высоких частотах и звук будет иметь более сложный и интересный тембр.
Вам может показаться, что этот звук, вибрируя, издает бутылка, точно так же как струна, и вы на самом деле почувствуете, что бутылка вибрирует – именно так, как вибрировал бы саксофон, если бы вы держали его в руках и дули в него. Но резонирует воздушный столб внутри бутылки. Чтобы лучше в этом разобраться, попробуйте разгадать следующую загадку. Если взять два одинаковых бокала, один пустой, а второй наполовину полный, и возбудить в обоих первые гармоники, легонько постучав по бокалам ложкой или потерев обод мокрым пальцем, частота какого будет выше и почему? Признаться, с моей стороны формулировать вопрос таким образом не совсем корректно, поскольку в нем я даю установку на неправильный ответ, но уж извините! Надеюсь, вы справитесь с этим.
Тот же принцип применяется и в забавных игрушках – двадцатисантиметровых гибких гофрированных пластиковых цветных трубках. Вы наверняка их видели или играли с ними. Помните, как они работают? Начав крутить такую трубу над головой, сначала слышишь низкочастотный тон. Конечно, вы ожидаете, что это будет первая гармоника, как сделал и я, когда впервые играл с такой игрушкой. А между тем у меня почему-то так ни разу и не получилось возбудить первую гармонику. Я всегда сразу слышу вторую. А раскрутив трубку быстрее, переходишь на все более и более высокие гармоники. В рекламе игрушки в интернете утверждается, что из трубки можно получить четыре тона, хотя на самом деле только три – четвертый тон, то есть пятая гармоника, очевидно, предполагает действительно уж очень быстрое кручение. Я подсчитал частоты первых пяти гармоник для трубы длиной 20 сантиметров и выяснил, что они составляют 223 (как вы помните, я никогда не получал этой гармоники), 446, 669, 892 и 1115 герц соответственно. Высота тона растет довольно быстро.
Безусловно, физика резонанса отнюдь не ограничивается рамками учебных демонстраций. Подумайте хотя бы о том невероятном множестве различных настроений, которые порождает музыка, извлекаемая из разных инструментов. Музыкальный резонанс апеллирует к нашим эмоциям, пробуждая в нас веселье и тревогу, спокойствие и благоговение, страх, радость, печаль и многие-многие другие чувства. Неудивительно, что мы говорим о переживаемом людьми эмоциональном резонансе, способном создавать взаимоотношения, наполненные богатством и глубиной, и тончайшие обертона понимания, нежности и желания. Едва ли это случайно, что каждый человек стремится быть «настроенным на чью-то волну». И как нам больно, когда мы теряем этот резонанс, временно или навсегда, и то, что прежде ощущалось как гармония, превращается в нестройный шум и полную эмоциональную какофонию. Помните персонажей пьесы Эдварда Олби «Кто боится Вирджинии Вульф?», супругов Джорджа и Марту? Они постоянно скандалят. Пока они воюют друг с другом, они остаются просто «шоу» для своих гостей, но пара становится гораздо опаснее, когда объединяет усилия, чтобы втянуть в свои «игры» гостя. Но опасен не только эмоциональный резонанс; в физике он тоже может быть поистине разрушительной силой.
Наиболее ярким примером разрушительного резонанса в новейшей истории считается событие, произошедшее в ноябре 1940 года, когда сильнейший порыв ветра ударил прямо в главный пролет висячего моста Такома-Нэрроуз. В результате чудо инженерной мысли (которое из-за того, что в ветреную погоду дорожное полотно сильно раскачивалось, строители еще на этапе возведения прозвали Галопирующей Герти) начало мощно резонировать. Боковой ветер увеличил амплитуду колебаний моста, структура начала вибрировать и раскачиваться все более и более интенсивно, и в итоге мост разрушился и рухнул в воду. Вы можете «полюбоваться» на сей захватывающий крах на сайте https://www.youtube.com/watch?v=j-zczJXSxnw.
А девяноста годами ранее в Анже во Франции рухнул подвесной мост через Мейн-Ривер, когда 478 солдат переходили по нему строем, шагая в ногу. Строевой шаг привел к резонансу, который передался на проржавевшие стропы; более двухсот солдат погибли, упав в реку в результате обрушения моста. Эта катастрофа привела к отказу от строительства подвесных мостов во Франции на целых двадцать лет. В 1831 году английские войска строем переходили висячий мост Бротон, и вследствие резонанса вывернулся болт на одном из его концов. Мост рухнул. На этот раз никто не погиб, но британское армейское начальство выпустило для всех родов войск специальную инструкцию – пересекая мосты, солдаты обязаны шагать вразнобой, не строевым шагом.
Еще один пример. Мост Тысячелетия в Лондоне был открыт в 2000 году, и тысячи пешеходов сразу заметили, что его довольно сильно болтает (инженеры называют этот эффект резонансом изгибных колебаний). Уже через несколько дней власти закрыли мост на два года, чтобы установить на нем демпферы, «гасящие» движения моста, порождаемые шагами пешеходов. Даже великий Бруклинский мост в Нью-Йорке однажды страшно напугал людей, которые столпились на нем во время отключения электроэнергии в 2003 году и почувствовали раскачивание; некоторым даже стало плохо.
В подобных ситуациях пешеходы воздействуют на мост большим весом, чем автомобили, обычно проезжающие по нему довольно быстро, а движения человеческих ног, даже несинхронное, в совокупности могут возбудить резонирующее колебание – вибрацию – в покрытии моста. Когда мост качается в одну сторону, люди компенсируют его движение, переступая на другую сторону и тем самым только увеличивая амплитуду колебания. Даже современные инженеры признают, что недостаточно хорошо представляют возможное влияние человеческой толпы на мосты. На наше счастье, они достаточно знают о строительстве небоскребов, способных выдерживать сильный ветер и землетрясения, которые несут в себе угрозу генерации резонансных частот, в противном случае наверняка уничтоживших бы их творения. Вы только представьте – те же принципы, некогда порождавшие нежные звуки древнейшей флейты наших предков, могут угрожать разрушением массивному Бруклинскому мосту и высочайшим зданиям в мире.