5. Над и под радугой – а также снаружи и внутри

Как много маленьких чудес повседневной жизни (красивых и впечатляющих) проходят мимо нас незамеченными просто потому, что никто не научил нас их видеть. Помню, например, как однажды утром, лет пять назад, пил кофе, сидя на любимом красно-синем стуле Ритвельда, и вдруг заметил на стене невероятно красивый узор из круглых пятен света среди мерцающих теней, отбрасываемых листьями деревьев за окном. Я был так рад, что увидел их, что мои глаза загорелись. Я так и не знаю, что тогда случилось, но моя на удивление проницательная жена Сьюзен тут же поинтересовалась, что со мной.

«Знаешь, что это такое? – спросил я в ответ, указывая на световые круги. – Знаешь, почему это происходит?» А потом объяснил. В том, что свет отбрасывает на стену множество маленьких мерцающих пятнышек, нет ничего особо удивительного, не так ли? Но на сей раз каждое из маленьких отверстий между листьями действовало как камера-обскура, камера с малым отверстием, и она воспроизводила изображение источника света – в данном случае солнца. Если отверстие, через которое поступает свет, мало, то независимо от его формы на стене воссоздается форма самого источника света.

Следовательно, во время частичного солнечного затмения солнечный свет, льющийся через мое окно, создавал бы на стене не полные круги, а такие, словно от них кто-то откусил кусочек, то есть точно в форме затемненного солнца. И, что любопытно, Аристотель знал об этом более двух тысяч лет назад! Как восхитительно – видеть эти светлые пятна прямо на стене моей спальни, потрясающую демонстрацию замечательных свойств света.

Секреты радуги

По правде говоря, удивительные эффекты физики света можно увидеть в нашем мире везде, куда ни посмотри, иногда в самых обычных и привычных проявлениях, а порой в виде красивейших явлений природы. Возьмите, например, радуги: фантастическое, чудесное явление. И они встречаются повсюду. Многие великие ученые – в том числе Ибн аль-Хайтам, мусульманский ученый и математик XI века, известный как отец оптики; французский философ, математик и физик Рене Декарт и сам сэр Исаак Ньютон – считали радуги невероятно интересными и пытались объяснить их природу. Но большинство современных учителей физики почему-то игнорируют это потрясающее явление на своих уроках. Я просто не могу в это поверить; на самом деле я считаю это настоящим преступлением перед учениками.

Конечно, радуга – очень непростое физическое явление. Ну и что с того? Разве можно отказываться от попытки разобраться в чем-то, что так мощно воздействует на человеческое воображение и притягивает нас? Разве можно не хотеть разгадать тайну, лежащую в основе красоты этих потрясающих творений природы? Я люблю читать лекции о радугах и неизменно перед ними говорю студентам: «К концу этой лекции ваша жизнь уже никогда не будет прежней». Это относится и к вам.

Мои бывшие студенты и люди, смотревшие мои лекции в интернете, вот уже много десятилетий присылают мне по обычной и электронной почте прекрасные изображения радуг и других атмосферных явлений. Я иногда чувствую себя так, будто создал сеть разведчиков радуг, действующую ныне по всему миру. Надо сказать, некоторые из полученных мной снимков совершенно потрясающие – особенно с Ниагарского водопада, где столько брызг, что радуги получаются невероятно впечатляющими. Возможно, и вам захочется отправить мне свои фотографии. Пожалуйста, не стесняйтесь!

Я уверен, что вы за свою жизнь видели по крайней мере десятки, если не сотни, радуг. А если вам доводилось бывать во Флориде, на Гавайях или в других тропических районах, где часто идут дожди и одновременно светит солнце, то видели их еще больше. Если же вы поливали сад из шланга или с помощью дождевальной установки, то в солнечный день наверняка сами создавали радуги.

Большинство из нас смотрели на радуги, но очень немногие их видели. В древней мифологии их назвали божьими дугами, мостами, соединявшими дома смертных и богов. А в христианстве радуга воплощает в себе обещание, данное Господом в Библии, никогда более не насылать на землю разрушительное наводнение: «Я полагаю радугу Мою в облаке, чтоб она была знамением завета между Мною и между землею»[16].

Отчасти очарование радуг объясняется тем, как широко, величественно и эфемерно они раскидываются через все небо. Но, как это часто бывает в физике, в основе столь масштабного величия лежат непостижимо огромные количества чего-то исключительно малого: крошечных сферических капелек воды, иногда менее одного миллиметра в диаметре, плавающих в небе.

Хотя ученые пытались объяснить происхождение радуг как минимум на протяжении тысячи лет, первое по-настоящему убедительное объяснение предложил Исаак Ньютон в опубликованном в 1704 году труде «Оптика». Ньютон понял сразу несколько моментов, каждый из которых играет важную роль в создании радуг. Во-первых, он продемонстрировал, что обычный белый свет состоит из всех цветов (я собирался сказать «всех цветов радуги», но не хочу забегать вперед). Преломляя (изгибая) свет через стеклянную призму, ученый разделил его на составные цвета. Затем, направив уже преломленный свет через другую призму, объединил цветной свет обратно в белый, доказав, что сама призма цветов не создавала. Он также определил, что преломлять свет могут разные материалы, в том числе вода. Именно это открытие привело Ньютона к пониманию, что радуга состоит из капель дождя, преломляющих и отражающих свет.

Ньютон пришел к совершенно правильному заключению, что радуга в небе – это результат успешного сотрудничества между солнцем, несметным числом дождевых капель и нашими глазами, которые должны смотреть на эти капли строго под прямым углом. Чтобы понять, как получается радуга, следует разобраться, что происходит, когда свет проникает в дождевую каплю. Но помните, что все, что я буду говорить об одной капле, на самом деле относится к бесчисленному числу капель, из которых состоит любая радуга.

Итак, чтобы увидеть радугу, необходимо соблюсти три условия. Во-первых, солнце должно быть позади вас. Во-вторых, в небе перед вами должны быть дождевые капли – может, в нескольких километрах, а может, всего в нескольких сотнях метров. В-третьих, солнечный свет должен достигать этих капель без каких-либо препятствий, например, таких как облака.

Когда луч света проникает в каплю дождя и преломляется, он раскладывается на составляющие его цвета. Красный свет преломляется, или изгибается, меньше всех, а фиолетовый – сильнее всех. Все эти разноцветные лучи продолжают свой путь к тыльной части дождевой капли. Одни проникают в нее и выходят, а другие отскакивают назад, или отражаются, под некоторым углом на переднюю часть капли. По сути, часть света отражается более одного раза, но для нас этот факт пока неважен; он станет важным чуть позже. На данный же момент нас интересует свет, который отражается только единожды. Когда он выходит из передней части капли, некоторая его часть снова преломляется, далее отделяя друг от друга цветные лучи разного цвета.



После того как лучи солнечного света преломляются, отражаются и преломляются снова на выходе из капли, они уже направлены практически в обратную сторону. Главная причина, почему мы видим радугу, заключается в том, что красный свет выходит из капли под углом от первоначального направления солнечного света при его проникновении в каплю, который всегда меньше 42 градусов. То же самое относится ко всем дождевым каплям, потому что солнце, по сути, находится бесконечно далеко от них. Угол, под которым красный свет выходит из капли, может быть каким угодно от 0 до 42 градусов, но никогда не превышает 42 градусов, и этот максимальный угол для каждого цвета разный. Для фиолетового света он около 40 градусов. Именно из-за разных максимальных углов для каждого цвета радуга состоит из разноцветных полос.

Когда все три вышеперечисленных условия соблюдены, увидеть радугу не составляет труда. Как показано на следующем рисунке, если мысленно нарисовать линию, идущую от Солнца через мою голову к дальнему концу моей тени на земле, она будет располагаться параллельно направлению солнечных лучей, тянущихся к дождевым каплям. Чем выше солнце в небе, тем круче наклон этой линии и тем короче моя тень. Верно также и обратное утверждение. Линию, проходящую от солнца через мою голову к тени моей головы на земле, мы будем называть воображаемой. Она чрезвычайно важна, потому что показывает, в какое место неба надо смотреть, чтобы увидеть радугу.


Все капли дождя под углом 42 градуса от воображаемой линии будут красными. Капли под углом 40 градусов будут синими. Капли под углами меньше 40 градусов будут белыми (как солнечный свет). А света, выходящего из капель, расположенных под углами более 42 градусов, мы не увидим (см. текст).


Если вы посмотрите под углом 42 градуса к этой воображаемой линии – неважно, вверх, вправо или влево, – то увидите там красную полосу радуги. Под углом примерно в 40 градусах от этой линии – вверх, вправо или влево – вы увидите фиолетовую полосу радуги. Однако следует заметить, что увидеть ее трудно, так что вы, скорее всего, увидите с края синий цвет. Поэтому в дальнейшем мы будем говорить о синем. А не те ли это углы, о которых я упоминал ранее, рассказывая о максимальных углах света, выходящего из капель дождя? Те же, и это неслучайно. Посмотрите еще раз на рисунок.

А что можно сказать о синей (фиолетовой) полосе? Ну, вы же помните, что ее магическое число находится под углом около 40 градусов, то есть на 2 градуса меньше, чем у красной полосы. Иными словами, синий (фиолетовый) свет можно увидеть после преломления, отражения и еще раз преломления из других капель дождя при максимальном угле 40 градусов. Таким образом, мы видим синий под наклоном в 40 градусов от воображаемой линии. Поскольку эта 40-градусная полоска ближе к воображаемой линии, чем 42-градусная, она всегда будет находиться на внутренней стороне красной полосы радуги. Остальные цвета, составляющие радугу – оранжевый, желтый, зеленый, – расположены между красной и синей (фиолетовой) полосами.

Теперь вы, возможно, спросите, видим ли мы при максимальном угле для синего света только этот свет? Ведь, например, красный при 40 градусах тоже может быть виден, поскольку этот угол меньше 42 градусов. Вы, кстати, большой молодец, если задались этим вопросом, – он очень проницательный. Ответ заключается в том, что при максимальном угле для любого заданного цвета этот цвет доминирует над всеми остальными. Что же касается красного, то поскольку его максимальный угол самый большой, этот цвет единственный.

Но почему радуга имеет форму дуги, а не прямой линии? Вернитесь ко все той же воображаемой линии, идущей от ваших глаз к тени вашей головы на земле, и к магическому числу 42 градуса. Если отмерить 42 градуса в любом направлении от воображаемой линии, вы «нарисуете» дугу из разных цветов. Но, как вы, наверное, знаете, не все радуги представляют собой полные дуги, некоторые из них – просто маленькие кусочки в небе. Это происходит, когда в небе нет достаточного количества дождевых капель во всех направлениях или когда некоторые части радуги находятся в тени облаков.

Существует еще один важный аспект взаимодействия солнца, капель дождя и ваших глаз, и как только вы его увидите, сразу многое поймете в отношении того, почему радуги – и естественные, и искусственные – именно таковы, каковы они есть. Например, почему некоторые радуги раскидываются через полнеба, в то время как другие просто «обнимают» горизонт? И почему радугу можно увидеть над волнами прибоя, в фонтанах, водопадах и брызгах садового шланга?

Давайте опять вернемся к воображаемой линии, идущей от ваших глаз к тени вашей головы. Она начинается на солнце, за вами, и тянется до земли. Тем не менее в своем воображении вы можете продлить ее, насколько захотите, даже гораздо дальше тени головы. Эта воображаемая линия очень полезна, потому что вы можете представить ее проходящей через центр окружности (так называемую точку солнечного противостояния), по ободу которой идет радуга. Эта окружность показывает, где бы появилась радуга, если бы поверхность Земли не стояла у нее на пути. Далее, в зависимости от того, насколько высоко солнце стоит в небе, радуга будет находиться выше или ниже над горизонтом. Если солнце очень высоко, радуга может едва выглядывать из-за горизонта, а в конце дня, перед закатом, или, наоборот, рано утром, сразу после восхода солнца, когда оно находится в небе низко и ваша тень длинная, радуга, скорее всего, будет огромной, раскинувшейся через половину неба. Почему только через половину? Потому что максимальный угол, под которым она может подняться над горизонтом, составляет 42 градуса, что близко к 45 градусам, то есть половине от 90 градусов.

Итак, что же потребуется охотнику за радугами? Прежде всего доверяйте своей интуиции, подсказывающей вам, когда можно увидеть радугу. Большинство из нас, как правило, очень неплохо предчувствуют это; мы предполагаем, что она появится на небе, когда солнце светит как раз перед дождем или когда оно выглянуло сразу после дождя. Или если идет небольшой дождь и солнечный свет может добраться до капель.

Почувствовав, что все идет к этому, сделайте следующее. Во-первых, повернитесь затылком к солнцу, затем найдите тень своей головы и посмотрите под углом 42 градуса в любом направлении от воображаемой линии. Если солнечного света достаточно, равно как и количества дождевых капель, это сотрудничество света и капель будет эффективным и вы увидите в небе красочную дугу.

Предположим, что солнца вам совсем не видно – оно спрятано за облаками или зданиями, но тем не менее явно светит. Тогда вы все равно сможете увидеть радугу, если только между солнцем и каплями нет облаков. Я, например, иногда вижу радугу в конце полудня из своей гостиной, встав лицом к востоку, когда солнца, которое уже ушло на запад, мне, конечно же, не видно. На самом деле, чтобы увидеть радугу, вам в большинстве случаев не нужна воображаемая линия и 42-градусный угол, но есть одна ситуация, в которой очень важно учесть эти два обстоятельства. Я люблю гулять по пляжам острова Плам на побережье Массачусетса. Во второй половине дня солнце находится на западе, а океан на востоке. Если волны достаточно высоки и производят множество мелких капель, эти капли играют роль дождевых и можно увидеть два небольших кусочка радуги: одна часть под углом около 42 градусов слева от воображаемой линии, а вторая – около 42 градусов справа от нее. Эти радуги «живут» всего доли секунды, так что у вас намного больше шансов увидеть их, если вы заранее знаете, где искать. Но поскольку волны набегают на берег непрерывно, проявив достаточно терпения, вы рано или поздно непременно увидите над океаном радугу. Подробнее об этом мы поговорим далее в этой главе.

Вот еще один любопытный эффект, который стоит поискать в следующий раз, когда заметите радугу. Помните наше обсуждение максимального угла, под которым определенный свет может преломляться через капли дождя? Так вот, даже если вы видите синий, красный или зеленый после преломления в определенных дождевых каплях, сами по себе капли отнюдь не так разборчивы: они преломляют, отражают и снова преломляют много света также и под углом менее 40 градусов. Этот свет представляет собой смесь всех цветов примерно одинаковой интенсивности, которую мы видим как белый свет. Вот почему внутри, рядом с синей полосой радуги, небо особенно яркое и белое. В то же время никакой свет, который преломляется, отражается и преломляется снова, не может выйти из капли дождя пол углом свыше 42 градусов, так что небо сразу за радугой темнее, чем внутри нее. Этот эффект особенно заметен, если целенаправленно сравнить яркость неба по обе стороны радуги. Если вы не будете делать это специально, то, скорее всего, ничего не заметите. Отличные изображения радуг, где вы можете увидеть этот эффект, размещены на сайте Atmospheric Optics: www.atoptics.co.uk.

Едва начав объяснять явление радуги студентам, я понял, насколько богата эта тема – и сколько мне еще самому предстоит об этом узнать. Возьмите, например, двойные радуги, которые вам, возможно, приходилось видеть. По сути, в небе почти всегда две радуги: так называемая первичная радуга, которую мы только что обсуждали, и то, что мы называем вторичной радугой.

Если вы видели двойную радугу, то наверняка заметили, что вторичная радуга менее яркая, чем первичная. Однако вы наверняка не обратили внимания, что порядок цветов во вторичной радуге обратный порядку в первичной: синий (фиолетовый) находится снаружи, а красный внутри.

Чтобы понять происхождение вторичной радуги, придется вернуться к нашей идеальной дождевой капле (вы, конечно же, понимаете, что на самом деле для создания вторичной радуги потребуется миллиард капель, а не одна). Одни световые лучи, проникающие в капли, отражаются всего один раз, другие перед выходом из капли отражаются дважды. Хотя световые лучи, проникающие в любую заданную дождевую каплю, могут отражаться внутри нее многократно, первичная радуга состоит только из тех, которые отразились один раз. А вот вторичная радуга, напротив, создается из лучей, которые отражаются перед преломлением на выходе внутри капли дважды. Из-за этого дополнительного отскока внутри капли цвета во вторичной радуге следуют в порядке, обратном порядку в первичной радуге.

Причина, по которой вторичная радуга появляется на небе в месте, отличном от первичной, заключается в том, что дважды отраженные красные лучи выходят из капли под углами, которые всегда больше (да-да, больше), чем примерно 50 градусов, а дважды отраженные синие лучи – под углом, всегда большим, чем 53 градуса. Таким образом, вторичную радугу надо искать в 10 градусах от первичной. А то, что она менее яркая, объясняется тем, что света, который отражается внутри капли дважды, намного меньше, чем света, который отражается один раз; следовательно, света для создания вторичной радуги гораздо меньше. По этой же причине увидеть вторичную радугу куда труднее, чем первичную, но теперь, когда вы знаете, что она часто сопровождает первичную радугу и где ее следует искать, уверен, вы увидите ее много-много раз. Я также рекомендую провести несколько минут на сайте Atmospheric Optics и полюбоваться фотографиями.

Итак, вооружившись информацией о радугах, вы можете произвести небольшое оптическое волшебство и собственноручно создать радугу в своем дворе или даже просто на тротуаре – с помощью обычного садового шланга. Но поскольку в этом случае у вас есть возможность манипулировать каплями и они физически расположены близко к вам, учтите несколько весьма существенных различий. Прежде всего, создать собственную радугу можно, даже когда солнце находится в зените. Почему? Потому что вы можете получить капли между самим собой и своей тенью на земле, что в природе случается крайне редко. А если есть капли, которых достигает солнечный свет, значит, может появиться радуга. Не исключено, что вы это уже делали, только не специально.

Если на конце вашего шланга есть насадка, отрегулируйте его в тонкую струйку, чтобы капли получались достаточно маленькими, и когда солнце будет высоко в небе, направьте шланг на землю и начните распыление. Вы не увидите сразу весь круг, но кусочки радуги заметите. А перемещая носик шланга по кругу, вы, часть за частью, сможете увидеть целый круг радуги. Почему придется действовать таким образом? Потому что у вас нет глаз на затылке!



Красный вы увидите под углом 42 градуса от воображаемой линии, внутренний край дуги будет синим (фиолетовым), а внутренняя часть белой. Я очень люблю творить это маленькое волшебство во время поливки сада, и особенно здорово описать целый круг и создать полную радугу в 360 градусов. (Солнце, понятно, не всегда будет за вами.)

Одним холодным зимним днем 1972 года я так сильно хотел получить хорошие фотографии самодельных радуг для своих лекций, что заставил свою бедную семилетнюю дочь Эмму держать шланг, разбрызгивая воду в воздухе, пока я щелкал камерой. Впрочем, я думаю, что если вы дочь ученого, то можно немного пострадать ради науки. И я действительно сделал тогда несколько отличных снимков; мне даже удалось сфотографировать вторичную радугу, использовав в качестве фона контрастный асфальтобетон подъездной дорожки.

Надеюсь, вы попробуете провести этот эксперимент, но только в летнее время. И не разочаровывайтесь так уж сильно, не увидев вторичную радугу, – если ваша подъездная дорожка недостаточно темная, радуга, скорее всего, будет слишком бледной и практически невидимой.

Теперь, зная, как найти на небе радугу, вы наверняка начнете искать ее повсюду. Я, признаться, часто просто не способен бороться с этим искушением. Однажды мы со Сьюзен ехали домой, и начался дождь. Поскольку мы двигались прямо на запад, в сторону солнца, я, несмотря на плотное движение, свернул на обочину, вышел из машины и посмотрел назад. Это была неописуемая красота!

Всякий раз, проходя мимо фонтана в яркий солнечный день, я стараюсь встать так, чтобы поискать радугу там, где, как я знаю, она должна находиться. Попробуйте сами, когда будете проходить мимо фонтана. Встаньте между солнцем и фонтаном спиной к солнцу и не забудьте, что брызги фонтана работают точно так же, как капли дождя в небе. Найдите тень своей головы на земле и мысленно нарисуйте воображаемую линию. Теперь смотрите под углом 42 градуса от этой линии. Если в этом направлении достаточно капель, вы увидите сначала красную полосу радуги, а потом и все остальные. Скорее всего, полный полукруг радуги вы в фонтане не увидите – для этого нужно стоять к нему очень близко, – но зрелище, поверьте, будет настолько завораживающим, что попробовать, безусловно, стоит.

Но предупреждаю, что, увидев радугу, вы наверняка почувствуете непреодолимое желание поделиться этой красотой с окружающими. Я, например, часто начинаю показывать радугу в фонтане прохожим и, уверен, некоторые из них думают, что я странный. Но разве это правильно, в одиночку наслаждаться этим скрытым от наших глаз чудом? Конечно, я обязан показать его людям. Если вы знаете, что прямо перед вами может быть радуга, почему бы не поискать ее, а найдя, не попытаться сделать так, чтобы ее увидел кто-то еще, ведь радуга – это так красиво!

Студенты часто спрашивают меня, а бывает ли третичная радуга. Ответ: и да и нет. Третичная радуга, как вы могли догадаться, – результат тройного отражения света внутри капли. В центре такой радуги расположено солнце, и, как и первичная радуга с центром в точке солнечного противостояния, она также имеет радиус около 42 градусов, и ее красная полоса находится на внешней стороне. Таким образом, чтобы увидеть третичную радугу, вам нужно смотреть в сторону солнца, а капли дождя должны быть между ним и вами. Но при таком раскладе вы почти никогда не увидите солнца. Есть и другие проблемы: много солнечного света будет проходить через капли, вообще не отражаясь, что приведет к очень яркому и большому свечению вокруг солнца, в результате чего увидеть третичную радугу будет практически невозможно. А еще она более блеклая, чем вторичная. Кроме того, гораздо шире первичной и вторичной, следовательно, и без того слабый свет радуги распределяется по небу еще сильнее и увидеть ее труднее. Насколько мне известно, фотографий третичных радуг не существует, и я лично не знаю никого, кто бы их когда-либо видел. Тем не менее отчеты о наблюдениях за этим природным явлением имеются.

Безусловно, люди хотят знать, реальны ли радуги. А может, это просто миражи, полагают они, отступающие все дальше и дальше по мере приближения к ним? В конце концов, мы же почему-то не можем увидеть конец радуги? Если эта мысль посещала и вас, успокойтесь. Радуги вполне реальны; это следствие взаимодействия реального солнечного света с реальными каплями дождя и вашими реальными глазами. Но так как они – результат четкого взаимодействия между этими тремя элементами, радуга, которую увидите вы, будет отличаться от той, которую увидит человек, стоящий от вас через дорогу. Она будет столь же реальной, но другой.

Причина, по которой мы обычно не видим конца радуги, соприкасающегося с землей, не в том, что радуг на самом деле не существует, а в том, что их концы находятся слишком далеко от нас, или скрыты зданиями, деревьями или горами, или в этих местах в воздухе меньше капель и радуга там слишком блеклая. Но если вы сможете подойти к радуге достаточно близко, то у вас получится даже прикоснуться к ней. Во всяком случае, вы наверняка сумеете проделать это с радугой, которую создадите сами с помощью садового шланга.

Мне даже доводилось держать радугу в руке, принимая душ. В один поистине прекрасный день я обнаружил радуги совершенно случайно. Повернувшись к разбрызгивателю душа, я вдруг увидел две (да-да, две!) яркие первичные радуги, каждая сантиметров тридцать длиной и пару сантиметров в ширину. Это было настолько захватывающе и красиво, что казалось похожим на сон. Я протянул руки и взял радуги в ладони. Непередаваемое ощущение! Я читал лекции о радугах в течение сорока лет, но никогда прежде не видел двух первичных радуг на расстоянии вытянутой руки.

Вот как это произошло. Лучик солнечного света проник в душ через окно ванной комнаты. В некотором смысле все было так, как если бы я стоял не перед фонтаном, а внутри него. Вода находилась очень близко от меня, а поскольку мои глаза расположены сантиметрах в семи друг от друга, каждый глаз имеет собственную воображаемую линию, отличную от этой линии для второго глаза. Углы оказались точно такими, как надо для радуги, количество воды тоже, и каждый мой глаз увидел свою первичную радугу. Когда я закрывал один глаз, одна из радуг исчезала; когда закрывал другой, исчезала вторая. Мне бы очень хотелось сфотографировать это удивительное зрелище, но я не мог, потому что у моего фотоаппарата всего один «глаз».

Побывав в тот день так близко к радугам, я по-новому взглянул на их реалистичность. Когда я двигал головой, радуги тоже двигались, но пока моя голова оставалась на месте, они тоже были неподвижны.

Теперь я специально подгадываю время утреннего душа так, чтобы поймать эти радуги. Солнце должно находиться в небе в конкретном месте, чтобы заглядывать в окно ванной комнаты под прямым углом, а это бывает только в период с середины мая до середины июля. Вы, наверное, знаете, что в определенные месяцы солнце встает раньше и поднимается в небе выше и что в Северном полушарии оно в зимние месяцы встает южнее, а в летние – севернее.

Окно моей ванной комнаты выходит на юг, но с этой стороны расположен большой дом, из-за которого свет никак не может попасть в ванную строго с юга. Солнечные лучи идут примерно с юго-востока. Когда я впервые увидел радугу в душе, я принимал его очень поздно, около десяти часов. Чтобы увидеть радугу у себя в душе, вам нужно иметь в ванной комнате окно, через которое солнечный свет сможет достигать брызг воды. Фактически, если вы никогда не видите солнца, выглядывая из окна своей ванной, можете не искать радугу в душе – ее там просто не может быть. Солнечный свет должен проникать в душ. И даже если он туда попадает, никакой гарантии, что вы увидите радугу, к сожалению, нет, потому что также необходимо наличие достаточного числа капель воды, расположенных под углом 42 градуса от воображаемой линии, а это бывает не всегда.

Конечно, это довольно жесткие условия, но почему бы не попробовать? А если вы обнаружите, что солнце проникает в ваш душ довольно поздно – в конце дня, – что ж, тогда стоит подумать о смене графика водных процедур.

Почему моряки носят солнцезащитные очки

Решив отправиться на охоту за радугами, обязательно снимите солнцезащитные очки, особенно если они из числа тех, которые мы называем поляризованными, иначе вы рискуете пропустить все шоу. У меня однажды был подобный забавный опыт. Как я уже говорил, я люблю прогулки по пляжам острова Плам. И я уже объяснял, как можно увидеть маленькие радуги в брызгах волн. Так вот, несколько лет назад я шел вдоль пляжа. Солнце было ярким, дул сильный ветер, и когда волны подкатывали близко к берегу, они разбивались на множество мелких брызг, так что я часто видел в них небольшие кусочки радуг. Я решил показать эту красоту другу, с которым вместе гулял, но он сказал, что ничего не видит и даже не понимает, что я имею в виду. Этот диалог повторился несколько раз. «Да вон же она!» – кричал я, все больше раздражаясь. «Я ничего не вижу!» – орал он в ответ. И тут меня осенило: я попросил его снять темные очки, конечно же, поляризованные. Без очков он сразу увидел радуги и даже начал показывать их мне! Так что же произошло?

Радуги в некотором роде странны по своей природе, поскольку почти весь их свет поляризован. Термин «поляризованный», скорее всего, известен вам именно из описания солнцезащитных очков. С технической точки зрения он не совсем корректен, но позвольте мне объяснить суть поляризованного света, а потом мы вернемся к темным очкам и радугам.

Волны получаются в результате колебаний «чего-либо». Вибрирующий камертон или скрипичная струна издает звуковые волны, о которых мы поговорим в следующей главе. Световые волны создаются вибрирующими электронами. Далее, если вибрации имеют одно и то же направление и перпендикулярны направлению распространения волны, мы называем такие волны линейно-поляризованными. Для простоты обсуждения я, рассказывая в этой главе о поляризованном свете данного вида, буду называть его просто «поляризованным».

Звуковые волны никогда не бывают поляризованными, потому что они всегда распространяются в том же направлении, что и колеблющиеся молекулы воздуха в волнах давления – наподобие волн, генерируемых игрушкой-пружинкой Slinky. А вот свет может быть поляризованным. Солнечный свет или свет от лампочки в вашем доме не поляризован, но мы можем без особого труда преобразовать его в поляризованный. Один из способов сделать это – купить так называемые поляризованные солнцезащитные очки. Теперь вы знаете, почему это название не совсем корректно. На самом деле это поляризующие солнечные очки. Другой способ – приобрести оптический линейный поляризатор (изобретенный Эдвардом Лендом, основателем Polaroid Corporation) и взглянуть на мир через него. Поляризаторы Ленда, как правило, толщиной в один миллиметр, бывают самых разных размеров. Почти весь свет, проходящий через них (в том числе через поляризующие очки), становится поляризованным.

Если поставить два прямоугольных поляризатора один на другой (я раздаю по паре каждому студенту, чтобы он мог экспериментировать с ними дома) и повернуть под углом 90 градусов друг к другу, свет через них не будет проходить вообще.

Впрочем, природа производит много поляризованного света и без помощи поляризаторов Ленда. Свет от голубого неба, идущий под углом 90 градусов к солнцу, почти полностью поляризован. Откуда мы это знаем? А попробуйте посмотреть на голубое небо (в любом месте под углом 90 градусов к солнцу) через линейный поляризатор, медленно вращая его. Вы заметите, что яркость неба меняется. Когда небо становится почти совсем темным, свет, поступающий от той части неба, практически полностью поляризован. Таким образом, чтобы распознать поляризованный свет, достаточно одного поляризатора (но все гораздо интереснее, если у вас их два).

В первой главе я описывал, как «создаю» в аудитории синий свет, рассеивая белый свет от сигаретного дыма. Я достигаю этого эффекта, рассеивая синий свет по лекционному залу под углом около 90 градусов; этот свет тоже почти полностью поляризован. Студенты могут увидеть его через поляризаторы, которые всегда приносят на мои лекции.

Солнечный свет, отражающийся от воды или стекла, также может стать практически полностью поляризованным, если он (или свет от лампочки) падает на водяную или стеклянную поверхность под прямым углом, который мы называем углом Брюстера. (Дэвид Брюстер – шотландский физик XIX века, сделавший огромный вклад в развитие оптики). Вот почему моряки часто носят поляризующие солнечные очки – благодаря им они блокируют большую часть света, отражающегося от поверхности воды.

Я всегда ношу в бумажнике хотя бы один поляризатор – да-да, всегда – и призываю своих студентов поступать так же.

Зачем я рассказываю вам все это о поляризованном свете? Затем, что свет от радуг почти полностью поляризован. Поляризация происходит, когда солнечный свет отражается внутри капли воды, что, как вы уже знаете, – необходимое условие для формирования радуги.

Я создаю на своих лекциях особый вид радуги (используя одну, хоть и очень большую, каплю воды) и благодаря этому могу доказать следующее: 1) красный находится на внешней части радуги, 2) синий (фиолетовый) – на ее внутренней части, 3) в середине радуги отображается яркий белый свет, которого никогда не увидишь во внешней части, и 4) свет радуги поляризован. Тема поляризации радуги меня чрезвычайно интересует (это одна из причин, почему я всегда ношу с собой поляризаторы).

Радуги и не только

Радуги – наиболее известное и красочное атмосферное явление, но отнюдь не единственное. Существует целый ряд других явлений атмосферы; некоторые из них сразу бросаются в глаза, а другие, напротив, мистически загадочны. Но давайте еще какое-то время останемся с радугами и посмотрим, куда это нас приведет.

Если внимательно посмотреть на очень яркую радугу, то на ее внутренней кромке иногда можно увидеть ряд чередующихся ярких и темным полос, которые называются дополнительными радугами. Чтобы понять это явление, нам придется отказаться от объяснения природы световых лучей, данного Ньютоном. Он считал, что свет состоит из частиц, поэтому, когда он представлял себе отдельные лучи света, проникающие в каплю дождя, преломляющиеся в ней и выходящие из нее, то предполагал, что они ведут себя так, как если бы были маленькими частицами. Но чтобы объяснить дополнительные радуги, о свете необходимо думать как о чем-то состоящем из волн. Для создания такой радуги световые волны должны пройти через дождевые капли менее миллиметра в диаметре.

Один из самых важных экспериментов во всей физике (его чаще всего называют опытом Юнга, или экспериментом на двух щелях) наглядно продемонстрировал, что свет состоит из волн. В этом знаменитом эксперименте, впервые проведенном в 1801–1803 годах, английский ученый Томас Юнг расщепил узкий луч солнечного света на два пучка и увидел на экране картинку (сумму двух пучков), которую можно было объяснить, только предположив, что свет состоит из волн. Позже данный эксперимент был проведен по-другому, с использованием двух щелей (или двух микроотверстий). Далее я буду исходить из предположения, что узкий пучок света проходит через два очень маленьких микроотверстия (расположенных близко друг к другу) в листе тонкого картона. Свет проходит через них и падает на экран. Если бы свет состоял из частиц, любая заданная частица проходила бы либо через одно отверстие, либо через другое (поскольку не могла бы пройти через оба) и, следовательно, мы видели бы на экране два ярких пятна. Однако картинка на экране иная. Она точно имитирует то, что ожидаешь увидеть, если на экране встречаются две волны – одна, прошедшая через первое микроотверстие, и одновременно вторая, идентичная первой, прошедшая через второе. Сложение этих двух волн подвержено тому, что мы называем интерференцией. Когда гребни волны из одной прорези совпадают со впадинами волн из другой, волны компенсируют друг друга и места на экране, где это происходит (их будет не одно), остаются темными. Разве это не удивительно – свет плюс свет равен тьме! И наоборот, в других местах экрана, где две волны синхронизированы друг с другом, нарастая и спадая одновременно, мы в результате видим очень яркие пятна (их тоже будет несколько). Таким образом, на экране отобразится узор, состоящий из чередующихся темных и светлых пятен, и это именно то, что увидел Юнг во время опыта с расщепленным лучом.



Я демонстрирую этот опыт на своих лекциях, используя красный и зеленый лазерные лучи. Это действительно захватывающее зрелище. Студенты видят, что узор зеленого света очень похож на узор красного, за исключением того, что деление на темные и светлые пятна у зеленого несколько мельче. Зависимость узора от цвета говорит о зависимости его от длины волны света (более подробно о длине волны мы поговорим в следующей главе).

Ученые на протяжении многих веков спорили по поводу того, состоит ли свет из частиц или из волн, и описанный выше эксперимент позволил сделать ошеломляющий и неоспоримый вывод: свет имеет волновую природу. Сегодня мы знаем, что свет может вести себя и как частица, и как волна, но этого не менее поразительного вывода научному миру пришлось ждать еще век, до появления квантовой механики. Впрочем, в данный момент в эту тему погружаться не стоит.

Лучше вернемся к дополнительным радугам. Интерференция световых волн создает темные и светлые полосы. Это явление особенно четко выражено, если диаметр капель составляет около 0,5 миллиметра. Вы можете увидеть изображение дополнительной радуги на сайте www.atoptics.co.uk/rainbows/supdrsz.htm.

Эффекты интерференции (часто называемые дифракцией) становятся еще заметнее при диаметре капель меньше 40 микрон (0,04 миллиметра). В этом случае цвета разнесены так сильно, что волны разных цветов полностью перекрываются, все цвета смешиваются и радуга становится белой. В белой радуге часто видна одна или две темные полосы (дополнительные радуги). Белые радуги очень редки, я их ни разу не видел. А вот мой ученик, Карл Уэльс, в середине 1970-х годов прислал мне фотографии нескольких красивых белых радуг. Он сделал фото в летнее время в два часа ночи (да, в два ночи) с Ледяного острова Флетчера, то есть с огромного дрейфующего айсберга (площадью 5 × 11 километров). На тот момент айсберг находился в 500 километрах от Северного полюса.

Белые радуги можно также увидеть в тумане, состоящем из исключительно крошечных капелек воды. Такие радуги трудно, но все же можно заметить; вы могли видеть их много раз, не осознавая этого. Обычно они появляются, когда туман достаточно слабый, чтобы солнечный свет мог через него просвечивать. Оказавшись на берегу реки или в гавани ранним утром, когда солнце еще совсем низко, а туман – обычное явление, я охочусь за белыми радугами в тумане и видел их не раз.

Такую радугу иногда можно создать с помощью автомобильных фар. Если вы окажетесь за рулем в ночном тумане, постарайтесь найти безопасное место для парковки. Или, если вы находитесь у себя дома, когда сгущается туман, разверните автомобиль в сторону тумана и включите фары. Затем отойдите от машины и смотрите на туман в лучах фар. Если вам повезет, вы увидите туманную радугу. Они делают мрак туманной ночи еще более жутким и потусторонним. Вы можете посмотреть, что произошло, когда один парень вдруг увидел такую радугу, которую сам же создал в фарах своего автомобиля, на сайте www.extremeinstability.com/08-9-9.htm. Заметили темные полосы в белых дугах?

Размером капель воды и волновой природой света также объясняется еще одно из красивейших оптических явлений, украшающих небо, – глории. Они лучше всего видны, когда летишь в самолете над облаками. Поверьте мне, их действительно стоит поискать. Для этого вы должны сидеть у окна не над крыльями, которые перекрывают вид вниз. Вам также надо убедиться, что солнце находится на стороне самолета, противоположной вашему месту, так что придется обратить внимание на время суток полета и направление рейса. Если из вашего окна видно солнце, эксперимент не получится. (В таком случае просто поверьте моим словам; полное и убедительное объяснение потребовало бы слишком много сложных математических выкладок.) Если все описанные выше условия соблюдены, попытайтесь вычислить место нахождения точки солнечного противостояния и смотрите вниз на нее. Если вам повезет, вы увидите в облаках цветные кольца, а если ваш самолет летит не слишком высоко над облаками, то увидите вокруг его тени глорию. Диаметр глорий варьируется от нескольких до приблизительно 20 градусов. Чем меньше капли, тем больше глории.

Я сделал множество фото глорий; на некоторых хорошо видна тень моего самолета, и, что самое забавное, мое сиденье в авиалайнере находится в самом центре глории, то есть в точке солнечного противостояния.

Впрочем, увидеть глории можно в самых разных местах, а не только из самолета. Альпинисты часто их видят, когда солнце находится у них за спиной, а они сами смотрят вниз в туманную долину. В этих случаях эффект получается довольно пугающий, мрачный и потусторонний. Альпинисты видят собственную тень, проецируемую на туман, в окружении глорий, иногда в нескольких цветных кольцах, и выглядит это весьма мистически. Данное явление также известно как призрак Броккена (или огненная радуга); оно названо так в честь высокого пика в Германии, где его видят особенно часто. На самом деле глории вокруг теней людей настолько похожи на нимбы, а сами фигуры выглядят настолько потусторонними, что вы вряд ли будете сильно удивлены, узнав, что слово glory – это архаизм, обозначающий круг света вокруг головы святого. А в Китае глории называют огнем Будды.

Однажды я сделал чудесное фото собственной тени, окруженной глорией, которое назвал образом святого Уолтера. Много лет назад я по приглашению моих друзей, астрономов из России, приехал в горы Кавказа, чтобы увидеть шестиметровый телескоп. На тот момент это был самый большой телескоп в мире. Погода для наблюдений за небом была просто ужасной. Каждый день, сколько я там пробыл, где-то в половине шестого вечера из лежащей ниже долины поднималась стена тумана, полностью окутывавшая телескоп. По-настоящему полностью; за все время моего визита мы так и не смогли произвести каких-либо наблюдений.

Как бы там ни было, через несколько дней пребывания в горах мне в голову пришла мысль, что я могу тут сделать фантастические снимки. Когда туман начинал заползать из долины, которая находилась на востоке, солнце на западе светило еще ярко – условия, идеальные для глорий. На следующий же день я принес фотоаппарат в обсерваторию и страшно нервничал, что именно в этот день туман откажется со мной сотрудничать. Однако в должное время стена тумана начала наползать, а солнце еще светило; я стоял к нему спиной. Я ждал и ждал, а потом, бум, и вокруг моей тени появился ореол. И я щелкнул. Я не мог дождаться момента, когда проявлю пленку – это была еще доцифровая эпоха, – но игра стоила свеч! Моя тень была длинной и выглядела призрачно, а тень моей камеры оказалась в самом центре колец великолепной глории.

Впрочем, чтобы увидеть нимб вокруг своей головы, вовсе не обязательно забираться в такое экзотическое место, как горы Кавказа. Если вы посмотрите на свою тень на клочке покрытой росой травы ранним солнечным утром (конечно, солнце должно находиться непосредственно позади вас), то сможете увидеть то, что на немецком языке называется Heiligenschein, или «святой свет»: свечение вокруг тени вашей головы (оно не будет разноцветным; это не глория). Данный эффект создают капли росы на траве, отражающие солнечный свет. Если захотите попробовать это сделать – а я надеюсь, что захотите, – то знайте, что это проще, чем найти глории. Вы увидите свечение, потому что это раннее утро и солнце находится низко, следовательно, ваша тень будет довольно длинной и вы будете похожи на удлиненные фигуры с нимбами святых на картинах средневековых художников.

Много разных типов радуг, глорий и нимбов могут удивить вас в самых неожиданных местах. Я, например, встретил свой любимый вид одним солнечным днем в июне 2004 года – помню, это был день летнего солнцестояния, 21 июня; мы приехали в музей Де Кордова в городе Линкольн с Сьюзен (которая в то время еще не стала моей женой), моим сыном и его подругой. Мы уже шли по парку ко входу, когда сын окликнул меня. Прямо перед нами, на земле, распростерлась потрясающая, ярчайшая, почти круговая радуга. (Потому что, как помните, это был день солнцестояния и светило находилось так высоко, как только может находиться в Бостоне, почти под углом в 70 градусов над горизонтом.) Вид был такой, что аж дух захватывало!

Я вытащил фотоаппарат и нащелкал кучу фотографий – так быстро, как только мог. Все получилось уж очень неожиданно. У земли не было ни одной капли воды, и я быстро понял, что эта радуга в любом случае не могла состоять из капель, потому что ее радиус был значительно меньше 42 градусов. И все же выглядело это точно как радуга: красный на внешней стороне дуги, синий на внутренней, а внутри яркий белый свет. Откуда же она взялась? Я понимал, что это чудо состоит из прозрачных, сферических частиц какого-то вещества, но из чего именно?

Одна из сделанных мной тогда фотографий получилась так хорошо, что стала фотографией для астрономических загадок НАСА того дня; ее разместили на сайте НАСА 13 сентября 2004 года[17]. (Это кстати, потрясающий сайт; настоятельно рекомендую заходить на него каждый день по адресу: http://apod.nasa.gov/apod/astropix.html.) В результате я получил около трех тысяч вариантов отгадок относительно того, что же это такое. Мой любимый ответ – написанное от руки письмо Бенджамина Гайслера четырех лет от роду: «Я думаю, ваша загадочная фотография нарисована цветными карандашами, маркерами и мелками». Сейчас оно висит на доске объявлений у моего кабинета в МТИ. Из всех полученных мной ответов всего тридцать респондентов думали в верном направлении, но только пятеро ответили абсолютно правильно.

Отличной подсказкой к разгадке этой головоломки может служить то, что в музее в тот момент проводили капитальный ремонт. В частности, его стены обрабатывались пескоструйным аппаратом. Маркос Хэнкин, который отвечал за физические демонстрации в Массачусетском технологическом институте и с которым я сотрудничал на протяжении многих лет, сказал мне – тогда я этого не знал, – что в некоторых видах таких аппаратов используются стеклянные шарики. И во дворе музея на земле было разбросано огромное множество крошечных стеклянных бусинок. Я взял горсть домой. Так что то, что мы тогда видели, было стеклянной радугой, ставшей в настоящее время официальной категорией радуг – радуг, образованных стеклянными шариками; она имеет радиус около 28 градусов, но точное значение зависит от типа стекла бусин.

Нам с Маркосом страшно захотелось создать собственную стеклянную радугу для моих лекций. Мы купили несколько килограммов стеклянных бусин, приклеили их на большие листы черной бумаги и прикрепили бумагу к доске в аудитории. Затем, в самом конце моей лекции о радугах, мы направили луч прожектора на эту бумагу из задней части лекционного зала. И у нас получилось! Я пригласил студентов по очереди выходить в переднюю часть аудитории, вставать перед доской и отбрасывать тень прямо в середину своей собственной стеклянной радуги.

Это был потрясающий эксперимент, и вы можете попробовать провести его у себя дома, потому что создать стеклянную радугу не так уж и сложно. Все зависит от ваших целей. Если вы хотите увидеть только цвета радуги, это довольно легко. Если же хотите увидеть всю радугу целиком, окружающую, словно нимб, вашу голову, придется потрудиться.

Чтобы увидеть небольшой кусочек радуги, вам потребуется лишь кусок черного картона размером 30 квадратных сантиметров, прозрачный аэрозольный клей (мы использовали 3M’s Spray Mount Artist’s Adhesive, но подойдет любой прозрачный аэрозольный клей) и прозрачные сферические стеклянные бусины. Они обязательно должны быть прозрачными и сферической формы. Мы использовали «грубый стеклянный абразив для пескоструйной обработки» с диапазоном диаметра от 150 до 250 микрон.

Разбрызгайте клей по куску картона и посыпьте бусинами. Среднее расстояние между ними не особенно важно, но чем ближе шарики друг к другу, тем лучше. Будьте осторожны с бусинками. Возможно, стоит заняться этим во дворе, чтобы они не рассыпались по полу комнаты. Дайте клею высохнуть, дождитесь солнечного дня и выходите на улицу.

Найдите воображаемую линию (напоминаю, она идет от вашей головы до ее тени на земле). Поместите картон где-то на ней; теперь вы видите на картоне тень своей головы (если солнце в небе низко, можно поставить картон на стул, если высоко, положите картонку на землю; как вы помните, стеклянные шарики в музее Де Кордова тоже лежали на земле). Насколько далеко картон будет находиться от вашей головы, зависит от вас. Предположим, вы поместите его на расстоянии 1,2 метра. Затем сместите его примерно на 0,6 метра от воображаемой линии в направлении, перпендикулярном ей. (Двигать картонку можно в любом направлении – влево, вправо, вверх, вниз!) И увидите цвета стеклянной радуги. А если вы решили поставить картон подальше, скажем на расстоянии 1,5 метра, то, чтобы увидеть цвета радуги, надо сместить его на 0,75 метра. Возможно, у вас возник вопрос, как я получил эти цифры? Все просто: радиус стеклянной радуги составляет около 28 градусов.

После того как увидите цвета радуги, можно подвигать картон по кругу по воображаемой линии и найти другие ее части. Так вы получите всю круговую радугу по частям – точно так же, как мы делали с помощью садового шланга.

Если же вам хочется увидеть всю радугу целиком, окружающую тень вашей головы, потребуется больший кусок черного картона – полный квадратный метр – и намного большее количество стеклянных шариков, приклеенных к нему. Встаньте так, чтобы тень головы находилась близко к центру картона. Если расстояние между вашей головой и картоном будет около 80 сантиметров, вы увидите всю стеклянную радугу полностью. Но если поставите картон слишком далеко, скажем на расстоянии 1,2 метра, то всю радугу не увидите. Так что дерзайте! Выбор за вами.

В пасмурный день можете попробовать провести эксперимент в закрытом помещении, как я на своих лекциях, то есть наведя очень сильный луч света – например, с помощью прожектора – на стену, к которой прикреплен картон с бусинами. Встаньте так, чтобы источник света находился позади вас, а тень вашей головы – в центре картонки размером квадратный метр. Встав в 80 сантиметрах от картона, вы должны увидеть радугу, окружающую вашу тень, целиком. Добро пожаловать в стеклянную радугу!

Конечно, чтобы оценить красоту радуги или другого атмосферного явления, необязательно понимать, как она создается, но знание физической природы радуг позволяет взглянуть на них по-новому (я называю это красотой знаний). Мы становимся более внимательными к этим чудесам природы и в один прекрасный день встречаем их в саду туманным утром, моясь в душе, прогуливаясь у фонтана или выглядывая из иллюминатора самолета, когда остальные пассажиры смотрят фильм. Я надеюсь, что в следующий раз, почувствовав зарождение радуги, вы повернетесь спиной к солнцу, посмотрите под углом приблизительно 42 градуса от воображаемой линии и увидите на небе красный верхний обод прекрасной радуги.

И вот вам мой прогноз. В следующий раз, увидев радугу, вы наверняка постараетесь убедиться, что красная полоса находится на ее внешней стороне, а синяя (фиолетовая) – на внутренней; вы постараетесь найти вторичную радугу и подтвердить, что цвета в ней поменялись местами; вы увидите, что небо внутри первичной радуги очень яркое и намного темнее за ее пределами; а если вы носите с собой линейный поляризатор (что я рекомендую делать всегда), то не преминете проверить, действительно ли обе радуги сильно поляризованы. Вы просто не сможете противостоять искушению все это проделать. Это болезнь, которая отныне будет преследовать вас до конца жизни. Каюсь, это я вас ею заразил, но вылечить уже не смогу и, признаться, не испытываю по этому поводу ни малейших угрызений совести!

Загрузка...