Когда я начал работать в Массачусетском технологическом институте, в мире существовало пять активных групп воздухоплавания группа Джорджа Кларка в МТИ, Кена Мак-Кракена в Университете Аделаиды в Австралии, Джима Овербекома тоже в МТИ, Ларри Петерсона в Калифорнийском университете в Сан-Диего и Боба Хеймса в Университете Райса. Эта глава в основном посвящена моему собственному опыту в области использования воздухоплавания для исследования рентгеновского излучения, которое было ключевой темой моих изысканий с 1966 по 1976 год. За эти годы я проводил наблюдения с территории Палестины в Техасе, Пейджа в Аризоне, Калгари в Канаде и Австралии.
Аэростаты поднимали детекторы рентгеновского излучения на высоту около 44 километров, где атмосферное давление составляет всего 0,3 процента от давления на уровне моря. Когда атмосфера так разрежена, через нее проходит значительная доля рентгеновского излучения с энергией свыше 15 кэВ.
Наши аэростатные наблюдения весьма эффективно дополняли наблюдения с помощью ракет. Детекторы, крепившиеся на ракетах, обычно обнаруживали рентгеновские лучи только в диапазоне от 1 до 10 кэВ и только в течение минут пяти за весь полет. А аэростатные наблюдения могли длиться часами (мой самый длинный полет продолжался 26 часов), и детекторы наблюдали рентгеновское излучение в диапазоне выше 15 кэВ.
Конечно, не все источники, обнаруженные во время наблюдений с использованием ракет, можно выявить с помощью аэростата, так как эти источники часто излучали большинство энергии в виде низкоэнергетического (мягкого) рентгеновского излучения. Тем не менее благодаря аэростатам нам удалось обнаружить источники, излучающие в основном высокоэнергетические рентгеновские лучи, невидимые для детекторов, монтируемых на ракетах. Таким образом, мы не только открыли новые источники и расширили спектр известных источников до высоких энергий, но и смогли выявить изменчивость рентгеновской светимости источников на временных шкалах от нескольких минут до нескольких часов, что было бы невозможно при наблюдении исключительно с применением ракет. Это, кстати, стало одним из первых успехов моей исследовательской деятельности на ниве астрофизики.
В 1967 году мы обнаружили рентгеновскую вспышку от Sco X-1, что стало для всех специалистов настоящим шоком; я расскажу об этом подробнее чуть позже. Моя группа также выявила три источника рентгеновского излучения – GX 301-2, GX 304-1 и GX 1 + 4, – которых никто не замечал во время наблюдений с использованием ракет, и все они характеризовались изменчивостью интенсивности рентгеновского излучения на минутных временных периодах. Периодическая изменчивость GX 1 + 4 вообще имела период всего около 2,3 минуты. В то время мы понятия не имели, что может быть причиной столь быстрых изменений интенсивности рентгеновского излучения, не говоря уже о такой малой периодичности, но осознавали, что входим в совершенно новую область и стоим на пороге открытия новой территории.
Впрочем, даже в конце 1960-х годов не все астрономы понимали важность рентгеновской астрономии. В 1968 году я, будучи в гостях у Бруно Росси, познакомился с голландским астрономом – одним из самых знаменитых – по имени Ян Оорт. Этот человек обладал невероятно богатой фантазией и сразу после Второй мировой войны начал реализовывать в Нидерландах масштабную программу радиоастрономических исследований. Когда он в том же 1968 году пришел к нам в МТИ, я показал ему данные, полученные в результате аэростатических наблюдений в период между 1966 и 1967 годами. Но он сказал мне (я никогда не забуду его слова): «Рентгеновская астрономия не представляет особой важности». Вы можете в это поверить? «Не представляет особой важности». Как же он ошибался! Это был один из величайших астрономов всех времен, но тут он оказался полностью слеп, не сумел разглядеть значимости нового направления в астрономии. Возможно, потому, что я был намного моложе и горел жаждой открытий – по правде сказать, Оорту к тому времени стукнуло шестьдесят восемь, – мне было совершенно ясно, что мы напали на настоящую золотую жилу и пока еще, как говорится, только скребем по верхам.
Помню, в 1960-1970-е годы я жадно набрасывался на каждую статью из области рентгеновской астрономии. В 1974-м я прочел пять лекций в Лейдене (Оорт, кстати, присутствовал в аудитории) и смог уместить в них все, что нам было известно о рентгеновской астрономии. В настоящее же время каждый год на эту тему публикуются тысячи работ, по множеству разных направлений, и ни один докладчик в мире не способен охватить всю эту область деятельности в целом. Многие исследователи на протяжении всей своей карьеры занимаются лишь одной из десятков конкретных тем, таких, например, как одиночные звезды, аккреционные диски, рентгеновские двойные, шаровые скопления, белые карлики, нейтронные звезды, черные дыры, остатки сверхновой, всплески рентгеновского излучения, рентгеновские струи, ядра и скопления галактик. Для меня лично самыми незабываемыми и фантастическими были первые годы существования рентгеновской астрономии. Они также оказались и самыми требовательными, причем со всех точек зрения: интеллектуальной, физической и даже логистической. Запуск аэростатов был настолько сложным и дорогостоящим, отнимал так много времени и был связан со столькими проблемами, что это трудно описать словами. Но я все же попробую.
Каждому физику, чтобы добиться реальных результатов (если он, конечно, не теоретик, которому нужен только лист бумаги или экран компьютера), необходимо достать деньги на оборудование, платить аспирантам и лаборантам, а иногда и довольно далеко путешествовать. Для получения финансовой поддержки своих исследований ученые подают заявки на гранты, которые распределяются на конкурентной основе. Я знаю, что это звучит не слишком воодушевляюще, но, поверьте, без этого в нашей науке ничего не бывает. Ничего.
Вы можете иметь прекрасную идею научного эксперимента или наблюдений, но если вы не знаете, как превратить ее в выигрышное предложение, то вы не сдвинетесь с места. Мы, ученые, всегда конкурировали с лучшими из лучших, так как это поистине беспощадный бизнес. И он таким и остается – для любого ученого, в любой области деятельности. Всякий раз, когда вы видите успешного ученого-экспериментатора в любой области науки – биологии, химии, физики, информатики, экономики или астрономии, – знайте: перед вами человек не выдающихся интеллектуальных способностей, а выдающегося умения обойти конкурентов, занимающийся этим постоянно, а не раз и не два. Как правило, такой талант не делает людей милыми в общении конформистами. Вот почему моя жена Сьюзен, десять лет проработавшая в Массачусетском технологическом институте, любит говорить: «В МТИ работают только люди с большим эго».
Итак, предположим, нам удалось получить финансирование – кстати, у нас это действительно получалось: меня всегда щедро поддерживали Национальный научный фонд и НАСА. Поднять почти на 50-километровую высоту аэростат с установленным на нем рентгеновским телескопом весом около тонны (вместе с парашютом), который вам нужно получить назад целым и невредимым, – чрезвычайно сложно. Вам необходима постоянно тихая погода на старте, потому что аэростат – штука настолько деликатная, что сильный порыв ветра может уничтожить всю миссию. Вам понадобится определенная инфраструктура – пусковые площадки, пусковые устройства и тому подобное, – чтобы аэростат поднялся выше атмосферного слоя Земли. Вам нужно оборудование, позволяющее отслеживать перемещения аэростата. Поскольку я хотел вести наблюдение в общем направлении центра Млечного Пути, который мы называем галактическим центром, где расположены многие рентгеновские источники, мне обязательно следовало делать это в Южном полушарии. Я выбрал для запуска австралийские города Милдьюру и Эллис-Спрингс. В результате я много времени проводил вдали от дома и семьи, обычно по несколько месяцев без перерыва, а ведь к тому моменту у меня было четверо детей.
Как я уже говорил, запуск аэростата – дело весьма дорогостоящее. Сами аэростаты огромные. Самый большой из них (в то время самый большой в мире и, вполне может быть, по-прежнему самой большой из всех когда-либо запущенных) имел объем около полутора миллионов кубометров; когда он летал на высоте 44 километра в полностью надутом состоянии, его диаметр превышал 70 метров. Аэростаты изготавливались из очень легкого полиэтилена, тоньше папиросной бумаги. Если такой шар прикасался во время запуска к земле, он рвался. Эти гигантские и очень красивые воздушные шары весили более 300 килограммов. Мы обычно имели дублирующие шары стоимостью 100 тысяч долларов каждый – и это, заметьте, было сорок лет назад, когда такие деньги были действительно большими.
Изготавливались аэростаты на огромных заводах. Клинья, секции шара, внешне похожие на дольки мандарина, производились отдельно, а затем соединялись с помощью термосклеивания. Склейку производитель доверял исключительно женщинам, потому что, по его словам, мужчины для такой работы не годятся: они слишком нетерпеливы и делают чересчур много ошибок. Кроме того, нам нужно было доставить в Австралию гелий для надувания аэростатов, а он обходился почти в 80 тысяч долларов на аэростат. Короче говоря, по нынешним ценам мы платили более 700 тысяч долларов за один воздушный шар и гелий для него – и это не учитывая затрат на аэростат-дублер и нашу транспортировку, жилье и питание. А ведь мы, как ни странно, пытались раскрыть тайны дальнего космоса, забираясь в самый центр австралийской пустыни, и к тому же всецело зависели от погодных условий. Я еще не рассказал вам о Джеке, что непременно сделаю позже.
Впрочем, по сравнению с телескопами аэростаты были еще дешевы. Чтобы построить телескоп, чрезвычайно сложный аппарат весом около тонны, требовалось почти два года и миллион долларов – 4 миллиона в нынешних деньгах. У нас никогда не хватало средств на два телескопа одновременно. И если мы теряли телескоп – а такое с нашей группой случалось дважды, – нам приходилось откладывать наблюдения в лучшем случае на два года. И мы не могли начать строить новый телескоп, не получив финансирования. Так что потеря оборудования была настоящей катастрофой. И не только для меня лично, отнюдь нет. У моих аспирантов тоже возникали большие проблемы. Они активно занимались созданием телескопов, ведь их диссертации базировались на результатах наших наблюдений, а значит, и на этих аппаратах. Можно сказать, их ученые степени двигались вверх и вверх вместе с нашими аэростатами.
Как я уже говорил, мы очень зависели от погоды. В стратосфере гуляют сильные ветры, примерно полгода дующие с востока на запад со скоростью до 160 километров в час, и еще полгода с запада на восток. Два раза в год эти ветры меняют направление на обратное – мы называем это разворотами, – и тогда их скорость на высоте 44 километра резко снижается, что позволяло нам проводить наблюдения в течение многих часов. Таким образом, мы должны были находиться в месте, где могли измерить скорость ветров и начать запуск именно на этапе разворота. Мы через день исследовали атмосферу с помощью метеозондов, которые отслеживались посредством радара. В большинстве случаев они лопались, поднявшись вверх километров на сорок. Но предсказывать поведение атмосферы – вовсе не то же самое, что катать по желобу металлические шарики во время лабораторной демонстрации. Атмосфера несравненно более сложна и непредсказуема, а ведь буквально все, что мы делали, в огромной мере зависело от правильности прогнозов.
Впрочем, это еще не все. На высоте 10–20 километров находится слой атмосферы, называемый тропопаузой; там очень холодно – минус 50 °C, – от этого наши аэростаты становились очень ломкими. Там также были сильные потоки ветра, которые мощно ударяли в шар, отчего он запросто мог лопнуть. И вообще очень многое в нашем деле могло пойти не так, как ожидалось. Однажды мой аэростат сдуло в море – и конец телескопу. Девять месяцев спустя обломки очень дорогого экспериментального оборудования были найдены на пляже в Новой Зеландии. Чудом, с помощью компании Kodak, мы смогли извлечь данные, записанные прибором на пленку.
Мы готовились к запускам снова, и снова, и снова, и все же, как я всегда говорил, как ни старайся, без доли везения не обойтись. Иногда везения требовалось много. Мы должны были доставить оборудование на станцию, расположенную, как правило, очень далеко. Затем мы проверяли телескоп, калибровали приборы и убеждались, что все нормально работает. Далее нам надо было прикрепить телескоп к парашюту, который затем крепился к аэростату. Проведение всех тестов на пусковой площадке и подготовка аэростата к полету порой занимали около трех недель, а за это время вполне могли измениться погодные условия. И нам не оставалось ничего другого, как сидеть и ждать, поддерживая оборудование в рабочем состоянии. Хорошо еще, что Элис-Спрингс – фантастический город в пустыне в самом сердце Австралии. В нем и впрямь создавалось впечатление, что ты находишься в середине пустоты. Однако небо было очень ясным, а ранние утра, когда мы пытались произвести запуск, невероятно зрелищными: ночное небо прямо на наших глазах приобретало предрассветный синий оттенок, а когда вставало Солнце, небо и пустыня окрашивались в яркие розовые и оранжевые цвета.
После того как мы были готовы начинать, нам следовало дождаться ветра скоростью около 5 километров в час, стабильно дующего в нужном направлении в течение как минимум трех-четырех часов – именно столько времени требуется на то, чтобы оторвать аэростат от земли (на одно только надувание уходило два часа). Поэтому мы в основном производили запуск на рассвете, когда ветер был наиболее слаб. Но нередко случалось, что наш прогноз оказывался неверным, и нам опять приходилось ждать, ждать и ждать подходящей погоды.
Однажды, как раз посередине запуска в Милдьюре – мы даже еще не начали надувать шар, – вопреки прогнозу метеорологов, поднялся сильный ветер. Аэростат порвался, но, слава богу, телескоп уцелел! Вся наша подготовка, а с ней и 200 тысяч долларов, улетучились в считаные секунды. И нам ничего не оставалось, как ждать лучшей погоды и проверять запасной аэростат с нуля. Так что всякое бывало.
Неудачи порой просто преследовали нас. Во время моей последней экспедиции в Элис-Спрингс мы потеряли два аэростата прямо при запуске, потому что команда допустила несколько очень серьезных ошибок. Та экспедиция вообще оказалась провальной, но, по крайней мере, телескоп уцелел. Он так и не оторвался от земли. А во время моей последней экспедиции (в 1980 году) в Палестину, в Техасе, восемь часов полета прошли вполне успешно, но когда мы с помощью радиокоманды прекратили полет, то лишились телескопа, потому что не открылся парашют.
Сегодня запуски аэростатов по-прежнему сопряжены с риском. Во время одной попытки запуска, предпринятой НАСА в том же Элис-Спрингсе в апреле 2010 года, что-то пошло не так, и шар лопнул при попытке взлететь, уничтожив оборудование стоимостью в миллионы долларов и чуть не покалечив людей, наблюдавших за процессом. Вы можете увидеть это по адресу: www.physorg.com/news191742850.html.
За много лет исследований я запустил около двадцати аэростатов. Только пять из них дали сбой во время запуска или не поднялись до нужной высоты (должно быть, помешала утечка гелия). Это считается довольно хорошим показателем успеха – 75 процентов.
За несколько месяцев до приезда на пусковую площадку мы обычно тестировали экспериментальное оборудование в городе Уилмингтон, штат Массачусетс. Мы помещали телескоп в вакуумную камеру и понижали давление воздуха до уровня, который будет на высоте, то есть почти до трех тысячных от одной атмосферы. Затем мы охлаждали телескоп до – 50 °C и включали оборудование – все детекторы рентгеновского излучения – и на протяжении двадцати четырех часов подряд каждые двадцать минут по десять секунд отслеживали рентгеновские лучи из радиоактивного источника. Некоторые телескопы наших конкурентов – да-да, мы действительно относились к другим командам, занимавшимся такими же исследованиями, как к конкурентам, – иногда давали сбой из-за разрядки аккумуляторов при низких температурах, а то и вовсе не работали. Но с нами такого никогда не случалось, потому что мы очень тщательно тестировали оборудование. Если на этапе тестирования выяснялось, что аккумуляторы плохо держат заряд, мы разбирались, как при необходимости исправить ситуацию и сохранить энергию.
Была еще проблема коронного разряда – искрения высоковольтных проводов. Некоторое наше оборудование работало на очень высоком напряжении, а сильно разреженный воздух, давление в котором очень низкое, – идеальная среда для искрения проводов. Помните о жужжании, издаваемом высоковольтными линиями передач, о нем я упоминал в главе 7? Это и есть коронный разряд. Каждый физик-экспериментатор, имеющий дело с высоким напряжением, знает о вероятности коронного разряда. Я показываю примеры этих искр на своих лекциях. Там коронный разряд – зрелище красивое и веселое, но на огромной высоте в разреженном воздухе это настоящая катастрофа.
Для непрофессионалов объясняю: оборудование начинает работать с перебоями, и вы получаете так много электронных помех, что не можете выделить рентгеновские фотоны. Насколько серьезна эта проблема? Да она грандиозная! Вы вообще не получаете полезных данных в течение полета. Обычно она решается покрытием всех используемых в оборудовании высоковольтных проводов силиконовой изоляцией. Правда, некоторые исследователи делали это и все равно получали коронный разряд. Но наше тщательное тестирование и подготовка дали результаты. У нас ни разу не было коронных разрядов. Это лишь один из десятков сложных инженерных вопросов, связанных со строительством телескопов, – вот почему их изготовление столь дорого обходится.
Как же мы обнаруживали рентгеновское излучение, когда нам, несмотря на все трудности, все же удавалось вывести телескоп в верхние слои атмосферы? Ответ на этот вопрос не так уж прост, поэтому вам придется послушать мои объяснения. Начнем с того, что мы использовали специальный вид детектора (кристаллы йодида натрия), а не пропорциональные счетчики (заполненные газом), которые устанавливаются на ракетах, то есть приборы, способные обнаружить рентгеновские лучи с энергиями выше 15 кэВ. Когда рентгеновский фотон проникает в один из таких кристаллов, он может выбить электрон с его орбиты и передать ему свою энергию рентгеновского излучения (это называется фотоэлектрическим поглощением). Этот электрон, в свою очередь, создает в кристалле след из ионов, после чего останавливается. Когда ионы нейтрализуются, они высвобождают энергию – в основном в форме видимого света. Так получается вспышка света – в нее преобразуется энергия рентгеновского фотона. Чем выше энергия рентгеновских лучей, тем сильнее мигает световой индикатор. Мы использовали для обнаружения вспышек света и преобразования их в электрические импульсы фотоэлектронный умножитель (ФЭУ): чем ярче вспышка света, тем выше напряжение импульса.
Затем мы усиливали эти импульсы и отправляли их в дискриминатор, который измеряет напряжение электрических импульсов и сортирует их по величине, указывающей на энергетические уровни рентгеновского излучения. В те далекие дни мы регистрировали рентгеновское излучение только на пяти различных энергетических уровнях.
Чтобы получить запись обнаружений излучения после полета аэростата, мы регистрировали их в полете с указанием уровня энергии и времени обнаружения. Мы подсоединяли дискриминатор так, чтобы он направлял эти упорядоченные импульсы на светодиоды, которые создавали картинку огней, мигающих на пяти разных энергетических уровнях. И фотографировали эти мигающие огни непрерывно работающей камерой.
Если свет был, он оставлял на пленке след. В целом пленка наблюдения выглядела как ряд штрихов и линий, полосок и черточек. Вернувшись в МТИ, мы «читали» ее с помощью специального устройства, разработанного Джорджем Кларком. Этот прибор преобразовывал линии и черточки в перфоленту – бумажную ленту с отверстиями. Затем мы расшифровывали эти перфоленты с помощью светочувствительных диодов и записывали полученные данные на магнитную ленту. Мы даже написали специальную компьютерную программу на языке Fortran (я понимаю, как доисторически это сейчас звучит) и использовали ее для считывания информации с магнитной ленты в память компьютера, который – наконец-то! – выдавал данные о рентгеновском излучении в пяти различных энергетических каналах.
Я знаю, что все это, скорее всего, покажется вам на редкость заумным. Но только подумайте, какая перед нами стояла задача! Мы пытались измерить скорость счета (количество рентгеновских лучей в секунду) и уровни энергии рентгеновских фотонов, а также определить местонахождение источника, испускающего эти фотоны, которые на протяжении тысяч лет со скоростью света распространялись по всей галактике, разрежаясь с каждым участком пройденного расстояния. И в отличие от стабильного оптического телескопа, система управления которым способна удерживать его наведенным на одно и то же место в течение многих часов и возвращать на это место ночь за ночью, мы могли воспользоваться только конкретно определенным периодом времени (чаще всего не более одного раза в год) – всегда в те считаные часы, когда хрупкий аэростат возносил тяжеленный телескоп на много километров над поверхностью земли.
После успешного запуска аэростата я, как правило, следовал за ним в небольшом самолете, держа шар в поле зрения (в дневное время – не ночью) на высоте 1,5–3 километра. Можете себе представить, на что были похожи эти многочасовые полеты. Я человек немаленького роста. В этих крохотных четырехместных самолетах летать было страшно неудобно, особенно если находишься в воздухе восемь, десять, а то и двенадцать часов подряд. В довершение всего все время, пока шар был в воздухе, я ужасно нервничал: вдруг что-то пойдет не так. Расслабиться удавалось только после того, как в руках оказывались нужные данные.
Аэростат был настолько огромным, что даже на высоте почти 45 километров при ярком солнечном свете его, как правило, было отлично видно. После запуска мы могли следить за ним довольно долго с помощью радара – до тех пор, пока это не становилось невозможным из-за линии изгиба Земли. Поэтому мы оснастили шар радиопередатчиком и по ночам переходили на слежение исключительно с помощью радиомаяка. Мы постоянно оповещали население о проводящихся исследованиях, размещая статьи о запуске в местных газетах, но наши воздушные шары могли дрейфовать на сотни километров, и мы получали сотни сообщений о НЛО. Это было забавно, но вполне объяснимо. А что еще должны были думать люди, заметив в небе нечто неопределенного размера? Для них это действительно был неопознанный летающий объект.
Стоит отметить, что, несмотря на все наши прогнозы погоды и тщательное планирование, даже на этапе разворота ветры, дующие на высоте 45 километров, оказывались крайне ненадежными. Однажды в Австралии мы ожидали, что аэростат полетит из Элис-Спрингс на север, а он вместо этого направился прямиком на юг. Мы наблюдали за ним до захода солнца и всю ночь с помощью радиосвязи. К утру шар слишком приблизился к Мельбурну, а нам не разрешалось входить в воздушное пространство между Сиднеем и Мельбурном. Конечно, никто не собирался его сбивать, но мы обязаны были что-то предпринять. Когда своенравный аэростат почти достиг запрещенной зоны воздушного пространства, нам, хоть и с огромной неохотой, пришлось отдать радиокоманду об отделении экспериментального оборудования от шара. Отделение телескопа повреждало аэростат: он не выдерживал мощной ударной волны вследствие резкого катапультирования тяжелого оборудования. Телескоп начинал падать, парашют раскрывался (кроме того случая в 1980 году), и аппаратура в медленном полете благополучно возвращалась на землю. Огромные куски воздушного шара тоже падали вниз, как правило, в радиусе пяти километров. Рано или поздно это случалось с каждым запущенным аэростатом, и это всегда было очень грустно (хотя неизбежно и необходимо), потому что нам приходилось прерывать миссию, останавливая поступление данных. А нам, понятно, хотелось, чтобы телескоп находился на высоте как можно дольше. В те дни мы остро нуждались в полученной с его помощью информации – она была нашей самой желанной целью.
Чтобы смягчить посадку телескопа, мы устанавливали на его нижней части картонные амортизаторы. Если дело происходило днем и мы поддерживали визуальный контакт с аэростатом, который прекращался сразу после того, как посылалась команда об отделении оборудования, то вскоре замечали парашют и делали все возможное, чтобы следовать за ним по пятам, нарезая круги на своем самолетике. А когда телескоп приземлялся, мы как можно точнее отмечали его местоположение на очень подробной карте.
И тут начиналось самое интересное. Мы находились в самолете, и у нас перед глазами было экспериментальное оборудование со всеми собранными им данными, кульминацией многолетнего труда; оно лежало на земле, под нами, почти в пределах досягаемости, но мы же не могли просто приземлиться посередине пустыни и забрать его! Оставалось одно – привлечь внимание местных жителей, что мы обычно и делали, летая над нужным домом на очень небольшой высоте. Дома в пустыне располагались довольно далеко друг от друга. Все местные жители знали, что означает низколетящий самолет и, как правило, выходили из дома и махали нам, подтверждая принятый сигнал. А мы приземлялись на ближайшем аэродроме (не следует путать с аэропортом) в пустыне и ждали, пока кто-нибудь объявится.
Так вот, во время полета, о котором я хочу рассказать, в нужном районе оказалось очень мало домов, и нам пришлось немного полетать над песками. В конце концов мы нашли парня по имени Джек; он жил в пустыне километрах в восьмидесяти от своего ближайшего соседа. Парень был вечно пьян и, судя по всему, несколько не в себе. Но мы тогда этого, конечно, не знали. Мы подождали, пока он нам помашет, после чего отправились на местный аэродром и стали ждать. Джек появился часов через пятнадцать на старом разбитом грузовике без лобового стекла – просто крыша над кабиной и открытый кузов сзади. Джек обожал носиться на нем по пустыне на огромной скорости, преследуя кенгуру и паля по ним из ружья.
Вместе с одним из моих аспирантов мы сели к Джеку в грузовик, а наш самолет направлял нас к месту, где лежало оборудование. Грузовику приходилось перемещаться по неисследованной местности. Мы поддерживали радиосвязь с самолетом. Надо сказать, нам здорово повезло с Джеком. Благодаря своей охоте за кенгуру он отлично знал, как добраться в любое место.
А еще он играл в ужасную игру, которую я просто возненавидел, но, поскольку мы зависели от него, мало что мог сделать; однажды он показал мне ее. Джек поставил свою собаку на крышу грузовика, разогнался почти до ста километров в час и резко нажал на тормоза. Собака, ясное дело, слетела на землю. Бедный пес! А Джек захохотал и изрек свою коронную фразу: «Старую собаку новым трюкам не научишь».
Чтобы добраться до оборудования, которое, как оказалось по прибытии, охраняла полуметровая игуана – весьма неприятное на вид существо, у нас ушло полдня. По правде говоря, меня она до смерти напугала. Но, конечно, я не собирался этого показывать и сказал аспиранту: «Ничего страшного. Эти животные совершенно безвредны. Вы идете первым». И он вышел из машины. Как оказалось, игуаны действительно безвредны. В течение четырех часов, пока мы возились с аппаратурой и грузили ее на грузовик Джека, животное даже не шелохнулось.
Потом мы вернулись в Элис-Спрингс и, конечно же, попали на первую полосу местной газеты Centralian Advocate вместе с большой фотографией запуска аэростата. Заголовок гласил: «Запуск космического зонда», а в самой статье рассказывалось о «профессоре с аэростатом». Я стал чем-то вроде местной знаменитости и выступил перед членами Ротари-клуба[24], учениками средней школы и даже один раз в стейк-хаусе, чем заработал бесплатный ужин для всей нашей команды. Но больше всего на свете нам хотелось как можно быстрее отвезти домой пленку, расшифровать и проанализировать данные и посмотреть, что нам удалось «нарыть». Потратив несколько дней на уборку станции, мы отправились в обратный путь. Думаю, теперь вы понимаете, насколько трудными были наши исследования. Я находился вдали от дома в течение двух месяцев как минимум каждые два года, а иногда и каждый год. Конечно же, мой первый брак от этого сильно пострадал.
В то же время, несмотря на нервозность и напряжение, все это было чрезвычайно интересно и очень весело, и я горжусь своими аспирантами, Джеффом Мак-Клинтоком и Джорджем Рикером. Джефф теперь старший астрофизик Гарвард-Смитсоновского центра астрофизики; в 2009 году он получил Приз Росси (угадайте, в честь кого он назван?) за работу в области измерения массы черных дыр в рентгеновских двойных звездных системах (мы еще вернемся к этому в главе 13). А Джордж, к моему огромному удовольствию, до сих пор работает в Массачусетском технологическом институте. Ему нет равных в проектировании и разработке инновационной измерительной аппаратуры. Больше всего он прославился своими потрясающими исследованиями в области гамма-всплесков.
Надо сказать, исследования с помощью аэростатов были по-своему невероятно романтичными. Встаешь в четыре утра, едешь в аэропорт, видишь восход солнца и зрелищный процесс надувания шара – и все это происходит в прекрасной пустыне, под открытым небом, на котором сначала видны звезды, а потом начинает медленно подниматься солнце. Чуть позже, когда уже надутый аэростат вздымается в небо, он переливается серебром и золотом на фоне розового рассвета. А вы отлично знаете, как много мелких факторов должно совпасть, чтобы все прошло удачно, и ваши нервы все время напряжены до предела. Просто море эмоций! И если запуск удается, для чего действительно должны сложиться мириады деталей (каждая из которых в противном случае является источником потенциальной катастрофы), испытываешь поистине непередаваемое ощущение.
В те дни мы и правда находились на переднем крае радиоастрономии. И подумать только: наш успех в немалой степени зависел от вечно пьяного австралийского охотника за кенгуру.
Ни одно открытие, сделанное нами в те годы, не было для меня более захватывающим, чем абсолютно неожиданное наблюдение. Оказывается, в числе излучаемых некоторыми рентгеновскими источниками рентгеновских лучей встречаются довольно заметные вспышки. Идея о том, что интенсивность рентгеновского излучения некоторых источников варьируется, витала в воздухе еще с середины 1960-х годов. Филипп Фишер и его группа в Lockheed Missiles and Space Company сравнили интенсивность рентгеновского излучения семи рентгеновских источников, обнаруженных во время полета их ракеты 1 октября 1964 года, с интенсивностью источников, выявленных с помощью ракет группой Фридмана 16 июня 1964 года. Исследователи обнаружили, что интенсивность рентгеновских лучей (называемая потоком рентгеновского излучения) источника Cyg XR-1 (сейчас называется Cyg X-1) 1 октября была в пять раз ниже, чем 14 июня. Однако по-прежнему оставалось неясным, отображало ли данное наблюдение реальную изменчивость излучения. Группа Фишера указала на то, что группа Фридмана использовала более чувствительные к низкоэнергетическому рентгеновскому излучению детекторы, чем те, которые применяли они, и предположила, что разница может объясняться именно этим.
Ответ на этот вопрос был найден в 1967 году, когда группа Фридмана сравнила поток рентгеновского излучения из тридцати источников за предшествующие два года и установила, что многие источники действительно меняют свою интенсивность. Особенно впечатляла изменчивость Cyg X-1.
В апреле 1967 года группа Кен Мак-Кракена из Австралии запустила ракету и обнаружила источник почти столь же яркий, как Sco X-1 (источник самого яркого рентгеновского излучения из всех нам тогда известных), которого не было, когда детекторы наблюдали то же самое место полтора года назад. Через два дня после анонса этой «рентгеновской новой» (так назвали источник) на весеннем заседании Американского физического общества в Вашингтоне я разговаривал по телефону с одним из самых выдающихся пионеров в области рентгеновской астрономии, и он спросил меня: «Вы действительно верите в эту ерунду?»
Между тем интенсивность источника снизилась через несколько недель в три раза, а пять месяцев спустя более чем в 50 раз. Сегодня мы без особых затей называем такие источники «кратковременными источниками рентгеновского излучения».
Группа Мак-Кракена локализировала такой источник в созвездии Южный Крест (Crux). Ребята страшно обрадовались, поскольку именно это созвездие изображено на австралийском флаге. Когда оказалось, что источник расположен сразу за пределами Южного Креста, в созвездии Центавр, и первоначальное название Crux X-1 было изменено на Cen X-2, австралийцы разочаровались. Ученые вообще чрезвычайно эмоционально относятся к своим открытиям.
А 15 октября 1967 года мы с Джорджем Кларком, наблюдая Sco X-1 в течение десятичасового полета аэростата, запущенного из Милдьюра в Австралии, сделали важное открытие. Следует сказать, что наша ситуация не имела ничего общего с тем, что запечатлено на фотографиях Космического центра НАСА в Хьюстоне, где в случае стоящего открытия все поздравляют друг друга, обнимаются, пожимают руки, хлопают друг друга по спине. Дело в том, что эти ребята видят наблюдаемое в режиме реального времени, мы же не имели доступа к данным в ходе наблюдений, поэтому нам оставалось только надеяться на то, что аэростат продолжит полет, а наше оборудование не даст сбоя. И конечно же, мы всегда беспокоились, получим ли свой телескоп и данные обратно. Иными словами, сплошная нервотрепка.
Собранные данные мы проанализировали лишь несколько месяцев спустя, вернувшись в МТИ. Однажды вечером я сидел в компьютерном зале, мне помогал Терри Торсос. В те времена у нас были очень большие компьютеры. В помещении должны были постоянно работать кондиционеры, потому что компьютеры сильно нагревали воздух. Помнится, было около одиннадцати часов вечера. В те дни, чтобы компьютер нормально работал, лучше всего было проскользнуть в компьютерный зал вечером. А еще тогда исследователь не мог обойтись без оператора компьютерной техники, который запускал нужные программы. Так что я встал в очередь к оператору и терпеливо ждал своего часа.
И этот час настал. Я смотрел на экран, на данные, полученные в ходе исследования с аэростатом, и вдруг заметил весьма существенное увеличение потока рентгеновского излучения от Sco X-1. Прямо там, на распечатке, поток рентгеновских лучей вырос в четыре раза примерно за десять минут; это длилось почти тридцать минут, после чего свечение постепенно исчезло. Мы наблюдали рентгеновскую вспышку Sco X-1, и она была огромной. Никто никогда не видел ничего подобного! Обычно в такой ситуации мы говорили себе: «А может, эта вспышка объясняется чем-то другим? А вдруг она вызвана неточностью детектора?» Но в тот раз у меня не было ни малейших сомнений. Я знал свою аппаратуру вдоль и поперек. Я знал, что мы все отлично подготовили и протестировали и на протяжении всего полета непрерывно проверяли детектор, каждые двадцать минут делая контрольный замер рентгеновского спектра известных радиоактивных источников – приборы работали безотказно. Иными словами, я доверял собранным данным на сто процентов. Глядя на распечатку, я ясно видел, что поток рентгеновского излучения увеличивался и уменьшался; из всех источников, которые мы наблюдали за время того десятичасового полета, только один резко увеличился и так же резко затух, и это Sco X-1. Все было по-настоящему!
На следующее утро я показал результаты Джорджу Кларку, и он чуть не свалился со стула. Мы оба отлично понимали, что это значит, и были вне себя от радости! Никто не предполагал – не говоря уже о том, чтобы наблюдать, – что поток рентгеновского излучения может меняться в течение десяти минут. Конечно, поток частиц от Cen X-2 уменьшился в три раза через несколько недель после обнаружения, но здесь мы имели дело с изменчивостью в четыре раза всего за десять минут – почти в три тысячи раз быстрее.
Мы знали, что Sco X-1 излучал 99,9 процента своей энергии в виде рентгеновских лучей и что рентгеновская светимость этого источника примерно в 10 тысяч раз больше полной светимости нашего Солнца и почти в 10 миллиардов раз больше его рентгеновской светимости. И Sco X-1 менял свою светимость в четыре раза за какие-то десять минут – ну, это просто непостижимо с точки зрения физики. Что бы вы сказали, если бы Солнце стало за десять минут светить в четыре раза ярче? Меня лично это напугало бы до чертиков.
Открытие изменчивости в таком временном интервале, возможно, было самым важным в области рентгеновской астрономии, сделанным с помощью аэростатов. Как я уже говорил, этим способом мы также обнаружили источники рентгеновского излучения, которые не могли видеть ракеты, и это тоже стало важным открытием. Но ничто не могло сравниться по значимости с открытием десятиминутной изменчивости Sco X-1.
По тем временам это было настолько неожиданно, что многие ученые просто не могли в это поверить. Порой ученые имеют большие ожидания, и им тяжело смириться с выводами, которые с этими ожиданиями не совпадают. Легендарный редактор журнала Astrophysical Journal Letters С. Чандрасекар послал нашу статью о Sco X-1 рецензенту, и тот вообще нам не поверил. Я до сих пор это помню, хотя прошло уже более сорока лет. Рецензент написал следующее: «Это не может быть правдой, ведь мы знаем, что столь мощные источники рентгеновского излучения просто не могут так изменяться в пределах десятиминутного интервала времени».
Нам пришлось уговаривать журнал напечатать статью. Через это, кстати, прошел даже Росси в 1962 году. Тогда редактор журнала Physical Review Letters Самуил Гаудсмит принял статью, благодаря которой родилась рентгеновская астрономия, только потому, что это был сам Росси и он был готов взять на себя «личную ответственность» за ее содержание.
Сегодня у нас есть гораздо более чувствительные инструменты и телескопы, и мы знаем, что многие источники рентгеновского излучения могут меняться в любом временном интервале, а это означает, что поток из наблюдаемого непрерывно изо дня в день источника каждый день будет другим. И если вы будете наблюдать его посекундно, он тоже будет меняться. Даже если анализировать данные миллисекунда за миллисекундой, можно обнаружить изменчивость некоторых источников. Но по тем временам даже десятиминутная изменчивость казалась идеей новой и неожиданной.
В феврале 1968 года я выступил в МТИ с докладом об этом открытии и был чрезвычайно взволнован, когда заметил среди слушателей Риккардо Джаккони и Херба Гурски. Я чувствовал себя настоящим везунчиком, человеком, который вышел на передний край своей области деятельности.
В следующих главах я познакомлю вас с множеством тайн Вселенной, которые позволила раскрыть рентгеновская астрономия, а также остановлюсь на ряде вопросов, ответы на которые мы, астрофизики, все еще пытаемся найти. В частности, мы совершим путешествие к нейтронным звездам и окунемся в глубины черных дыр. Так что держите крепче ваши шляпы, господа!