Глава Ⅶ. ОБЕСПЕЧЕНИЕ ЖИЗНЕННЫХ УСЛОВИЙ НА ИСЗ[38]


С помощью автоматических разведчиков космоса будут изучены физические условия в верхних слоях атмосферы и космическом пространстве. После этого будут сооружены стационарные космические станции, и обитаемые межпланетные корабли отправятся к другим мирам. Рассмотрим сейчас вопрос о том, сможет ли человек перенести физиологические явления, возникающие во время полета на космическом корабле, пребывания на спутнике и последующего спуска на Землю. Расскажем также о различных инженерных проблемах, связанных с обеспечением жизненных условий на ИСЗ и космическом корабле.


1. Проблема создания герметизированной кабины

При рассмотрении возможности полета человека в космос первым вопросом, который возникает, будет тот же, который приходится решать и при проектировании самолетов, летающих в нижних слоях стратосферы. Известно, что уже на высоте 4 км человек начинает испытывать недостаток в кислороде, а подъем на высоту 7÷8 км без кислородных приборов опасен для жизни. Применение кислородных дыхательных приборов позволяет увеличить высоту подъема человека, однако уже на высоте 12 км не помогает даже вдыхание чистого кислорода, а на высотах выше 15 км вообще прекращается поступление кислорода в легкие.

Для предотвращения этого явления, известного под названием «кислородного голодания», необходимо, чтобы в кабине самолета или ракеты было такое давление воздуха и такое парциальное давление кислорода, которое необходимо для нормального дыхания.

Кроме того, на высоте свыше 8 км в результате уменьшения давления воздуха у человека, не защищенного герметизированной кабиной, может возникнуть болезнь, называемая декомпрессионным расстройством. Причиной этой болезни является то обстоятельство, что при пониженном давлении растворенный в крови азот, переходя в газообразное состояние, может скапливаться в виде пузырьков внутри кровеносных сосудов, в полостях суставов и различных тканях.

Образование больших пузырьков газа внутри кровеносных сосудов вызывает их закупорку, в результате чего может наступить паралич организма и даже смерть.

Следует отметить, что при еще большем понижении давления, примерно на высоте 19 км, даже при нормальной температуре закипает жидкость, содержащаяся в организме человека. Это явление рядом авторов было проверено на животных, главным образом на собаках, которые подвергались внезапному понижению давления до определенной величины. Через 30–60 секунд при этом наблюдалось полное прекращение дыхания, а приблизительно через 2 минуты — полная остановка сердечной деятельности.

Следует отметить, что все эти явления в космосе, как предполагают, могут протекать в гораздо более резкой форме.

В авиации для предотвращения всех этих явлений высотные самолеты имеют герметизированные кабины, причем выделяемые при дыхании углекислота и водяной пар вентилируются в окружающее самолет пространство, а необходимый для дыхания воздух поступает из атмосферы, подвергаясь предварительному сжатию (компрессии).

Такой способ непригоден для ракет.

Дело в том, что на высотах более 24 км вследствие большой разреженности атмосферы компрессия воздуха чрезвычайно затруднительна.

К тому же если бы и были созданы компрессоры для больших высот, то при их работе температура в кабине могла бы подняться выше 200℃; кроме того, на этих высотах в кабине может накопиться озон в концентрациях, вредных для человека.

Поэтому для полетов выше 24 км нужна кабина, которая была бы полностью изолирована от внешней среды. Ввиду последнего обстоятельства нужное давление в ней можно будет поддерживать только за счет тех запасов газа (преимущественно кислорода), которые будут находиться на борту ракеты в сжатом или в сжиженном состоянии. Выделяемые человеком углекислота и водяные пары будут в этом случае ликвидироваться с помощью химических поглотителей. Считают, что для уменьшения запасов воздуха на борту ракеты можно будет поддерживать общее давление внутри кабины на уровне примерно ½ атмосферы за счет некоторого избытка кислорода, что необходимо для компенсации вредного воздействия, вызываемого пониженным давлением.

Уже имеются индикаторы, которые автоматически указывают содержание кислорода и углекислоты в атмосфере кабины, а также автоматическая аппаратура для поддержания заданного давления и состава атмосферы в кабине.

Естественно, что герметизированная кабина хороша еще и тем, что во время полета экипаж не будет ощущать резко изменяющегося давления атмосферы снаружи кабины.

При проектировании герметизированной кабины необходимо еще учитывать температурный фактор.

Во время полета, особенно в процессе прохождения через плотные слои атмосферы, стены кабины, а следовательно, и воздух самой кабины может значительно нагреваться. Несмотря на то, что отдельные частицы газов в верхнем слое ионосферы имеют температуру свыше 2000℃, они не нагреют ракеты, так как они слишком разрежены. Считают, что на высоте 560 км температура корпуса алюминиевой ракеты будет не более 27℃.

Температура ракеты в космосе будет определяться соотношением поглощенной тепловой энергии солнечных лучей и тепловой энергией, излучаемой самой ракетой. Известно, что черная поверхность сильно поглощает тепловые лучи, а белая и блестящая поверхность хорошо их отражает.

Используя это свойство, еще К. Э. Циолковский предложил[39] одну часть наружной поверхности ракеты окрашивать в черный цвет для усиления поглощения тепловых лучей солнечной радиации, другую же часть наружной поверхности для усиления их отражения сделать блестящей, светлой. Поворачивая ракету (или ИСЗ) относительно Солнца с помощью средств автоматики, можно поддерживать внутри ракеты или ИСЗ нужную температуру. Это очень важно, например, большинство полупроводниковых приборов не смогут работать при температуре свыше плюс 60°.

К этому способу поддержания нужной температуры прибегают и в настоящее время; в частности, он был проверен при запуске стратостата «Эксплорер Ⅱ», гондола которого была окрашена таким способом. Температура в ней в течение 6 часов (днем) на высоте 22 км колебалась от +6,5° до -12℃[40].

По расчету известного немецкого ученого Г. Оберта[41] температура воздуха кабины космической ракеты (или ИСЗ) может быть регулируема путем обращения к Солнцу большей или меньшей части ее черной или светлой поверхности в пределах +29° до -12℃.

В кабине должны быть предусмотрены различные устройства, обеспечивающие сохранение жизни членов экипажа в случае возможной аварии.

Например, если в стенке кабины ИСЗ образуется пробоина таких размеров, что площадь в 1 кв. см будет приходиться на 1 куб. м объема кабины, то вакуум в ней наступит через 40 секунд после получения пробоины. На случай такой аварии предполагается иметь легкие аварийные астрокостюмы и аварийный запас кислорода, используя который можно было бы на время заделки пробоины поддержать в астрокостюмах необходимое давление.

Предполагается также, что в особо серьезных случаях кабина сможет отделиться от ИСЗ и опуститься на Землю с помощью небольших тормозных ракет, а по достижении атмосферы — с помощью парашютов.

Уже при ракетных полетах производились опыты выбрасывания в герметизированных кабинах обезьян с высоты 160 км, а собак — с высоты 200 км и более.


2. Защита от ультрафиолетовых и космических лучей

Проблема дыхания и температурная проблема далеко не единственные, с которыми придется встретиться человеку в космосе.

Всем известно, что при неумеренном загорании в жаркие солнечные дни человек может настолько обгореть, что у него начнет слезать кожа, а иногда могут появиться и более серьезные ожоги тела. Они происходят в результате действия на кожные покровы ультрафиолетовых лучей, содержащихся в солнечном спектре. При этом следует иметь в виду, что существующий на высоте примерно 45 км слой озона сильно поглощает ультрафиолетовые лучи и поэтому воздействие их на человека, находящегося на Земле, значительно ослабляется. Если человек подвергнется их воздействию выше изолирующего слоя озона, то оно окажется чрезвычайно сильным. Однако защита против них в кабине ракеты не представляет особых трудностей: необходимо только, чтобы все стеклянные поверхности кабины, через которые может проникнуть солнечный свет, были изготовлены из состава, не пропускающего ультрафиолетовые и рентгеновские лучи. Стекло такого состава уже создано.

Гораздо бóльшие трудности представляет собою защита от космических лучей. От них не вполне надежной защитой является даже слой свинца толщиной около метра. Тем не менее, ученые расходятся во мнениях в отношении вредности их действия на человеческий организм. Известно, что летчики, совершающие высотные полеты, проводят продолжительное время в среде, где космические излучения во много раз больше, чем на Земле, но до сих пор неизвестны случаи их вредного воздействия на человека. Необходимо отметить, что как природа космических лучей, так и их действие еще настолько мало изучены, что, очевидно, только второму советскому искусственному спутнику Земли удалось внести в этот вопрос какую-то ясность.


3. Перегрузки и невесомость

Существует еще одно затруднение, с которым придется столкнуться при осуществлении космических полетов и значение которого, между прочим, совсем недавно сильно преувеличивалось. Оно заключается в том, что при быстром нарастании скорости на первом участке полета ракеты, а также при быстром уменьшении скорости при возвращении на Землю экипаж ракеты будет испытывать значительные перегрузки, т. е. человек будет ощущать свой вес увеличенным в несколько раз. Мы уже знаем, почему необходимо такое быстрое нарастание скорости. Сейчас нас будет интересовать только перегрузка, возникающая при этом.

Перегрузка — безразмерная величина, показывающая соотношение между приложенной к телу силой и его весом. В зависимости от направления действия перегрузки делят на положительные, направленные вниз, и отрицательные, направленные вверх.

Относительно человеческого организма различают перегрузки продольные, поперечные и боковые (рис. 60).

Рис. 60. Перегрузки, действующие на человека

Продольные перегрузки имеют направление вдоль туловища. При действии от головы к ногам человека они называются положительными, а при действии от ног к голове — отрицательными.

Отрицательные перегрузки человеком переносятся тяжелее, чем положительные.

Условились считать, что тело, находящееся в покое, подвергается перегрузке, равной единице. Из этого условия следует, что при нулевой перегрузке вес тела отсутствует.

Человек может переносить непродолжительное время трехкратную отрицательную перегрузку. При этом он ощущает прилив крови к голове, пульсацию в височных артериях и сильное напряжение кожи головы.

При четырех — пятикратных отрицательных перегрузках состояние человека становится весьма напряженным. Появляется острая режущая боль в висках, переполнение кровеносных сосудов лица и головы кровью вызывает кровотечение из носа.

При увеличении времени действия отрицательной перегрузки появляется нарушение зрения, и человек теряет сознание.

Действие положительных продольных нагрузок тоже вызывает нарушение в организме человека, но после их прекращения человек быстрее приходит в нормальное состояние, чем после отрицательных перегрузок. При четырех — пятикратной перегрузке становится трудно удержать голову в нужном положении, отвисают щеки и губы, отвисает нижняя челюсть, нарушается дыхание, крайне затрудняются движения руками, смещаются внутренние органы, что вызывает болезненные ощущения в организме.

Человек не в состоянии перенести действие очень больших положительных перегрузок, так как при этом недостаточно поступление крови к головному мозгу, возникает учащенное сердцебиение и т. д.

Продолжительная четырех — пятикратная перегрузка начнет вызывать потерю зрения и нарушение высшей нервной деятельности, а именно, замедляется сообразительность, снижается внимательность.

Дальнейшее увеличение величины или продолжительности положительной продольной перегрузки может привести к полной потере сознания.

Поперечные перегрузки человеческим организмом переносятся легче, чем продольные, как по величине, так и по продолжительности. Кровообращение не нарушается при значительных поперечных перегрузках. А при кратковременности действия перегрузки могут возрастать до более высоких значений. Частично это объясняется тем, что в человеческом организме не происходит значительных смещений внутренних органов, а кровеносные сосуды в основном расположены вдоль человеческого тела, поэтому особенного влияния на кровообращение поперечные перегрузки не имеют. Они в основном влияют на дыхание, затрудняя его при слишком больших значениях перегрузок.

В человеческом организме для регулирования кровообращения имеются особые нервные «механизмы», которые включаются в действие при нарушении кровообращения под влиянием перегрузок. Этими «механизмами» руководит центральная нервная система. Таких элементарных «механизмов» в кровеносной системе человека имеется большое количество, и все они в момент нарушения кровообращения при перегрузках будут поддерживать необходимое давление крови в сосудах.

В настоящее время ученые считают, что на начальном участке полета, когда ускорение ракеты будет наибольшим, человек будет чувствовать себя так, как если бы его вес увеличился в 4 раза. На дальнейших участках полета перегрузка значительно снизится и будет соответствовать примерно двойному человеческому весу. Хотя управление на первом участке полета будет осуществляться автоматически и, следовательно, экипажу не придется выполнять какие-либо задачи, связанные с управлением ракеты, все же возможно, что необходимые приборы и средства управления будут располагаться внутри кабины наиболее удобно для использования человеком, находящимся в лежачем положении. Ибо, как показали опыты научно-исследовательских клиник и лабораторий, в этом положении способность переносить ускорения у человека наилучшая (рис. 61).

Рис. 61. Способность человека переносить ускорения в зависимости от положения его тела:
○ — клиника Мэйо; ● — английские данные; ∆ — немецкие данные; □ — данные США; g — ускорение силы тяжести; G — вес

Для того чтобы человек, подвергающийся перегрузкам, мог легко их переносить, он должен проходить длительную тренировку на специальных устройствах, искусственно создающих эти перегрузки.

Такими устройствами типа карусели пользуются летчики, и ими же будут пользоваться будущие астронавты.

Когда искусственный спутник или ракета достигнет скорости 7,9 км/сек, при которой центробежные силы уравновесят силы земного притяжения, в кабине наступает состояние невесомости.

Если в земных условиях воспроизвести явление перегрузки можно довольно просто, то воспроизвести невесомость можно только кратковременно, например, при падении лифта и т. п. Поэтому изучение влияния невесомости в земных условиях весьма затруднительно вследствие кратковременности ее действия. При полетах первых ИСЗ будет изучаться сперва на животных, а затем и на человеке длительное влияние невесомости на деятельность организма. Но уже сейчас в этом отношении можно сделать некоторые предположения.

Во многих случаях наше тело оказывается безразличным к направлению силы тяжести. Мы можем есть, дышать, разговаривать, думать, пользоваться нашими руками с одинаковым успехом как в положении стоя, так и в лежачем положении. Факты показывают, что воздействие силы тяжести не помогает и не мешает осуществлению большинства процессов, проходящих в человеческом организме. Известно, например, что некоторым инвалидам приходилось годами жить в лежачем положении, не ощущая при этом особых затруднений от воздействия силы тяжести. С точки зрения медиков, единственный механизм, на который в значительной степени будет действовать состояние невесомости, — это механизм равновесия внутреннего уха. Однако известно, что люди, у которых по тем или иным причинам этот механизм пришел в расстройство, все же ориентируются даже под водой. Это объясняется тем, что зрение в большей степени компенсирует недостатки этого органа. Некоторые ученые считают, что в результате длительного воздействия невесомости может возникнуть постепенное ослабление нервной регуляции кровообращения, возникающее вследствие физической бездеятельности и расслабления мускулатуры. Может оказаться, что более важным будет не физиологический, а психологический эффект, поэтому кабину, возможно, придется конструировать таким образом, чтобы в ней условно существовал «верх» и «низ». Может оказаться также, что людям, совершившим длительное межпланетное путешествие, придется снова привыкать к земным условиям существования. Внутри кабины нельзя будет ходить, так как будет отсутствовать давление ступни на пол и поэтому не будет существовать сил трения, которые нужны для передвижения. Движение будет осуществляться путем подтягивания к закрепленным деталям кабины. Особое неудобство будет ощущаться при обращении с жидкостями. Их нельзя будет переливать привычным нам способом, а придется эту операцию проводить принудительным путем, используя насосы или резиновые груши. Даже умываться можно будет только с помощью губки, смоченной в воде. Такие процессы, как горение, не будут протекать обычным путем: к пламени горелки нужно будет подводить непрерывную струю кислорода, так как продукты сгорания, скапливаясь вокруг пламени, могут заглушить его. Пища должна будет вариться во вращающихся кастрюлях, чтобы их содержимое прижималось к стенкам под воздействием центробежной силы. Некоторые ученые считают, что люди, совершающие межпланетные путешествия или длительные полеты в ИСЗ, могут питаться таблетками, в которых будут сосредоточены необходимые для жизни человека питательные вещества. Но исследования показывают, что при таком питании человек длительное время существовать не может, так как для правильной работы органов пищеварения необходимо, чтобы, помимо питательных веществ, человек получал известное минимальное по массе и объему количество пищи.

Для облегчения существования человека внутри кабины предполагается создать в ней искусственную силу тяжести. Это возможно осуществить путем придания ракете или спутнику вращательного движения (рис. 62), причем возникающие при этом центробежные силы создадут внутри кабины ощущение весомости. Другие ученые для той же цели предполагают использовать магнитные настилы и соответствующую обувь. Однако такой способ дает только частичное решение задачи — облегчение способов движения человека внутри кабины. Условие невесомости сохраняется для всех немагнитных тел (жидкостей, продуктов питания, одежды и т. п.), и все неудобства, возникающие вследствие невесомости, сохраняются.

Рис. 62. Получение искусственной силы тяжести: О — центр вращения

Уже были проведены многочисленные опыты над обезьянами и собаками, которые поднимались на высотных ракетах и находились довольно длительное время в условиях невесомости. На высоту свыше 80 км поднимали морфинированных обезьян в США. Их фотоснимки помещались в различных заграничных и наших газетах и журналах. Эти опыты не всегда были удачными, лишь одна из многих обезьян осталась жива.

Не раз уже в верхние слои атмосферы поднимали и мышей.

На проходившей в декабре 1956 г. Парижской международной конференции по ракетам и управляемым снарядам сенсационным известием явились доклады советских ученых о благополучном подъеме на высоту свыше 110–200 км и выше неморфинированных собак, которые и поныне живут и превосходно себя чувствуют. Фотография одной из них показана на рис. 63. В газете «Труд» (16 февраля 1957 г.) сообщалось, что при подъеме двенадцати собак на 110 км ни одна из них не погибла и что впервые был снят научно-документальный фильм, показывающий поведение этих первых путешественников в космос в условиях невесомости и безвоздушном пространстве. Вот что рассказывает советский ученый А. В. Покровский, руководивший этими замечательными опытами:

Рис. 63. Фотография собаки с подъемной тележкой, поднятой советскими учеными на высоту 110 км и благополучно возвратившейся на Землю

«…За пять минут до восхода солнца в стратосферу взвилась сигарообразная серебристая ракета. В ее головной части был устроен негерметичный отсек, в котором находились катапультные тележки. К тележкам были прикреплены специальные скафандры — приборы кислородного питания, содержащие 900 л кислорода, парашютная система и аппаратура для регистрации физиологических функций в полете.

Катапультная тележка весила 70 кг, а парашютная система обеспечивала вертикальную скорость при приземлении около 6 м/сек. Исследовательская высотная ракета быстро достигла высоты 110 км, где ее головная часть отделилась от корпуса, и началось свободное падение. На высоте 80–90 км со скоростью примерно 700 м/сек произошло катапультирование первой тележки. Через три секунды после этого сработала парашютная система, и с высоты 75–85 км животные в течение часа опускались на землю…».

Начиная с 1951 года советские ученые организовали большое количество подобных полетов ракет с целью исследования особенностей высоких слоев атмосферы и их влияния на живые организмы.

Эти опыты являются большим достижением в области решения многочисленных сложных биологических проблем, успешное разрешение которых приближает возможность полета человека в космическое пространство.

Произведенный 3 ноября 1957 года запуск второго искусственного спутника Земли в Советском Союзе является показателем новых крупных побед науки и техники в СССР. Этот спутник отличается от первого главным образом тем, что в нем имеется более сложная аппаратура, а также герметический контейнер с подопытным животным — собакой. Контейнер снабжен системой кондиционирования воздуха, запасом пищи и приборами для изучения жизнедеятельности в условиях космического пространства.

Нет сомнения в том, что по мере накопления научных данных, а также после запуска второго искусственного спутника с находящимся на нем животным мы ближе подошли к осуществлению полета человека в космос.

Влияние невесомости, первичной космической радиации, корпускулярного, ультрафиолетового излучений Солнца в медико-биологическом отношении практически изучено весьма мало. Выяснение их биологического действия, а также, возможно, и других еще недостаточно известных нам факторов можно осуществить лишь при длительном полете в верхних слоях атмосферы.

Проведение такого рода исследований требует преодоления весьма существенных трудностей конструктивного и методического характера. Вся аппаратура в этих случаях должна работать автономно в течение длительного времени, автоматически обеспечивать регистрацию необходимых показателей, обладать высокой устойчивостью к действию перегрузок, вибраций, колебаний давления и температуры. В то же время она должна иметь минимальные габариты, вес и экономно расходовать электроэнергию.

Не меньшие трудности возникают при создании животным условий, необходимых для жизни в полете. Так, например, хорошо разработанные и обычно применяемые системы регенерации воздуха в герметических кабинах в силу своей громоздкости и большого веса оказываются непригодными.

Потребовалось создание иных, более эффективных систем. Очевидно, что система вентиляции должна быть принудительной, так как состояние невесомости исключает обычный для условий Земли воздухообмен. Вследствие этого определенные особенности будут иметь теплообмен в кабине и защита животного от значительных колебаний температуры.

Потребовалась разработка способа обеспечения животного водой или жидкой пищей, так как в условиях невесомости жидкость, находящаяся в свободном состоянии, может рассредоточиться по всей кабине.

Даже этого далеко не полного перечня проблем достаточно для того, чтобы получить представление о разнообразии и известной сложности задач, выдвигаемых специфическими условиями эксперимента.

Нужно было разработать целую систему довольно сложного автоматического оборудования, способного обеспечить поддержание жизненных условий животного. При этом используется научная аппаратура, предназначенная для исследования ряда основных физиологических функций животного, а также гигиенических условий в кабине. Естественно, потребовались предварительная подготовка животного к длительному фиксированному пребыванию в герметической кабине и выработка у него необходимых для осуществления эксперимента положительных условнорефлекторных связей.

Наблюдения за поведением животного на втором спутнике дали возможность выяснить влияние на организм таких факторов, которые не могли быть изучены в лабораторных условиях или высотных полетах на самолетах или ракетах.

Для обеспечения полета живых организмов на спутниках необходимо было решить ряд специальных медико-биологических и технических проблем, каждая из которых сама по себе имеет важное теоретическое и практическое значение.

Совершенно естественно, что первым «пассажиром» спутника оказалось теплокровное животное — собака, нормальная физиология которой обстоятельно изучена. Собаки хорошо поддаются тренировке к необычным условиям полета, и данные, которые будут получены о животном во втором спутнике, послужат материалом для широкого научного анализа. На рисунке в приложении показана собака «Лайка» в герметической кабине перед установкой кабины на второй советский ИСЗ.

Возможно, что для выяснения специальных вопросов потребуется использование человекообразных обезьян, грызунов, моллюсков и насекомых. В последнем случае представятся удобные возможности для проведения генетических исследований.

Само собой разумеется, что выполнение столь обширной программы научных работ по подготовке к запуску искусственного спутника с животным потребовало значительных усилий больших научных коллективов советских ученых. Можно предвидеть, что полученные при этом данные позволят глубже, полнее и всесторонне изучить условия полета в космос, с тем чтобы осуществить космические полеты человека.


4. Астрокостюм

В космических путешествиях человеку потребуется особый костюм, который должен быть герметизирован, не стеснять движения и обеспечивать нормальное дыхание.

Каждому астронавту нужно несколько костюмов.

Во-первых, костюм, в котором он будет находиться во время вылета ракеты с земли в космос. Этот костюм должен избавить человека от возникающих перегрузок. На рис. 64 показан подобный костюм.

Рис. 64. Тяжелый астрокостюм, рассчитанный на большие перегрузки

Во-вторых, костюм для передвижения в ракете. Так как кабина ракеты герметизирована и в ней осуществляется автоматическая подача воздуха, то громоздкий костюм астронавту не обязателен. Он может быть одет в легкий, так называемый перегрузочный костюм. В этом костюме поступающий из баллончика, находящегося на поясе астронавта, сжатый воздух создает искусственное давление на организм. Это способствует повышению кровяного давления в организме человека, что крайне необходимо для его существования.

И, в-третьих, астронавту нужен такой костюм, в котором он смог бы выходить в космическое пространство. Этот костюм типа скафандра должен быть обязательно герметизирован, иметь индивидуальный аппарат, обеспечивающий нормальное дыхание и сохраняющий нужную температуру внутри костюма. Костюм не должен стеснять астронавта в движениях.

Разрешение всех вопросов обеспечения жизненных условий для человека в ракете и на ИСЗ потребует значительной по объему и длительности научно-исследовательской работы. Опыт по созданию герметических кабин, скафандров и перегрузочных костюмов для высотных самолетов со сверхзвуковыми скоростями, медико-биологические проблемы, решенные при запуске второго советского искусственного спутника Земли, являются первыми предварительными шагами в освоении космоса человеком. Существующий уровень техники и накопленные запасы знаний позволяют с полной уверенностью утверждать, что создание стационарных обитаемых ИСЗ и межпланетных ракет является вполне реальной задачей очередных 2–3 пятилетий.



Загрузка...