В предыдущих главах мы уже встречались с рядом приборов, входящих в состав оборудования ИСЗ.
Настоящая глава имеет основной целью ознакомить читателя в общих чертах с принципом действия и устройством главнейших приборов для получения более полного представления о ИСЗ.
Прежде чем переходить непосредственно к рассмотрению приборов, устанавливаемых на ИСЗ, познакомимся с основными требованиями, которые предъявляются к таким приборам.
Основные из этих требований заключаются в жестком ограничении веса, габаритов и потребляемой ими энергии.
В основе их конструирования должен лежать учет всех необычных и особо тяжелых условий космоса, а именно: большой диапазон изменения ускорений, резкий температурный перепад (от плюс 400° до минус 270℃); скачки атмосферного давления, лежащие в пределах от 750 мм рт. ст. до 0 мм рт. ст. Находясь на орбите в космосе, спутник будет подвергаться бомбардировке элементарными частицами и космической пылью. Под их воздействием поверхность спутника, а следовательно, и смотровые окна могут постепенно терять прозрачность и разрушаться.
Установлено, что ультрафиолетовые лучи разрушают органические и пластические вещества и краски. Космические же лучи разрушают соединения в полупроводниках.
Условия, в которых придется работать приборам ИСЗ, полностью еще неизвестны.
При проектировании аппаратуры для первых спутников ученые основывались лишь на сравнительно малом опыте работы с ракетами для исследования верхних слоев атмосферы. Этот опыт говорил о реальности создания нужных приборов. Пути их улучшения и усовершенствования покажет анализ результатов запуска первых ИСЗ.
Поскольку предполагается запуск многих ИСЗ, то нет необходимости на каждый спутник ставить полный комплекс аппаратуры, предназначенный для решения всех задач, возлагаемых на ИСЗ. Каждый спутник может быть оборудован аппаратурой, решающей только ограниченный круг специальных задач.
Уже на первых искусственных спутниках Земли радиооборудование занимает важнейшее место. Все научные приборы спутника будут работать вхолостую, не принося никакой пользы, если измерения, производимые ими, не передавать на Землю. Так как возвращение первых спутников на Землю пока еще не решенная задача, то передать данные научных исследований со спутника на Землю возможно единственным способом — с помощью радио.
В настоящее время методы передачи по радио большого числа самых различных измерений достигли высокого совершенства, появилось целое направление радиотехники, решающее эти задачи, — радиотелеметрия.
Наибольшее число измерений может передать радиотелеметрическая система с временным разделением каналов. Рассмотрим, как она работает, по приведенной на рис. 42 блок-схеме.
Под прямоугольниками, обозначенными цифрами 1, подразумеваются так называемые датчики. На ИСЗ датчики — это все приборы, например, счетчики космических, ультрафиолетовых и других лучей, термисторы, магнитометры, манометры, астрономические приборы и др., которые дают электрический ток, характеризующий измеряемую ими величину и меняющийся при ее изменении. Цифра 2 — коммутирующее устройство, подключающее поочередно датчики к последующим блокам 3 (модулятор) и 4 (передатчик). Коммутация осуществляется в простейшем случае вращающимся переключателем, подключающим поочередно датчики к модулятору 3 передатчика 4. Частота коммутации, или, как говорят, частота «опроса» датчиков зависит от конструкции коммутатора. Механические коммутаторы обеспечивают несколько десятков «опросов» каждого датчика в секунду. Электронные устройства позволяют «опрашивать» приборы несколько сот раз в секунду. Модулятор 3 преобразовывает величину тока, приходящего от датчиков, в определенное изменение частоты радиосигналов или их амплитуды (частотная и амплитудная модуляция), или в изменение промежутка между двумя импульсами (временно-импульсная модуляция), или в изменение ширины самого импульса (широтно-импульсная модуляция). Имеются еще и другие виды модуляции, например, кодовая, когда определенной величине сигнала, пришедшего от датчика, соответствует определенная комбинация из импульсов, вырабатываемых так называемым кодовым устройством.
Таким образом, радиоканал, обозначенный на рисунке изломанной стрелкой, в каждый момент времени используется для передачи показаний одного из датчиков, установленных на передающей стороне.
На приемной стороне после приемника 5, улавливающего и усиливающего слабые радиосигналы, сигналы попадают в коммутатор 6, который поочередно подключается к регистрирующей или записывающей аппаратуре 7. Коммутатор на приемной стороне должен работать синхронно и синфазно с коммутатором на передающей стороне, чтобы информация, идущая от первого датчика на передающей стороне, записывалась на первом записывающем устройстве на приемной стороне, информация, идущая от второго датчика, записывалась на втором устройстве и т. д. Для этого на передающей стороне в общую последовательность сигналов, передаваемых по радио, замешиваются сигналы синхронизации (сигналы управления коммутатором), которые выделяются на приемной стороне благодаря их качественному отличию от измерительных импульсов и заставляют переключатели на приемной и передающей стороне работать синхронно и синфазно — «в такт».
На втором советском искусственном спутнике Земли был установлен совершенный многоканальный радиотелеметрический передатчик с временным разделением каналов.
С помощью этого передатчика ученые получили на Земле сведения от многочисленных научных приборов, установленных на спутнике. На втором спутнике была отправлена в космос собака «Лайка». Это было сделано для того, чтобы изучить, как чувствует себя живой организм в верхних слоях атмосферы, как воздействуют на него состояние невесомости, космические лучи и т. д. Для этого регистрировались такие функции организма собаки, как пульс, дыхание, температура тела и т. д. На теле животного были укреплены специальные датчики. В качестве датчика пульса может быть применен фотоэлемент с миниатюрной электрической лампочкой. При освещении фотоэлемента в нем возникает электрическое напряжение. Если фотоэлемент и электрическую лампочку расположить по разные стороны кровеносного сосуда, то, пульсируя в сосуде в такт сердечным сокращениям, кровь будет изменять степень освещенности фотоэлемента и, следовательно, величину снимаемого с него тока.
Это не единственный способ измерения пульса на расстоянии. Регистрировать его, а также работу сердца можно и с помощью электрокардиографии. Дело в том, что при каждом сокращении сердца в организме возникают биологические токи. Если на определенных участках тела расположить электроды, то между ними появится электрическое напряжение.
Для регистрации дыхания применяется весьма простой принцип. На груди животного с помощью специального пояса крепится переменное электросопротивление. При дыхании окружность груди изменяется. Это в свою очередь влияет на величину сопротивления, что и регистрируется соответствующим прибором. Имеются и другие способы измерения дыхания.
Специальные датчики-термисторы позволяют следить за температурой тела. В зависимости от нее они изменяют свое электросопротивление.
На рис. 42а показана упрощенная схема передачи процесса дыхания собаки со второго советского спутника на Землю. На рисунке не показано устройство для временнóго разделения каналов телеизмерения и для большей наглядности изображена амплитудная модуляция радиосигнала. Электрический сигнал от датчика дыхания собаки с помощью модулятора изменяет амплитуду радиосигнала, посылаемого на Землю. Радиосигнал достигает приемной станции и усиливается. В детекторном устройстве выделяется нанесенный на радиочастоту сигнал дыхания. После этого он усиливается и подается на регистрирующий прибор, где и записывается в виде кривой линии.
На рис. 42б схематически показано устройство для регистрации полной интенсивности космических лучей, установленное на втором советском искусственном спутнике Земли.
При прохождении сквозь счетчик электрически заряженной частицы возникает искра, дающая импульс на радиотехническую схему на полупроводниковых триодах, назначение которой состоит в том, чтобы сосчитать число частиц космических лучей и дать сигнал тогда, когда сосчитано определенное число частиц. После передачи по радио сигналов о том, что сосчитано определенное число частиц, снова производится регистрация частиц космического излучения, и после того как сосчитано то же число частиц, подается новый сигнал. Разделив число зарегистрированных частиц на время, в течение которого они были сосчитаны, можно получить число частиц, проходящих через счетчик в секунду, или интенсивность космических лучей.
На спутнике установлено два одинаковых прибора для регистрации заряженных частиц. Оси счетчика обоих приборов расположены во взаимно-перпендикулярных направлениях.
Схематическое изображение одного из трех приемников для регистрации коротковолнового излучения Солнца, которыми оснащен второй искусственный спутник, показано на рис. 42в[29].
Приемниками излучения служат три специальных фотоэлектронных умножителя, расположенные под углом в 120 градусов друг к другу. Каждый фотоумножитель последовательно перекрывается несколькими фильтрами из тонких металлических и органических пленок, а также и из специальных оптических материалов, что позволяет выделить различные диапазоны в рентгеновской области спектра Солнца и линию водорода в далекой ультрафиолетовой области. Электрические сигналы, даваемые фотоумножителем, который был направлен на Солнце, усиливались радиосхемами и передавались на Землю с помощью телеметрической системы.
Вследствие того, что спутник непрерывно изменял свою ориентацию относительно Солнца, а также часть времени проводил не на освещенном Солнцем участке своей орбиты, для экономии источников питания электрические цепи аппаратуры включались только при попадании Солнца в поле зрения одного из трех приемников света. Это включение осуществлялось с помощью фотосопротивлений, освещаемых Солнцем одновременно с фотоумножителями, и системы автоматики.
Каждое из перечисленных устройств занимает один канал многоканального радиотелеметрического передатчика.
В целях экономии энергии передачу информации со спутника на Землю выгодно производить не непрерывно, а по команде с Земли в течение примерно 30–40 секунд, пока спутник пролетает над наземной специальной приемно-передающей станцией. Измерения же параметров производятся в течение длительного времени и накапливаются в так называемом запоминающем устройстве.
Рассмотрим упрощенную блок-схему бортового устройства радиостанции ИСЗ «Минитрек», которая будет служить для передачи данных телеизмерений и радиопеленгации американского ИСЗ (рис. 43).
Цифрой 2 на рисунке обозначен маломощный передатчик для радиопеленгации. Он имеет мощность 10 мвт, работает на частоте 108 мгц, весит приблизительно 400 г. Как с его помощью производят пеленгацию ИСЗ, мы опишем в главе о наблюдении за ИСЗ. Этот передатчик почти все время подключен через переключатель 1 к антенне, непрерывно излучающей его сигналы.
Данные измерений приборами-датчиками 9 накапливаются в запоминающем устройстве 8, представляющем собой медленно движущуюся магнитофонную ленту. При подходе спутника к телеметрическим и пеленгационным станциям, расположенным в США главным образом вдоль 75 меридиана, с Земли подается радиокоманда, принимаемая приемником 4 (на входе приемника стоит фильтр 3, для того чтобы не принимать сигналы собственного передатчика 2). От принятого с Земли сигнала срабатывает реле 5, в результате чего включается и подключается к антенне передатчик радиотелеметрии 6, к кодирующему устройству 7 подключается запоминающее устройство 8, и результаты длительных измерений вследствие быстрого движения магнитофонной ленты передаются за 30–60 секунд[30]. После прекращения передачи реле 5 отпускает (отключается), передатчик 2 снова посылает непрерывно сигналы для радиопеленгации, передатчик 6 отключается, магнитофонная лента опять движется медленно, то есть все становится так, как было до прихода команды с Земли.
На наземных станциях радионаблюдения за ИСЗ установлена трехспиральная направленная антенна в 10 раз более чувствительная, чем антенны, существовавшие ранее специально для приема данных радиотелеизмерений (рис. 44).
Передача данных телеизмерений в течение короткого времени, когда спутник находится над наземной станцией, производится не только с целью экономии энергии, но и с целью свести к минимуму ошибки, связанные с эффектом Допплера. Этот эффект заключается в том, что принимаемая на Земле частота радиосигнала будет большей, чем излучаемая на спутнике, в случае приближения спутника и меньшей при удалении его. Это изменение частоты будет тем большее, чем бóльшая скорость удаления или приближения спутника. Оно может быть принято за изменение частоты передатчика, что при частотной модуляции ведет к ошибкам измерения. За время передачи порядка полминуты и при условии, что спутник находится над станцией, расстояние между ним и приемником изменится очень мало, и ошибка из-за эффекта Допплера будет небольшой.
Если сравнить два спутника, один из которых непрерывно передает информацию на Землю, а другой лишь после запроса с Земли, то можно увидеть, что первый передатчик будет потреблять мощность в два раза бóльшую, чем второй. Это означает, что второй спутник может более длительное время вести измерения разных физических параметров верхних слоев атмосферы и передавать их на Землю. Этот факт и определил режим работы рассмотренной системы передачи данных измерений на земные измерительные пункты. Сравнение двух вариантов работы приборов сделано в табл. 4.
Таблица 4
Весовые данные двух спутников с непрерывной и дискретной передачей данных телеизмерений на Землю | ||||
---|---|---|---|---|
Оборудование спутника | Непрерывная передача информации | Периодическая передача информации | ||
средняя мощность, вт | вес, кг | средняя мощность, вт | вес, кг | |
Два счетчика Гейгера-Мюллера | 2,75 | 0,36 | 2,75 | 0,36 |
Термометр сопротивления | 1,53 | 0,11 | 1,53 | 0,11 |
Фотоэлемент | 0,82 | 0,16 | 0,82 | 0,16 |
Два передатчика[31] | 8,00 | 0,68 | 0,48 | 0,68 |
Коммутационный мотор | 6,00 | 0,45 | 0,36 | 0,45 |
Модулятор | 1,00 | 0,45 | 0,06 | 0,45 |
Запоминающее (накопительное) устройство | — | — | 0,31 | 0,73 |
Приемник | — | — | 2,85 | 0,16 |
Преобразователи мощности | 3,00 | 0,90 | 1,65 | 1,13 |
Всего | 23,10 | 3,11 | 10,81 | 4,23 |
На борту ИСЗ необходимо иметь источник электрической энергии. Мы уже говорили, что таким источником может быть фотоэлектрический преобразователь излучаемой Солнцем энергии в электрическую.
Это устройство основано на замечательном свойстве некоторых материалов, называемых полупроводниками, непосредственно превращать солнечную энергию в электрическую. Они в природе широко распространены (например, кремний).
Из химически чистого кремния после специальной сложной обработки изготовляют небольшие пластинки, называемые фотоэлементами. Соединив целый ряд таких фотоэлементов между собою, мы и получим солнечную батарею. Уже в настоящее время кремниевые фотоэлементы обладают коэффициентом полезного действия до 10%.
Это не так мало. Вспомним, что паровозы имеют коэффициент полезного действия всего лишь 6%. Однако 10% далеко не предел, и ученые считают, что уже в ближайшее время КПД солнечных батарей может быть повышен до 22%.
Следует иметь в виду, что Солнце, находясь в зените, посылает на Землю энергию, мощностью примерно в 1000 вт на 1 кв. м. Из этого следует, что, создав кремниевую батарею площадью в 1 кв. м, можно получить мощность в 220 вт при КПД в 22%.
Если в земных условиях такому использованию солнечной энергии может мешать плохая погода, то на ИСЗ таких помех не будет. Но, однако, придется осуществить одно важное условие: рабочая поверхность солнечной батареи должна быть перпендикулярной к солнечным лучам. Это условие можно обеспечить только с помощью описанной ниже системы стабилизации ИСЗ.
Говоря о солнечной батарее, следует напомнить, что большинство приборов, в особенности радиоаппаратура, независимо от их назначения будет работать на полупроводниковой основе. А это значит, что они не только будут иметь малый вес и габариты, но, кроме того, будут потреблять приблизительно в 100 раз меньше электроэнергии, чем приборы с использованием обычных радиоламп.
Мы остановились на солнечной батарее потому, что она может служить источником энергии не только на автоматизированных ИСЗ, но и на межпланетных станциях и космических кораблях любого типа.
Но возможны и другие способы длительное время получать электрическую энергию на ИСЗ. Эти способы состоят, например, в преобразовании тепловой энергии Солнца и атомной энергии некоторых изотопов стронция в электрическую с помощью батарей термоэлементов.
б) Термоэлектрический преобразователь солнечной энергии и атомный генератор
При выборе источников питания для ИСЗ поступали так же, как и при выборе радиопередатчика, а именно: сравнивали веса источников питания одинаковой мощности и выбирали тот, который весит меньше. Приведем пример. Допустим, что общая потребляемая мощность для питания всей аппаратуры спутника средних размеров составляет 100 вт. Так как наш спутник должен работать длительное время, то брать с Земли запас электроэнергии в виде гальванических или аккумуляторных батарей нецелесообразно, так как такой запас всегда ограничен. На спутнике необходимо иметь генераторы, вырабатывающие электрическую энергию за счет солнечной энергии, запасы которой неограничены. Эти генераторы могут преобразовывать солнечную энергию в электрическую либо с помощью фотоэлементов, либо с помощью термоэлементов.
Как работает солнечная батарея, мы уже рассказывали. В настоящее время электрическую мощность в 100 вт можно получить от солнечной батареи площадью в 1–2 кв. м. Неизвестно пока, долго ли сможет такая батарея выдерживать интенсивную солнечную радиацию.
Можно использовать тепло, идущее от Солнца, с помощью термоэлементов, т. е. устройств, преобразующих тепловую энергию в электрическую. Если составить замкнутую цепь из двух металлов и один из спаев нагреть, оставляя другой холодным, то в такой цепи потечет ток. Это явление получило название термоэлектрического эффекта.
Наибольшим коэффициентом полезного действия (порядка 7,5%) обладают термоэлектрогенераторы, имеющие спаи сурьмяно-цинковых сплавов и теллуровых соединений с константаном.
На рис. 45 изображена возможная схема термоэлектрогенератора, использующего солнечное тепло.
Следящее за Солнцем устройство 6 направляет кольцевое вогнутое зеркало 1 навстречу солнечным лучам. Солнечные лучи концентрируются на одних спаях термоэлементов, расположенных по кольцу в фокусе отражающего зеркала 2, и нагревают их. Охлаждение других спаев термоэлементов 3 может осуществляться с помощью масляного радиатора, работающего по принципу лучеиспускания. Радиатор 5 окрашивается в черный цвет для лучшего лучеиспускания, а масло 4 перемешивается специальным мотором. Охлаждающее устройство будет составлять больше половины общего веса генераторной установки.
Для того чтобы иметь энергию и в то время, когда спутник окажется в тени Земли, на спутниках необходимо, помимо генераторов, иметь аккумуляторы, которые подзаряжаются генераторами при освещении спутников Солнцем.
Третий вид источника питания, с которым будем сравнивать первые два, — это атомный генератор. Он устроен аналогично термоэлектрогенератору, но в качестве источников тепла для него применяется радиоактивный изотоп стронция с атомным весом 90 (стронций 90), период полураспада которого более 25 лет. В этом случае в тепло превращается кинетическая энергия бета-частиц. В настоящее время такая установка еще не осуществлена из-за трудности получения этого изотопа в большом количестве. Подсчитано, что для получения мощности тока в 100 вт потребовалось бы 18–20 кг стронция 90. При использовании изотопов приборы, чувствительные к радиоактивным излучениям (например, счетчики Гейгера-Мюллера), необходимо тщательно экранировать, что приводит к увеличению веса спутника.
Весовые характеристики искусственных спутников с различными источниками энергии мощностью в 100 вт приводятся в табл 5.
Таблица 5
Весовые характеристики ИСЗ с различными источниками энергии | |||
---|---|---|---|
Элементы ИСЗ и его оборудование | Фотоэлементы (солнечная батарея), кг | Батарея термоэлементов, кг | Изотопы с батареей термоэлементов, кг |
Корпус | 22,7 | 22,7 | 22,7 |
Зеркало | — | 72,6 | — |
Масляный радиатор | — | — | 45,4 |
Термоэлементы | — | 27,2 | 9,1 |
Источники тепла | — | — | 22,7 |
Экранировка | — | — | 45,4 |
Фотоэлектрический генератор | 54,4 | — | — |
Аппаратура с регистрирующими приборами | 27,2 | 27,2 | 27,2 |
Передатчики | 13,6 | 13,6 | 13,6 |
Маховички | 27,2 | 27,2 | 27,2 |
Аккумуляторная батарея | 13,6 | 13,6 | 9,1 |
Общий вес | 158,8 | 204,1 | 208,7 |
Так как спутник с батареей фотоэлементов, как видно из таблицы, будет легче, чем с другими источниками энергии, то надо признать, что наиболее перспективными будут как раз такие спутники.
Наиболее совершенными будут стабилизированные автоматизированные ИСЗ, которые должны занимать строго определенное, известное положение в пространстве.
Стабилизация угловых положений ИСЗ на орбите необходима, во-первых, для удержания поверхности солнечной батареи в направлении на Солнце и, во-вторых, для придания определенного положения ИСЗ относительно Земли с целью автоматического фотографирования определенных участков земной поверхности, более надежной связи с Землей, наблюдения за движением льдов, масс облаков, спасения кассет с результатами научных наблюдений и т. д.
Выполнение научных наблюдений и фотографирование поверхности Земли должно осуществляться в определенной системе координат, связанной с Землей.
Некоторые задачи, выполняемые ИСЗ, могут потребовать постоянного определения его местонахождения относительно Земли. В этом случае ИСЗ в любой момент полета по орбите должен определять свои географические координаты и высоту над поверхностью Земли.
Эта задача является весьма сложной, и ее решение будет одним из основных факторов, отличающих автоматизированный ИСЗ от неавтоматизированного. Она осуществляется путем системы астроориентировки и стабилизации.
Как только спутник отделится от ракеты-носителя и начнет совершать по орбите самостоятельный полет, эта система должна вступить в действие. Для того чтобы понять физический принцип этой системы, необходимо вспомнить некоторые астрономические и географические понятия.
Как известно, положение любой точки на земной поверхности может быть определено двумя ее координатами — долготой λ и широтой φ.
Через ось вращения Земли можно провести сколько угодно плоскостей, пересечение которых с земной поверхностью образует воображаемые линии, называемые меридианами. Перпендикулярно к этим плоскостям также можно расположить сколько угодно плоскостей, пересечение которых с земной поверхностью образует воображаемые линии, называемые параллелями. Одна из таких параллелей, проходящая через центр Земли, называется экватором.
Угол между линией, проходящей через центр Земли и через любую точку, находящуюся на поверхности Земли, скажем, точку А (указанную на рис. 46), и плоскостью экватора называется широтой места данной точки (на нашем рисунке угол АОВ). Его можно заменить также дугой АВ и измерять в градусах, минутах или секундах дуги.
Все значения широты, лежащие в северном полушарий, принято считать положительными, а в южном — отрицательными. Долготу места принято измерять к востоку или к западу от меридиана, проходящего через Гринвичскую обсерваторию (находящуюся в Англии). Долготой называется величина дуги экватора между Гринвичским меридианом и меридианом, проведенным через данную точку. В нашем случае долготой будет дуга СВ.
Восточную долготу принято считать положительной, западную — отрицательной.
Из рис. 46 видно, что, зная географическую долготу и широту места, мы можем точно определить положение объекта на земной поверхности.
Обратимся теперь к рис. 47.
Здесь изображен земной шар, два светила (звезды) и искусственный спутник Земли G.
Представим себе, что мы из центра Земли провели прямую линию, соединяющую ее со звездой, скажем, с первой, обозначенной на рис. 47 буквой S1. Эта линия пересечет земную поверхность в точке А. Человек, который находится в этой точке, будет видеть первую звезду в зените, т. е. прямо над головой. Если он удалится от этой точки в любую сторону, то будет видеть эту звезду уже не прямо над головой, а под некоторым углом, причем этот угол будет изменяться вследствие шарообразности Земли в зависимости от удаления его от этой точки. Точка А или В называется географическим местом светила и обозначается сокращенно ГМС.
ГМС перемещается по земной поверхности со скоростью один оборот вокруг оси Земли в звездные сутки[32], причем его путь будет совпадать с какой-либо из параллелей (рис. 48) а и б. Из этого следует, что широта ГМС в каждом отдельном случае будет известной и постоянной, а изменение долготы, т. е. скорость перемещения ГМС по параллели, происходит строго закономерно (15 дуговых градусов за час звездного времени).
Пусть человек удалился от ГМС (точка А) в точку Е. Из рис. 47 ясно видно, что, двигаясь по окружности вокруг точки А, человек будет всегда видеть первую звезду под одним и тем же углом относительно плоскости горизонта, называемым высотой светила. Эта окружность на земной поверхности называется кругом равных высот.
Угол между направлением на светило, взятым из какой-либо точки (например, точки E), лежащей на круге равных высот, и вертикалью (на нашем рисунке угол АOЕ=Z1 и FOB=Z2, так как лучи, идущие от звезд S1 и S2, вследствие их огромной удаленности являются параллельными) называется зенитным расстоянием. Сумма углов зенитного расстояния и высоты светила равна 90°.
Лучи, идущие от первой звезды S1A и S21F, равно, как и лучи S2B и S21F, идущие от второй звезды, соответственно параллельны.
Теперь обратимся к искусственному спутнику Земли. Для него, так же как и для звезд, мы будем иметь вертикаль OG (линия, соединяющая центр Земли с ИСЗ) и его географическое место, лежащее в точке пересечения этой вертикали с земной поверхностью, т. е. в точке С.
Очевидно, положение ИСЗ можно определить тремя координатами — широтой и долготой географического места ИСЗ и высотой относительно поверхности Земли.
В связи с этим астронавигация искусственного спутника Земли разбивается на два этапа: во-первых, определяется широта и долгота географического места ИСЗ каким-либо астрономическим способом, причем его существо не отличается от принятых в мореходной и авиационной навигации способов, во-вторых, определяется высота искусственного спутника Земли над Землей. Выполнение обоих этапов астронавигационных измерений и дает полное представление о положении искусственного спутника Земли в пространстве.
Определение координат ИСЗ может быть осуществлено наземными оптическими, радиолокационными и радионавигационными средствами, а также с помощью астрономических приборов, располагаемых на ИСЗ.
С точки зрения научного и военного использования ИСЗ имеют наибольший интерес автономные астрономические методы определения координат ИСЗ, осуществляемые непосредственно со спутника. Автономные методы ориентировки не подвержены каким-либо искусственным помехам и отличаются высокой точностью измерений.
Существо астрономического метода ориентировки ИСЗ сводится к следующему. Определение координат географического места спутника (см. рис. 47 и 48, точка С) может быть получено одним из наиболее распространенных методов астроориентировки, основанном на одновременном измерении высоты двух светил. Этот метод широко применяется в морской и авиационной навигации. Его сущность состоит в следующем: из точки С одновременно измеряем зенитное расстояние двух звезд S1 и S2.
Поскольку координаты ГМС (точки А и В) нам известны, то измеренные зенитные расстояния Z1 и Z2 позволяют построить два круга равных высот, пересекающихся в точках С и D. В простейшем случае такое построение может быть осуществлено на глобусе, для чего необходимо установить ножку циркуля в точке ГМС звезды (например, в точку А), отложить дугу АС, равную зенитному расстоянию, и провести окружность — круг равных высот. Аналогичный круг равных высот строится и для второго светила S2. Поскольку круги равных высот пересекаются в двух точках (С и D), расположенных на значительном расстоянии друг от друга, а вероятное местоположение наблюдателя (корабль, самолет) обычно бывает известно, то выбирается точка в районе предполагаемого места. В нашем случае координаты точки С и являются искомыми координатами местонахождения наблюдателя на земной поверхности. Очевидно, для решения этой задачи необходимо иметь оптическое устройство, позволяющее определять направление на звезды и измерять углы между плоскостью горизонта и направлением на звезды. В мореходной и авиационной практике в качестве таких приборов служат секстанты.
Секстант — это прибор, состоящий из оптического устройства, с помощью которого осуществляется визуальное наблюдение за звездой, и вертикали, относительно которой измеряется зенитное расстояние наблюдаемой звезды.
В подавляющем числе случаев в качестве вертикали секстанта используется хорошо известный жидкостной уровень, работающий на принципе маятника.
Если методы астрономической навигации, использующие секстанты, могут быть приемлемы для искусственного спутника Земли, то сами приборы — секстанты непригодны для непосредственного использования на ИСЗ.
Астронавигационными приборами, устанавливаемыми на искусственном спутнике Земли, должно осуществляться автоматическое слежение за небесными светилами, а также должен применяться принципиально новый способ определения вертикали.
Если на Земле положение вертикали определяется без какого-либо труда, так как любое подвешенное на нити тело дает направление вертикали, то в условиях спутника Земли определение направления линии отвеса, или вертикали, представляет чрезвычайно сложную задачу. Объясняется это тем, что вследствие равенства центробежной силы и силы тяготения все тела внутри ИСЗ невесомы, и определение направления вертикали с помощью маятниковых устройств не представляется возможным.
В связи с этим на искусственном спутнике Земли необходимо иметь специальное устройство, определяющее вертикаль. Одним из возможных способов определения ее в условиях ИСЗ является оптический способ. Суть этого способа заключается в том, что на ИСЗ устанавливается трехлучевая оптическая система, следящая за видимыми краями Земли. Углы между оптическими осями телескопов, следящих за видимыми краями (горизонтом) Земли, одинаковые, благодаря чему направления оптических осей телескопов образуют трехгранную пирамиду, опирающуюся своими гранями (рис. 49) на поверхность Земли, с вершиной на ИСЗ. По законам геометрии продолжение оси такой пирамиды обязательно пройдет через центр Земли. Она и будет искомой вертикалью на ИСЗ.
Несмотря на кажущуюся простоту, практическое выполнение такой вертикали встречает существенные трудности, одновременное слежение за освещенными и затененными поверхностями Земли является сложной технической задачей. Кроме того, неровности поверхности Земли (горы), а также облачность и дымка могут вызвать погрешности в определении вертикали. Для устранения влияния облачности и дымки могут быть использованы световые фильтры, позволяющие видеть тепловые излучения поверхности Земли в инфракрасной области спектра.
Точность трехлучевой оптической вертикали может быть высокой. Так, например, при полете ИСЗ на высоте 500 км и превышении отдельных участков горизонта на 10 км отклонение оси оптической пирамиды от истинной вертикали может не превышать один градус.
Другие известные в настоящее время способы определения вертикали на ИСЗ имеют малую точность.
В качестве примера рассмотрим способ, использующий экранирующее свойство земного шара по отношению к изотропной составляющей космических лучей. Эта составляющая состоит в основном из нейтронов, не отклоняемых магнитным полем Земли.
Чтобы использовать это свойство, расположим на спутнике 2–4 счетчика космических частиц направленного действия и направим их на линию горизонта (рис. 50) так же, как были направлены телескопы в рассмотренном оптическом устройстве.
Если под действием каких-либо причин какой-то счетчик окажется направленным ниже линии горизонта, то счетчик, расположенный против него, будет направлен выше линии горизонта. Тогда вследствие экранирующих свойств Земли число частиц, регистрируемых первым счетчиком, станет равным нулю, а у второго счетчика число регистрируемых частиц резко возрастет.
Поступающий от счетчика разностный сигнал после усиления можно подать на устройство типа вращающихся маховичков, восстанавливающее направление вертикали на спутнике к центру Земли. Предполагают, что такой метод стабилизации позволит получить вертикаль на спутнике с ошибкой не более 10°.
Подобная ошибка является большой для астрономической ориентировки. Но такая точность определения вертикали достаточна для решения некоторых задач, не требующих большой точности ориентации ИСЗ в пространстве.
Оптическое устройство, следящее за краями Земли, и устройство с направленными счетчиками требует автоматического изменения угла между ними (α) в зависимости от высоты полета ИСЗ над Землей, которая будет все время меняться, так как спутник имеет эллиптическую орбиту, что вызывает усложнение этих устройств.
Как было указано выше, для определения координат местонахождения ИСЗ необходимо, кроме вертикали, иметь и оптические устройства — телескопы, автоматически следящие за двумя звездами. Эти фотоследящие устройства содержат в себе оптическую систему телескопов, направляющих световой поток от звезд на фотоэлементы. Электрические сигналы от фотоэлементов передаются через усилители на инерционные двигатели, которые направляют телескопы на звезды. При отклонении каждого из телескопов от направления на соответствующую звезду такая следящая система автоматически возвращает его обратно.
Вполне очевидно, что выполнять какие бы то ни было построения на глобусе, как это показано было выше, в условиях ИСЗ не представляется возможным.
Эта задача должна решаться автоматически электронным счетно-решающим устройством. На вход этого счетно-решающего устройства поступают сигналы, соответствующие измеренным зенитным расстояниям двух звезд.
Кроме того, перед запуском ИСЗ в счетно-решающее устройство вводятся координаты географических мест светил (ГМС). Изменение долготы ГМС осуществляется от часов, которые изменяют долготу на 360° в течение звездных суток. На основании измеренных и заданных данных счетно-решающее устройство выполняет математическую операцию, сводящуюся к определению координат точек пересечения двух кругов на сфере. По существу задача сводится к решению двух тригонометрических уравнений с двумя неизвестными — широтой и долготой географического места ИСЗ.
Полученные в результате автоматической работы счетно-решающего устройства координаты ИСЗ поступают на соответствующие приборы, а также могут быть переданы по телеканалам связи на Землю.
В процессе движения искусственного спутника по орбите вполне возможна потеря видимости одной или обеих звезд вследствие того, что Земля может оказаться между искусственным спутником и наблюдаемыми звездами. Следовательно, астроориентатор должен автоматически переключаться на другие видимые и удобные для навигации звезды. Но для выполнения этого необходимо вводить в счетнорешающее устройство координаты географического места этих звезд. С этой целью в счетно-решающем механизме должно быть предусмотрено устройство для задания программы перехода с одних звезд на другие, а координаты ГМС звезд, входящих в программу, должны задаваться перед запуском ИСЗ. Выбор удобных для навигации звезд производится с учетом того, чтобы в процессе движения ИСЗ по орбите между очередными наблюдаемыми звездами была разность азимутов[33] около 90°, а зенитные расстояния не были бы малы. Удовлетворение этих условий дает возможность повысить точность определения широты и долготы ИСЗ. Поясним эти два важных требования.
Как было указано выше, географическое место искусственного спутника Земли определялось как точка пересечения двух кругов равных высот звезд. Угол ΔА между касательными к кругам равных высот в их точке пересечения как раз и есть разность азимутов.
Разность азимутов может быть наглядно представлена на рис. 51, где h1 и h2 — высота светил (звезд), ΔА — разность азимутов. Из рис. 51 видно, что если значения h1 и h2 близки к нулю, то звезды близки к горизонту.
Если угол между касательными мал (см. рис. 52), то определение положения точки пересечения кругов равных высот становится затруднительным.
Наиболее точное определение точки пересечения кругов равных высот получается в том случае, когда разность азимутов близка к 90° (рис. 53).
Величина зенитного расстояния определяет радиус круга равных высот. Если зенитное расстояние мало (рис. 54), то две точки пересечения кругов равных высот (точка С и точка D) могут быть близки друг к другу, и счетно-решающее устройство может не различить разницы между координатами этих двух точек, что приведет к неправильному определению местоположения искусственного спутника Земли.
Из приведенных примеров видно, какое важное значение имеет выбор удобных для астронавигации звезд. Этот выбор для различных вариантов запуска ИСЗ может быть произведен астронавтами заблаговременно.
К устройству, осуществляющему астроориентировку ИСЗ, предъявляются весьма высокие требования в отношении точностей. Например, ошибка в определении вертикали в 1° приводит к появлению ошибки в определении координат ИСЗ до 111 км на земной поверхности.
Следует заметить, что описанное выше устройство, состоящее из оптического построителя вертикали и фотоэлектронного следящего устройства за звездами, которое обычно называется астроориентатором, может также измерять и третью координату — высоту полета ИСЗ.
Измерение высоты осуществляется вертикалью астроориентатора.
Как видно из рис. 55, треугольник AO1O, образованный одной из граней AO1 и осью OO1 оптической пирамиды, содержит одну известную сторону ОА, равную радиусу (R) Земли, и измеренный угол α.
Так как треугольник AOO1 является прямоугольным, то сторона его OO1 легко определяется. Отсюда следует, что высота полета Н получается путем вычитания из стороны OO1 треугольника отрезка ОВ, равного радиусу Земли. Эта геометрическая задача решается также счетно-решающим устройством астроориентатора, находящегося на спутнике.
Описанный выше принцип построения астроориентатора не является единственным. Он может быть основан также на других принципах[34]. Магнитный принцип ориентировки и стабилизации ИСЗ может обеспечить приемлемую точность определения вертикали. По-видимому, этот последний принцип найдет широкое применение на различных типах автоматизированных и обитаемых спутниках типа сателлоида.
Конструкция астроориентатора, несмотря на кажущуюся простоту заложенных в нем принципов, является сложнейшим устройством, осуществление которого связано с разрешением принципиально новых технических задач с привлечением последних достижений оптики, автоматики и телемеханики. К этому устройству предъявляются жесткие требования в части точности, малых весов, габаритов и потребляемой энергии.
При рассмотрении ориентации и стабилизации спутника мы не учитывали того, что плоскость солнечной батареи должна быть всегда направлена на Солнце. Это осуществляется специальной следящей за Солнцем системой, поворачивающей плоскость батареи вокруг горизонтальной оси аа' и вертикальной оси вв' с помощью моторов 1 и 2 (рис. 56).
При отклонении солнечной батареи от направления на Солнце от специального устройства, не показанного на рисунке, измеряющего величину этого отклонения, подаются сигналы на мотор 1 или мотор 2 такого знака, чтобы при своем вращении они восстанавливали необходимое положение батареи.
Такое слежение за Солнцем будет осуществляться и при других способах стабилизации, например, относительно гироскопов, находящихся на ИСЗ, или относительно звезд, так как необходимость в электроэнергии всегда остается.
Вопрос о том, стабилизировать ли корпус ИСЗ на Солнце или же по земной вертикали, должен решаться в зависимости от соотношения масс аппаратуры, предназначенной для исследования Солнца вместе с солнечной батареей, и аппаратуры для исследования и фотографирования Земли.
Если первый комплекс оборудования (по массе) больше второго, то корпус ИСЗ вместе с солнечной батареей нужно стабилизировать на Солнце. Второй же комплекс стабилизировать на Землю отдельно от корпуса, и наоборот.
Если второй комплекс больше по массе, чем первый, то корпус ИСЗ следует стабилизировать по земной вертикали, а солнечную батарею стабилизировать отдельно на Солнце, как показано на рис. 56. В этом случае получается наименьший расход энергии, потребляемой автоматической системой стабилизации.
Стабилизация всех спутников, снабженных приборами, необходима, так как неизменность положения их (например, относительно Солнца, звезд, направления к центру Земли или другого определенного направления) облегчает получение и раскрытие смысла результатов измерений.
Для продления активного срока жизни ИСЗ необходимы более долговечные источники электроэнергии. Надо полагать, что в ближайшие годы наиболее перспективными источниками питания на спутниках будут солнечные батареи, собранные на кремниевых фотоэлементах, с помощью которых будут подзаряжаться специальные малогабаритные аккумуляторы. Естественно, эта батарея должна быть ориентирована в направлении на Солнце во время движения ИСЗ. При этом, как уже упоминалось, сама солнечная батарея может быть жестко связана с корпусом ИСЗ или не связана с ним. В первом случае одновременно с ориентацией солнечной батареи возможна ориентация на Солнце или другие светила и ряда научных приборов, жестко связанных с корпусом ИСЗ.
Для угловой ориентации осей спутника относительно различных опорных тел (Земли, Солнца, Луны, звезд и т. п.) могут быть использованы только два способа:
1) с помощью реактивных микродвигателей;
2) с помощью вращающихся инерционных масс.
Следует учитывать, что первый способ может оказаться малоприемлемым, так как при его применении происходит загрязнение окружающего пространства продуктами рабочего вещества, отбрасываемого соплами реактивных микродвигателей.
Очевидно, более рациональным будет второй способ, предложенный еще К. Э. Циолковским[35]. Этот способ основан на законе сохранения главного момента количества движения, открытого 200 лет назад Ньютоном. Закон весьма прост.
Поместим в теле ИСЗ инерционную массу в виде диска или кольца, которую можно приводить во вращение относительно тела ИСЗ двигателем. Если эту массу привести во вращение, то реактивная сила ее будет стремиться вращать тело ИСЗ в противоположную сторону.
Таким способом можно остановить в пространстве вращение оболочки спутника, если оно имеется, и повернуть тело спутника на желаемый угол, то есть осуществить угловую ориентацию спутника относительно опорного тела. Таким образом, в качестве стабилизирующих элементов могут быть использованы инерционные массы или специальные двигатели с инерционным ротором, а также реактивные микродвигатели, которые играют роль управляющих органов в условиях спутника (то есть в условиях невесомости и безвоздушного пространства).
Очевидно, что реальная система стабилизации спутников предполагает сочетание этих двух методов, так как система реактивных сопел способна устранять большие возмущающие моменты, но не дает необходимой точности стабилизации, в то время как инерционные массы способны осуществить весьма точную стабилизацию, но возможности их в смысле отработки внешних возмущений ограничены.