Глава I. КАК МОЖНО СОЗДАТЬ ИСЗ И ДЛЯ ЧЕГО ОН НУЖЕН


1. Завоевание космоса возможно

Прочитав такой подзаголовок, читатель невольно вспомнит Константина Эдуардовича Циолковского, с именем которого связано создание астронавтики — науки о полетах в мировом пространстве.

Весьма значительную часть своих замечательных трудов К. Э. Циолковский посвятил проблеме полета с помощью различных реактивных устройств. Именно этим своим работам Циолковский придавал первостепенное значение. В течение ряда десятилетий одна за другой, из года в год, до самой смерти Циолковского, следуют статьи, заметки и расчеты, посвященные всестороннему анализу возможностей и методов межпланетных сообщений.

Никто из современников Циолковского, занимавшихся проблемой межпланетных полетов, не пошел так далеко, как он.

Сама по себе проблема ракетного полета в космос весьма обширна. К. Э. Циолковский разработал основные ее положения, совершил поистине научный подвиг. В его сочинениях читатель найдет много предложений по использованию различных конкретных конструкций реактивных летательных аппаратов, начиная от стратосферного полуракетного самолета с подъемом на высоту 30 км и кончая межпланетными ракетами-кораблями для совершения путешествий в межзвездных пространствах.

В начале XX столетия Циолковский первый высказал идею устройства межпланетных станций — спутников Земли, используемых в качестве трамплина для завоевания космических пространств. Именно он высказал предположения о будущих колоссальных поселениях где-то в области астероидов. Все эти идеи разрабатывались им не на основе утопической фантазии, а вполне научно.

Однако великие его начинания долгое время (в царской России) оказывались преждевременными и не были под силу стране с низким уровнем развития техники и промышленности. И только в Советской стране в связи с бурным развитием реактивной техники, промышленности и прикладных наук проекты К. Э. Циолковского приобрели новую действенную силу и практически реализуются.

За рубежом мысль о создании искусственных спутников Земли впервые была выдвинута немецким ученым Г. Обертом и американцем Р. Годдаром значительно позже К. Э. Циолковского.

Создание ИСЗ — важнейший этап на пути человека к освоению Вселенной. Задача непосредственного перелета на Луну, не говоря уже о планетах, чрезвычайно осложняется дальностью расстояния и главным образом необходимостью преодоления земного тяготения. Перед посылкой человека в космос необходимо иметь точные и обширные сведения о физиологических условиях полета. Только с помощью ИСЗ можно решить ряд сложных научных, технических, физиологических и биологических проблем, связанных с полетом обитаемого корабля в космическом пространстве. Ниже мы рассмотрим, как эти проблемы будут решаться с помощью ИСЗ.

Трудами ученых различных стран мира и в первую очередь К. Э. Циолковским теоретически было доказано, что только ракета открывает возможность для запуска спутника Земли и межпланетных сообщений.

Использование для этих целей других средств, например выстрела из орудийного ствола специальной конструкции или электромагнитных сил, как это будет показано ниже, практически невозможно.

Последние достижения науки и техники говорят о том, что проблема космических полетов перешла в стадию своего практического осуществления. Успехи в области реактивной техники, создание новых видов горючего с большой теплотворной способностью, новых легких и мощных реактивных двигателей позволили достигнуть скоростей, необходимых для решения конкретной задачи — запуска в СССР первых искусственных спутников Земли.

В настоящее время только ракета с жидкостно-ракетным двигателем может удовлетворить тем сложным требованиям, которым должен отвечать двигатель межпланетного корабля. Именно такой двигатель в состоянии разогнать ракету-носитель спутника Земли или межпланетный корабль до такой огромной скорости, без которой немыслим ни один космический полет. Только ракета способна порвать цепи тяготения, превращающие нас в пленников Земли.

Запуск в СССР сверхдальней, межконтинентальной, многоступенчатой баллистической ракеты и искусственных спутников Земли показывает, как далеко шагнули в этом направлении наука и техника[1]. Все эти достижения, которые несколько лет назад казались фантастическими, стали реальностью. Как атомная энергия служит не только средством массового уничтожения и разрушения, но в еще большей степени она может быть использована в мирных целях на благо человечеству, так и ракетная техника, являясь мощным боевым средством, может быть использована в мирных целях как важный фактор в овладении человеком тайнами природы.

Ракетная техника может быть использована для изучения верхних слоев атмосферы и осуществления межпланетных сообщений.

В недалеком будущем ракеты предполагают применять в таких, казалось бы, необычных областях, как почтовые сообщения, прокладка кабеля, а впоследствии, возможно, и для пассажирских перевозок.

Этот вид использования ракет особенно соблазнителен: ведь даже при скоростях ракет порядка 6000 км/час человек смог бы облететь вокруг земного шара менее чем за 7 часов.

Но самым увлекательным, без сомнения, является осуществление давнишней мечты человечества — полета в космос. И эта мечта в недалеком будущем воплотится в жизнь.

Итак, завоевание космоса благодаря современным достижениям науки и техники и прежде всего ракетной техники стало реально возможным. Первым шагом в решении этой грандиозной проблемы явилось создание искусственных спутников Земли.


2. Этапы завоевания космоса

На основании многих статей, выступлений и работ специалистов в области астронавтики можно считать, что программа осуществления межпланетного полета подразделится на следующие четыре этапа:

1) постройка и запуск автоматической ракеты-спутника без экипажа;

2) постройка в космическом пространстве космической станции или искусственного спутника Земли стационарного типа;

3) осуществление регулярных полетов с экипажем по орбите вокруг Земли, а также полетов автоматически пилотируемых космических кораблей вокруг Луны;

4) осуществление первого межпланетного путешествия с посадкой на Луну, а затем на планеты в пределах солнечной системы.

Решению первой части данной программы должна предшествовать большая работа в области следующего комплекса проблем: детальные исследования явлений теплопередачи и химического равновесия при температуре порядка 4000℃ и скоростях потока газа 4 км/сек; изучение явлений аэродинамики при скоростях полета, от 5 до 20 раз превышающих скорость звука[2], с учетом полета в сильно разреженной атмосфере; исследование явлений теплоотдачи и прочности камер реактивных двигателей малого габарита и веса; создание новых топливных смесей с наибольшей удельной тягой; новых материалов — жаропрочных сталей, пористых металлов, металлокерамики, получаемой путем спекания порошка из тугоплавких металлов, огнеупоров, сплавов на основе титана и других материалов для постройки ракет; решение проблемы создания новых систем охлаждения камер сгорания; разработка конструкций более мощных двигателей для ракет с тягой 100 т и выше и создание двигателей новых типов (ионные и атомные двигатели). В комплекс проблем входит разработка конструкций ракет нового типа и более легкого веса, а также работы над созданием миниатюрных и более усовершенствованных приборов управления и контроля (сервомеханизмы, радиотехнические устройства, гироскопические стабилизирующие устройства, фотоэлектрические и оптические приборы и т. п.), изучение наиболее рациональных орбит как для искусственных спутников, так и для межпланетных кораблей. Вопросы создания необходимых условий для людей, находящихся в кабине на спутнике, в том числе вопросы медицины, связанные с космическим полетом людей и защитой от космических лучей и метеоритов, проблемы навигации, средств связи, посадки ракеты на спутник стационарного типа, на планеты, возвращения на Землю будут решаться в тесной связи с другими проблемами.

Над всеми этими проблемами уже работают научные учреждения различных стран, в том числе и различные учреждения Советского Союза.

Конечно, решение такого большого количества грандиозных проблем будет происходить постепенно.

Первым шагом в изучении атмосферы Земли явились посылки воздушных змеев, воздушных шаров, шаров-зондов, радиозондов, геофизических ракет.

В 1754 году М. В. Ломоносов построил «аэродромическую машинку», являющуюся моделью вертолета для подъема метеорологических приборов. К тому же времени относятся первые подъемы приборов на воздушных змеях (Франклин Б.).

Регулярные же исследования атмосферы при помощи воздушных змеев и аэростатов начались гораздо позднее; большой вклад в эти исследования внес русский аэролог В. В. Кузнецов уже на рубеже 20-го века[3]. В конце 19-го века возникают первые аэрологические обсерватории по исследованию высоких слоев атмосферы с помощью самопишущих приборов, поднимаемых различными, еще малосовершенными летательными аппаратами, главным образом шарами-зондами. Именно с их помощью и была в 1898 г. Тейсеран де Бором открыта стратосфера[4]. Подлинную же революцию в области исследования атмосферы произвели радиозонды, изобретенные ленинградским профессором А. П. Молчановым. Впервые запущенные 30 января 1930 г. Павловской аэрологической обсерваторией (под Ленинградом), эти радиозонды положили начало применению телемеханики и радио для связи с Землей различных летательных аппаратов. Вскоре в той же Павловской аэрологической обсерватории была также впервые осуществлена радиопеленгация летящих радиозондов.

Однако и в этих случаях геофизические приборы не удавалось поднять больше чем на несколько десятков километров.

После второй мировой войны некоторые из ракет стали приспосабливать для научных исследований атмосферы. Используя их, человеку удалось «прыгнуть» много выше, чем прежде. В 1949 году двухступенчатая ракета поднялась на 390 км, а несколько позднее составная двухступенчатая ракета увеличила рекорд до 425 км. В СССР также были произведены многочисленные запуски ракет на большие высоты для научных исследований. Однако независимо от высоты подъема все исследования такого рода имеют два существенных недостатка.

Первый из них заключается в том, что приборы, находящиеся в ракете, могут исследовать только очень ограниченную область в пространстве; второй состоит в том, что в данном пространстве ракета находится считанные секунды. Заметим также, что до сих пор получение неповрежденных исследовательских приборов и результатов записи научных наблюдений представляет значительные трудности, а во многих случаях их вообще получить не удается.

Таким образом, логически возникла необходимость осуществления на границе атмосферы более систематических, постоянных и долговременных наблюдений. Вот эту задачу и должны выполнить спутники Земли, обращающиеся вокруг нее довольно продолжительное время.

В настоящее время наука решила первый этап завоевания космоса — созданы и запущены в СССР первые в мире искусственные спутники Земли. Вполне понятно, что, не изучив всех явлений, протекающих в верхних слоях атмосферы, нельзя и мечтать о межпланетных полетах, нельзя мечтать даже об обитаемой межпланетной станции. Поэтому создание и запуск ИСЗ является необходимым этапом в освоении космоса.


3. Задачи, которые может решать ИСЗ

Следует сказать, что пространство, в которое посланы первые искусственные спутники Земли, изучено современной наукой очень мало. Существует ряд загадок космоса, которые требуют разрешения.

В настоящее время трудно определить весь круг задач, которые будут решаться спутниками.

Постановка некоторых задач в настоящее время уже достаточно обоснована и заключается в следующем: 1) определение плотности, давления и температуры верхних слоев атмосферы; 2) более точные измерения геометрических размеров Земли, расстояний между континентами и другие геодезические измерения; 3) длительное наблюдение солнечной радиации; 4) изучение интенсивности космической и другой радиации, проникающей в земную атмосферу; 5) определение химического состава среды межпланетного пространства; 6) наблюдение земных кольцевых токов; 7) определение распределения масс земной коры в сечениях Земли плоскостями орбит ИСЗ; 8) изучение особенностей распространения радиоволн в верхних слоях атмосферы и обеспечения радиосвязи и телевидения с помощью ИСЗ; 9) выполнение астрономических исследований с целью изучения небесных светил без помех со стороны атмосферы и др.

Изучение атмосферы. Начнем с наиболее близкой и известной всем атмосферы. Ею называется газовый слой, окружающий нашу планету. Без атмосферы жизнь на Земле была бы невозможной, поскольку все живое на Земле нуждается в кислороде воздуха.

Благодаря атмосфере существуют у нас реки, моря и океаны. Она же защищает нас от нестерпимого жара солнечных лучей, вредных для организма излучений Солнца и, наконец, от миллиардов метеоритов, которые без нее уничтожили бы жизнь на Земле. Только благодаря атмосфере громадное большинство из них сгорает, не достигнув Земли.

Человек знает об атмосфере еще очень мало, хотя изучает ее давно.

Атмосфера простирается на высоту порядка 800, а может быть, и тысячу с лишним километров (рис. 1). Однако приборы для ее исследования до недавнего времени поднимались всего на несколько десятков километров. Даже мощные исследовательские ракеты, значительно увеличившие эту высоту (до 400 км и более), мало помогли решению задачи. Ведь они, как мы уже указывали, производят наблюдения в течение ограниченного промежутка времени и только на очень ограниченном участке. Первые советские ИСЗ проводили длительное время исследования в космическом пространстве на разных высотах до 1700 км.

Рис. 1. Строение атмосферы

Сама атмосфера весьма неоднородна как по своему составу, так и по плотности, температуре и другим характеристикам.

В ее состав входят в основном азот, кислород и в незначительной мере водород, углекислый газ и так называемые инертные газы — неон, аргон, криптон, ксенон, гелий.

В верхних слоях атмосферы недавно были обнаружены редкие изотопы бериллия, лития и бора, происхождение которых еще не выяснено: неизвестно, попали ли они туда из мирового пространства вместе с космическими лучами или, может быть, появились вследствие взаимодействия этих лучей с самой атмосферой. В атмосфере также, не говоря уже о метеоритах, носятся мельчайшие частицы метеоритной пыли, занесенные из космоса.

Атмосфера неоднородна, и ее принято делить в зависимости от плотности на четыре слоя.

Самым близким к Земле и самым изученным слоем наибольшей плотности является тропосфера (см. рис. 1). Толщина тропосферы неодинакова. У экватора она достигает 18 км, а над полюсами — 9 км. Тропосфера содержит около 80% всей атмосферы. В ней протекает большинство всех знакомых нам явлений природы — грозы, бури, снегопады, дожди и ветры; там же образуются и основные массы облаков. Все эти процессы для человека имеют, естественно, очень большое значение.

Выше тропосферы расположен слой, называемый стратосферой. Он значительно больше и достигает высоты 80 км. В стратосфере замечены интересные явления: если в нижних ее слоях температура составляет -50 – -60℃, то на высоте 35–66 км она значительно повышается и доходит до температуры +70℃. Затем температура снова падает, доходя на высоте 80 км почти до минус 100℃. Примерно с этого предела она снова резко повышается и на высоте около 120 км достигает +100℃. Стратосфера изучена в меньшей степени, чем тропосфера, но уже в настоящее время в нижних ее слоях летают самолеты, а верхний слой исследуется с помощью шаров-зондов, радиозондов и ракет.

Между стратосферой и тропосферой лежит сравнительно тонкий слой (около 1–3 км), называемый тропопаузой.

Высота этого слоя непостоянна и зависит от времени года: зимой этот слой расположен ниже, а летом выше.

Вслед за стратосферой начинается четвертый, последний слой, называемый ионосферой.

Этот слой имеет самую большую протяженность и простирается на высоту до 800 км, а возможно, и выше. Он является наименее изученным. Ионосфера представляет собою сильно разреженную газовую среду, в которой находится громадное количество ионов и свободных электронов. Эта среда хорошо проводит электричество. Сама по себе ионосфера также не является однородной, и ее в свою очередь делят на несколько слоев, которые по своим свойствам отличаются друг от друга. Ионосфера изучается с помощью радио- и спектрографических методов. В ней протекают такие хорошо знакомые людям явления, как полярные сияния. Только благодаря ионосфере, в которой ионизированные газы образуют слои, отражающие радиоволны, возможна дальняя радиосвязь на коротких волнах.

Деятельностью и существованием этих слоев объясняются также шумы и трески, которые мы слышим иногда во время радиопередачи. Высота слоев, от которых отражаются радиоволны, лежит между 100 и 400 км.

В последнее время установлено, что в ионосфере существуют ветры, скорость которых достигает 300 м/сек[5]. Обнаружены также различные неоднородности, которые называют ионизированными облаками.

Однако все эти сведения носят весьма отрывочный характер. Ученые, проанализировав состояние современных знаний об ионосфере и происходящих там явлениях, со всей очевидностью показали неполноту наших сведений о ней. Ряд явлений, происходящих в ионосфере, еще не получил объяснения. Конечно, там существует много процессов, еще не известных науке.

Верхние слои атмосферы находятся под непрерывным воздействием мощного солнечного излучения, в состав которого входят электромагнитные волны различной длины, начиная с метровых и кончая ультрафиолетовыми и рентгеновскими, корпускулярное излучение, состоящее из потоков быстрых электронов, ионизированных атомов водорода, гелия, кальция и др. На эти же слои действуют космические лучи — частицы громадной энергии, летящие из межзвездного пространства и врезающиеся с колоссальной скоростью в земную атмосферу, ионизируя и разбивая по пути атомы газов. При этом космические лучи сохраняют часто энергию, достаточную для того, чтобы пробиться на несколько километров в толщу Земли.

Член-корреспондент Академии наук СССР С. Н. Вернов в статье «Проникновение в тайны Вселенной»[6] указывает, что с созданием искусственных спутников Земли впервые появились возможности создать научную лабораторию, помещенную вне Земли. Приборы, установленные в такой лаборатории, могут проводить разнообразные измерения, в том числе и наблюдения того излучения, которое приходит к нам из мирового пространства, — космических лучей.

Это излучение представляет собой поток ядер атомов различных элементов, летящих со скоростями, весьма близкими к скорости света. Как показали опыты Д. В. Скобельцына, осуществленные еще в 1927 году, отдельные частицы космических лучей обладают очень большой энергией. Большинство из них обладает энергией в миллиарды и десятки миллиардов электроновольт. В составе космических лучей имеются и частицы значительно бóльших энергий. До настоящего времени удалось обнаружить частицы с энергией вплоть до миллиарда миллиардов электроновольт. Столь высокая энергия частиц космических лучей дает возможность физикам весьма эффективно использовать их для «бомбардировки» атомных ядер, для изучения тех закономерностей, которые имеют место лишь при исключительно высокой энергии сталкивающихся частиц.

Естественно, возникает вопрос: каким путем создаются космические лучи? Не подлежит сомнению, что они, как правило, начинают свой путь далеко от Земли и даже от солнечной системы. Иногда, хотя и крайне редко, источником космических лучей становится Солнце. В этих случаях на Солнце наблюдались взрывные процессы.

Космические лучи, созданные на Солнце, состояли из частиц, обладающих небольшой энергией. Это показывает, что масштабы явлений, происходящих на Солнце, еще очень малы по сравнению с теми, которые ответственны за образование космических лучей.

Где же во Вселенной происходят эти гигантские процессы?

Для того, чтобы ответить на этот вопрос, необходимо прежде всего изучить состав первичного космического излучения. При столкновении с ядрами атомов атмосферы частицы космического излучения передают часть, иногда весьма значительную, своей энергии вторичным излучениям. Благодаря большой энергии частиц космических лучей возникает целый ряд поколений вторичных частиц. Поэтому не только на поверхности Земли, но даже в стратосфере мы изучаем не то первичное излучение, которое пришло из космоса, а в основном его многочисленное потомство.

Чтобы изучить первичные космические лучи, необходимо поднять научную аппаратуру за пределы земной атмосферы.

До настоящего времени мы могли поднимать приборы на большие высоты лишь с помощью шаров-зондов, стратостатов и ракет. В первых двух случаях первичное излучение маскировалось вторичным. В последнем случае время измерения было ограничено несколькими минутами.

Искусственные спутники Земли дают возможность изучить со всей полнотой состав первичного космического излучения. По-видимому, удастся найти такие новые компоненты космического излучения, которые раскроют нам многие тайны Вселенной.

Уже давно физики стремятся определить возраст космических лучей, узнать, сколько времени прошло с тех пор, как частицы космического излучения приобрели большую энергию и начали свои блуждания во Вселенной. На этот, казалось бы очень трудный, вопрос можно ответить, воспользовавшись тем обстоятельством, что, чем дольше космические лучи путешествуют во Вселенной, тем большее число соударений они испытывают с атомами межзвездной среды. При таких столкновениях входящие в состав космических лучей ядра атомов сравнительно тяжелых элементов будут разрушаться, а из их «осколков» возникнут ядра более легких элементов.

В космических лучах мы обнаруживаем ядра атомов различных элементов. Чем больше в космосе ядер атомов определенного элемента, тем больше их число ускорится и приобретет высокую энергию. Опыты показывают, что состав космических лучей в основном соответствует распространенности различных элементов во Вселенной. Некоторых элементов, например, лития, бериллия и бора, очень мало в космосе. В то же время ядра этих элементов часто возникают при разрушении более тяжелых ядер.

Поэтому если в составе первичных космических лучей окажутся такие ядра, то это будет означать, что космическое излучение долго путешествует во Вселенной.

Обнаружить ядра атомов различных элементов в составе космических лучей — весьма трудная задача.

Успех может быть достигнут путем применения специальных счетчиков, регистрирующих излучение Вавилова–Черенкова. Интенсивность этого излучения резко возрастает с ростом атомного номера ядра, пролетающего через такой счетчик. Как показали опыты[7], выполненные Л. В. Курносовой, Л. А. Разореновым и М. И. Фрадкиным, таким путем можно проводить анализ первичного космического излучения и, в частности, попытаться обнаружить в его составе ядра лития, бериллия и бора. Таким же путем можно искать ядра атомов многих других, в частности тяжелых, элементов в составе космических лучей. Большие возможности, предоставленные спутниками, позволяют предпринять новые попытки найти среди первичного излучения электроны, а также мельчайшие частицы света — фотоны. Если бы удалось обнаружить хотя бы в очень малом числе эти новые компоненты, наши знания о происхождении космических лучей сильно продвинулись бы вперед.

Чтобы в этом убедиться, достаточно вспомнить, что в космосе существуют магнитные поля. Поэтому обладающие электрическим зарядом первичные частицы космического излучения двигаются по сильно искривленным траекториям. Наблюдая эти частицы на Земле, мы не можем узнать, где они зародились, так как из-за отклонения в магнитных полях первоначальное направление их движения было полностью потеряно.

В противоположность этому фотоны движутся практически прямолинейно. Поэтому если их удастся обнаружить, то они смогут лучше, чем какое-либо другое излучение, указать нам, где в мировом пространстве расположены источники космических лучей.

Таким образом, изучение состава первичного излучения даст возможность обнаружить ряд явлений, происходящих в космосе, пролить свет на вопросы происхождения космических лучей и, в частности, проверить ряд следствий гипотезы В. Л. Гинзбурга о возникновении космических лучей при возгорании сверхновых звезд.

С помощью искусственных спутников Земли можно проводить длительные наблюдения первичного космического излучения. Появляется возможность обнаружить даже сравнительно небольшие изменения интенсивности различных компонент этого излучения.

В каждом случае представляет большой интерес выяснить природу тех частиц космического излучения, число которых в данном случае изменилось. Использование спутников позволяет это осуществить.

В частности, для этой цели можно регистрировать число первичных частиц и одновременно вызываемую ими ионизацию. Этим путем оказывается возможным отделить колебания интенсивности основной компоненты космических лучей, состоящей из ядер атомов водорода — протонов, от изменений числа ядер более тяжелых элементов. Приборы, расположенные на поверхности Земли, не могут провести такое разделение. С помощью же спутников осуществляется совершенно новый подход к анализу процессов, происходящих с космическими лучами.

Число первичных частиц может быть измерено с помощью счетчика заряженных частиц. Как показали опыты Н. Л. Григорова, Ю. И. Логачева, А. Н. Чарахчьяна и А. Е. Чудакова, в настоящее время можно сконструировать прибор, весьма экономичный в потреблении электроэнергии[8].

Значительные трудности представляет измерение ионизации, создаваемой космическим излучением за пределами атмосферы. Однако это осуществимо с помощью метода, разработанного А. Е. Чудаковым: в приборе, летящем за пределами атмосферы, за счет ионизации накапливается электрический заряд. При снятии этого заряда возникает импульс, передаваемый по радио на Землю. По величине импульса можно судить об ионизации, создаваемой космическими лучами.

Орбиты искусственных спутников опоясывают почти весь земной шар. В связи с этим появляется возможность изучить зависимость интенсивности космического излучения от широты и долготы. Эта зависимость обусловлена отклонением первичных космических лучей в магнитном поле Земли. Поэтому, используя всю Землю как гигантский измерительный прибор, можно анализировать состав космического излучения. Вместе с тем распределение этого излучения по земному шару позволяет исследовать магнитное поле нашей планеты.

На втором искусственном спутнике Земли были установлены приборы для изучения космических лучей.

Как показала предварительная обработка полученных данных, приборы работали нормально. Получены данные о зависимости интенсивности космических лучей от геомагнитной широты.

Не подлежит сомнению, что со временем приборы, установленные на спутниках, дадут возможность непрерывно следить за первичным космическим излучением.

Этим путем космические лучи будут превращены в мощное средство исследования Вселенной.

Однако только длительное наблюдение космических лучей с помощью ИСЗ прольет некоторый свет на условия их прохождения и проблему происхождения. Окончательное решение вопроса, очевидно, будет возможно после того, как с помощью межпланетных и межзвездных кораблей будет исследовано межзвездное ионизированное вещество, электромагнитные поля, связанные со звездами, и турбулентное движение межзвездного ионизированного вещества.

ИСЗ запущены как раз во время максимума солнечной активности. Ученые давно обнаружили, что примерно через 11 лет на Солнце увеличивается число пятен, на нем происходят грандиозные взрывы, после которых через несколько часов (предполагают, что в это время к Земле летят потоки ядер гелия, водорода, нейтроны и другие частицы) в земной атмосфере наблюдаются электромагнитные бури, нарушается радиосвязь, увеличивается число полярных сияний. Последний максимум солнечной деятельности был в 1947–1949 гг., следующий ожидают в 1958–1959 гг. Счетчики, установленные на ИСЗ, помогут исследовать состав и интенсивность солнечной радиации. С помощью счетчиков фотонов можно будет обнаружить и исследовать сильно поглощаемое атмосферой и поэтому не доходящее до поверхности Земли коротковолновое ультрафиолетовое излучение, вплоть до мягкой рентгеновской области.

Исследование этого коротковолнового излучения чрезвычайно важно и для многих вопросов физики земной атмосферы, ибо это излучение ионизирует молекулы воздуха и ответственно за образование ионосферных слоев в атмосфере Земли.

Аппаратура (см. рис. 42в), применявшаяся на втором искусственном спутнике для регистрации коротковолнового излучения Солнца, описывается в разделе «Радиооборудование спутника».

Поскольку спутники летают по эллиптическим орбитам, то расстояния между ними и Землей меняются, и, следовательно, их можно использовать для точного определения плотности атмосферы на различных высотах.

Этот вопрос имеет громадное значение как для развития современных реактивных управляемых снарядов, так и для освоения космоса вообще. Исследования проводятся путем наблюдения за изменением скорости полета ИСЗ. Дело в том, что даже на довольно значительной высоте имеются слои разреженных газов, которые хотя и в малой степени, но все же оказывают сопротивление движению спутника и тем самым постепенно замедляют его скорость.

С нескольких наземных станций одновременно производятся оптическим путем или с помощью радиолокации наблюдения за изменением скорости ИСЗ, причем самые незначительные изменения немедленно регистрируются точнейшими приборами наблюдения. Соответствующее сопоставление одновременно полученных отдельными станциями данных дает возможность по изменению орбиты ИСЗ судить о плотности атмосферы на данной высоте.

Искусственный спутник позволит также произвести ряд весьма важных аэродинамических измерений и наблюдений, необходимых для проектирования ракет и скоростных самолетов, которые невозможно осуществить ни в одной аэродинамической трубе.

Большое значение также имеет изучение вопроса о температурах в верхних слоях атмосферы.

Благодаря использованию исследовательских ракет уже получены некоторые данные о температуре тропосферы, стратосферы и нижних слоев ионосферы, однако вопрос о температуре в верхних слоях ионосферы и космосе выяснен далеко не полностью. Представление о температуре в этой зоне отличается от обычного. Дело в том, что хотя частицы воздуха или отдельных элементов ионосферы и обладают большой скоростью, соответствующей высокой температуре (свыше 2000°), но они летят на таком большом расстоянии друг от друга, что спутник или ракета, находящиеся в соприкосновении с ними, нагреваться почти не будут. Температура спутника или ракеты будет зависеть исключительно от количества тепла, получаемого от Солнца. Это последнее в свою очередь будет зависеть как от материала, из которого они изготовлены, так и от окраски их наружной поверхности, а также от того, будут ли они вращаться, поочередно подставляя то одну, то другую сторону солнечным лучам, или к ним будет обращена все время одна и та же их сторона.

Таким образом, формулируя кратко, можно сказать, что одной из задач, выполняемых ИСЗ, будет изучение верхних слоев атмосферы и протекающих там явлений.

Прогноз погоды. Всем известно, какое большое значение в нашей жизни имеет погода.

Она оказывает значительное влияние на сельское хозяйство, мореплавание, деятельность авиации и т. д.

Велика роль погоды и в военном деле: действия военно-воздушных сил, артиллерии, военно-морского флота, десантные операции в воздухе и на море и даже действия наземных частей во многом зависят от нее.

В этой связи особое значение приобретает правильное предсказание погоды, как краткосрочный, так и долгосрочный ее прогноз.

Но в настоящее время, как известно, такие прогнозы далеко не всегда бывают верными. Ошибки в предсказании погоды объясняются главным образом неправильными исходными данными и, что самое главное, отсутствием обобщенных данных о протекающих вокруг всего земного шара метеорологических явлениях.

Когда будет запущен ряд ИСЗ, за несколько часов облетающих по разным орбитам вокруг Земли, представится возможность осуществлять метеорологические наблюдения над многими государствами одновременно и систематически передавать их результаты на Землю. Тогда предсказания погоды, несомненно, станут более точными.

Особое значение в данном случае представляет изучение солнечного света, отражаемого в пространство облаками.

Скажем попутно, что ИСЗ будут оказывать большую помощь и в деле освоения Арктики и Антарктики, передавая на Землю точные данные о скоплении льдов и их движении.

Геофизические наблюдения. Как следует из самого названия, этого рода наблюдения являются основными в третьем Международном геофизическом году.

Уже давно ученые установили, что Земля не правильный шар, а несколько сплюснута у полюсов. Тело такой формы называется геоидом. Однако и эта форма не является абсолютно точной, а определена приблизительно.

Точно так же и размеры Земли установлены наукой еще недостаточно точно. Из этого следует, что наши современные географические, морские, военные и другие карты также содержат в себе ошибки и тем бóльшие, чем бóльшая площадь изображена на карте. Эти ошибки сказываются при использовании карт для целей мореплавания, авиации, а также играют большую роль и в военном деле. Остановимся на последнем вопросе подробнее.

В ряде стран ведутся усиленные работы над созданием управляемых межконтинентальных снарядов, которые смогут действовать на огромное расстояние (8000–16 000 км). В иностранной печати указывалось, что если для обычной артиллерии ошибки карт не имеют существенного значения, то на расстояниях в тысячи километров они приведут к тому, что снаряд может упасть настолько далеко от цели, что не поразит ее, даже если он будет снабжен ядерным зарядом.

Уточнение формы и размеров Земли, а следовательно, уточнение расстояния между отдельными континентами и даже географическими пунктами также может производиться с помощью искусственных спутников Земли. Для этого будет использован так называемый триангуляционный метод, который заключается в том, что будет осуществляться наблюдение за полетом ИСЗ по орбите с помощью оптических или радиолокационных приборов одновременно с нескольких наземных станций, что позволит наиболее точно определить интересующие нас расстояния.

Так, например, научные сотрудники картографического управления армии США, работающие на островах Тихого океана, хотят применить во время Международного геофизического года новый метод определения положения этих островов и нанесения их на карты. Этот метод основан на использовании данных, получаемых по радио с искусственного спутника Земли. До этого ошибки в определении местоположения островов доходили до полутора километров.

Новый метод является сравнительно недорогим средством быстрого определения местоположения островов. Полагают, что точность определения при этом будет примерно в 10 раз выше точности, получаемой при астрономическом способе, который применяется в настоящее время. С помощью нового метода на карты будут нанесены острова Уэйк, Гуам, Мидуэй и Американское Самоа. Для этой цели научно-исследовательская лаборатория военно-морского флота США разработала радиооборудование, получившее название «Минитрек», устройство которого будет пояснено ниже.

Данные, полученные с искусственного спутника, будут передаваться в Вашингтон, в картографическое управление армии США, где на основании этих данных будет определено точное местоположение того или иного острова.

Мы привыкли думать, что скорость вращения Земли равномерна и каждый оборот Земля делает вокруг своей оси за 23 часа 56 минут и 4 секунды.

Однако в начале нашего столетия это обстоятельство было подвергнуто сомнению. Непрерывно в течение 50 лет проводились наблюдения, причем оказалось, что Земля движется неравномерно. Установлено, что с 1900 по 1950 г. разность между равномерным временем и временем, определенным по скорости вращения Земли, составляла примерно 25 секунд. Но ученые установили также, что скорость вращения Земли не изменяется согласно какому-нибудь известному закону: она то убывает, то возрастает. Причем если изменения в суточной скорости вращения Земли настолько ничтожны, что ими можно пренебречь даже в самых точнейших расчетах, то уже с годичным изменением скорости ее вращения приходится в некоторых случаях считаться.

До сих пор причины этого явления не выяснены, и можно ожидать, что запуск на разные орбиты искусственных спутников Земли, обладающих различной скоростью, поможет выяснению этого вопроса.

Наблюдения ученых показали, что ось вращения Земли не направлена постоянно в какую-то точку пространства, а перемещается, описывая в пространстве коническую поверхность. Это явление называется прецессией.

Прецессирует земная ось очень медленно. Полный конус она описывает в течение 26 000 лет.

Одновременно она совершает также и колебания, называемые нутационными. Период нутационного колебания составляет около 18 лет.

Эти явления, а также причины, их вызывающие, известны науке давно, но более подробному их изучению могут способствовать полеты ИСЗ.

Известно также, что толщина земной коры неодинакова и что масса Земли распределена неравномерно. Это значит, что силы земного притяжения действуют также неравномерно. Подсчитано, что геометрический центр и центр тяжести Земли лежат друг от друга примерно на расстоянии 500 км. В условиях существования на Земле этот факт особого значения не имеет и даже не ощущается. Однако для космических полетов и в особенности для ИСЗ или для управляемых ракет дальнего действия он имеет большое значение, так как будет оказывать значительное влияние на орбиту спутника или ракеты. Вопрос этот очень мало изучен, и характер неравномерности распределения массы Земли можно будет установить тоже в результате наблюдения за первыми ИСЗ в полете по отклонению их от заранее рассчитанной орбиты.

ИСЗ позволит более детально изучить магнитное поле Земли и внести ясность в вопрос о его происхождении. Дело в том, что до последнего времени магнитное поле Земли изучалось лишь на поверхности Земли или на небольших высотах от ее поверхности. О напряженности земного магнитного поля и направлении магнитных силовых линий его на большем удалении от Земли данные отсутствовали. С помощью ИСЗ эти данные будут получены.

Математический анализ данных наземных магнитных измерений привел к выводу, что магнитное поле, наблюдаемое на поверхности Земли, состоит из двух частей: одной, вызванной источниками, находящимися внутри Земли, и другой — источниками, находящимися вне Земли.

Исследование суточных вариаций, магнитного поля Земли и связанных с ними явлений привело ученых к предположению, что внешнее магнитное поле может создаваться системами электрических токов вне поверхности Земли. Наиболее вероятным местом, где могут возникнуть такие токи, являются верхние проводящие слои земной атмосферы (ионосфера).

Предполагают также, что токи могут быть и за пределами ионосферы. Источником внеионосферных токов могут быть заряженные частицы — корпускулы, выброшенные из Солнца, захваченные магнитным полем Земли и вращающиеся вокруг Земли в плоскости ее магнитного экватора на расстоянии нескольких десятков тысяч километров от Земли. Внеионосферные токи усиливаются, когда Земля попадает в область интенсивных корпускулярных потоков, выброшенных из активных областей Солнца. Так возникают магнитные бури. Магнитное поле перемещает их в зоны полярных сияний и уменьшает интенсивность космических лучей.

Целью магнитных измерений на спутниках может быть проверка существования внеионосферных токов, получение данных об ионосферной системе токов и расширение наших знаний о главной части поля, создаваемой источниками поля внутри Земли. Измерениями на спутнике можно проверить, являются ли потоки солнечных частиц нейтральными или состоят из электрически заряженных частиц одного какого-либо знака.

Данные о поле, создаваемом внешними источниками, могут быть получены из сопоставления измеренных значений поля с теоретически вычисленными в предположении, что поле создается только источниками внутри Земли. Зная поле внешних источников на высотах, можно будет лучше оценить его роль в тех или иных геомагнитных эффектах. Не исключено, что в отдельных случаях эта роль может быть достаточно большой. В частности, возможно, что выявленное в последнее время несовпадение геомагнитных экваторов Земли, определяемых по данным наземных магнитных измерений и измерений интенсивности космических лучей, может быть вызвано действием на заряженные частицы космических лучей внешних источников поля.

Наблюдая уменьшение интенсивности больших магнитных аномалий (называемых мировыми или континентальными) с высотою, будут получены важные дополнительные сведения, на основании которых можно будет судить: находятся ли источники этих аномалий вблизи поверхности Земли или на большой глубине, соответствующей ядру Земли.

Для исследования магнитного поля Земли на поверхности ее применяются очень сложные высокочувствительные и, что существенно для ИСЗ, тяжелые приборы, называемые магнитометрами. ИСЗ будут, очевидно, оснащены магнитометрами наиболее легких конструкций.

Изучение метеоритов. В космосе носится огромное число метеоритов самых различных размеров — от гигантов весом в десятки тысяч тонн до мельчайшей метеоритной пыли.

Часть из них устремляется на Землю, но достигают ее лишь очень немногие (самые крупные), так как остальные сгорают, проходя через атмосферу. В верхних же слоях атмосферы, где силы трения, возникающие при их полете, не вызывают больших температур, при которых метеориты сгорают, они представляют большую опасность для ИСЗ и космических кораблей будущего, так как скорости их очень велики. Скорость метеоритов составляет от 1220 м/сек до 61 000 м/сек.

Ученые подсчитали, что для обеспечения безопасности спутника в течение года при условии воздействия на него лишь мелких метеоритов он должен иметь толщину обшивки из дюралюминия 1,5 мм или из нержавеющей стали — 0,6 мм. По мнению других ученых, для обеспечения продолжительности существования ИСЗ в течение нескольких лет достаточно иметь толщину стенок ИСЗ из нержавеющей стали всего 0,3 мм. Нужно заметить, что пробивная сила метеорита будет зависеть не только от его скорости, но и от его массы. Даже метеорит с ничтожной массой в 0,2 г при скорости 60 км/сек разовьет энергию, соответствующую энергии груза весом в 36 кг, падающего с высоты 10 м, причем из-за малых размеров метеорита вся эта энергия сосредоточится по существу в одной точке. Температура, развивающаяся при ударе такой частицы о корпус ИСЗ или космического корабля, сможет расплавить его стенку, и, несмотря на незначительные размеры получившегося в результате отверстия, может возникнуть авария, особенно если частота столкновений будет велика и таких повреждений будет много.

С помощью первых ИСЗ изучалась вероятность встречи космических кораблей с метеоритами, степень опасности такой встречи и меры защиты против метеоритов.

На более совершенных спутниках будут установлены также малогабаритные радиолокационные установки, которые будут наблюдать за ионизированными следами метеоритов. Такие спутники будут нести метеоритную службу. С их помощью будут предсказывать летную или нелетную «метеорную погоду» для путешественников, отправляющихся в межпланетные или межзвездные пространства.

Большое внимание уже на первых ИСЗ уделено вопросам метеоритной защиты спутника и изменениям, происходящим с металлами и другими материалами в космическом пространстве под действием интенсивной бомбардировки ионизированными частицами. Результаты таких измерений помогут создать более совершенные по свойству и качеству материалы и конструкции для строительства новых космических ракет. Установлено, что метеорная опасность для ИСЗ оказалась в действительности меньшей, чем можно было предполагать ранее.

Исследование метеорной эрозии спутника может производиться при помощи крошечных пьезоэлектрических микрофонов, вмонтированных в обшивку спутника. О деформациях и напряжениях, возникающих в конструкции ИСЗ, ученым расскажут полупроводниковые тензометры — датчики деформаций и напряжений.

Астрономические наблюдения. Одной из старейших наук на земле является астрономия. Давным-давно человечеству известны многие созвездия, звезды, планеты. После изобретения Галлилеем телескопа знания наши в этой области значительно расширились. Сейчас во многих странах мира имеются весьма совершенные телескопы, благодаря которым был открыт ряд звезд и достигнут большой прогресс в различных областях астрономии. Но если атмосфера является надежной защитой от метеоритов или вредных излучений, то для астрономов она является, к сожалению, значительной помехой в изучении небесных тел. Такие свойства атмосферы, как рассеивание света, дрожание неравномерно нагретых слоев, или то обстоятельство, что она плохо пропускает инфракрасные, ультрафиолетовые и другие лучи, очень мешает работе астрономов. Даже самые совершенные телескопы с этими помехами справиться не могут.

Имеется только один путь избавиться от этих помех — вынесение телескопов за пределы атмосферы. А это опять-таки может быть осуществлено только с помощью ИСЗ. Даже на первых необитаемых спутниках проектируются некоторые астрономические средства наблюдения, которые будут работать автоматически, а результаты этих наблюдений, записанные на специальную пленку, будут помещаться в кассету, которая весьма сложным способом будет доставляться на Землю.

Изучение верхних слоев атмосферы. Громадный интерес для науки представляет изучение многообразных физических явлений, протекающих в верхних слоях атмосферы. Сюда относится измерение энергии солнечных и ультрафиолетовых лучей, а также интенсивности космических лучей в зависимости от широты. Необходимо будет уточнить наши сведения об открытых недавно так называемых мягких рентгеновских лучах, концентрирующихся в областях полярных сияний.

Можно будет определить плотность атомов и ионов водорода в межпланетном пространстве. Наконец, будут проведены наблюдения за кольцевыми электрическими токами, которые существуют вокруг Земли.

Будут произведены также исследования и в других областях, как, например:

— определение температуры и давления путем наблюдений за распространением взрывов гранат, выпускаемых с ИСЗ через определенные интервалы времени и наблюдаемых с различных пунктов земной поверхности;

— определение масс ионов спектрометрами специальной конструкции;

— исследование проводимости ионосферы;

— исследование относительной концентрации электронов и положительных ионов вдоль орбиты спутника;

— измерение фотоэлектрическими фотометрами световой энергии с целью изучения относительной интенсивности некоторых спектральных линий молекулярного кислорода и высоты ночного свечения воздуха.

Все эти исследования будут проводиться или уже проводятся в верхних слоях атмосферы с помощью высотных исследовательских ракет различных конструкций.

Во многих местах земного шара — в Европе, Америке, в Гренландии, в центре Тихого океана, у экватора и на территории нашей Родины — неоднократно поднимались ракеты с автоматическими приборами, достигшие высоты в сотни километров. Они производили фотографирование поверхности Земли (см. фото Земли, выполненное с высоты 162 км, рис. 2) и различные научные наблюдения и исследования.

Рис. 2. Фотография поверхности Земли, выполненная с высоты 162 км
Слева — фотография района, лежащего по направлению на юго-запад от места съемки. Отчетливо видны Калифорнийский залив и полуостров Калифорния. Линия горизонта находится на расстоянии 1500 км к западу. Снимок охватывает часть территории США и Мексики площадью в 5,18∙105 км2 (из книги С. К. Митра «Верхняя атмосфера»)
Справа — схематическая карта территории, изображенной на снимке. Пунктирные черные прямые — примерные границы сфотографированной области

Применение же ИСЗ для решения перечисленных исследований дает возможность произвести их в несоизмеримо больших масштабах, чем это можно было сделать с помощью ракет, и на более широкой основе.

Глубокие исследования ионосферы, ее электрических и магнитных явлений, полярных сияний и пр. дадут возможность уточнить теории этих явлений. На базе этих теорий будут созданы различные приборы и устройства искусственных спутников Земли, а в дальнейшем и межпланетных кораблей. Задачи изучения верхних слоев атмосферы в значительном своем большинстве определяются проблемами межпланетных сообщений.

Многие из перечисленных выше явлений вообще не могут наблюдаться с Земли, с воздушных шаров и аэростатов и даже с помощью высотных ракет. Правда, уже сейчас с помощью высотных ракет ученым удалось частично проникнуть в верхние слои ионосферы. В результате были построены таблицы, показывающие изменение с высотой плотности, температуры, давления атмосферы, проницаемость ее для различных длин электромагнитных волн; построены кривые электронной и ионной плотности, обнаружены токонесущие слои, появляющиеся во время максимального изменения магнитного поля Земли.

Произведены неполные измерения ультрафиолетовых и рентгеновских лучей Солнца, определены некоторые типы заряженных частиц и их индивидуальная концентрация в зависимости от высоты ионосферы. Сделаны первые попытки изучения космических лучей. Но все это только робкие шаги на пути к широкому фронту научно-исследовательских работ, дорогу к которым открывают первые искусственные спутники Земли.

Искусственные спутники Земли могут быть также использованы и для дальнейшей экспериментальной проверки общей теории относительности, созданной в период 1905–1917 гг. известным ученым Альбертом Эйнштейном.

Экспериментальная проверка теории относительности[9]. Теорией относительности называется современная физическая теория пространства и времени. Эта теория правильно отображает процессы, протекающие со скоростями, сравнимыми со скоростью света. Она составляет физический фундамент для ряда новых областей техники, является основой современной теории элементарных частиц и распространяет свои выводы в самые различные области физических наук — от расчета ускорителей атомных частиц до проблем космологии[10]. По этому совершенно очевидна необходимость более точной опытной проверки этой теории. Однако опытная ее проверка весьма затруднительна, так как в пределах нашей солнечной системы и при небольших скоростях, получаемых человеком, эффекты этой теории весьма невелики. Наиболее заметными явлениями, следующими из теории относительности, являются: смещение перигелия планет, отклонение световых лучей Солнцем и эффект гравитационного смещения частоты. Поясним все эти явления.

Смещение перигелия планет заключается в том, что с течением времени плоскость орбиты планеты поворачивается на какой-то угол в определенном направлении (рис. 3).

Рис. 3. Смещение перигелия

У Меркурия, имеющего наибольшее смещение перигелия среди всех планет солнечной системы, этот угол равен примерно 40'' в столетие.

Эффекты отклонения световых лучей Солнцем и гравитационного смещения частоты объясняются тем, что энергия любой формы связана с массой. Поэтому световые лучи, проходя мимо Солнца или иного тела, должны отклониться, так как свет обладает массой. Во время солнечных затмений обнаружили, что Солнце отклоняет идущие около него лучи примерно на 2''.

Так как свет, распространяющийся от Солнца, обладает какой-то массой, то он должен преодолеть силу притяжения Солнца, а следовательно, затратить на это какую-то энергию. Согласно теории относительности эта затрата энергии связана с уменьшением частоты электромагнитных колебаний света. На Земле эффект гравитационного смещения частоты света составляет примерно 0,0002%. Все приведенные выше величины вследствие их малости очень трудно измерить.

Использование искусственных спутников Земли открывает новые пути проверки теории относительности. Поворот перигеев (в случае использования спутников Земли перигелий называют перигеем) искусственных спутников может в 30 раз превосходить поворот у Меркурия. Год наблюдений за спутником может оказаться эквивалентным столетию наблюдений за Меркурием. Кроме того, использование радиометодов, очевидно, позволит повысить точность измерений.

Откроется также возможность обнаружить еще один эффект теории относительности, который невозможно заметить в солнечной системе. Этот эффект состоит в дополнительном смещении перигея спутника, обусловленном вращением Земли.

Можно наблюдать также эффект гравитационного смещения частоты, поставив на спутнике передатчик со строго стабильной известной частотой и измеряя частоту сигнала, принимаемого на Земле. Наконец, с искусственного спутника, движущегося за пределами атмосферы, можно измерить яркость метагалактики, т. е. совокупности звездных систем (галактик), лежащих за пределами нашей Галактики. Это имеет важное значение для космологии. Так как космология базируется на общей теории относительности, то определение яркости метагалактики оказывается связанным с проблемами этой теории.

Применение трех ИСЗ для всемирного телевизионного вещания. Использование искусственных спутников для целей всемирного телевизионного вещания — весьма заманчивая идея. Практическое ее решение может быть осуществлено в ближайшие 7–10 лет после запуска стационарных ИСЗ на экваториальную орбиту, удаленную на 35 800 км от Земли.

Как известно, радиус действия телевизионных центров ограничен, так как передача телевизионных программ ведется на ультракоротких волнах, которые, вообще говоря, распространяются в пределах прямой видимости.

Для того чтобы телевизионные передачи принимались на большей территории, необходимо поднимать как можно выше передатчик телецентра или применять ретрансляцию по специальным кабелям или радиорелейным линиям связи. Совершенно очевидно, что с помощью ИСЗ, в поле зрения которого будут находиться очень большие площади Земли, можно значительно повысить радиус действия телевизионных центров и расстояния, на которые можно ретранслировать их передачи.

Имеется ряд проектов осуществления всемирного телевизионного вещания с помощью трех ИСЗ[11]. Запуск этих спутников нужно производить из одного пункта, расположенного на экваторе, с интервалом времени 8 часов. Плоскость орбиты всех трех спутников должна совпасть с плоскостью экватора (рис. 4). При этом спутники будут разнесены по орбите на 120°, а их угловая скорость должна быть одинаковой и равной угловой скорости Земли, благодаря чему спутники будут неподвижны относительно друг друга и Земли, то есть каждый спутник будет находиться над одним и тем же передающим телевизионным центром. Правда, под влиянием неравномерного распределения масс Земли орбита спутников будет сдвигаться на 20 угловых секунд в час в сторону, обратную вращению Земли. Этот сдвиг не повлияет на взаимное расположение спутников, поскольку он одинаков для всех трех спутников, и не скажется на качестве телевизионных передач. Он приведет к тому, что за 2,5 года все спутники сдвинутся на 120° и каждый из них окажется над тем местом, где 2,5 года назад был его западный сосед.

Рис. 4. Схема работы телецентров всемирного телевизионного вещания с помощью трех ИСЗ (А, Б, В — спутники; З — Земля)

Предположим, что спутник оборудован тремя антеннами: одной направленной на Землю приемно-передающей параболической антенной, и двумя, направленными на соседние спутники.

Можно определить требования, предъявляемые к направленным свойствам антенн, а также составить примерное расписание работы системы всемирного телевизионного вещания, если соблюсти условие, чтобы направление радиопередачи от спутника к спутнику и между Землей и спутником никогда не совпадало с направлением излучения Солнца. Это условие надо соблюдать для того, чтобы радиоизлучение Солнца не принималось приемными антеннами и не вызывало бы сильных помех радиоприему.

Для устранения помех от радиоизлучения Солнца непрерывная работа всех приемно-передающих антенн спутника обеспечивается следующим расписанием их работы в течение суток.

Телезрители, находящиеся на Земле, соответственно с 23 часов и до 3 часов ночи и с 11 до 15 часов дня могут принимать только передачи, транслируемые местными телецентрами. Но с 3 часов ночи до 11 часов утра и с 3 часов дня до 11 часов вечера они могут смотреть, кроме местных телепередач, и передачи из других городов земного шара. Например, если искусственные спутники будут расположены над долготами, соответствующими СССР, Китаю и США, то телезрители СССР с 3 часов ночи до 7 утра и с 15 до 19 часов смогут, кроме своих, смотреть и американские телепередачи, с 7 до 11 и с 19 до 23 передачи, которые смотрят в это время телезрители Китая.

В Китае в указанные промежутки времени можно принимать соответственно передачи СССР и США, а в Америке — Китая и СССР.

Так как угловые размеры Земли при наблюдении ее со спутника, находящегося на высоте 35 800 км, составляют примерно 17°, то очевидно, что ширина диаграммы направленности приемно-передающей антенны ИСЗ не должна превышать 17°. Ширина диаграммы направленности антенн, направленных на соседние спутники, должна равняться примерно 4°.

Из-за упоминавшегося движения орбиты спутников (20 угловых секунд в час или 8 угловых минут в сутки) придется диаграмму направленности наземных приемных и передающих антенн за сутки сдвигать в западном направлении на 8 угловых минут, а заштрихованные на расписании работы ИСЗ квадраты влево на 32 секунды времени. Чтобы не делать этого, очевидно, будут применять коррекцию положения спутников, чтобы они не «сползали» далеко от предназначенного им места.

На выбор длины волн, которые могут применяться для системы всемирного телевизионного вещания, влияет ряд факторов: необходимость малых весов и габаритов аппаратуры, направленные свойства антенных устройств и пока не изученные условия распространения радиоволн в космическом пространстве. Но уже сейчас можно сказать, что на спутнике прием программ телевидения с Земли будет осуществляться, вероятно, в метровом диапазоне волн, а со спутника на Землю, с учетом минимальных весов и габаритов аппаратуры, — на волнах дециметрового, сантиметрового или миллиметрового диапазона. Связь между спутниками будет осуществляться на волнах сантиметрового или миллиметрового диапазона.

Основной вес радиоаппаратуры будет приходиться на источники питания, поэтому для осуществления кругового телевидения большое значение имеет создание облегченных атомных источников питания.

Надо отметить, что подобные спутники, оборудованные ретрансляционными установками, позволят заменить множество телефонно-телеграфных сетей, увеличить дальность и усилить радиоприем вещательных радиостанций.


4. Космические скорости и условия существования искусственного спутника Земли

Спутник движется вокруг Земли, как небесное тело. Движение спутника подчиняется тем же законам небесной механики, что и движение Луны вокруг Земли, а также движение Земли и других планет солнечной системы вокруг Солнца. Эти законы были открыты Кеплером. Современная небесная механика основана на законе всемирного тяготения, открытом Ньютоном.

Движение спутника вокруг Земли происходит с большой скоростью. Если бы притяжение Земли отсутствовало, то спутник двигался бы в безвоздушном пространстве равномерно и прямолинейно. Притяжение Земли искривляет его траекторию и заставляет спутник огибать Землю и двигаться вокруг Земли вдоль ее поверхности.

Движение спутника можно уподобить движению камня, к которому привязана одним концом веревка. Держа другой конец веревки в руках, можно раскрутить ее так, чтобы заставить камень вращаться по кругу. Так как при этом мы все время будем отклонять камень от прямого пути и заставлять его искривлять направление своего движения, то веревка будет все время натянута. Сила натяжения ее зависит от скорости движения камня и при увеличении скорости движения будет возрастать.

При движении спутника роль веревки играет сила притяжения Земли. Однако имеется существенное отличие, которое заключается в том, что сила притяжения, действующая на спутник, является вполне определенной величиной. Поэтому круговое движение спутника вокруг Земли возможно лишь с некоторой вполне определенной скоростью. Для спутника, движущегося сравнительно недалеко от поверхности Земли, эта скорость равна приблизительно 8 км в секунду.

Может возникнуть вопрос: почему эта скорость одинакова для тел любого веса? Ведь сила притяжения, действующая на более тяжелое тело, больше, и на первый взгляд может показаться, что такое тело должно двигаться вокруг Земли по круговой орбите под действием силы притяжения с большей скоростью. Однако если принять во внимание, что более тяжелое тело труднее отклонить от прямолинейного движения, причем ровно во столько раз, во сколько больше его вес, то станет ясным, что скорость движения спутника не должна зависеть от его веса. Поэтому скорость движения по орбите, имевшая место для первого советского ИСЗ, осталась приблизительно такой же для второго спутника и будет такой же для других спутников, которые предполагается запустить в Советском Союзе в течение Международного геофизического года.

Сила притяжения к Земле убывает при увеличении расстояния от Земли. Поэтому спутник на более высокой орбите должен двигаться с меньшей круговой скоростью. При движении спутника по различным орбитам, лежащим в пределах порядка тысячи километров над поверхностью Земли, отличия в скорости движения сравнительно невелики. Однако для спутника, движущегося на значительно больших расстояниях от Земли, скорость движения оказывается существенно меньшей. Так, Луна, которая также является спутником Земли и находится от Земли на расстоянии примерно 380 тыс. километров, движется вокруг Земли со скоростью около одного километра в секунду, то есть со скоростью примерно в 8 раз меньшей, чем спутник, летящий вблизи Земли. Если принять во внимание, что путь, проходимый Луной вокруг Земли, гораздо длиннее, чем путь движения искусственного спутника за один оборот, то станет понятным, почему Луна совершает один оборот вокруг Земли не в 8 раз медленнее спутника, а гораздо более медленно. Луна совершает один оборот примерно за месяц, в то время как первые спутники совершали примерно 15 оборотов за одни сутки.

Для того чтобы спутник мог двигаться по орбите на заданной высоте, скорость его должна быть вполне определенной. Создать спутник, движущийся по той же самой орбите, но с иной скоростью, невозможно.

Из того, что скорость движения спутника на более высокой круговой орбите меньше, следует, что при выведении спутника на такую орбиту его необходимо разогнать до меньшей скорости. Это отнюдь не означает, что запуск спутника на более высокую круговую орбиту проще, чем на орбиту более низкую.

Ракета, несущая спутник, должна иметь тем бóльшую скорость, чем на более высокой орбите должен двигаться спутник. Этой скорости должно хватить на то, чтобы достичь необходимой высоты, и на то, чтобы двигаться по достигнутой орбите с такой круговой скоростью, при которой возникающая центробежная сила уравновесила бы силу тяжести и тем самым позволила бы ей обращаться вокруг Земли, не падая на нее.

При определенной скорости такой результат можно получить и на небольшой высоте, даже порядка нескольких километров, но, как известно, на низких высотах значительно сопротивление воздуха.

Воздух является одним из главных противников высоких скоростей в атмосфере, а в нашем случае скорость ракеты должна быть огромной. Кроме того, вспомним, что даже «Фау-2», пролетая плотные слои атмосферы почти вертикально, нагревалась свыше 540℃.

При скоростях же, гораздо больших, чем у «Фау-2», летящая в атмосфере ракета просто сгорит.

Следовательно, необходимо создать такую минимальную высоту полета ракеты над Землей, при которой можно было бы пренебречь влиянием атмосферы.

Многие ученые занимались расчетами скорости ракеты, необходимой для запуска искусственного спутника Земли на определенную высоту. Большой интерес представляет формула, выражающая теоретически минимальную скорость, которую необходимо сообщить ракете на Земле для перевода ее на круговую орбиту. Эта скорость (Vx) называется характеристической и является наименьшей скоростью, теоретически необходимой для запуска ИСЗ.

Формула для определения этой скорости имеет вид:

Здесь r0 — радиус Земли, в среднем равный 6 372 000 м, а r=r0+h, где h — высота полета спутника над Землей. Таким образом, зная высоту полета спутника над Землей, читатель легко может, пользуясь вышеуказанной формулой, определить характеристическую скорость ракеты.

Надо сказать, что приведенная формула характеристической скорости[12] получается при определении количества энергии, которую необходимо сообщить массе ИСЗ для того, чтобы обеспечить ей возможность движения вокруг земного шара без падения на Землю. Из той же формулы видно, что скорость Vx изменяется в зависимости от удаления орбиты спутника от поверхности Земли.

Наименьшее ее значение будет при r=r0, т. е. при полете ракеты прямо над поверхностью Земли.

Тогда

Эту скорость принято называть первой космической скоростью. Но, как мы уже установили выше, свободного полета спутника Земли в плотных слоях атмосферы из-за наличия силы сопротивления воздуха осуществить невозможно, так как атмосфера немедленно затормозит его полет.

Из этой же формулы видно, что наибольшее значение скорости Vx получим, удалив орбиту ИСЗ в бесконечность. При r, стремящемся к бесконечности, Vx стремится к значению 11 190 м/сек. Это и будет так называемая вторая космическая скорость.

Промежуточные значения скорости Vx для разных высот h приведены в табл. 1 на стр. 50.


Таблица 1

Значения характеристической скорости Vх в зависимости от высоты полета спутника над Землей
h — средняя высота полета спутника над Землей в км Величина характеристической скорости Vx в м/сек, подсчитанная по формуле (1) h — средняя высота полета спутника над Землей в км Величина характеристической скорости Vх в м/сек, подсчитанная по формуле (1)
200 8 033 500 8 194
220 8 043 600 8 246
250 8 061 640 8 266
265 8 069 700 8 294
280 8 076 800 8 342
300 8 089 966 8 417
320 8 099 1000 8 431
350 8 116 1730 8 716
400 8 143

Для того чтобы ракета была не спутником Земли, а улетела в космос (в пределах солнечной системы), ей необходимо сообщить скорость больше 11,2 км/сек.

О том, какая сила забросит искусственный спутник на большую высоту, с помощью каких средств космические корабли смогут достичь таких колоссальных скоростей, мы расскажем в следующей главе.



Загрузка...