Глава Ⅱ. КАКИЕ СРЕДСТВА ПОМОГЛИ РЕШИТЬ ПРОБЛЕМУ СОЗДАНИЯ ИСЗ


1. Физические основы реактивного движения

Какая же сила поможет человеку завоевать космическое пространство? Оказывается, такая сила существует, и ее давно заметил человек. Это реактивная сила. Именно ее имел в виду отец русской реактивной техники гениальный К. Э. Циолковский, рассчитывая межпланетные полеты. Что же это за сила? Каков ее физический смысл?

С этой силой часто встречается наш читатель, не обращая на нее внимания. Именно эта сила вызывает удар в плечо во время выстрела из ружья, она заставляет откатываться орудие после выстрела, благодаря ее действию взлетают в воздух фейерверочные и сигнальные ракеты.

Оказывается, принципиально только реактивная сила может заставить межпланетный корабль будущего взлететь в космос, и только с ее помощью были запущены первые в истории человечества искусственные спутники Земли.

Классическое объяснение возникновения реактивной силы дал великий английский ученый Ньютон в третьем законе механики. Закон этот гласит: всякое действие встречает равное по величине и обратное по направлению противодействие.

В справедливости этого закона легко убедиться, припомнив несколько всем знакомых примеров: гребец, откидывая при помощи весел некоторые массы воды в одну сторону, заставляет тем самым двигаться лодку в противоположном направлении. Точно так же гребной винт, перемещая массы воды, заставляет идти корабль вперед.

Отметим одну особенность. В примере с лодкой «посредником» между лодкой, человеком и водой являются весла. Этот «посредник» в технике называется движителем. Им будет являться также гребное колесо парохода, гребной винт, пропеллер самолета, гусеница трактора и т. д. (Не следует путать термин движитель с двигателем. В приведенных примерах — на лодке — двигателем будет человек, на пароходе — машина, на самолете — мотор и т. д.) Постараемся запомнить эти примеры, в особенности роль «посредника» — движителя. С ним нам скоро придется встретиться.

Пример, иллюстрирующий третий закон механики, который мы привели выше, не единственный. Оказывается, что в соответствии с упомянутым законом можно получить движение и без движителя.

Вы выстрелили из ружья, пороховые газы вытолкнули заряд из ствола, а сила реакции, или реактивная сила, оттолкнула назад ваше ружье, т. е. она создала тягу, перемещающую ружье в обратную сторону движения пороховых газов. Эту тягу мы называем силой отдачи, под действием которой приклад ружья толкает нас при выстреле в плечо. Теперь возьмем ту же лодку и представим себе, что вы закрепили ваше ружье на ее корме, направив ствол в обратную сторону носа лодки, и оно непрерывно стреляет. Естественно, что после каждого нового выстрела под действием силы отдачи, т. е. реактивной силы, ружье, а вместе с ним и лодка, до сих пор стоявшая на месте, толчками будет двигаться вперед. Пока хватит запасов зарядов, ваша лодка будет двигаться. Такой принцип движения называется реактивным, а двигатели, построенные на этом принципе, т. е. вызывающие движение непосредственно, без движителя, называются двигателями прямой реакции.

Проверить действие реактивной силы можно также с помощью простого опыта. Если вы, встав лицом к корме, начнете бросать в воду камни, как толкают физкультурники ядро, то убедитесь в том, что лодка будет двигаться в сторону, обратную полету камня. Причем можно заметить, что чем большую скорость вы придаете камням при бросании, тем быстрее будет двигаться лодка.

На основании приведенных выше примеров нетрудно понять и физический смысл возникновения реактивной силы, образуемой в ракетном двигателе при выбросе из его сопла в окружающее пространство газов. Возникающие от сгорания топлива газы мгновенно расширяются и давят на стенки и дно камеры сгорания. Но так как выход для них расположен как раз против дна камеры сгорания, то вся сила давления газов сосредоточивается на нем.

Таким образом, образовавшиеся в камере сгорания ракетного двигателя газы как бы отталкиваются от ее дна и с огромной силой толкают ракету вперед, образуя так называемую тягу ракеты, в то же время сами газы выбрасываются через сопло с огромной скоростью наружу, т. е. в противоположную сторону движения ракеты. Отсюда видно, что если горючее и кислород, необходимый для его сгорания, запасены на ракете, то она может двигаться и в безвоздушном пространстве.

Все видели сигнальные ракеты или ракеты, применяющиеся для фейерверка. Они-то и являются прообразом ракет, которые полетят в космос.

Основным препятствием для космических полетов служит земное притяжение. Для того чтобы его преодолеть и выйти в пространство, где начнет преобладать притяжение планеты, на которую мы летим, нужны колоссальные количества энергии. Даже для запуска спутника весом 45 кг на орбиту, удаленную от Земли на расстояние 300–500 км, необходимо затратить энергию, соответствующую 4–5 дням работы Днепрогэса. На первый взгляд это может показаться неосуществимым. Однако уже во время второй мировой войны немецкие ракеты «Фау-2», бомбардировавшие Лондон, имели двигатель мощностью 500 000 л. с., работавший, правда, всего около одной минуты. Сейчас ракеты такого типа значительно усовершенствованы, и мощности, которые развивают их двигатели, значительно выше и измеряются миллионами лошадиных сил.

В чем же заключается особенность этих двигателей невиданной мощности? Чем они отличаются от всех известных паровых машин или дизелей?


2. Реактивные двигатели и их разновидности

Возьмем, например, самый совершенный авиационный поршневой двигатель. Он также развивает довольно большие мощности, компактен, не особенно тяжел. Тем не менее для космических полетов он не пригоден. Дело в том, что для его работы необходим кислород, содержащийся в атмосфере. А наша ракета предназначена для полета в пространстве, лишенном атмосферы. Что касается паровой машины или дизеля, то для их работы точно так же требуется кислород атмосферы, не говоря уже о том, что их вес на единицу развиваемой мощности весьма значителен.

Напомним еще одно важное обстоятельство. Корабль или самолет двигается потому, что гребной винт или винт самолета, вращаясь, отталкивается от воды или от воздуха и заставляет тем самым двигаться их вперед. Но ведь в космосе нет воздуха, стало быть винт, вращаясь там, не смог бы создать тяги. Поэтому единственным возможным двигателем для космических полетов является реактивный двигатель, для работы которого нет необходимости в плотной окружающей среде, т. е. в атмосфере. Правда, не все виды реактивных двигателей обладают возможностью работать в безвоздушном пространстве.

Дело в том, что всякий реактивный двигатель вызывает движение какого-нибудь аппарата в результате приложения к нему силы реакции тяги, равной количеству движения отбрасываемого вещества. Если из ракеты в единицу времени выбрасывается масса m со скоростью Vr относительно камеры сгорания, то ракета испытывает тягу P, определяемую по формуле

P=mVr (3)

Для получения большой тяги, как видно из этой формулы, надо отбрасывать большую массу какого-нибудь вещества и с наибольшей скоростью. По тому, откуда берется эта отбрасываемая масса, различают два типа реактивных двигателей: ракетные двигатели, при работе которых происходит отбрасывание вещества, находящегося в самом перемещающемся аппарате, и воздушно-pеактивные, в которых отбрасывается захваченная двигателем и ускоренная внутри аппарата при помощи различных механических или тепловых устройств атмосфера, окружающая этот аппарат. Для доставки ИСЗ на его орбиту в нижних слоях атмосферы можно использовать воздушно-реактивные двигатели. В верхних слоях атмосферы могут быть использованы только ракетные двигатели. Для межпланетных кораблей ближайшего будущего единственными двигателями являются ракетные. Такими двигателями могут быть пороховые, жидкостные, атомные, ионные или фотонные. Первые два типа ракетных двигателей реально существуют и доведены до такого совершенства, что с их помощью ученые могут запускать искусственные спутники Земли. Следующие три типа ракетных двигателей являются перспективными, практическое осуществление их зависит от общего уровня развития техники будущего. Но уже сейчас разработкой атомных ракетных двигателей усиленно занимаются многие страны мира, и, видимо, очень скоро мы узнаем о полете ракеты с атомными ракетными двигателями.

В дальнейшем рассмотрим, как устроены ракетные двигатели и ракеты.

Циолковский впервые изложил научные основы реактивного движения и создал точную теорию ракеты, позволившую объективно оценить возможности этого способа перемещения. Он в аналитической форме установил связь между скоростью, приобретаемой ракетой, скоростью истечения газов из сопла двигателя, полным весом ракеты и весом несомого топлива. Эта фундаментальная формула носит имя Циолковского.

В ходе своих научных исследований Циолковский пришел к ряду замечательных выводов и доказал возможность достижения с помощью ракет на жидком топливе космических скоростей, достаточных не только для создания искусственных спутников Земли, но и для полетов к любым планетам солнечной системы.

Приоритет Циолковского в создании теории реактивного движения, научных основ ракетной техники и планов покорения космоса неоспорим. Эти работы Циолковского были подтверждены и дополнены аналогичными научными исследованиями, появившимися много позже за рубежом, а именно: во Франции — Эно Пельтри в 1913 году, в Америке — Робертом Годдаром в 1919 году, в Германии — Германом Обертом в 1923 году и другими учеными.

Циолковский заложил прочный теоретический фундамент в новой области науки и техники. Его ученики и последователи, опираясь на помощь партии и правительства, приложили немало труда, чтобы вызвать к жизни многое из того, что предвидел Константин Эдуардович. В результате в нашей стране создана реальная научно-исследовательская, опытно-конструкторская и промышленная база для успешного развития ракетной техники.

Предстоит еще колоссальный и длительный труд в ряде отраслей науки и техники, прежде чем идеи великого русского ученого превратятся из сказочной перспективы в явь. Но развиваются эти идеи по правильному пути, и мы твердо верим, что еще нам доведется быть свидетелями первых шагов покорения человеком мирового пространства.

Наряду с учеными различных стран мира значительный вклад в создание и развитие реактивных двигателей и теории реактивного движения был сделан нашими учеными. Так, например, теория реактивного движения, разработанная выдающимися русскими учеными К. Э. Циолковским, Н. Е. Жуковским, а также И. В. Мещерским, Ф. А. Цандером и другими, стала фундаментом реактивной техники.

В данной книге нет необходимости перечислять все труды К. Э. Циолковского, они в 1955 г. опубликованы в специальном сборнике Академии наук СССР, издается собрание сочинений его трудов. Ученики Циолковского, советские инженеры и ученые, развили его идеи и усовершенствовали его схемы, вписали в историю развития реактивной техники имя своего учителя как родоначальника ракет дальнего действия и жидкостных ракетных двигателей.

На рис. 5 представлена элементарная схема ЖРД с баллонной системой подачи компонентов топлива и пиротехническим зажиганием.

Рис. 5. Элементарная схема ЖРД с баллонной системой подачи топлива:
1 — управляемый пневмоэлектроклапан; 2 — редуктор; 3 — баллоны с сжатым инертным газом; 4 — бак с окислителем; 5 — бак с горючим; 6 и 7 — пусковые мембраны; 8 — вентиль; 9 — камера сгорания; 10 — форсунки; 11 — охлаждающий тракт; 12 — зажигательное устройство; 13 — сопло

ЖРД состоит из следующих основных конструктивных элементов и систем: камеры сгорания, где происходит подготовительный процесс и процесс сгорания топлива; сопла, в котором тепловая энергия продуктов сгорания преобразуется в кинетическую энергию газов, истекающих из двигателя; системы питания, обеспечивающей подачу компонентов топлива в камеру сгорания (система питания включает в себя: баки с горючим и окислителем, баллоны с сжатым инертным газом, парогазогенератор, насосы, трубопроводы, форсунки и т. д.); системы охлаждения камеры сгорания для пламенных ЖРД, в которых температура превышает 2500°К; системы управления, которая обеспечивает правильный запуск двигателя и режим его работы (сюда относятся различные краны, клапаны, редукторы, дроссели, пусковые пробивные мембраны и т. д.); системы зажигания, обеспечивающей воспламенение компонентов топлива в камере сгорания в момент запуска двигателя.

Запуск ЖРД производится с помощью управляемого пневмоэлектроклапана 1, который, открываясь, одновременно включает зажигательное устройство 12. Сжатый до 300 атм инертный газ поступает из баллонов 3 через редуктор 2, где давление понижается до 30 атм, и пусковые мембраны 6 в баки с горючим 5 и окислителем 4. Под действием этого инертного газа горючее и окислитель через мембраны 7 и вентиль 8 подаются каждый по своему трубопроводу через форсунки 10 в камеру сгорания 9. По пути в камеру сгорания один из компонентов топлива проходит по охлаждающему тракту 11 камеры сгорания и сопла. Распыление и смешение компонентов топлива происходит только в камере сгорания во избежание взрыва. Компоненты топлива подаются в камеру сгорания в заданном весовом отношении.

В результате преобразования в сопле 13 тепловой энергии газов в кинетическую энергию возникает тяга двигателя, сообщая ускорение ракете, на которой двигатель установлен.


3. Жидкостные ракетные двигатели

Уже в 1931 году советским инженером Ф. А. Цандером был сконструирован, построен и испытан первый жидкостный ракетный двигатель. В те же годы состоялись успешные полеты жидкостной ракеты, сконструированной советским ученым М. К. Тихонравовым. Камеру сгорания, выдерживающую высокие температуры, изобрел в 1929 г. советский инженер П. И. Шатилов, чем ускорил создание конструкции жидкостного ракетного двигателя. Дальнейшее усовершенствование конструкции ЖРД принадлежит советским инженерам Л. С. Душкину и А. М. Исаеву. Теория жидкостных ракетных двигателей разработана Ф. А. Цандером, И. И. Кулагиным и другими советскими инженерами и учеными.

Жидкостные ракетные двигатели в подавляющем своем большинстве могут быть либо с насосной системой подачи компонентов топлива в камеру сгорания, либо с баллонной системой подачи. Вторая является наиболее простой и применяется для двигателей сравнительно небольших ракет. Первая применяется в ракетных двигателях дальнего действия.

Выбор конкретной системы подачи топлива ракетного двигателя и ее составных частей определяется прежде всего назначением двигателя, его размерами, топливом, тягой, характером полета и продолжительностью работы, а также общими требованиями простоты конструкции, легкости изготовления, удобства эксплуатации и, главное, минимального веса.

Жидкостные ракетные двигатели работают или на жидких компонентах топлива или на одном жидком, применяемом в качестве горючего, а другом газообразном, используемом в качестве окислителя.


4. Устройство и принцип действия ЖРД стратосферной ракеты

В качестве примера реактивного двигателя с насосной системой подачи топлива в камеру сгорания рассмотрим ЖРД стратосферной ракеты.

К настоящему времени известно несколько типов высотных стратосферных ракет.

Чтобы пояснить устройство, а также принцип действия ЖРД стратосферной ракеты, приведем в качестве примера ЖРД, применявшийся в первой ступени стратосферной двухступенчатой ракеты (рис. 6), вторая ступень которой в 1954 г. достигла высоты в 425 км.

Рис. 6. Двухступенчатая высотная ракета

Принципиальная схема такого ЖРД с основными агрегатами показана на рис. 7. Этот двигатель работает на двухкомпонентном топливе, состоящем из обычного этилового спирта 75% крепости (горючее) и жидкого кислорода (окислитель), которые хранятся в двух отдельных больших баках. Запас топлива на ракете достигает свыше 9 т, что составляет почти ⅚ общего веса ракеты. Как видно из приведенного выше рис. 7, по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое большое количество топлива, его хватает только на 75–90 секунд работы двигателя, так как такой двигатель расходует свыше 125 кг топлива в секунду, развивая тягу в 25 т (на земле). Скорость истечения газов из сопла двигателя достигает более 2000 м/сек.

Рис. 7. Принципиальная схема жидкостного ракетного двигателя:
1 — сопло; 2 — система подачи горючего для внутреннего охлаждения; 3 — форкамера; 4 — камера сгорания; 5 — труба подвода жидкого кислорода к форкамерам; 6 — главный спиртовой клапан горючего; 7 — труба подвода горючего к рубашке охлаждения, 8 — баллоны высокого давления; 9 — бачок катализаторов; 10 — редуктор давления воздуха; 11 — реактор; 12 — бак перекиси водорода; 13 — главный клапан окислителя, 14 — насос горючего; 15 — турбина; 16 — насос окислителя, 17 — труба подачи парогаза в турбину: 18 — труба для отвода горючего в насос при остановке двигателя

Как видно из рис. 7, основными частями двигателя являются шаровидная камера сгорания 4, реактивное сопло 1, парогазогенератор, турбонасосный агрегат для подачи топлива и система управления. Продукты сгорания расширяются в сопле двигателя до давления на выходе, равного 0,8 кг/см2, и приобретают при этом большую скорость. Диаметр камеры сгорания в наиболее широкой части ее равняется 950 мм. Диаметр горловины сопла 410 мм, диаметр выходного сечения 740 мм. Длина двигателя составляет 1790 мм. Вес камеры сгорания с соплом 420 кг. В днище камеры сгорания расположено 18 горелок (форкамер) 3, разрез камеры показан на рис. 8. Кислород, подаваемый насосом 16, поступает внутрь горелок через трубопровод 5 в центральные форсунки, а спирт, выходящий из рубашки охлаждения, — через кольцо маленьких форсунок вокруг каждой горелки. Такая конструкция форкамер обеспечивает достаточно хорошее распыление и перемешивание топлива, необходимые для осуществления полного сгорания за то очень короткое время, пока топливо находится в камере сгорания (сотые доли секунды).

Рис. 8. Форкамера двигателя стратосферной ракеты

Как следует из самого названия, в камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле — преобразование тепловой энергии продуктов сгорания в кинетическую энергию струи газов, вытекающих из двигателя в атмосферу.

Давление в камере сгорания порядка 16–17 атм, а температура достигает 2400–2500℃, вследствие чего в камере сгорания возникает большая теплонапряженность, т. е. в ней выделяется огромное количество тепла в единицу времени. Камера сгорания ЖРД по теплонапряженности значительно превосходит все другие известные в технике топочные устройства — топки паровых котлов, цилиндры двигателей внутреннего сгорания, камеры сгорания воздушно-реактивных двигателей и др. Для сравнения скажем, что в камере сгорания ЖРД в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить около 600 000 кг воды! Поэтому неохлаждаемые ракетные двигатели могут работать только в течение 25 секунд[13].

Для того чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, а также и стенки сопла.

Охлаждение двигателя осуществляется следующим образом.

Основная масса спирта, прежде чем попасть в форсунки, по трубопроводам 7 (см. рис. 7) подается в рубашку охлаждения, образованную двойными стенками камеры и сопла. Двигаясь со значительной скоростью по этой рубашке, спирт отбирает тепло от внутренних стенок камеры и сопла и охлаждает их. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру. Но одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие отверстия 2, расположенные в нескольких кольцевых поясах, и через эти отверстия внутрь камеры и сопла поступает спирт (около 0,1 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем самым снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, достигает 2500℃, температура внутренней поверхности стенок, как показали испытания, не превышает 1000℃.

Сжатие и подача топлива в двигателе производятся центробежными насосами 16 и 14. Для привода насосов служит парогазовая турбина 16. Турбина и два насоса, объединенные общим валом, образуют турбонасосный агрегат. Мощность турбонасосного агрегата 465 л. с., вес 160 кг.

Необходимый для работы турбины парогаз вырабатывается в парогазогенераторе путем разложения концентрированной перекиси водорода Н2О2. При разложении перекиси водорода выделяется количество тепла, достаточное для нагрева продуктов разложения до 400–500℃ (в зависимости от концентрации перекиси водорода). Надежное и быстрое разложение перекиси водорода происходит в присутствии катализатора. Таким катализатором служит концентрированный раствор перманганата калия KMnO4.

Парогазогенератор (рис. 9) включает в себя бак перекиси водорода 1 и бачок с раствором перманганата 3. Эти вещества подаются в реактор 2 путем вытеснения их из баков сжатым воздухом. Запас сжатого воздуха помещается в баллонах 8 (на рис. 7). Перед поступлением в баки парогазогенератора давление воздуха снижается в редукторе 4. В парогазогенераторе вырабатывается в секунду 2 кг парогаза, что обеспечивает необходимую мощность турбины. Вес парогазогенератора со всей необходимой арматурой составляет 148 кг.

Рис. 9. Парогазогенератор стратосферной ракеты:
1 — бак перекиси водорода; 2 — реактор; 3 — бачок с раствором перманганата; 4 — редуктор

Таким образом, ЖРД подобной стратосферной ракеты относительно прост, в особенности при сравнении его с обычными поршневыми авиационными двигателями. В силовой схеме этого ЖРД (как, впрочем, и других ЖРД) почти полностью отсутствуют движущиеся части. Правда, по сравнению с другими ЖРД этот двигатель имеет сложную систему управления и регулирования.

Как же работает такой двигатель? Чтобы ответить на этот вопрос, начнем с запуска.

Так как смесь кислорода со спиртом не является самореагирующим топливом, т. е. не может самовоспламениться, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В данном типе ЖРД система зажигания состоит из электрозапального факела, с помощью которого зажигаются пиропатроны, закрепленные на плоскости вращающегося круглого столика, установленного внутри камеры сгорания так, что реактивная сила вытекающих из них газов заставляет этот столик вращаться. Благодаря этому вращению раскаленные продукты сгорания пиропатронов равномерно заполняют камеру двигателя и прогревают ее. При достижении необходимого прогрева (спустя 2–3 секунды после начала запуска) перегорает магниевая полоска, расположенная в самом недоступном для прогрева месте камеры. Это является сигналом к продолжению запуска. Посредством электропневматической системы приоткрываются на 2–3 мм главный спиртовой клапан 6 (см. рис. 7) и главный клапан окислителя 13. Спирт и кислород самотеком начинают поступать в камеру сгорания в сравнительно небольших количествах. Топливо, попадающее в двигатель, воспламеняется от горячих пороховых газов, и горение становится более интенсивным. Через 2–3 секунды достигается устойчивое горение топлива. Вслед за этим можно увеличивать подачу топлива. Для этого оператор, запускающий ракету, с помощью электропневматической системы включает в работу парогазогенератор и турбонасосный агрегат.

Пары воды и газообразного кислорода, вырабатываемые парогазогенератором, приводят во вращение колесо турбины и затем выбрасываются в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов (кислородного и спиртового). Эта мощность значительна — при 4000 об/мин колеса турбины она достигает 500 л. с.

Через 1–2 секунды после начала работы турбонасосного агрегата расход топлива в камере сгорания достигает номинального значения 125 кг/сек, тяга возрастает до 25 т, и ракета взлетает. Таким образом, от момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего несколько секунд.

Интересно отметить, что к моменту выключения двигателя, т. е. приблизительно через 70 секунд полета стратосферной ракеты по пологой траектории, ее скорость полета достигала примерно 5500 км/час, т. е. 1525 м/сек. В этот момент двигатель развивал мощность почти в 600 000 л. с.

Не менее интересной технической характеристикой этого ЖРД является его ничтожный вес по сравнению с развиваемой им тягой. При весе двигателя около 1000 кг его тяга достигает 25 т, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только 1000/25000=0,040 кг/кг[14]. Для сравнения укажем, что обычный поршневой авиационный двигатель имеет удельный вес 1–2 кг/кг, т. е. в 25 раз больший. Весьма важно также и то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости в связи с уменьшением тяги, развиваемой поршневым двигателем. К настоящему времени осуществлено большое количество разнообразных схем ЖРД, которые характеризуются следующими особенностями:

1. Компоненты топлива подаются в камеру сгорания одновременно, и горение продолжается непрерывно.

2. Протекание рабочего процесса не зависит от условий внешней среды, поэтому ЖРД могут развивать тягу как в сравнительно плотной атмосфере, так и в безвоздушном пространстве.

3. Величина развиваемой двигателями тяги не зависит от скорости движения аппарата. С увеличением высоты полета тяга возрастает, достигая максимально возможной для данных размеров двигателя величины в пустоте; максимальную тягу двигатель может развить за очень малый промежуток времени.

4. Охлаждающей жидкостью является один из компонентов топлива, в большинстве случаев окислитель, весовой секундный расход которого для некоторых составов топлива значительно превышает расход горючего; тепло, воспринимаемое окислителем, вносится им вновь в камеру сгорания, поэтому потери при отдаче тепла стенкам незначительны.

5. Объем камер сгорания незначительный. Удельный вес двигательной установки невелик, порядка 0,04.

Этим двигателям свойственны и недостатки:

1. Большой весовой секундный и удельный расход топлива, значительно превышающий удельный расход топлива ВРД (воздушно-реактивного двигателя), а именно порядка 18, что определяет сравнительно малое время действия (в большинстве выполненных конструкций в пределах одной минуты).

2. Агрессивность к металлам компонентов топлива вызывает затруднения при их хранении и использовании.

3. Сложность осуществления и регулирования подачи компонентов топлива и систем зажигания.


5. Пороховые ракетные двигатели

Другим типом ракетных двигателей, который применяется в настоящее время в ракетах для исследования верхних слоев атмосферы и может быть использован при запуске ИСЗ, является пороховой ракетный двигатель (сокращенно ПРД). Такой двигатель издавна используется в боевых пороховых ракетах. Следует отметить, что русские пороховые ракеты по своим тактическим свойствам всегда значительно превосходили иностранные образцы. Уже в 1815 году талантливый офицер русской армии А. Д. Засядко приступил к созданию боевых ракет. Ракеты генерал-майора А. Д. Засядко использовались в бою и показали хорошую маневренность, дальнобойность и меткость, обеспечившие им значительный боевой успех. В середине 19-го века ракеты значительно усовершенствовал генерал-лейтенант К. И. Константинов, талантливейший изобретатель и ученый. Так, им были значительно усовершенствованы станки для производства ракет, устройства для пуска ракет и повышены боевые свойства самих ракет. Дальнейшее развитие пороховых ракет было в центре внимания русских и советских ученых. Широко известно, что прославленные гвардейские минометные части покрыли советское реактивное оружие неувядаемой славой.

Рис. 10. Пороховой ракетный двигатель:
1 — корпус ракеты; 2 — камера сгорания; 3 — сопло двигателя; 4 — заряд пороха (пороховые трубки); 5 — диафрагма; 6 — передний воспламенитель; 7 — задний воспламенитель; 8 — отверстия решетки

Пороховой ракетный двигатель (рис. 10) является самым простым по своему устройству из всех известных нам типов ракетных двигателей. Основными конструктивными элементами его являются: корпус 1, камера сгорания 2, сопло 3, заряд пороха 4 и диафрагма 5. Так как, в отличие от других реактивных двигателей, в ПРД весь запас топлива сосредоточен в самой камере сгорания, то и размеры ее определяются количеством содержащегося в ней пороха, необходимого для обеспечения расчетной дальности полета ракеты. Сопло 3, как и в любой ракете, предназначено для преобразования тепловой энергии пороховых газов в кинетическую энергию, которая определяет величину реактивной силы. Заряд пороха 4 состоит из пороховых трубок, или шашек, могущих иметь различную форму и плотность. При выборе формы, плотности и размеров пороховых шашек руководствуются необходимостью обеспечить более продолжительное их горение и постоянство давления в камере сгорания при переменном ее объеме. Диафрагма с отверстиями 5 удерживает пороховые шашки в камере в заданном положении. Передний воспламенитель 6 обеспечивает условия равномерного и надежного воспламенения всего порохового заряда, а задний воспламенитель 7 — начало воспламенения пороха. Дно камеры сгорания (отверстия решетки) 8 является местом приложения основной составляющей тяги.

Существуют два основных типа пороховых зарядов: с горением по части поверхности и по всей поверхности. В зарядах первого типа часть внешней поверхности покрывается веществом, препятствующим горению; вследствие этого горение такого заряда может происходить только по поверхности, не покрытой этим веществом. Заряды с горением по части поверхности горят, как сигарета, от одного конца до другого. Двигатели с этими зарядами обычно имеют бóльшую длительность работы, чем с зарядами второго типа. Данные двигателей с зарядами обоих типов приведены в табл. 2. Некоторые заряды имеют частично ограниченную поверхность горения; в этих случаях химический состав, препятствующий горению, наносится лишь на некоторые грани заряда.


Таблица 2[15]

Сравнение основных типов пороховых ракетных двигателей
Характеристика Заряд с горением по всей поверхности Заряд с горением по части поверхности
Тяга в кг От 200 до 27 000 От 50 до 2500
Продолжительность горения в сек От 0,05 до 10 От 3 до 100
Полный импульс в кг/сек От 10 до 90 000 От 700 до 35 000
Область применения. Артиллерийские, авиационные, зенитные, ракетные снаряды, планирующие бомбы и сигнальныеракеты и т. д. Стартовые двигатели, бустерные двигатели, высотные ракеты и последняя ступень для запуска искусственного спутника Земли
Вес в кг От 1,3 до 900 От 9 до 600

В процессе горения порохового заряда в камере сгорания давление возрастает от 100 до нескольких сотен атмосфер, а температура при этом превышает 2000℃. Поэтому камеру сгорания ПРД рассчитывают на высокие давления, в результате чего растут весовые характеристики двигателя, так как стенки ее приходится делать весьма прочными.

Растрескивание или разламывание пороховых шашек в процессе горения влечет за собой увеличение поверхности горения, повышение газообразования, а следовательно, и резкое местное возрастание давления, что может привести к взрыву камеры сгорания.

Нитроглицериновые пороха, применяемые в ПРД, обеспечивают скорость истечения газов порядка 2700 м/сек.

Порох в камере сгорания сгорает за время от нескольких десятых долей секунды до 100 секунд.

Поверхность горения является важнейшим фактором всех пороховых двигателей, обусловливающим величину их тяги. Так как тяга двигателя равна произведению массы вытекающих в секунду газов на скорость их истечения, то получить большую тягу, очевидно, можно, увеличив вес вытекающих в секунду газов. В пороховом двигателе этого можно достигнуть увеличением поверхности горения. В свою очередь небольшую тягу при соответственно большей продолжительности работы можно получить, если поверхность горения мала. При данной величине камеры сгорания изменение поверхности горения можно осуществить только путем изменения геометрической формы и расположения пороховых зарядов. На рис. 11 показано несколько форм пороховых шашек ракетного заряда, применяя которые можно в известных пределах регулировать закон образования газов по времени.

Рис. 11. Различные типы пороховых ракетных зарядов:
а — с горением заряда по части поверхности: б — с горением заряда по всей поверхности; в — многошашечный заряд; г — звездообразная форма заряда

В двигателях с горением заряда по части поверхности заряд обычно занимает всю камеру сгорания и горит только по торцовой поверхности (рис. 11, а). Вследствие этого тяга оказывается пропорциональной величине площади поперечного сечения камеры, а продолжительность горения — пропорциональной длине заряда. Этот тип заряда позволяет использовать объем камеры сгорания наиболее полно. Заряды с горением по части поверхности имеют почти постоянную поверхность горения.

Заряды с горением по всей поверхности обычно состоят из одного или нескольких цилиндров с кольцевым или специально профилированным поперечным сечением, как это показано на рис. 11, б. В случае применения полых цилиндрических шашек поверхность горения имеет почти постоянную величину, так как в этой шашке выгорание внешней цилиндрической поверхности приводит к уменьшению, а выгорание внутренней поверхности — к такому же увеличению горящей поверхности. Таким образом, изменение величины горящей поверхности происходит только из-за уменьшения поверхности торцов. Если шашка имеет большую длину, то влияние торцов на общую поверхность горения очень незначительно, и можно считать, что поверхность горения практически остается постоянной.

В некоторых случаях, например для получения большой скорости ракеты, необходимо бывает добиться быстрого сгорания пороха (за 0,1–0,3 секунды). В таких случаях увеличивают поверхность шашек и уменьшают их толщину. Заряд делают многошашечным (рис. 11, в). Применяются и другие более сложные форму шашек, например, звездообразные, обеспечивающие нужное изменение горящей поверхности (рис. 11, г).

В ряде случаев требуется получить заряд с малой поверхностью горения, но горящий продолжительное время (десятки секунд). Это необходимо, например, для пороховых аккумуляторов давления. Для замедления горения применяют так называемые бронированные шашки. В этих шашках часть поверхности пороха покрывается пластмассой, которая не горит сама и предохраняет от загорания покрытую ею поверхность шашки.

Пороховые ракетные двигатели имеют следующие отличительные черты и особенности:

а) развивают большой импульс в очень короткое время — в десятые доли секунды;

б) имеют большую скорость горения пороха (20–25 м/сек), в результате чего они, как правило, кратковременного действия;

в) имеют большое отношение тяги к первоначальному весу;

г) горючее двигателей имеет малую теплотворную способность — 800–900 ккал/кг;

д) просты в изготовлении и в обращении.

Вследствие незначительного времени работы ПРД пороховые ракеты в большинстве случаев имеют малые дальности полета. Пороховые ракеты используются также в качестве стартовых ракет (бустеров).

В связи с разработкой новых типов порохов и особых конструкций пороховых ракет и других ракет, работающих на твердом топливе, в печати появлялись сообщения о применении таких двигателей в качестве третьей, последней ступени ракеты-носителя спутника Земли[16], а также в качестве основного двигателя для ракет, предназначенных для исследования верхних слоев атмосферы. Так, в апрельском номере английского журнала «Nature» («Природа») за 1956 г. (в т. 177, № 4510 на стр. 643–645) сообщалось, что английское королевское общество межпланетных сообщений совместно с министерством снабжения (ведающего всеми разработками и строительством управляемых и неуправляемых боевых ракет) предполагает принять участие в исследовании с помощью ракет верхних слоев атмосферы в течение Международного геофизического года и что для этой цели будет построена одноступенчатая неуправляемая ракета с двигателем на твердом топливе, работающем около 30 секунд. Сообщаются следующие тактико-технические характеристики этой ракеты: длина ракеты — 7–8 м, диаметр — 0,44 м. Стартовый вес свыше 1130 кг, причем основная часть веса приходится на топливо. Полезная нагрузка (приборы научных наблюдений) составит 68 кг. Максимальная высота подъема 167 км, а у последующих вариантов до 213 км. Так как ракета будет неуправляемой, то она может сильно отклоняться от намеченной траектории. Этот вопрос предполагалось выяснить во время испытаний ракеты на полигоне Вумера в Австралии. При выявлении значительных отклонений ракеты от намеченной траектории на ней предполагали дополнительно установить двигатель-ускоритель или небольшой ракетный двигатель для придания ракете вращения вокруг ее продольной оси в течение первых 5 секунд полета.

Примеры использования пороховых двигателей в третьей ступени ракет-носителей ИСЗ будут нами приведены ниже при описании возможных конструкций ракет-носителей и их запуска на орбиту ИСЗ.

Широко распространенными в авиации и боевых ракетах реактивными двигателями являются различные типы воздушно-реактивных и турбореактивных двигателей, которые могут работать только в атмосфере. Для целей запуска ИСЗ и межпланетных кораблей они могут быть использованы лишь при движении в нижних слоях атмосферы. Для осуществления полетов в верхних слоях атмосферы они неприемлемы, поэтому мы их рассматривать не будем и перейдем к краткому ознакомлению с ракетными двигателями, которые призваны совершить переворот в реактивной технике. Они еще не созданы, но могут быть созданы в самое ближайшее время. Безусловно, наиболее выгодным двигателем для полета в космическое пространство явится двигатель, использующий атомную энергию.


6. Атомные реактивные двигатели

Как уже говорилось, величина скорости отбрасываемой реактивным двигателем массы может служить мерой качества реактивного двигателя. В атомных реактивных двигателях величина этой скорости в 3–4 раза больше, чем у самых совершенных современных жидкостных реактивных двигателей.

В рассмотренных нами выше жидкостных и пороховых ракетных двигателях источником энергии, создающим большие скорости истечения газов, являлась химическая реакция компонентов топлива. Источник энергии атомного двигателя гораздо мощнее, это процесс расщепления атомного ядра. Но сам этот процесс, как известно, не сопровождается образованием каких-либо газов, а, как мы уже говорили, тяга реактивного двигателя зависит от скорости вылетающих из сопла ракетного двигателя газов и от их массы. Следовательно, и в случае использования атомной энергии необходимо иметь какое-либо вещество (посредник), отбрасывая которое с большой скоростью, атомный двигатель сможет создать тягу. В качестве такого посредника можно использовать, например, воду.

В атомном котле она будет испаряться. Если же удастся найти материалы для деталей двигателя, которые могли бы выдержать температуру более 3000℃, то воду можно заставить еще и разлагаться на водород и кислород. При дальнейшем повышении температуры молекулы водорода и кислорода будут распадаться на атомы, что может увеличить объем получающегося газа почти вдвое. Ученые подсчитали, что по сравнению с обычным жидкостным реактивным двигателем, использующим керосин и кислород, при прочих одинаковых условиях, у атомного двигателя скорость истечения образовавшихся газов может доходить до 12 км/сек, а следовательно, и его тяга будет в 4 раза больше.

Что же это даст? Это примерно в 4 раза уменьшит расход газа, необходимого для получения данной тяги, уменьшится вес «посредника», а следовательно, и вес самой ракеты, что приведет к уменьшению необходимой для движения тяги, зависящей от веса ракеты, и, стало быть, запасы «посредника» можно будет еще более ограничить.

Но при осуществлении такого ракетного двигателя придется столкнуться с необходимостью решить много сложнейших научных и технических проблем.

В новейшей специальной литературе указывается ряд подробностей теоретической разработки проблем применения атомных силовых установок в ракетах. Вследствие того, что сила тяги в ракете прямо пропорциональна , где M — среднее значение молекулярного веса истекающего газа, для ракет с атомной силовой установкой наиболее выгодно применять в качестве «посредника» легкие газы, как, например, водород или аммиак. На ракете они должны находиться в жидком виде, чтобы занимать меньший объем.

На рис. 12 показана упрощенная схема атомного реактивного двигателя.

Рис. 12. Схема атомной установки с ракетным двигателем:
1 — резервуар; 2 — «посредник» (жидкость); 3 — насос; 4 — реактор; 5 — реактивное сопло

«Посредник» (жидкость) 2 из резервуара для хранения его 1 подается в реактор 4 с помощью насоса 3. Нагретые в атомном реакторе до высокой температуры газы с громадной скоростью вырываются из сопла 5, создавая тем самым тягу двигателя.

На рис. 13 показано схематическое устройство трехступенчатой ракеты с атомной силовой установкой.

Рис. 13. Схема трехступенчатой ракеты с атомной силовой установкой:
1 — АСУ, развивающая силу тяги до 1000 т; 2–6 — помещения для экипажа и склады; 7 — направленный поток газов, управляемый гироскопическим устройством; 8 — турбопитательный насос реактора; 9 — дополнительные сбрасываемые баки горючего; 10 — сопло реактора; 11 — запасы горючего для насосов; 12 — двигатели для запуска ракеты, работающие на обычном топливе

По мнению большинства специалистов, задачи, которые необходимо разрешить для успешного применения атомной энергии в ракетных силовых установках, сводятся к следующему:

— разработка конструктивных материалов, способных выдерживать высокие температуры без коррозии и изменения своих физико-химических свойств под воздействием мощных радиоактивных излучений;

— повышение теплоотдачи ядерного реактора;

— создание эффективного, легкого и небольшого по габаритам экрана для предохранения обслуживающего персонала от воздействия проникающей радиации;

— разработка эффективного дистанционного автоматического управления ракетным двигателем и системы его обслуживания;

— снижение стоимости изготовления и эксплуатационных расходов ракетных атомных силовых установок.

Велики трудности, которые придется преодолеть при создании такого двигателя. Однако вспомним, как немного времени прошло с момента первого практического применения атомной энергии, и тем не менее в СССР с 1954 г. работает первая в мире атомная электростанция. По директивам XX съезда КПСС по шестому пятилетнему плану развития народного хозяйства в СССР строятся новые крупные атомные электростанции и спущен на воду ледокол «Ленин» с атомным двигателем. Развитие техники идет такими крупными шагами, что создание ракетного атомного двигателя, учитывая успехи советской атомной промышленности, дело совсем уже не такого далекого будущего.

Когда будет создан ракетный атомный двигатель, дело освоения космоса значительно продвинется вперед, и сейчас даже трудно предугадать масштабы, в которых оно развернется.


7. Ионные реактивные двигатели

Как было показано выше, увеличение скорости отбрасываемых масс позволяет увеличить тягу, уменьшить запасы посредника и вес ракеты. Однако и в жидкостных, пороховых и атомных двигателях неограниченно увеличивать тягу за счет увеличения скорости отбрасываемых масс не удается из соображений прочности материалов, из которых изготовляются камеры сгорания. Конечно, ученые работали и работают над тем, чтобы повысить жаропрочность сплавов и керамических материалов, однако эта возможность ограничена. При определенных температурах все вещества начинают плавиться или испаряться. Применение охлаждения камеры сгорания не может вполне решить этой проблемы, так как охлаждение стенок камеры не должно сопровождаться одновременным понижением температуры исходящих газов (во всяком случае до известного предела), что технически трудно достижимо.

Были предложены двигатели, основанные на совершенно ином принципе, позволяющем резко повысить скорости газа, истекающего из сопла двигателя газа. Для этого предложили использовать применяемые в атомных физических лабораториях ускорители, в которых под действием электрического поля заряженные частицы приобретают колоссальные скорости. В качестве «посредника» в таком двигателе предполагают использовать элементы цезий или рубидий. Их пары, проходя через платиновую сетку, ионизируются, а затем положительные и отрицательные ионы приобретают раздельно ускорение. Выходя из ускорителя, они имеют одинаковую скорость, при встрече взаимно нейтрализуются и образуют быстролетящие молекулы газа.

Таким образом, для такого двигателя необходимо иметь источник электрической энергии. На космической ракете таким источником могут быть фотоэлементы, преобразующие солнечную энергию в электрическую.

Ионные двигатели, питающиеся от фотоэлектрической батареи, будут иметь довольно низкую тягу из-за большого рассеивания молекул и недостаточной мощности батареи. Однако этой тяги в космосе вполне будет достаточно для того, чтобы маневрировать ракетой и создавать большие скорости полета после того, как ракета преодолеет силу притяжения Земли. Такие двигатели, кроме всего прочего, требуют очень небольших запасов топлива; например, для полета с межпланетной станции, находящейся вблизи Земли, на орбиту Марса (на расстоянии 56 000 000 км) для 100-т ракеты может потребоваться всего 10 т топлива. Ионная ракета может достичь такой скорости, что за один год пролетит 175 млн. км.

Ионный реактивный двигатель, несмотря на то, что им можно будет пользоваться после преодоления тяготения Земли, интересен тем, что в нем не приходится сталкиваться с труднейшими температурными проблемами, а также потому, что он дает новые возможности увеличения скорости отбрасываемых масс, а следовательно, и тяги. Кроме того, такой способ для ракет с людьми не требует каких-либо сложных мер в отношении их защиты от радиации.


8. Атомно-ионные реактивные двигатели

Для получения значительной тяги ионно-реактивных двигателей требуется мощный источник электроэнергии, необходимый для ускорения большой массы ионов «посредника». Получение больших мощностей электроэнергии с помощью фотоэлементов, улавливающих радиацию Солнца, не представляется практически возможным. Поэтому представляет большой интерес сочетание двух двигателей — атомного, энергия которого затрачивается на работу электрического генератора, и ионно-реактивного, создающего тягу ракеты. В условиях ракеты запасы веществ должны быть ограничены, и непроизводительная их потеря не допускается, поэтому атомный двигатель должен работать по «замкнутому циклу». При этом рабочее вещество — теплоноситель, воспринимающее тепловую энергию в атомном реакторе, переносится в турбореактивный двигатель (например, паровую турбину). Здесь тепловая энергия, накопляемая теплоносителем, превращается в механическую энергию. Затем теплоноситель направляется обратно в атомный реактор, совершая процесс передачи энергии атомной реакции по замкнутому контуру без потери вещества — теплоносителя.

Турбореактивный двигатель приводит во вращение электрический генератор, энергия которого направляется в ускоритель ионов «посредника». Ионы «посредника», вылетающие из ускорителя с большой конечной скоростью, выбрасываются сопловым аппаратом наружу в окружающее ракету пространство, создавая тем самым реактивную тягу. По существу атомно-ионный двигатель представляет собой сочетание атомной электростанции с ионным реактивным двигателем. Реализация подобной системы вполне возможна, о чем убедительно говорят достижения в области создания атомных двигателей для подводных лодок, кораблей и самолетов. Однако здесь встречаются огромные технические трудности, связанные с необходимостью существенного сокращения веса и габаритов атомной электростанции для ракет. Существующие атомные электростанции еще слишком громоздки, имеют ряд сложных переходных устройств для превращения одних видов энергии в другие, а коэффициент полезного действия этих станций еще низок.

Другой проект атомно-ионного двигателя, основанного на принципе местного ускорителя элементарных частиц (рис. 14), был предложен сотрудником американской авиационной фирмы «Гудиебр эйркрафт» Даррелом Ромиком[17].

Рис. 14. Схема атомно-ионного двигателя:
1 — трубка подачи газообразных распыленных частиц; 2 — к вакуум-насосу; 3 — к теплообменнику; 4 — к электрогенератору; 5 — к пульту управления; 6 — генератор ионов; 7 — аппаратура управления; 8 — вибратор высокого напряжения; 9 — электронная пушка

По принципу Ромика в двигатель вводятся распыленные частицы (газ), где они подвергаются бомбардировке электронами из электронной пушки. Неионизированные частицы газа непрерывно удаляются из двигателя вакуум-насосом, а ионы посредством электродов и сеток электронной пушки направляются в ускоритель. Здесь мощные электроды, питаемые током высокого напряжения, до момента выхода ионов из двигателя разгоняют их несколькими последовательными толчками. Размещение электродов и фазы тока подобраны так, чтобы скорость частиц непрерывно возрастала. Истекающий из двигателя поток ионов и создает реактивную тягу.

Для того чтобы заряд, возникающий в пространстве при истечении ионов, не нейтрализовал тягу, рядом с основным соплом расположена электронная пушка, которая выбрасывает назад электроны, полученные при образовании ионов. Источником энергии для работы ускорителя может служить ядерный реактор или Солнце. Для полетов в пределах орбит, близких к Солнцу, вплоть до Марса можно использовать лучистую энергию Солнца; это значительно облегчит двигатель, так как при получении энергии от ядерного реактора требуется система защиты с большим весом. Как уже говорилось выше, ионный двигатель очень мало расходует распыленных частичек газа. Так, например, подсчитано, что для межпланетной ракеты общим весом в 1000 т потребуется расходовать 5,25 кг газа в час. Развиваемая номинальная тяга в 91 кг достаточна, чтобы при продолжительной работе двигателя (в течение 500 суток) максимальная скорость полета могла достигать 42 км/сек, или 3 650 000 км/сутки. Взлет и разгон ракеты с ионным двигателем будет обеспечиваться ракетными ускорителями с ЖРД на химическом топливе. Причем возможно по окончании их работы использовать те же камеры сгорания и для истечения частиц, нагретых ядерным реактором.

Одна из задач, возникающая при создании атомно-ионных двигателей для ракет, — разработка методов непосредственного превращения атомной энергии в электрическую, необходимую для работы ионных реактивных двигателей.


9. Топлива современных ракетных двигателей

Источники энергии для ракетных двигателей. Ракетный двигатель, как и всякий другой, не может работать без источника энергии.

Единственным источником энергии, используемым в настоящее время в ракетных двигателях, является химическая энергия. При работе двигателя эта энергия может выделяться в реакциях двух типов. Наиболее распространенной является реакция горения. Эта реакция используется в рабочих процессах большинства существующих тепловых двигателей.

В некоторых жидкостных ракетных двигателях используется также химическая энергия, получаемая в результате реакции разложения некоторых веществ, сопровождающаяся выделением тепла.

В своем сочинении «Космический корабль» Циолковский описывает планирующий спуск ракеты в атмосфере без затраты топлива, при возвращении ее по огибающей Землю спиральной траектории после заатмосферного полета.

Ученый отмечает особую важность создания обитаемого искусственного спутника Земли. Спуск со спутника на Землю, по замыслам Циолковского, совпадающим с современными представлениями, будет происходить практически без затраты топлива, путем планирования в атмосфере на специальном планере, пилотируемом летчиком или автопилотом. Их задача — погасить космическую скорость планера (около 8 километров в секунду) путем постепенного торможения атмосферой. Взлет с Земли на спутник должен происходить с помощью ракет. Таким образом будет поддерживаться связь со спутником, необходимая для переброски оборудования, средств питания, для смены экипажа (членов экспедиции) и другого обеспечения постоянного функционирования спутника, пока в отдаленном будущем на нем не будут созданы условия для автономного существования.

В работе «Космические ракетные поезда», изданной в 1929 году, Циолковский предлагает поезда, составленные из ракет. Эти ракеты последовательно работают и поочередно отбрасываются в полете по мере опорожнения их баков, чем достигается увеличение конечной скорости, приобретаемой последней ракетой поезда. С той же целью Циолковский предлагал пускать группу ракет с поочередно работающими двигателями; по мере расходования топлива оно восполняется в части ракет путем переливания из других ракет, причем опорожнившиеся ракеты отделяются от группы.

В 1911–1912 годах в журнале «Вестник воздухоплавания» (Петербург) была опубликована статья, являющаяся продолжением работ Циолковского по ракетам. В этой статье, в частности, указывается на большие перспективы, открывающиеся перед ракетным летанием при использовании в качестве источника энергии для двигателя ядерных процессов и электронных или ионных двигателей.

Основная часть статьи посвящена плану завоевания и заселения мирового пространства человеком. Циолковский пишет: «Движение вокруг Земли ряда ракет со всеми приспособлениями для существования… может служить базой для дальнейшего распространения человечества». Константин Эдуардович считал, что основным источником энергии, обеспечивающим существование в неземных колониях, будет энергия солнечного излучения. Использование этой энергии должно также позволить выращивать растения в искусственной атмосфере в герметических прозрачных оранжереях.

Журнал, опубликовавший эту работу Циолковского, напечатал вместе с нею выдержку из его письма в редакцию, где говорится: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».

Общие сведения о ракетном топливе. В ракетных двигателях применяются однокомпонентные и двухкомпонентные топлива.

Однокомпонентным топливом являются такие вещества или смеси, которые в процессе химических превращений способны создавать массы отброса или рабочее тело для реактивного двигателя. К ним, например, относятся: нитрометан, азотнометиловый эфир, безопасные смеси горючего с окислителем.

Двухкомпонентное топливо (или топливо раздельной подачи) имеет наибольшее применение. Такое топливо может быть самовоспламеняющимся при смешении горючего с окислителем в камере сгорания. Если оно таким свойством не обладает, то в системе двигателя необходимо иметь какое-либо зажигающее устройство.

Топливо должно обладать большой теплотворной способностью[18] и заданной удельной тягой[19].

Физико-химические свойства топлива должны обеспечивать безотказную, надежную и эффективную работу реактивного двигателя при всех заданных условиях эксплуатации.

Кроме того, топливо должно обладать наибольшим удельным весом и наибольшей газовой постоянной[20].

При выборе топлива учитывают экономические, производственные и эксплуатационные его качества.

Проблема топлива является одной из наиболее важных задач в развитии реактивной техники. В настоящее время трудно говорить о будущем топливе для реактивных двигателей, но освоение атомной энергии в СССР сулит большие возможности в разрешении этой задачи.

Возможность применения этой энергии для реактивных двигателей предусмотрел еще основоположник теории реактивного двигателя К. Э. Циолковский. Об огромнейших мощностях реактивных двигателей, необходимых для преодоления космической ракетой земного притяжения, Циолковский писал:

«Энергии взрывчатых веществ оказывается далеко не достаточно, чтобы хотя бы им самим приобрести скорость, освобождающую их от земного тяготения… Разложение атомов и есть источник огромной энергии, в 400 000 раз больше самой мощной химической энергии»[21].

В нашей стране имеются все условия для широчайшего изыскания и применения многих видов топлива. Мы обладаем большими запасами различного сырья для получения топлива и имеем мощную машиностроительную промышленность, способную решить сложные задачи создания реактивного двигателя.

По мнению иностранных ученых, запуск первых искусственных спутников Земли показал, что в СССР создали такое горючее для ракеты, которое позволило достичь первой космической скорости.

По сообщению журнала «Бизнес уик», американские специалисты сделали также «тревожный вывод» о наличии у русских лучшего, чем в США, горючего, способного придавать ракетам такую огромную скорость. К тому же, сообщают они, в США еще нет и двигателей, приспособленных для использования этих видов горючего.

Перейдем теперь к рассмотрению ракет-носителей ИСЗ, оборудованных реактивными двигателями и автоматическим управлением.

Данные об орбите и движении советских спутников Земли приводят американцев к заключению, что русские применили в своей ракете систему управления, которая позволила вывести ракету-носителя на заранее вычисленную орбиту.



Загрузка...