ГИГАНТЫ И ДЕТАЛИ-НЕВИДИМКИ

Когда молодых ребят в техническом училище учат токарному делу, то обычно показывают, как обрабатывать детали средних размеров диаметром, скажем, от 1 до 250 миллиметров. Однако у каждого молодого человека из тех, кто решил посвятить себя этой профессии, всегда есть определенная склонность или к очень мелким «ювелирным» работам, или к большим деталям крупных машин.

Зачастую инструктор не может точно ответить на вопросы ребят: какова же самая крупная или самая мелкая деталь в современном машиностроении? Чтобы узнать о деталях-гигантах, давайте познакомимся с токарем Харьковского турбинного завода им. Кирова Василием Дмитриевичем Дрокиным. Если его встретишь не в цехе, то и не подумаешь, что перед тобой рабочий. Это чрезвычайно разносторонне развитой человек, с ним можно с одинаковым интересом говорить об искусстве, литературе, политике. Кстати, он и сам пишет. Его книга «Сорок лет у станка» очень интересна и получила широкую популярность. Но когда увидишь Василия Дмитриевича в цехе, у своих огромных станков, то сразу скажешь: «Да, это токарь, мастер экстра-класса!»

Высокого роста и крепкого сложения В. Д. Дрокин кажется необычайно маленьким рядом с огромным ротором генератора для Красноярской ГЭС или рабочим колесом турбины, которые ему приходилось обрабатывать. Диаметры таких изделий составляют зачастую 4,5 метра, а длина вала достигает 12—14 метров.

Машинная обработка этих деталей очень трудоемка, но все-таки самая сложная, ответственная и длительная операция — это измерение их диаметров. Ротор имеет множество ступенек, уступов и переходов различных диаметров. Измерение диаметра, равного 4 метрам, с точностью до 0,06—0,10 миллиметра осуществляют два рабочих. Вообще, на таких крупных станках работают обычно вдвоем. Измеряют диаметры большой скобой типа микрометра с установкой по микрометрическому штихмасу. При этом на измерение влияет много факторов, например деформация скобы под действием своей силы тяжести, изменения размера эталона-штихмаса в результате воздействия тепла рук рабочего и изменения температуры воздуха в цехе.

Для измерения так называемых среднегабаритных деталей эти факторы не играют особо важной роли. Диаметр стальной детали 100 миллиметров при нагревании на 2 градуса увеличивается всего лишь на 0,0017 миллиметра, а при диаметре 4 метра, казалось бы, такой ничтожный нагрев даст ошибку уже 0,08 миллиметра. Это как раз равно допуску на изготовление ротора. Все это я рассказываю для того, чтобы было ясно, как сложно измерить на станке диаметр хотя бы один раз. А таких измерений может быть двадцать и больше. Представляете себе теперь, как же трудно выточить такой ротор!

Задача осложняется еще и тем, что весит он несколько десятков тонн и забраковать его — значит поставить завод под угрозу невыполнения плана на 2—3 месяца. Василию Дмитриевичу Дрокину удалось в 3,5 раза сократить время обработки таких гигантских деталей, при этом их точность осталась довольно высокой. На продольном и поперечном верхних суппортах станка были сделаны упоры с индикаторами (рис. 1). Между ножкой индикатора и упором можно закладывать концевую меру любой длины или микрометрический штихмас, установленный на заданный размер.


Рис. 1. Схема измерения ротора генератора диаметром более 2500 миллиметров


Теперь достаточно измерить скобой один базовый диаметр, зафиксировать по индикатору положение резца, а остальные, скажем, 19 поверхностей других диаметров, протачивать уже, не останавливая станка и не производя долгих и трудных измерений скобой.

Как это сделать? Если, например, после обработки и измерения поверхности детали с базовым диаметром 2824 миллиметра вам нужно обработать поверхность диаметром 2820 миллиметров, то следует найти величину перемещения верхнего поперечного суппорта с резцом (2824−2820)/2=2 миллиметра и подать вперед суппорт, а с ним и резец на 2 миллиметра по индикатору. Цена деления индикатора 0,01 миллиметра. Тут может быть ошибка только на 0,02 миллиметра, а это не так уж страшно при таких размерах.

Или другой пример: обработана поверхность диаметром 3324 миллиметра. Нужно обработать поверхность детали диаметром 3624 миллиметра. В этом случае надо отвести поперечный суппорт, а с ним и резец на величину (3624—3324)/2=150 миллиметров. Для этого суппорт нужно подать назад больше чем на 150 миллиметров, а между упором и ножкой индикатора заложить штихмас или концевую меру длины 150 миллиметров. После этого суппорт подводят вперед, пока индикатор не покажет стрелкой исходное положение. Чтобы не делать всех этих вычислений в процессе работы, токарь заранее составляет таблицу разности всех диаметров детали относительно базовой поверхности:




Такое несложное новшество не только повысило производительность труда в 3,5 раза, но и, что тоже очень важно, позволило токарю, как говорится, дома спать спокойно, не думать, как-то там сейчас в цехе? А ведь именно так и бывает, если рабочий не уверен хотя бы только в одном измерении. Такова уж специфика всех крупных станочных работ.

Сейчас ученые разрабатывают новые оптические системы для облегчения точных измерений столь крупных деталей. В 1971 году на строительстве Ириклинской ГРЭС в Оренбургской области была использована такая оптическая система для сборки и установки энергоблока диаметром 4,5 метра и массой 150 тонн. С помощью этой оптической системы огромные детали монтировали и устанавливали с точностью до 0,05 миллиметра. Однако подобный метод пригоден только при сборке, но не при обработке.

А вот другое новшество В. Д. Дрокина, использованное им при обработке торцовых поверхностей дисков ротора. Вместо обычных правых и левых резцов он применил двусторонние резцы с четырехсторонней заточкой (рис. 2). Казалось бы, небольшое изменение конфигурации, а дало оно многое. При работе обычными проходными резцами приходилось 4 раза менять их и для этого останавливать станок. Применение нового инструмента позволило выполнять всю обработку с одной установки, без замены резца.



Рис. 2. Старый (а) и новый (б) методы обработки торцовых поверхностей дисков ротора


Резцы В. Д. Дрокина не отличаются от стандартных. Это обычные резьбовые резцы для крупных станков, только режущие пластинки имеют угол 90 градусов, а не 60 и припаяны они с обеих сторон обычной резцовой державки. Крепят их так же, как обычные проходные резцы, показанные на рис. 2, а.

Кроме харьковского турбинного завода им. С. М. Кирова, такие резцы изготовляют и работают ими на крупных токарных станках в Ленинграде на металлическом заводе им. XXII съезда КПСС.

При точении крупных деталей такое, на первый взгляд, незначительное новшество экономит много времени, а следовательно, средств и труда токаря. Ведь для пуска и остановки большого токарного станка требуется приблизительно 10 минут.

Я описал здесь только два творческих предложения токаря В. Д. Дрокина, а их у него множество. За свой творческий труд он удостоен высокого звания Героя Социалистического Труда, много лет он бессменный председатель Харьковского совета новаторов. С токарем В. Д. Дрокиным мы еще встретимся на страницах этой книги. А теперь я хочу познакомить читателя с самой мелкой работой на токарном станке.

Наверняка, многие сейчас подумают, что я буду описывать часовое производство, с его винтиками диаметром 0,2 миллиметра и резьбой с шагом 0,075 миллиметра. Нет, в современном машиностроении это не самая тонкая токарная работа. Во время поездки в ЧССР, на Международную конференцию инструментальщиков, мне пришлось побывать на заводе «Меопта». Это предприятие производит самые мелкие и точные приборы. Увиденное там поразило меня, достаточно опытного токаря. Части самых миниатюрных дамских часов кажутся крупными и грубыми по сравнению с деталями, которые вытачиваются здесь на токарных станках.

Я увидел токарный станок чехословацкого изобретателя Тико Алоиза, на котором обрабатываются оси диаметром 3—5 микрометров, или, как раньше говорили, микрон (вспомните, что толщина человеческого волоса 70 микрометров). Когда переводчица перевела эти данные, я подумал, что ослышался. Но мне предложили самому посмотреть в микроскоп со стократным увеличением, установленный над станком. Я увидел, как на станке вытачивалась ось с уступами, а наименьший диаметр одного уступа составлял 5 микрометров. Длина этой части оси была 2—3 миллиметра. Я видел, как резец брал стружку, как она то сыпалась, то завивалась колечками.

Как же удается изготовлять на токарном станке столь малые детали? Почему не ломается и не разрушается эта сказочная ось? Все дело здесь в магнитном центре: его острие растягивает заготовку, а не сжимает, как обычно, и не дает ей прогнуться (рис. 3). При конструировании столь малых деталей допуски на изготовление исчисляются в ангстремах (ангстрем — это 0,0001 микрометра). Допуск в 5 микрометров на изготовление оси, которую я видел, составлял 190 ангстрем. Читатель, естественно, может спросить: «А чем же измеряют такие малые величины и с такой точностью, которую даже трудно себе представить?» Вместе с виртуозной техникой изготовления изделий в последнее время далеко вперед шагнула и техника измерений. Кроме новейших типов микрометров, существуют приборы — оптиметры, которые, с помощью оптических систем безошибочно определяют размер деталей с точностью до одного микрометра. Имеются также ультраоптиметры, которые позволяют производить измерение деталей диаметром 0,05 мм с точностью до 0,2 микрометра.


Рис. 3. Обработка ультрамалых деталей с помощью магнитного центра: 1 — магнитный центр; 2 — микроскоп (увеличение ×100)


Прибор микрокаратор измеряет детали с еще более высокой точностью — до 0,1 микрометра. Когда мне показывали в ЧССР станок Тико Алоиза, измерение оси толщиной в одну сотую миллиметра осуществляли с помощью специального прибора фирмы Карл Цейсс. Прибор создан на основе теории интерференции света. По этой теории длины световых волн разного цвета, получаемых при прохождении луча через призму, отличаются друг от друга на несколько десятитысячных долей микрометра. На этом свойстве луча света и основан прибор интерферометр. Цена деления на шкале интерферометра составляет 0,1 микрометра, так же, как и у микрокаратора, но интерферометр считают более надежным прибором для измерений столь малых величин.

Однако и эта фантастическая точность была недостаточна для того, чтобы измерить ось, вытачиваемую на станке чешского мастера. Приборы, позволяющие измерять с более высокой точностью, еще недавно производила только фирма Карл Цейсс в ГДР. Интерферометр особой конструкции этой фирмы позволяет делать измерения с точностью до 0,02 микрометра или 190 ангстрем, составляющих допуск на изготовление той сказочной оси.

В настоящее время московский завод «Калибр» выпускает свои измерительные приборы ИКПВ (интерферометры контрольные повышенной точности) модели 266, которые позволяют измерять диаметр проволоки от 0,01 мм и более с точностью также до 0,02 микрометра. Приборы эти работают надежно и во всех отношениях не уступают цейсовским, хотя и имеют другую, принципиально новую конструкцию. Конечно, такая невероятная точность нужна далеко не на каждом производстве, но обычные интерферометры с ценой деления в 0,2 микрометра есть сейчас почти на каждом машиностроительном заводе.

Бесконечно многогранен труд современного токаря. Ему приходится выполнять сотни и тысячи самых различных и порой кажущихся совершенно невероятными по сложности токарных процессов. И многие из них разработаны нашими замечательными умельцами — токарями различных профилей. Каждый освоивший в совершенстве профессию токаря, довольно легко и быстро осваивает работу на фрезерном, расточном, шлифовальном, резьбошлифовальном и других станках. Но одно условие совершенно необходимо для успешной работы на любом станке — это творческий подход к своему делу.


Загрузка...