ГЛАВА 2 Устойчивость системы планет

В течение всего XVIII века математики и астрономы безуспешно пытались решить определенные проблемы, на которые механика Ньютона не давала ответа: форма Земли, ее орбита, кометы, аномалии движения и в целом устойчивость Солнечной системы. Лаплас играл в этих исследованиях решающую роль: ему удалось доказать, что принцип гравитации — краеугольный камень всего ньютоновского сооружения.

Став членом Академии, Лаплас понемногу поднимался по служебной лестнице. Коллеги признавали его математический талант, даже несмотря на некоторое неуважение, которое Лаплас демонстрировал по отношению к ним, заимствуя результаты без ссылок на авторство. Такое поведение сохранится в течение всей карьеры ученого. Тяжелый нрав Лапласа, его бескомпромиссность в спорах стали общеизвестными, а своим высокомерием он даже шокировал других академиков, также не чуждых снобизма.

В 1770-х годах важный вклад Лапласа в науку начал принимать четкие очертания: он доказал устойчивость известной Вселенной, то есть Солнечной системы. Его учитель д’Аламбер одной из научных целей эпохи считал необходимость дополнить теорию Ньютона. Речь шла не просто о соответствии теории и наблюдений; необходимо было описать мир, опираясь на некоторые рациональные подходы и принцип всемирного тяготения Ньютона. Это был также и философский вопрос: задача должна была быть решена не только физиками и математиками, но и философами. Однако, чтобы объяснить великий вклад Лапласа, вначале необходимо коротко описать состояние знаний о планетной системе, характерное для последней четверти XVIII века.


ПУТЬ К НАБЛЮДАЕМОЙ И ИСЧИСЛЕННОЙ ВСЕЛЕННОЙ

«Начала философии» Рене Декарта (1644) и «Математические начала натуральной философии» Исаака Ньютона (1687) представляли собой важные вехи в становлении знания о Вселенной, которое выходило за рамки аристотелевской теории и приближалось к современному. Итак, «механики» этих двух великих натурфилософов имели глубокие различия. Время доказало правоту Ньютона и перевело рассуждения Декарта в ранг метафизических домыслов. Ньютонова теория притяжения выйдет победительницей из дуэли с картезианской теорией вихрей. В любом случае в начале XVIII века превосходство ньютоновой системы над декартовой еще не было неоспоримо, и концепция Вселенной все еще обсуждалась. Закат картезианства происходил постепенно.

Можно сказать, что Ньютон умер два раза: физически он угас в 1727 году, но в 1693 году, спустя некоторое время после публикации своего великого произведения, ученый пережил нервный срыв, который заставил его потерять интерес к вопросам небесной механики и оставить задачу защиты закона земного притяжения ученикам. Это была сложная задача. Механическая астрономия, задуманная в качестве производной от астрономии наблюдаемой, имела своей целью осуществление математических расчетов, которые объясняли бы функционирование Солнечной системы — движение планет и их спутников вокруг Солнца, периодичность появления комет, форму земного шара, приливы и отливы, интерпретацию силы тяготения и так далее. Все эти элементы составляли основу данных, необходимых для доказательства одной из противостоящих друг другу великих теорий: декартовой и ньютоновой.

Сторонники обоих ученых разделяли механическую концепцию природы и считали, что они в состоянии изложить ее на математическом языке своей эпохи. Последователи Декарта опирались на соблазнительную картинку: все пространство заполнено либо твердой материей, либо жидкими телами — не всегда ощутимыми, любое движение должно происходить в форме турбулентного потока, вихря, а не по прямой линии.

Используя эту идею для описания небесной сферы, они представляли, что планеты вращаются вокруг Солнца, приводимые в движение огромными вихрями. В противовес этому последователи Ньютона отводили главенствующую роль Солнцу.

Именно эта звезда заставляла планеты вращаться вокруг нее благодаря гравитации — силе, навсегда запечатленной в законе земного притяжения.


Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тел и обратно пропорциональной квадрату расстояния между ними.

Закон всемирного тяготения Ньютона


Безусловно, декартовы вихри были несовместимы с большим количеством хорошо известных феноменов, но они позволяли объяснить движения с помощью физических воздействий. А вот загадочная сила притяжения, о которой говорил Ньютон и которая приводила в движение планеты, действовала на расстоянии, от Солнца, не прикасаясь к телам непосредственно. Было сложно не увидеть магии в этом дистанционном воздействии.

Лейбниц стал одним из самых знаменитых защитников декартовых вихрей. Немецкий философ и математик подчеркивал их гармоничный характер. Вихри и в самом деле позволяли объяснить, почему все известные планеты Солнечной системы и их спутники вращаются в одном направлении, следуя практически плоским траекториям. Все они словно погружены в общий вихревой поток и двигаются в одну сторону, с запада на восток, — словно корабли, отданные на милость течению.

Этот фундаментальный феномен, который Ньютон объяснить не мог, сторонники Декарта часто использовали в качестве аргумента, чтобы опровергнуть ньютоновы теории. Как мы увидим в главе 4, только Лаплас, выступавший на стороне Ньютона, сможет объяснить этот феномен с помощью своей космогонической теории газовой туманности.

Со временем идеи Ньютона понемногу возобладали, причем даже во Франции, где защита теории Декарта была национальной задачей. Именно во Франции приступили к основным проблемам небесной механики, в решение которых Лаплас сделал значительный вклад в последней четверти XVIII века.


АМБИЦИОЗНАЯ НАУЧНАЯ ПРОГРАММА:
НЕБО И ЗЕМЛЯ

Благодаря беспрецедентной интеллектуальной концентрации Ньютон написал «Начала» за 18 месяцев. В этом труде он изложил фундаментальные принципы «теоретической и рациональной» механики (как он ее называл), то есть науки о движении. Исходя из своего второго закона (сила равна массе, умноженной на ускорение) и первого закона Кеплера (планеты описывают орбиты в форме эллипса, в одном из фокусов которого находится Солнце), он вывел закон всемирного тяготения, который звучит следующим образом: «Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тел и обратно пропорциональной квадрату расстояния между ними». Сила притяжения увеличивается с массой, но уменьшается с расстоянием. «Начала» глубоко потрясли математический мир и мир натурфилософии. Новый закон одновременно объяснял движение планет и гравитационное притяжение тел к Земле.

Этот закон сразу очаровал Лапласа. Возможно, он тут же решил найти доказательство универсальности этого закона, поскольку он объяснял все небесные феномены без исключения.


Я надеюсь доказать, что небесные феномены, которые кажутся исключением из принципа тяготения, на самом деле являются его необходимым следствием.

Лаплас о законе всемирного тяготения Ньютона


Объединив все феномены в единую систему, Лаплас стремился описать новую картину Вселенной — полностью детерминистской. Однако его исследование не касалось исключительно Солнечной системы и небесной механики. Лаплас в равной мере и с той же целью обратил свой взгляд и на земную физику — чтобы найти несколько универсальных законов, которые управляют физическими, химическими и даже биологическими феноменами. И его второй важный вклад состоит в разработке основ теории вероятностей (ее мы рассмотрим в главе 5). Вероятность — это точка, в которой соединяются законы Вселенной и случайности человеческого познания.


ФОРМА ЗЕМЛИ

Греки утверждали, что Земля имеет форму сферы. Эта теория нашла практическое доказательство в 1522 году во время плавания Фернана Магеллана (1480-1521) и Хуана Себастьяна Элькано (1476-1526). Коперник открыл, что земной шар находится в движении, а также ответил на животрепещущий вопрос науки своей эпохи: какова форма этой движущейся Земли? Сторонники Декарта и Ньютона разделились. В «Началах» Ньютон выдвинул предположение, что небесное тело в состоянии движения принимает форму сфероида, приплюснутого на полюсах, то есть форму тыквы. Картезианцы возражали: согласно теории вихрей, Земля должна принять форму продолговатого сфероида, приплюснутого на экваторе, то есть форму дыни или яйца — как это показывает рисунок на следующей странице.

Установив истинную форму Земли, можно было подтвердить правоту Ньютона или Декарта. Париж в эти годы стал центром притяжения европейских математиков. В 1733 году астроном Луи Годэн (1704-1760) предложил измерить длину градуса меридиана на уровне экватора. В следующем году с этой целью в вице-королевство Перу, находившееся под властью испанской короны, направилась экспедиция. Одновременно Пьер Луи Моро де Мопертюи (1698-1759), ассистент математика Алекси Клода Клеро (1713-1765), осуществил экспедицию в Лапландию, чтобы измерить длину градуса меридиана на уровне Северного полюса. Вернувшись в Париж даже раньше предусмотренного срока, 13 ноября 1737 года оба исследователя торжественно заявили перед Академией наук, что в результате измерений был подтвержден тот факт, что Земля имеет форму сфероида, приплюснутого на полюсах. Таким образом, прав оказался Ньютон.

Слева: Земля согласно Ньютону в форме тыквы. Справа: Земля согласно Декарту в форме дыни.


Сторонники Ньютона выиграли важную битву, но еще не всю войну. Декарт, с его вихрями и невидимыми тонкими материями, объяснял все, но ничего не предсказывал. А вот Ньютон, напротив, с его законом притяжения, мог предвидеть многое, но почти ничего не объяснял. Происхождение силы тяготения оставалось загадкой, но возможность использовать теорию Ньютона для прогнозирования позволила этому ученому одержать победу над Декартом. С этого момента на первый план в науке выходит эффективность.

Однако вопрос о форме Земли не был решен окончательно. Выяснилось, что хотя планета и приплюснута на полюсах, она не имеет четкой формы сфероида. Ее вид постоянно меняет сила тяготения, пример тому — отливы и приливы. Начиная с этого момента исследования силы тяготения расширялись.

В январе 1783 года молодой математик Адриен Мари Лежандр представил членам Академии результаты своей работы, касавшейся воздействия силы тяготения на сфероиды. Лапласу поручили прочитать эту работу и составить ее краткое резюме. В марте ученый представил Академии восторженный отчет. Безусловно, работа Лежандра побудила Лапласа начать собственные исследования этого вопроса. Немного позже он представил любопытный доклад — первую публикацию под собственным именем {«Теория притяжения сфероидов и фигуры планет», 1784), в которой обобщал наработки Лежандра, хотя и ни разу не ссылался на него. Лаплас проявлял подобную бестактность еще до вступления в Академию, когда позаимствовал идеи Эйлера и Лагранжа, не упоминая их имен. И этот случай не будет последним. Лаплас опубликовал свою работу раньше, чем Лежандр, который подчеркивал:

«Должен отметить, что дата моего сочинения более ранняя, и новое доказательство позволило господину Лапласу углубить это исследование». Что же такого было в работе Лежандра, сразу заинтересовавшей Лапласа? Именно в этом труде впервые было упомянуто то, что сегодня называют многочленами Лежандра (и что несправедливо называли функциями Лапласа в течение доброй части XIX века), — специальные функции, появляющиеся при решении дифференциальных уравнений. Точнее, они появлялись в решении одного уравнения, важного для небесной механики, которое мы сегодня называем уравнением Лапласа.


ОТРЫВОК ИЗ «ФИЛОСОФСКИХ ПИСЕМ» ВОЛЬТЕРА

«Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах. В Париже он оставил мир, полный вещества, здесь он находит его пустым. В Париже Вселенная заполнена эфирными вихрями, тогда как тут, в том же пространстве, действуют невидимые силы. В Париже давление Луны на море вызывает отлив и прилив — в Англии же, наоборот, море тяготеет к Луне. У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все объясняется притяжением, что, однако, немногим яснее. Наконец, в Париже Землю считают вытянутой у полюсов, как яйцо, а в Лондоне она сжата, как тыква...»


ЛАПЛАСИАН

Лапласианом называют оператор, являющийся обобщением на функции w = f(x, у, z, t) координат пространства и времени и равный сумме вторых производных функции от х, у, z:

Δw = d²w/dx²+ d²w/dy² + d²w/dz².

Лаплас посвятил много времени решениям дифференциальных уравнений математической физики, в которой появилась эта формула. Три из этих уравнений по-настоящему важны.

— Δw=0: уравнение Лапласа, которое отражает тот факт, что совершенное жидкое тело, в котором нет потока, является неразрушимым. Это уравнение математическим способом представляет очевидный факт: если жидкое тело является неразрушимым, количество жидкости, которая выходит в любом малом объеме и за данный промежуток времени, и то количество жидкости, которое в нем остается, — идентичны. Однако, когда это уравнение подвергается математическому рассмотрению, оно приводит к неожиданным выводам, которые далеки оттого, чтобы быть прописной истиной, и позволяют сделать некоторые прогнозы. Лаплас открыл это уравнение, когда изучал потенциал притяжения (функция, измеряющая силу притяжения, посредством которой тело любой формы притягивает определенную массу).

— Уравнение распространения тепла:

Δw = dw/dt.

— Волновое уравнение:

Δw = d2w/dt2.


Впрочем, идея этого уравнения и функции, следующей из него, — Симеон Дени Пуассон (1781-1840) и позже, в 1828 году, Джордж Грин (1793-1841) назвали ее потенциальной функцией — уже прослеживалась в работах, написанных ранее Эйлером и Лагранжем, а Лаплас первым упомянул эти две формулы в своих исследованиях тяготения. Это уравнение и эта функция сыграют фундаментальную роль в последующих работах, касающихся тепла, электричества и магнетизма. Удивительно также, что уравнение Лапласа и многочлены Лежандра необходимы для описания поведения электронов и атомов: двумя веками позже они снова появятся в фундаментальном уравнении квантовой механики — в уравнении Шрёдингера.


ОРБИТЫ И КОМЕТЫ

Аристотель считал кометы феноменами атмосферного характера. Но позже математики вызвались подправить древнюю теорию и описать траекторию этих небесных странников, которые в народе считаются предвестниками беды. Чтобы убедиться в универсальности закона тяготения, необходимо было сделать следующий решительный шаг: применить этот закон к телам, которые перемещаются вне Солнечной системы. Не будем забывать, что существование комет позволяло опровергнуть теорию декартовых вихрей. Если кометы могли пересекать Солнечную систему, не втягиваясь в вихревые потоки, возможно, это означало, что вокруг Солнца просто не существует этих потоков?

В «Началах» Ньютон написал, что кометы также подвержены закону тяготения, а значит, они должны описывать замкнутую траекторию. Ученый уже уподобил движение снарядов параболам, а движение планет — кругам или эллипсам. После этого у него появилась идея сравнить движение комет с одним из конических сечений — кругом, эллипсом, параболой или гиперболой. Если комета описывает круг или эллипс, даже очень вытянутый, она должна регулярно появляться. Но если ее орбита имеет форму параболы или гиперболы, значит, следуя по открытой орбите, комета проходит через Солнечную систему и исчезает в необъятной Вселенной. Поскольку период обращения большинства комет, наблюдаемых с Земли, намного превышает длительность жизни астрономов, ученые долгое время и не подозревали, что кометы, как и планеты, описывают закрытые эллиптические орбиты.


В ТЕНИ ЛАПЛАСА

Адриен Мари Лежандр (1752-1833), наряду с Лапласом и Лагранжем, является третьей «Л» французской математики той эпохи. Он поддерживал тесные научные контакты с Лапласом, который был старше его всего на три года, и систематически становился его преемником на различных должностях.

В 1775 году благодаря д’Аламберу Лежандр занял должность преподавателя в Королевской военной школе Парижа, в 1783-м перешел на должность, оставленную Лапласом из-за повышения.

Однако нельзя сказать, что Лаплас помогал коллеге добиться успеха! Напротив, он несколько раз пользовался исследованиями Лежандра, даже не ссылаясь на него, и применял свое право вето при обсуждении его назначения на различные должности. Несмотря на все препятствия, Лежандр в 1782 году получил премию Берлинской академии наук. Лагранж, высоко ценивший Лежандра, просил Лапласа о содействии, но результат этой просьбы нам неизвестен.

Карикатура на Лежандра, созданная в 1820 году французским художником Луи-Леопольдом Бальи.


Отважный Эдмунд Галлей (1656-1742) в 1682 году открыл комету, которая сегодня носит его имя, и предположил, с учетом имевшихся данных, что эту же комету наблюдали в 1531-м и в 1607 году. Комета возвращалась раз в 75 или 76 лет, описывая очень вытянутый эллипс вокруг Солнца (см. рисунок). Галлей даже предсказал возвращение кометы в конце 1758- го или в начале 1759 года. Все жители Франции, от короля до просвещенных студентов, ждали этого события. Клеро усовершенствовал прогноз Галлея, опираясь на вычисления, проведенные д’Аламбером, но не ссылаясь на него, что усилило научную ревность между двумя исследователями. Появление кометы 25 декабря 1758 года, через 15 лет после смерти Галлея, подтвердило прогноз. Это стало еще одним доказательством справедливости механики Ньютона по сравнению с теорией Декарта. Больше не было сомнений в том, что кометы описывают вытянутые эллиптические орбиты.

Все планеты перемещаются в одной плоскости (плоскости эклиптики) и в одном направлении, но орбита кометы Галлея явно наклонена по отношению к этой плоскости, а сама комета движется в обратном направлении (ретроградное движение).


В это время парижских ученых охватила настоящая страсть к кометам. В 1773 году Лаланд, который считал себя самым известным астрономом во Вселенной и хвастался тем, что «так же уродлив, как Сократ», решил подшутить над коллегами. Этот распутник и безбожник, однажды съевший паука, чтобы доказать нерациональность арахнофобии, представил перед членами Академии отчет, в котором объяснял, как планеты воздействуют на орбиты комет. Он выдвигал возможность того, что одна из них может уничтожить Землю в 1789 году, и это заявление вызвало во французской столице настоящий ужас. Архиепископ Парижа посоветовал молиться в течение 48 часов, чтобы успокоить панику, и попросил Академию наук не признавать отчет. На это ученые ответили, что не могут не признавать законы астрономии. Тогда Лаланд решил развеять всеобщие страхи, заявив, что это будет очень необычно, если два маленьких тела — комета и Земля — столкнутся в необъятном пространстве.

Многие ученые взялись за точные расчеты орбиты комет. В 1766 году иезуит и астроном Руджер Бошкович (1711— 1787) представил Академии метод определения траекторий комет, однако его доклад закончился ссорой с Лапласом, который резко обругал все изыскания коллеги. В то время как Бошкович читал вслух свой отчет, Лаплас прерывал его возгласами: «Ложь!» «Необдуманно!» «Ошибочно!» В конце концов Академия была вынуждена созвать комиссию, которая согласилась с Лапласом, отметив, что это не дает ему права так унижать Бошковича. Немного позже Лаплас загладил свою вину, представив собственный способ расчета орбит комет.

Брат и сестра Гершели были британскими астрономами немецкого происхождения. Уильям (1738-1822) и Каролина (1750-1848) образовали тандем, не имеющий себе равных, по исследованию небесного пространства, используя телескопы собственного производства. Неутомимый наблюдатель Уильям Гершель 13 марта 1781 года отыскал в небе новую звезду. Сначала он подумал, что это комета, описывающая эллиптическую или параболическую орбиту, так как, в отличие от удаленных звезд, открытое тело двигалось. Многие астрономы (в их числе Бошкович, Лаланд и Лаплас) сделали свой вклад в расчет его орбиты на основании трех коротких наблюдений. И все трое были поражены: это была не комета, а новая планета, которую можно было наблюдать только в телескоп. Астроном Андреас Иоганн (в России — Андрей Иванович) Лексель (1740-1784) взялся за доказательство: новая звезда очерчивала вокруг Солнца эллиптическую орбиту, лежащую в одной плоскости с орбитами других планет. Это был Уран — первая планета, невидимая невооруженным глазом и самая удаленная из известных сегодня. Открытие нового тела в Солнечной системе было удивительным, ведь количество известных планет не менялось в течение тысячелетий. Древнегреческие астрономы называли планетами (дословно — «странствующие звезды») пять светящихся точек: Меркурий, Венеру, Марс, Юпитер и Сатурн, которые перемещались в небе на фоне неподвижных звезд. Их движение описывало на небесной сфере четкую линию (зодиак) — пояс, окружавший траекторию, описываемую Солнцем (эклиптику).

Гершель, наблюдая за Сатурном, который он любил больше других планет из-за красочных колец, открыл другие спутники, добавленные к уже известным пяти. В 1787 году он открыл два спутника Урана — Титанию и Оберон. В начале XIX века в список известных небесных тел были добавлены малые планеты и астероиды (Церера, Паллада, Веста и Юнона). Пространство, разделявшее Марс и Юпитер, понемногу заполнялось малыми небесными телами. Уже были известны семь больших планет и четырнадцать спутников, включая Луну. И чем больше небесных тел открывали ученые, тем более очевидным становилось понимание: силы притяжения не дестабилизируют Солнечную систему, они не разорвут ее на тысячи кусочков. В течение века вопрос об устойчивости этой системы становился все более насущным.


ВЕКОВЫЕ НЕРАВЕНСТВА ПЛАНЕТ И ИХ СПУТНИКОВ

В «Началах» Ньютон установил, что планеты притягиваются к Солнцу, как спутники — к своим планетам. Точно так же и Солнце притягивается к планетам, а те — к своим спутникам. Эти взаимодействия носят циклический характер; каждое небесное тело подвержено не только силе притяжения Солнца, но и гравитационному взаимодействию с другими телами. Ньютон отметил, что наблюдал эллипс, который описывает Солнце. Но если принять во внимание влияние на него других планет, то можно заметить, что орбита Солнца претерпевала некоторые отклонения, и светило удалялось от намеченного пути. Эта проблема планетных возмущений дала стимул исследованиям в небесной механике в течение XVIII века. Рисунок 1 — это пример подобных возмущений: Земля притягивается Солнцем, которое, в свою очередь, притягивается Юпитером, отклоняясь от своей орбиты.

Эта физическая проблема имела математическую аналогию, называемую «задачей трех тел», или, обобщенно, «задачей п тел», решение которой до сих пор не найдено. Формулировка ее очень проста: определить движение в пространстве каждого из п тел различной массы, подверженных взаимному притяжению. Формулировка проблемы отличается простотой и элегантностью, но о ее решении нельзя сказать того же. В «Началах» Ньютон геометрическими методами решил задачу двух тел для двух сфер, двигающихся под воздействием силы тяготения. В 1734 году Даниэль Бернулли (1700-1782) решил эту задачу аналитически, получив за свою работу премию Академии наук. Наконец, Эйлер рассматривал эту проблему в своем труде Theoria motuum planetarum et cometarum {«Теория движения планет и комет») 1744 года. Решение состояло в том, что два тела перемещались вдоль конических сечений: круга, эллипса, параболы и гиперболы (рисунок 2).

РИС. 1

РИС. 2


Когда была решена проблема n тел для n = 2, математики принялись за решение для n = 3. Речь шла о логическом продолжении рассуждения, позволявшем понять движение системы, образованной Солнцем, Землей и Луной. Ньютон первым, в 1702 году, осуществил прорыв публикацией своей лунной теории. В предисловии он объяснял:


«Долгое время астрономы жаловались на неравномерность движения Луны; и это правда, я всегда сожалел о том, что такая близкая планета к нашей имеет орбиту, удаленную от эллипса».


Однако исследования Ньютона потерпели провал, так как ученый был не в состоянии представить результаты с допустимой погрешностью. Позднее он будет с горечью вспоминать: у него никогда не болела голова, за исключением того времени, когда он проводил исследования Луны. В 1760-х годах Эйлер стал первым, кто в целом изучил проблему трех тел, двигающихся под воздействием взаимного притяжения:


«Проблема сократилась до трех дифференциальных уравнений, которые не только не могут быть никоим образом введены, но для которых очень сложно подобрать приблизительные решения».


Клеро, как и Эйлер, попытался решить задачу трех тел, но при этом жаловался на сложность и закончил тем, что использовал довольно приблизительные решения. Решение этих крайне сложных проблем казалось настолько трудным, что были запущены две параллельные программы исследований. С одной стороны, ученые искали точные решения, а с другой — стремились к общим приблизительным ответам, которые можно было бы использовать в течение некоторого времени, применяя метод теории возмущений, о котором мы говорили.

В 1772 году Лагранж участвовал в конкурсе Академии наук Парижа с работой, посвященной задаче трех тел. Он хорошо понимал, что этот вопрос не мог быть решен посредством интегрирования (в отличие от задачи двух тел), то есть с помощью аналитической функции, которая стала бы общим решением дифференциальных уравнений. Однако ученый предложил несколько других решений. Можно было найти точное решение, в случае если три исследуемых тела находились в определенной конфигурации и два из них имели очень большие массы по сравнению с третьим. Эйлер также предложил решение для случая, когда три тела располагались на одной линии, а Лагранж — когда три тела находились в углах равностороннего треугольника (с тех пор эти точки называют точками Лагранжа). В те годы все эти решения не имели реального смысла и были не чем иным, как математическим развлечением, и только в 1906 году астрономы докажут, что троянские астероиды (крупное скопление небесных тел на орбите Юпитера) образуют с Солнцем и Юпитером именно такое построение. Решения задачи трех тел, полученные чисто теоретическим способом, найдут свое физическое подтверждение более чем через столетие. Сам того не зная, Лагранж решил задачу трех тел для системы, образованной Солнцем, Юпитером и астероидом Ахиллес (см. рисунок на следующей странице).

Таким образом, Лагранж нашел общее приблизительное решение задачи трех тел. Особого интереса заслуживают два случая: система трех тел, образованная Солнцем, Юпитером и Сатурном, и система, состоящая из Солнца, Земли и Луны. Речь шла о том, чтобы объяснить нерегулярное движение нашего спутника, а также движение больших планет Солнечной системы. Если учитывать только силу тяготения Солнца (так как масса этой звезды наиболее значительна в системе), можно утверждать, что орбита каждой планеты представляет собой эллипс. Однако, если добавить силу тяготения других планет, эллиптическая траектория нарушается. Являются ли эти возмущения кумулятивными или они компенсируют друг друга с течением времени?

Требовалось узнать, являются неравенства эллиптического движения планет (используем терминологию Лагранжа и Лапласа) периодическими или вековыми. В первом случае отклонения орбит были бы компенсированы в течение длительного периода времени таким образом, что орбита осталась бы стабильной. Периодические неравенства вызывают искажение орбиты планеты сначала в одном направлении, затем в обратном, таким образом возмущения компенсируются.

Но если мы имеем дело с вековыми неравенствами, то возмущения накапливаются в течение неопределенного времени, пока, наконец, планета не покинет свою эллиптическую орбиту Эта ситуация завершается дестабилизацией Солнечной системы.

Неравенства векового типа вызывают искажения планетных орбит в одном направлении, что влечет нарушение равновесия.

Поскольку эти неравенства наблюдались в течение многих веков, они были названы вековыми. Лаплас был убежден, что основные возмущения планетных орбит (касающиеся их формы и положения, то есть эксцентриситета эллипса и места планеты на орбите) не вековые, а периодические, и они колеблются вокруг некоторых средних значений, не выходя за определенные пределы. Как мы вскоре увидим, Лаплас решит проблему аномалий, наблюдаемых в движении Сатурна, Юпитера и Луны.

В окрестностях точки Лагранжа L4 находится Ахиллес, образующий с Солнцем и Юпитером равносторонний треугольник (его углы равны 60°). В окрестностях других точек Лагранжа (L1 и L2) находятся другие троянские астероиды, расположенные на прямой линии,что соответствует решению Эйлера.


Вначале давайте рассмотрим аномалии движения Юпитера и Сатурна. Галлей в XVII веке констатировал, что Сатурн двигается с явным замедлением и удаляясь от Солнца, а Юпитер — ускоряя свой бег и приближаясь к светилу. Если бы эта тенденция сохранилась, Юпитер в конце концов столкнулся бы с Солнцем, а Сатурн — покинул пределы Солнечной системы.


Подставляя (в уравнение) цифровые показатели для Юпитера и Сатурна, я был удивлен тем, что оно становилось равно нулю.

Лаплас об уравнении, доказывающем постоянство усредненных орбит планет


Между 1785 и 1786 годами Лаплас решил эту загадку, описав ее в своих гениальных трудах под названием «О вековых неравенствах планет и спутников» и «Теория Юпитера и Сатурна». Как и Лагранж, Лаплас понимал, что найти точные аналитические решения задачи трех тел невозможно, поэтому следует прибегнуть к приблизительным решениям. И он сумел предоставить аналитическое выражение для векового неравенства планет. Ему удалось вывести уравнение и обнаружить приятный сюрприз: вековые ускорения планет пропали. Ученый смог разобраться с одним из самых важных феноменов мировой системы и доказать, что неравенства, наблюдаемые в движении Юпитера и Сатурна, являются не вековыми, а периодическими.

Аномалии движения Юпитера и Сатурна объясняются ньютоновым законом всемирного тяготения, и, в принципе, можно рассчитать предшествующие и последующие состояния системы. Ускорение первой планеты и замедление второй — следствие их взаимного влияния. Эти возмущения периодические и поэтому — компенсируемые. Каждые 450 лет они меняют знак ускорения: Юпитер начинает замедлять движение, а Сатурн, наоборот, ускоряется. Таким образом, планеты возвращаются в исходное положение каждые 900 лет. По какой причине это происходит? Лаплас констатировал, что на каждые пять оборотов Юпитера по его орбите приходится около двух оборотов Сатурна и для того, чтобы обе планеты вновь оказались в исходном положении, требуется 900 лет[1 Период обращения Юпитера — 12 лет, период обращения Сатурна — почти 30. За 900 лет Юпитер сделает 75 оборотов, а Сатурн — 30.]. В результате накопленные возмущения компенсируются. Наконец-то нашелся человек, который сумел объяснить ускорение Юпитера и торможение Сатурна, так тревожившие астрономов со времен Ньютона! И эта тревога понятна, ведь ни один ученый не может наблюдать регулярность в течение такого долгого промежутка времени!

Каким же образом Лаплас получил столь блестящий результат? Чтобы решить проблему движения планет, он использовал приблизительные значения. Если бы существовала только одна планета, она описала бы вокруг Солнца обычную эллиптическую орбиту. Но поскольку планеты воздействуют друг на друга, в качестве обычной можно рассматривать возмущенную орбиту. Для этого мы добавим к расчетной орбите небольшое возмущение (см. рисунок).

Анализ уравнений орбитального движения очень сложен для того, чтобы приводить его здесь. Если дифференциальные уравнения, описывающие движение системы из двух тел, линейны, то уравнения для системы из трех и более тел нелинейны. Для поиска решений необходимо воспользоваться методом приближений. Решение нелинейного дифференциального уравнения, соответствующего проблеме с учетом возмущений, может быть найдено путем решения аналогичного линейного уравнения — в котором не учитывается влияние третьего тела — и затем введения в полученный результат возмущения. Иными словами, мы находим приблизительное решение проблемы трех тел, используя наши знания о проблеме двух тел. Таким образом, решение нелинейного уравнения с возмущениями строится на соответствующей корректировке решения обычного уравнения (линейного).


Главное при этом — с необходимой точностью определить степень возмущения (которое в нашем случае является периодическим). Лаплас длительное время вычислял возмущения, которые испытывают планеты, при этом в уравнениях он сохранял основные элементы (первые члены) и отклонял другие, слишком ничтожные. Решения, к которым он таким образом пришел, были не точными, а приблизительными. Однако даже эта неточность позволяла делать достоверные прогнозы, учитывая следующее:

— 99,87 % общей массы Солнечной системы приходится на Солнце.

Вследствие этого орбиты планет являются эллиптическими, поскольку центробежные силы планет слабы по отношению к тяготению Солнца.

— На Юпитер приходится 70 % планетной массы, что оказывает значительное влияние на остальные планеты. Таким образом, в системе, состоящей из Солнца, Юпитера и Сатурна, считается, что вторая планета, наряду с Солнцем, воздействует на движение третьей. Это же справедливо и для движения Юпитера, поскольку Сатурн является второй планетой Солнечной системы по размерам и массе после Юпитера.

— Мы исходим из предположения, что ни Юпитер, ни Сатурн не возмущают движение Солнца. Также если бы вместо Сатурна речь шла о другой — меньшей — планете, то сила тяготения, действующая на Юпитер, была бы ничтожной, что упростило бы расчеты.

Лапласу теперь оставалось объяснить аномалию движения Луны, что он сделал в своих трудах, представленных в 1787 и 1788 годах под названием «О возмущениях движения Луны». Благодаря близкому расположению к Земле движение Луны было исследовано лучше всего. В 1693 году Галлей констатировал заметное ускорение ее среднего движения по отношению к продолжительности, указанной древнегреческими астрономами. Отметим, что на наш спутник воздействует сила тяготения не только со стороны Земли, но и со стороны Солнца, постоянно отклоняющего Луну от воображаемого эллипса, который должна представлять ее орбита.

Когда Лаплас принялся за эту проблему, Лагранж уже добился значительных успехов в применении закона всемирного тяготения к конкретной проблеме лунной механики, что принесло ему премию Парижской академии наук: в 1764 году он предложил объяснение феномена либрации Луны.

Луна всегда обращена к нам одной стороной, но мы не всегда видим ее одинаковую долю. Учитывая, что наш спутник совершает легкие колебания в пространстве, мы можем видеть небольшую часть ее скрытой стороны (в частности, с Земли мы можем наблюдать до 59% лунной поверхности, то есть больше ожидаемых 50%).


ОТКРЫТИЕ НЕПТУНА

Теория возмущений приведет в конечном итоге к открытию Нептуна и Плутона (в 1846 и в 1930 годах соответственно) — двух планет, расположенных в самых отдаленных участках Солнечной системы.

Исследование отклонений траектории планет играет важную роль в предсказании существования новых звезд до того, как они будут замечены в телескоп. Исходя из несовпадения между положением Урана, соответствующим теории тяготения, и реально наблюдаемым положением Джон Куч Адамс (1819-1892) и Урбен Леверье (1811-1877) пришли к выводу, что на движение Урана воздействует какая-то еще более удаленная планета. Это предположение подтвердил ночью 23 сентября 1846 года астроном Иоганн Готтфрид Галле (1812- 1910), работавший в обсерватории Берлина. Так был открыт Нептун. Кроме этого Леверье всегда считал, что аномалии в движении Меркурия также можно объяснить существованием неизвестной планеты — это небесное тело под названием Вулкан могло бы располагаться между Солнцем и Меркурием и воздействовать на орбиту последнего. Однако исследования в этом направлении не принесли результатов: известно, что Леверье долгое время принимал за Вулкан солнечное пятно, проплывающее по диску светила. Сегодня мы знаем, что для объяснения аномального движения Меркурия недостаточно механики Ньютона: необходимо прибегнуть к теории относительности Эйнштейна.


Этот вопрос достаточно естественно вписался в задачу трех тел в отношении системы Солнце — Земля — Луна и требовал тщательного исследования лунных колебаний, которые вызывали Земля и Солнце благодаря силе тяготения,— и Лагранж блестяще справился с задачей. Колебательное движение Луны также оказалось не вековым, а периодическим. Лаплас мог аналогично объяснить и все прочие аномалии движения Луны. Он нашел приблизительные решения, опираясь на идею о том, что Солнце ввиду своей удаленности от Земли и Луны мало влияет на движение этих небесных тел. Не было никакой причины считать, что наш спутник слишком сильно приблизится к Земле или отдалится по направлению к Солнцу. Ускорение движения Луны, наблюдаемое в течение последних веков, объясняется изменением эксцентриситета земной орбиты, но эти изменения компенсируются, так как мы имеем дело с периодическими движениями, и Луна после ускорения начнет замедляться. Лаплас писал:


«Эти неравенства не всегда возрастают. Они периодические, как и неравенства эксцентриситета земной орбиты, от которых они зависят, и восстанавливаются лишь через миллионы лет».


Наконец, Лаплас смог доказать, что орбиты планет и их спутников понемногу меняются, но всегда в некоторых пределах. Изменения эксцентриситета и наклонения орбит всегда остаются незначительными и ограниченными. Последствия периодических возмущений не являются разрушительными — они компенсируются. Аномалии, обнаруженные в движении Солнечной системы в течение коротких периодов времени, полностью исчезают при рассмотрении более длительных промежутков. Лаплас доказал все это на основе анализа и закона всемирного тяготения. Ньютон мог спать спокойно: он одержал победу.


ДОКАЗАТЕЛЬСТВО СТАБИЛЬНОСТИ СОЛНЕЧНОЙ СИСТЕМЫ

С задачей трех тел и орбитальными аномалиями тесно связан вопрос стабильности Солнечной системы (состоявшей в то время из восьми тел: Солнца и семи известных планет, не считая их спутников). Его решение зависело от решения задачи трех тел. В области астрономии решение проблемы п тел равносильно тому, чтобы спросить самого себя, как будет выглядеть небо через год, через 100 лет и миллиард лет. Как мы уже увидели, Ньютон знал, что для двух тел задача могла быть решена с высокой точностью в любой данный момент; но все менялось, когда во взаимодействие с двумя первыми телами входило третье. Воздействие планет было слабым по сравнению с гравитационным притяжением Солнца, но все же не ничтожным. Более того, в долгосрочной перспективе это воздействие могло отклонить планету с ее орбиты или даже вытеснить из Солнечной системы. Межпланетные взаимодействия могли повредить красивые кеплеровские эллипсы и не давали возможности предсказать поведение системы в отдаленном будущем. В своей работе De motu corporum in gyrum («Движение тел на орбите», 1684) Ньютон утверждал, что планеты движутся не по совершенному эллипсу и никогда не повторяют одну и ту же орбиту два раза. Он также признал, что предсказание долгосрочных движений значительно превосходит человеческие способности.

Таким образом, оставались открытыми насущные вопросы: стабильна ли Солнечная система? Остаются ли планеты на своих орбитах или смещаются с них с течением времени? Не приведут ли аномалии, наблюдаемые в движениях Юпитера, Сатурна и Луны, к разрушительным последствиям? Ньютон представил радикальное решение проблемы: когда Солнечная система выходит за рамки правил, рука Бога заново направляет каждую планету на свой эллипс, регулярно устанавливая, таким образом, гармонию в мире. Однако Лейбниц замечал по этому поводу, что Создатель не ремесленник. Немца возмущал тот факт, что британец привлекает Бога в качестве гаранта стабильности Солнечной системы. Невозможно себе представить, что Творец создал мировую машину, которая, словно часы, нуждается в регулярной проверке и корректировках.

Это спор бушевал в последние десятилетия XVIII века, период, когда ярок был страх нестабильности Вселенной и ужас перед тем, что комета, проходя рядом с Землей, может быть притянута ею, и в результате произойдет столкновение с трагическими последствиями для цивилизации. (Теперь мы знаем, что гравитационное притяжение Юпитера помогло уменьшить орбиту кометы Хейла — Боппа с 4200 до 2800 лет после ее последнего появления в 1997 году)

Мог ли закон всемирного тяготения Ньютона подтвердить стабильность Солнечной системы? Лапласу законы британского ученого уже помогли предсказать траектории любых небесных тел — планет, спутников и комет. Кроме того, они доказывали стабильность мировой системы и устойчивость Вселенной.

Между 1785 и 1788 годами Лаплас доказал, что ни изменение эксцентриситета, ни возмущения орбит не являются вековыми неравенствами, что, таким образом, позволяет говорить о стабильности системы:


«Их вековые неравенства должны быть периодическими и заключенными в узкие пределы, так что планетарная система только колеблется около среднего состояния, от которого она отклоняется лишь на очень малую величину».


Орбиты планет почти всегда круглые с ограниченными изменениями их эксцентриситета. Наклон плоскости, в которой они перемещаются, не превышает 3 градусов. Сатурн не потеряется в бесконечном пространстве, Юпитер не столкнется с Солнцем, а Луна — с Землей. Лаплас доказал, что причиной ускорения Юпитера и замедления Сатурна были незначительные возмущения, связанные с расположением двух планет относительно Солнца. Точно так же ускорение движения Луны спровоцировано минимальными изменениями эксцентриситета Земли. Эти возмущения зависят только от закона тяготе ния и имеют тенденцию уравновешиваться с течением времени. Они следуют периодическим, но крайне длинным циклам. Таким образом, мировая система представляет собой отлично отлаженный механизм.

Лаплас сделал вывод, что Вселенная стабильна, не прибегая при этом к божественному вмешательству, как Ньютон. Почти через сто лет оптимист Лейбниц, казалось, одержал победу над британцем: Бог не был необходим для уравновешенного расположения планет, и никакие катаклизмы не грозили равновесию системы. Французский ученый доказал, что речь идет о полностью саморегулируемом механизме, который не нуждался во вмешательстве великого часовщика. Вселенной предопределено быть стабильной навеки.

Более чем через 200 лет успокаивающие прогнозы, сделанные Лапласом, стали нуждаться в небольшой проверке. Ученый решил продемонстрировать стабильность Солнечной системы не только в краткосрочной, но и в долгосрочной перспективе — до скончания века. Но работы по небесной механике французского математика Жюля Анри Пуанкаре (1854— 1912) в конце XIX века и особенно новые открытия XX века, в частности революционная теория хаоса, встали рядом с выводами Лапласа.

Ученый полагал, что решение проблемы трех тел не может быть найдено с помощью простой функции, а требует решения системы дифференциальных уравнений, то есть бесконечной суммы функций (которые зависят от таких орбитальных параметров, как эскцентриситет, наклонение орбиты, масса планеты). Эта система должна соответствовать условиям задачи и, кроме прочего, быть сходящейся для некоторых значений переменных. Лагранж уже нашел одно решение, но он не был уверен, что ряды сойдутся: если мы заменим переменные на их числовые значения, взятые из атмосферных данных, бесконечная сумма членов ряда станет конечным числом.

Поскольку условия не способствовали точным расчетам, Лаплас решил воспользоваться приблизительными значениями с усеченными рядами. В одном бесконечном ряду членов он сохранял только главные, а остальные опускал. Ученый думал получить разумные оценки поведения планет, изменяя лишь первые члены бесконечного ряда и полагая, что остальные члены не будут слишком сильно влиять на результат. Так он определил приблизительные решения для задачи трех тел и увидел, что хотя они и не полностью соответствуют действительности, эти мелкие отклонения несущественны. Он не ошибся.

Ряды, с которыми работал Лаплас, были рядами степеней, то есть бесконечными суммами функций, определенными с помощью последовательных степеней обратной массы Солнца. В первом члене появляется обратная величина массы, во втором — квадрат обратной величины солнечной массы, в третьем — куб и так далее. Учитывая соотношение солнечной массы с массами оставшихся планет и их спутников (отношение массы одной планеты к массе Солнца равно примерно 0,0001), Лаплас решил сократить этот ряд, используя только первый член и опуская члены начиная со степени 2. Он считал их несущественными: при возведении солнечной массы в квадрат частное становится порядка 0,00000001). Для наглядности, вместо того чтобы рассматривать А + В + С +..., он учитывал только А. Этот первый член позволял вывести приближение первого порядка.

Очевидно, что сумма первого и второго членов (А + В) была бы лучшим приближением, а сумма первых трех членов (А + В + С) — еще лучшим, но это потребовало бы погружения в крайне сложные вычисления. На самом деле если последовательные члены убывали, то приближение первого порядка (А) уже представляло собой достаточно точное значение суммы. Именно таким образом действовал французский математик: он использовал приближения первого порядка и не учитывал члены второго, третьего и последующих порядков.

Де Мопертюи, опирающийся на глобус, в знак уважения к Ньютону.

Чертеж из «Первоначал философии» Декарта, демонстрирующий идею вихревых потоков.

Диаграмма из «Математических начал натуральной философии», в которой Ньютон объясняет, каким образом Солнце воздействует на движение Луны вокруг Земли.


Математики XIX века возьмут на себя обязанность доказать, что, к сожалению, большинство рядов небесной механики, открытых математиками предыдущего столетия, не сходятся (их результат дает бесконечное число). Таким образом, они не дали приемлемых решений или сколько-нибудь точных приблизительных значений. Лаплас сохранил только А, но оставшиеся члены В + С, хоть и были небольшими, оказывали свое влияние. С течением времени — в долгосрочном периоде — они могли стать причиной значительных изменений. Также в этом бесконечном ряду внезапно мог появиться новый значительный член, что противоречило бы тенденции следования первых членов. В частности, в уравнении системы Солнце — Юпитер — Сатурн (задача трех тел) Лаплас пренебрег членами, которые считал бесконечными, но которые, вопреки его догадкам, могли вызвать дестабилизацию Солнечной системы. Несколькими годами позже он объяснил свой метод в работе «Изложение системы мира» (книга IV, глава II):


«Расчеты подтвердили эту догадку и показали, что, вообще, средние движения планет и их средние расстояния от Солнца неизменны, по крайней мере если пренебречь четвертыми степенями эксцентриситетов и наклонностей орбит и квадратами возмущающих масс, что более чем достаточно для современных надобностей астрономии».


Далее, в главе XVII, он добавил:


«Исключительная трудность проблем, относящихся к системе мира, заставляет прибегать к приближениям. Но всегда остается опасение, что величины, которыми пренебрегли, окажут заметное влияние на результаты».


И действительно, в 1856 году французский математик Урбен Леверье (1811-1877), известный своим открытием Нептуна, проверил расчеты Лапласа и доказал, что пренебрежение членами высшего порядка может вызвать значимые последствия, поэтому приближенные решения не могут быть использованы для доказательства стабильности Солнечной системы на период больший, чем сто лет.

И лишь в конце XIX — начале XX века один талантливый ученый пролил свет на проблемы небесной механики, оставшиеся нерешенными. Это Анри Пуанкаре — французский математик, которого часто называют последним универсалистом (его вклад является неотъемлемым для всех математических дисциплин). Он доказал, что результаты Лапласа были бы приемлемы, если бы использовалось приближение массы планет второго порядка, но не третьего. Значение этих членов, которые Лаплас счел несущественными, могло бы серьезно возрасти и вызвать дестабилизацию орбит планет. Иногда астроном предоставляет математику практические наблюдения, которые для последнего становятся источником бесконечного множества теоретических данных. Эти данные могут отражать влияние сил, которые сохраняют расстояние между звездами или, напротив, способствуют бесконечному движению некоторых небесных тел. Небольшие отклонения в начальном положении планет могут повлечь значительные изменения их конечного положения. Действительно, любое, даже самое малое возмущение периодического движения (которое соответствует эллипсу Кеплера) может с течением времени переродиться в нестабильную, то есть хаотичную траекторию (рисунок 3 на следующей странице).

В XXI веке передовые исследования осуществляются с помощью компьютеров, и мы знаем, что хаос может возникнуть в некоторых областях Солнечной системы — хотя через более длинные промежутки времени, чем предполагал Лаплас. Нерегулярное движение Луны, не подчиняющееся геометрическому правилу, есть не что иное, как случай аномалии, встречающейся и у других небесных тел. Вспомним хотя бы о странном движении Гипериона (одной из лун Сатурна), который по форме напоминает картофелину и, проходя по орбите, вращается случайным образом. Движение Плутона также негармонично, и в 1988 году это доказали, опираясь на цифровые данные, два ученых из Массачусетского технологического института (МТИ), Джеральд Суссман и Джек Уиздом. Траектория планеты-карлика интересна еще и тем, что ее орбита имеет большие, нежели орбиты других планет, эксцентриситет и наклонение, вследствие чего пересекает орбиту Нептуна (иногда Плутон ближе к Солнцу, чем Нептун). Не исключено, что в отдаленном будущем эти планеты окажутся достаточно близко друг к другу, чтобы произошла космическая катастрофа. При помощи суперкомпьютера Суссман и Уиздом просчитали траекторию Плутона на 845 миллионов лет вперед и доказали, что его орбита становится непредсказуемой и проявит себя как классическая система с хаотичным поведением уже через 20 миллионов лет (это очень короткий срок, учитывая, что возраст Солнечной системы, согласно последним данным, 4500 миллионов лет).

Между тем Дж. Ласкар осуществил примерную оценку зон, где могли бы находиться планеты Солнечной системы в течение ближайших пяти миллиардов лет. Текущие орбиты соответствуют выделенным линиям на рисунке 4, а области, которые могла бы посетить каждая планета, соответствуют зонам, выделенным серым цветом. В случае Меркурия и Венеры две зоны накладываются друг на друга — это показывает более темная серая полоса, — что сулит неопределенное будущее. Неопределенность возвращается в мировую систему.

РИС. 3

РИС. 4


ИССЛЕДОВАНИЯ С КОНДОРСЕ И ЛАВУАЗЬЕ

Лаплас был человеком с большими амбициями. Его научная программа включала не только исследование неба, но и изучение земного мира. Он стремился применить математику и к человеческому обществу, и к физике непредсказуемых жидкостей: теплу, свету, электричеству и магнетизму — к этим задачам Ньютон смог подойти лишь в «Оптике», а не в «Началах». В действительности Лаплас прошел более логичным путем: от мира математики к физике и от физики — к химии.

В 1783 году Лаплас вместе с Кондорсе принял участие в проекте, который представлял собой новый шаг в демографических и статистических исследованиях. Кондорсе, убежденный сторонник применения математики в процессе принятия решений, увидел в расчете вероятностей инструмент, который может послужить государству в статистике. Оба ученых стали членами академической комиссии, проводившей исследования функционирования Дома милосердия, самого большого госпиталя Парижа. Они квалифицированно проявили себя в расчете вероятностей, сравнивая процент смертности в этом госпитале с процентом смертности в других французских медицинских учреждениях. В 1785 году Лаплас стал одним из вдохновителей демографических исследований во Франции. Анализируя церковные записи о рождениях за длительный период, он захотел подсчитать общую численность населения королевства, умножив число рождений на 26.

Также он нашел время для сотрудничества с другим знаменитым ученым того времени — Антуаном Лораном де Лавуазье (1743-1794). Когда Лаплас познакомился с ним, Лавуазье уже был публичной персоной, главным государственным казначеем. Он получил эту должность после удачной женитьбы на богатой и умной Марии-Анн Польз (1758-1836). Это был удачливый человек, имевший влияние при дворе, а также известный экспериментатор в лаборатории Арсенала в Париже. Лавуазье оставил в стороне традиционную теорию флогистона, предложив собственную теорию горения на основе части воздуха, которую мы сегодня называем кислородом. Кроме этого он полностью изменил основы химии и предложил классификацию веществ, известных в химической практике.

Лаплас начал сотрудничество с Лавуазье в 1777 году и работал с ним в течение более чем 15 лет. Им ассистировали Клод Луи Бертолле (1748-1822), Антуан Франсуа де Фуркруа (1755-1809) и Алессандро Вольта (1745-1827). Лаплас продолжил сотрудничество с Бертолле до конца своей жизни, в частности по вопросам, связанным с физикой и химией.

Но как же началась совместная работа Лапласа и Лавуазье? Очень и очень прозаично. Отец Лапласа, Пьер, продолжал заниматься своими яблоневыми садами в Нижней Нормандии. Сидр, который он изготавливал, в течение долгого времени хранился в бочках, а чтобы он не портился, необходимы были консерванты. Однако, если консервант, добавленный в бочки, окажется плохого качества, он может вызвать у потребителей отравление. Так случилось в 1775 году, когда партия некачественного сидра стала причиной смерти нескольких монахов в религиозном братстве. С этих пор государство решило взять ситуацию в свои руки и обратилось к вновь созданному Королевскому медицинскому обществу Парижа, основателем и членом которого был Лавуазье. Чтобы потушить скандал, Пьер Лаплас выплатил религиозному братству щедрую компенсацию, но, столкнувшись в результате с финансовыми трудностями, он по возвращении в Париж обратился к Лавуазье за кредитом. Неизвестно, было это одной из договоренностей или обычной благодарностью, но молодой Лаплас с тех пор начал помогать Лавуазье в исследованиях.

В повседневной работе Лавуазье и Лаплас обращались друг с другом на равных — ученый-экспериментатор и геометр отлично находили общий язык. Если первый занимался опытами, то второй осуществлял необходимые расчеты. Лавуазье применил «метод геометра» и отразил свои достижения в работе о теплоте, прочитанной перед Академией в 1783 году.

Главным достижением этого сотрудничества стала разработка калориметра (см. рисунок на предыдущей странице) — гениального устройства, предназначенного для измерения внутреннего тепла тела в соответствии с количеством льда, которое было растоплено при воздействии этого тепла.

Лавуазье как представитель Казначейства имел привычку уравновешивать затраты. Будучи химиком, он исследовал отношение масс между реактивами и продуктами химических реакций. Лаплас, со своей стороны, привык исправлять астрономические неравенства и использовать теорию вероятностей в качестве своего рода моральной арифметики, уравновешивающей знание и незнание. Все это вписывалось в тенденцию все измерять и сравнивать. Эта тенденция, как мы увидим в следующей главе, была присуща и политике.

Калориметр, воспроизведенный с гравюры, представленной в «Трактате по элементарной химии»(1789). Чтобы измерить температуру тела, его помещают во внутренний резервуар, огражденный решеткой. Тепло, выделенное телом, растапливает лед. Количество воды, которое при этом вытекает через кран во внутренний резервуар, пропорционально теплоемкости тела.


РЕПУТАЦИЯ И ОБЩЕСТВЕННЫЙ ПРЕСТИЖ

Д’Аламбер умер в октябре 1783 года, и Лагранж стал во главе нового поколения математиков. Он прибыл в Париж в 1787 году, вступил в Академию и устроился в Лувре. Здесь его часто приглашала к себе королева Мария-Антуанетта. В том же году состоялась встреча Лагранжа и Лапласа, который был уже не молодым многообещающим учеником д’Аламбера, а признанным ученым, доказавшим стабильность системы мира. В Академии, согласно записям современников, «у него всегда было что сказать, он высказывал свое мнение относительно всего». Могло даже показаться, что отношения Лапласа с д’Аламбером от этого страдали, поскольку Лаплас считал труды своего учителя и коллеги устаревшими. Самомнение Лапласа заставляло его считать себя, хоть и не без оснований, лучшим математиком Франции.

В 1773 году Лаплас был всего лишь скромным членом отдела механики Академии, а в 1776-м он поступил в отдел геометрии на самую престижную специальность. Наконец, в 1785 году, после смерти одного из старших членов Академии, он стал академиком-пенсионером. За 12 лет этот ученый поднялся на самый верх карьерной лестницы, и его успехи на этом не закончились: в 1784 году Лаплас представил свою кандидатуру в военное министерство и был назначен в Везу в качестве экзаменатора учеников артиллерийской школы. Его коллега Монж получил место экзаменатора учеников военно-морских школ. Это позволяло ученым налаживать свою профессиональную карьеру, а также придавало им политический вес, так как эти должности приближали их ко многим важным политическим фигурам. В первый раз Лапласу удалось завести дружбу с влиятельными в обществе персонами.

Именно в этот момент, когда его карьера была обеспечена, математик — уже почти достигший 40-летия — решил жениться. Жену он выбрал на 20 лет моложе себя, что вызвало пересуды в парижских салонах. В итоге 15 мая 1788 года ученый женился на Марии Шарлотте де Курти де Романж (1769-1862), девушке из благородной семьи, которая помогла ему в дальнейшем продвижении по социальной лестнице. Она родила Лапласу двух детей: Шарля Эмиля, который посвятил себя военной карьере и дослужился до генерала, и Софию Сюзанну, которая стала любимицей отца, но трагически погибла в 1813 году во время родов своего первенца.

В конце 1780-х годов Лаплас стал новым Ньютоном. За свои заслуги ученый был принят в Лондонское королевское общество. В это десятилетие он совершил важнейшие исследования, сделавшие его одним из самых важных и влиятельных ученых эпохи. Лаплас всегда хвастался тем, что был убежденным сторонником Ньютона; он доказал: закон всемирного тяготения — единственный принцип, необходимый для объяснения формы планет, движения покрывавших их жидкостей, их орбит, формы спутников и комет и, наконец, стабильности Солнечной системы. Он объяснил положение звезд и развеял сомнения относительно движения Юпитера, Сатурна и особенно Луны. Париж, да и вся Франция могли с облегчением вздохнуть: Луна не столкнется с Землей и не будет притянута Солнцем.

До 1789 года Лаплас считал, что доказал стабильность Вселенной (хотя свою космологическую модель он разработал позже), и имел все основания написать:


«...несомненно, элементы планетной системы упорядочены таким образом, чтобы обладать наибольшей устойчивостью, если посторонние причины ее не нарушают... Кажется, что природа все расположила на Небе так, чтобы обеспечить длительное существование планетной системы, подобно тому, как она так великолепно сделала это на Земле, чтобы сохранить живые существа и увековечить виды».


Мир казался спокойным и упорядоченным. Но в действительности не было стабильности ни в космической системе, ни в политической, ни в общественной, где придворные вращались вокруг короля, как планеты вокруг Солнца. 1789 год ознаменовал начало революции, которая навсегда изменила историю.


Загрузка...